
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/136955

Beltrán Meneu, MJ.; Gómez Collado, MDC.; Jorda Mora, E.; Jornet Casanova, D. (2016).
Mean ergodicity of weighted composition operators on spaces of holomorphic functions.
Journal of Mathematical Analysis and Applications. 444(2):1640-1651.
https://doi.org/10.1016/j.jmaa.2016.07.039

http://dx.doi.org/10.1016/j.jmaa.2016.07.039

Elsevier



Mean ergodicity of weighted composition operators on spaces of 
holomorphic functions

María J. Beltrán-Meneu a, M. Carmen Gómez-Collado b, Enrique Jordá b, 
David Jornet b,∗

a Departament de Didàctica de la Matemàtica, Universitat de València, Avda. Tarongers, 4,
E-46022 Valencia, Spain
b Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, 
Camino de Vera, s/n, E-46022 Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2016
Available online 27 July 2016
Submitted by R. Timoney

Dedicated to our friend Prof. 
Manuel Maestre on the occasion of 
his 60th birthday

Keywords:
Weighted composition operator
Mean ergodic operator
Power bounded operator
Holomorphic function

Let ϕ be a self-map of the unit disc D of the complex plane C and let ψ be 
a holomorphic function on D. We investigate the mean ergodicity and power 
boundedness of the weighted composition operator Cϕ,ψ(f) = ψ(f ◦ ϕ) with 
symbol ϕ and multiplier ψ on the space H(D). We obtain necessary and sufficient 
conditions on the symbol ϕ and on the multiplier ψ which characterize when the 
weighted composition operator is power bounded and (uniformly) mean ergodic. One 
necessary condition is that the symbol ϕ has a fixed point in D. If ϕ is not a rational 
rotation, the sufficient conditions are related to the modulus of the multiplier on 
the fixed point of ϕ. Some of our results are valid in an open connected set U of the 
complex plane.

1. Introduction

Let U be a connected open subset (= domain) of C. We denote by H(U) the space of analytic functions 
on U , which is a Fréchet Montel space endowed with the compact open topology τco.

Let ϕ and ψ be analytic functions on U such that ϕ(U) ⊆ U . These maps define on the space H(U) the 
so-called weighted composition operator Cϕ,ψ by Cϕ,ψ(f) = ψ(f ◦ ϕ), f ∈ H(U). The function ϕ is called 
symbol and ψ is called multiplier. It combines the classical composition operator Cϕ : f �→ f ◦ ϕ with the 
pointwise multiplication operator Mψ : f �→ ψ · f .

Given ϕ : U → U a continuous self-map on U , we say that ϕ has stable orbits on U if for every compact 
subset K ⊆ U there is a compact subset L ⊆ U such that ϕn(K) ⊆ L for every n ∈ N.
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In 2011, Bonet and Domański characterized those composition operators Cϕ defined on H(U) which are 
power bounded and proved that this condition is equivalent to the composition operator being (uniformly) 
mean ergodic or the map ϕ having stable orbits [9, Proposition 1].

In a Montel DF or LF space we have that power bounded operators are (uniformly) mean ergodic 
[1, Proposition 2.8], and this implies that the operator is topologizable. In this paper we prove that Cϕ,ψ

is topologizable if and only if the symbol ϕ has stable orbits. Thus, for composition operators, being power 
bounded, (uniformly) mean ergodic and topologizable are equivalent. We show that this is no longer true 
for weighted composition operators. One necessary condition that we get for Cϕ,ψ being mean ergodic is 
|ψ(z0)| ≤ 1 for each z0 ∈ U which is a fixed point of ϕ. The endomorphisms in U with stable orbits which 
are not automorphisms have an attracting fixed point z0 ∈ U . In this case the condition |ψ(z0)| ≤ 1 is also 
sufficient for Cϕ,ψ being power bounded. In case U = D, if ϕ is an automorphism with stable orbits then it 
is an elliptic automorphism. We prove that for non-periodic rotation symbols associated to a Diophantine 
irrational number and ψ a multiplier which is nonzero in D, (uniformly) mean ergodic is equivalent to power 
bounded and equivalent to the condition |ψ(z0)| ≤ 1, z0 being the (nonattractive) fixed point of ϕ. For 
rotations associated to rational numbers we provide examples showing that this is not true.

2. Notation and preliminaries

Let X be a locally convex Hausdorff space and T : X → X a continuous and linear operator on X. The 

iterates of T are denoted by Tn := T ◦ 
n)· · · ◦ T , n ∈ N. For x ∈ X we denote by Orb(T, x) := {Tnx, n ∈ N0}

the orbit of x under T . If the sequence (Tn)n∈N is equicontinuous in the space L(X) of all continuous and 
linear operators from X to X, T is called power bounded.

Given T ∈ L(X), we denote by

T[n] := 1
n

n∑
m=1

Tm, n ∈ N,

the Cesàro means of T . The operator T is mean ergodic precisely when (T[n])∞n=1 converges in the strong 
operator topology, i.e., for all x ∈ X, the limit limn→∞ T[n](x) exists. If (T[n])∞n=1 converges uniformly on 
the bounded subsets of X, then T is called uniformly mean ergodic.

An operator T ∈ L(X) is called topologizable if for every continuous seminorm p ∈ cs(X) there is a 
continuous seminorm q ∈ cs(X) such that for every n ∈ N there is Cn ≥ 0 such that

p(Tn(x)) ≤ Cnq(x) for all x ∈ X.

This class of operators was defined and studied by Zelazko [29] (see also Bonet [8]). If T is an operator 
defined on a barrelled space such that there exists a sequence (cn)n of positive numbers such that (cnTn)n
is equicontinuous (pointwise bounded), then T is topologizable, and the constants Cn in the definition of 
topologizable do not depend on p. This is an immediate consequence of the Banach–Steinhaus theorem. 
Being topologizable is a weaker condition than being power bounded. As

1
n
Tn = T[n] −

n− 1
n

T[n−1],

if T is mean ergodic then ( 1
nT

n)n converges to 0 in the strong operator topology and therefore T is topol-
ogizable. In a Montel DF or LF space we have that power bounded operators are always uniformly mean 
ergodic (see [1, Proposition 2.8]).

There is a huge literature about the dynamical behavior of various linear continuous operators on Banach, 
Fréchet and more general locally convex spaces; see the survey paper by Grosse-Erdmann [17] and the recent 



books by Bayart and Matheron [5] and by Grosse-Erdmann and Peris [18]. For more details of mean ergodic 
operators on locally convex spaces, see [1,2], and the references therein.

Composition operators on various spaces of analytic functions have been the object for intense study 
in recent years, specially the problem of relating operator-theoretic properties of Cϕ to function theoretic 
properties of the symbol ϕ. See the books of Cowen and MacCluer [13] and Shapiro [27] for discussions of 
composition operators on classical spaces of holomorphic functions. Several authors have studied dynamical 
properties on these operators. Bonet and Domański studied the mean ergodicity of composition operators 
acting on the space H(U) of holomorphic functions defined on a domain U in a Stein manifold [9]. They 
characterized those composition operators which are power bounded and proved that this condition is 
equivalent to the operator being mean ergodic or uniformly mean ergodic. In [28], Wolf studied when the 
composition operator is power bounded or uniformly mean ergodic on the weighted Bergman spaces of 
infinite order H∞

v (D). In [6] the authors obtain a characterization of the mean ergodicity and uniformly 
mean ergodicity of Cϕ on the disc algebra A(D) and on the Hardy space H∞(D) looking at the asymptotic 
behavior of the iterates of the symbol. It is easy to see that on both Banach spaces the composition operator 
is always power bounded. Bonet and Ricker studied when multiplication operators are power bounded or 
uniformly mean ergodic on weighted Banach spaces of holomorphic functions in the unit disc [10].

Weighted composition operators appear in a natural way on different spaces of analytic functions also. 
For example, it is well known that isometries on most of the spaces of analytic functions are described as 
weighted composition operators (see the monographs of Fleming and Jamison [14,15]). In this paper we 
study the power boundedness and mean ergodicity of these operators on the Fréchet space H(U). Other 
dynamical properties such as (frequently) hypercyclicity and supercyclicity have been studied in this context; 
see [7] and the references therein. The power boundedness and the compactness of weighted composition 
operators have been studied in [11] and [26] also. Some research on the spectra can be found in [3,19–21].

Our notation for topology and functional analysis is standard, see for example [25]. In what follows, given 
z ∈ C and r > 0 we denote by B(z, r) and B(z, r) the open and closed balls centered at z with radius r.

3. Weighted composition operators on H(U)

For ϕ an analytic self-map of U and ψ a multiplier we have

(Cϕ,ψ)nf(z) = ψ(z) · · ·ψ(ϕn−1(z))f(ϕn(z)) =
(

n−1∏
m=0

(ψ ◦ ϕm)(z)
)
f(ϕn(z))

for n ∈ N, where for n = 0 we set ϕ0 := idU , the identity function on U . Denote ψ[n](z) :=
∏n−1

m=0 ψ(ϕm(z)).
In the next result, τco denotes the compact open topology in H(U), as mentioned in the introduction.

Proposition 3.1. Let U be a domain of C.

(i) If Cϕ,ψ : H(U) → H(U) is power bounded then Cϕ,ψ is uniformly mean ergodic and (
∏n

m=0(ψ ◦ ϕm))n
is bounded on H(U).

(ii) If Cϕ,ψ : H(U) → H(U) is mean ergodic then limn
1
n

∏n−1
m=0(ψ◦ϕm) = 0 on τco and Cϕ,ψ is topologizable.

Proof. (i) If Cϕ,ψ is power bounded then the set {Cn
ϕ,ψ(f) : n ∈ N} is bounded on H(U) for every f ∈ H(U). 

In particular, for f ≡ 1 we have that 
∏n−1

m=0(ψ◦ϕm) is bounded on H(U). Moreover, since H(U) is a Fréchet 
Montel space, the uniformly mean ergodicity is deduced from [1, Proposition 2.8].
(ii) If Cϕ,ψ is mean ergodic then limn→∞

1
nC

n
ϕ,ψ = 0 pointwise. As a consequence, Cϕ,ψ is topologizable and 

limn→∞
1
nC

n
ϕ,ψ(1) = 0, which yields the assertion. �



Proposition 3.2. Let U be a domain of C. The following assertions are equivalent:

(i) Cϕ,ψ is topologizable,
(ii) ϕ has stable orbits.

Proof. (i) ⇒ (ii): Consider a compact set K ⊆ U such that K is equal to its U -holomorphic convex hull, i.e. 
K = K̂ := {z ∈ U ; |f(z)| ≤ supζ∈K |f(ζ)|, ∀ f ∈ H(U)} (see [24, Chapter VI]). By [24, Proposition 1.6 (v)], 
if u ∈ U \K then for any M > 0, ε > 0 and z ∈ U \K, there is an f ∈ H(U) such that supz∈K |f(z)| < ε

and |f(u)| > M .
If the operator Cϕ,ψ is topologizable, considering (Kn)n a fundamental sequence of compact sets of U , 

with each Kn being equal to its U -holomorphic convex hull (this can be done since U is an open and 
connected subset of C), we get that for every i ∈ N there exists j ∈ N such that for every n ∈ N there exists 
Dn > 0 such that

sup
z∈Ki

|Cn
ϕ,ψ(f)(z)| ≤ Dn sup

z∈Kj

|f(z)| for all f ∈ H(U). (3.1)

Suppose that there exists n such that ϕn(Ki) � Kj . Since the zero set of an holomorphic function is discrete, 
we can get z0 ∈ U such that z0 ∈ Ki and ϕn(z0) /∈ Kj with ψ[n](z0) �= 0. If we get a function f ∈ H(U)
such that |f(z)| ≤ 1 for all z ∈ Kj and |f(ϕn(z0))| > Dn/|ψ[n](z0)| then we get a contradiction with (3.1).

(ii) ⇒ (i): Let K be a compact set in C. Consider L a compact satisfying ϕn(K) ⊆ L for every n ∈ N. 
Let Cn = supz∈K

∣∣∣∏n−1
m=0(ψ ◦ ϕm)(z)

∣∣∣. Then

sup
z∈K

|(Cϕ,ψ)nf(z)| = sup
z∈K

{(
n−1∏
m=0

(ψ ◦ ϕm)(z)
)
f(ϕn(z))

}
≤

≤ Cn sup
z∈K

|f(ϕn(z))| ≤ Cn sup
z∈L

|f(z)|. �
Theorem 3.3. Let U be a domain of C. The following assertions are equivalent:

(i) Cϕ,ψ is power bounded,
(ii) ϕ has stable orbits and (

∏n
m=0(ψ ◦ ϕm))n is a bounded sequence on H(U).

Proof. (i) ⇒ (ii) is a consequence of Propositions 3.1 and 3.2.
(ii) ⇒ (i): Let K be a compact subset of U and consider

C := sup
n∈N

sup
z∈K

∣∣∣∣∣
n−1∏
m=0

(ψ ◦ ϕm)(z)

∣∣∣∣∣ < ∞.

Since ϕ has stable orbits, given K we take a compact subset L ⊆ U such that ϕn(K) ⊆ L for n ∈ N. Then

sup
z∈K

∣∣(Cn
ϕ,ψ)f(z)

∣∣ ≤ C sup
z∈K

|(f ◦ ϕn)(z)| ≤ C sup
z∈L

|f(z)|, ∀ n ∈ N.

Hence ((Cn
ϕ,ψ)(f))n is bounded on H(U) for every f ∈ H(U). �

Remark 3.4. A similar proof to that of Theorem 3.3 shows that (Cn
ϕ,ψ) is convergent to 0 in L(H(U)) if and 

only if ϕ has stable orbits and (ψ[n])n converges to 0 in H(U).



Corollary 3.5. Let U be a domain of C. Let ϕ and ψ be analytic functions on U such that ϕ(U) ⊆ U . If 
Cϕ,ψ is power bounded then the composition operator Cϕ is power bounded.

Proof. If Cϕ,ψ is power bounded, by Theorem 3.3, ϕ has stable orbits and then we can conclude by an 
application of [9, Proposition 1]. �
Corollary 3.6. Let U be a domain of C. Let ϕ and ψ be analytic functions on U such that ϕ(U) ⊆ U . If ϕ
has stable orbits and ψ(U) ⊆ D, then Cϕ,ψ is power bounded.

Condition ψ(U) ⊆ D in Corollary 3.6 becomes also necessary for multiplication operators associated to 
the multiplier ψ, i.e., for the operator Cϕ,ψ when the symbol is the identity ϕ(z) = z, z ∈ U . Actually, in this 
case the condition on the multiplier in Theorem 3.3 becomes (ψn)n bounded in H(U), and this is trivially 
equivalent to the condition ψ(U) ⊆ D. In this paper we prove with several examples that, in general, this 
condition is not necessary when the symbol differs from the identity. In this context the necessary condition 
is generalized considering the set of fixed points of ϕ instead of the whole domain U :

Proposition 3.7. Let U be a domain of C. Let ϕ and ψ be analytic functions on U such that ϕ(U) ⊆ U and 
z0 is a fixed point of ϕ. If |ψ(z0)| > 1, then the weighted composition operator Cϕ,ψ is not mean ergodic 
(and thus, it is not power bounded).

Proof. Since |ψ(z0)| > 1, we get 1
n

∏n−1
m=0 |ψ ◦ ϕm(z0)| = 1

n

∏n−1
m=0 |ψ(z0)| diverges to infinity. Therefore, by 

Proposition 3.1, Cϕ,ψ is not mean ergodic. �
Remark 3.8. Let U be a connected domain of holomorphy in Cd (or even in a Stein manifold). All the above 
results remain valid for weighted composition operators defined on H(U) endowed with the compact open 
topology, since H(U) is a Fréchet Montel space and U admits a fundamental sequence (Kn)n of compact 
subsets of U such that each Kn coincides with its U-holomorphic convex hull (i.e., Kn = {ω ∈ U : |f(ω)| ≤
supz∈Kn

|f(z)|, ∀f ∈ H(U)}). In fact, this is the setting of Bonet and Domański [9]. Our Proposition 3.2
combined with [9, Proposition 1] means that, for composition operators (case ψ ≡ 1), being power bounded, 
being mean ergodic and being topologizable are equivalent.

Propositions 3.1 and 3.2 and Theorem 3.3 show that if Cϕ,ψ is mean ergodic or power bounded then the 
stability of the orbits of ϕ is a necessary condition. For composition operators, Bonet and Domański [9]
proved that it is also a sufficient condition for the power boundedness. In what follows we assume ϕ has 
stable orbits and we find conditions on ψ to obtain the power boundedness of the operator Cϕ,ψ. If U is 
a domain in C, U �= C, by a theorem due to Abate [23, Theorem 5.5.4] (see also [9, Theorem 1] for a 
complement of this result for Stein manifolds), if ϕ has stable orbits we have two possibilities:

(a) there is an attractive fixed point z0 ∈ U of ϕ such that (ϕn)n converges to the constant function 
α(z) := z0 in (H(U), τco), or

(b) there exists a subsequence (ϕnk)k which converges to idU in (H(U), τco). In this case ϕ is an automor-
phism and ϕ−1 has stable orbits.

3.1. Non-automorphic symbols with stable orbits

In this section we study case (a), that is, the case in which ϕ has an attracting fixed point z0 ∈ U . We 
prove that in this context the mean ergodicity of Cϕ,ψ depends on the modulus of ψ at the fixed point z0.



Lemma 3.9. Let U be a domain in C, U �= C and let ϕ : U → U be holomorphic with a fixed point z0 ∈ U

and ϕ different from an automorphism of U . Then for every compact set K ⊆ U , there are 0 < ρ < 1 and 
L > 0 such that

|ϕn(z) − z0| < Lρn, z ∈ K, n ∈ N.

In particular, (ϕn)n converges to the constant function α(z) := z0 uniformly on compact subsets of U .

Proof. Take h : D → U a Riemann map of the domain U such that h(0) = z0. Let K be a compact set 
in U . Since ϕ has stable orbits, there is a compact set Q such that ϕn(K) ⊆ Q for all n ∈ N. Then there is 
a constant L > 0 such that

|h(z) − h(w)| ≤ L|z − w|, z, w ∈ Q̃ := h−1(Q ∪K) ∪ {0}.

Consider the holomorphic map ψ : D → D given by ψ = h−1 ◦ ϕ ◦ h. Clearly ψ(0) = 0 and ψ is not an 
automorphism of the unit disc. By a standard argument, there is 0 < ρ < 1 such that

|ψn(w)| ≤ ρn, w ∈ Q̃, n ∈ N.

Hence for all z ∈ K, ψn(h−1(z)) = h−1(ϕn(z)) ⊆ Q̃ and |ψn(h−1(z))| ≤ ρn, for all n ∈ N. Consequently

|ϕn(z) − z0| = |h ◦ ψn(h−1(z)) − h(0)| ≤ L|ψn(h−1(z)) − 0| ≤ Lρn, z ∈ K, n ∈ N. �
In the following theorem we prove that for a symbol ϕ with attractive interior fixed point, the behavior 

of the multiplier ψ in the attractor completely characterizes the mean ergodicity of Cϕ,ψ.

Theorem 3.10. Let U be a domain in C, U �= C and let ϕ : U → U be a symbol with a fixed point z0 ∈ U

and such that ϕ is not an automorphism. Let ψ : U → C be a multiplier.

(i) If |ψ(z0)| ≤ 1, then Cϕ,ψ is power bounded,
(ii) If |ψ(z0)| > 1, then Cϕ,ψ is not mean ergodic.

Proof. We only need to prove (i), since (ii) follows from Proposition 3.7. First, suppose that |ψ(z0)| < 1
and consider 0 < δ < 1 such that |ψ(z0)| < δ < 1. Since (ϕn)n converges to z0 in (H(U), τco), (ψ ◦ ϕn)n
converges to ψ(z0) in (H(U), τco). Given a compact set K ⊆ U , there is n0 ∈ N such that

|(ψ ◦ ϕn)(z)| < δ < 1 ∀ n ≥ n0, z ∈ K.

Then, for all n > n0,

sup
z∈K

n−1∏
m=0

|ψ(ϕm(z))| < sup
z∈K

n0∏
m=0

|ψ(ϕm(z))|

and so, {
∏n−1

m=0 |ψ ◦ ϕm| : n ∈ N} is bounded on H(U). By Theorem 3.3, Cϕ,ψ is power bounded. In this 
case, it is not hard to prove that (Cn

ϕ,ψ)n is even convergent to 0 in Lb(H(U)).
Now, consider the case |ψ(z0)| = 1. By Theorem 3.3, it suffices to show that {

∏n−1
m=0 |ψ(ϕm)| : n ∈ N}

is bounded on H(U). We can assume ψ(z0) = 1 because {
∏n−1

m=0 |ψ(ϕm)| : n ∈ N} is bounded if and only 
if {

∏n−1
m=0 |αψ(ϕm)| : n ∈ N} is bounded on H(U) for all |α| = 1. By Lemma 3.9 there is 0 < ρ < 1 and 

M1 ∈ N such that
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|ϕm(z) − z0| ≤ M1ρ
m ∀z ∈ K, ∀m ∈ N.

Consider h(z) := ψ(z)−1
z−z0

∈ H(U), z ∈ U \ {z0}, and h(z0) = ψ′(z0). Given a compact set K ⊆ U , by 
hypothesis there is a compact set L ⊆ U such that ϕn(K) ⊆ L for all n ∈ N. Put M2 := supz∈L |h(z)| < ∞
and M = M1M2. Hence, for all z ∈ K, m ∈ N,

|ψ(ϕm(z)) − 1| = |ϕm(z) − z0||h(ϕm(z))| ≤ Mρm.

From this it follows that

∞∑
m=0

|ψ(ϕm(z)) − 1| < ∞

and applying [4, Lemma 6.1.2 and 6.1.4] we deduce that

∞∏
m=0

ψ(ϕm(z)) =
∞∏

m=0
(1 + (ψ(ϕm(z)) − 1)),

converges absolutely on τco. �
3.2. Automorphic symbols with stable orbits

If ϕ has stable orbits but does not have an attractive fixed point in U , by [23, Theorem 5.5.4] we obtain 
that ϕ is an automorphism and ϕ−1 has stable orbits.

In this case, the following result is satisfied:

Proposition 3.11. Let U be a domain in C, U �= C and let ψ : U → C be an analytic function such that 
ψ−1(D) is a compact set. If ϕ : U → U is an analytic function with stable orbits and has no attractive fixed 
point, then Cϕ,ψ cannot be mean ergodic.

Proof. By [9, Proposition 1(e)], there is a fundamental family of connected compact sets (Kn)n in U such 
that ϕ(Kn) ⊆ Kn for every n ∈ N. So, there is a compact set K such that ψ−1(D) ⊆ K̊ and ϕ(K) ⊆ K. This 
implies that for every z /∈ K there exists δ > 0 such that |ψ(ϕn(z))| > 1 + δ for every n ∈ N. Otherwise, 
there exists z /∈ K such that, for every j ∈ N there exists nj ∈ N such that

|ψ(ϕnj (z))| ≤ 1 + 1
j
. (3.2)

Since ϕ has stable orbits, there is a compact L ⊆ U such that (ϕnj (z))j ⊆ L for every j ∈ N. Therefore, 
there exists ω ∈ L and a subsequence (njk)k such that ϕnjk (z) converges to ω. Thus, ψ(ϕnjk (z)) converges 
to ψ(ω). By (3.2), ω ∈ ψ−1(D) ⊆ K̊. Hence, there is k0 ∈ N such that ϕnjk0 (z) ∈ K̊, and so, ϕn(z) ∈ K for 
every n ≥ njk0

, since ϕ(K) ⊆ K. But this contradicts the existence of a sequence (ϕmk)k which converges 
to idU in (H(U), τco). Therefore, ∣∣∣∣∣ 1n

n∏
m=1

(ψ ◦ ϕk)(z)

∣∣∣∣∣ > (1 + δ)n

n
,

and Cϕ,ψ cannot be mean ergodic by Proposition 3.1. �

davis
Línea



Corollary 3.12. Let U be a bounded domain in C. Let ϕ : U → U be a symbol with stable orbits and no 
attractive fixed point and ψ : U → C a multiplier. If Cϕ,ψ is mean ergodic, then ψ−1(D) ∩ δ(U) �= ∅, where 
δ(U) denotes the boundary of U .

In what follows we focus on automorphisms of the unit disc, since they are completely characterized 
(see [19, page 837]). The ones with stable orbits are called elliptic automorphisms, and have a fixed point 
inside D. By [19, Lemma 3.0.5], if z0 is its fixed point, |ϕ′(z0)| = 1 and

(
z0 − z

1 − z̄0z

)−1

◦ ϕ ◦ z0 − z

1 − z̄0z
= ϕ′(z0)z.

Lemma 3.13. Let E, F be two locally convex spaces and S : E → E, T : F → F two conjugate operators, that 
is, there exists a isomorphism χ : E → F such that S = χ−1 ◦T ◦χ. Then, T is power bounded ((uniformly) 
mean ergodic) if and only if S is so.

In the following until the end of the paper, we present our results for U = D. Proceeding as in [19, 
Lemma 3.0.6], we get:

Lemma 3.14. Let Cϕ,ψ be a weighted composition operator on H(D), where ϕ is an elliptic automorphism 
of the unit disc with fixed point z0 ∈ D. Then Cϕ,ψ is conjugated to a weighted composition operator with 
composition map ϕ̃(z) = ϕ′(z0)z.

As a consequence of Lemmas 3.13 and 3.14 we get that, if we want to study the power boundedness and 
(uniformly) mean ergodicity of a weighted composition operator Cϕ,ψ such that ϕ is an elliptic automorphism 
on the disc, we can consider, without loss of generality, that ϕ is a rotation of the unit disc centered at zero.

As in Proposition 3.10 we observe that, under some conditions on ψ and ϕ, the dynamical behavior of 
the associated weighted composition operator depends on the modulus of ψ at 0, the fixed point of ϕ. To 
do this, we need to introduce the following definition [22, 2.8.1].

Definition 3.15. A number α is called Diophantine of type (c, s) if for any nonzero p, q ∈ Z we have 
|qα− p| > cq−s. α is called Diophantine if there exist c > 0, s > 1 such that α is Diophantine of type (c, s).

It is well known that the union of all Diophantine irrational numbers has measure 1 in (0, 1) [22, exer-
cise 7.1.5, p. 290]. The following statement is also well known (see [22, p. 95]).

Lemma 3.16. If α ∈ (0, 1) is Diophantine and λ = e2παi then there exists C > 0 and s ∈ N such that for all 
n ∈ N,

|λn − 1| ≥ C

ns
.

We consider now multipliers which are nonzero in the disc. Inspired in Gottschalk and Hedlund’s cobound-
ary theorem [16] and Gunatillake’s recent work [19], where the spectra of Cϕ,ψ is studied, we obtain a 
complete characterization of the mean ergodicity of weighted composition operators in terms of the value of 
the multiplier at 0 when the symbol is a rotation of the disc associated to a Diophantine irrational number.

Theorem 3.17. Consider the automorphism of the disc ϕ(z) = λz, z ∈ D, λ ∈ C, with |λ| = 1 and λn �= 1
for every n ∈ N, and let ψ ∈ H(D) nonvanishing. The weighted composition operator Cϕ,ψ satisfies:



(i) Cϕ,ψ is not mean ergodic if |ψ(0)| > 1,
(ii) Cϕ,ψ is convergent to 0 in Lb(H(D)) (and then it is power bounded and uniformly mean ergodic) if 

|ψ(0)| < 1,
(iii) If λ = e2παi with α ∈ (0, 1) being a Diophantine irrational number, then Cϕ,ψ is power bounded, and 

thus uniformly mean ergodic if |ψ(0)| = 1.

Proof. (i) follows by Proposition 3.7.
(ii) If |ψ(0)| < 1, applying [19, Lemma 3.2.1] to each function ψ((1 − 1/n)z), z ∈ D, we get that (∏N−1
m=0 |ψ ◦ ϕm|

)1/N
converges uniformly on D(0, 1 − 1/n) to |ψ(0)| < 1 on the unit disc as N tends to 

infinity, for each n ∈ N. Then, 
∏N−1

m=0 |ψ ◦ ϕm| converges to 0 uniformly on the compact sets of D. By 
Proposition 3.3, Cϕ,ψ is power bounded with Cn

ϕ,ψ −→ 0, and thus uniformly mean ergodic.
(iii) Assume now that λ is a Diophantine irrational number and that |ψ(0)| = 1. Since (

∏n
i=1(ψ ◦ϕi))n is 

bounded in H(D) if and only if (
∏n

i=1 a(ψ ◦ϕi))n is bounded in H(D) for each |a| = 1, then we can assume 
also ψ(0) = 1. Since ψ �= 0 in D, there exists h ∈ H(D) with h(0) = 0 such that ψ(z) = eh(z) for each z ∈ D
[12, Corollary 6.17]. That is, h(z) =

∑∞
n=1 anz

n, z ∈ D, with radius of convergence R = 1
lim supn |an|

1
n

≥ 1. 

Now, observe that (
∏n

i=1(ψ ◦ ϕi))n is bounded in H(D) if (
∑n

i=1(h ◦ ϕi))n is bounded in H(D). This is 
clearly satisfied if

sup
n∈N

sup
z∈D(0,1−1/j)

∣∣∣∣∣
n∑

i=1
h(λiz)

∣∣∣∣∣ < ∞ (3.3)

holds for each j ∈ N. Define bn = an/(1 − λn) if an �= 0 and bn = 0 elsewhere. Consider the series 
g(z) =

∑∞
n=1 bnz

n. Take s and C satisfying the conditions of Lemma 3.16 for λ. The radius of convergence R̂
of g satisfies

R̂ = 1
lim supn |bn|

1
n

≥ 1
lim supn |an|1/n(ns

C )1/n
= 1

lim supn |an|
1
n

= R ≥ 1.

Hence g is holomorphic in D and h(z) = g(z) − g(λz) for each z ∈ D. This gives us the conclusion, since the 
sums in (3.3) are now telescopic. �
Remark 3.18. The proof of Theorem 3.17 shows that 

∑n
i=1 h(λiz) has a telescopic form when λ is asso-

ciated to a Diophantine irrational number. From this it follows that (
∏n

i=1 ψ(λi·))n is a sequence which 
is bounded away from 0, i.e., there is no sequence (nk)k of natural numbers such that (

∏nk

i=1 ψ(λi·))k is 
convergent to 0 in H(D). Indeed, we get | 

∏n
i=1 ψ(λiz)| = eh(λz)−h(λn+1z) for each n ∈ N and z ∈ D, and so, 

minz∈K |(
∏n

i=1 ψ(λiz))| ≥ e−2 max{|h(z)|: z∈K} > 0, for each n ∈ N and each compact set K in D.

In the following proposition we see that if ψ is not zero free in D and ϕ is any irrational rotation, then 
the power boundedness of Cϕ,ψ is equivalent to the convergence to 0 of (Cn

ϕ,ψ)n in L(H(D)).

Proposition 3.19. Let us consider the automorphism of the disc ϕ(z) = λz, z ∈ D, λ ∈ C with |λ| = 1
and λn �= 1 for every n ∈ N, and let ψ be analytic on the unit disc with ψ(z0) = 0 for some z0 ∈ D. The 
following are equivalent:

(i) The operator Cϕ,ψ is power bounded, and then uniformly mean ergodic in H(D).
(ii) (

∏n
i=1 ψ(λi·))n converges to 0 in H(D).

(iii) (Cn
ϕ,ψ)n converges to 0 in L(H(D)).



Proof. Since (ii) and (iii) are equivalent by Remark 3.4 and (ii) implies (i) trivially, we only need to prove 
(i)⇒(ii). Assume Cϕ,ψ is power bounded, that is, the sequence (

∏n
i=1 ψ(λi·))n is bounded, and then relatively 

compact in H(D) (see Theorem 3.3).
If ψ(0) = 0 then there exists 0 < r < 1 such that |ψ(z)| < 1/2 for each z ∈ D(0, r). This implies that 

(
∏n

i=1 ψ(λi·))n converges uniformly to 0 in D(0, r). From this it follows that any subsequence (
∏nk

i=1 ψ(λi·))nk

which is convergent in H(D) has limit 0. Since (
∏n

i=1 ψ(λi·))n is relatively compact in H(D), we conclude 
that (

∏n
i=1 ψ(λi·))n converges to 0 in H(D).

Let us assume now that z0 �= 0. Now, for each k ∈ N and n ≥ k, λ−kz0 is a zero of 
∏n

j=1 ψ(λn·). Hence, 
by Kronecker theorem, {λkz0 : k ∈ N} is a dense set in the circle |z| = |z0| in which every limit point of 
(
∏n

i=1 ψ(λi·))n vanishes. From this it follows that the unique limit point is 0. �
Remark 3.20.

(i) The proof of (iii) in Theorem 3.17 yields that Cϕ,ψ is power bounded when ψ(z) = eP (z), P (z) being 
an homogeneous polynomial and ϕ(z) = λz, with λ not a root of unity. Further, the result is true if 
ψ(z) = eh(z) with h(z) = g(z) − g(λz) for some g continuous in D, i.e. h is coboundary in the sense of 
Gottschalk and Hedlund [16] for the composition operator with symbol ϕ, being the symbol a rotation 
ϕ(z) = λz, in each closed disc rD for 0 < r < 1.

(ii) The hypothesis ψ different from zero in the unit disc cannot be dropped in Proposition 3.17(ii). Observe 
that if we take ψ(z) = 2z + 1

2 , z ∈ D, we get |ψ(0)| < 1 but Cϕ,ψ cannot be power bounded. Indeed, 
ψ−1(D) = B(−1

4 , 1
2 ) is compact in D, and by Proposition 3.11, Cϕ,ψ cannot be mean ergodic. For this 

function, ψ(−1/4) = 0.

Remark 3.21. Condition ψ−1(D) ∩∂D �= ∅ in Corollary 3.12 is not a sufficient condition in order to be mean 
ergodic. For instance, if we consider ϕ(z) = λz, z ∈ D, λ ∈ C with |λ| = 1 and λn �= 1 for every n ∈ N, and 
ψ : D → C, ψ(z) = z + 3/2, we get that −1 ∈ ψ−1(D) but Cϕ,ψ is not mean ergodic by Theorem 3.17.

In the next example we show that condition |ψ(0)| ≤ 1 in Proposition 3.17 does not necessarily imply 
power boundedness of Cϕ,ψ in the case ϕ is a rotation of the unit disc associated to a rational number. We 
use the next result:

Proposition 3.22. Let ϕ(z) = λz, z ∈ D, λ ∈ C with λk = 1 for some k ∈ N and let ψ be analytic on the 
unit disc. Then:

(i) Cϕ,ψ is not mean ergodic if there exists z0 ∈ D such that 
∏k−1

m=0 |ψ ◦ ϕm(z0)| > 1.
(ii) Otherwise, Cϕ,ψ is power bounded. In this case, if 

∏k−1
m=0 ψ ◦ ϕm(z) is not constant, then (Cn

ϕ,ψ)n is 
convergent to 0 in L(H(D)).

Proof. Given n ∈ N we can find p, q ∈ N, 0 ≤ q < k such that n = kp + q. Then, the assertions follow from 
the identity

n∏
m=0

(ψ ◦ ϕm) =
(

k−1∏
m=0

(ψ ◦ ϕm)
)p q∏

m=0
(ψ ◦ ϕm)

and Proposition 3.1, Theorem 3.3 and Remark 3.4. �
Example 3.23. Let ϕ(z) = −z, z ∈ D, and ψ(z) = z

2 +a with 
√

3/2 < a < 1. The function ψ(z) is analytic and 
different from zero in the closed unit disc, it satisfies |ψ(0)| < 1, but the weighted composition operator Cϕ,ψ

is not mean ergodic by Proposition 3.22, since ψ(i)ψ(−i) > 1.



Example 3.24. Let ψ(z) = 1 + z.

(a) Cϕ,ψ is power bounded if ϕ(z) = λz with λ = e2παi, with α ∈ (0, 1) being an irrational Diophantine 
number,

(b) Cϕ,ψ is not mean ergodic for ϕ(z) = −z.

In this concluding example (a) is a direct consequence of Theorem 3.17 and (b) follows from Proposi-
tion 3.22, since h(z) := ψ(z)ψ(−z) = 1 − z2 and h(ai) = 1 + a2 for each 0 < a < 1.

Acknowledgments

We are very grateful to the referee for the careful reading of the manuscript, and for pointing out a 
refinement of Lemma 3.9. We thank José Bonet for helpful suggestions on the subject of this paper.

This research was partially supported by MINECO, Project MTM2013-43540-P. The second and third 
authors were partially supported by GVA, Project AICO/2016/054.

References

[1] A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodic operators in Fréchet spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009) 
401–436.

[2] A.A. Albanese, J. Bonet, W. Ricker, On mean ergodic operators, vector measures, integration and related topics, Oper. 
Theory Adv. Appl. 201 (2010) 1–20.

[3] R. Aron, M. Lindström, Spectra of weighted composition operators on weighted Banach spaces of analytic functions, Israel 
J. Math. 141 (2014) 263–276.

[4] R.B. Ash, W.P. Novinger, Complex variables, http://www.math.uiuc.edu/~r-ash/CV.html.
[5] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., vol. 179, Cambridge University Press, 

Cambridge, 2009.
[6] M.J. Beltrán-Meneu, M.C. Gómez-Collado, E. Jordá, D. Jornet, Mean ergodic composition operators on Banach spaces 

of analytic functions, J. Funct. Anal. 270 (12) (2016) 4369–4385.
[7] J. Bès, Dynamics of weighted composition operators, Complex Anal. Oper. Theory 8 (2014) 159–176.
[8] J. Bonet, Topologizable operators on locally convex spaces, in: Topological Algebras and Applications, in: Contemp. Math., 

vol. 427, Amer. Math. Soc., Providence, RI, 2007, pp. 103–108.
[9] J. Bonet, P. Domański, A note on mean ergodic composition operators on spaces of holomorphic functions, Rev. R. Acad. 

Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2) (2011) 389–396.
[10] J. Bonet, W. Ricker, Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions, Arch. Math. 

92 (2009) 428–437.
[11] M.D. Contreras, A.G. Hernández-Díaz, Weighted composition operators in weighted Banach spaces of analytic functions, 

J. Aust. Math. Soc. A 69 (2000) 41–60.
[12] J. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1978.
[13] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca 

Raton, FL, 1995.
[14] R.J. Fleming, J.E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman and Hall, 2002.
[15] R.J. Fleming, J.E. Jamison, Isometries on Banach Spaces: Vector-Valued Function Spaces, vol. 2, Chapman and Hall/CRC, 

2008.
[16] W.H. Gottschalk, G.A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, American Mathematical 

Society, Providence, R.I., 1955.
[17] K.G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999) 345–381.
[18] K.G. Grosse-Erdmann, A. Peris, Linear Chaos, Springer, Berlin, 2011.
[19] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011) 831–860.
[20] O. Hyvärinen, M. Lindström, I. Nieminen, E. Saukko, Spectra of weighted composition operators with automorphic 

symbols, J. Funct. Anal. 265 (2013) 1749–1777.
[21] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978) 581–610.
[22] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997.
[23] S. Kobayashi, Hyperbolic Complex Spaces, Grundlehren Math. Wiss., vol. 318, Springer-Verlag, Berlin, 1998.
[24] C. Laurent-Thiébaut, Holomorphic Function Theory in Several Variables: An Introduction, Universitext, Springer-Verlag, 

London, 2011.
[25] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
[26] A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. Lond. Math. 

Soc. 61 (2000) 872–884.

http://refhub.elsevier.com/S0022-247X(16)30363-8/bib616C62616E6573655F626F6E65745F5F7269636B6572323030396D65616Es1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib616C62616E6573655F626F6E65745F5F7269636B6572323030396D65616Es1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib414252s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib414252s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib41726F6E4C696E6473s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib41726F6E4C696E6473s1
http://www.math.uiuc.edu/~r-ash/CV.html
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib424Ds1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib424Ds1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6265676F6A6F6A6Fs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6265676F6A6F6A6Fs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626573s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E657432303037746F706F6C6F67697A61626C65s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E657432303037746F706F6C6F67697A61626C65s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E65745F646F6D616E736B693230313161s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E65745F646F6D616E736B693230313161s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E65745F7269636B6572s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib626F6E65745F7269636B6572s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib636F6E747265726173s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib636F6E747265726173s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib636F6E776179s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib436F77656E5F4D6163436C7565725F626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib436F77656E5F4D6163436C7565725F626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib464As1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib464A32s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib464A32s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4748s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4748s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4745s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib47455F5065726973s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib47756E6174696C6C616B65s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4C696E647374726F6Ds1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4C696E647374726F6Ds1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6B616D6F7769747As1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6B61746F6Bs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6B6F62617961736869s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6C617572656E74s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6C617572656E74s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib4D65566Fs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6D6F6E746573s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib6D6F6E746573s1


[27] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin, 1993.
[28] E. Wolf, Power bounded composition operators, Comput. Methods Funct. Theory 12 (1) (2012) 105–117.
[29] W. Zelazko, Operator algebras on locally convex spaces, in: Topological Algebras and Their Applications, in: Contemp. 

Math., vol. 427, 2007, pp. 431–442.

http://refhub.elsevier.com/S0022-247X(16)30363-8/bib5368617069726F5F626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib456C6B65s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib7A656C617A6B6F323030376F70657261746F72s1
http://refhub.elsevier.com/S0022-247X(16)30363-8/bib7A656C617A6B6F323030376F70657261746F72s1

