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1. Introduction, preliminaries and notation

1.1. Introduction

We study when a composition operator defined on the disc algebra A(D) or on 
the space H∞(D) of bounded holomorphic functions on the unit disc is mean ergodic 
or uniformly mean ergodic. We refer to the following subsection for the basic defini-
tions.

The following statements are a summary of the main results of our work. In the 
first one we give a complete characterization for (uniformly) mean ergodic composition 
operators on H∞(D). It is a consequence of Theorems 2.2, 3.3 and 3.6.

Theorem A. Let ϕ : D → D belong to H(D). The following are equivalent:

(i) Cϕ : H∞(D) → H∞(D) is (uniformly) mean ergodic.
(ii) (ϕn)n converges uniformly to an interior Denjoy–Wolff point z0 ∈ D or ϕ is a 

periodic elliptic automorphism.

In the disc algebra the situation is different. For ϕ in the unit ball of A(D), we consider 
the following properties:

(∗) The density of the orbit (ϕn(z))n on each neighborhood of the Denjoy–Wolff point 
z0 is 1 for every z ∈ D (see Section 3.2 for the precise definition).

(∗∗) (ϕn(z))n converges to the Denjoy–Wolff point z0 for every z ∈ D.

A priori (∗) is weaker than (∗∗), but we do not have an example separating both 
properties. The mean ergodicity of the composition operator on A(D) is completely 
characterized using these conditions. The case with symbol which does not have an 
interior Denjoy–Wolff point follows by Theorems 2.2 and 3.7.

Theorem B1. Let ϕ : D → D, ϕ ∈ A(D), be a symbol which does not have an interior 
Denjoy–Wolff point. The following are equivalent:

(i) Cϕ : A(D) → A(D) is mean ergodic.
(ii) ϕ is an elliptic automorphism or ϕ satisfies (∗).

In this case, ϕ is uniformly mean ergodic if and only if ϕ is a periodic elliptic auto-
morphism.

As a consequence we get that composition operators associated to parabolic automor-
phisms are mean ergodic, but when the symbol is a hyperbolic automorphism, they are 
not. The interior Denjoy–Wolff case follows by Theorem 3.4.



Theorem B2. Let ϕ : D → D, ϕ ∈ A(D), be a symbol with interior Denjoy–Wolff point. 
The following are equivalent:

(i) Cϕ : A(D) → A(D) is mean ergodic.
(i) Cϕ : A(D) → A(D) is uniformly mean ergodic.
(ii) ϕ satisfies (∗∗).

We remark that in Theorem B1, if we restrict the symbol to be a finite Blaschke prod-
uct or a linear fractional transformation (LFT) then (∗) can be replaced by the much 
more natural property (∗∗). In particular, we get that for ϕ a LFT, mean ergodic com-
position operators are just those whose symbol is not a hyperbolic automorphism, and 
in the case of finite Blaschke products, the mean ergodic ones are just those associated 
to a parabolic automorphism (see Propositions 3.10 and 3.11). Also if ϕ is hyperbolic 
and differentiable in a neighborhood of its Denjoy–Wolff point, properties (∗) and (∗∗)
are equivalent (Theorem 3.9).

From the work of Fonf, Lin and Wojstascyck [14] it follows that every Banach space 
which is not reflexive and has a Schauder basis admits:

(a) an operator which is power bounded but not mean ergodic,
(b) an operator which is power bounded and mean ergodic but not uniformly mean 

ergodic.

From our results it follows that Cϕ : A(D) → A(D) is a concrete operator satisfying 
(a) when ϕ is a hyperbolic automorphism, and it is an example of (b) when ϕ is a 
parabolic or a non-periodic elliptic automorphism.

Finally, in the appendix we solve in the negative a problem posed by Wolf [30] regard-
ing the mean ergodicity of the composition operator Cϕ in the weighted Banach spaces 
of analytic functions H∞

v (D) when the symbol ϕ is an elliptic automorphism similar to 
a non-periodic rotation.

1.2. Preliminaries and notation

Let D denote the open unit disc in the complex plane and H(D) the set of ana-
lytic functions on D. A symbol ϕ, that is, an analytic self-map of D, induces through 
composition the linear composition operator

Cϕ : H(D) → H(D), f → f ◦ ϕ.

Obviously, Cn
ϕf = Cϕnf for every f ∈ H(D), where ϕn := ϕ ◦ n· · · ◦ ϕ. We denote by Cz0 , 

z0 ∈ D, the composition operator defined by

Cz0 : H(D) → H(D), Cz0f(z) = f(z0), z ∈ D.



We are interested in the composition operator defined on the Banach space

H∞(D) = {f ∈ H(D), ‖f‖∞ := sup
z∈D

|f(z)| < ∞}

or on the disc algebra

A(D) = {f ∈ H∞(D) : f continuous on D}.

When Cϕ acts on A(D), we consider that the symbol also belongs to the disc algebra. In 
this paper we study when the composition operator Cϕ is (uniformly) mean ergodic on 
the spaces H∞(D) and A(D).

Let X be a (real or complex) Banach space and T : X → X a continuous and linear 
operator on X. The iterates of T are denoted by Tn := T ◦ n)· · · ◦ T , n ∈ N. For x ∈ X we 
denote by Orb(T, x) := {Tnx, n ∈ N0} the orbit of x under T . If supn≥0 ‖Tn‖ < ∞, T
is called power bounded. Given any T ∈ L(X), we introduce the notation

T[n] := 1
n

n∑
m=1

Tm, n ∈ N,

for the Cesàro means of the sequence (Tn)n formed by the iterates of T . The operator 
T is called mean ergodic precisely when {T[n]}∞n=1 converges for the strong operator 
topology. If {T[n]}∞n=1 converges for the norm topology, then T is called uniformly mean 
ergodic.

The study of mean ergodicity in the space of linear operators defined on a Banach 
space goes back to von Neumann. In 1931 he proved that if H is a Hilbert space and T is a 
unitary continuous operator on H, then T is mean ergodic. A power bounded operator T
is mean ergodic precisely when X = Ker(I−T ) ⊕Im(I − T ). Moreover, ImP = Ker(I−T )
and KerP = Im(I − T ). In [25, Theorem] Lin proved that a continuous operator on a 
Banach space X satisfying ‖Tn/n‖ → 0 is uniformly mean ergodic if and only if Im(I−T )
is closed.

A Banach space X is said to be mean ergodic if each power bounded operator is 
mean ergodic. Riesz proved that all Lp spaces are mean ergodic for 1 < p < ∞. Lorch 
extended this last result to all reflexive Banach spaces. Given a power bounded operator 
T ∈ L(X) in a Banach space X, Yosida gave a characterization for the convergence of 
the Cesàro means in the strong operator topology. This was shown to be equivalent to 
the convergence of the sequence of these Cesàro means in the weak operator topology. 
From this clearly follows the following fact that we will use repeatedly during the work: 
if (Tn)n is convergent in the weak operator topology, then T is mean ergodic (see [28, 
Theorem 1.3, p. 26]). For a Grothendieck Dunford–Pettis (GDP) space X satisfying 
‖Tn/n‖ → 0, Lotz proved that T ∈ L(X) is mean ergodic if and only if it is uniformly 
mean ergodic [26]. H∞(D) is a Grothendieck Banach space with the Dunford–Pettis 
property.



More recently, Fonf, Lin and Wojtaszczyk showed in [14] that the converse of Lorch 
theorem above is true whenever X is a Banach space with a Schauder basis. That is, 
if X is a Banach space with Schauder basis in which every power bounded operator is 
mean ergodic, then X is reflexive. More precisely, from this work it follows also that 
in a Banach space with Schauder basis which is not reflexive there exists an operator 
T ∈ L(X) which is power bounded but not mean ergodic [14, Theorem 1] and an operator 
T ∈ L(X) which is power bounded and mean ergodic but not uniformly mean ergodic [14, 
Theorem 2]. In our work we show that composition operators in A(D) present examples 
of these two situations.

Composition operators on various spaces of analytic functions have been the object of 
intense study in recent years, especially the problem of relating operator-theoretic prop-
erties of Cϕ to function theoretic properties of the symbol ϕ. See the books of Cowen 
and MacCluer [13] and Shapiro [29] for discussions of composition operators on classical 
spaces of holomorphic functions. Several authors have studied dynamical properties. In 
this paper, we focus on mean ergodicity. This dynamical property has been studied by 
Bonet and Domański when the operator acts on the space H(U) of holomorphic functions 
defined on a domain U in a Stein manifold [7]. They characterized those composition 
operators which are power bounded and proved that this condition is equivalent to the 
operator being mean ergodic or uniformly mean ergodic. In [30], the author studied when 
the composition operator is power bounded or uniformly mean ergodic on the weighted 
Bergman spaces of infinite order H∞

v (D). Bonet and Ricker also studied when multipli-
cation operators are power bounded or uniformly mean ergodic on these spaces [8].

There is a huge literature about the dynamical behavior of various linear continuous 
operators on Banach, Fréchet and more general locally convex spaces; see the survey 
paper by Grosse-Erdmann [17] and the recent books by Bayart and Matheron [5] and by 
Grosse-Erdmann and Peris [18]. For more details of mean ergodic operators on locally 
convex spaces, see [1,2,31] and the references therein.

Some research on the spectra of weighted composition operators acting on spaces of 
holomorphic functions can be found in [3,22,23].

Composition operators are always power bounded on the spaces A(D) and H∞(D). 
If fact, it is easy to see that ‖Cn

ϕ‖ = 1 for every n ∈ N. In this paper we get a charac-
terization of the (uniform) mean ergodicity of the operator looking at the type of the 
symbol ϕ in terms of its Denjoy–Wolff point in case this point exists. The Denjoy–Wolff 
theorem [9, Theorem 0.2] is stated below.

Theorem 1.1 (Denjoy–Wolff). Let ϕ be an analytic self-map of D. If ϕ is not the identity 
and not an automorphism with exactly one fixed point, then there is a unique point, 
called the “Denjoy–Wolff point”, z0 ∈ D such that (ϕn)n converges to z0 uniformly on 
the compact subsets of D.

In the case ϕ is an automorphism (i.e., a bijective holomorphic self-map of the disc) 
with exactly one fixed point in D, known as an elliptic automorphism, Cϕ is similar to a 



rotation of the disc centered at zero, that is, there is an automorphism φ interchanging 
some z0 and 0 such that Cϕ = CφCϕλ

Cφ−1 , where ϕλ(z) = λz, z ∈ D, |λ| = 1. Hence z0
is a fixed point of ϕ (but not a Denjoy–Wolff one) and

n∑
m=1

Cm
ϕ = Cφ

n∑
m=1

(
Cm

ϕλ

)
Cφ−1 .

As a consequence, for this case, we only need to study the mean ergodicity of Cϕλ

(see [19]).
If the Denjoy–Wolff point z0 belongs to the boundary of D and ϕ ∈ A(D), we have 

two cases: we say that the symbol ϕ is hyperbolic if ϕ′(z0) < 1 and parabolic if ϕ′(z0) = 1
(see [9, Definition 0.3]). Here we are referring to the angular derivative of ϕ, which is 
nothing but the usual derivative when the symbol admits a holomorphic extension at z0
(see [29, Chapters 4 and 5]).

2. Elliptic automorphism symbol

In this section we focus on composition operators Cϕ associated to an elliptic auto-
morphism symbol ϕ. We have seen that in this case it is enough to consider that the 
symbol is a rotation of the disc centered at zero. The following lemma is well-known and 
we add it without proof for the sake of clarity:

Lemma 2.1. Let (Tn)n be a sequence of equicontinuous operators on a locally convex 
space E. If (Tn)n is pointwise convergent to a continuous operator T on some dense set 
D ⊆ E, then (Tn)n is pointwise convergent to T in E.

In the following theorem we obtain an example of a power bounded and mean ergodic 
operator that is not uniformly mean ergodic. This result should be compared with the 
general result in [14, Theorem 2]:

Theorem 2.2. Consider the elliptic automorphism ϕ(z) = λz, z ∈ D, λ ∈ C with |λ| = 1. 
The composition operator Cϕ satisfies:

(i) If there exists k ∈ N such that λk = 1 (consider the smallest k), then Cϕ is periodic, 
and thus, uniformly mean ergodic on A(D) and on H∞(D) with

lim
n

(Cϕ)[n](f) = 1
k

k−1∑
m=0

f(λmz) =
∞∑
l=0

alkz
lk

for every f(z) =
∑∞

j=0 ajz
j ∈ A(D).

(ii) If λ is not a root of unity, then Cϕ is mean ergodic on A(D) with limn (Cϕ)[n]f =
C0(f) for every f ∈ A(D), but not uniformly mean ergodic on A(D) and not mean 
ergodic on H∞(D).



Proof. (i) Since Ck
ϕ(f) = f for every f ∈ H(D), the operator is periodic with period k. 

This implies that the operator is uniformly mean ergodic. In fact, a standard procedure 
yields

lim
n

(Cϕ)[n](f) = 1
k

k−1∑
m=0

f(λmz)

(see for example the proof of [30, Proposition 18]). Moreover, as

k−1∑
m=0

λjm =
{

k if j = lk, l ∈ N0
1−λkj

1−λj = 0 otherwise,

we easily get 1
k

∑k−1
m=0 f(λmz) =

∑∞
l=0 alkz

lk for every f(z) =
∑∞

j=0 ajz
j ∈ A(D).

(ii) Observe that Cϕ(1) is the function identically 1 for each symbol ϕ. Using the 
formula ∥∥∥∥∥∥

1
n

n∑
j=1

λkjzk

∥∥∥∥∥∥
∞

= |λk − λk(n+1)|
n|1 − λk| ‖zk‖∞ ≤ 2

n|1 − λk| ‖z
k‖∞

for k ∈ N, k ≥ 1, we get limn (Cϕ)[n] = C0 on the monomials. Since the polynomi-
als are dense in A(D) and Cϕ is power bounded, the operator is mean ergodic with 
limn (Cϕ)[n](f) = C0(f) for every f ∈ A(D) (Lemma 2.1 for Tn = (Cϕ)[n]). Assume now 
that Cϕ is uniformly mean ergodic. By [25, Theorem],

Im(I − Cϕ) = {f ∈ A(D) : lim
n→∞

(Cϕ)[n](f) = 0} = {f ∈ A(D) : f(0) = 0}.

The sequence (λn)n is uniformly distributed in ∂D. Hence we can take a sequence 
(nk)k, nk ≥ k, such that |1 −λnk | ≤ 1

2k for every k ∈ N. Take f(z) =
∑∞

k=1(1 −λnk)znk . 
Since

‖
∞∑
k=1

(1 − λnk)znk‖∞ ≤
∞∑
k=1

|1 − λnk |‖znk‖∞ <

∞∑
k=1

1
2k < ∞,

it follows that f ∈ A(D) with f(0) = 0. But f /∈ Im(I −Cϕ). Observe that if there exists 
g ∈ A(D) such that f(z) = g(z) − g(λz), then

∞∑
k=1

(1 − λnk)znk =
∞∑
j=1

g(j)(0)
j! (1 − λj)zj ,

which yields g(z) =
∑∞

k=1 z
nk . But g /∈ H2(D), which is a contradiction since H∞(D) ⊆

H2(D). �



By an application of Theorem 1.1 or Theorem 2.2 to f(z) = z, we also obtain a 
Denjoy–Wolff point result for any analytic self-map ϕ of D in a Cesàro sense:

Corollary 2.3 (Cesàro Denjoy–Wolff theorem). Let ϕ be an analytic self-map of D. If 
ϕ is not the identity, then there is a unique fixed point z0 ∈ D such that 1

n

∑n
m=1 ϕ

m

converges to z0 uniformly on the compact subsets of D.

3. Symbol with Denjoy–Wolff point

In this section we consider the case in which the symbol ϕ has a Denjoy–Wolff point 
z0 ∈ D. By the Denjoy–Wolff theorem, (ϕn)n converges to z0 uniformly on the compact 
subsets of D. As a direct consequence we get the following remark:

Remark 3.1. Let ϕ ∈ A(D) and Cϕ : A(D) → A(D). If the composition operator Cϕ is 
mean ergodic, then limn

1
n

∑n
m=1 C

m
ϕ f = f(z0) for every z ∈ D.

If we assume that (ϕn(z))n converges to z0 for every z ∈ D, we obtain that the 
composition operator Cϕ is mean ergodic on A(D):

Proposition 3.2. Let ϕ ∈ A(D) and Cϕ : A(D) → A(D). If limn ϕ
n(z) = z0 for all z ∈ D, 

then Cϕ is mean ergodic with limn
1
n

∑n
m=1 C

m
ϕ f = f(z0).

Proof. Cϕnf(z) converges to f(z0) for each z ∈ D. Since A(D) is a closed subspace of 
the space of continuous functions on the disc C(D), pointwise convergence in bounded 
sequences implies weak convergence. This is a standard argument using the Riesz rep-
resentation theorem and Lebesgue theorem. Consequently, (Cϕn)n is convergent for the 
weak operator topology to Cz0 : A(D) → A(D), f �→ f(z0) and hence, also the Cesàro 
means are weakly convergent. Yosida’s theorem [28, Theorem 1.3, p. 26] yields the mean 
ergodicity of the operator. �

In what follows we prove that the converse of Proposition 3.2 holds for some sym-
bols. We also obtain a complete characterization about the (uniformly) mean ergodicity 
of Cϕ.

3.1. Symbol with interior Denjoy–Wolff point

In this section we can assume without loss of generality that the Denjoy–Wolff point 
of ϕ is z0 = 0. Otherwise, Cϕ is similar to a composition operator Cφ with φ a symbol 
with 0 as Denjoy–Wolff point.

Theorem 3.3. Let ϕ : D → D holomorphic be a symbol with Denjoy–Wolff point 0. The 
following are equivalent on H∞(D):



(i) Cϕ is mean ergodic.
(ii) Cϕ is uniformly mean ergodic.
(iii) ‖ϕn‖∞ converges to 0, as n tends to infinity.

Proof. (i) and (ii) are equivalent, since H∞(D) is a Grothendieck Banach space with the 
Dunford–Pettis property. Let us see (iii)⇒(ii): For f ∈ H∞(D), ‖f‖∞ < 1, the Schwarz 
lemma applied to (1/2)(f(z) − f(0)) implies |f(z) − f(0)| ≤ 2|z|. More precisely,

|f(ϕn(z)) − f(0)| ≤ 2|ϕn(z)|,

and so, by (iii), Cϕn(f)(z) → f(0) uniformly on D. Since the estimate is valid for any f
in the unit ball of H∞(D), we have in fact that Cϕn tends to C0 in the norm topology.

(ii)⇒(iii): By the Schwarz lemma (|ϕn(z)|)n is a decreasing sequence for each z ∈ D. 
Proceeding by contradiction, if ‖ϕn‖∞ does not converge to 0 as n goes to infinity, there 
exists r > 0 such that for each n there is an ∈ D such that |ϕn(an)| > r. Let znj = ϕj(an), 
0 ≤ j ≤ n, n ∈ N. We have |znj | > r for 0 ≤ j ≤ n, n ∈ N. By [12, Lemma 13], there 
exists M > 0 such that for each n ∈ N there exists gn ∈ H∞(D) with gn(znj ) = znj , where 
znj denotes the complex conjugate of znj , and ‖gn‖∞ ≤ M . Let fn(z) := zgn(z). We have 
fn(znj ) = |znj |2 > r2 and ‖fn‖∞ ≤ M . If Cϕn were Cesàro convergent the convergence 
would be to C0 : H∞(D) → H∞(D), f �→ f(0). Now (fn)n is a sequence in the ball of 
radius M of H∞(D), fn(0) = 0 for all n ∈ N and

M‖(Cϕ)[n] − C0‖∞ ≥ |(Cϕ)[n](fn)(an)| =

∣∣∣∣∣
∑n

j=1 fn(znj )
n

∣∣∣∣∣ > r2 for each n ∈ N.

Hence ((Cϕ)[n])n is not (uniformly) convergent. �
A finite Blaschke product is a map of the form

B(z) = eiλ
n∏

j=1

z − aj
1 − zāj

,

where n ≥ 1, aj ∈ D, j = 1, . . . , n and λ ∈ R. B is a rational function that is analytic on 
the closed unit disc D (whose poles 1

aj
are outside the closed unit disc) and B maps ∂D

onto itself [16]. B is an automorphism when n = 1. In case n > 1, B is called non-trivial
Blaschke product.

Theorem 3.4. Let ϕ : D → D, ϕ ∈ A(D) be a symbol with Denjoy–Wolff point 0. The 
following are equivalent on A(D):

(i) Cϕ is mean ergodic.
(ii) Cϕ is uniformly mean ergodic.
(iii) limn ϕ

n(z) = 0 for all z ∈ D.



Proof. (iii)⇒(ii): By the Schwarz lemma, we get that the sequence (|ϕn|)n is monoton-
ically decreasing, i.e., |ϕn+1(z)| ≤ |ϕn(z)| for every z ∈ D. So, since limn ϕ

n(z) = 0 for 
all z ∈ D, by Dini’s theorem we get that ‖ϕn‖∞ converges to 0, as n tends to infinity. 
Applying now Theorem 3.3 we obtain that Cϕ is uniformly mean ergodic on H∞(D), 
and so, it is uniformly mean ergodic on A(D). (ii)⇒(i) is trivial.

(i)⇒(iii): Assume there exists ω ∈ ∂D such that (ϕn(ω))n ⊆ ∂D and Cϕ is mean 
ergodic. First we observe that (ϕn(ω))n must be uniformly distributed in ∂D. Otherwise, 
by Weyl’s criterion [24, Theorem 2.1], there would exist j ∈ N such that, for f(z) = zj , 
we have

lim
n

1
n

n∑
m=1

Cm
ϕ f(ω) �= 0 = f(0).

Thus, ϕ(∂D) ⊆ ∂D. Otherwise, there would exist a ∈ ∂D such that ϕ(a) ∈ D, and from 
the density of (ϕn(ω))n in the boundary we would get some n0 such that ϕn0(ω) is close 
enough to a to conclude that ϕn0+1(ω) ∈ D, a contradiction. Hence, since ϕ ∈ A(D)
with ϕ(∂D) ⊆ ∂D, the symbol must be a finite Blaschke product of degree ≥ 2 and 
ϕ(∂D) = ∂D (see for example [15, p. 265]). Since the Julia set of ϕ (the closure of its 
repelling periodic points) is ∂D [4] (see also [11] and [21]), we get that ϕ has periodic 
points on ∂D. Let z0 be a periodic point of ϕ with period k. We get the contradiction 
evaluating the Cesàro means of the orbit of Cϕ at a polynomial p which satisfies p(0) = 0
and p(ϕj(z0)) = 1, 1 ≤ j ≤ k. �
Example 3.5.

(i) For ϕ(z) = λz, |λ| < 1, the operator Cϕ is uniformly mean ergodic on H∞(D), thus 
on A(D), since (‖ϕn‖∞)n converges to 0 (Theorem 3.3).

(ii) For ϕ(z) = z2 or ϕ(z) = λz + (1 − λ)z2, 0 < λ < 1, the operator Cϕ is not mean 
ergodic on A(D), thus neither on H∞(D), since 1 is a fixed point in the boundary 
(Theorem 3.4).

3.2. Symbol with boundary Denjoy–Wolff point

In this section we will assume that the Denjoy–Wolff point of ϕ is z0 = 1 if needed. 
There is no loss of generality since Cϕ is similar to a composition operator Cφ, with φ a 
symbol of the same type with 1 as Denjoy–Wolff point.

Theorem 3.6. Consider ϕ : D → D a symbol with Denjoy–Wolff point z0 ∈ ∂D. Then the 
operator Cϕ is not (uniformly) mean ergodic on H∞(D). Moreover, if ϕ ∈ A(D) then 
Cϕ : A(D) → A(D) is not uniformly mean ergodic.

Proof. Assume that Cϕ is uniformly mean ergodic. Since (ϕn)n is pointwise convergent to 
z0 on D, then limn

1 ∑n
m=1 C

m
ϕ (f) must converge to f(z0) for each f ∈ A(D) ⊆ H∞(D). 
n



Put g(z) := z+z0
2 ∈ A(D). Observe that |g(z0)| = 1 and |g(z)| < 1 for every z ∈ D \ {z0}. 

Fix n ∈ N and take r > 0 such that {ϕj(0)}nj=0 ∩ B(z0, r) = ∅. Consider ρ < 1 such 
that |g(z)| < ρ for every z ∈ D \ B(z0, r) and k ∈ N such that |g(z)|k < ρk < 1

2 for 
every z ∈ D \B(z0, r). Observe that g(z)k ∈ A(D), |g(z0)k| = 1 and |g(z)k| < 1 for every 
z ∈ D \ {z0}. We get

∣∣∣∣∣g(z0)k − 1
n

n∑
m=1

g(ϕm(0))k
∣∣∣∣∣ ≥ 1/2.

Since this holds for every n ∈ N, Cϕ is not uniformly mean ergodic restricted to A(D), 
thus, neither on H∞(D). By Theorem 3.3, Cϕ cannot be mean ergodic on H∞(D). �

Now, we will use the following notation: given a set J of natural numbers we denote 
the lower density of the set as

densJ = lim inf
N→+∞

#{J ∩ [0, N ]}
N

.

If the limit when N tends to infinity of the fraction #{J∩[0,N ]}
N above exists, we denote 

it by densJ and it is called the density of J . It is clear that densJ = 1 if and only 
if densJ = 1. Let ϕ ∈ A(D) and z0 be the Denjoy–Wolff point in ∂D. For any given 
neighborhood U of z0 and z ∈ D we write

Nzϕ
U := {n ∈ N : ϕn(z) ∈ U}.

For a fixed N ∈ N we also write

(
Nzϕ

U

)N := {n ∈ Nzϕ
U : n ≤ N}.

Therefore, in this case we obtain

densNzϕ
U = lim inf

N→+∞

#
(
Nzϕ

U

)N
N

.

If the limit above exists, we denote it by densNzϕ
U . We call it the density of the orbit

(ϕn(z))n on the neighborhood U .

Theorem 3.7. Let ϕ ∈ A(D) be a symbol with Denjoy–Wolff point z0 ∈ ∂D. The following 
are equivalent:

(i) Cϕ is mean ergodic on A(D).
(ii) densNz,ϕ

U = 1 for all z ∈ ∂D and for all neighborhoods U of z0.
(iii) limn

1
n

∑n
m=1(ϕm(z))j = zj0 for every z ∈ D and for every j ∈ N.



Proof. (i)⇒(ii) We proceed by contradiction. Assume there exists z ∈ ∂D and U such 
that densNz,ϕ

U < δ < 1. Take ε > 0 such that δ < 1 −ε and α > 0 satisfying δ+α < 1 −ε.
Consider f(z) = ( z+z0

2 )n ∈ A(D), with n big enough to satisfy |f(z)| < α on D \ U . 
By hypothesis there is an increasing sequence (Nk)k of natural numbers such that

#(Nzϕ
U )Nk

Nk
< δ, k ∈ N.

If we denote �k := #(Nzϕ
U )Nk we obtain that for every k ∈ N,

|
(
Cϕ

)
[Nk](f)(z)| ≤ �k

Nk
+ Nk − �k

Nk
· α < δ + α < 1 − ε.

Therefore, since |f(z0)| = 1, we conclude

lim
k→∞

(
Cϕ

)
[Nk](f)(z) �= f(z0).

(ii)⇒(i) Let f ∈ A(D). Given ε > 0 we take 0 < δ < 1 such that ‖f‖∞ < ε
4δ . Let U

be a neighborhood of z0 such that |f(z) − f(z0)| < ε
2 for all z ∈ U .

Fix z ∈ ∂D. From densNz,ϕ
U = 1 we get that there is Nδ ∈ N such that for every 

N ≥ Nδ we have

#{n ∈ N : ϕn(z) ∈ U, n ≤ N}
N

≥ 1 − δ.

Now, let �N := #{n ∈ N : ϕn(z) ∈ U, n ≤ N} for all N ∈ N. For all N ≥ Nδ we have 
that N−�N

N ≤ δ, and then

∣∣(Cϕ

)
[N ]f(z) − f(z0)

∣∣ ≤ �N supz∈U |f(z) − f(z0)|
N

+ N − �N
N

· 2 sup
z∈D

|f(z)|

≤ ε

2 + 2δ‖f‖∞ < ε.

Thus ((Cϕ)[n]f)n is a bounded sequence which is pointwise convergent to f(z0), and 
then we have weak convergence. By the same argument used in Proposition 3.2 the 
operator is mean ergodic.

(i)⇒(iii) follows from Remark 3.1 and the definition of mean ergodicity, considering 
the functions f(z) = zj , j ∈ N.

(iii)⇒(i) The hypothesis implies that limn→∞
(
Cϕ

)
[n] = Cz0 on the monomials. There-

fore, as Cϕ is power bounded and the polynomials are dense in A(D), the composition 
operator is mean ergodic. �
Remark 3.8. According to the definition of density of an orbit, it is clear that for ϕ ∈ A(D)
with Denjoy–Wolff point z0 ∈ ∂D and such that there exists a point in the boundary 
whose orbit does not intersect a neighborhood of z0, then Cϕ is not mean ergodic. This 
certainly happens when the symbol has another fixed or periodic point in the boundary.



Theorem 3.9. Let ϕ : D → D, ϕ ∈ A(D), be a hyperbolic symbol with z0 ∈ ∂D as 
Denjoy–Wolff point. Assume ϕ is holomorphic in a neighborhood of z0. The following 
are equivalent on A(D):

(i) Cϕ is mean ergodic on A(D).
(ii) limn ϕ

n(z) = z0 for all z ∈ D.

Proof. (ii)⇒(i) follows from Proposition 3.2.
(i)⇒(ii) Since ϕ is a hyperbolic symbol with z0 ∈ ∂D as Denjoy–Wolff point it follows 

that |ϕ′(z0)| < 1, then, by the hypothesis there exists 0 < ρ < 1 and r > 0 such that ϕ
is holomorphic in B(z0, r) and

|ϕ(z) − z0| < ρ|z − z0|

for every z ∈ B(z0, r). This implies first ϕ(B(z0, r)) ⊆ B(z0, r), and inductively we get 
ϕn(B(z0, r)) ⊆ B(z0, r) and

|ϕn(z) − z0| < ρnr

for each z ∈ B(z0, r) and for each n ∈ N. Therefore (ϕn(z))n converges to z0 for every 
z ∈ B(z0, r). Now, assume that there exists z1 ∈ ∂D such that (ϕn(z1))n does not 
converge to z0. We have that {ϕn(z1) : n ∈ N} ∩ B(z0, r) = ∅. Hence, by Remark 3.8, 
Cϕ cannot be mean ergodic. �

We find examples of different character, also for the parabolic case. In the next propo-
sitions we obtain that condition (∗) is equivalent to (∗∗) in the case that the symbol is 
a linear fractional transformation or a finite Blaschke product.

Recall that a linear fractional transformation (LFT) is a transformation of the ex-
tended complex plane Ĉ = C ∪ {∞} of the form

ζ �→ aζ + b

cζ + d
, ζ ∈ Ĉ, ad− cb �= 0, a, b, c, d ∈ C.

It is well-known that the linear fractional transformations are precisely the conformal 
mappings of Ĉ and that every linear fractional transformation except the identity has 
one or two fixed points.

Proposition 3.10. Let ϕ : D → D, ϕ ∈ A(D), be a LFT different from an elliptic auto-
morphism. The following are equivalent:

(i) Cϕ is mean ergodic on A(D).
(ii) ϕ is not a hyperbolic automorphism.



Proof. (i)⇒(ii) If ϕ is a hyperbolic automorphism, the symbol has a repulsive fixed point 
different from the Denjoy–Wolff point z0. So, by Remark 3.8, Cϕ is not mean ergodic.

(ii)⇒(i) If ϕ is a parabolic automorphism we have that (ϕn(z))n converges to z0 for 
every z ∈ D [18, Proposition 4.47]. So, by Proposition 3.2 we get that Cϕ is mean ergodic. 
We also have this situation if ϕ is not an automorphism. Observe that in this case we 
have that ϕ is not a Blaschke product, and so, ϕ(∂D) � ∂D. Since ϕ is a conformal 
map, it maps ∂D to a circle different from ∂D. This implies that the circle ϕ(∂D) must 
intersect ∂D only in the Denjoy–Wolff point, otherwise ϕ(∂D) = ∂D (see [20, p. 71–72]). 
Applying now the Denjoy–Wolff theorem, we get that ϕn(z) converges to z0 for every 
z ∈ D. Again Proposition 3.2 yields the mean ergodicity. �

Thanks to the Linear-Fractional Model Theorem [9, Theorem 0.4] we get that for 
every univalent symbol ϕ which is not a hyperbolic automorphism, Cϕ is mean ergodic. 
Observe that in this case, ϕ is conjugated to an LFT.

Proposition 3.11. For ϕ : D → D, ϕ ∈ A(D) a finite Blaschke product different from an 
elliptic automorphism, the following are equivalent:

(i) Cϕ is mean ergodic on A(D).
(ii) ϕ is a parabolic automorphism.

Proof. In Proposition 3.10 we have seen that if ϕ is a parabolic automorphism, then Cϕ

is mean ergodic, and if ϕ is a hyperbolic automorphism, then it is not. So, it is enough to 
prove that if ϕ is a finite Blaschke product which is not an automorphism, Cϕ is not mean 
ergodic. By [10, Example p. 58] we get that for symbols of this type, the Julia set is ∂D
or a Cantor set of ∂D. Since the Julia set is the closure of the repelling periodic points, 
ϕ must have a periodic point different from z0. We conclude now by Remark 3.8. �
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Appendix A

In this section, we will consider composition operators defined in the weighted Banach 
spaces of analytic functions H∞

v defined as follows:

H∞
v = H∞

v (D) := {f ∈ H(D) : ‖f‖v = sup
z∈D

v(z)|f(z)| < ∞},

H0
v = H0

v (D) := {f ∈ H∞
v (D) : lim v(z)|f(z)| = 0},
|z|→1



endowed with the norm ‖ · ‖v, where v : D → R+ is an arbitrary weight, that is, 
a bounded continuous positive function. If the weight is radial (that is, v(z) = v(|z|)) for 
all z ∈ D, non-increasing with respect to |z| and lim|z|→1 v(z) = 0, the weight is called 
typical. From now on, let us assume that v is a typical weight. By [27, Theorem 1.1], 
H∞

v is isomorphic to �∞ or to H∞(D), both Grothendieck Banach spaces with the 
Dunford–Pettis property. Then, by Lotz [26] we get that Cϕ is mean ergodic if and only 
if it is uniformly mean ergodic.

In [30], Wolf shows Theorem A.1(i) below and asks if for λ ∈ C, |λ| = 1, not a root 
of unity, the composition operator Cϕ, ϕ(z) = λz, z ∈ D, is (uniformly) mean ergodic 
on H∞

v , where v is a typical weight on D. In Theorem A.1(ii) we solve this question in 
the negative by proving that this is not true in general for every weight v.

Theorem A.1. Let v be a typical weight on D. The composition operator Cϕ associated 
to ϕ(z) = λz, z ∈ D, λ ∈ C with |λ| = 1, is power bounded on H∞

v and satisfies:

(i) If there exists k ∈ N such that λk = 1 (consider the smallest k), then Cϕ is uniformly 
mean ergodic on H∞

v with limn (Cϕ)[n](f) = 1
k

∑k−1
m=0 f(λmz) for every f ∈ H∞

v .
(ii) If λ is not a root of unity, Cϕ is mean ergodic on H0

v with limn→∞ (Cϕ)[n] = C0 for 
every weight v.
Fix 0 < α < 1, R > 1 and 0 < r0 < 1. Take (nk)k ⊆ N, nk ≥ k, such that 
|1 − λnk | ≤ 1

Rk for every k ∈ N. For the typical weight

vα(r) =
{

C (
∑∞

k=1 r
nk)−α

, r0 ≤ r < 1,
1, r ≤ r0,

where C = (
∑∞

k=1 r
nk
0 )α, Cϕ is not uniformly mean ergodic on H0

vα , thus not mean 
ergodic on H∞

vα .

Proof. Since the weight is radial, ‖Cn
ϕf‖v = ‖f‖v for every f ∈ H∞

v , n ∈ N, and thus, 
Cϕ is power bounded. (i) follows since Cϕ is periodic (see [30, Proposition 18] for the 
standard argument).

(ii) Proceeding as in the proof of Theorem 2.2(ii) we get that for λ not a root of 
unity, limn→∞ (Cϕ)[n] equals C0 on the monomials. As Cϕ is power bounded and the 
polynomials are dense in H0

v (see [6, Theorem 1.5]), the operator is mean ergodic on H0
v .

Now, let us see that for the weight vα, the operator Cϕ is not uniformly mean ergodic 
on H0

vα . By [25, Theorem], it is enough to show that

Im(I − Cϕ) �= {f ∈ H0
vα : lim

n→∞
(Cϕ)[n](f) = 0} = {f ∈ H0

vα : C0(f) = f(0) = 0}.

Take f(z) =
∑∞

k=1(1 − λnk)znk . Since
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v(z)|f(z)| = v(z)

∣∣∣∣∣
∞∑
k=1

(1 − λnk)znk

∣∣∣∣∣ ≤ v(z)
∞∑
k=1

|1 − λnk ||z|nk

≤ v(z)
∞∑
k=1

1
Rk

= v(z)
(

1
R− 1

)
−→ 0 as |z| → 1,

we get that f ∈ H0
v with f(0) = 0. But f /∈ Im(I − Cϕ). Observe that if there exists 

g ∈ H0
vα such that f(z) = g(z) − g(λz), proceeding as in the proof of Theorem 2.2(ii), 

we get g(z) =
∑∞

k=1 z
nk . But g /∈ H0

vα since for r > r0,

vα(r)|g(r)| = C

( ∞∑
k=1

rnk

)1−α

does not converge to 0 as r → 1. As a consequence, Cϕ cannot be uniformly mean ergodic 
on H0

vα , neither on H∞
vα . �
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