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Abstract

Civil Aviation Authorities are elaborating a new regulatory framework for the

safe operation of Unmanned Aircraft Systems (UAS). Current proposals are

based on the analysis of the specific risks of the operation as well as on the

definition of some risk mitigation measures. In order to achieve the target level

of safety, we propose increasing the level of automation by providing the on-

board system with Automated Contingency Management functions. The aim

of the resulting Safe Mission Manager System is to autonomously adapt to con-

tingency events while still achieving mission objectives through the degradation

of mission performance. In this paper, we discuss some of the architectural

issues in designing this system. The resulting architecture makes a conceptual

differentiation between event monitoring, decision-making on a policy for deal-

ing with contingencies and the execution of the corresponding policy. We also

discuss how to allocate the different Safe Mission Manager components to a par-

titioned, Integrated Modular Avionics architecture. Finally, determinism and

predictability are key aspects in contingency management due to their overall

impact on safety. For this reason, we model and verify the correctness of a

contingency management policy using formal methods.
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1. Introduction

Unmanned Aerial Systems (UAS) have been developing very quickly, thus

presenting a challenge to traditional aviation. The European Aviation Safety

Agency (EASA) is elaborating a new regulatory framework for the operation

of UAS. The current proposal establishes three categories of UAS operation5

according to their risk levels [1, 2]. The open category is for low risk opera-

tions where safety is ensured through compliance with operational limitations,

mass limitations, product safety requirements and a minimum set of opera-

tional rules. Authorization from a National Aviation Authority (NAA) is not

required. The specific category is for medium risk operations and requires NAA10

authorization based on a risk assessment performed by the operator. A manual

of operations lists the risk mitigation measures. Finally, the certified category

is for large UAS flying in non-segregated airspace, the requirements for which

are comparable to those for manned aviation. The International Civil Aviation

Organization (ICAO) addresses this category in Doc. 10019 AN/507 [3]. Ac-15

cording to that document, “only unmanned aircraft that are remotely piloted

could be integrated alongside manned aircraft in non-segregated airspace and

at aerodromes”. This work is focused on Remotely Piloted Aircraft Systems

(RPAS), a subclass of UAS.

The specific risks of an RPAS operation as compared to manned aviation20

are: 1) reduced situational awareness of the remote pilot, and 2) risk of los-

ing the communication & control (C2) link between the remote pilot and the

unmanned aircraft. In the former case, reduced situational awareness means

that remote pilots, unlike pilots of manned aircraft in visual conditions, have

reduced perception of environmental elements and events, which results in com-25

plex decision-making, especially during an emergency. In the latter case, the C2

link loss is a degradation or failure of the communication channel, which may
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result in the aircraft “flying not under command” [3].

UAS that aim to operate within the specific category, and ultimately within

the certified category, are required to mitigate the aforementioned specific risks30

in order to achieve the target level of safety. This can be accomplished through

several complementary approaches, such as setting the aforementioned opera-

tional limitations and even imposing certain functional requirements onto the

on-board equipment. For example, some special technical equipment is often re-

quired to compensate for the reduced situational awareness, mainly Detect and35

Avoid (DAA) devices [3]. Another approach relies on operational flight plan-

ning and development of operations manuals with provisions for contingency

handling.

In general, the functional requirements imposed on the on-board equipment

exemplify the need for increased autonomous flight capabilities in RPAS. This40

is a focus of this paper. The software framework under development by the

German Aerospace Center (DLR) for its research fleet of unmanned aircraft

enables high level autonomous behaviors. One of its key software components

is the automated Mission Planner and Execution (MiPlEx) system. MiPlEx

performs real-time mission plan execution, 3-D world modeling, as well as al-45

gorithms for combinatorial motion planning and task scheduling [4, 5]. The

Technical University of Valencia (UPV) is also developing a similar component

based on the same architectural principles [6]. However, both Mission Manager

implementations have so far only made use of operational limitations to achieve

the target level of safety, e.g. operating in Very Low Level (VLL) or segregated50

airspace. As a collaboration between the two institutions, the goal is to safely

increase the level of automation to develop a Safe Mission Manager System.

This concept expands on the current Mission Manager by incorporating Au-

tomated Contingency Management (ACM) functions. The resulting system is

expected to adapt autonomously to contingencies, while still achieving mission55

objectives by allowing some degradation on mission performance.

In this paper, we discuss the architectural design of the proposed Safe Mis-

sion Manager System. In addition, we also discuss how to allocate the different
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software components of the resulting system to an Integrated Modular Avionics

(IMA) architecture. Finally, we propose using formal methods for specifying and60

verifying the contingency management policy. The rest of the paper is organized

as follows: Sec. 2 presents related works in bibliography; Sec. 3 describes the

initial Mission Manager System; Sec. 4 identifies the need for contingency man-

agement in RPAS; Sec. 5 discusses architectural considerations for integrating

ACM functions into the previous Mission Manager; Sec. 6 presents the safety65

aspects relating to the software development of the resulting system; Sec. 7 de-

velops the contingency management policy using formal methods; and finally,

Sec. 8 concludes the paper.

2. Related work

The main topics of this paper are contingency management architectures,70

with special emphasis on UAS specific contingencies, and the use of formal

methods in the software development process.

The primary guidelines for contingency management can be found in the pro-

posals of regulatory frameworks for operating UAS currently being drawn up

by Civil Aviation Authorities. These guidelines define risks and propose some75

risk mitigation procedures, among other things. UAS regulation in Europe is

led by EASA, which has published the Introduction of a regulatory framework

for the operation of unmanned aircraft [1], and the Roadmap for the Integra-

tion of Remotely Piloted Aircraft Systems into the European Navigation System

[7]. A similar effort has been undertaken by the Unmanned Aircraft Systems80

Registration Task Force of the Federal Aviation Administration (FAA) in the

United States [8, 9]. In addition, the ICAO has published the Manual on RPAS

[3] to provide guidance on technical and operational issues applicable to the

integration of RPAS in non-segregated airspace and at aerodromes.

There is an important research effort behind the regulatory proposals. The85

main research frameworks are the SESAR program in Europe [10] and the

NextGen program in the United States. Some of the projects falling within
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these initiatives are also related to this work. One of the most relevant is the

Automated Contingency Management (ACM) [11, 12, 13], which is a NASA-led

research project in collaboration with Impact Technologies, LLC and Georgia90

Tech. ACM is designed to improve the reliability and survivability of safety-

critical aerospace systems. The approach of ACM differs from the one presented

in this paper in its focus on control optimization techniques rather than on the

use of formal methods. One interesting extension to this approach is the work

in [14] where human-machine interface considerations in contingency manage-95

ment are discussed. Another NASA project on drones is the Unmanned Air-

craft System (UAS) Traffic Management (UTM). The UTM concept [15] was

proposed as a traffic management scheme to enable civilian low-altitude UAS

operations. This work’s most relevant proposal with regard to contingency

management is the level of automation. The proposed scheme ranges from a100

completely manual process relying on the operator (Build 1) to fully automatic,

large-scale, system-wide contingency handling (Build 4).

The DLR has also conducted important research in the field of RPAS in the

WASLA-HALE project for the High Altitude Long Endurance domain. Some

research work focuses on the procedures and techniques for integrating UAS105

into controlled airspace [16, 17]. The proposed procedures are mainly related to

C2 link failure conditions and communication with ATC. Another interesting

aspect is the use of formal descriptions for enabling automatic reasoning on the

consistency and correctness of the model requirements and the generation of

on-line monitoring checks [18]. Case studies show that the process of formally110

writing down requirements is extremely helpful in understanding the domain

inherent concepts [19].

The introduction of a Safety Monitor like the one in this paper is also sug-

gested in [20]. The goal of the referenced work, however, is to expand the

operational range and raise the autonomy level, rather than contingency han-115

dling. The work in [21] presents a predictive alerting method that uses multiple

hypothesis prediction. It integrates all the onboard sensors and information

sources with a stochastic estimator to obtain an accurate and reliable estima-
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tion of the aircraft state, which is key for contingency detection.

Regarding contingency management policies, C2 link loss is one of the most120

difficult to handle since any other contingency may also occur after it. The work

in [22] presents a method for computing optimal lost-link policies for unmanned

aircraft conducting surveillance alongside manned aircraft in a wildfire scenario.

Another contingency handling policy especially important to UAS is collision

avoidance. The work in the NextGen and SESAR programs led to the definition125

of a new Airborne Collision Avoidance System (ACAS) based on new logics,

namely ACAS X. Its definition contains two particular variations: ACAS Xa for

large aircraft, and ACAS Xu for unmanned aircraft. The work in [23] describes

the specificities and challenges to the ACAS Xu system.

3. Initial Mission Manager architecture130

The Mission Manager is the core system for performing the automatic guid-

ance and control of the RPAS. Its functionality is based on the definition of

a Mission Plan that basically specifies the RPAS route and payload actions.

Both the MiPlEx framework and the Mission Manager developed at the UPV

implement a software architecture based on the ideas of the three-tier (3T) ar-135

chitecture [24]. In general, a 3T architecture separates the intelligent control

problem into three interacting layers named Deliberative layer, Sequencing layer,

and Reactive layer. In this approach, the 3T concept has been applied from a

flight guidance and control perspective, and the three layers have been renamed

as Path Planner, Guidance System, and Flight Director, respectively, shown in140

Fig. 1:

The Path Planner is the high level component that has the ability to generate

a reference trajectory for the Guidance System. As it is shown in Fig. 1, there

exist multiple path planners that provide different path planning policies. The

“Mission Planner” is a path planner that generates this trajectory based on the145

directives of the Mission Plan. In this approach, the Mission Plan is specified as

a sequence of flight legs that implement the ARINC 424 path terminators [25].
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Figure 1: The initial Mission Manager architecture is structured into three layers: the Path

Planners, the Guidance System, and the Flight Director.

Thus, the role of the Mission Planner is to provide each flight leg to the Guidance

System in a sequential manner. In parallel to the Mission Planner, there exist

some other Task Specific Planners for special tasks, such as the exploration of150

unknown terrain. From an abstract point of view, both the Mission Planner

and the Task Specific Planners belong to a same class of objects with the ability

to provide instructions for the Guidance System based on different criteria.

The remote pilot should select the required Task Specific Planner manually in

accordance with the current operational condition.155

The Guidance System determines how to fly the reference trajectory pro-

vided by the active Path Planner and then activates the appropriate control

modes of the Flight Director. To do so, the Guidance System uses a library

of elemental maneuvers in the lateral plane (LNAV) and in the vertical plane

(VNAV). LNAV maneuvers include straight maneuvers (with constant heading,160
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with constant course, etc.) and turn maneuvers (with constant radius, with

constant turn rate, etc). VNAV maneuvers include flight level maneuvers and

climb/descent maneuvers (at constant speed, at constant vertical speed, etc).

Thus, each time a new reference trajectory is received, the Guidance System

plans a suitable sequence of maneuvers. The sequence of maneuvers in the165

LNAV plane is independent of the sequence of maneuvers in the VNAV plane.

Once the list of elemental maneuvers has been planned, the Guidance System

activates the LNAV maneuvers and the VNAV maneuvers for carrying out the

plan in a sequential manner. Only one LNAV maneuver and one VNAV maneu-

ver can be active at a time. According to these active maneuvers, an interpreter170

activates the appropriate control modes of the Flight Director. The interpreter

also computes the target values (the reference state) for the selected modes

using different guidance algorithms. For example, the control mode for flying

a turn with a constant radius is the heading control mode; and the algorithm

that computes the target heading for this mode is based on the “carrot-chasing”175

algorithm in [26].

Each control mode is flown until some target event occurs. For example,

the turn with a constant radius can be flown until the RPAS reaches a given

waypoint, or until a given time-out occurs, for instance. When this target event

is triggered, the Guidance System selects the next maneuver in the sequence.180

When the sequence of maneuvers is completed, the Guidance System notifies

the Path Planner so that the high-level component will provide a new reference

trajectory.

Finally, the Flight Director implements the control loops of the autopilot

control modes. For example, the autopilot has the “heading control” mode, the185

“altitude control” mode, the “vertical speed control” mode, etc. The Flight

Director can be commanded not only by the upper layers of the architecture,

but also by the remote pilot directly.
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3.1. Levels of automation

As can be seen in discussion above, the initial Mission Manager provides190

two levels of automation, named manual operation and automatic operation.

Manual operation covers any mode in which the guidance actions are performed

by the remote pilot. This includes direct control on the aircraft using the yoke,

as well as giving the proper targets to the Flight Director. Manual operation

is often used to execute flight procedures that are hard or unsafe to automate,195

such as take-off or landing procedures. By contrast, in the automatic operation,

the guidance actions are performed by the upper layers of the architecture.

The level of automation plays a key role in aviation since allocating respon-

sibilities between a human operator and an automatic system can lead to unsafe

situations [27, 28]. Sheridan introduced a taxonomy with 10 automation lev-200

els [29] that characterize this interaction. According to this, manual operation

is level 1, while automatic operation ranges from level 5 to 6. This means that

the remote pilot is always in charge of decision making: he or she must always

approve or reject the reference trajectory computed by the automatic system to

ensure predictable behavior. As a result, automatic operation still puts some205

performance requirements on the C2 link, but not as stringently as it does in

manual mode.

In this paper, we will describe the transformation of the previous Mission

Manager into a Safe Mission Manager that handles contingencies; and we will

discuss how to allocate the different software components of the resulting system210

to a partitioned environment based on the IMA concept.

4. Contingencies in RPAS

The aforementioned Mission Manager is able to perform the intended RPAS

mission as long as it is executed in a nominal condition. However, at some

point in the mission execution, a contingency may occur. Contingencies are215

unforeseen events that put other airspace users or people and facilities on the

ground at risk [1, 2]. Several important contingencies have been identified in
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RPAS [30]. Some of them are common to manned aviation –e.g. a traffic alert or

the loss of control–, while others are specific to RPAS. Introducing contingency

management functions into an RPAS means providing the on-board system with220

the ability to handle contingencies for the purpose of mitigating safety risks.

The source of contingencies are faults. These include both system com-

ponent faults and human faults. Component faults occur when some aircraft

component –such as an Inertial Measurement Unit (IMU), an engine, a Global

Positioning System (GPS), or a barometric system– fails. Human faults refer to225

piloting errors, Air Traffic Control (ATC) errors, and any other faults related

to inappropriate aircraft operation. There is a causal relation between faults

and contingencies. For example, a GPS fault could cause inaccuracy in posi-

tion determination, thus resulting in a mission boundary violation contingency.

Another example is the loss of control due to a faulty IMU. Faults usually degen-230

erate into contingencies after some short period of time. Early fault detection

is key for effective contingency management.

Increasing the level of safety in an aircraft is usually accomplished using two

complementary techniques: fault tolerance and risk mitigation. Fault tolerance

is the ability to continue operating in the event of a failure. Risk mitigation is235

the process of incorporating defenses or preventive controls to lower the severity

and/or likelihood of the projected consequence of a hazard. This is a two step

process: when some fault is not tolerated and becomes a failure, then risk miti-

gation measures are needed. Faults affecting critical system components can be

tolerated using redundancy. Full redundancy means replicating a component240

with exactly the same functionality and performance. Graceful degradation is

the ability to maintain a limited or degraded functionality when some compo-

nent fails. For example, GPS navigation could be replaced with dead-reckoning

when the GPS fails, though at the cost of position accuracy. An important

difference between system faults and human faults is that system faults can245

be tolerated to some extent by the use of redundancy, while human errors and

inappropriate aircraft operation can only be handled through risk mitigation.

One of the most encouraging measures proposed by EASA for risk mitigation
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Figure 2: Framework of techniques for keeping safety in RPAS. Source: [31].

in RPAS is setting some boundary limits on RPAS operation. The goal here is

to avoid the RPAS accidentally going out of its operations area or flying over250

dangerous or prohibited areas.

In the specific case of RPAS, there is a third barrier to enforcing safety

in addition to fault tolerance and risk mitigation techniques: flight termina-

tion. Flight termination procedures make it possible to immediately ground the

RPAS, for example by deploying a parachute, or using a self-destructive device.255

This option is crucial because it helps lower the severity of some risks and fault

conditions in the safety assessment: the consequences associated with an unfore-

seen event can be minimized if it is possible to terminate the flight expeditiously.

In any case, the flight termination procedure should be considered to be a last

resort when no other option can mitigate the effect of the contingency, or when260

other actions have resulted ineffective for the situation being faced. A summary

of the different techniques that can be applied for keeping an adequate level of

safety can be found in Fig. 2, and is in agreement with the work in [31].

It is important to consider the most specific contingency in RPAS, which is

the C2 link loss. Proper handling of this event is strictly required by ICAO for265

operating in non-segregated airspace [3]. Moreover, assuming that any combi-

nation of contingencies can happen in conjunction with C2 link loss, some sort

of ACM ability is necessarily required to handle the situation. ACM functions

make use of risk mitigation and flight termination techniques to generate recov-

ery maneuvers or trajectories that effectively cope with a contingency situation270

without pilot intervention. Consequently, the level of automation of a Mission
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Manager System performing ACM functions should be increased to provide au-

tonomous operation. In this extended mode, the automatic system assumes

flight guidance as well as decision-making responsibilities. This corresponds to

a Sheridan level higher than 6, which goes beyond conventional FMSs [32, 33].275

The next section discusses how to integrate ACM functions into the initial Mis-

sion Manager System.

5. Architectural considerations towards Automated Contingency Man-

agement in RPAS

The proposed Automated Contingency Management functions will be de-280

signed under the hypothesis that the RPAS has a Flight Termination System

(FTS) that is able to terminate the flight expeditiously, and that this measure

is an effective mechanism for enforcing safety. The need for this mechanism

is supported by a number of aviation stakeholders [3, 32, 33, 34]. They also

indicate that this action is to be triggered manually by the remote pilot as well285

as autonomously by the on-board system. This latter aspect implies that it is

necessary to specify in the embedded software a list of predefined conditions for

the automatic activation of the FTS.

Based on the initial hypothesis, the ability to engage the FTS becomes a

safety-critical function. Critical software in aerospace is subject to strict vali-290

dation and verification (V&V) processes defined by the DO-178 standard [35].

According to this document, a software component that cannot be completely

verified at the design phase should not adversely affect safety. As a consequence,

the list of predefined conditions that determines the automatic activation of the

FTS must be hardcoded in the embedded software so that extensive testing can295

be performed at the design stage.

Commanding the flight termination action is a drastic decision, though. Ac-

cording to the safety framework in Fig. 2, less extreme risk mitigation measures

could also be attempted for mitigating the risk inherent to contingencies in

some circumstances. In these cases, we consider that the hardcoding of policies300

12



Soft boundary

Hard boundary

Risk

mitigation

Flight

termination

Figure 3: Safety thresholds managed by the Safety Monitor.

is not strictly necessary (because there is still a flight termination mechanism,

and it can be thoroughly tested), and that having flexibility to specify some

aspects of the contingency management policy would be beneficial to the final

user. For this reason, we advocate separating ACM functions into two separate

components, named the Safety Monitor and Contingency Manager, each with a305

different impact on the safety process.

Firstly, the role of the Safety Monitor is to check system behavior for unsafe

states; and when an unsafe state is detected, to take the critical decision of

whether a risk mitigation action is feasible, or whether the flight termination

action is required instead. This decision depends on the criticality of the re-310

sulting state. Accordingly, the Safety Monitor manages two safety thresholds,

represented in Fig. 3. When a first threshold is exceeded, the criticality is such

that there is still a safety margin for attempting a risk mitigation action. The

resolution of this state will be delegated to the Contingency Manager. But if the

mitigation action fails and a second threshold is surpassed, the Safety Monitor315

will command the FTS to ensure that safety is not further compromised.

Secondly, when a risk mitigation measure is feasible, the Contingency Man-

ager should react and plan the appropriate action for reducing the probability

of infringing the second safety threshold, and ultimately attempting to recover

the nominal condition of the RPAS. Mitigation actions, also called contingency320

procedures, replace the current reference trajectory of the RPAS with a new

one that is more suitable for the contingency state being faced. For this rea-
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son, once a selection has been made, the Contingency Manager will notify the

Mission Manager to execute the selected action.

However, defining a risk mitigation policy for dealing with contingencies325

is a complex matter. In some cases, there could exist multiple contingency

procedures that could be effective, and the solution might depend on multiple

factors. The extent to which this policy can be customized by the final user is

another design issue that will be discussed later in this section. In any case,

the fact that some aspects of this policy are open to modification by the final330

user implies that the Contingency Manager cannot be completely verified at the

design stage, so it cannot be fully trusted.

As a result, the proposed differentiation between Safety Monitor and Contin-

gency Manager provides an interesting tradeoff between safety and robustness:

the Safety Monitor can enforce safety at any time during the mission, even335

when everything else fails; and the Contingency Manager enhances robustness

of the system by providing solutions to contingency states. The implementation

of the Safety Monitor must be hardcoded at the design phase so that exten-

sive testing can be performed; in contrast, the verification of the Contingency

Manager is subject to user modification. Safety aspects relating to the software340

development of this architecture will be further discussed in Sec. 6.

In summary, the execution of the proposed contingency management scheme

will be composed of the following steps: 1) monitoring the system behavior to

detect and diagnose contingencies, 2) deciding on a policy for dealing with

contingencies, and 3) executing the corresponding policy. In this scheme, the345

first step will be performed by the Safety Monitor; the second step will be

performed at two levels by the Safety Monitor and by the Contingency Manager;

and the third one will be performed by the Mission Manager or the Flight

Termination System, depending on the selected policy.

Thus, the initial Mission Manager architecture will be extended with three350

new software components to perform ACM functions. The resulting Safe Mis-

sion Manager architecture is presented in Fig. 4. Note that the “Mission Man-

ager System” box in this figure includes all the sub-components that were de-
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Contingency Manager, Mission Manager and Flight Termination Systems.

picted in Fig. 1. In addition to the new software components, the Mission

Manager module will also be internally redesigned to enable it to execute the355

contingency handlers. A contingency handler produces the reference trajectory

of the mitigation actions that are enabled by the Contingency Manager. The

sub-sections below will discuss the different components in more detail.

5.1. Detecting contingency states

Detecting unsafe states and triggering alarms is considered safety critical360

functionality. An interesting approach for this task is the use of formal specifi-

cations to derive safety monitors. The advantage of this methodology is that it

enables very efficient monitors that can be verified because they are automati-

cally derived from a formal specification. This technique has been an important

research topic for checking software and hardware behavior in embedded sys-365

tems [36]. We propose using similar techniques for system health management

and the detection of unsafe conditions [37]. We discuss below how to integrate

monitoring into the system architecture.

An aircraft is a distributed system consisting of a large number of inde-

pendent subsystems. Critical system components are usually required to self-370

monitor, to perform fault detection and to report their faults. This is the case for

the GPS subsystem, where Receiver Autonomous Integrity Monitoring (RAIM)

systems are prescribed. Another example is the Airborne Collision Avoidance

subsystem (ACAS), which is able to detect collision threats autonomously.
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However, safety monitoring should be performed not only inside each sub-375

system but at the system level as well. This requires having access to the global

system state because an unsafe situation can be formally specified as a predicate

on the system state. We understand as a“global” state the aggregation of the

states of a set of subcomponents of a distributed system [38]. As an example,

consider the following unsafe condition: “the distance to the airport is greater380

than the mileage allowed by the reserve fuel remaining”. Checking this predi-

cate involves knowledge as to the airport location, the aircraft position and the

remaining fuel. Even if the subsystems that estimate these state variables are

failure free and are not reporting any alarm, if these data are processed at a

system level, then an unsafe situation can hold. In general, all contingencies385

derived from inappropriate aircraft operation involve the state of several system

components.

Thus, online safety monitoring requires some centralized, high level compo-

nent that coordinates all the distributed monitors and performs diagnoses at

the system level. Performing this task implies that some knowledge about the390

normal behavior of the system is presented to the real-time reasoning. This

knowledge can be typically developed using model-based or data-based tech-

niques [39]: in model-based techniques, it is derived from theoretical models,

while in data-based techniques, it is inferred from empirical experiments of

fault-free operation.395

One of the main problems is the reliability of the detection mechanisms.

This refers to the probability of reporting false alarms or skipping true alarms.

The main problem in creating a robust system is that sensors are imperfect and

noisy. This results in uncertainty in the state determination. For this reason,

the use of deterministic logic to define alarm conditions on the state variables400

does not guarantee reliable detection. Some proposed techniques for dealing

with uncertainty are fuzzy logic [40], stochastic alarm detection techniques [41]

and Markov decision processes [42]. Consequently, the Safety Monitor should

also manage alarm thresholds.

Therefore, the centralized Safety Monitor should be modeled as a probabilis-405
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tic state automaton [43]. However, current work is still at a conceptual level, so

we will assume ideal detection mechanisms and avoid the uncertainty analysis.

The resulting simplified model is depicted in Fig. 5. The state automaton in

this figure starts at a nominal state where no contingency events have occurred.

Within this state, the RPAS is flying the planned mission in a manual or auto-410

matic manner. According to the safety thresholds in Fig. 3, the Safety Monitor

can trigger two types of contingency events: when the first safety boundary is

exceeded, it triggers a “soft” contingency event. Such events make the system

shift into a contingency state where a given mitigation action can be planned. In

this state, the Contingency Manager will be enabled. When the second bound-415

ary is exceeded, the Safety Monitor will raise a “hard” contingency event, which

results in a state where the only feasible action is flight termination; this will

be handled by the Flight Termination System.

Once in a risk mitigation state, if the mitigation action turns out to be effec-

tive, a recovery event will bring the system back to the nominal state; otherwise,420

the system will remain in the same state and further mitigation actions can be

planned. In addition, subsequent contingencies may also occur. However, we

believe effective handling of nested alerts is highly unfeasible in most cases. For

this reason, the approach for dealing with these conditions will be prevention:

avoiding, whenever possible, the occurrence of new contingency events by using425
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a safe and conservative design of the mitigation actions; otherwise, new events

often lead to the flight termination state.

5.2. Defining a policy for dealing with contingencies

Once a risk mitigation state is entered, the next step is to decide on a pol-

icy for dealing with the resulting flight condition. The role of the Contingency430

Manager is to select a mitigation action that tries to partially complete the mis-

sion, probably in some degraded form, while maintaining safety. This requires

addressing a decision-making problem that should balance the rewards with the

risks associated with each possible action to maximize the probability of suc-

cess, see Fig. 6. Once a decision has been made, the Contingency Manager will435

instruct the Mission Manager to execute this action.

In general, the decision-making process for selecting a mitigation action de-

pends on not only the contingency event reported by the Safety Monitor, but also

on other state variables. For example, the Contingency Manager could make

different decisions about how to handle a traffic alert depending on whether440

the RPAS is flying in controlled or uncontrolled airspace. The decision is even

more complex when several concurrent events are reported by the Safety Mon-

itor. For this reason, the Contingency Manager also needs to have access to

the global system state, as shown in Fig 4. Although the system state is huge

and comprises many variables, it is often possible to limit the decision process445

Risk mitigation state

Decision
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Mitigation 

action 1

Mitigation 

action 2

Mitigation 

action n

decision 2

decision 1
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Figure 6: Decision logic for finding a feasible action after a contingency happens.
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to the following subset: the aircraft position (including the segment of flight

in which the contingency happens, and the airspace class) and the contingency

event being faced.

As a result, the decision logic for selecting a suitable mitigation action can

be also modeled as a state automaton. We call the specification of this au-450

tomaton the Contingency Plan. It determines the behavior of the RPAS after a

contingency occurs. The aim of this plan should be to reduce the time of flight

of the Remotely Piloted Aircraft (RPA) experiencing the contingency [3]. The

design of the Contingency Plan is a sensitive task because the resulting logic

must: a) be deterministic, and ensure predictable behavior even without pilot455

intervention [3, 44]; and b) comply with current regulations (e.g. rules of the

air [45] or procedures for emergency situations [46, 47]).

An interesting design issue is which level of customization is allowed in the

design of the Contingency Plan; or, in other words, to what extent should the

Contingency Plan be hardcoded into the embedded software. Two opposing460

trends affect this issue. One the one hand, having the flexibility to specify this

plan on a mission basis –thus avoiding the hardcoding of policies– can make the

remote pilot handle a contingency scenario in a more responsive way. On the

other hand, since the specification of a state automaton with lots of states and

transitions is a difficult and critical task, it must be verified; and the specification465

and verification of a safe state automation is considered to be beyond the scope

of an RPAS operator.

For this reason, we have opted for the following mixed solution: the spec-

ification of the Contingency Plan is assigned to the system developer and is

hardcoded into the embedded software; but if the mitigation actions have some470

configuration parameters defining how to execute this action, then they can be

specified in a Mission Plan pre-flight. This solution implies that the validation

of the Contingency Manager is subject to the validation of the Mission Plan at

operation time: the Contingency Manager will be safe only if the Mission Plan

specification is correct.475

As an example, assume that “land at a designated landing site” is one pos-
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sible mitigation action, and that the configuration parameters of this action are

the list of suitable landing sites, as well as the routes towards these sites. Then,

according to this proposal, the remote pilot will not be able to specify what

state leads to the selection of this action, but he or she will be able to specify480

the possible landing sites, and the possible routes for reaching them. In addi-

tion, the decision on performing this procedure will be safe only if the Mission

Plan has been approved by the corresponding aviation authority. Finally, the

design of a Mission Plan specification that deals with contingency handling is a

research problem that is currently under study.485

5.3. Executing the selected mitigation action

To execute the selected policy, the corresponding contingency handlers must

be provided to the on-board system. Contingency handlers implement the mit-

igation actions that will be executed in response to a contingency. In the pro-

posed architecture, these handlers are executed by the Mission Manager because490

they can be seen as a special case of the Path Planners in Fig. 1. Thus, the goal

of a contingency handler is to override the Path Planner guidance used during

the nominal condition with some specific guidance based on safety concerns.

In general, the list of the required mitigation actions depends on the contin-

gency events under consideration. As a general rule, the proposed contingency495

procedures should be similar to those for manned aviation [49]. For this reason,

it is possible to classify them into two categories according to their impact on

the planned route:

1. Strategical contingency procedures are suitable when the initial route is

no longer feasible and thus a new mission has to be planned. The new500

reference path is often constructed with a more conservative design, with

limited turns, vertical speeds, etc. This mechanism protects against ex-

ceeding the flight envelope during a contingency state (thus causing a

nested alert), but also results in reduced aircraft performance due to the

contingency being faced. One example of these procedures might be flying505

towards the alternative landing site.
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2. Tactical contingency procedures are flight procedures that deviate the air-

craft from the intended route temporarily, though the original mission

may be resumed afterwards once the effect of the contingency has been

mitigated. In contrast to strategical contingency procedures, tactical ones510

often demand high flight performances, like in a traffic avoidance maneu-

ver.

Based on this differentiation, contingency handlers can be also classified

into two classes according to their alternative guidance method: contingency

handlers relying on the Mission Planner and contingency handlers requiring a515

Task Specific Planner. In general, all the tactical contingency procedures re-

quire a Task Specific Planner because the reference trajectory strongly depends

on the type of contingency being faced. By contrast, strategical contingency

procedures do not require a specific Path Planner be introduced but rather an

alternative route definition be provided to the Mission Planner. How to perform520

smooth transitions between the guiding actions of different Path Planners is an

interesting issue that exceeds the scope of this paper.

5.4. Performing the flight termination action

As was introduced in this paper, RPAS must often incorporate a Flight Ter-

mination System that is capable of safely bringing the vehicle back to the ground525

in case of severe contingencies. The work in [31] presents a survey of current

and future technologies and procedures for performing a controlled flight into

terrain (CFIT), including aerodynamic and ballistic terminations. Alternatives

are self-destruct systems that allow an in-flight destruction to be performed

without the loss of human lives [50]. However, this latter alternative may not530

be supported in RPAS that aim to operate within the certified category [49, 51].

In order to reduce the risk for people and ground facilities, the flight termi-

nation action should be performed in dedicated areas called Flight Termination

Points (FTPs). These points should be specified in the Mission Plan, segre-

gated by ATC and located in unpopulated areas or over the sea [17, 49]. For535
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this reason, whenever possible, the execution of this action should be preceded

by a strategical phase in which the RPAS tries to achieve the closest FTP.

6. Safety aspects relating to the software development

For the Mission Manager to be considered a safe system, it is necessary

not only to provide it with ACM functions, but also develop it following a re-540

liable software development process [52]. The software project for aerospace

applications like the one presented in this paper shall demonstrate an adequate

level of confidence in safety to comply with the aerospace standards for cer-

tification [34, 35]. The reference manual for the avionics industry is the DO-

178 standard. It defines an explicit correlation between the severity of system545

hazards and the scrutiny to which that system is subjected. In particular, it

establishes five software levels (Level A to E) related to the effect of five failure

conditions (Catastrophic to No safety effect). The work in [53] particularizes

the definition of these effects to the case of UAS. In DO-178, each level has a

number of objectives that must be met in the software development process. In550

short, the verification effort increases with the software level of a component.

In regards to UAS, the EASA concept of operation states that system haz-

ards are operation-centric [2]. According to this regulatory framework, un-

manned aircraft operating in the open category are not subject to certification

because the impact on safety of a software error is low: in this category, the air-555

craft is operated in visual line of sight (VLOS) and below 150 m, so a dedicated

remote pilot is assumed to be present at all times of the operation. Accordingly,

the remote pilot can take control of the vehicle at any point in the mission, and

specifically after a contingency occurs. It can therefore be reasonably justified

that the embedded software has no effect on the operation in terms of safety.560

However, large UAS operating in the specific category, and ultimately in the

certified category, can eventually operate beyond the line of sight (BVLOS) of

the remote pilot. In these cases, if the C2 link is lost, the software is essentially

replacing the remote pilot; and, for this reason, it becomes safety-critical and
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must be verified [52].565

In this section, we discuss the impact on safety of each architectural com-

ponent of the proposed Safe Mission Manager system. We also propose the

use of partitioning as a means of fault contention, and we allocate the differ-

ent software components to a partitioning scheme that allows the software level

of some architectural components to be downgraded. Finally, we propose the570

use of formal methods to facilitate the analysis and verification of the critical

software.

6.1. Preliminary software level determination

Based on the safety framework in Fig. 2, it is possible to ensure safety as

long as the RPAS has the ability to command the flight termination action in575

an expeditious manner, at any time and under any condition of the RPAS. In

the ACM scheme proposed in this paper, the Safety Monitor is the software

component with the ability to command this action autonomously, without the

collaboration of any other system. Accordingly, in the safety assessment, a

software error causing the loss of function of either the Safety Monitor or the580

Flight Termination System will have catastrophic effects. For this reason, the

two systems will be considered the hardcore components for maintaining safety

and should be assigned the highest software level.

In the case of the Contingency Manager and the Mission Manager compo-

nents, the loss of any of these systems means that the flight path of the vehicle585

cannot be controlled. According to [53], this is thought to have hazardous effects

on the operation of the RPAS as long as the vehicle is able to initiate a flight

termination procedure; otherwise, such fault would have catastrophic effects.

Consequently, assuming that the hardcore components of the architecture are

able to safely terminate the flight, the Contingency Manager and the Mission590

Manager could be assigned a software level “B”.

The problem that emerges is that, according to the DO-178 standard, soft-

ware components with common modes of failure cannot have different software

levels [35]. That is, if a software error occurs at some component, but this er-
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ror affects other functional components, then all these components should be595

assigned the software level associated with the most severe failure condition.

In the case of the Safe Mission Manager in Fig. 4, if a serial implementation

is conceived, then the loss of one component like the Mission Manager could

cause a total system loss; and, as a result, all the components in the architec-

ture should be assigned the same (highest) software level, which adds to the600

software development effort.

6.2. Architectural strategies for fault contention

To overcome this, the DO-178 standard proposes some architectural choices

that can limit the impact of failures to ultimately demonstrate that sufficient

independence between software components with respect to their failure modes605

exists [35]. If this is achieved, it is possible to separate safety-critical functions

to independent modules with independent failure modes. Consequently, it is

possible to downgrade the software level of some components by means of an

appropriate architectural choice.

One of the possible architectural choices is redundancy. Redundant configu-610

rations mitigate hazards by replicating system components in different proces-

sors. So if a fault (either a software fault or a hardware fault) causes a system

malfunction, the affected component can be replaced by a backup copy that

provides the same functionality, but one executed on different hardware. The

use of dissimilar, redundant components is required to avoid software develop-615

ment errors in this case. Redundant systems are common in aviation. Dual and

triple redundancy is often required in critical aircraft systems [54, 55]. However,

having dedicated hardware for each replicated application increases the system

complexity, as well as development costs. Moreover, in the case of UAS, the

reduced size and weight restrictions make redundancy hard to implement.620

Another architectural choice that can limit the impact of failures is parti-

tioning. Partitioned architectures, called Integrated Modular Avionics (IMA)

architectures in aerospace [56], provide protection and separation among ap-

plications running on the same hardware. This way, failures occurring in one
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partition are not propagated to other partitions.625

The support for IMA architectures is defined by ARINC-650 and ARINC-651

documents that specify general purpose hardware and software standards, and

by ARINC-653, which specifies the application programming interface (API)

[56]. Previous work by the authors presented an execution environment that

supports the IMA concept [57]. The proposed framework relies on XtratuM,630

a hypervisor for real-time embedded systems developed at the UPV [58]. One

of its guest real-time operating systems is LithOS [59], which is ARINC-653

compliant. The next section discusses how to exploit the IMA concept to allo-

cate the different Safe Mission Manager components to the proposed execution

framework.635

6.2.1. Definition of the partitioning scheme

The definition of the partitioning scheme is a design issue. The simplest

solution would be to allocate all the software components to a single partition.

However, this does not exploit the IMA concept and implies that a fault oc-

curring at some component can produce a total system loss. The opposite is640

allocating each function to a separate partition, but this unreasonably increases

the system complexity. To overcome this, we propose an intermediate solution

based on allocating software components according to their impact on overall

safety.

Accordingly, the proposed partitioning scheme will be composed of two par-645

titions, represented in Fig. 7. In this scheme, partition P0 allocates the software

components that can contribute to failure conditions with catastrophic conse-

quences; these are the Safety Monitor and the Flight Termination systems. Most

of the software verification effort will fall on this partition. By contrast, parti-

tion P1 allocates the components whose failure is considered to have hazardous650

effects in the safety assessment, i.e. the Contingency Manager and the Mission

Manager systems.

The advantage of this partitioning scheme is that a fault occurring at a

component allocated to partition P1 will not be propagated to any component in
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Figure 7: Safe Mission Manager partitioning scheme.

partition P0. In other words, a software error affecting partition P1 will not have655

catastrophic consequences because partition P0 is still able to perform the flight

termination action (even if P1 fails). As a result, it is possible to downgrade the

software level of the Contingency Manager and the Mission Manager from level

“A” (in case of a serial implementation) to level “B” and reduce the number of

verification objectives.660

6.3. Formal methods for software verification

Along with fault contention mechanisms, reliable software design method-

ologies must also be followed in the software development process to assure that

critical software is of high quality and error-free. Practices like defensive pro-

gramming are often suggested for reducing software complexity and ultimately665

limiting the chance of introducing errors. For example, it is possible to limit

the use of a programming language to a subset; this avoids the use of structures

that could lead to non-deterministic behaviors. But the key mechanism for er-

ror prevention is the use of verification methods that ensure that errors entered

into the software lifecycle get detected. In the previous version of the DO-178670

standard (version B), the verification process mostly relies on generating a large

set of test cases for different steps in the development process. However, the

coverage of these tests cannot demonstrate the total absence of errors in the

code [18]. Another shortcoming is that safety-related requirements are often

difficult to test following such verification strategy [19, 60].675
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The last version of the DO-178 standard (version C) introduces the use of

formal methods through the specific supplement DO-333 [61]. A formal method

is defined as a formal analysis carried out on a formal model [35]. A formal

model is a system description expressed with a formal specification language,

i.e. with precise syntax and formal semantics. Such models can be useful680

in several phases of the development process, such as for the simulation of the

system behavior or the reasoning over such system representation, among others.

The most extended use is formal verification, however, which is the aim of the

DO-333 supplement and of this work as well.

A formal specification makes it possible for system properties to be defined685

in a precise, consistent and complete way [62]. When used for verification,

properties are deduced from the system requirements, and in the case of safety-

critical system, from the safety requirements. Then, formal methods can be

used to verify these properties against the model to reveal design errors or

model inconsistencies, and ultimately to provide verification evidence for the690

certification process. One of the advantages of formal methods is that safety-

critical properties can be checked more easily than with a conventional testing

strategy [18, 19, 60].

The DO-333 supplement allows three classes of formal methods to satisfy

certification objectives: theorem proving, abstract interpretation and model695

checking. This latter method is the focus of this work, while the remaining ones

are omitted for brevity. In model checking, the model is represented as a finite-

state machine (FSM), and the properties are formalized using temporal logic.

Both the model and the properties are deduced manually from the system that

is being verified. Then, the entire state space of the FSM is analyzed to check700

the validity of the formal properties, with the advantage that this analysis is

fully automated. If a property is not satisfied, a counter-example is generated,

and the model or the property can be refined and analyzed again. The resulting

process is schematized in Fig. 8.

The application of model checking techniques to safety-critical avionics sys-705

tems has increased in recent years [18, 19, 63]. The next section studies how to
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exploit this method in the software development of the ACM functions presented

in this work.

7. Formal design and verification of a contingency management pol-

icy: a case study710

This section illustrates the use of model checking to verify the correctness

of a contingency management policy. Based on the contingency management

scheme in Sec. 5, contingency management policy depends on the Safety Moni-

tor state automaton and on the Contingency Plan. Accordingly, we will develop

a particular specification for these models, and we will identity some properties715

with which these models must comply. Then, we will translate both the models

and the properties into a formal language and use the NuSMV model checking

tool [64] to analyze the formal model with regards to the properties. The result-

ing process will ensure that the system design reaches a certain level of quality

before it is implemented.720

It is to be noted that the contingency management policy should respond

to a system safety assessment. The type of contingency events to be handled

and the required responses to these events often vary depending on the type of

Remotely Piloted Aircraft (RPA) and the type of mission being performed. It is

not the goal of this paper to present one given policy for a specific application.725

Rather, the purpose is to show how the development and verification of a realistic

avionics application can benefit from formal methods. For this reason, the

proposed policy will serve for demonstration purposes only. In any case, it will
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be developed in compliance with current airspace regulation and will aim to be

generic enough so that it can be applied to a variety of RPA performing different730

mission types.

7.1. Specification of the Safety Monitor model

The proposed Safety Monitor model accounts for the occurrence of the five

contingency events described below. These are the fault hypothesis of this case

study, which are in line with the three key risk areas reported in [1]. Indeed, it735

is reasonable to expect these events to occur on any type of RPAS mission. If

different fault hypothesis are assumed, then the subsequent design steps should

also be rewritten.

a. C2 link loss is considered to be any situation in which the RPA can no

longer be controlled by the remote pilot due to the degradation or total loss740

of the communication channel. This is likely even when redundant data link

architectures are provided. Possible causes include screening terrain, ocean

wave effects, malicious interferences, out of range, equipment failure and

aircraft maneuvers.

The C2 link mode of failure is not always a fail-stop failure (i.e. a “clean”745

failure). Usually, the C2 link experiences a degradation in which repetitive

and intermittent unavailabilities or delays in the transaction time occur. It

is therefore important to determine the sustained loss of link Tsloss, which

is the time period at which the C2 link should be declared as being lost.

b. GPS loss of performance is due to the lack of satellite coverage or to a poor750

satellite signal. According to ICAO’s Performance-Based Navigation (PBN)

[55], this performance degradation must be detected by RAIM systems. The

navigation system continuously computes its Actual Navigation Performance

(ANP), which is the maximum navigation error. When the ANP is higher

than a specified Required Navigation Performance (RNP) then the system755

must signal a GPS loss.
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c. Loss of control refers to situations where the pilot or the automatic guid-

ance system are unable to control the aircraft, resulting in an unrecoverable

deviation from the intended flight path. This is one of the most complex

contingencies, involving numerous contributing factors that act individually760

or, more often, in combination. These factors include mechanical failures,

weather conditions, sensor failures and ineffective aircraft control. Loss of

control can be detected because the aircraft enters a flight regime outside its

normal flight envelope. Ineffective control occurs when the guidance system

provides the control loops with targets that cannot be achieved. Control sys-765

tems attempt to prevent this situation by setting a flight envelope protection

that puts some limits on attitude and speed targets; however, mechanical

failures or extreme environmental conditions can make these preventive ac-

tions ineffective.

d. Traffic alert refers to the Detect and Avoid (DAA) capability which in RPAS770

relies on ACAS Xu equipment [23]. It provides two alarm thresholds: Traffic

Advisories (TAs) and Resolution Advisories (RAs). TA is an indication

alerting that a certain intruder is a potential threat. RA is an indication

requiring the pilot to perform a quick maneuver deviating from the current

flight path to provide separation from collision threats. False alerts are an775

important issue in collision avoidance systems. Variability in pilot behavior

and aircraft dynamics make it difficult to predict where the intruder aircraft

will be in the future. This requires a tradeoff between safety and operational

considerations.

e. Mission boundary limits violation deals with two slightly different problems:780

no-fly zones and geofencing, see Fig. 9. On one hand, no-fly zones are loca-

tions where flight may be restricted by regulation or raise safety concerns.

The RPAS shall not fly into these zones. On the other hand, geofencing

consists of setting some boundaries or contention barriers to the area where

the RPAS operation takes place and taking the proper measures to enforce785

these boundaries. The boundaries include both horizontal and vertical lim-
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its. The RPAS shall not fly out of these zones. When the whole mission

takes place in segregated airspace, these limits also include the path from

the aerodrome to and from the operations area.

No-fly zones and geofencing require continuous monitoring and checking790

of boundary violations. Two type of boundaries associated with the two

alarm thresholds are usually considered. A hard boundary defines the limits

that should never be trespassed. Violation of this boundary implies flight

termination. A soft boundary defines the limits of the last chance to turn

before violating mission boundaries. This limit strongly depends on the795

aircraft performance and the navigation performance.

7.1.1. Decision logic

The Safety Monitor model must diagnose each of the previous contingencies

and decide whether the resulting state is to be handled by the Contingency Man-

ager or by the Flight Termination System. In this case study, we determine that800

the occurrence of one single “soft” contingency can be addressed by the Contin-

gency Manager, but any combination of nested contingencies or the occurrence

of a “hard” event require instant flight termination. The resulting decision

logic is modeled in Fig. 10. It shows an FSM with seven states: the nominal

state (S1), the flight termination state (S7), and five risk mitigation states (S2805

31



S2: 
Autonomous

operation

S1: 
Nominal
operation

S4: 
Degraded 

control

S3: 
Degraded
navigation

S5: 
Traffic alert

S6: 
Boundary alert

S7: 
Flight 

termination

g12

g21
g61

g15 g16

g51g41

g14

g31

g13

g67g27

g57
g47

g37
g17

Figure 10: The Safety Monitor model presents one nominal state (in white) and several

contingency states (in gray). State transitions gij are triggered by contingency events (i < j)

and by recovery events (i > j).

to S6, one per contingency under study). For example, Autonomous operation

(S2) describes C2 link loss conditions; Degraded navigation (S3) implies reduced

navigation capability due to GPS loss of performance, etc. Transitions between

these states are labeled as gij , where i is the initial state and j is the resulting

state. They can be triggered by contingency events (those where i < j) or by810

recovery events (i > j).

Some important properties of this model are: there should always be a tran-

sition for reaching the flight termination state in one step; the flight termination

state should be a final state (i.e. one that has no successors); and one risk mit-

igation state must not be reached from another risk mitigation state in a direct815

manner.

Finally, note that if a different policy is conceived, then different states

should be considered. For example, if risk mitigation measures are allowed for

nested alert conditions, then additional states between single risk mitigation

states (S2 to S6) and flight termination (S7) should be added (for instance,820

Autonomous traffic alert).
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7.2. Specification of the Contingency Plan model

The behavior of the Contingency Plan model is subject to the behavior of the

Safety Monitor model: when a risk mitigation state is entered, the Contingency

Plan determines an appropriate contingency procedure by means of a decision825

logic. The specification of the Contingency Plan model thus requires the def-

inition of: a) a list of suitable contingency procedures for the risk mitigation

states under study, and b) the corresponding decision logic. The list of proce-

dures is, of course, dependent on the Safety Monitor states: if different states

are considered, then the list of procedures should be reevaluated, as should the830

decision logic.

Based on the risk mitigation states in this case study (Fig. 10), we propose a

series of procedures inspired by the emergency procedures for manned aviation

and by the contingency options in Doc. 10019 AN/507 [3]. The list contains four

contingency procedures of a tactical nature, including: a.1) loitering, a.2) climb-835

ing to regain the signal (either the GPS signal or C2 link signal), a.3) avoidance

maneuver, and a.4) reverting to manual control; and two strategical contingency

options: b.1) landing at a designated landing site, and b.2) flight termination.

The fact that the flight termination action is also available for the Contin-

gency Plan warrants special attention. Even though the Safety Monitor has not840

entered the Flight termination state (meaning that there is still a safety margin

for attempting a risk mitigation action), the Contingency Manager might be

unable to find a more convenient option for a given contingency state. In these

cases, flight termination will be commanded by the Contingency Manager, with

the difference that it will not necessarily be performed expeditiously; by con-845

trast, it can be preceded by a strategical phase in which the RPAS attempts to

reach one of the FTPs specified in the Mission Plan, thus increasing safety.

Each of the aforementioned procedures can be executed under specified con-

ditions only. For example, revert to manual control shall not be executed if

the C2 link is lost. Another example is the landing procedure, which should850

not be executed after the GPS loss because it requires a high navigation accu-

racy. In order to develop such requirements, we propose using the Classification
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Tree Method (CTM) [65], a graphical methodology that facilitates the require-

ment specification in the following manner: 1) it helps to identify the relevant

variables for the decision-making problem, as well as their possible values; 2)855

it eases the analysis of nested alerts (if applicable); and especially, 3) formal

requirements can be directly extracted from the tree.

The resulting classification tree is presented in Fig. 11. It shows that the

set of requirements are expressed in terms of the state variables introduced in

Sec. 5.2; these are the tree branches. Therefore, the requirements are expressed860

as follows: a) when a specific value of one variable is required to select the

procedure, it is marked with a black dot; in this case, the remaining values of

this variable shall be left with no mark for this procedure. b) When the variable

is not relevant for the selection of this procedure, then all their possible values

are marked with a question mark.865

7.2.1. Decision logic

Based on the previous list of options, we propose the following decision logic

for the different risk mitigation states under study. Note that, for brevity, the

following logic only accounts for contingencies occurring during the en-route

phase, although the full policy can be easily extended:870

a. After the C2 link loss event, the system is in the Autonomous operation

state. In this state, the goal is to minimize the time of flight “not under

command” [3]. According to ICAO, this can be achieved by either landing

at a designated landing site, climbing to regain the signal, or performing

the flight termination action. We assume that all of these options have875

some configuration parameters specified in the Mission Plan that determine

the associated locations at which each procedure is to be performed, see

Sec. 5.2. That is, the Mission Plan will specify all the possible airdromes

and the allowed areas for climbing and terminating the flight. Based on

this assumption, we suggest deciding whether to land or climb depending880

on which option is closer to the current position of the RPAS; and in case

the resulting route is unfeasible (i.e. that the associated locations cannot be
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reached), then flight termination will be selected.

b. A GPS loss of performance does not imply that the aircraft cannot determine

its position by other means. Alternatives are ground-based navigation aids885

(if available) and dead-reckoning. However, the accuracy of these methods

is lower than that of GPS and is probably insufficient for performing a given

mission or complying with the RNP [55]. As such, after the loss of the GPS

signal, the system evolves to the Degraded navigation state. In this state, if

the RPAS is flying in controlled airspace, PBN specifications require it to890

revert to manual control. Otherwise, climbing to regain the signal or loitering

are the most convenient options, depending on their associated locations and

the current position of the RPAS.

c. The only suitable action for dealing with the Degraded control state is re-

verting to manual control. Note that, in order to maintain safety, this pro-895

cedure should be performed without resulting in a transient that requires

exceptional piloting skill or alertness from the RPA crew [66].

d. During a Traffic alert, the ACAS Xu equipment allows an automatic avoid-

ance maneuver to be performed in order to regain the separation minima.

ACAS Xu goes beyond conventional Traffic alert and Collision Avoidance900

Systems (TCAS) as it not only informs the pilot, but also executes the

recommended evasion maneuver (though the remote pilot still retains the

ability to override the proposed action).

e. Surpassing the soft boundary of a geofence or a no-fly zone causes a Bound-

ary alert state. In this state, the RPAS starts an avoidance maneuver to go905

back inside the mission limits. If this is achieved, the original mission can

be automatically resumed afterwards.

7.3. Formal specification and verification of the policy

In order to verify the proposed contingency management policy using the

model checking techniques, it is necessary to translate the previous specifica-910

tion into a formal language. In this case, we will use the SMV language, and
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NuSMV as the model checking tool. The resulting formal model of the contin-

gency management policy will be composed of two modules: the Safety Monitor

module, and the Contingency Plan module. An extract from these modules is

shown in Figures 12 and 13, respectively.915

As it can be observed, both modules start with a declaration of the state

variables using the VAR command. This is followed by the specification of the

FSM that describes the behavior of each model. In SMV, the FSM is declared

using the ASSIGN command, followed by the initial value init(state) and the

list of transitions next(state). The last part of the modules specifies the prop-920

erties with which the model must comply. In this case, the properties will be

expressed using Computation Tree Logic (CTL) formulae, where CTLSPEC de-

fines the start of a CTL expression, and “->” is the logical implication operator.

The remaining notation is described in [64].

In the case of the Safety Monitor model, an extract of the FSM in Fig. 10925

is shown in lines 58 to 72 of Fig. 12. In particular, it shows some transitions

from the Nominal and Autonomous operation states. With respect to the formal

properties, some relevant requirements presented in Sec. 7.1 are also formalized

in this extract. For example, lines 121 to 125 specify that if a soft contingency

event occurs when flying in a Nominal state, then the next state shall be a risk930

mitigation state; or that the Flight termination state shall be always reachable;

and that it must be reachable in one step. Note that these properties have

been specified using symbolic declarations like recoveryEvent, hardEvent, or

riskMitigationState, which are omitted in the extract for brevity.

In the case of the Contingency Plan model, the corresponding module is in-935

voked with four input parameters, see line 137 of Fig. 13. These are the variables

on which the decision logic of the Contingency Plan relies: sm state corresponds

to the variable state of the Safety Monitor module; shortestContingency-

Route specifies which contingency procedure has an associated location that

is closer to the current position of the RPAS; inEnrouteSegment describes940

whether the current phase of flight is en-route or not; and inControlled-

Airspace defines the airspace class. Note that the last two variables are modeled
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24 MODULE safetyMonitor

25 VAR

26 state : {nominal, autonomousOp, degradedNav, degradedControl, trafficAlert,

27 boundaryAlert, flightTermination};

28 event : {c2LinkLoss, gpsLoss, lossOfControl, trafficAlert,

29 softBoundaryAlert, hardBoundaryAlert, c2LinkRcv, gpsRcv, inSteadyFlight,

30 trafficWellClear, boundaryWellClear};

31 DEFINE

32 softEvent := (event = c2LinkLoss | event = gpsLoss | event = lossOfControl |

33 event = trafficAlert | event = softBoundaryAlert);

· · ·
58 ASSIGN -- Safety Monitor state automaton

59 init (state) := nominal;

60 next (state) :=

61 case

62 --In S1: Nominal operation

63 state = nominal & event = c2LinkLoss : autonomousOp; --g12

64 state = nominal & event = gpsLoss : degradedNav; --g13

65 state = nominal & event = lossOfControl : degradedControl; --g14

66 state = nominal & event = trafficAlert : trafficAlert; --g15

67 state = nominal & event = softBoundaryAlert : boundaryAlert; --g16

68 --In S2: Autonomous operation

69 state = autonomousOp & event = c2LinkRcv : nominal; --g21

70 state = autonomousOp & (event = trafficAlert | event = softBoundaryAlert

71 | event = gpsLoss | event = lossOfControl) : flightTermination; --g27

72 --In S3: Degraded navigation

· · ·
121 CTLSPEC AG (state = nominal & softEvent -> AX riskMitigationState);

122 CTLSPEC AG (riskMitigationState & recoveryEvent -> AX state = nominal);

123 CTLSPEC AG (hardEvent -> AX state = flightTermination);

124 CTLSPEC AG (state=flightTermination -> ! EF state != flightTermination);

125 CTLSPEC AG EF (state = flightTermination);

Figure 12: Extract of the Safety Monitor model in SMV language.
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137 MODULE contingencyPlan (sm state, shortestContingencyRoute, inEnrouteSegment,

138 inControlledAirspace)

139 VAR

140 contingencyProc : {continueOriginalPlan, loiter, climb, avoidanceManeuver,

141 toManual, land, flightTermination};

· · ·
150 ASSIGN

151 init (contingencyProc) := continueOriginalPlan;

152 next (contingencyProc) :=

153 case

154 --In S1: Nominal operation

155 sm_state = nominal & tacticalProc : continueOriginalPlan;

156 --In S2: Autonomous operation

157 sm state = autonomousOp & inEnrouteSegment &

158 shortestContingencyRoute = climb : climb;

159 sm state = autonomousOp & inEnrouteSegment &

160 shortestContingencyRoute = land : land;

161 sm state = autonomousOp & inEnrouteSegment & shortestContingencyRoute

162 != climb & shortestContingencyRoute != land : flightTermination;

163 sm state = autonomousOp & ! inEnrouteSegment : flightTermination;

164 --In S3: Degraded navigation

· · ·
188 CTLSPEC AG ((inEnrouteSegment & ! inLossOfControl & ! inTrafficAlert & !

189 inBoundaryAlert) | AX contingencyProc != loiter)

190 CTLSPEC AG ((inEnrouteSegment & ! inLossOfControl & ! inTrafficAlert & !

191 inBoundaryAlert) | AX contingencyProc != climb)

192 CTLSPEC AG ((inEnrouteSegment & ! inGpsLoss & ! inLossOfControl) | AX

193 contingencyProc != avoidanceManeuver)

194 CTLSPEC AG ((! inC2Loss) | AX contingencyProc != toManual)

195 CTLSPEC AG ((inEnrouteSegment & ! inGpsLoss & ! inLossOfControl & !

196 inTrafficAlert & ! inBoundaryAlert) | AX contingencyProc != land)

197 CTLSPEC AG EF contingencyProc=flightTermination;

Figure 13: Extract of the Contingency Plan model in SMV language.

39



Figure 14: Verification results in the NuSMV console.

as boolean variables for simplicity.

Then, an extract of the FSM describing the decision logic of Sec. 7.2.1 is

shown in lines 150 to 164 of Fig. 13. For example, the contingency procedure945

(contingencyProc) that will be selected during the Autonomous operation can

be either climb, land, or flightTermination, depending on the RPAS condi-

tion. The last part of this extract shows the preconditions for activating each

procedure, which were depicted in the classification tree of Fig. 11. In this case,

they have been formalized using CTL formulae of the form AG(s | AX !p), see950

lines 188 to 197; meaning that each occurrence of condition p (the activation of

a procedure) is preceded by condition s (the required state condition) [67].

Finally, the previous modules shall be instantiated from a main module which

is here omitted for brevity. The resulting SMV file can then be interpreted by

NuSMV, which will check if the CTL specifications are satisfied by the model.955

The output of this program is shown in Fig. 14. It shows that the transition

relation is total, and that all specifications hold. In summary, the results demon-

strate the correctness of the proposed policy before it can be implemented.
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8. Conclusions

Current proposals for a regulatory framework for UAS are operation-centric960

and rely on a risk analysis. In order to achieve the target level of safety, we

proposed increasing the level of automation of the on-board system by inserting

Automated Contingency Management functions. In this paper, we discussed the

architectural design of the resulting system, which we called the Safe Mission

Manager. The proposed solution provides an interesting balance between safety965

and robustness as it is able to adapt autonomously to contingencies by provid-

ing different risk mitigation policies before commanding the flight termination

action.

We also discussed safety aspects related to the software development of this

system. As a result of this analysis, we proposed the use of partitioning as a970

means for fault contention, and we allocated the different software components

of the Safe Mission Manager to a particular partitioning configuration. This

configuration is expected to reduce the software verification effort of the certi-

fication process as it makes it possible to downgrade the software level of some

components of the architecture.975

In addition, we proposed using formal methods for software verification. For-

mal methods, and particularly formal model checking, can help in analyzing the

consistency, completeness and correctness of a software model. In this paper,

we illustrated the model checking technique using the specification of a con-

tingency management policy as a case study. We identified the most relevant980

contingencies for RPAS, proposed a list of mitigation actions and developed

the corresponding decision logic. Finally, we modeled all these aspects using a

formal specification and demonstrated that the software design is correct before

implementation.

In the future, we plan to develop a novel Mission Plan specification that sup-985

ports the definition of the configuration parameters of the different contingency

options and to validate the proposed Safe Mission Manager System running in

a simulation environment.
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