

UNIVERSIDAD POLITECNICA DE VALENCIA

E S C U E L A P O L I T E C N I C A S U P E R I O R D E G A N D I A

M a s t e r e n I n g e n i e r í a d e S i s t e m a s E l e c t r ó n i c o s

“Massive Parallel Decoding of Low-
Density Parity-Check Codes Using

Graphic Cards.”

TESIS DE MASTER

Autor:
Enrique Monzó Solves

Director/es:
Dipl. Ing. Laurent Schmalen
Dra. Asunción Pérez Pascual

GANDIA, 2010

2

Contents

1 Introduction 1

2 Theoretical and Technological Background 3
2.1 Low-Density Parity-Check Codes 3

2.1.1 Tanner Graph . 4
2.1.2 Belief Propagation . 5
2.1.3 Log-Domain Fourier Transform Decoding 6

2.2 CUDA Architecture . 8
2.2.1 Threads Arranging and Execution 8
2.2.2 Device Memory Types . 9
2.2.3 Textures . 10
2.2.4 Performance Considerations 11

3 Implementation 13
3.1 LDPC GF(2) Decoder . 13

3.1.1 Algorithm Flowchart . 14
3.1.2 Data Structures . 15
3.1.3 Kernel Implementations . 17

3.1.3.1 Initialization of Q 17
3.1.3.2 Parity Check Equations 18
3.1.3.3 Check if the Parity Equations are Satisfied 19
3.1.3.4 Check Node Update 20
3.1.3.5 Bit Node Update 21

3.2 LDPC GF(q) Decoder . 23
3.2.1 Algorithm Flowchart . 23
3.2.2 Data Structures . 24

3.2.2.1 Non-constant variables 25
3.2.2.2 Constant variables 26
3.2.2.3 Texture Tables . 27

3.2.3 Kernel Implementations . 27
3.2.3.1 Input L-Values Initialization 28
3.2.3.2 Input L-values Update 29
3.2.3.3 Hard Decision . 30

ii Contents

3.2.3.4 Check Node Equations 31
3.2.3.5 Check Node Equations Satisfied 32
3.2.3.6 Bit Node Update 32
3.2.3.7 Permutation of P_L and Q_L 34
3.2.3.8 Log-FFT . 35
3.2.3.9 Check Node Update 37
3.2.3.10 Galois Field Expansion 38

4 Results 39
4.1 Binary LDPC Decoder . 39

4.1.1 Kernel Execution Time . 40
4.1.2 Summary CUDA Optimizations 41
4.1.3 GPU/CPU Speedup versus Number of Iterations 43
4.1.4 GPU/CPU Speedup versus Code Size 43
4.1.5 BER Comparison between CPU and GPU Implementations 44

4.2 Non-binary LDPC Decoder . 45
4.2.1 Kernel Execution Time . 45
4.2.2 CUDA Optimization Summary 46
4.2.3 GPU/CPU Speedup versus Number of Iterations 47
4.2.4 GPU/CPU Speedup versus Galois Field Dimension 50
4.2.5 BER Comparison Between CPU and GPU version 52

5 Summary and Conclusions 53

6 Appendix A GF(2) CUDA Kernels Source Code 57

7 Appendix B GF(q) CUDA Kernels Source Code 61

8 Appendix C NVIDIA GeForce GTX 275 Specifications 69

Bibliography 71

Chapter 1

Introduction

Low-density parity-check (LDPC) codes, first introduced by R. G. Gallager in 1960 [16],
are a class of linear block codes characterized by their parity-check matrix, which contains a
low density of non-zero elements. The main advantage of LDPC codes is that they provide
a performance which is very close to the capacity for many channels. They are suited for
implementations that make heavy use of parallelism. However, due to the computational
effort in the implementation of these codes, they were mostly ignored until the 90’s.

A way to represent LDPC codes is via a Tanner graph representation, which is an effec-
tive graphical representation for LDPC codes, because it efficiently helps to describe the
decoding algorithm. Tanner graphs are bipartite graphs with nodes that are separated
into two different sets and edges connecting the nodes of the two different sets. Each edge
represents a non-zero value in the parity-check matrix. The two types of nodes in a Tanner
graph are called variable nodes and check nodes.

Iterative suboptimal decoding algorithms are used to decode LDPC codes. Those algo-
rithms perform local calculations and pass those local results via messages. This step is
usually repeated several times until convergence is observed.

The most common algorithm for decoding binary LDPC codes is the belief propagation
algorithm. For the case of non-binary LDPC codes, the log-domain Fourier transform
belief propagation algorithm achieves a good decoding performance. Both algorithms are
message passing algorithms.

CUDA (Compute Unified Device Architecture) is a parallel computing architecture devel-
oped by NVIDIA Corporation, being present in the current NVIDIA graphics cards. It
is accessible to software developers through variants of industry standard programming
languages. Thus, it is possible to program CUDA devices using C/C++ with NVIDIA
extensions and certain restrictions.

Each chip with CUDA technology is based on a multiprocessor with many cores and hun-
dreds of ALU’s, several thousand registers and some shared memory. Besides, a graphics
card contains global memory, which can be accessed by all multiprocessors, local memory

2 1 Introduction

in each multiprocessor, and special memory for constants. The several multiprocessor
cores in a GPU are SIMD (single instruction, multiple data) cores. This programming
style is common for graphics algorithms and many scientific tasks, but it requires specific
programming.

Motivated by the parallel computation power of the CUDA architecture, the CUDA im-
plementation of an existing C++ software based LDPC decoding system is studied in this
thesis. The main objective is the efficient CUDA implementation of the belief propagation
and the log-domain Fourier transform algorithms for the binary and non-binary LDPC
decoding processes respectively. A considerable GPU/CPU speedup is expected with the
GPU implementation of these algorithms.

Chapter 2 introduces the necessary theoretical background for understanding LDPC codes
and the CUDA architecture. The LDPC codes are presented together with their main char-
acteristic, the parity-check matrix, and their graphical representation, the Tanner graph,
which is the base for performing the iterative LDPC decoding. The belief propagation
and the log-domain Fourier transform algorithms are explained step by step.

Afterwords, the CUDA architecture is introduced as a technology present in the modern
graphic cards from NVIDIA. The parallel processing capabilities of these devices are in-
troduced, and a review of the hardware resources and constraints is performed. Some
performance considerations are introduced for understanding how to achieve better per-
formance, taking advantage of the device architecture.

The CUDA implementation of the LDPC decoders is detailed in Chapter 3. The belief
propagation and the log-domain Fourier transform algorithms are parallelized and assem-
bled in kernels. Each kernel uses the hardware resources in a different way, in order to
achieve the best performance.

Chapter 4 shows the results obtained by the CUDA LDPC decoder implementations com-
pared with the respective C++ reference code. The GPU/CPU speedup is measured for
different LDCP codes with different code sizes, number of iterations, etc. The results in-
dicate how the massive parallel process capacity of the GPU’s can be used for accelerating
the decoding algorithms in a very impressive way.

Chapter 2

Theoretical and Technological
Background

2.1 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced by Robert G. Gallager in 1963
[16]. These codes were forgotten for a few decades because of the limited ability of compu-
tation. LDPC codes were recovered in 1995 by David J.C. MacKay and Radford M. Neal
[3]. They realized that these codes offer remarkable performance to allow data transmis-
sion rates close to the Shannon limit.

LDPC codes are long linear block codes defined by a generator matrix G, or a parity
check matrix H with a low density of non-zero elements. If H has a constant number ωc
of non-zero elements in the colums and a constant number ωr of non-zero elements in the
rows, then the code is called Regular LDPC code. Otherwise, it is called irregular.

For a block length m, it is said that H defines an (m, ωc, ωr) LDPC code. The parity
check matrix is said to be sparse if less than half of the elements are non-zero. The linear
block code encodes n information bits into m coded bits, with a rate r = n/m < 1. Using
row vector notation, the coded vector Y is obtained from the information vector X by the
vector multiplication Y = X ·G. G is a matrix with dimension n×m.

Y = (y1, y2, . . . ym)
X = (x1, x2, . . . xn)
Y = X ·G

Each row of H provides a parity check equation that any code vector Y must satisfy.

Y ·HT = 0

4 2 Theoretical and Technological Background

Since H can reach huge dimensions, the direct decoding process can have a high complexity.
Thus, LDPC codes can be decoded iteratively using message passing algorithms over a
Tanner graph. These codes been used in recent digital communications systems standards,
such as DVB-S2, DVB-T2, WiMAX (IEEE 802.16), Wireles LAN (IEEE 802.11n).

2.1.1 Tanner Graph

A binary linear code can be represented by a Tanner graph using the parity check matrix
H. A Tanner graph is a bipartite graph with variable nodes on the left, corresponding to
the different code symbols, and check nodes on the right, one for each check equation, or
row in the parity check matrix. Each variable node (H column) is connected in the Tanner
graph to the check nodes corresponding to non-zero values in the parity check matrix.

For example, the Tanner graph of the parity check matrix for the (7,4) Hamming code is
depicted in Figure 2.1.

H =

⎛
⎜⎝ 1 1 1 0 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

⎞
⎟⎠

Variable
Nodes

Check
Nodes

ωc

ωr
y1

y2

y3

y4

y5

y6

y7

c1

c2

c3

Figure 2.1: Tanner graph for the (7,4) Hamming code.

In Figure 2.1, the first node c1 corresponds to the first row of the parity check matrix
y1 + y2 + y3 + y5 = 0, according to the connections of the variable nodes y1, y2, y3 and y5
to the check node c1.

2.1 Low-Density Parity-Check Codes 5

2.1.2 Decoding Process on Binary LDPC Codes: Belief Propagation

Belief propagation is an extension of the message passing algorithm, where the information
in the messages being passed is expressed in terms of logarithmic likelihood values (L-
values) [19].

In the variable nodes, the incoming and the updated bits are represented as Li and L̃ij
respectively, and in the check nodes the estimated bits are represented as L̂ij .

The channel messages (Li) are received in the variable nodes and the check equations are
applied to them. If the hard decision of these input L-values satisfies the parity check
equations, the decoding process is complete since the received bits are a valid codeword.
If the check equations are not satisfied, then the iterative decoding process is initialized
until the updated word is a valid word or the number of iterations reaches the maximum
value. The description of the iterating process is as follows.

Variable Node Update: On each outgoing edge from the variable nodes, an updated
L-value L̃i,j is sent out with a value corresponding to the sum of the corresponding
node input L-value plus the extrinsic sum of the values coming in on the other edges
(Figure 2.2).

L̂i,j1 = Li +
∑
j �=j1
L̃i,j

Variable
Nodes

Check
Nodes

L1

L2

Lm

c1

c2

cn

L1,1 = L1 + L1,1 + L1,n
~

. . .

. . .

L1,2
^

L1,n
^

^ ^

Figure 2.2: Updating L̃i,j values in the variable node connections.

Check Node Update: At the check nodes, the outgoing extrinsic L-values L̂i,j are cal-
culated according to the box-plus operation [15] whose expression is

L̂i1,j = 2 · atanh

⎛
⎝∏
i�=i1

tanh
(
L̃i,j
2

)⎞
⎠

6 2 Theoretical and Technological Background

Variable
Nodes

Check
Nodes

L1

L2

Lm

c1

c2

cn

. . .

. . .

L2,1

Lm,1

~ ~
^ L2,1

2
Lm,1

2 (((((tanhL1,1 = 2 · atanh (· tanh

~

~

Figure 2.3: Updating L̂i,j values in the check node connections.

After the check node update the iteration is finished. If all the check equations are fulfilled
the iterative process is stopped. The decoded bits are obtained from the finally updated
variable node L-values.

ŷi = sign

⎧⎨
⎩Li +

∑
j

L̂i,j

⎫⎬
⎭

where the sum is performed over all incident connections on the corresponding variable
node.

2.1.3 Decoding Process on Non-Binary LDPC Codes: Log-Domain Fourier
Transform Decoding

Non-binary LDPC codes are defined over the finite Galois field GF (q = 2p). By encoding
over GF(q), each parity check becomes more complex. The decoding of non-binary LDPC
codes is not equivalent to the binary case as the non-binary decoder operates on the symbol
level, and not on the bit level. The decoding algorithm is based on the probability and log
domain versions of the Fourier transform over GF(q), since it reduces the algorithm com-
plexity [8]. The information in the messages being passed is expressed in terms of L-values.

The channel messages Lai are loaded into the variable nodes. These messages represent
the prior L-values for the symbol a, where a ∈ GF (q). If the channel messages satisfy the
check equations, the decoding process is successful and is finished. If not, the iterative
process continues as follows.

Variable Node Update: Each variable node generates outgoing messages for each con-
nection and symbol, and they are calculated as the extrinsic sum of the previously
calculated (or initialized) L-values L̂k,i.

2.1 Low-Density Parity-Check Codes 7

L̃ai,j = Lai +
∑
j �=j1
L̂i,j − αi,j

αi,j = max L̃ai,j

The normalisation value αi,j is introduced for avoiding numerical overflow problems.

Check Node Update: The check node messages are updated in the Fourier Domain.
The fast Fourier transform (FFT) is used for transforming the messages into the
spectral domain. The FFT can produce negative numbers. Thus, for handling these
negative numbers in the log domain, two dimensions (magnitude and sign) are used.

The messages L̃ai,j are converted to signed L-values, where Q̃ai,j(mag) = L̃ai,j and
Q̃ai,j(sig) = 1. These are permuted and transformed to the Fourier domain [8]
according to

[
Q̃ai,j(mag), Q̃ai,j(sig)

]
= F
[
Π
(
L̃ai,j

)]
.

The outgoing Fourier domain check node messages are updated as follows:

R̂ai,j(sig) =
∏
i�=i1
Q̃ai,j(sig)

R̂ai,j(mag) =
∑
i�=i1
Q̃ai,j(mag)

The outgoing check node signed L-values are converted to the log-domain applying
an inverse FFT and an inverse permutation [8]

[
L̂ai,j(mag), L̂ai,j(sig)

]
= F−1

[
Π−1
([
R̂ai,j(mag), R̂ai,j(sig)

])]
.

The signed L-values R̂ai,j(mag) are converted back to check node messages, where
L̂ai,j = L̂ai,j(mag)

The check equations are applied to the estimated L-value messages (input L-value plus
the sum of all the incoming L-value node connections) such that

ŷi = argmax Lai +
∑
L̂ai,j

If the check equations are satisfied the decoding process is finished. If not, the process
continues with a new iteration until a valid message word is estimated or the maximum
number of iterations is reached.

8 2 Theoretical and Technological Background

2.2 CUDA Architecture

The high parallel processing performance of graphics processing units (GPUs) has been
used traditionally to transform, light and rasterize triangles in three-dimensional computer
graphics applications. In recent architectures, however, the vectorized pipeline for pro-
cessing triangles has been replaced by a unified scalar processing model based on a large
set of streaming processors. This change has initiated a consideration of GPUs for solving
general purpose computing problems, and triggered the field of general-purpose comput-
ing on graphics-processing units (GPGPU). GPGPU appears to be a natural target for
scientific and engineering applications, many of which admit highly parallel algorithms [2].

The hardware abstraction based on the GPU unified scalar processing model is denoted
CUDA (Compute Unified Device Architecture) in all the current NVIDIA graphic cards.
This technology allows to execute thousands of concurrent threads for the same process,
which makes this kind of devices ideal for massive parallel computation. The CUDA
devices have special hardware resources (with their respective constraints) and, with a
deep knowledge about them, it is possible to achieve high speedup values for a CUDA
implementation compared to a non-parallelized CPU version.

The CUDA device and the computer which it is attached to are referred as device and host
respectively. Also, all the CUDA or hardware mentioned specifications in this section are
referred to the NVIDIA GeForce GTX 275 model, the one used in this thesis (for more
details about the GTX 275 hardware specifications, please refer to Appendix C).

CUDA devices are programmed using a extended C/C++ code and compiled using the
NVIDIA CUDA Compiler driver (NVCC). After the compilation process, the serial code is
executed on the host and the parallel code is executed on the device using kernel functions.

2.2.1 Threads Arranging and Execution

A CUDA device has a limited number of streaming multiprocessors (SM). Each SM is able
to execute concurrently up to 1024 threads, which have to be arranged in blocks. A block
contains up to 512 threads, arranged with an 1D, 2D or 3D distribution (Figure 2.4).

A SM is able to process simultaneously between 2 and 8 blocks of threads and it is
important to have a SM occupancy of 100% for achieving the maximum performance. A
power-of-two number of threads per block helps to reach this goal. Finally, the blocks are
partitioned in grids, where a grid is a 1D or 2D arrangement of the total number of blocks
containing all the data to be processed. The threads/block and blocks/grid settings are
configured for the execution of each kernel. Thus, each kernel launches the execution of
one grid of blocks, which contains all the data to be processed arranged in blocks of a
fixed number of threads.

A kernel is launched as a C/C++ function (but with some extensions) from the host and
executed on the device. A call to a kernel can be written as __global__ kernelName
<<<numGrids, numBlocks>>> (parameters_list), where __global__ indicates to the
compiler that the kernel has to be executed on the device, <<<numGrids, numBlocks>>>

2.2 CUDA Architecture 9

· · ·

· · · 8

8

4

32512

8

c)b)a)

Figure 2.4: Different block arrangements for a number of 256 threads.

details the blocks/grid and threads/block settings and parameters_list is the typical pa-
rameters list passed to a standard C/C++ function. For more information, please refer
to the CUDA programming manual [12].

Host

Kernel 1

Kernel 2

Ex
ec

ut
io

n

Device

Grid 1

Block (0, 0)

Block (0, 0) Block (1, 0)

Block (1, 0)

Grid 1

Threads

Figure 2.5: Grid organization and execution.

2.2.2 Device Memory Types

CUDA supports several kinds of memory than can be used for achieving high speed per-
formance in the kernels execution. The description of each memory is as follows:

Global memory: This is the largest capacity memory in the device (768 MB in the GTX
275). It is a read and write memory and can be accessed by all the threads during
the application execution (the stored data remains accessible between different ker-
nel executions). It is off chip, i.e. slow interfacing has to be used, but it can achieve

10 2 Theoretical and Technological Background

good performance if each continuous thread index accesses continuous memory data
positions. The global memory is the communication channel between host and de-
vice, since the data to be processed have to be sent from the host to the device, and
sent back to the host after the application execution.

Constant memory: This memory is available to all the threads during the application
execution. It is a read-only memory by the device, and only the host is able to write
data to it. It is a short-latency, high-bandwidth memory if all threads simultaneously
access the same location.

Shared memory: This is an on-chip memory available to all the threads in one block. It
is a read and write memory, with a size of 16 KBytes per SM. The data is available
during the kernel execution and the access can be very fast if the available shared
memory banks are accessed in a parallel way.

Registers: These are on-chip memory registers available to each independent thread.
The local variables in a kernel are usually stored in the registers, performing a full
speed access. If a variable can not be allocated in the on-chip hardware registers,
then it is stored in the global memory with a slower access.

The variables created in CUDA can be allocated in each of the available memory types,
depending on which keyword precedes the variable declaration or where are they declared.
Table 2.1 has a summary of the different variables and memory associations.

Variable declaration Memory Scope Lifetime
Automatic variables Register Thread Kernel
other than arrays
Automatic array variables Local Thread Kernel
__shared__, int SharedVar; Shared Block Kernel
int GlobalVar; Global Grid Application
__constant__ Constant Grid Application

Table 2.1: Memory types in a CUDA device.

2.2.3 Textures

The graphic cards are designed for a high performance in the 3D and 2D image processing.
There is a special memory where bitmaps or textures are stored for a special processing.
This memory is denoted texture memory. The texture memory can only be read by the
threads, but it is accessed in a very fast way if continuous thread indexes access to spatially
close texels (or texture elements). This memory also is optimized for certain functions such
as linear interpolation or anti-aliasing.

The texture memory can be used as look-up table, with the extra function of linear in-
terpolation between points. For a high performance access it is required that the stored
data has some spatial relation. If not, the penalty is enough for not achieving better
performance than the global memory.

2.2 CUDA Architecture 11

2.2.4 Performance Considerations

The execution speed of a kernel depends on the resource constraints of the device. Some
considerations have to be taken in mind while programming CUDA devices, in order
to achieve the the maximum execution performance [11]. These considerations can be
summarized as follows:

Block sizes: For a fast execution speed of a kernel, all the threads in a warp (group of
32 continuous threads) should execute the same instruction. Thus, an important
performance factor is that the number of threads per block is proportional to 32.

Divergent threads: When using conditional sentences with the thread index involved,
the threads are executed in two different branches. In this way, not all the threads
are executing the same instruction and the performance could be slowed down.

Global memory access: The global memory is the largest memory in the CUDA device,
but also it is the slowest one. For achieving a good global memory performance it is
extremely important to access the data in a coalesced way. It means, each continuous
thread index in a warp has to access continuous memory positions. This can be
managed by taking care about the data size and the way the memory is indexed and
accessed in the kernels.

Shared memory: Each SM has 16 KB of available shared memory. If the memory access
is paralellized, then the access can be as fast as one on-chip register. Shared memory
banks are organized such that successive 32-bit words are assigned to successive
banks. Thus, if successive 32-bit threads access different shared memory banks,
these access are paralellized achieving a high bandwidth. If not, the accesses are
serialized (bank conflicts).

Occupancy: It is clear to understand that if the SM are 100% occupied, the performance
is maximized. Thus, all the variables which can limit this occupancy: maximum
number of threads per SM and the number of threads per block, the maximum
available shared memory per SM and the amount of shared memory used by each
kernel.

Hardware functions: CUDA has hardware implemented fast mathematical functions,
however with a minor accuracy. If this precision lost is affordable, these functions
can be used and the speed improvement is considerable.

For more information about CUDA programming, please refer to [11] [12] [13].

12 2 Theoretical and Technological Background

Chapter 3

Implementation

The LDPC decoder algorithms here implemented, are based on the C++ reference code
in [10]. The objective of the implementation is to speed up the decoding process, taking
advantage of the massive parallel processing offered by the CUDA technology. The refer-
ence code can be improved in several ways, depending on its nature. Sometimes the code
only needs to be adapted to the CUDA architecture. Other times, the parallelization of
the code simplifies the execution and enhances the performance. In occasions, it is better
to start the code from zero. And in all these cases, the best option is to use all the specific
hardware resources that seriously improve the processing time.

A good knowledge of the source implementation and its theoretical background, and a
deep knowledge of the CUDA architecture leads to find the best way for achieving a good
performance over the original implementation. This is the goal in this chapter.

The data used in the implementation has single precision, so all the variables involved in
the data processing are floats. Single precision gives a good compromise between accuracy
and performance in CUDA devices of architecture generation 1.3 or below.

The hardware platform used for the implementation is based on an Intel Core 2 Quad
Q6600 @ 2.4 GHz / 2 GB RAM system, and a NVIDIA GeForce GTX 275 graphic card.

3.1 LDPC GF(2) Decoder

The (binary) LDPC GF(2) decoding is based on a message passing algorithm over the
Tanner graph. This graph completely defines the parity check matrix and contains all the
necessary information for creating all the variables (information and auxiliary variables)
in the decoding algorithm.

The CUDA implementation is focused on a generic decoding algorithm which means that
it has to be able to process LDPC codes of whatever parity check matrix size. This reduces
the range of possibilities about using different memories in the CUDA device, since the

14 3 Implementation

matrices for storing the message passing L-values L̃ and L̂ have to be stored in the global
memory.

It is necessary to keep in mind some implicit characteristics of the LDPC GF(2) decoding
algorithm. First, there are continuous random memory accesses during the decoding.
This is not optimal for the CUDA technology, since the hardware could not be able to
do coalesced memory data reading or writing. Second, the tanh() and atanh() functions
have a high computational cost. The first handicap is not very tractable, because the
aleatory memory accesses are in the LDPC codes nature. The second one can be treated
in different ways, as it is explained in the next sections.

During this section, some recurrent variable names are used. The meaning of these vari-
ables is as follows:

BN/CN: Number of Tanner graph bit/check nodes.

cudaBNConn/cudaCNConn: Number of connections for a particular Tanner graph
bit/check node.

maxBNConn/maxCNConn: Maximum number of connections of the bit/check nodes.

3.1.1 Algorithm Flowchart

The algorithm flowchart is shown in Figure 3.1. This scheme follows the C++ reference
implementation [10].

START Initialize
Q L-values

Input data Check Parity
Equations

Check Nodes
Update

Bit Nodes
Update

R

Max. Iter?
or

Equations ok?

Increase
iterations

Q

Q, d_in_upd

END
yes

Check Parity
Equations
Satisfied

d_check_nodes equationsOK

Q, d_in_upd

no

Figure 3.1: Algorithm flowchart.

The description of the variables in Figure 3.1 is as follows:

d_in_upd: Updated input values with the L-values Q converted to binary information.

d_check_nodes: Vector containing the result of the parity check equations in each Tan-
ner graph check node.

equationsOK : This variable indicates if all the parity equations are successful.

Q: Outgoing L-values (L̂) from the Tanner graph check nodes.

3.1 LDPC GF(2) Decoder 15

R: Outgoing L-values (L̃) from the Tanner graph bit nodes (variable nodes).

Initially, the input data is loaded into the GPU device, and the iterations counter set to
zero. Before it starts decoding, the L-values Q (matrix Q) are initialized with the input
L-values, and the updated input data vector (d_in_upd) is initialized to the corresponding
input L-value converted to binary. Here the loop starts, and the updated input data is
immediately checked. If the checking succeeds, the decoding process is interrupted because
the data has not bit errors and is valid. If this is not the case, the number of iterations
is increased and the check node update performed. The check node update generates the
extrinsic L-values R from the L-values Q initialized before. These values are used by bit
node update for generating the new L-values Q and updating the input data again. Here,
the loop is closed and performed once again by checking the parity check nodes with the
updated input data.

Each process in the flowchart is implemented as a kernel in the CUDA source code. All the
kernels are __global__, since they are executed in the device. The loop itself is controlled
on the host device.

3.1.2 Data Structures

The data structures used here are created according to the requirements of the decoding
algorithm. The Tanner graph provides all the necessary information.

The Tanner graph bit nodes and check nodes share the same node connections, but con-
nected in a random way. The algorithm needs two different matrices for managing the
outgoing L-values from the different nodes (Figure 3.2).

The R matrix has as many rows as bit nodes exist in the Tanner graph. The number
of columns is equal to the maximum number of bit node connections. The same holds
for the Q matrix, but considering the Tanner graph check nodes. As Figure 3.2 shows,
an irregular LDPC code has not the same number of connections in each node, so there
are some no entries which are not valid. These cells can be avoided for saving processing
time. Because of this, two auxiliary variables (cudaBNConn and cudaCNConn) contain
the number of connections for each corresponding bit and check node (Figure 3.3)

Since R and Q are linked by the same node connections, one position in the R matrix can
require to read or write the matching position in the Q matrix, and vice-versa. Thus, it
is necessary to know the Q index position for all the R elements, and vice-versa. This is
the reason for the creation of the cudaBN2CN and cudaCN2BN matrices (Figure 3.4).

A last auxiliary variable is needed for knowing to which bit node each check node is
connected in the Tanner graph. This variable is cudaCheckNodeConnections, a dimension
CN ×maxCNConnmatrix. It contains the bit node index for each check node connection.

All these variables are allocated in the global memory. The reason is that the algorithm
has to have a general character, and has to be able to decode whatever LDPC code
size is used. As the matrices have to be completely loaded in the memory (they can be
accessed randomly), the only possible memory is the global memory. The data then has

16 3 Implementation

BN

maxBNConn

CN

maxCNConn

R
Q

Figure 3.2: R and Q matrices.

BN

CN

cudaBNConn

cudaCNConn

Figure 3.3: Vectors cudaBNConn and cudaCNConn.

to be arranged for being accessed in a coalesced way. Table 3.1 shows a summary of the
variables, with the corresponding size and indexing expression. It has to be kept in mind
that most of the CUDA variables have a 2D interpretation, but in fact they are 1D arrays.

Name Dim. i Dim. j Indexing
Q BN maxBNConn j · BN + i
R CN maxCNConn j · BN + i
cudaBNConn BN - i

cudaBNConn CN - i

cudaBN2CN BN maxBNConn j · BN + i
cudaCN2BN CN maxCNConn j · CN + i
cudaCheckNodeConnections CN maxCNConn j · CN + i

Table 3.1: Dimensions and indexing of the variables

Each kernel processes one Tanner graph node. Inside each kernel, a loop processes all
the node connections, counting up to the number of connections of the node. When the
variables are indexed as j · NODES + i, they access adjacent memory positions with

3.1 LDPC GF(2) Decoder 17

BN

maxBNConn

CN

maxCNConn

R
cudaBN2CN

Figure 3.4: Matrix cudaBN2CN pointing the matching indices in Q.

adjacent threads: as each thread processes a node, during the loop execution the adjacent
threads (nodes) access to coalesced memory positions in each iteration.

3.1.3 Kernel Implementations

The kernels execute one thread per node, with a loop responsible of processing the different
node connections. The loop is a good option since the loop count is small and the nodes
don’t have the same number of connections. Therefore, all the kernels have 1D block and
grid configuration.

3.1.3.1 Initialization of Q (cudaInitializeQ)

The Q matrix (estimated L-values) has to be initialized before the decoding loop starts.
Each thread (Tanner graph bit node) reads the corresponding d_in input L-value and
stores it in a temporal variable. This value is converted to binary and stored in d_in_upd.
An internal loop process all the connections of the current node and assigns to them the
input L-value stored in the temporal variable (Figure 3.5).

Each continuous thread index accesses continuous memory positions, optimizing in this
way the memory access performance. Table 3.2 shows the block and grid configuration for
this kernel.

X Dimension
Threads/Block 256
Blocks/Grid �BN/256�

Table 3.2: Block and grid settings for the cudaInitializeQ kernel

18 3 Implementation

BNBN

maxBNConn

QInput
L-values

BN

d_in_upd
(binary)

To Binary

loop

tx txtx

Figure 3.5: Description of the cudaInitializeQ kernel.

3.1.3.2 Check Parity Equations (cudaCheckEquations)

This kernel checks the parity equations in each Tanner graph check node. The input of
the kernel is d_in_upd, where the estimated decoded word is stored in binary format.

For each thread (Tanner graph check node) a loop processes the xor of all the d_in_upd
values corresponding to all the current check node connections. The xor result of each
node is stored in the corresponding element of a temporal vector. If all the elements of
the temporal vector are zero, then the estimated word is a valid code word.

BN

d_in_upd
(binary)

CN

d_check_nodes
(binary)

tx

xor

lo
op

Figure 3.6: Description of the cudaCheckEquations kernel.

3.1 LDPC GF(2) Decoder 19

With the 1D block configuration all the read and write memory accesses are coalesced,
since each continuous thread index accesses to continuous memory positions. If a 2D block
configuration is performed (one thread per node connection), then a shared memory block
is required as temporal memory. The shared memory can not be accessed without bank
conflicts in this case, slowing down the kernel execution performance.

X Dimension
Threads/Block 256
Blocks/Grid �CN/256�

Table 3.3: Block and grid settings for the cudaCheckEquations kernel

3.1.3.3 Check Parity Equations Satisfied (cudaCheckEquationsSatisfied)

A sum reduction algorithm is applied to d_check_upd in order to verify if all the parity
check equations have been satisfied.

A sum reduction algorithm is used taking advantage of the parallel processing. In this
way, the sum is processed in log2x steps, where x is the number of elements of the input
vector. The reduction algorithm is efficient for a power-of-two number of elements. So, if
the input vector has not power-of-two elements, the necessary zeros are appended to it.
After the necessary iterations, the sum reduction algorithm returns 0 in its first index if
all the elements of the input vector are zero (Figure 3.7).

CN

d_check_nodes
(binary)

tx

+
+

+ +
+

+
+

equationsOK

Figure 3.7: Description of the cudaCheckEquationsSatisfied kernel.

This is the only one kernel using 512 threads per block as it is faster in most cases. The
block and grid configuration is shown in Table 3.4.

X Dimension
Threads/Block 512
Blocks/Grid �CN/512�

Table 3.4: Block and grid settings for the cudaCheckEquationsSatisfied kernel

20 3 Implementation

3.1.3.4 Check Node Update (cudaCheckNodeUpdate)

Each thread processes one Tanner graph check node. The objective is to calculate the
estimated L-values from the extrinsic sum of the updated L-values coming from the cor-
responding connections of the bit nodes.

A first loop processes all the current node connections. For each node connection, the
matching L-value from Q (random access through cudaCN2BN) is loaded. The tanh
operation is applied to the loaded value divided by 2. At the same time, this value is
multiplied with a total product temporal variable. Once the loop is finished, the shared
memory has stored each of the tanh(x)/2 values, and the product of them is saved in a
thread temporary variable.

A second loop processes again all the node connections, but now each value in the shared
memory divides the total product (that is, the extrinsic product) and then the arctanh
is applied and multiplied by 2. The final L-value is written in R (coalesced writing). The
process is shown in Figure 3.8.

Ri1,j = 2 · atanh

⎛
⎝∏
i�=i1

tanh
(Qi,j

2

)⎞⎠

The shared memory indexing is i · maxCNConn + j. This indexing eliminates all the
bank conflicts, since each adjacent thread operates on a different shared memory bank. A
parallel and full speed access is performed to the shared memory.

The standard tanh() and atanh() functions need a lot of processing time. The first option
was to use these standard functions, but the kernel execution time was very slow. The
second option was to use look-up tables for these functions and to store them in the
constant memory or the texture memory. This improved performance, however the random
accesses and the non-existent data locality made this option not as fast as expected. The
final decision is to use optimized hardware functions in the GPU. Thus, the tanh and
atanh functions can be expressed as follows:

atanh(x) = 1
2

ln1 + x
1− x, |x < |1

tanh(x) =
e2x − 1
e2x + 1

These expressions are implemented using the __expf(), __logf() and __fdividef() hard-
ware CUDA functions, leading to a further performance boost at the expenses of less
precision.

The block and grid configuration is shown in Table 3.5. The number of threads per block
has a maximum value of 256. The used shared memory is, as maximum, 4 KBytes per
block.

3.1 LDPC GF(2) Decoder 21

maxBNConn

Q
2nd loop1st loop

CN

maxCNConn

RShared Memory

maxBNConn

Product

x

÷ ÷ ÷

tx

BN H
W

 F
un

ct
io

ns

H
W

 F
un

ct
io

ns

Figure 3.8: Description of the cudaCheckNodeUpdate kernel.

X Dimension
Threads/Block �256/maxCNConn�
Blocks/Grid CN/�256/maxCNConn�
Shared Mem. ≤ 4096 KBytes

Table 3.5: Block and grid settings for the cudaCheckNodeUpdate kernel.

With the current 1D block configuration the occupancy (calculated with the CUDA Occu-
pancy Calculator tool) is not 100%, but it runs faster than with a 2D block arrangement.
With a 2D block configuration, each thread corresponds to a different node connection.
Thus, each thread needs to access simultaneously several shared memory positions for
performing the extrinsic product, resulting in several bank conflicts. In such a case, the
result is a low performance in the kernel execution speed.

3.1.3.5 Bit Node Updates (cudaBitNodeUpdate)

This kernel updates Q and d_in_upd from the recently calculated L-values R. Each Tanner
graph bit node connection in Q is updated with the extrinsic sum of the matching L-values
R. For each bit node, the updated input value is calculated as the sum of the original input
L-value plus the sum of all the matching connections in R.

Each thread processes a Tanner graph bit node and contains a temporal variable for
storing the sum of the associated L-values R. A first loop (up to cudaBNConn) processes
all the bit node connections for storing them in the shared memory and simultaneously
calculating the sum of the L-values. The entries of R are accessed in a random way, using
cudaBN2CN. Once the loop is finished, the sum is calculated and the updated input value
is converted to a binary value and written in a the output vector (coalesced writing). A

22 3 Implementation

second loop subtracts each imported L-value to the complete sum (extrinsic sum) and
writes in a coalesced way this value to Q. The process is shown in Figure 3.9.

Input L-values

BN

maxBNConn

Q

BN

d_in_upd (binary)

2nd loop

1st loop

tx tx

tx

C
N

maxCNConn

R
Shared Memory

maxBNConn

Sum

+

+

- - - - -
BN

Figure 3.9: Description of the cudaBitNodeUpdate kernel.

Using a 2D block arrangement with shared memory, the kernel execution has not a good
performance. The cause is that each thread needs to access simultaneously different shared
memory positions, performing memory bank conflicts. These bank conflicts cause the seri-
alization of the shared memory accesses, slowing down the kernel execution performance.

X Dimension
Threads/Block �256/maxBNConn�
Blocks/Grid BN/�256/maxBNConn�
Shared Mem. ≤ 4096 KBytes

Table 3.6: Block and grid settings for the cudaBitNodeUpdate kernel.

The occupancy of the streaming multiprocessor is not 100%, because the use of the shared
memory limits the number of blocks per SM. Since the shared memory has to contain

3.2 LDPC GF(q) Decoder 23

(number of threads · maxBNConn) floats (≤ 256), it is only possible to have as many
shared memory blocks as can fit in the available memory. This limits the number of
threads per block, reducing the occupation to 50%, but it has been found that in this case
the performance is superior than in other cases.

3.2 LDPC GF(q) Decoder

For the implementation of the LDPC GF(q) it is again necessary to focus the attention to
two main different points: the arrangement of the data in the device memory and the use
of the capabilities of the hardware for accelerating the data processing.

From the point of view of the data arrangement, it is interesting to interpret the variables
as three-dimensional matrices, but bearing in mind that CUDA stores and process the
data in 1D arrays. In the implemented algorithm, 2D and 3D data structures are needed,
but the 3D ones are the most important since they are present in almost all the kernels
in the main loop and are used all the time. The arrangement of the data in these 3D
matrices is of huge importance since the memory needs to be accessed in a coalesced way
for achieving high performance, such that various float values are handled in only one
read/write memory access.

Some names of variables from the CUDA source code appear throughout this section.
Their meaning is explained as follows:

BN: Number of bit nodes.

CN: Number or check nodes.

maxBNConn: Maximum number of bit node connections.

maxCNConn: Maximum number of check node connections.

3.2.1 Algorithm Flowchart

The flowchart of the LDPC GF(q) decoding algorithm is shown in Figure 3.10. Each pro-
cess block represents a basic part of the algorithm and is implemented as a CUDA kernel.
The incoming and outgoing variables of each process are also shown in the figure and their
name is the same as in the CUDA code for simplicity and for a better understanding of
the code.

The diagram of Figure 3.10 follows exactly the algorithm present in the C++ source code
implementation in [8]. Initially, the number of iterations is zero and the input data is
transferred to the device for calculating the initial L-values (in_L). The loop is executed
at least once for checking the parity equations. The iterative decoding stops if there are
no errors in the decoded data or if the number of iterations reaches the maximum value.
When the iterative decoding process finishes, the data is transformed into a binary output
and sent back to the host. The meaning of the variables and their respective properties
are exposed in Section 3.2.2.

24 3 Implementation

START
Initialize

Input and Q
L-Values

Input data Input L-Values
Update Hard Decision

In_L_temp Check Parity
Node Equations

Hard

Bit Nodes
Update

Permute
P L-values

P_L
Log-FFT

P L-values

Check Nodes
Update

Log-FFT
Q L-values

Permute
Q L-values

Max. Iter?
or

Equations ok?

P_L

F_L, F_L_s

Q_L, Q_L_s Q_L

Increase
iterations

In_L_temp

Galois Field
Expansion

In_L, Q_L

END
Ouput Data

Q_L

yes

no

Check Parity
Node Equations

Satisfied

Figure 3.10: LDPC GF(q) Decoder flowchart.

Almost all the kernels follow approximately the C++ source code structure and have
been adapted for CUDA parallel processing. The log-FFT algorithm has been completely
designed from zero, since the C++ source code is based on the serial implementation [8].

3.2.2 Data Structures

Although the data is stored in the device memory as 1D array, they are interpreted as
1D, 2D or 3D structures, depending on the indexing of each one. This indexing points to
the exact position of one element in the structure, and helps to set the grids and blocks
configuration of the kernels. The order of the indices in the structures determine the final
position of the data and, therefore, the performance of the memory access.

There are three kind of structures for the variables that are shown in Figure 3.11. CUDA
needs fixed sizes for data structures, and since irregular LDPC codes have not a constant
number of Tanner graph connections, it is obligatory to set the node connections dimen-
sion to the maximum value, taking care of not accessing the invalid positions during the
processing. This is achieved using some auxiliary variables.

The 1D vectors (Figure 3.11-d) are used for the hard and output variables. The 2D ma-
trices (Figure 3.11-b-c) are used for the in_L and in_L_temp variables. Finally, the 3D
matrix (Figure 3.11-a) is applied to P_L, FP_L, FP_L_s, Q_L, QP_L and QP_L_s,
and it becomes the most important data structure in the implementation, since the corre-
sponding variables take part in the iterative loop, the most important part of the decoding
algorithm. The first index is pertinent to the node, the second to the node connection
and the third to the symbol element. By arranging the data in this order, it is possible to
access the memory in a coalesced way. If each q adjacent Galois field elements (indexes
defined by the nodes and the node connections) are accessed by q adjacent threads, this

3.2 LDPC GF(q) Decoder 25

Nodes

Max. Node
Connections

q

N
O

D
ES

Max. Node
Connections

NodesNodes

q

Nodes

a) b) c) d)

Figure 3.11: Data structures used in the LDPC GF(q) CUDA algorithm.

access is coalesced, as it is shown in Figure 3.12. This arrangement boosts the performance
with increasing q.

Nodes

Max. Node
Connections

q

Figure 3.12: Continuous data allocation in the global memory.

The different variables present in the algorithm with their respective data structures and
indexing expression are described in the following.

3.2.2.1 Non-constant variables

These variables are stored in the global memory because they need to be fully accessible
(whichever position could be required in a random memory access) and they could be
too huge for fitting in smaller memories (like, e.g., the constant memory or the texture
memory). The description of each variable is as follows:

in_L: Input L-values.

in_L_temp: Input L-values updated with the Q_L values.

P_L: Outgoing L-values from the bit nodes connections.

26 3 Implementation

FP_L: log-FFT module of P_L .

FP_L_s: log-FFT sign of P_L .

Q_L: Outgoing L-values from the check nodes connections.

QP_L: log-FFT module of Q_L .

QP_L_s: log-FFT sign of Q_L .

Their size and indexing properties are shown in Table 3.7.

Name Dim. i Dim. j Dim. k Indexing
in_L BN q - i · q + j
in_L_temp BN q - i · q + j
P_L BN maxBNConn q i ·maxBNConn · q + j ·maxBNConn + k
FP_L BN maxBNConn q i ·maxBNConn · q + j ·maxBNConn + k
FP_L_s BN maxBNConn q i ·maxBNConn · q + j ·maxBNConn + k
Q_L CN maxCNConn q i ·maxCNConn · q + j ·maxBNConn + k
QP_L CN maxCNConn q i ·maxCNConn · q + j ·maxBNConn + k
QP_L_s CN maxCNConn q i ·maxCNConn · q + j ·maxBNConn + k

Table 3.7: Properties of the non-constant variables

3.2.2.2 Constant variables

As the size of these variables depends on the size of the parity check matrix and as they
are accessed occasionally in an aleatory way, they are stored in the global memory. They
are used for obtaining information from the parity check matrix. The following variables
are constant:

cudaNumBNConn: Number of connections for each bit node.

cudaValBNConn: Value of the parity check matrix for each index.

cudaIndBNConn: Index of the check node to which the actual bit node connection is
attached.

cudaBN2CN : Index of the actual bit node connection from the check node point of
view.

cudaNumCNConn: Number of connections for each check node.

cudaValCNConn: Value of the parity check matrix for each index.

cudaIndCNConn: Index of the bit node to which the actual check node connection is
attached.

cudaCN2BN : Index of the actual check node connection from the bit node point of
view.

Table 3.8 provides information about sizes and indexing of these variables.

3.2 LDPC GF(q) Decoder 27

Name Dim. i Dim. j Dim. k Indexing
cudaNumBNConn BN - - i

cudaValBNConn BN maxBNConn - i ·maxBNConn + j
cudaIndBNConn BN maxBNConn - i ·maxBNConn + j
cudaBN2CN BN maxBNConn q i ·maxBNConn · q + j · q + k
cudaNumCNConn CN - - i

cudaValCNConn CN maxCNConn - i ·maxCNConn + j
cudaIndCNConn CN maxCNConn - i ·maxCNConn + j
cudaCN2BN CN maxCNConn q i ·maxCNConn · q + j · q + k

Table 3.8: Properties of the constant variables

3.2.2.3 Texture Tables

Some special functions are required to operate over the GF(q). These functions are ad-
dition, multiplication, inversion, decimal to exponential conversion and exponential to
decimal conversion. These functions are implemented in tables of dimensions q or q · q.
The tables are allocated in the texture memory (1D or 2D arrangement) for taking ad-
vantage of the data locality and the memory speed (the texture memory has special fast
access for data in near space). The table values are calculated following the C++ reference
implementation [10].

gf_inv: Inversion function.

gf_add: Addition function.

gf_mul: Multiplication function.

gf_dec2exp: Decimal to exponential conversion.

gf_exp2dec: Exponential to decimal conversion.

Table 3.9 shows the size and the arrangement of textures for these functions. The access
to the textures is done with the tex1Dfetch() and tex2D() CUDA functions [12].

Name Dim. i Dim. j Access
gf_inv q −1 - tex1Dfetch(gf_inv , i)
gf_add q q tex2D(gf_add , i, j)
gf_mul q q tex2D(gf_mul , i, j)
gf_dec2exp q - tex1Dfetch(gf_dec2exp , i)
gf_exp2dec q - tex1Dfetch(gf_exp2dec , i)

Table 3.9: Properties of the variables allocated in the texture memory

3.2.3 Kernel Implementations

The data structures have specific dimensions, and it is essential to configure the grid and
block dimensions on each kernel for an optimal and fast execution. It is also necessary to

28 3 Implementation

keep in mind the constraints of the hardware for achieving high performance: maximum
number of threads per SM, maximum number of blocks per SM, shared memory per SM,
etc. The number of threads per block is fixed here to 256 because in this way the occupancy
is 100% in most cases, using 4 blocks per SM and without exceeding the maximum available
shared memory. The number of Galois field elements is a constant power-of-two value.
This makes this value a good candidate for one of the block dimensions, because it is easy
to achieve power-of-two block of threads in this way. The blocks with a power-of-two size
are accessed faster by the hardware. The reason is that for a typical power-of-two value
of threads per block (this is 64, 128, 256 or 512) each warp (32 continuous threads) can
execute the same instruction.

All the kernels in this section are implemented as __global__ kernels. The threads in the
x and y dimensions are referred as tx and tx respectively.

3.2.3.1 Input L-Values Initialization (cudaInLInitialize)

The kernel initializes the input L-values matrix from the main input data of the decoder.
It follows the C++ reference implementation [10], but adapted to CUDA.

N
O

D
ESBN

q

BN

ty

tx

INPUT VALUES INPUT L-VALUES

q

256 / q

BLOCK

Figure 3.13: Description of the cudaInLInitialize kernel.

The output values have a 2D structure, as it can be seen in Figure 3.13. Each thread
processes a different Galois field element in a particular Tanner graph bit node connection.
The width of the block is the number of Galois field elements, which is a power-of-two
number. The height of the block corresponds to 256/q threads or nodes. Thus, each ty
identifies the Tanner graph variable node, and each tx identifies the Galois field element.
Since q is a constant value, the grid is arranged in one dimension, and the number of blocks
per grid is the total number of variable nodes divided by the block height (see Table 3.10).

The input values are indexed by index ·p+k, where k is the control variable of an internal
loop. So, as the index has not a linear relation with the thread number, the access is not
coalesced. Since this kernel is only executed once at the beginning, this is not significant.

3.2 LDPC GF(q) Decoder 29

X Dimension Y Dimension
Threads/Block q 256/q
Blocks/Grid BN/(256/q)

Table 3.10: Block and grid settings for the cudaInLInitialize kernel.

The output values are indexed by ty · q + tx as the thread number and the position have
a linear relationship, the access to the memory is continuous.

3.2.3.2 Input L-values Update (cudaInLUpdate)

The input L-values are updated with the L-values Q_L in each decoding iteration. These
updated L-values are used later for the hard decision. Each Galois field element in a
variable node is the sum of the corresponding input L-value plus the corresponding Q_L
values for all the variable node connections.

N
O

D
ES

q

+

BN

ty

tx

Updated Input L-valuesInput L-values

q

256 / q

BLOCK

CN

maxCNConn

q

Q_L

N
O

D
ES

q

BN

ty

tx

Figure 3.14: Description of the cudaInLUpdate kernel.

The block has a 2D structure. The width is set to q, because it is a constant power-of-two
value, and the height is set to 256/q. Each ty represents the Tanner graph variable node,
and each tx represents the Galois field element. A loop is used in each thread for processing
all the Tanner graph variable node connections and obtaining the correspondent symbol
value.

X Dimension Y Dimension
Threads/Block q 256/q
Blocks/Grid BN/(256/q)

Table 3.11: Block and grid settings for the cudaInLUpdate kernel

30 3 Implementation

For each Tanner graph variable node, the loop counts up to the number of variable node
connections, given by maxBNConn. For each iteration, the corresponding Galois field
element value is read from Q_L using the corresponding cudaBN2CN index and its value is
added to the final sum. Once the loop is completed, the final sum is written to in_L_Temp.

The input and output data are indexed by ty·maxBNConn ·q+tx. Since the index and the
thread number have a linear relationship, the global memory is accessed in a continuous
way. For the sum, the matrix Q_L is indexed [BN2CN[ty·maxBNConn·q+iteration·q+tx],
which is a random access. Since the random memory access is performed for a given node
and node connection combination, there are q continuous memory accesses in every new
aleatory indexing.

3.2.3.3 Hard Decision (cudaHard)

The updated L-values are required for the hard decision. Each thread processes a given
Tanner graph node. In each thread, a loop processes all the Galois field elements searching
for the symbol with maximum value. The position of this maximum value is converted to
exponential using the gf_exp2dec texture table, and is written to the output structure.

N
O

D
ES

q

B
N

tx tx

loo
p

INPUT L-VALUES

256

BLOCK
B

N
HARD

gf_dec2exp
Texture

Figure 3.15: Description of the cudaHard kernel.

The block has only one dimension, and each thread represents a Tanner graph variable
node. For each node, a for loop processes all the Galois field elements looking for the
maximum value and its position.

X Dimension
Threads/Block 256
Blocks/Grid BN/256

Table 3.12: Block and grid settings for the cudaHard kernel

3.2 LDPC GF(q) Decoder 31

CN

tx tx

loop

cudaValBNConn

256

BLOCK

CN

checkTemp

gf_add
Texture

maxCNConn

cudaIndBNConn

gf_mul
Texture

Temporal
value

loop end

not
loop end

Figure 3.16: Description of the cudaCheckNodeEquations kernel.

This implementation is not optimal since the loop has to perform q iterations, but it is of
high computational cost. An improvement can be to search for the maximum value with a
reduction algorithm applied to each thread (node), using the shared memory (Figure 3.15).

3.2.3.4 Check Node Equations (cudaCheckNodeEquations)

The kernel checks the parity equations in all the check nodes, obtaining a binary output
vector of size CN. After the kernel execution, each element of the vector is 0 if the cor-
respondent parity check equation is satisfied, or 1 if not. The data structures involved in
this kernel are cudaValCNConn, cudaIndCNConn, gf_mul and gf_add.

Each thread defines a Tanner graph check node, as it is shown in Figure 3.16. Following
the C++ reference code, a temporal variable is set to -1 for each check node. A loop
processes all the check node connections and increases the temporal variable with some
operations in the GF(q) space (refer to the code for detailed information). The variables
involved are cudaValCNConn, cudaIndCNConn, gf_mul and gf_add.

The indexing of all the variables in the global memory is performed with a linear relation-
ship with the thread index for achieving a fast memory access.

X Dimension
Threads/Block 256
Blocks/Grid CN/256

Table 3.13: Block and grid settings for the cudaCheckNodeEquations kernel

32 3 Implementation

3.2.3.5 Check Node Equations Satisfied (cudaCheckNodeEquationsSatisfied)

An addition reduction algorithm is applied to the temporal vector obtained in the cud-
aCheckNodeEquations. The partity equations are fully satisfied if the result of the sum is
zero (all the node equations are satisfied), and in this case the decoding process can be
interrupted.

tx

checkTemp

512

BLOCK

Figure 3.17: Description of the cudaCheckNodeEquationsSatisfied kernel.

The reduction algorithm takes advantage of the parallelization, performing the sum in
log2(CN) iterations, where CN is the number of elements in the input vector. In each
iteration, the upper half of the vector is added to the lower half in a simple parallel step.
When the reduction is finished, the result is stored in the element with index zero.

The blocks have 1D structure and execute 512 threads for maximizing the performance.
The shared memory is used to process the reduction algorithm in a small loop. The mem-
ory amount used is 4096KBytes per SM, since only two 512 threads blocks are processed
in each SM.

X Dimension
Threads/Block 512
Blocks/Grid CN/512
Shared Memory 2048 KBytes

Table 3.14: Block and grid settings for the cudaCheckNodeEquationsSatisfied kernel

3.2.3.6 Bit Node Update (cudaBitNodeUpdate)

The main function of this kernel is to generate the new updated L-values P_L from the
input L-values in_L and the estimated L-values Q_L. The kernel processes one thread
per Tanner graph variable node. An internal loop processes all the node connections
corresponding to each thread.

Each thread (Tanner graph variable node) reads the corresponding updated input L-values
(q Galois field elements) from in_L. This initial value is updated with the extrinsic sum
of the estimated L-values Q_L. For each node connection, the maximum value among the
Galois field elements is subtracted from all of them, as indicated in [8].

3.2 LDPC GF(q) Decoder 33

N
O

D
ES

q

BN

ty ty

ty

tx tx

tx

INPUT L-VALUES

q

256 / q

BLOCK Shared Memory 1

Shared Memory 2
CN

maxCNConn

q

Q_L

BN

maxBNConn

q

P_L

Copy

Copy

Reduction
Maximum

Extrinsic
Sum

 Input L-value - Extrinsic Q_L Sum

loop

A B C

+

-

Figure 3.18: Description of the cudaBitNodeUpdate kernel.

The block width is fixed to q, and the block height is fixed to 256/q. Thus, ty defines the
Tanner graph variable node, and tx defines the Galois field element. The internal loop
processes all the node connections (Figure 3.18-C). For each loop iteration (each variable
node connection), the bit input L-values corresponding to the actual node are copied twice
into the shared memory (Figure 3.18-A) in two different memory blocks. The extrinsic
sum of the matching values Q_L (accessed through cudaBN2CN) is added to the first
shared memory block (input L-values plus the extrinsic sum of Q_L values). At the same
time, the second shared memory block performs the search of the maximum Galois field
element of the input L-values for each node (Figure 3.18-B) using a reduction algorithm.
This reduction algorithm performs a parallel search of the maximum value using a loop
with log2(q) iterations, where q is the Galois field dimension. After the reduction, the
maximum symbol value is present in each zero index position. Finally, each Galois field
element of the actual node and iteration (variable node connection) is updated with the
values of the first shared memory block minus the maximum value, calculated in the second
shared memory block (Figure 3.18-C). The use of the loop is important since it has a few
number of looping iterations (not the same number for every node), and achieves a very
good performance with this 2D block configuration.

Each block requires 2048 KBytes of shared memory (two shared memory blocks of 256(cells)·
4(bytes/cell)). Using 256 threads per block, each SM can manage up to 4 blocks. So, the
maximum amount of shared memory required is 8 KBytes.

Each shared memory block is indexed by (block number)·256+ty ·q+tx. Since the shared
memory operations are inside the node connections loop, continuous thread numbers access
to different shared bank memory in each iteration. This avoids bank conflicts and provides
maximum performance for the shared memory.

34 3 Implementation

X Dimension Y Dimension
Threads/Block q 256/q
Blocks/Grid 1 BN/(256/q)
Shared Mem. 2 · 4096 KBytes

Table 3.15: Block and grid settings for the cudaBitNodeUpdate kernel

The input and output variable indexing has a linear relationship with the thread index.
This means that the memory is accessed in a continuous way, achieving high performance.
Each random access to Q_L performs q continuous readings. Thus, the random memory
accesses performs better for increasing q values.

3.2.3.7 Permutation of P_L and Q_L (cudaPermuteP and cudaPermuteQ)

The Galois field elements of the Tanner graph variable node connections in P_L and the
check node connections in Q_L are permuted by moving the a−th element of the vector to
position a ·Hi,j, where the multiplication is performed over GF(q) [8]. This process applies
to P_L and Q_L almost in the same way (the Q_L permutation is the inverse permuta-
tion and uses a slightly different indexing). A shared memory block is used as temporary
memory, allowing a parallel implementation of the permute operation. In cudaPermuteP,
the shared memory stores the input data using the permuted indices (calculated using
gf_dec2exp, gf_mul and gf_exp2dec), and writes the output data directly. The cudaPer-
muteQ only changes the way the permutation is done. In this case, the shared memory
reads the input values using the same indices, but the output is written using the permuted
indices. Since each thread accesses different shared memory banks, no bank conflicts are
generated, performing a full speed memory access.

tx

Shared Memory gf_mul

q

256 / q

BLOCK

BN

maxBNConn

q

Q_L

ty

maxBNConn

Q_L

q

Figure 3.19: Description of the cudaPermuteP and cudaPermuteQ kernels.

3.2 LDPC GF(q) Decoder 35

Each ty corresponds to a different Tanner graph node connection, and each tx corresponds
to the Galois field element. The P_L and Q_L data is interpreted as groups of q Galois
field elements. The block width is fixed to q and the block height is fixed to 256/q. Each
thread is independent if it uses a shared memory block as temporal memory. The required
amount of shared memory per block is 1 KByte. As the number of blocks per SM is 4,
the shared memory is not a restriction.

cudaPermuteP
X Dimension Y Dimension

Threads/Block q 256/q
Blocks/Grid 1 BN ·maxBNConn/(256/q)
Shared Mem. 4096 KBytes

cudaPermuteQ
X Dimension Y Dimension

Threads/Block q 256/q
Blocks/Grid 1 CN ·maxCNConn/(256/q)
Shared Mem. 4096 KBytes

Table 3.16: Block and grid settings for the cudaPermuteP and cudaPermuteQ kernels

The complete Galois field vector is transferred to the shared memory. The new indexes are
calculated using the gf_exp2dec, gf_dec2exp and gf_mul texture tables. The permutation
is performed reading the new index from the shared memory and writing the old one in
the P_L structure.

The input and output data indexing has a linear relationship with the thread index, so the
memory access is continuous. The shared memory is mapped for avoiding bank conflicts, at
least in the permutation of Q, since the access is not exactly the same in both kernels [10].

3.2.3.8 Log-FFT (cudaLogFFTP and cudaLogFFTQ)

The algorithm for performing the log-FFT is the same for P and Q structures and it follows
a butterfly diagram. As explained in [8], two log-FFT executions (one for the module and
one for the sign) have to be performed. Both of them are executed simultaneously in the
CUDA kernel implementation. Two shared memory blocks are required for this purpose.

The log-FFT is applied to each q Galois field elements group. Thus, each Galois field
elements group is independent. The block width is fixed to q and the block height is fixed
to 256/q. Each ty represents a Tanner graph node connection, and each tx represents a
Galois field element, as Figure 3.20 shows. The 1D grid contains Nodes/(256/q) blocks.
The required shared memory is 2 KB per block of threads (two shared memory blocks of
256 floats per block).

For each Tanner graph node, a loop processes all node connections for processing the
log-FFT of the q Galois field elements.

36 3 Implementation

Nodes

ty

tx

Input Data Output Data

q

256 / q

BLOCK

Shared Memory Block
in the different Iterations

N
O

D
ES

q

ty

Nodes

tx

Copy to
shared mem.

Copy from
shared mem.

1st iter.
Butterfly

Last iter.
Butterfly

loop

N
O

D
ES

q

Node Connections Node Connections

Figure 3.20: Description of the log-FFT process.

cudaLogFFTP
X Dimension Y Dimension

Threads/Block q 256/q
Blocks/Grid 1 BN/(256/q)
Shared Mem. 2 · 4096 KBytes

cudaLogFFTQ
X Dimension Y Dimension

Threads/Block q 256/q
Blocks/Grid 1 CN/(256/q)
Shared Mem. 2 · 4096 KBytes

Table 3.17: Block and grid settings for the cudaLogFFTP and cudaLogFFTQQ kernels

The execution of the butterfly diagram is supervised by a small loop of log2(q) iterations
and the control loop variable. The crossed additions and subtractions in the log-domain
are performed over the shared memory. Since each continuous thread accesses a different
shared memory bank during the butterfly crosses, no bank conflicts are produced. The
result is transferred to the original data structure once the loop is finished.

Both kernels, cudaLogFFTP and cudaLogFFTQ, process log-magnitude and log-sign
float values. In the case of cudaLogFFTP, only the magnitude is available as input
(P_L), so the sign variable is initialized to one. The output variables are FP_L and
FP_L_s. In the case of cudaLogFFTQ, QP_L and QP_L_s are the input, and only
QP_L is generated.

The additions and subtractions in the different iterations of the loop are performed over the
log-domain, as explained in [8]. Two special __device__ kernels (cudaBoxPlusM and
cudaBoxPlusS) have been implemented for calculating the signed log-domain addition

3.2 LDPC GF(q) Decoder 37

and subtraction in the module and sign case respectively. Both functions are called from
inside the kernel. The code of those device kernels follows exactly the C++ reference
implementation [10]. The exponential and logarithm functions are used in the signed log-
domain function. The fast hardware implemented __expf() and __logf() functions are
used for this purpose, achieving the fastest performance in this way.

The transfer of data between the global memory and the shared memory is done in a
coalesced way, since the indexing has a linear relationship with the thread number. The
shared memory is accessed from within the loop. Thus, the indexing (memory block) ·
256 + ty · q + tx performs accesses without bank conflicts.

3.2.3.9 Check Node Update (cudaCheckNodeUpdate)

Each thread processes the extrinsic sum of the FP_L and FP_L_s symbol values for all
the node connections in each Tanner graph check node.

BN

ty

tx

P_L (P_L_s)

q

256 / q

BLOCK

CN

maxCNConn

q

maxBNConn

q

Q_L (Q_L_s)
loop

Figure 3.21: Description of the cudaCheckNodeUpdate kernel.

Since this kernel is processed in the frequency log-domain, magnitude and sign calculus
are performed separately. For each thread, a first loop processes all the node connections
for calculating the total sum of the magnitude values and the total product of the sign
values. After this, a second loop processes the node connections again, for individually
subtracting the current magnitude value from the total magnitude sum (extrinsic sum),
and individually dividing the current sign value from the total sign product (extrinsic
product). Shared memory is not required since all the memory accesses (QP_L writing
and FP_L & FP_L_s reading through cudaCN2BN) are coalesced.

The block width is fixed to q and the block height is fixed to 256/q. For a given Tanner
graph check node, each thread processes a Galois field element and the extrinsic sum is
achieved using the loops processing the symbols of the node connections.

38 3 Implementation

X Dimension Y Dimension
Threads/Block q 256/q
Blocks/Grid 1 CN/(256/q)

Table 3.18: Block and grid settings for the cudaCheckNodeUpdate kernel.

3.2.3.10 Galois Field Expansion (cudaExpandGalois)

Once the execution of the decoding process finishes, the binary output is generated from
the hard decision vector. The CUDA code is based on the C++ reference code [10].

X Dimension Y Dimension
Threads/Block p 256/q
Blocks/Grid 1 (BN-CN)/(256/q)

Table 3.19: Block and grid settings for the cudaCheckNodeUpdate kernel.

The block and grid settings are described in Table 3.19, where p is the number of bits of
the Galois field elements (q = 2p). Each ty represents a Tanner graph node, and each tx
represents one bit of a Galois field element. The memory accesses are continuous since the
indexing has a linear relationship with the thread index.

Chapter 4

Results

The goal of this thesis is to accelerate the LDPC decoding process of the C++ reference
implementation [10] using the CUDA technology. So, the study of the GPU/CPU speedup
in different scenarios is the main task in this chapter.

The CPU implementation runs on a software simulation system where a group of input
frames is decoded using a determined number of decoding iterations. Each simulation is
executed for a given Eb/N0 value.

The CUDA algorithm implementation is executed under the same settings as the CPU
reference implementation, and the speedup is measured while increasing code size and the
number of iterations. From the obtained values, it is possible to analyse the evolution of
the performance of the CUDA implementation. The results are presented in tables and
graphs for a better understanding of the obtained numbers.

Additional kernel post-implementation analysis are performed using the NVIDIA Profiler
tool in this chapter. This tool provides information about how the kernels take advantage
of the hardware resources and how they are behaving during the execution.

Before starting to explore the results, it is important to keep in mind that the obtained
results are related to the hardware platforms used in the simulations. Thus, the results
change if using different CPU’s and/or GPU’s. The considered hardware in this thesis is
listed as follows (for more information, please refer to annexes):

CPU: Intel Core 2 Duo Q6600 @ 2.40 GHz / 2 GB RAM

GPU: NVIDIA GeForce GTX 275 / 786 MB RAM / CUDA Architecture 1.3

4.1 Binary LDPC Decoder

Table 4.1 shows the binary LDPC codes used in the simulations. All the simulations are
performed for Eb/N0 = −1 dB.

40 4 Results

Id. Name BN CN Regularity Sort maxBNConn maxCNConn
WiMAX_2304 2304 1152 1/2 Irregular 6 7
Regular_8000 8000 4000 1/2 Regular 3 6
Regular_16000 16000 8000 1/2 Regular 3 6
DVB-S2_64800 64800 32400 1/2 Irregular 7 8

Table 4.1: Binary LDPC Codes used for the simulations.

4.1.1 Kernel Execution Time

The NVIDIA Visual Profiler tool provides interesting visual information about the exe-
cution time of each kernel.

Figure 4.1: Kernel execution times for a binary DVB-S2 LDPC code.

Figure 4.1 shows the time execution of the kernels during a simulation of the DVB-
S2_64800 LDPC code. The x axis is related to different execution instances, and the
y axis is related to the used GPU time. The graph indicates that the cudaCheckNode-
Update kernel (dark red color) has the highest computational cost. The random memory
accesses plus the hardware implemented functions __exp(), __log() and __fdividef() are
the cause of this execution time. When the tanh() and atanh() functions were implemented
using standard functions or look-up tables, the execution times of this function were even
higher. For the look-up table implementation, discrete tanh and atanh values were stored
in the constant memory or in the texture memory. But since the look-up tables (more or
equal than 2048 elements per table) were accessed in a random way and their elements
had no locality, the performance was not as good as expected.

4.1 Binary LDPC Decoder 41

4.1.2 Summary CUDA Optimizations

The NVIDIA Visual Profiler tool also provides information about how the hardware re-
sources are being used. This tool is helpful during the debug phase for achieving better
speed performance. It executes the implemented software and obtains information from
internal hardware registers. Table 4.2 shows the results obtained in the binary implemen-
tation for the DVB-S2_32400 code case.

The analysis of the table contents is performed as follows.

GPU Time: The column shows that the cudaCheckNodeUpdate kernel is the slowest
one, because of the random accesses plus the exponential, logarithm and division
hardware functions.

Occupancy: The cudaCheckNodeUpdate and cudaBitNodeUpdate kernels only have an
occupancy of 50% because of the amount of used shared memory. Although the 256
threads per block configuration leads to the execution of eight blocks per streaming
multiprocessor, the block size of the shared memory limits this amount to only four.
Thus, the occupancy is reduced by a factor of two.

Dynamic Shared Memory: Column provides information about the amount of shared
memory used by each kernel. If the amount of used shared memory exceeds the
maximum available, it causes not to have full occupancy in the SM.

Used Registers: The number of registers has to be less or equal to 16 for achieving
the maximum occupancy (calculated with the CUDA Occuancy Calculator). The
column shows that this is accomplished. Thus, the access to the internal kernel
variables is done in an optimal way since all of them are implemented with the use
of registers.

GLD and GST Coalesced: Global Load and Global Store Coalesced are the complete
names of these table entries. They provide the number of coalesced accesses to
the memory. All the non-coalesced accesses are produced by the random memory
accesses.

Divergent branches: The number of divergent branches in function of the total number
is low. E.g. the cudaCheckNodeUpdate has 2 divergent branches of a total of 131.
The CUDA code performs better with a minimum number of divergent branches.
Thus, this factor does not considerably degrade the performance.

Warp Serialize: A bank conflict is produced if the shared memory is not accessed at
different memory banks by continuous thread indexes. If this is the case, the hard-
ware serializes the access to the shared memory, slowing down the performance. The
column shows that all the kernels using shared memory perform accesses without
bank conflicts. Thus, the shared memory is accessed almost as fast as the hardware
registers.

GLD and GST XXb: These columns indicate the number of 32, 64 or 128 bit accesses
to the global memory. For a better performance, only one kind of these accesses
should be performed. Here, it is not easy to see a good performance. A deeper

42 4 Results

K
ernel

G
P

U
O

ccupancy
D

ynam
ic

U
sed

G
LD

G
ST

D
ivergent

W
arp

T
im

e
Shared

M
em

.
Registers

C
oal.

C
oal.

B
ranches

Serialize
cudaInitializeQ

3.84
1

0
4

16
672

0/64
0

cudaC
heckN

odeU
pdate

13.34
0.5

1008
12

653
258

2/131
0

cudaB
itN

odeU
pdate

8.64
0.5

1008
10

768
524

14/86
0

cudaC
heckE

quations
8.51

1
0

8
0

0
0

0/0
cudaC

heckE
quationsSatisfied

5.22
1

2048
4

0
0

0/0
0

K
ernel

G
LD

32b
G

LD
64b

G
LD

128b
G

ST
32b

G
ST

64b
G

ST
128b

G
lobalM

em
.

T
hroughput

cudaInitializeQ
0

16
0

48
64

40
27.56

cudaC
heckN

odeU
pdate

571
35

47
47

13
14

22.36
cudaB

itN
odeU

pdate
600

86
82

40
45

33
44.11

cudaC
heckE

quations
0

0
0

0
0

0
26.92

cudaC
heckE

quationsSatisfied
0

0
0

0
0

0
0.80

Table
4.2:

B
inary

LD
P

C
C

odes
used

for
the

sim
ulations.

4.1 Binary LDPC Decoder 43

analysis of the code leads to know that all the non-random accesses are performed
for only one size and in a coalesced way. The random accesses are present in three
kernels and these are performed using different access sizes (cudaBitNodeUpdate and
cudaCheckNodeUpdate).

4.1.3 GPU/CPU Speedup versus Number of Iterations

A manifold of simulations have been performed with a different number of iterations
for each code. The results in terms of speedup are summarized in Table 4.1. All the
simulations run with the same settings for both implementations, GPU and CPU. The
speedup is calculated as (GPU time)/(CPU time). The results for each of four binary
LDPC codes, can be shown as follows.

GPU/CPU Speedup
Iterations WiMAX_2304 Regular_8000 Regular_16000 DVB-S2_64800

10 5.5 6.1 7.0 13.6
20 8.1 9.6 10.9 20.9
40 10.5 15.4 18.5 37.0
60 12.2 19.4 24.2 43.1
100 13.6 24.5 32.6 55.1
200 15.2 31.4 42.5 76.6
300 15.9 33.0 49.5 86.8

Table 4.3: Simulation results of binary LDPC codes for different number of iterations.

At first sight, it is clear that for a given number of iterations the performance improves
with an increasing code size. Also, for a given LDPC code, the performance is better with
an increasing number of iterations. From Table 4.3 some graphs are drawn for a better
observation of the speedup in function of the iterations and the LDPC code size.

Figure 4.2 shows that the speedup has an asymptotic behaviour with on increasing number
of iterations. The figure also shows that the larger is the code size, the better is the
performance of the CUDA code. The four graphs tend to a different upper limit value.
While the WiMAX code has reached this limit before the 300 iterations, the DVB-S2
seems to be able to improve the speed-up for a number of iterations greater than 300. The
reason for this behaviour is that for a larger code size, the parallel execution performs
better.

4.1.4 GPU/CPU Speedup versus Code Size

Figure 4.3 represents the Table 4.3 data in a different way. Now, the x axis represents the
code size and the different plotted lines represent different number of iterations.

As expected, the greater the code size is (and the number of iterations), the higher the
speedup value is. The graph shows that with an increasing number of iterations, the

44 4 Results

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90
GPU/CPU vs. Number of Iterations (Binary LDPC Codes)

Number of Iterations

G
PU

/C
PU

 S
pe

ed
 U

p

WiMAX_2304
Regular_8000
Regular_16000
DVB−S2_64800

Figure 4.2: GPU/CPU speedup vs. number of iterations (binary LDPC codes)

2304 8000 16000 64800
0

10

20

30

40

50

60

70

80

90

Code Size

G
PU

/C
PU

 S
pe

ed
 U

p

10 iter.
20 iter.
40 iter.
60 iter.
100 iter.
200 iter.
300 iter.

Figure 4.3: GPU/CPU speedup vs. code size for binary LDPC codes

speedup also increases its value. Although there is only a small number of measurements,
the behaviour is expected to be asymptotic.

4.1.5 BER Comparison between CPU and GPU Implementations

Comparing the BER versus Eb/N0 graphs for both implementation, it is possible to check
if the CUDA decoding algorithm is performing as the C++ reference one. Figure 4.4
shows this graph for a range of Eb/N0 from 0 dB to 0.8 dB.

4.2 Non-binary LDPC Decoder 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

C++ Reference Implementation
CUDA Implementation

Figure 4.4: BER vs. Eb/N0 (DVB-S2_64800 code and 60 iterations).

The figure shows that the CUDA implementation (green colour) performs a little bit better
than the C++ implementation (blue colour), despite the fact that the CUDA version uses
single precision and the C++ implementation uses double precision. The reason for this
is the use of look-up tables in the C++ version for implementing the tanh and atanh
functions.

4.2 Non-binary LDPC Decoder

For the case of binary LDPC codes, the code size is a good reference for comparing different
simulations. But for the case of non-binary LDPC codes the situation is different, since
the Galois field dimension changes the number of the Tanner graph bit nodes in function
of the input bits number and the code rate (see Table 4.4). Thus, the number of input
bits is going to be the reference for comparing the sizes of the non-binary LDPC codes.

Table 4.4 shows the different non-binary LDPC codes used for obtaining the results in
this section. As summary, LDPC GF(2) (binary), GF(8), GF(16), GF(32), GF(64) and
GF(256) codes are used for the simulations. For all of them, different input bit sizes (504,
1152, 5040 and 32400) are selected. The fact of having groups of q Galois field elements in
continuous memory positions, leads to an interesting performance boost, as can be verified
later in this section.

4.2.1 Kernel Execution Time

The CUDA Visual Profiler tool provides visual information about the execution time for
each kernel during a simulation. Figure 4.5 shows the kernel execution times for the
GF64_5040 code.

46 4 Results

Id. Name q Input Bits BN CN Rate Sort maxBNConn maxCNConn
GF2_504 2 504 1008 504 1/2 Irregular 15 9
GF2_1152 2 1152 2304 1152 1/2 Irregular 15 9
GF2_5040 2 5040 10080 5040 1/2 Irregular 15 9
GF2_32400 2 32400 64800 32400 1/2 Irregular 15 9
GF8_504 8 504 336 168 1/2 Irregular 5 6
GF8_1152 8 1152 768 384 1/2 Irregular 5 6
GF8_5040 8 5040 3360 1680 1/2 Irregular 5 6
GF8_32400 8 32400 21600 10800 1/2 Irregular 5 6
GF16_504 16 504 252 126 1/2 Irregular 5 6
GF16_1152 16 1152 576 288 1/2 Irregular 5 6
GF16_5040 16 5040 2520 1260 1/2 Irregular 5 6
GF16_32400 16 32400 16200 8100 1/2 Irregular 5 6
GF32_505 32 505 202 101 1/2 Irregular 4 5
GF32_1155 32 1115 462 231 1/2 Irregular 4 5
GF32_5040 32 5040 2016 1008 1/2 Irregular 4 5
GF32_32400 32 32400 12960 6480 1/2 Irregular 4 5
GF64_504 64 504 168 84 1/2 Irregular 4 5
GF64_1152 64 1152 384 192 1/2 Irregular 4 5
GF64_5040 64 5040 1680 840 1/2 Irregular 4 5
GF64_32400 64 32400 10800 5400 1/2 Irregular 4 5
GF256_505 256 505 126 63 1/2 Irregular 3 5
GF256_1155 256 462 288 144 1/2 Irregular 3 5
GF256_5040 256 5040 1260 630 1/2 Irregular 3 5

Table 4.4: Non-binary LDPC Codes used for the simulations.

Figure 4.5: Kernel execution times for a GF64_5040 code (CUDA Visual Profiler capture).

As the CUDA Visual Profiler capture shows, the cudaLogFFTP (green colour) and cu-
daLogFFTQ (blue color) have the highest computational cost. The reason of these high
values is that these kernels execute the __expf() and __logf() hardware functions during
the log-FFT processing, and these functions have a high computational cost.

4.2.2 CUDA Optimization Summary

CUDA Visual Profiler provides more detailed information about the CUDA non-binary
LDPC decoder implementation. Some decoding simulations are performed from the Pro-
filer environment, and an important amount of information is obtained from the internal

4.2 Non-binary LDPC Decoder 47

registers of the device. Table 4.5 gathers the most relevant obtained data, and it is anal-
ysed as follows.

GPU Time: The cudaLogFFTP and cudaLogFFTQ are the slowest kernels, as it has been
shown before (Figure 4.5). The utilization of the __expf() and __log() hardware
functions is the reason of these execution times.

Occupancy: The occupancy is 100% and, since the number of threads per block is 256,
each SM processes 4 blocks and the shared memory requirements are not a constraint.

Dynamic Shared Memory: Keeping in mind that each SM executes 4 concurrent blocks,
the required amount of shared memory for each SM is 4·2048 KBytes = 8192 KBytes,
less than the maximum available shared memory per block.

Used Registers: The maximum number of registers usage is 16 per thread (value cal-
culated using CUDA Occupancy Calculator). Since all the kernels use less or equal
than 16 registers, all of them use the hardware on chip registers, being accessed at
the maximum speed.

GLD and GST Coalesced: This column provides information about the number of co-
alesced accesses to the memory.

Divergent branches: Because of the algorithm implementation, it is not possible to
avoid the branches in the thread execution. Even so, the number of divergent
branches is small compared with the total branch number. This small percentage of
divergent branches does not seriously affect the total performance.

Warp Serialize: Only one of the six kernels using shared memory has bank conflicts.
This is caused by the way the algorithm indexes the shared memory. The perfor-
mance is not seriously affected.

GLD and GST XXb: The indexing of the variables allocated in the global memory
causes that the reading memory accesses avoid 128 bit accesses, and some of the
kernels only perform 64 bit accesses. In the case of writing, almost 100% of the
accesses are 64 bit, boosting the memory access performance.

Global Memory Throughput: The cudaInLUpdate, cudaHard, cudaBitNodeUpdate, cu-
daPermuteP, cudaCheckNodeUpdate and cudaPermuteQ are main kernels and all of
them have a good memory throughput. Only the log-FFT kernels could have better
memory performance, but a deeper study of the kernel implementation is required.
The throughput in the rest of the kernels is not so relevant since they are executed
only once or they only write to a few memory positions.

4.2.3 GPU/CPU Speedup versus Number of Iterations

Many simulations with different number of iterations have been performed for all the
codes in Table 4.6 with input bit size 5040. The reason of this size is that this is the
biggest size available for the non-binary LDPC codes. The results are obtained for an

48 4 Results
K

ernel
G

P
U

O
ccupancy

D
ynam

ic
U

sed
G

LD
G

ST
D

ivergent
W

arp
T

im
e

Shared
M

em
.

Registers
C

oal.
C

oal.
B

ranches
Serialize

cudaInLInitialize
60.8

1
0

7
6720

12096
560/3472

0
cudaInLU

pdate
32.13

1
0

8
4152

2688
0/688

0
cudaH

ardD
ecision

42.27
1

0
7

0
0

0/0
0

cudaC
heckN

odeE
quations

12.19
1

0
9

1137
64

0/0
0

cudaC
heckN

odeE
quationsSatisfied

5.41
1

2048
4

0
0

0/0
0

cudaB
itN

odeU
pdate

122.53
1

2048
13

9708
5616

702/12544
0

cudaP
erm

uteP
92.51

1
1024

16
6820

10752
346/4336

766
cudaLogFFT

P
442.56

1
2048

10
2688

21504
5110/47731

0
cudaC

heckN
odeU

pdate
87.71

1
0

11
11600

11264
0/740

0
cudaLogFFT

Q
280.67

1
2048

10
3360

6720
2263/26454

0
cudaP

erm
uteQ

82.4
1

1024
7

5848
6720

248/2964
0

K
ernel

G
LD

32b
G

LD
64b

G
LD

128b
G

ST
32b

G
ST

64b
G

ST
128b

G
lobalM

em
ory

T
hroughput

cudaInLInitialize
4032

2688
0

672
2688

0
81.35

cudaInLU
pdate

672
3480

0
0

672
0

88.84
cudaH

ardD
ecision

0
0

0
0

0
0

90.73
cudaC

heckN
odeE

quations
579

183
375

0
16

0
16.84

cudaC
heckN

odeE
quationsSatisfied

0
0

0
0

0
0

0.71
cudaB

itN
odeU

pdate
5088

4620
0

0
1404

0
43.64

cudaP
erm

uteP
2688

4132
0

0
2688

0
55.71

cudaLogFFT
P

0
2688

0
0

5376
0

11.51
cudaC

heckN
odeU

pdate
1744

9856
0

0
2816

0
98.05

cudaLogFFT
Q

0
3360

0
0

1680
0

11.48
cudaP

erm
uteQ

1720
1736

2392
0

1680
0

69.71

Table
4.5:

B
inary

LD
P

C
C

odes
used

for
the

sim
ulations.

4.2 Non-binary LDPC Decoder 49

Eb/N0 = −1 dB. Table 4.6 shows the speedup results of the simulations in terms of
(GPU time)/(CPU time).

GPU/CPU Speedup
Iter. GF2_5040 GF8_5040 GF16_5040 GF32_5040 GF64_5040 GF256_5040
10 35.5 122.7 192.9 280.5 403.0 620.4
20 43.0 166.4 243.4 320.5 483.5 670.2
40 49.4 195.2 278.4 369.8 537.0 698.3
60 51.8 220.4 307.4 396.6 557.6 707.5
100 54.1 234.4 329.6 407.7 578.8 714.2
200 55.4 249.8 342.2 425.8 592.2 724.8
300 56.3 253.1 347.3 428.1 599.3 728.0

Table 4.6: Simulation results for non-binary LDPC codes for different number of iterations.

The results for the GF(2) code are similar to the results obtained with the binary LDPC
codes. Table 4.6 shows that as the Galois field dimension grows, the much better is the
performance. For Galois field dimension greater than 2, the speedup values are over 100.
The case GF(256) has the highest scores, starting with a minimum of 620.4 and reaching a
speedup of 728.0 for 300 iterations. The behaviour of the speedup is plotted and analysed
in Figure 4.6 and Figure 4.7.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Iterations

G
PU

/C
PU

 S
pe

ed
 U

p

GF(2)
GF(8)
GF(16)

Input Bit Size: 5040

Figure 4.6: GPU/CPU speedup vs. number of iterations (GF2_5040, GF8_5040 and
GF16_5040)

Figure 4.6 shows the speedup versus the number of iterations for the GF2_5040, GF8_5040
and GF16_5040 codes. The speedup has a clear asymptotic behaviour. The change of
the speedup value for GF2_5040 is really small as the number of iterations grows. For
greater Galois field dimension, the variation is higher.

50 4 Results

0 50 100 150 200 250 300
250

300

350

400

450

500

550

600

650

700

750

Number of Iterations

G
PU

/C
PU

 S
pe

ed
 U

p

GF(32)
GF(64)
GF(256)

Input Bit Size: 5040

Figure 4.7: GPU/CPU speedup vs. number of iterations (non-binary LDPC codes

Results for GF32_5040, GF64_5040 and GF256_5040 codes are shown in Figure 4.7. The
speedup is even larger there seems to be a the maximum limit value at 300 iterations. The
distance between speedup values at 300 iterations is not being reduced with an increasing
Galois field dimension value. Thus, it is possible to have better performance for larger
Galois field dimensions.

4.2.4 GPU/CPU Speedup versus Galois Field Dimension

The simulation results of different Galois field dimension codes for the different input bit
sizes (504, 1152, 5040 and 32400) and for 60 iterations, are summarized in Table 4.7.

GPU/CPU Speedup
GF Dimension Input Size 504 Input Size 1152 Input Size 5040 Input Size 32400

2 9.8 20.5 51.8 55.6
8 45.0 90.9 220.4 278.9
16 68.8 139.1 307.6 423.3
32 133.2 253.6 396.6 534.2
64 215.7 360.0 557.6 654.3
256 292.5 548.6 707.5 -

Table 4.7: Simulation results for different LDPC GF(q) codes and input bit sizes (60 itera-
tions).

Confronting speedup versus Galois Field dimension for the different input bit sizes, it is
possible to see another asymptotic behaviour, as Figure 4.8 and Figure 4.9 show.

4.2 Non-binary LDPC Decoder 51

2 8 16 32 64 25696 128 160 192 224
0

100

200

300

400

500

600

700

800

Galois Field Dimension

G
PU

/C
PU

 S
pe

ed
 U

p

Input Bit Size: 504
Input Bit Size: 1152
Input Bit Size: 5040
Input Bit Size: 32400

Figure 4.8: GPU/CPU speedup vs. Galois field dimension for different input bit sizes.

For a given input bit size, the larger the Galois Field dimension is, the higher the speedup
achieved by the CUDA implementation is(Figure 4.8). At the same time, for a given Galois
Field dimension, if the input bit size increases, then the performance also does. Figure 4.9
contains the same information, but showing the results in a different presentation.

GF(2) GF(8) GF(16) GF(32) GF(64) GF(256)
0

100

200

300

400

500

600

700

800

Galois Field Dimension

G
PU

/C
PU

 S
pe

ed
 U

p

GPU/CPU vs. Galois Field Dimension (Non−binary LDPC Codes)

Input Bit Size 504
Input Bit Size 1152
Input Bit Size 5040
Input Bit Size 32400

Iterations: 60

Figure 4.9: GPU/CPU speedup vs. Galois field dimension for different input bit sizes.

52 4 Results

4.2.5 BER Comparison Between CPU and GPU version

A very interesting curve for the LPDC decoder is the BER versus Eb/N0. The comparison
between the BER curve of the C++ reference implementation and the one from the CUDA
implementation, provides an idea about the algorithm behaviour and the accuracy. Since
the CUDA implementation is based on the C++ reference code, it is expected to have
the same curve shape. The most important difference between both implementations is
that the C++ reference code uses double precision (double variables), and the CUDA
implementation uses simple precision data (float variables). Figure 4.10 shows the curves
for both implementations, for the GF64_5040 code and different number of iterations.
The Eb/N0 values are in the range from 0 to 2.1, with 0.1 steps.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

B
E

R

CPU (100 iter.)
GPU (100 iter.)
CPU (20 iter.)
GPU (20 iter.)
CPU (10 iter.)
GPU (10 iter.)

Figure 4.10: BER vs. Eb/N0 (GF64_5040 code).

As expected, the curves have the same shape. The CUDA implementation has the same
behaviour than the C++ reference implementation for low Eb/N0 values and achieves
better BER results with an increasing Eb/N0 value.

Chapter 5

Summary and Conclusions

Low-density parity check codes are linear block codes which have a huge sparse parity-
check matrix with a low number of non-zero entries. These codes provide a performance
close to the Shannon Limits on a large collection of transmission channels. LDPC codes
where introduced by Robert G. Gallager in 1960 [16], but it was impractical to implement
them due to their high computational cost. LDPC codes were rediscovered in the 90’s by
David J. C. MacKay and Radford M. Neal [3].

LDPC codes can be represented using a Tanner graph. A Tanner Graph is a bipartite
graph which represents the parity-check matrix of an error correcting code. This bipartite
graph has two classes of nodes, variable nodes and check nodes, and no edge connects two
nodes from the same class. A variable node connects to a check node if the corresponding
parity-check matrix element is a non-zero value.

Iterative algorithms are used for decoding LDPC codes. These iterative algorithms are
based on messages passing algorithms and perform a probabilistic decoding, where the
messages passed are in terms of logarithmic likelihood (L-values). Belief propagation is
an example of algorithm for decoding binary LPDC codes, and the log-domain Fourier
transform is the case for non-binary LDPC codes.

CUDA (Computer Unified Device Architecture) is a hardware architecture abstraction of
the modern GPUs present in the NVIDIA graphic cards. This architecture can be used
for massive parallel processing of many scientific or high computational tasks. CUDA can
be programmed using the standard programming C/C++ language with some specific
CUDA extensions.

In this thesis, a CUDA parallel implementation of the belief propagation and the log-
domain Fourier transform algorithms has been performed. Both implementations are
based on a previous C++ reference implementation and perform LDPC decoding using
an existing software simulation platform. The objective of the thesis is to speed up the
LDPC decoding process over the CPU implementation, taking advantage of the parallel
execution capabilities of the CUDA architecture. An Intel Core 2 Quad Q6600 @ 2.4 GHz

54 5 Summary and Conclusions

has been used as CPU platform, and a NVIDIA GeForce GTX 275 has been used as GPU
platform for the CUDA implementation.

A CUDA LDPC decoding implementations has been developed in this thesis. For both of
the binary and non-binary LDPC decoder implementations, a first analysis of the algorithm
flowchart has been performed and the data structures used during the implementations
have been studied. Finally, each kernel has been described with the performance options
applied to it. During the implementation, some difficulties have been encountered. In the
binary case, the random accesses have forced the use of the global memory for allocating
the message passing L-value matrices. Thus, a special attention has been paid to the
indexing of these matrices for achieving the maximum memory performance. The use of
shared memory in some kernel has allowed a faster kernel execution when acting as a fast
temporal memory. Finally, the tanh and atanh functions have been implemented with fast
hardware functions, considerably reducing the execution time of the check node update
kernel.

In the non-binary case, the random accesses have been present again, but the Galois field
dimension has allowed to access q continuous data for each element of the parity-check
matrix, increasing speed of the global memory accesses. The shared memory has allowed
to execute some kernels faster, since it has been acting as temporary memory. The log-
domain Fourier transform has been completely parallelized using the butterfly structure,
and the log-domain addition function has been implemented with the fast hardware avail-
able functions.

Finally, the results of the different simulations have been compared. In the binary case,
four LDPC codes (the WiMAX code of size 2304, a regular code of size 8000, a regular
code of size 16000 and the DVB-S2 code of size 64800) have been used in the simulations,
and the speedup has been measured for different amounts of iterations and code sizes.
In both cases, an asymptotic behaviour of the speedup has been observed, with a better
performance for larger codes. Although the speedup values are conditioned by the utilized
hardware, the results have shown a maximum speedup value of 15.9 for the WiMAX code
of size 2304, 33.0 for the regular code of size 8000, 49.5 for the regular code of size 16000,
and 86.8 for the DVB-S2 code of size 64800, all of them performed for a 300 decoding
iterations simulation. As expected, the BER curve of the CUDA implementation follows
exactly the shape of the serial CPU implementation.

In the non-binary case, several LDPC codes with different Galois field dimensions (q =
2, 8, 16, 32, 64 and 256) and different input bit sizes (504, 1152, 5040 and 32400) have
been compared. The speedup has been measured for different Galois field dimensions, dif-
ferent input bit sizes and different number of iterations, observing an asymptotic behaviour
in all of them. The performance is better for larger values of Galois field dimension, in-
put bit sizes and number of iterations. For an input bit size of 5040 and 300 decoding
iterations, the measured speedup has reached a maximum value of 56.3 for a GF(2) code,
253.1 for a GF(8) code, 347.3 for a GF(16) code, 428.1 for a GF(32) code, 599.3 for a
GF(64) code and 728.0 for a GF(256) code. The BER curve of the CUDA implementation
(q = 256, input bit size of 5040) is coincident with the BER curve of the serial CPU
implementation.

5 Summary and Conclusions 55

Since the graphic card model used in this thesis does not belong to the latest CUDA
generation, higher performance can be expected if a newest model (Fermi architecture
with compute capability 2.0 [14]) is used. Also, using the more powerful branch of the
CUDA devices (Tesla), can lead to further performance gains.

56 5 Summary and Conclusions

Chapter 6

Appendix A
GF(2) CUDA Kernels Source Code

__global__ void c u d a I n i t i a l i z e Q (f loat ∗ vector_in , int ∗vector_in_upd ,
f loat ∗q , int tileWidthBN , int BN)
{

unsigned int tx , bx , index , k ;
f loat temp ;
tx=threadIdx . x ; bx=blockIdx . x ;
index=bx∗blockDim . x+tx ;

i f (index<BN) {
temp=vector_in [index] ;
vector_in_upd [index]=(temp <0.0 f) ? (1) : (0) ;
for (k=0; k<tileWidthBN ; k++)

q [k∗BN+index]=temp ;
}

}

__global__ void cudaCheckEquations (int ∗v_in , int ∗v_temp ,
int ∗cudaCheckNodeConnections , int tileWidthCN , int CN, int ∗cudaCNConn)
{

unsigned int tx , bx , k , kmax , index , temp , data ;
tx=threadIdx . x ; bx=blockIdx . x ;
index=bx∗blockDim . x+tx ;

i f (index<CN) {
kmax=cudaCNConn [index] ;
temp=0;
for (k=0; k<kmax ; k++) {

data=v_in [cudaCheckNodeConnections [k∗CN+index]] ;
temp=(bool) temp^(bool) data ;

}
v_temp [index]=temp ;

58 6 Appendix A GF(2) CUDA Kernels Source Code

}
}

__global__ void cudaCheckEquat ionsSat i s f i ed (int ∗v_in , int ∗v_out ,
int CN)
{

extern __shared__ int sm [] ;
unsigned int tx , index , s t r i d e ;
tx=threadIdx . x ;
index=blockIdx . x∗blockDim . x+threadIdx . x ;

sm [tx]=(index<CN)?(v_in [index]) : (0) ;
__syncthreads () ;
for (s t r i d e=blockDim . x>>1; s t r i d e >0; s t r i d e >>= 1) {

i f (tx<s t r i d e)
sm [tx]+=sm [tx+s t r i d e] ;

__syncthreads () ;
}
i f (tx==0)

v_out [b lockIdx . x]=sm [0] ;
}

__global__ void cudaCheckNodeUpdate (f loat ∗r , f loat ∗q , int ∗cudaCN2BN ,
int tileWidthCN , int CN, int ∗cudaCNConn)
{

extern __shared__ f loat qs [] ;
unsigned int tx , bx , index , k , kmax ;
f loat temp , temp2 , temp3 , s ig , prod ;
tx=threadIdx . x ; bx=blockIdx . x ;
index=bx∗blockDim . x+tx ;

i f (index<CN) {
prod =1.0 ;
kmax=cudaCNConn [index] ;
for (k=0; k<kmax ; k++) {

temp=q [cudaCN2BN [k∗CN+index]] ;
s i g =(temp <0.0 f)?(−1.0 f) : (1 . 0 f) ;
i f (s i g ∗temp >40.0 f) {

temp=s i g ;
} else {

temp2=__expf (temp) ;
temp=__fdividef (temp2−1.0 f , temp2+1.0 f) ;

}
prod∗=temp ;
qs [k∗blockDim . x+tx]=temp ;

}
__syncthreads () ;
for (k=0; k<kmax ; k++) {

temp=__fdividef (prod , qs [k∗blockDim . x+tx]) ;
s i g =(temp <0.0 f)?(−1.0 f) : (1 . 0 f) ;
temp2=s i g ∗temp ;
temp3=(temp2 <1.0 f−BP_EPSILON)?

6 Appendix A GF(2) CUDA Kernels Source Code 59

__fdividef (1 . 0 f+temp2 , 1 . 0 f−temp2) : BP_INFINITY ;
temp=s i g ∗__logf (temp3) ;
r [k∗CN+index]=temp ;

}
}

}

__global__ void cudaBitNodeUpdate (f loat ∗ vector_in , int ∗vector_in_upd ,
f loat ∗r , f loat ∗q , int ∗cudaBN2CN , int tileWidthBN , int BN,
int ∗cudaBNConn)
{

extern __shared__ f loat r s [] ;
unsigned int tx , bx , index , k , kmax ;
f loat sum , temp ;
tx=threadIdx . x ; bx=blockIdx . x ;
index=bx∗blockDim . x+tx ;

i f (index<BN) {
sum=vector_in [index] ;
kmax=cudaBNConn [index] ;
for (k=0; k<kmax ; ++k) {

temp=r [cudaBN2CN [k∗BN+index]] ;
sum+=temp ;
r s [k∗blockDim . x+tx]=temp ;

}
__syncthreads () ;
vector_in_upd [index]=(sum<0.0 f) ? (1) : (0) ;
for (k=0; k<kmax ; ++k)

q [k∗BN+index]=sum−r s [k∗blockDim . x+tx] ;
}

}

60 6 Appendix A GF(2) CUDA Kernels Source Code

Chapter 7

Appendix B
GF(q) CUDA Kernels Source Code

__global__ void c u d a I n L I n i t i a l i z e (f loat ∗v_in , f loat ∗in_L , int BN, int p ,
int q)
{

unsigned int tx , ty , bx , index ;
tx=threadIdx . x ;
ty=threadIdx . y ;
bx=blockIdx . x ;

index=bx∗blockDim . y+ty ;
i f (index<BN) {

for (int k=0; k<p ; k++) {
i f ((tx>>(p−k−1))&0x1==1) {

in_L [index ∗q+tx]−=v_in [index ∗p+k] ;
}

}
}

}

__global__ void cudaHardDecision (f loat ∗in_L , int ∗hard , int BN, int q)
{

unsigned int tx , bx , index ;
int maxDec ;
f loat maxProb ;
tx=threadIdx . x ;
bx=blockIdx . x ;
index=bx∗blockDim . x+tx ;

i f (index<BN) {
maxDec=0;
maxProb=in_L [index ∗q] ;
for (int i =1; i<q ; i++) {

62 7 Appendix B GF(q) CUDA Kernels Source Code

i f (in_L [index ∗q+i]>maxProb) {
maxProb=in_L [index ∗q+i] ;
maxDec=i ;

}
}
hard [index]= tex1Dfetch (gf_dec2exp_tex , maxDec) ;

}
}

__global__ void cudaCheckNodeEquationsSatis f ied (int ∗v_in , int ∗v_out ,
int CN)
{

extern __shared__ int shared [] ;
unsigned int tx , index , s t r i d e ;
tx=threadIdx . x ;
index=blockIdx . x∗blockDim . x+threadIdx . x ;

shared [tx]=(index<CN) ? (v_in [index]) : (0) ;
__syncthreads () ;
for (s t r i d e=blockDim . x>>1; s t r i d e >0; s t r i d e >>=1) {

i f (tx<s t r i d e)
shared [tx]+=shared [tx+s t r i d e] ;

__syncthreads () ;
}
i f (tx == 0)

v_out [b lockIdx . x]= shared [0] ;
}

__global__ void cudaCheckNodeEquations (int ∗hard , int ∗output ,
int ∗cudaNumCNConn , int ∗cudaValCNConn , int ∗cudaIndCNConn , int CN,
int maxCNConn)
{

unsigned int index ;
int val , mul , a1 , a2 ;
index=blockIdx . x∗blockDim . x+threadIdx . x ;

i f (index<CN) {
va l=−1;
for (int i =0; i<cudaNumCNConn[index] ; i++) {

a1=cudaValCNConn [index ∗maxCNConn+i] ;
a2=cudaIndCNConn [index ∗maxCNConn+i] ;
mul=tex2D (gf_mul_tex , a1+1, hard [a2]+1) ;
va l=tex2D (gf_add_tex , va l +1, mul+1);

}
output [index]=(va l !=−1)?1 :0 ;

}
}

__device__ f loat cudaBoxPlusM(f loat a_m, f loat a_s , f loat b_m,
f loat b_s)
{

i f (a_m<=−BP_INFINITY+0.1 f | | b_m<=−BP_INFINITY+0.1 f) {

7 Appendix B GF(q) CUDA Kernels Source Code 63

i f (a_m>−BP_INFINITY+0.1 f) return a_m;
i f (b_m>−BP_INFINITY+0.1 f) return b_m;
return −BP_INFINITY ;

}
i f (f abs (a_m−b_m)<BP_EPSILON)

i f (a_s!=b_s) return −BP_INFINITY ;
else return a_m+0.693147180559945 f ;

i f (a_m>=b_m)
return a_m+__logf (1 . 0 f +(a_s∗b_s)∗__expf (b_m−a_m)) ;

else
return b_m+__logf (1 . 0 f +(a_s∗b_s)∗__expf (a_m−b_m)) ;

}

__device__ f loat cudaBoxPlusS (f loat a_m, f loat a_s , f loat b_m,
f loat b_s) {

i f (a_s == b_s | | a_m>=b_m) return a_s ;
return −a_s ;

}

__global__ void cudaLogFFTP (f loat ∗P_L, f loat ∗FP_L, f loat ∗FP_L_s,
int BN, int maxBNConn, int p , int q , int ∗numBNConn)
{

extern __shared__ f loat tempFFT [] ;
unsigned int tx , txx , ty , by , indexy ;
unsigned int maskBit ;
f loat a_m, b_m, a_s , b_s ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;
txx=ty∗q+tx ;

i f (indexy<BN) {
for (int j =0; j<numBNConn [indexy] ; j++) {

tempFFT[0∗256+txx]=P_L[indexy ∗maxBNConn∗q+j ∗q+tx] ;
tempFFT[1∗256+txx]=1.0 f ;
__syncthreads () ;
for (int i =0; i<p ; i++) {

maskBit=1<<i ;
i f (! (tx & maskBit)) {

a_m=tempFFT[0∗256+txx] ;
a_s=tempFFT[1∗256+txx] ;
b_m=tempFFT[0∗256+txx+maskBit] ;
b_s=tempFFT[1∗256+txx+maskBit] ;

}
else {

a_m=tempFFT[0∗256+txx−maskBit] ;
a_s=tempFFT[1∗256+txx−maskBit] ;
b_m=tempFFT[0∗256+txx] ;
b_s=−tempFFT[1∗256+txx] ;

}
__syncthreads () ;

64 7 Appendix B GF(q) CUDA Kernels Source Code

tempFFT[0∗256+txx]=cudaBoxPlusM(a_m, a_s ,b_m, b_s) ;
tempFFT[1∗256+txx]=cudaBoxPlusS (a_m, a_s ,b_m, b_s) ;
__syncthreads () ;

}
FP_L[indexy ∗maxBNConn∗q+j ∗q+tx]=tempFFT[0∗256+txx] ;
FP_L_s [indexy ∗maxBNConn∗q+j ∗q+tx]=tempFFT[1∗256+txx] ;

}
}

}

__global__ void cudaLogFFTQ(f loat ∗FQ_L, f loat ∗FQ_L_s, f loat ∗Q_L,
int CN, int maxCNConn, int p , int q , int ∗numCNConn)
{

extern __shared__ f loat tempFFT [] ;
unsigned int tx , txx , ty , by , indexy ;
unsigned int maskBit ;
f loat a_m, b_m, a_s , b_s ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;
txx=ty ∗q+tx ;

i f (indexy<CN) {
for (int j =0; j<numCNConn [indexy] ; j++) {

tempFFT[0∗256+txx]=FQ_L[indexy ∗maxCNConn∗q+j ∗q+tx] ;
tempFFT[1∗256+txx]=FQ_L_s[indexy ∗maxCNConn∗q+j ∗q+tx] ;
__syncthreads () ;
for (int i =0; i<p ; i++) {

maskBit=1<<i ;
i f (! (tx & maskBit)) {

a_m=tempFFT[0∗256+txx] ;
a_s=tempFFT[1∗256+txx] ;
b_m=tempFFT[0∗256+txx+maskBit] ;
b_s=tempFFT[1∗256+txx+maskBit] ;

}
else {

a_m=tempFFT[0∗256+txx−maskBit] ;
a_s=tempFFT[1∗256+txx−maskBit] ;
b_m=tempFFT[0∗256+txx] ;
b_s=−tempFFT[1∗256+txx] ;

}
__syncthreads () ;
tempFFT[0∗256+txx]=cudaBoxPlusM(a_m, a_s ,b_m, b_s) ;
tempFFT[1∗256+txx]=cudaBoxPlusS (a_m, a_s ,b_m, b_s) ;
__syncthreads () ;

}
Q_L[indexy ∗maxCNConn∗q+j ∗q+tx]=tempFFT[0∗256+txx] ;

}
}

}

7 Appendix B GF(q) CUDA Kernels Source Code 65

__global__ void cudaPermuteP(f loat ∗P_L, int ∗numBNConn , int ∗valBNConn ,
int BN, int maxBNConn, int q)
{

extern __shared__ f loat sm [] ;
unsigned int tx , ty , by , indexy ;
int h , temp1 , temp2 ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;

i f (indexy<BN∗maxBNConn) {
sm [ty ∗q+tx]=P_L[indexy ∗q+tx] ;
__syncthreads () ;
i f (tx >0) {

h=valBNConn [indexy] ;
i f (h!=0) {

i f (tx == 1)
temp1=tex1Dfetch (gf_exp2dec_tex , h+1);

else {
temp1=tex1Dfetch (gf_dec2exp_tex , tx) ;
temp2=tex2D (gf_mul_tex , temp1+1,h+1);
temp1=tex1Dfetch (gf_exp2dec_tex , temp2+1);

}
sm [ty ∗q+temp1]=P_L[indexy ∗q+tx] ;

}
}
__syncthreads () ;
P_L[indexy ∗q+tx]=sm [ty ∗q+tx] ;

}
}

__global__ void cudaPermuteQ(f loat ∗Q_L, int ∗numCNConn , int ∗valCNConn ,
int CN, int maxCNConn, int q)
{

extern __shared__ f loat sm [] ;
unsigned int tx , ty , by , indexy ;
int h , temp1 , temp2 ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;

i f (indexy<CN∗maxCNConn) {
sm [ty ∗q+tx]=Q_L[indexy ∗q+tx] ;
__syncthreads () ;
i f (tx >0) {

h=valCNConn [indexy] ;
i f (h!=0) {

i f (tx == 1)
temp1=tex1Dfetch (gf_exp2dec_tex , h+1);

66 7 Appendix B GF(q) CUDA Kernels Source Code

else {
temp1=tex1Dfetch (gf_dec2exp_tex , tx) ;
temp2=tex2D (gf_mul_tex , temp1+1,h+1);
temp1=tex1Dfetch (gf_exp2dec_tex , temp2+1);

}
sm [ty ∗q+tx]=Q_L[indexy ∗q+temp1] ;

}
}
__syncthreads () ;
Q_L[indexy ∗q+tx]=sm [ty ∗q+tx] ;

}
}

__global__ void cudaBitNodeUpdate (f loat ∗in_L , f loat ∗Q_L, f loat ∗P_L,
int ∗numBNConn , int ∗BN2CN, int BN, int q , int maxBNConn)
{

extern __shared__ f loat sm [] ;
unsigned int tx , txx , ty , by , indexy ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;
txx=ty ∗q+tx ;

i f (indexy<BN) {
for (int j =0; j<numBNConn [indexy] ; j++) {

sm[0∗256+txx]=in_L [indexy ∗q+tx] ;
__syncthreads () ;
for (int k=0; k<numBNConn [indexy] ; k++) {

i f (k!= j) {
sm[0∗256+txx]+=Q_L[BN2CN[indexy ∗maxBNConn∗q+k∗q+tx]] ;

}
}
sm[1∗256+txx]=sm[0∗256+txx] ;
__syncthreads () ;
for (int s t r i d e=q>>1; s t r i d e >0; s t r i d e >>=1) {

i f (tx<s t r i d e) {
i f (sm[1∗256+txx+s t r i d e]>sm[1∗256+txx])

sm[1∗256+txx]=sm[1∗256+txx+s t r i d e] ;
}
__syncthreads () ;

}
i f (tx == 0)

i f (sm[1∗256+(ty ∗q+0)]<−BP_INFINITY)
sm[1∗256+(ty ∗q+0)]=−BP_INFINITY ;

P_L[indexy ∗maxBNConn∗q+j ∗q+tx]=sm[0∗256+txx]−sm[1∗256+(ty ∗q +0)] ;
}

}
}

__global__ void cudaCheckNodeUpdate (f loat ∗FP_L, f loat ∗FP_L_s, f loat ∗FQ_L,
f loat ∗FQ_L_s, int ∗numCNConn , int ∗CN2BN, int CN, int q , int maxCNConn)

7 Appendix B GF(q) CUDA Kernels Source Code 67

{
unsigned int tx , ty , by , indexy ;
f loat module_sum , sign_prod ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;

i f (indexy<CN) {
module_sum=0.0 f ;
s ign_prod =1.0 f ;
for (int j =0; j<numCNConn [indexy] ; j++) {

module_sum+= FP_L[CN2BN[indexy ∗maxCNConn∗q+j ∗q+tx]] ;
s ign_prod∗=FP_L_s[CN2BN[indexy ∗maxCNConn∗q+j ∗q+tx]] ;

}
for (int j =0; j<numCNConn [indexy] ; j++) {

FQ_L[indexy ∗maxCNConn∗q+j ∗q+tx]=
module_sum−FP_L[CN2BN[indexy ∗maxCNConn∗q+j ∗q+tx]] ;

FQ_L_s[indexy ∗maxCNConn∗q+j ∗q+tx]=
sign_prod/FP_L_s [CN2BN[indexy ∗maxCNConn∗q+j ∗q+tx]] ;

}
}

}

__global__ void cudaInLUpdate (f loat ∗in_L , f loat ∗in_L_temp , f loat ∗Q_L,
int ∗BN2CN, int ∗numBNConn , int BN, int maxBNConn, int q)
{

unsigned int tx , ty , by , indexy ;
f loat sum ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;

i f (indexy<BN) {
sum=in_L [indexy ∗q+tx] ;
for (int j =0; j<numBNConn [indexy] ; j++)

sum+=Q_L[BN2CN[indexy ∗maxBNConn∗q+j ∗q+tx]] ;
in_L_temp [indexy ∗q+tx]=sum ;

}
}

__global__ void cudaExpandGalois (int ∗hard , int ∗d_out , int p , int K)
{

unsigned int tx , ty , by , indexy ;
int temp ;
tx=threadIdx . x ;
ty=threadIdx . y ;
by=blockIdx . y ;
indexy=by∗blockDim . y+ty ;

i f (indexy<K) {

68 7 Appendix B GF(q) CUDA Kernels Source Code

temp=tex1Dfetch (gf_exp2dec_tex , hard [indexy]+1) ;
d_out [indexy ∗p+tx]=(int) ((temp>>(p−tx−1)) & 0x1) ;

}
}

Chapter 8

Appendix C
NVIDIA GeForce GTX 275

Specifications

System Architecture GT200
Compute Capability 1.3
Multiprocessor Count 30
CUDA Cores 240
Thread Occupancy on SM 1024
Block Occupancy on SM 8
Maximum threads per block 512
Maximum Block X-dimension 512
Maximum Block Y-dimension 512
Maximum Block Z-dimension 64
Maximum Grid X-Dimension 65535
Maximum Grid Y-Dimension 65535
Warp Size 32
Total Registers per Block 16 KBytes
Total Shared Memory per SM 16 KBytes
Total Constant Memory 64 KBytes
Total Global Memory 896 MB
Memory Interface Width 448 bit
Memory Clock 1134 MHz
Memory Bandwith 127 GB/s

70 8 Appendix C NVIDIA GeForce GTX 275 Specifications

Bibliography

[1] Andrew D. Copeland, Nicholas B. Chang, and Stephen Leung. GPU Accelerated De-
coding of High Performance Error Correcting Codes. Technical report, Massachusetts
Institute of Technology, 2009.

[2] Burkhard Zink. A general relativistic evolution code on CUDA. 2008.

[3] D. J. C. MacKay, R. M. Neal. Good Codes Base on Very Sparse Matrices. In
Cryptography and Coding, 5th IMA Conference, 1995.

[4] David D. Kirk, Wen-mei W. Hwu. Programming Massively Parallel Processors. Mor-
gan Kaufmann, 2009.

[5] Gabriel Falçao, Leonel Sousa, Vitor Silva. Massive Parallel LDPC Decoding on GPU.
IEEE Parallel and Distributed Systems, 2008.

[6] Gabriel Falçao, Vitor Silva, Leonel Sousa. How GPUs Can Outperform ASICs for
Fast LDPC Decoding. In Proceedings of the 23rd international conference on Super-
computing, 2009.

[7] Gabriel Falçao, Vitor Silva, Leonel Sousa. Parallel LDPC Decoding on GPUs Using a
Stream-Based Computing Approach. Springer Boston Journal of Computer Science
and Technology, 2009.

[8] Geoffrey J. Byers, Fambirai Takawira. Fourier Transform Decoding of Non-Binary
LDPC Codes.

[9] Jason Sanders, Edward Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley, 2010.

[10] Moritz Beermann. Entwurf und Optimierung von LDPC- und Turbo-Codes für
Hochgeschwindigkeits-Mobilfunknetze. Master’s thesis, Institut für Nachrichtengeräte
und Datenverarbeitung, RWTH Aachen University, 2010.

[11] NVIDIA Corporation. NVIDIA CUDA C Programming Best Practices Guide version
2.3. NVIDIA Corporation, 2009.

[12] NVIDIA Corporation. NVIDIA CUDA Programming Guide version 2.3. NVIDIA
Corporation, 2009.

72 Bibliography

[13] NVIDIA Corporation. NVIDIA CUDA Reference Manual version 2.3. NVIDIA Cor-
poration, 2009.

[14] NVIDIA Corporation. NVIDIA GF100. Whitepaper, 2010.

[15] P. Vary. Advanced Coding and Modulation. Overview. 2010.

[16] R. G. Gallager. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[17] Shuang Wang, Samuel Cheng, Qiang Wu. A Parallel Decoding Algorithm of LDPC
Codes using CUDA. In Conference on Signals, Systems and Computers, 2008 42nd
Asilomar, 2008.

[18] Todd K. Moon. Error Correction Coding. Mathematical Methods and Algorithms.
Wiley-Interscience, 2005.

[19] Upamanyu Madhow. Fundamentals of Digital Communication. Cambridge University
Press, 2008.

[20] Various. GPU Gems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation. Addison-Wesley, 2005.

	Introduction
	Theoretical and Technological Background
	Low-Density Parity-Check Codes
	Tanner Graph
	Belief Propagation
	Log-Domain Fourier Transform Decoding

	CUDA Architecture
	Threads Arranging and Execution
	Device Memory Types
	Textures
	Performance Considerations

	Implementation
	LDPC GF(2) Decoder
	Algorithm Flowchart
	Data Structures
	Kernel Implementations
	Initialization of Q
	Parity Check Equations
	Check if the Parity Equations are Satisfied
	Check Node Update
	Bit Node Update

	LDPC GF(q) Decoder
	Algorithm Flowchart
	Data Structures
	Non-constant variables
	Constant variables
	Texture Tables

	Kernel Implementations
	Input L-Values Initialization
	Input L-values Update
	Hard Decision
	Check Node Equations
	Check Node Equations Satisfied
	Bit Node Update
	Permutation of P_L and Q_L
	Log-FFT
	Check Node Update
	Galois Field Expansion

	Results
	Binary LDPC Decoder
	Kernel Execution Time
	Summary CUDA Optimizations
	GPU/CPU Speedup versus Number of Iterations
	GPU/CPU Speedup versus Code Size
	BER Comparison between CPU and GPU Implementations

	Non-binary LDPC Decoder
	Kernel Execution Time
	CUDA Optimization Summary
	GPU/CPU Speedup versus Number of Iterations
	GPU/CPU Speedup versus Galois Field Dimension
	BER Comparison Between CPU and GPU version

	Summary and Conclusions
	Appendix A GF(2) CUDA Kernels Source Code
	Appendix B GF(q) CUDA Kernels Source Code
	Appendix C NVIDIA GeForce GTX 275 Specifications
	Bibliography

