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ABSTRACT 

The present thesis, entitled “Study of substrate modulation and bioreceptor anchoring for 

the development of high performance microarrays”, aims to respond the needs and 

challenges related to the development of better detection systems.  

Thus, this PhD thesis is focused on the study of new approaches able to improve the 

performance of microarrays. Aspects such as the nature of the surfaces and the probes, 

functionalization of the substrates, probe printing, immobilization and target detection 

were considered in the fabrication process. Within all these features, modulation of the 

surface behavior and probe anchoring were the most challenging aspects, as the interface 

is key for the immobilization of the receptors and the later detection, which will determine 

the performance of the final device.  

In this work, two microarray types have been developed, one for oligonucleotides and 

another one for antibodies. Then, a characterization of the reached achievements is done. 

All the routes have in common the use of light to catalyze the attachment of bioreceptors 

on the surface substrates, employing click-chemistry reactions. 

In the first chapter, the state of the art of microarray technology is overviewed, with 

special focus in the main aspects of microarray design. 

In the second chapter, the goals for this PhD thesis are settled. These general objectives 

are addressed in the following experimental chapters. 

In the third chapter, the effect of hydrophobicity and probe multi-point attachment on the 

microarray performance are studied. Thus, modulation of glass slide surfaces with alkenyl 

and alkynyl motifs for the anchoring of mono and multithiolated oligonucleotide probes 

by thiol-ene and thiol-yne photocoupling reactions, respectively, was accomplished. 

Surfaces modified with the most hydrophobic silane (alkynyl), or anchoring polythiolated 

probes, revealed better performances. These microarray systems were applied to the 

discrimination of SNPs and to detect bacterial genome PCR products. 

In the fourth chapter, a rational design for the preparation of microarrays of antibodies, is 

done. The immobilization approach displays the oriented anchoring of thiol-bearing 

antibody fragments to alkenylated glass slides by thiol-ene photocoupling reaction. 

Multiplexed detection of cardiac biomarkers is demonstrated. The designed microarray 

shows higher recognition capacity in comparison to whole antibody microarrays. 
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In the fifth chapter, improvement of a novel methodology for the anchoring of thiolated 

oligonucleotides has been developed. Due to the interest on modifying highly 

hydrophobic surfaces, a new photoinduced reaction is set up. Thanks to the features of 

the named “fluor-thiol photocoupling reaction”, immobilization of thiolated probes to 

surfaces containing C-F bonds in a fast, easy and biocompatible with aqueous media way, 

was achieved. Hydrophobicity of the surfaces was controlled to get successful 

hybridizations. Because of the high hydrophobicity of the surfaces, a huge confinement 

of the probes is accomplished, which allows the approximation of the analytes only where 

the probe is linked, keeping a high repulsion in the remaining surface. The perfluorinated 

glass slides improved the immobilization densities and detection capacity, regarding to 

the alkenylated and alkynylated surfaces, and allowed the discrimination of SNPs and 

detection of bacterial PCR products, as well.  

In the sixth chapter, other surfaces different than glass are explored. Thus, polyvinylidene 

fluoride membranes were employed as substrates for the development of oligonucleotide 

microarrays. Therefore, a fast, easy and mild functionalization process by UV irradiation 

and organosilane chemistry, was developed. Then, alkenyl functionalized and non-

functionalized membranes were applied to microarray technology by covalent anchoring 

through thiol-ene and fluor-thiol photocoupling reactions, respectively. Promising results 

were obtained with both surfaces. 

To sum up, modulation of the chemical response of the substrates and anchoring 

procedures, are here the two keys in the improvement of microarray technology. This 

work has contributed to the progress of new microarray platforms and the development 

of a novel photoinduced reaction. Finally, the finding of the fluor-thiol photocoupling 

reaction, paves the way to build more sensitive devices, which improves the bioassay 

performances. Moreover, it provides a novel alternative for surface modification. 
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RESUMEN 

La presente tesis, titulada “Estudio de la modulación de los sustratos y anclaje de 

bioreceptores para el desarrollo de microarrays de alto rendimiento”, tiene como objetivo 

responder a las necesidades y desafíos relacionados con el desarrollo de mejores sistemas 

de detección. 

Por lo tanto, esta tesis doctoral se centra en el estudio de nuevas aproximaciones capaces 

de mejorar el rendimiento de los microarrays. Aspectos como la naturaleza de las 

superficies y las sondas, la funcionalización de los sustratos, la impresión, la 

inmovilización y la detección de las sondas se consideraron en el proceso de fabricación. 

Dentro de todas estas características, la modulación de la superficie y el anclaje de la 

sonda fueron los aspectos más desafiantes, ya que la interfaz es clave para la 

inmovilización de los receptores y la posterior detección, lo que determinará el 

rendimiento del dispositivo final. 

En este trabajo, se han desarrollado dos tipos de microarrays, uno para oligonucleótidos 

y otro para anticuerpos. Luego, se ha realizado una caracterización de los logros 

alcanzados. Todas las rutas tienen en común el uso de la luz para catalizar la unión de los 

biorreceptores en los sustratos de la superficie, empleando reacciones de la química clic. 

En el primer capítulo, se facilita una visión general del estado del arte de la tecnología de 

microarrays con un enfoque especial en los aspectos principales del diseño de 

microarrays. 

En el segundo capítulo, se establecen los objetivos de esta tesis doctoral. Estos objetivos 

generales se abordan en los siguientes capítulos experimentales. 

En el tercer capítulo, se estudia el efecto de la hidrofobia y el uso de sondas con múltiples 

puntos de unión, en el rendimiento del microarray. De este modo, se llevó a cabo la 

modulación de superficies vidrio con grupos alquenilo y alquinilo para el anclaje de 

sondas de oligonucleótidos mono y multitioladas mediante las reacciones de foto anclaje 

del tiol-eno y tiol-ino, respectivamente. Las superficies modificadas con el silano más 

hidrofóbico (alquinilo) y las sondas politioladas ancladas, revelaron mejores 

rendimientos. Estos sistemas de microarrays se aplicaron a la discriminación de SNPs y 

a la detección de productos de PCR de bacterias. 
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En el cuarto capítulo, se realiza un diseño racional para la preparación de microarrays de 

anticuerpos. El enfoque de inmovilización muestra el anclaje orientado de los fragmentos 

de anticuerpos que contienen tiol sobre superficies de vidrio alqueniladas mediante 

reacción de foto anclaje del tiol-eno. De esta forma, se demuestra la detección 

multiplexada de biomarcadores cardíacos. El microarray diseñado muestra una mayor 

capacidad de reconocimiento en comparación con los microarrays de anticuerpos 

completos. 

En el quinto capítulo, se ha desarrollado una nueva metodología para mejorar el anclaje 

de oligonucleótidos tiolados. Dado el interés en modificar superficies altamente 

hidrófobas, se establece una nueva reacción fotoinducida. Gracias a las características de 

la llamada "reacción de fotoacoplamiento de fluor-tiol", se logró la inmovilización de 

sondas tioladas a superficies que contienen enlaces C-F de una manera rápida, fácil y 

biocompatible con medios acuosos. La hidrofobicidad de las superficies se controló para 

obtener hibridaciones exitosas. Debido a la alta hidrofobicidad de las superficies, se logra 

un gran confinamiento de las sondas, lo que permite la aproximación de los analitos solo 

donde está unida la sonda, manteniendo una alta repulsión en la superficie restante. Las 

superficies de vidrio perfluoradas mejoraron las densidades de inmovilización y la 

capacidad de detección, con respecto a las superficies alqueniladas y alquiniladas, y 

también, permitieron la discriminación de SNPs y la detección de productos de PCR 

bacterianos. 

En el sexto capítulo, se exploran otras superficies diferentes al vidrio. Por lo tanto, 

membranas de fluoruro de polivinilideno se emplearon como sustratos para el desarrollo 

de microarrays de oligonucleótidos. Para ello, se desarrolló un proceso de 

funcionalización rápido, fácil y suave, mediante el empleo de irradiación UV y la química 

de los organosilanos. Luego, se aplicaron dichas membranas funcionalizadas con grupos 

alquenilo y sin funcionalizar a la tecnología de microarrays mediante anclaje covalente a 

través de las reacciones de foto anclaje de tiol-eno y fluor-tiol, respectivamente. Se 

obtuvieron resultados prometedores con ambas superficies. 

En resumen, la modulación de la respuesta química de los sustratos y los procedimientos 

de anclaje son las dos claves para mejorar la tecnología de microarrays. Este trabajo ha 

contribuido al progreso de nuevas plataformas de microarrays y al desarrollo de una 

nueva reacción fotoinducida. Finalmente, el hallazgo de la reacción de fotoacoplamiento 

de fluor-tiol, allana el camino para construir dispositivos más sensibles, lo que mejora el 
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rendimiento del bioensayo. Además, proporciona una alternativa novedosa para la 

modificación superficial.
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RESUM 

La present tesi, titulada “Estudi de la modulació dels substrats i ancoratge de 

bioreceptores per al desenvolupament de microarrays d'alt rendiment”, té com a objectiu 

respondre a les necessitats i desafiaments relacionats amb el desenvolupament de millors 

sistemes de detecció. 

Per tant, aquesta tesi doctoral es centra en l'estudi de noves aproximacions capaces de 

millorar el rendiment dels microarrays. Aspectes com ara la naturalesa de les superfícies 

i les sondes, la funcionalització dels substrats, la impressió, la immobilització i la detecció 

de les sondes es van considerar en el procés de fabricació. Dins de totes aquestes 

característiques, la modulació de la superfície i l'ancoratge de la sonda van ser els aspectes 

més desafiadors, ja que la interfície és clau per a la immobilització dels receptors i la 

posterior detecció, la qual cosa determinarà el rendiment del dispositiu final. 

En aquest treball, s'han desenvolupat dos tipus de microarrays, un per a oligonucleòtids 

i un altre per a anticossos. Després, s'ha realitzat una caracterització dels resultats 

aconseguits. Totes les rutes tenen en comú l'ús de la llum per a catalitzar la unió dels 

biorreceptores en els substrats de la superfície, emprant reaccions de la química clic. 

En el primer capítol, es facilita una visió general de l'estat de l'art de la tecnologia de 

microarrays amb un enfocament especial en els aspectes principals del disseny de 

microarrays. 

En el segon capítol, s'estableixen els objectius d'aquesta tesi doctoral. Aquests objectius 

generals s'aborden en els següents capítols experimentals. 

En el tercer capítol, s'estudia l'efecte de la hidrofòbia i l'ús de sondes amb múltiples punts 

d'unió, en el rendiment del microarray. D'aquesta manera, es va dur a terme la modulació 

de superfícies de vidre amb grups alquenil i alquinil per a l'ancoratge de sondes de 

oligonucleòtids mono i multitiolades mitjançant les reaccions de foto ancoratge del tiol-

doble enllaç i tiol-triple enllaç, respectivament. Les superfícies modificades amb el silà 

més hidrofòbic (alquinil) i les sondes politiolades ancorades, van revelar els millors 

rendiments. Aquests sistemes de microarrays es van aplicar a la discriminació de SNPs i 

a la detecció de productes de PCR de bacteris. 

En el quart capítol, es realitza un disseny racional per a la preparació de microarrays 

d'anticossos. L'enfocament d'immobilització mostra l'ancoratge orientat dels fragments 



Resum 
 

vii 
 

d'anticossos que contenen el grup tiol sobre superfícies de vidre alquenilades mitjançant 

reacció de foto ancoratge del tiol-doble enllaç. D'aquesta forma, es demostra la detecció 

multiplexada de biomarcadors cardíacs. El microarray dissenyat mostra una major 

capacitat de reconeixement en comparació amb els microarrays d'anticossos complets. 

En el cinqué capítol, s'ha desenvolupat una nova metodologia per a millorar l'ancoratge 

de oligonucleòtids tiolats. Donat l'interés de modificar superfícies altament hidròfobes, 

s'estableix una nova reacció fotoinduïda. Gràcies a les característiques de l'anomenada 

"reacció de fotoacoplament de fluor-tiol", es va aconseguir la immobilització de sondes 

tioladas a superfícies que contenen enllaços C-F d'una manera ràpida, fàcil i 

biocompatible amb medis aquosos. La hidrofobicitat de les superfícies es va controlar per 

a obtindre bones hibridacions reeixides. A causa de l'alta hidrofobicidad de les 

superfícies, s'aconsegueix un gran confinament de les sondes, la qual cosa permet 

l'aproximació dels anàlits únicament on està unida la sonda i manté una alta repulsió en 

la superfície restant. Les superfícies de vidre perfluorades van millorar les densitats 

d'immobilització i la capacitat de detecció, respecte a les superfícies alquenilades i 

alquinilades, i també van permetre la discriminació de SNPs i la detecció de productes de 

PCR bacterians. 

En el sisé capítol, s'exploren altres superfícies diferents al vidre. Per tant, membranes de 

fluorur de polivinilidé es van emprar com a substrats per al desenvolupament de 

microarrays d’oligonucleòtids. Per a això, es va desenvolupar un procés de 

funcionalització ràpid, fàcil i suau, mitjançant l'ús d'irradiació UV i la química dels 

organosilans. Després, es van aplicar aquestes membranes funcionalitzades amb grups 

alquenil i sense funcionalitzar a la tecnologia de microarrays mitjançant ancoratge 

covalent a través de les reaccions de foto ancoratge de tiol-doble enllaç i fluor-tiol, 

respectivament. Es van obtindre resultats prometedors amb totes dues superfícies. 

En resum, la modulació de la resposta química dels substrats i els procediments 

d'ancoratge són les dues claus per a millorar la tecnologia de microarrays. Aquest treball 

ha contribuït al progrés de noves plataformes de microarrays i al desenvolupament d'una 

nova reacció fotoinduïda. Finalment, la troballa de la reacció de fotoacoplament de fluor-

tiol, aplana el camí per a construir dispositius més sensibles, la qual cosa millora el 

rendiment del bioassaig. A més, proporciona una alternativa nova per a la modificació 

superficial. 
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1. Introduction 

 “Many techniques are available to provide information about the matter but no one 

analytical technique provides all the answers” Adapted from Susan Garrett's 

presentation. 

During centuries, the curiosity of human being to well understand the nature of the matter 

has led to the development of numerous analytical techniques. Despite the many advances 

made since antiquity to elucidate its composition, structure, physical properties, and 

reactivity, many authors agree with the great shift that all the chemistry and especially 

the analytical chemistry gave in the 1960s. This fact was mainly occurred due to the 

transition from the classical to the instrumental analysis. Unlike the classical analytical 

methods, in which a chemical reaction produces an appreciable physical change in the 

sample, the instrumental methods are based on the signal related to the analyte nature and 

quantity. This produced huge progress in the way to analyze the matter and allowed faster 

detections and much better sensitivity. In this period, a great improvement in the 

development of numerous separative, spectral and electroanalytical techniques, and the 

coupling between them was produced.1 As a consequence, the separation, identification, 

and quantification of an analyte could be often performed with the same instrument. 

Nonetheless, it must be considered that this breakthrough has been largely achieved 

thanks to the revolution of computers in the early '80s. Following that time, another key 

tool was incorporated into knowledge by fusing biological and chemical techniques, 

which led to the creation of biochemical and biosensing methodologies. 

It must be pointed out that all these advances have been carried out to respond to the needs 

and challenges that occur in society. Therefore, this growth is a permanent task to 

encompass the new necessities. Nowadays, there is a need to develop new analytical tools 

to detect the desired analytes within a complex sample. Properties as fastness, sensitivity, 

selectivity, robustness, size of the measuring device, reliability, reproducibility, 

multiplexability, simplicity, portability and cost-effectiveness, are required to reach an 

affordable methodology for detection and determination of targeted analytes. Besides, 

minimum sample pretreatment is important. Taking into account all the trailed 

parameters, there are many approaches to accomplish these features, but there are a lot of 

avenues to go and discoveries to be made.  
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Regarding these challenges, microarray technology emerges as an opportunity to embrace 

all these science branches (chemistry, biology, materials) and technology tools, as it 

enables multiplexed, high throughput analysis using small volumes of sample, 

miniaturization, and use of different detection modes, among others.  

All the features involved in the microarray are of outmost importance to improve the 

performance of such devices, from the solid substrate to the detection and data analysis. 

Therefore, the main aspects of microarray technology will be introduced, being the 

surface properties modulation and the immobilization approaches the most challenging 

tasks. Regarding the substrate modulation, surface properties are adjusted to the probes 

to be analyzed, given its importance in the applicability of the system. Also, many of the 

results demonstrated to microarraying can be applied to other assay formats, materials 

and detection strategies. 

1.1  Microarray technology  

Microarray technology is a term that denotes the miniaturization of thousands of assays 

in a small space.2 Thus, a microarray is merely an orderly arrangement of probes attached 

to a solid surface (Schena 1995).3 This fundamental principle was developed from an 

earlier concept called ambient analyte immunoassay, which was first presented by Roger 

Ekins in 1989.4 This theory stated that a tiny spot of purified antibody is able to detect 

analytes with a higher sensitivity than conventional macroscopic immunoassays.5  

Since the emergence of microarray technology, many advances have been reached. Due 

to the huge versatility and good properties, numerous researchers have taken its 

advantages for application to biomedical, agricultural, food and environmental fields, 

among others.6–8  

Although there are many approximations in microarray technology development, the 

working mode of a DNA microarray applied to gene expression analysis is displayed as 

an example. This methodology is based on the principle that complementary sequences 

will bind to each other. The use of this approach lets to compare the genetic information 

of two samples (i.e. infected or altered and healthy samples). Therefore, messenger 

ribonucleic acid (mRNA) is extracted from the tissues and converted to the more stable 

complementary deoxyribonucleic acid (cDNA). These long cDNA sequences are cut into 

smaller fragments and labeled with a marker, most frequently a fluorescent one. Then, 
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hybridization takes place onto the microarray substrate, which contains up to thousands 

of specific capture sequences. Complementary sequences bind to each other and the 

unpaired sequences are washed out. After reading, the fluorescence data are studied 

(Figure 1). 

 

Figure 1. Typical working of a DNA microarray using fluorescence as a detection system. Every 

spot of the microarray contains a specific sequence. Complementary sequences will bind to each 

other, allowing the DNA identification and quantification. 
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As presented in the layout, a biorecognition event occurs in a heterogeneous format, 

which means that more than one phase is involved in the process, unlike the homogeneous 

assays in which the receptor and target are in the same phase (generally in solution).   

Microarray technology has faced numerous challenges since its establishment, but it is 

still a very useful and powerful technique for many fields. The interest of researchers on 

the microarray technology and development remains high, attending to the number of 

publications on this topic. Figure 2 shows that this technology is mature and well 

consolidated. 

 

Figure 2. The number of publications per year in nucleic acid microarray technology since 1998. 

Data was extracted from SciFinder resources by searching the concept microarray, refining in the 

nucleic acid field, and categorizing by year. 

In addition, this technology shows numerous applications related to nucleic acids 

analysis, among others. Thus, it can be used in proofs-of-concept, discrimination of SNPs, 

detection of bacterial PCR products, biomarkers recognition, allergen identification, 

among many other procedures to be explored. 

In the next sections, the main aspects implicated in the preparation and working mode of 

the microarrays will be discussed.  

Annex 1, shows a scheme of microarray methodology, that can be useful during the 

reading of this thesis for a better understanding of microarray technology.  
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1.2  Considerations in microarray fabrication 

Design and fabrication of a microarray assay system is not an easy task, as numerous 

obstacles and challenges must be overcome. Thus, to follow the most appropriate 

methodology in the development of a microarray assay, a previous design of the 

procedure is required. In this section, the main aspects to be considered are discussed: the 

nature of recognition probes and targets, the nature of substrates, and patterning and 

detection techniques (Figure 3). 

 

Figure 3. Parameters to consider in the fabrication and design of a microarray. 

1.2.1 Nature of recognition probes and targets 

The selection of the proper probe is crucial in the development of microarray assays. The 

capacity of the receptor to recognize an analyte within a complex sample will strongly 

determine the performance of the microarray. Parameters as a high affinity towards the 

target, elevated selectivity to avoid unspecificity, and stability to conserve the activity 

intact, are required capabilities of the receptors.  

Below, microarray classification based on the nature of the probes used is established. 

Although different receptors are extensively employed for the fabrication of microarrays 

(such as nucleic acids, proteins, tissues, carbohydrates, peptide, etc.),9 DNA and protein 

are the most studied and applied microarrays and will be displayed in this overview of 

the state of the art. 

DNA microarrays are based on the sequence complementarity of two strands of nucleic 

acids, which allows the detection of specific sequences, and it is the most investigated 

microarray to date. 

Protein microarrays are based on probe interaction with different substances from low 

molecular chemicals to biomolecules such as proteins, peptides, DNA, and 

microorganisms (microbes, viruses, etc.). Thus, studying these interactions provides 
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information to establish the activity and the function of diverse systems. Within protein 

microarrays, many receptors are used, being immunoassay microarrays those studied in 

this work. 

Then, more detail will be paid in DNA and antibody microarrays. 

I. DNA microarrays 

Sustained by the huge advance in genome sequencing projects, DNA microarray 

technology became the pioneer application of this field. Thanks to the completion of the 

whole human sequencing, that encodes approximately 18,000 different genes, DNA 

microarrays have been extensively developed in fields as gene expression profiling, and 

genotyping, among others.10 The fundamentals of hybridization (complementary base-

pairing) were established by Ed Southern in 1975.11 DNA technology determines mRNA 

expression levels of thousands of genes in parallel, however, this technology possesses 

some limitations because mRNA profiles do not always correlate with protein 

expression.2,12–14 In addition, many parts of the genes have unknown or little-known 

functions that can even be vital for the human being.  

DNA microarrays can be classified into two main systems, oligonucleotides and double-

stranded DNA (ds-DNA) microarrays:15 

 Oligonucleotide microarrays employ single oligonucleotide probes that can be 

directly spotted or in situ synthesized (see section 1.2.4). These can be divided 

into short oligonucleotides (around 25-30 mer) and long oligonucleotides (around 

70-80 mer).16 

 dsDNA microarrays employ dsDNA probes made with double-stranded DNA 

molecules and are amplified by enzymatic reactions such as polymerase chain 

reaction (PCR). dsDNA probes are derived from known genomic sequence, 

shotgun library clones, or cDNA and are ≥ 500 bases in length.3,10 This approach 

allows the detection of transcription factors (TFs) or DNA sequences. In the last 

case, the double-strand is denatured in the printing buffer or after immobilization 

to allow the hybridization with a complementary sequence.10 

Some controversy is found regarding which system is more appropriate. There are studies 

comparing results using these two types of probes and investigating optimal probe length 

and number of oligonucleotide probes needed to achieve reliable expression data.15,17,18 
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It is demonstrated that short oligonucleotides increase the selectivity and decrease the 

sensitivity, unlike long oligonucleotides or dsDNA. Thus, the detection of 

polymorphisms is more affordable by using shorter oligonucleotides. To counteract the 

lower sensitivity of short oligonucleotides, the inclusion of a spacer in the probe to be 

anchored is a common procedure as it usually improves the hybridization signal.10 It is 

important to note that the design of probes is key to get successful results and avoid false 

positives due to non-specificity. 

To avoid misunderstanding, in DNA microarray, nucleic acid anchored to the surface are 

called probes, while nucleic acids to be detected are named targets.  

II. Antibody microarrays 

These systems are a specific form of protein microarrays, being the most representative 

model of analytical protein microarrays. These take advantage of the high selectivity that 

the antibodies present towards their antigen, the procedure is known as immunoassay.  

Antibody microarrays are an alternative to routine ELISA plate procedures since analysis 

times can be considerably reduced, increasing the working capacity.19 

The first immunoassay was developed in the 1950s becoming one of the most 

representative biorecognition assays.2,20 Immunoassays can be classified into a 

homogeneous and heterogeneous format. Heterogeneous immunoassays are produced in 

the interface, between the solid support and the solution. Therefore, the analyte and matrix 

can be separated. Homogeneous assays do not require physical separation between the 

analyte and the matrix; thus, interactions take place in the same phase. 

The nature of the antibody microarrays involves a heterogeneous format. Although there 

are direct and indirect competitive assays, non-competitive methods are presented here. 

In Figure 4, the main formats for antibody microarray recognition, “analyte-labeled” and 

sandwich assay, are displayed. “Analyte-labeled” assays allow direct detection of the 

proteins present in the samples. However, it requires the labeling of all the proteins in the 

sample. While, sandwich setup can improve the selectivity and sensitivity of the 

microarray, as a labeled secondary antibody recognizes a second epitope of the native 

protein.2 
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Figure 4. Two heterogeneous and non-competitive formats of antibody microarrays are 

presented: “analyte-labeled” and sandwich assays. 

To better understand these methods, a brief introduction of antibody nature and properties 

is done. An antibody is an immunoglobulin (Ig) protein that comprises two identical pairs 

of heavy and light chains. It contains a variable region whose paratope recognizes the 

epitope of its antigen and a constant fraction. To form the basic structure of the antibody, 

the light chain is bound to a heavy chain and the heavy chain is bound to the other heavy 

chain (hinge region) through disulfide linkage and non-covalent forces such as hydrogen 

bonds and hydrophobic interactions (Figure 5).  

The structural and molecular composition of the antibody varies depending on the 

class/isotype (e.g. IgA, IgD, IgG) and even in the subclass (e.g. IgG1, IgG2a, IgG2b, IgG 

3 and IgG4). Type G, expressed in mammals, is the most typical kind of immunoglobulins 

used in immunoassays. Its molecular weight is approximately 150 kDa and its molecular 

dimension is around 142 x 85 x 45 Å3. Even though, these proteins possess different 

functional groups in its chemical composition (e.g. carboxyl, amine, hydroxyl, sulfhydryl, 

alkyl, and aryl), molecular engineering modification to improve the anchoring capacity 

of the antibodies is usually undertaken.  

Nevertheless, to accomplish the development of this format assay, attachment of 

antibodies to a solid substrate is necessary. However, a lack of oriented anchoring, loss 

of activity, and low immobilization density of the receptors are often observed. Hence, it 

is important to develop techniques to overcome these limitations.21,22 
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Numerous studies compare random and oriented immobilization of antibodies over the 

surfaces, demonstrating that oriented anchoring usually provides better recognition 

capacity.21,23 For that, an oriented linking of the antibodies is pursued. However, it is hard 

to anchor such as huge biomolecules with little reactive and accessible groups. Thus, 

reduction of the antibodies into smaller fragments, using organic reagents or enzymes, 

and oriented immobilization, are the last tendencies in the fabrication of antibody 

microarrays.19,22,24,25 Then, an explanation of the main available antibody fragments is 

shown in Figure 5.  

 

Figure 5. A. Schematic structure of an IgG antibody. B. Classification of the different antibody 

fragments derived from the selective reduction of whole antibodies molecules. Data from Thermo 

Scientific resources. (https://www.thermofisher.com/es/es/home/life-science/antibodies/antibodies-

learning-center/antibodies-resource-library/antibody-methods/antibody-fragmentation.html). 

 F(ab')2 fragments (110 kDa) contain the two antigen-binding regions (paratopes) 

linked through the disulfide bonds of the hinge region. Thus, it holds a small portion of 

the Fc region. 

 Fab' fragments (55 kDa) comprise an only antigen-binding fragment, and free thiol 

groups remain in its structure. As it can be obtained by the reduction of F(ab')2, it may 

contain a slight amount of Fc fragment. 
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 Fab fragments (50 kDa) are similar to Fab’, excepting the free thiol motifs and the 

portion of Fc. 

 Fv fragments (25 kDa) comprises only the variable region of an antibody. They 

are the smallest fragment of an antibody and tend to dissociate easily due to the weak 

interactions (non-covalent bonding) that held both chains together. 

 Fc fragments (50 kDa) display different functions as fixation among others and it 

is easy to crystallize. This region is called a constant fragment, and it does not have 

antigen-binding activity.  

 hIgG fragments (75 kDa) are composed of a heavy and a light chain. When IgGs 

are exposed to selective reduction, disulfide bonds from the hinge region are fragmented, 

and two molecules of half IgGs with free sulfhydryl groups are produced. Note that 

disulfide bonds of hinge region are more accessible and easier to reduce, but especial care 

must be paid to avoid over reduction. 

As seen before, hIgG and Fab’ fragments display free thiol groups after reduction, which 

provide new functionality for its application to microarray technology. Selective 

reduction at the hinge region, to get hIgG fragments, and later oriented anchoring through 

free thiol groups, shows an interesting strategy to immobilize active and accessible 

epitopes and its application to microarray assays. 

1.2.2 Nature of the solid substrates 

Nature of the material, where the interaction probe-target occurs, is of great interest in the 

development of microarray technology, as chemical and physical properties of the 

surfaces will determine the performance of the definitive microarray assay. 

The solid support is the material area onto which the microarray is formed, and its role is 

critical to achieving an effective and reliable microarray patterning, and successful 

biorecognition. At this point, two aspects must be taken into account, the substrate and 

the functionalization layer. On the one hand, the nature of the substrate will determine the 

potential modification approximations of its surface. In addition, intrinsic properties such 

as autofluorescence and resistance will define further developments and applications. On 

the other hand, modification of the substrate will provide diverse functionalities and 

properties to the surface support. Properties as wettability and surface free energy will 

mainly control the quality of the spots.26   
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Because of the wide applicability of microarray technology, numerous substrates such as 

polymers, gold, carbon-based substrates, silicon-based materials on different 

presentations, have been investigated as supports for microarray production27 (Figure 6). 

Between them, glass slides are the most extensively used platforms. 

 

Figure 6. Classification of substrates for application to microarray technology. 

Its intrinsic properties and the wide availability of glass in research laboratories provided 

a wide expansion of this material since the early 1990s. Properties as low fluorescence, 

excellent surface flatness, chemical durability, inertness, and low cost, make it a very 

appropriate surface for microarray technology.28,29 Because of fluorescence detection is 

commonly employed in microarray assays, the low intrinsic autofluorescence of this 

material is especially important. In addition, the chemical stability of this support 

provides a good capacity to bear harsh conditions in the fabrication of the microarray. 

Also, the simple functionalization process of this substrate is another advantage, which 

will be stated below (Section 1.2.2.1). In figure 7, the typical chemical structure 

representation of a glass slide is shown.  

 

Figure 7. Surface chemical structure of a glass slide. 
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1.2.2.1 Surface functionalization  

As seen previously, the modulation of substrate surface properties is often needed prior 

to the application of the platforms to microarray technology. Thus, substrates undergo a 

more or less complex process to acquire the desired features, as a direct immobilization 

of the probes is not usually attainable. Hence, functionalization using organosilanes 

(silanization) appears as a widely used approach for biosensor and microarray 

implementation.30 This procedure has been extensively performed to modulate the 

properties of numerous substrates, such as silica-based materials, aluminum, copper, steel 

iron, and, of course, glass. 

In addition, to dispose of the required functional groups over the surface to accomplish 

the anchoring of the probes, other parameters such as surface wettability and 

hydrophobicity will determine the proper working of the microarray, in terms of 

immobilization and biorecognition to provide highly sensitive and specific detection 

yields. Up to now, the most extended strategies consisted of the blocking of the whole 

biofunctionalized surface previous the biorecognition step, to avoid the unspecific 

interactions with the rest of the surface. However, the use of these blocking agents, such 

as BSA and other reagents, often gives rise to high background signals.6,31–33 

At this point, two combined strategies appear as a solution to this problematic aspect. On 

the one hand, modification of surface wettability, using surface chemistry, to provide 

highly hydrophobic surfaces able to repel the unspecific adsorption, is pursued. On the 

other hand, effective anchoring of the bioreceptors to these surfaces is required. This way, 

confinement of the probes in very small and hydrophilic spots is achieved, which 

increases the immobilization densities of the receptors. This probe immobilization 

provides highly hydrophilic areas, only where the probes are linked, surrounded by a 

hydrophobic environment. Therefore, the analyte solution will be confined to these 

hydrophilic spots, which induces a specific approximation of the analyte to these regions, 

improving the sensitivity of the microarray. 

Going into more detail in the functionalization process, organosilanes features are 

detailed below (Figure 8). These chemical reagents have three key elements: the 

organofunctional group, the hydrolyzable groups, and the linker.  
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Figure 8. The general structure of an organosilane. These coupling agents act as a bridge between 

the substrate and the receptors to be immobilized. 

 An organofunctional group is a non-hydrolyzable group that imparts the 

functionality desired to the substrate. It can be reactive (e.g. amine, epoxy, sulfur, 

methacrylate, etc.) or non-reactive (e.g. alkyl, fluoroalkyl). 

 Hydrolyzable groups are divided into different categories, regarding their nature 

(alkoxy, acyloxy, halogen or silazane silanes), displaying distinctive chemical 

reactivity. Although alkoxysilanes are not the most reactive, methoxy and 

ethoxysilanes are the mostly used for surface modification, due to their easy 

handling, and low toxicity of byproducts. The function of these substituents is 

linking to the organic or inorganic substrate.  

 The linker acts as a spacer between the silicon atom and the organofunctional group, 

being mainly an alkyl or aryl chain. Its length will directly affect the later 

applications. Although the typical linker length is three carbon atoms, due to the 

good synthetic accessibility and thermal stability of the propyl group, some works 

employ different lengths to favor the required features.34 

Due to their dual reactivity, organosilanes work as a bridge between inorganic or organic 

substrates and organic/polymeric matrices. Here, we present organosilanes as the link 

between the platforms and the receptors of the microarray (Figure 8). Then, a detailed 

silanization procedure of a hydroxylated surface using trialcoxysilanes is shown in Figure 
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9.35 This process involves four steps that can occur in a simultaneous way after the initial 

hydrolysis step, and can be controlled by acidic or basic catalysis.  

 

 

Figure 9. Detailed silanization mechanism for the chemical modulation of surface properties. 

1. Hydrolyzable groups undergo hydrolysis to form reactive silanol groups. 

2. Silanols condense to form Si-O-Si motifs (oligomers). 

3. Formed oligomers interact with the OH groups of the substrate toward hydrogen bonds. 

4. Finally, a covalent bond is formed between the oligomers and the substrate during 

drying or curing, with loss of water. This permanent covalent bonding allows the use of 

these derivatives modulation of hydroxylated surfaces. 

During the silanization process, only a bond from each silicon of the organosilane to the 

substrate is prone to occur, remaining two silanol groups in the interface (in its condensed 
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or free form), that can react with its neighbors. This lateral cross-linking between the 

molecules of organosilane leads to the formation of Self-Assembled Monolayers 

(SAMs)30. Parameters such as temperature, solvent, and water content, are critical in the 

silanization process, as they will determine the formation of a monolayer or a multilayer 

and its thickness. Therefore, an exhaustive control of the conditions must be done to get 

a stable, homogeneous, reproducible and optimal surface density of the silane layer, 

avoiding an uncontrolled polymerization. The suitable orientation of silane molecules 

will allow the proper SAM formation. Finally, the R group stays available for further 

interactions. Generally, that functionalization process is mainly performed by dip coating 

or chemical vapor deposition techniques. 

There are many commercial organosilanes available in the market (i.e. Gelest 

https://www.gelest.com/, Dowsil https://www.antala.uk/new-brand-name-for-dow-

corning-dowsil/). In addition, because of the importance of this support, glass slides 

modified with different functionalities are commercially available for microarray 

development, among others. Not only functionalized substrates with silanes, such as 

amine, aldehyde, and epoxy motifs are existing. Polymeric coatings with 

polydimethylsiloxane (PDMS), PVDF, nylon, nitrocellulose polymers are available, as 

well. Sputtering of the slides with metals such as Au, Ag, Al, Cr, Cu, Ni, Ti elements is 

also performed. Even chips with coatings of avidin, streptavidin, and protein A/G systems 

are sold. These are some of the extensively fabricated and commercialized glass slides 

for microarraying in several companies, (i.e. Arrayit Corporation 

http://www.arrayit.com/), and which are very helpful in research.  

Another parameter to bear in mind is that hydroxyl groups are precise to undergo the 

silanization. Hence, the generation of these groups on the surface substrate prior to the 

functionalization process is required. Oxygen plasma and piranha solution treatments are 

mostly used for the activation process.36 These oxidative procedures allow the cleaning 

of the surface, as well as, remove the organic pollutants present on the platform. 

Nevertheless, other activation methods are pursued to improve the process regarding 

times, toxicity and surface damage. 

Besides the numerous works made about functionalization, Gelest guide37 provides a 

complete material about the functionalization process, surface properties as 

hydrophobicity and hydrophilicity, kinds of organosilanes, and solve other additional 

questions about this modification process.  



Introduction 

18 
 

Even though it looks a simple procedure, much attention and care must be paid in the 

process to achieve homogeneous and good quality substrates in a reproducible way. The 

right functionalization will determine the later performance of the microarray, affecting 

hugely to the immobilization and biorecognition stages. 

In addition to silanization, other chemicals such as organophosphonates,38 dextran 

hydrogels39, and dendrimers,40 which will not be reviewed here, provide interesting 

alternatives to the functionalization of glass slides with organosilanes. 

1.2.3 Probe patterning techniques  

Patterning of the substrates is another key step necessary to prepare complex 

microarrays.6,9,10,41–44 To achieve high density microarrays in a reproducible, reliable, 

robust and cost-effective manner is a demanding task. Spot uniformity takes place at this 

point, as a consistent size and shape of the spots are necessary, avoiding undesired 

phenomena as the coffee ring effect.45 This event produces an accumulation of the probes 

in the border of the drops during the drying procedure, which produces bad quality 

microarrays. Thus, the microarray performance will be determined by controlling the 

factors that affect the homogeneity of the spots, such as the sample, the humidity, the 

substrate surface, the printing system, and its features, etc.  

Regarding the probe to be immobilized, diverse strategies come into the fore. Figure 10 

shows the available techniques mostly employed for patterning of the surfaces. Probe 

patterning techniques are divided into two big groups, in-situ and ex-situ or spotting ones. 
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Figure 10. Most extensively used patterning techniques for microarray fabrication. 

 In-situ preparations are performed through the base by base synthesis, and they 

can be divided into photolithography or direct chemistry. These techniques provide high 

density microarrays, with a good resolution, which improves the lower density and 

resolution of spotted microarrays. However, the design and fabrication of these 

techniques are more expensive and time consuming. In addition, they are less versatile as 

they are only suitable for short oligonucleotide sequences. 

 Ex-situ or spotting techniques are based on the patterning of the probes over the 

surface, using robotic microarrayers. All these techniques are largely automatized and 

pursue the same goals: uniform deposition of small amounts of probes, reduction of probe 

consumption, and avoidance of contamination between probes. The volume delivered 

using these techniques is typically in the picoliter (10-12 L) or nanoliter (10-9 L) range. and 

allow low to moderate density microarrays. Nevertheless, there is no restriction in the 

sequence length, and they are cheaper than in-situ techniques. Within this procedure, two 

techniques are available for the deposition of the probes, and they are divided into contact 

and non-contact mechanisms.10,42,46,47 Figure 11 shows a scheme of both processes. 
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Figure 11. Schematic representation of contact and non-contact printing procedures. 

 

A. Contact methods require direct contact between the platform and the deposition device. 

The most useful deposition devices are the tips, that can be solids or hollows, and the 

micro-stamps. This methodology is very simple, however, contamination and damage 

of the deposition device or the platform can be produced.  

B. Non-contact methods reduce the inconvenient of contact methods regarding 

contamination and damage. In addition, they provide higher throughput. Within this 

technique, several printing mechanisms as thermal, piezoelectric, and electrospray 

printing are available.  

Then, a comparison between in-situ and ex-situ techniques is displayed in table 1, as the 

first ones are the most extensively employed in commercialized devices (e.g. Affymetrix 

chips).  
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Table 1. Advantages and disadvantages of the main microarray patterning methodologies. 

 Advantages Disadvantages 

In-situ techniques 

3,10,46 

Higher probe density 

Higher resolution 

Cost and time-consuming 

design/fabrication 

Only for short oligonucleotides 

sequences 

Ex-situ or spotting 

techniques 

10,42,46,47 

No restriction of sequence 

length 

Less expensive 

Lower probe density 

Lower resolution 

 

Given the characteristics of the present techniques, preparation of short nucleic acid 

microarrays can be done using both, in-situ or spotting techniques. However, spotting 

techniques are the only used for the patterning of protein microarrays because of its 

intrinsic properties does not allow to synthesize full-length proteins with high 

performance.5 

Once patterning of the substrates is performed, different strategies for the immobilization 

of the probes over the surface can be applied. At this time, surface and probe properties 

come into play, pursuing strong and oriented immobilization, without activity loss. In 

section 1.3, these parameters will be studied, and the main immobilization techniques will 

be settled.  

1.2.4 Detection mode 

A key step in the design and performance of a microarray is the detection and the assay 

format. For that, label and label-free techniques can be employed, depending on the 

features of the microarray and the available instrumentation. Recognition using labels 

requires a previous tagging of the target, giving place to indirect detection, while label-

free techniques provide a direct detection, as an interaction between the probe and the 

target is measured right away.48 In this section, some features of both strategies are 

discussed. 

The mostly used label techniques are based on isotopic,49 fluorescence,50 

chemiluminescence,51 and colorimetric detection,52 being radioisotopes one of the first 
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labels employed. However, nowadays it is not very extensively used due to its potential 

risk.53  

Fluorescent techniques are some extensively used approaches for the detection of 

biorecognition events. The procedure usually consists of the direct incubation with a 

labeled biomolecule. Properties as stability, easy handling, good sensitivity and wide 

dynamic range of measure, make of this technique a very appropriate detection approach 

in microarray technology. Commonly, it is less expensive and complicated than 

radioactive and chemiluminescent labeling. In addition, due to the broad amount of 

available tags, labeling with fluorophores displaying a different color allows multiplexed 

by cohybridization of different sequences in the same array.46 Main used fluorophores are 

cyanines Cy3 (λexc= 550 nm; λem= 570 nm), and Cy5 (λexc= 650 nm; λem= 670 nm), and 

AlexaFluor® and Atto® tags, being the last ones, more photo-stable. Special care must be 

paid onto the support, as negligible auto-fluorescence is required, and quenching events 

can occur. In addition, fluorescence attenuation with time happens, so immediate 

measurement has to be done.  

Colorimetric techniques are an alternative to fluorescence detection, providing a direct 

visual signal, which can be quantified by a standard documental scanner. One of the most 

extended procedures consists in the employment of an additional detection biomolecule, 

such as an antibody, which recognizes the analyte already captured on the surface. This 

biomolecule is usually labeled with HRP (Horseradish Peroxidase Enzyme) or Au. 

Finally, revealing with the corresponding substrate produces a dark precipitate after the 

catalytic reaction. When using the HRP enzyme, substrates such as TMB (3,3’,5,5’-

tetramethylbenzidine) or OPD (o-phenylenediamine dihydrochloride) produce the 

enzymatic reaction, while silver is the reference substrate to undertake the catalytic 

reaction with gold. Using these methodologies, additional reagents and steps are 

necessary, arising with additional inconvenient (Figure 12). 

It must be pointed out, that there are fluorescent HRP substrates, commercially available, 

such as Ample Red and QuantiFlu HRP reagent, as well; thus, an amplification of the 

signal would be achieved, with a counterpart increase of time. Nevertheless, these 

substrates have been mainly applied to ELISA plate methods, but not for microarray 

format.54 
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Figure 12. Some examples of fluorimetric (a and b) and colorimetric (c) detection schemes for 

microarray format are shown.  

Although labeled techniques are more widely used in microarray technology, a huge 

advance in label-free techniques has been done in the last years, due to the progress in 

nanotechnology among other reasons. 

Label-free optical detection methods are based on physicochemical changes that happen 

during the biorecognition step, being optical, electrochemical or mass alterations some of 

the most commonly analyzed parameters. This format allows a simplification of the 

process (fewer steps and reagents are involved) and a more continuous analysis, avoiding 

possible interferences produced in the recognition process by labels.6 Nevertheless, these 

techniques are less available in research laboratories, having more expensive and complex 

setups. Mass spectrometry (MS),55 dual polarization interferometry (DPI),56 quartz crystal 

microbalance (QCM)57 and surface plasmon resonance (SPR)58 are some of the most 

known label-free techniques, however, application to microarray technology is not always 

possible. Only some techniques, such as SPR and anomalous reflection of gold (AR), 

have been adapted to microarray purposes, allowing the imaging of the whole surface. 

Localized surface plasmon resonance (LSPR), was introduced in 2000,59 and extensive 
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advances have been done from then,60,61 having even commercial devices (Nicoya 

Lifesciences Inc.). For AR methods, a better spatial resolution is achieved in comparison 

to the SRP technique, but sensitivity is lower.48,62 Other less extended techniques are 

based on photonic crystals,63 surface-enhanced Raman scattering SERS64, and lens-free 

interferometric microscopy65,66 techniques, but they are still under development for 

microarray application. 

Although label-free techniques present a huge potential for the detection of biomolecular 

interactions, further developments are still necessary to reach the commercial viability of 

current labeling techniques. 

In table 2, a comparison between the label and label-free techniques applied to microarray 

technology is established. 

Table 2. Advantages and disadvantages of the label and label-free detection systems.48 

 Advantages Disadvantages 

Label 

Cheaper 

Easier handling 

Signal amplification 

The standard detection mode 

in microarray technology 

Indirect detection 

Requires the previous labeling 

Label-free 
Direct detection 

Less steps and reagents 

More complex and expensive setups 

Less available 

 

1.3 Anchoring strategies 

 “God made the bulk; the surface was invented by the devil.” Wolfgang E. Pauli 1900-

1958. 

Probe immobilization step is essential to develop a whole range of microarrays with high 

sensitivity and selectivity. This process will play a key role in the later performance of 

the microarray. Nevertheless, it is well known that tethering fallouts in activity loss and 

other negative factors, that will affect the quality of the microarray. For that, the choice 

of a suitable immobilization approach to achieve a high density of available receptors, in 
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an oriented, accessible, and stable way, is of outmost importance. In addition, reduction 

of functional activity damage and minimization of unspecific interactions is required. 

Regarding its main features, anchoring techniques can be divided into two categories; 

physical retention and chemical bonding. Figure 13 displays the main mechanisms of 

linking that will be discussed individually to select the best method for our purpose. 

 

 

Figure 13. Classification of the main immobilization techniques. 

 Entrapment: probes are trapped into a porous support, or a network, or membrane, 

usually by polymerization together with the monomeric solution. It is generally 

applied to cells and enzymes.67 

 Inclusion: probes are encapsulated inside a hydrogel (polymeric matrix) that 

allows the diffusion of analytes. Configuration and activity is preserved using this 

technique but mesh size has to be carefully customized.47 

 Adsorption: probes are fixed over the surface by hydrogen bonds, hydrophobic 

interactions and/or Van der Waals forces. This is a very simple methodology for 

tethering the probes to the surface. However, the desorption and random 

anchoring will reduce noticeably the sensitivity of the final platform.47,67–70 

 Covalent: probes are chemically anchored to the surface by covalent bonding, 

allowing very stable and durable detection platforms. Moreover, such 

immobilization favors a controlled immobilization process of the receptors. The 

Immobilization 
techniques

Physical 
retention

Entrapment Inclusion

Chemical 
bonding

Adsorption Covalent Electrostatic Affinity
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main drawback of this methodology is the need of a linker between the probe and 

the surface.47,67–70  

 Electrostatic: probes join to surfaces charged with cationic or anionic groups. 

Probes must provide the opposite charge for linking to the surface.71 Polylysine 

surfaces were the first employed for this purpose and, even commercial devices 

are available. This bio-compatible cationic polymer provides cationic surfaces, 

due to the protonation of amine groups in physiological media. It is usually 

applied to cells and DNA adhesion.72 

 Affinity: probes are immobilized by specific affinity interactions through 

molecules previously anchored to the surface. This methodology improves the 

orientation of probes, however, it is a more complex, expensive and time 

consuming approach. The most widely used procedure is based on biotin/avidin 

or biotin/streptavidin affinity, thanks to its very high affinity constants. In 

addition, conjugation of biotin through amine or carboxyl groups for biotinylation 

of proteins or other biomolecules is a simple and well-established method. 

Nevertheless, exist other based affinity methods such as protein A/G and 

lectins,47,68–70 very appropriated to immobilize antibodies and to produce chips 

with a regular response batch to batch. 

Once presented the characteristics of the main immobilization mechanism, interactions 

between the probes and the substrates, some advantages and disadvantages are 

summarized in table 3. 
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Table 3. Probe-platform interaction types, and advantages and disadvantages of the main 

immobilization procedures. 

Immobilization 

method 
Interaction types Advantages Drawbacks 

Entrapment Retention forces 
Simple 

No previous modification 

Low sensitivity 

Leakage 

Inclusion Retention forces Simple Pore size limitation 

Adsorption 

Hydrogen bonds 

Hydrophobic interactions 

Van der Waals forces 

Simple 

Minimal preparation 

Random orientation 

Desorption 

Efficiency 

Covalent 

bonding 
Chemical bonding 

Stability 

Durability (no desorption) 

Higher control in the 

immobilization orientation 

Highly specific 

Linker molecules 

Irreversible 

Electrostatic Ionic interactions 
Simple 

Strong anchoring 

Orientation fixed 

Limited applications 

Affinity Specific interactions 

Improved orientation 

Very good specificity and 

functionality 

Expensive 

Slow 

 

The selection of a strategy or another one depends on the nature of the probe and the 

support and the final applicability of the microarray. Within all these methodologies, 

covalent anchoring was chosen as the best option for the fabrication of the microarrays 

as it provides a robust link and allows to better control the immobilization process. Then, 

covalent bonding is presented in more detail.69  

 Chemisorption 

Within the covalent route, chemisorption appears as a methodology for the formation of 

covalent bonds between thiolated probes and gold surfaces (Au-S bond), due to the strong 

affinity between them. Thus, anchoring of thiolated molecules to surfaces containing gold 

is an interesting strategy, widely used in microarray technology, as produces successful 

immobilization results. In the past, it was employed by our group for the preparation of 

microarrays on low reflectivity compact discs having a thin layer of gold as a substrate.73  



Introduction 

28 
 

In addition, it is known the high reactivity of thiol groups to other metals such as silver, 

and its application to the functionalization of nanoparticles. Nevertheless, silver is too 

much reactive, which produces high backgrounds, restricting its employment in 

microarray technology.74,75  

There is some controversy on this topic, showing a lack of consensus with this 

classification. Nevertheless, covalent linking looks the most suitable category for this 

kind of bond.69 

 Covalent attachment 

This methodology allows the anchoring of modified probes to the substrates by a covalent 

bond. More attention will be paid in the different paths for the covalent immobilization 

of oligonucleotides and antibody probes. 

For oligonucleotide microarrays, covalent anchoring through functional groups at the end 

of 3’ or 5’ sequence is usually undertaken. The wide availability of functional groups is 

present in the market, being amine and thiol motifs the mostly used.70 Although covalent 

tethering usually provides very high immobilization densities, space between probes must 

be controlled. For that, optimization of this parameter to allow the approximation of the 

target to the anchored probe and avoiding the undesired crowding effect is required.  

For antibody microarrays, immobilization through amine groups in the side chain of the 

antibody (mainly lysine residues) is generally used due to its good reactivity to aldehyde, 

epoxy and carboxylic acids activated with carbodiimide in presence of N-

hydroxysuccinimide (NHS). However, even though a strong covalent bond is generated, 

the random orientation of the antibodies is achieved due to the high number of lysine 

residues present in the antibodies. Then, to get a site-specific immobilization of the 

antibodies, other procedures that require previous carbohydrate oxidation, carbodiimide 

activation or selective disulfide reduction from the hinge region, have to be 

employed.47,68,76  The last approach has displayed two main approximations. On the one 

hand, the previous selective reduction of the disulfide groups from the hinge region, and 

its later anchoring to gold surfaces by chemisorption.77 On the other hand, the direct 

antibody anchoring by the well-known LAMI (Light‐assisted molecular immobilization) 

technique. This technique is based on the excitation of aromatic amino acid residues next 

to the disulfide bonds at the hinge region by UV irradiation (~280 nm), which leads to 

the disruption of these disulfide bridges. Simultaneously, the free thiol groups generated 
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are tethered by covalent anchoring to surfaces containing thiol motifs. Both strategies are 

very interesting paths to accomplish a strongly oriented anchoring of half antibodies, 

under soft conditions.78 

Having said this, functionalization of glass slide surfaces previously to probes 

immobilization must be done to provide active functional groups. As seen in section 1.2.3, 

a vast variety of commercial organosilanes for the formation of silane SAMs is available, 

being –NH2, –COOH, –SH and epoxy functionalities, some of the most employed.30,79 

The main covalent attachment possibilities are collected in Table 4. 

Amine chemistry (–NH2): this functionality is widely employed due to its reactivity to 

carboxylic acid, aldehyde, and epoxy moieties, as said before. 

Carboxylic acid chemistry (–COOH): this way allows the anchoring of molecules 

containing amine groups, which means a good option for protein anchoring, among 

others. 

Thiol chemistry (–SH): thiol groups provide anchoring of thiolated molecules thorough 

disulfide bridge formation. An advantage of disulfide formation is the reusability of the 

platform, because of the reversibility of disulfide bonds. 

Epoxy chemistry: although it is a slow technique, it allows nucleophilic attack of several 

moieties such as hydroxyl, amine and sulfhydryl, and even oxidative reactions. 

Table 4. Combination of some functionalities, and the covalent bond generated between them. 

Functionality 

of the surface 

Functionality of the 

probe 
Covalent bond formed 

NH2 CHO, COOH, epoxy 
Imine, amide, 1,2-

amino-alcohol 

SH SH Disulfide bond 

epoxy NH2 1,2-Amino-alcohol 

COOH NH2 Amide 

N=C=S NH2, OH Isourea, urethane 

CHO NH2 Imine 

 

In Figure 14, some of the most extensively used immobilization procedures to the 

formation of a covalent bond, are displayed. 
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Figure 14. Some of the most employed covalent anchoring by classical methodologies, applied 

to microarray technology. A. Amide formation. B. Imine generation. C. Epoxy ring opening. D. 

Disulfide bond formation. 

Although covalent immobilization is broadly studied and employed for microarray 

technology, it presents the limitations explained beforehand. Then, the search of a 

procedure that overcomes all the requirements to achieve a successful site-specific 

immobilization for the later biorecognition in an easy, fast, oriented, and clean way, is 

still pursued. Therefore, photoinduced reactions appear as a pathway to prepare 

microarrays as they allow spatial and temporal control of the immobilization process 

under mild conditions. Nonetheless, not all the photoinduced reactions are adequate for 

this goal, so a deepening in the photoinduced reactions has been done. 

1.3.1 Photoinduced reactions and click chemistry 

Photoinduced reactions take advantage of light properties, allowing fast and site-specific 

immobilization. The huge amount of absorbed energy permits overcome energetic 

barriers, letting to transformations that would be otherwise inaccessible with thermal 

counterparts. The main advantages of photochemical reactions are their atom economy, 

as photons do not leave side products. They also allow milder reaction conditions and are 

usually greener than thermal processes. 

There are many kinds of photoinduced reactions, however, restrictive features for its 

application to microarray technology, are hunted. Features such as biocompatibility, high 

yields, simplicity and quickness to get successful immobilization, preserving probe 
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activity are required. Within all the available photoinduced reactions, those fitting in the 

characteristics of click chemistry reactions emerge as a worthy choice to accomplish these 

challenges, thanks to its numerous advantageous properties.  

Click chemistry reactions were introduced by Sharpless in 2001 to facilitate the synthesis 

of organic molecules using heteroatoms as linkers. The goal was to develop an expanding 

set of powerful, selective, and modular “blocks” that work reliably in both small and large 

scale applications80. Hence, the following characteristics were established as a must for a 

reaction to be cataloged as a click chemistry reaction: 

 Simplicity. 

 Orthogonality. 

 High efficiency. 

 Selectivity. 

 Mild conditions. 

 No side products. 

 No use of solvents or use of benign solvents. 

 Quantitative. 

Thus, some cycloadditions, nucleophilic ring-opening reactions, non-aldol type carbonyl 

reactions and additions to carbon-carbon multiple bonds, satisfy these requirements.81 

Every year, more advances are made using click reactions as a mediator in diverse fields 

(e.g. material science, pharmacological and biomedical areas). Thanks to its interesting 

properties, improvement, and development of new applications are made (e.g. dendrimers 

synthesis, surface modification, labeling, tetrazole synthesis, etc.).  

Within click chemistry, copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” 

reaction, is the most popular to date. This reaction produces a cyclic compound between 

an azide and an alkyne in the presence of a Cu2+ ligand as catalyzer and light as the 

photoinitiator. However, the use of catalyzers presents a drawback, and more concretely 

cupper compounds due to its biotoxicity. For this reason, a copper-free reaction has been 

developed using more active alkynes as the cyclooctynes.82  

Nevertheless, other click reactions such as Diels-Alder, Staudinger ligation, and thiol-ene 

coupling, have been applied not only to organic synthesis and functionalization of 

different materials but to microarray technology,83 as well. Due to its advantageous 
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characteristics, that fulfills the main features of click chemistry, they are a good option to 

incorporate in microarray developing.  

Within click chemistry, thiol-photoclick reactions are being studied in our research group 

for microarray application, being thiol-ene and thiol-yne coupling reactions the most 

interesting. We established the term “thiol-photoclick” to comprise a series of key 

photoreactions,34 which have in common the presence of thiol groups in the probe and 

the use of UV-light as a reactant. Thanks to the high reactivity of thiols, huge advantages 

of thiol-ene and thiol-yne coupling reactions over other click reactions are displayed. 

Their fast kinetics allows accomplishing high conversion in just 1 to 10 seconds.84 In 

addition, catalyzers are not necessary, and thiols can be activated by light directly, without 

the use of other photoactive compounds. This permits the patterning by using photomasks 

as the light triggers the reaction. Finally, the availability of thiol groups in the 

biomolecules and the chance of adding thiols chemically or by genetic engineering, make 

of these reactions appealing candidates when selecting the immobilization procedure.   

1.3.1.1 Thiol-ene and thiol-yne coupling reactions 

Thiol-ene and thiol-yne reactions are based on the addition reaction of a previous formed 

radical thiol to a double or a triple bond, respectively. These reactions undergo in aqueous 

media and can be initiated thermally and photochemically. Hence, both reactions are 

adequate for probe immobilization by covalent bonds in microarray format in an easy, 

fast, and guided way, taking the advantages of click chemistry. Besides, using a 

photoinitiation strategy, the anchoring is only produced where irradiation takes place. 

Making use of masks,85–87 a fast patterning can be achieved, which is of outmost 

importance for industrial fabrication. 

Although thiol-ene and thiol-yne reactions were not presented in the review of Sharpless 

in 2001, nowadays, they are recognized within the click chemistry because of its intrinsic 

characteristics.88 Nevertheless, high reactivity between thiols and electron-rich carbon-

carbon double bonds was well known since the early 1900s.89 Figure 15 shows the 

chemical mechanism of both reactions. 

The most remarkable difference between thiol-ene and thiol-yne reactions is that an only 

molecule of alkyne can react with two thiols groups. This provides higher densities of 
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immobilized probes for the second one if the steric hindrance of the system allows it. 

Nevertheless, the thiol-yne reaction is less extensively used.90–93 

Thiol-ene and thiol-yne reactions have been used in numerous fields such as optics, 

biomedicine, sensing, and bioorganic modification, being polymer chemistry94 and 

organic synthesis95,96 the main applications. However, advances in biomolecule 

immobilization through these reactions opened an interesting pathway in microarray 

technology.97 

 

 

Figure 15. Schematic mechanism of thiol-ene and thiol-yne reactions. Alkene motifs provide 

one anchoring point, while the alkyne group allows up to two thiolated molecules.  
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Before 2012, only a few studies had demonstrated the employment of thiol-ene or thiol-

yne reactions for the successful immobilization of different biomolecules in a microarray 

format. For example, Weinrich et al (2010),98 developed the anchoring of biotinylated 

molecules onto glass slides functionalized with thiol or alkene groups using thiol-ene 

coupling reaction. They also developed oligonucleotide microarrays but employing 

dendrimers as linkers. For the development of protein microarrays, a new strategy using 

farnesylated proteins, which provided available alkene groups, was developed by this 

group as well.83,99 Gupta et al. (2010), also developed protein microarrays but using 

hydrogels as substrate. Wendeln et al. (2010)100 developed glycoarrays by anchoring 

thiolated glycosides to functionalized glass slides (alkene and alkyne motifs).  

Nevertheless, these approximations show some drawbacks and limitations that must be 

solved, such as their applicability and fabrication time, among others. For that, further 

studies that permit a fast, direct, and clean anchoring of the probes were performed by 

our group. Different strategies were applied for the development of oligonucleotide 

microarrays onto silicon-based surfaces, using both, thiol-ene and thiol-yne coupling 

reactions. In the first work, Escorihuela et al. (2012),86 achieved the indirect 

immobilization of biotinylated oligonucleotides. For that, biotin derivatives with a double 

bond on their extreme are grafted onto thiolated surfaces by thiol-ene photocoupling 

reaction. Then, streptavidin molecules are employed to immobilize the biotinylated 

nucleic acid probes. In the second place, direct immobilization of thiolated and 

alkenylated oligonucleotides onto functionalized glass slides with alkene and thiol 

groups, respectively, was reached with successful results.101 Thirdly, anchoring of 

monothiolated probes to alkynylated silicon-based surfaces, reaching very sensitive and 

selective results was accomplished.87 Finally, both reactions were applied to 

oligonucleotide microarray fabrication, using other surfaces different from glass, as an 

acrylated-based polymer further modified with alkene or alkyne moieties, which 

improved the performance of the microarrays.102 Although these results are promising, 

there are numerous drawbacks in the microarray fabrication.  

As seen in the previous sections, better anchoring and recognition capacity must be 

achieved, using fast, clean and green chemistry procedures. In addition, these developed 

systems were only employed for the development of oligonucleotide microarrays, so 

application to other types of microarrays (i.e. proteins), is of outmost importance.  
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During the course of this thesis, scarce works about microarray fabrication using thiol-

ene or thiol-yne coupling reactions have been published by other groups, and none new 

thiol-photoclick reactions have been described. Nonetheless, some interesting works 

raised in this period are presented here. Buhl et al. 2015, settled an enzymatic system by 

microcontact printing. In this work, glucose oxidase and lactase are immobilized through 

their free thiols available, (i.e. cysteines) by thiol-ene reaction onto alkenylated glass 

surfaces. This allowed the detection of enzymatic activity under suitable conditions and 

their application to develop a lactose sensor.103 Jönnson et al. 2018, biofunctionalized 

microfluidic devices making use of a very similar approximation of Escorihuela et al. 

2012 (see above) to demonstrate a fast and simple patterning of different solid substrates, 

such as porous monoliths.104 Neumann et al. 2017, developed several glycopolymer 

systems using different carbohydrates. Modified carbohydrates displaying free thiols are 

immobilized by thiol-ene reaction onto a polymeric surface exhibiting alkenyl groups. 

This system is a useful tool for high-throughput analysis and quantification of multivalent 

ligand−protein interactions.105 But no new publications for antibody thiol-click 

attachment are approached for the moment. In brief, the application of thiol-photoclick 

reactions to other systems such as proteins is yet to be studied. 

1.3.1.2 Fluor-thiol photoclick reaction 

In the search of better performances of the microarrays, new surfaces and anchoring 

procedures have been studied. The main interests were the use of highly hydrophobic 

surfaces that repel unspecific interactions and confine the probes in very hydrophilic and 

small spots. For that, surfaces containing C-F bonds were foreseen in this thesis. 

Nevertheless, these platforms are quite inert, so a specific procedure to immobilize the 

probes must be designed and developed. Regarding the literature, C-F bonds can be 

cleavage in the presence of radical or strong oxidizing agents.106 In addition, we found 

inspiration in the para-fluoro-thiol “click” chemistry. In this reaction, the para position 

to perfluorinated aromatic compounds shows high reactivity to nucleophilic attack107–109 

(Figure 16). 



Introduction 

36 
 

 

Figure 16. Scheme of the para-fluoro-thiol “click” reaction. In presence of an oxidizing agent, a 

nucleophilic attack of the thiol group to the para-position of the perfluorinated aromatic 

compound occurs. 

Hence, fluor-thiol reaction arises as a novel photoclick reaction with potential in 

microarray technology in terms of immobilization and hybridization results, and low 

background. Using this approach, anchoring of thiolated probes to surfaces containing C-

F motifs could be achieved. This is of outmost importance as it would allow the 

modulation of very low reactive surfaces in a simple, clean and fast way. In this thesis, 

three different material surfaces containing C-F bonds were studied like substrates to 

demonstrate the versatility of this reaction: perfluorinated glass slides, polyvinylidene 

fluoride (PVDF) and polytetrafluoroethylene (PTFE) membranes. 

To conclude, this thesis is devoted to the study of new strategies for the surface 

modification and anchoring of different bioreceptors (nucleic acids and proteins) by light, 

due to the scarce exploitation of its potential in microarray. As a detection system, 

fluorescence and colorimetric techniques were employed.  

Accordingly, in the search of other strategies that improve the milestones already reached, 

four strategies are mainly addressed in this thesis. 

Firstly, multipoint attachment of polythiolated oligonucleotide probes, merged with the 

use of thiol-ene and thiol-yne (TEC and TYC) photochemical reactions, is an interesting 

strategy to improve the microarray performance. The multi-point attachment of probes 

can positively affect their orientation and hybridization performance. For that, the effect 

of having the probe sequence attached to the surface by one or several points will be 

comparatively studied. 

Secondly, due to the scarce application of thiol-photoclick reactions to other microarray 

systems out of nucleic acids, such as protein microarrays, attachment of other 

bioreceptors is pursued. These types of reactions are foreseen of good potential for the 

oxidizing agent 
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preparation of high-performance antibody-based detection systems. For that, the design 

and optimization of the anchoring method must be done. Then, making use of the 

available free thiols of an antibody after selective reduction at the hinge region, an 

oriented anchoring will be intended.  

Thirdly, modulation of the surface hydrophobicity is another parameter of outmost 

importance in microarray technology. The main goal is that the analyte approaches only 

to the anchored probe, avoiding the rest of the surface. Hence, the use of modulated 

surfaces with controlled hydrophobicity is postulated. This pretends the confinement of 

the probes in hydrophilic and small spots surrounded by a hydrophobic and repellent 

surface. Minimizing the background and the unspecific binding is then expected. This 

modulation can be done by physical (structuration) and chemical routes 

(functionalization) and both approaches will be explored.  

Fourthly, the search of new UV initiated reactions, based on the formation of radical 

thiols, that accomplish the main features of click chemistry, in combination with the 

surface modulation idea explained before can improve the performance of the system in 

terms of sensitivity, selectivity, background, unspecific adsorption, and versatility of the 

substrates. Therefore, the development of novel thiol-photoclick reactions for the 

anchoring of thiolated probes onto highly hydrophobic substrates was considered.  
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The general goal of the present thesis is to develop a rational design for microarray 

fabrication, which improves the current performances. This will be approached by two 

routes. On the one hand, the study of new immobilization routes of nucleic acids (NA) 

and IgG antibodies, by probe photoattachment. On the other hand, the study of chemical 

modulation of the surface hydrophobicity to let the analyte approximates only where the 

probe is immobilized, while repulsion over the rest of the surface is increased. Thus, the 

unspecific signal is reduced and the sensitivity of the microarray response is improved. 

This general objective is pursued through the following specific objectives: 

 To study the effect of multipoint probe attachment and surface hydrophobicity in 

the performance of NA microarrays generated using thiol-ene and thiol-yne probe 

coupling reactions. 

 To explore the applicability of the thiol-ene coupling reactions for fabricating 

antibody microarrays. To this end, a selective reduction of disulfide bridges at the 

antibody’s hinge region will be optimized. The oriented immobilization of 

antibody fragments through their hinge region will be done by thiol-ene coupling 

reaction. In such a way, its microarray performance will be compared to whole 

antibody microarrays. 

 To develop novel UV initiated radical reactions for the anchoring of thiolated 

biomolecules on highly hydrophobic surfaces. Modulation of the surfaces will be 

a key point in this task to allow successful immobilization and recognition 

procedures. 

 To analyze the applicability of the developed probe anchoring strategies to other 

substrates different than glass, such as organic polymer surfaces.
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As seen in the general introduction, nowadays, there is a continuous progress in the search 

of new approaches to respond the needs and challenges of the society. The requirement 

of identifying and quantifying targeted analytes within a complex sample, implies an 

advance in the development of new detection methodologies. Nevertheless, there is a lack 

of devices to get fast, sensitive, selective, reliable, and easy detection analysis. Thus, 

microarray technology appears as an interesting solution to accomplish these challenges, 

because of their features enables multiplexability, high throughput analysis, 

miniaturization, and portability, among others.  

Many aspects have to be taken in to account at the time of designing and preparing the 

microarrays, such as the nature of the probes and the targets, the nature of the solid 

substrates and its functionalization, and the patterning and detection approaches, as 

microarray performance and applicability will depend directly on these features.  

In this chapter, with the goal of improving the microarray performance, surface 

modulation and anchoring methodology are thoroughly studied, as these are the most 

critical steps in the preparation of a micorarray.   

Then, single and multipoint attachment of thiolated oligonucleotide probes, by the well-

known thiol-ene and thiol-yne photoclick reactions, is developed, using glass slides as 

substrates. To undertake the reaction, substrates are to be functionalized with alkenyl and 

alkynyl groups. 

Making use of probes with several anchoring points, a higher immobilization density is 

pursued, with an effect in the probe orientation, too. In addition, the use of photoclick 

reactions allow a site-specific immobilization of the probes in an easy and fast manner. 

Making use of UV irradiation, energetic barriers are overcome, which lets to 

transformations that would not be accessible under mild conditions. Finally, the use of 

more hydrophobic surfaces, induces a higher confinement of the probes and reduces the 

unspecific adsorption. 

As proof of concept, application of the developed systems to the discrimination of SNPs 

and the detection of bacterial PCR products, has been fully demonstrated.



 

 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Improved Performance of DNA Microarray Multiplex 

Hybridization Using Probes Anchored at Several Points by 

Thiol-Ene or Thiol-Yne Coupling Chemistry 

"Reprinted with permission from Bioconjug. Chem. 2017, 28, 496–506. Copyright 2017 

American Chemical Society." 
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ABSTRACT 

Nucleic acid microarray-based assay technology has shown lacks in reproducibility, 

reliability and analytical sensitivity. Here, a new strategy of probe attachment modes for 

silicon-based materials is built up. Thus, hybridization ability is enhanced combining 

thiol-ene or thiol-yne click chemistry reactions, with a multi-point attachment of 

polythiolated probes. The viability and performance of this approach was demonstrated 

specifically determining Salmonella PCR products up to 20 pM sensitivity level. 

 

1. Introduction 

The development of high-performance methods for the sensitive and selective detection 

of DNA and RNA targets has become a key point in biomedical and clinical studies,1 

agricultural, food and environmental fields.2-4 Among the working techniques, 

microarraying emerges as a tool showing parallel and high throughput assay capabilities.5  

However, both clinical and analytical metrics produced by microarray-based assay 

technology have recognized lacks in reproducibility, reliability and analytical sensitivity.6 

Most of these drawbacks are attributed to poor probe attachment and solid-liquid interface 

control.7  

Indeed, the success of microarray-based techniques depends on the good accessibility and 

functionality of the surface-bound probes, which closely relates to the chemistry of 

attachment (support nature, probe orientation, probe density, reproducibility).8,9 Many 

work have been developed in this field involving passive immobilization by adsorption 

forces,10 electrostatic interactions,11 affinity reactions12 and covalent bonding.13-15 But, 

nowadays there is still a need for better attachment modes providing high performance in 

the developed microarray; specially regarding sensitivity and selectivity. 

Generally, covalent binding is the preferred approach for the probe attachment, because 

it provides good stability and high binding strength, controlling also orientation and 

density of probes. However, it has several drawbacks as the need of linker molecules, 

slow procedures and crowding effects.7  

Despite the many methods described for microarray probe covalent anchoring; the most 

interesting reported approaches to overcome the abovementioned drawbacks, are those 

based on click chemistry reactions.16 Thiol-ene17,18 and thiol-yne19,20 coupling chemistries 

belong to this family, which are characterized by orthogonality, high yields, 

regioselectivity, compatibility with aqueous media, mild reaction conditions, use of 
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benign catalysts and solvents, and high reaction rates. The good performance of these 

coupling chemistries made them useful for many applications such as in polymers, 

dendrimers, bioconjugation and surface photografting.21-23 

However, few examples can be found employing these click reactions for microarray 

fabrication.24-30 Regarding thiol-ene coupling, the most interesting contributions are those 

by Waldmann and colleagues,27-30 but they are basically centered in the use of 

farnesylated proteins to induce surface photopatterning. Recently, we reported the use of 

thiol-ene31,32 and thiol-yne33 click reactions to couple monothiolated oligonucleotides 

onto alkenylated or alkynylated silicon-based surfaces in a direct, clean and quick way. 

The obtained DNA microarrays detected bacterial PCR products with high sensitivity and 

selectivity. 

Aiming to improve the performance of the fabricated microarrays even more, several 

important technical issues still remain challenging. These include reducing surface effects 

such as steric hindrance and electrostatic interactions and controlled arranging of the 

capture biomolecules in an oriented manner, providing a solution-phase-like environment 

for biorecognition.  

Recently, Morvan and colleagues34 reported rapid genotyping of hepatitis C virus using 

polythiolated probes. These probes developed in this study displayed an increased 

sensitivity in both in vitro ELOSA on maleimide activated plates and electrochemical 

assays on gold electrodes. 

Here, analogous polythiolated probes are used for the first time on silicon-based materials 

by thiol-ene and thiol-yne click chemistries to tether the nucleic acids in an optimal 

manner. The method should provide quick, fast, clean, environmentally friendly and 

optimally oriented probe immobilization. Thus, a new generation of microarrays is 

constructed where hybridization ability is enhanced due to the combination of click 

chemistry orthogonality and multipoint surface attachment of polythiols. In this way, the 

less hydrophobic surfaces can reach similar performance than the more hydrophobic ones 

just by multi-point attachment of the probe. Sensitivity and selectivity for real samples 

are evaluated by detecting Salmonella and Campylobacter PCR products. 

 

2. Experimental section 

Chemicals, Reagents, and Buffers. Silicon-based wafers were provided by Valencia 

Nanophotonics Technology Center (NTC) at Universitat Politècnica de València (Spain) 
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from SIEGERT WAFER GmbH (Aachen, Germany) as a 2 mm thick silicon oxide layer 

grown on a (1 0 0) silicon wafer. Glass microscope slides were obtained from Labbox 

(Barcelona, Spain). 

Allyltrimethoxysilane, vinyl trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane 

(GOPTS), propargylamine, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and 

silver developer solutions A and B were purchased from Sigma-Aldrich Química 

(Madrid, Spain). Toluene, 2-propanol, and formamide were purchased from Scharlau 

(Madrid, Spain).  

Oligonucleotide sequences Target A* and Target B were acquired from Eurofins 

Genomics (Ebersberg, Germany). Monothiolated oligonucleotide sequences T1.I*, T1.H 

and T1.Cam were acquired from Aldrich (Madrid, Spain). 

Polythiolated-modified probes T2.I*, T4.I*, T2.H, T4.H, T1.Sal, T2.Sal, T4.Sal, T4.Cam 

(Table 4) were synthesized on a 1 μmol-scale by standard phosphoramidite chemistry 

using a 394 ABI DNA synthesizer. Cy5 solid support was purchased from Link 

Technologies (Lanarkshire, Scotland). For the coupling step, benzylmercaptotetrazole 

(BMT) was used as the activator (0.3 M in anhydrous CH3CN) along with commercially 

available nucleoside phosphoramidites (dT, dABz, dCBz and dGtBuPac) at 0.075 M in 

anhydrous CH3CN introduced with a 20 s coupling time,1-O-(4,4′-dimethoxytrityl)-2-(6-

S-acetylthio hexyl oxymethyl)-2-methyl-3-(diisopropylamino β-cyanoethyl 

phosphoramidite)-propane-1,3-diol27 now commercially available from Chemgenes 

Corporation (0.1 M in anhydrous CH3CN) with a 60 s coupling time. The capping step 

was performed with phenoxyacetic anhydride using commercial solutions (Cap A: Pac2O, 

pyridine, THF 10/10/80 and Cap B: 10% N-methylimidazole in THF) for 60 s. Oxidation 

was performed with a commercial solution of iodide (0.1 M I2, THF/pyridine/water 

90/5/5) for 13 s. Detritylation was performed with 3% TCA in CH2Cl2 for 65 s. 

Table 4. Oligonucleotide sequences list, including functionalities. 

Name Sequence (5’ to 3’) 5’ end 3’ end 

T1.I* CCCGATTGACCAGCTAGCATT 1 SH Cy5 

T2.I* CCCGATTGACCAGCTAGCATT 2 SH Cy5 

T4.I* CCCGATTGACCAGCTAGCATT 4 SH Cy5 

T1.H CCCGATTGACCAGCTAGCATT 1 SH  

T2.H CCCGATTGACCAGCTAGCATT 2 SH  

T4.H CCCGATTGACCAGCTAGCATT 4 SH  
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Target A* AATGCTAGCTGGTCAATCGGG Cy5  

Target B AATGCTAGCTGGTCAATCGGG   

T1.Sal T4GATTACAGCCGGTGTACGACCCT 1 SH  

T2.Sal T4GATTACAGCCGGTGTACGACCCT 2 SH  

T4.Sal T4GATTACAGCCGGTGTACGACCCT 4 SH  

T1.Cam T4AGACGCAATACCGCGAGGTGGAGCA 1 SH  

T4.Cam T4AGACGCAATACCGCGAGGTGGAGCA 4 SH  

 

Protocol for deprotection. After elongation, the solid-supported S-acetylthiol-

oligonucleotides were treated with a solution of 10% piperidine in dry CH3CN in a 

continuous flow manner (5 mL over 15 min), before being washed with dry CH3CN and 

dried using a flush of nitrogen. Then, solid-supported thiolated oligonucleotides were 

treated with concentrated ammonia for 2 h at room temperature. The filtrate was 

withdrawn and evaporated affording the polythiolated probes. The residue was dissolved 

in 1 mL of water and washed three times with ethyl acetate to remove benzamide and tert-

butylphenoxyacetamide. After MALDI-TOF characterization (Table S1), the crude 

modified oligonucleotides were lyophilized and stored at -20°C. The structure of the 

thiolated probes can be seen in Figure S1 (Supporting Information) 

Milli-Q water 18 mΩ was used to prepare aqueous solutions. The buffers employed, 

phosphate buffer saline (PBS1x, 0.008M sodium phosphate dibasic, 0.002 M sodium 

phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.5), 

PBS-T (PBS10x containing 0.05% Tween 20), saline sodium citrate (SSC10x, 0.9 M 

sodium chloride, 0.09 M sodium citrate, pH 7) and washing solutions were filtered 

through a 0.22 µm pore size nitrocellulose membrane from Whatman GmbH (Dassel, 

Germany) before use. 

Digoxigenin-labeled PCR products from Salmonella were obtained in the laboratory, as 

previously described, 35,36 with a concentration of 546.38 ng/mL (5 nM) determined by 

fluorescence. 

Anti-digoxigenin recombinant monoclonal antibody from rabbit and goat anti-rabbit 

Alexa Fluor 647 antibody were purchased from Invitrogen Life Technologies (Carlsbad, 

CA). Gold labeled goat anti-rabbit was ordered from Sigma-Aldrich (Madrid, Spain). 

Instrumental methods. Surface activation was carried out with a UV-Ozone cleaning 

system UVOH150 LAB (FHR, Ottendorf-Okrilla, Germany). 
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Microarrays were printed with a low volume noncontact dispensing system from Biodot 

(Irvine, CA), model AD1500. 

Probe photoattachment was done with a mercury capillary lamp Jelight (6 mW/cm2, 

Jelight Irvine, CA).  

Contact angle measurements were carried out with Dino-Lite Microscope and image 

treated with Dino Capture software (Torrance, CA). The measurements were done in 

triplicate at room temperature with a volume drop of 5 μL employing 18 mΩ water 

quality. 

The fluorescence signal of the spots in the microarrays was registered with a homemade 

surface fluorescence reader (SFR),37 having a high sensitivity charge coupled device 

camera Retiga EXi from Qimaging, Inc. (Burnaby, Canada), with light emitting diodes 

Toshiba TLOH157P as light source. Microarray image treatment and quantification was 

done using GenePix Pro 4.0 software from Molecular Devices, Inc. (Sunnyvale, CA). 

Dual Polarization Interferometry studies were carried out with an Analight2000 device 

(Biolin Scientific, Stockholm, Sweden). Raw silicon oxynitride Anachips (Biolin 

Scientific) were employed and biofunctionalized as required in each case. 

MALDI-ToF mass spectra were registered on a Voyager mass spectrometer (Perspective 

Biosystems, Framingham, MA) equipped with a nitrogen laser. MALDI conditions were: 

accelerating voltage 24000 V; guide wire 0.05% of the accelerating voltage; grid voltage 

94% of the accelerating voltage; delay extraction time 700 ns. 1 μL of sample was mixed 

with 5 μL of a saturated solution of THAP in acetonitrile/water (1:1, v/v) containing 10% 

of ammonium citrate and few beads of DOWEX 50W-X8 ammonium sulfonic acid resin 

were added. Then, 1 μL of the mixture was placed on a plate and dried at room 

temperature and pressure. 

X-ray photoelectron spectra were recorded with a Sage 150 spectrophotometer from 

SPECS Surface Nano Analysis GmbH (Berlin, Germany). Non-monochromatic Al Kα 

radiation (1486.6 eV) was used as the X-ray source operating at 30 eV constant pass 

energy for elemental specific energy binding analysis. Vacuum in the spectrometer 

chamber was 9×10-9 hPa and the sample area analyzed was 1 mm2. Atomic Force 

Microscopy (AFM) measurements were carried out with a Veeco model Dimension 3100 

Nanoman from Veeco Metrology, (Santa Barbara, CA) using tapping mode at 300 kHh. 

Imagining was performed in AC mode in air using OMCL-AC240 silicon cantilevers 

(Olympus Corporation, Japan). The images were captured using tips from Nano World 

with a radius of 8 nm. All AFM images were processed with WSxM software.38 
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Surface chemical modification. Silicon wafers were cut into pieces of 2 x 1 cm2, cleaned 

with water first, then with 2-propanol and blow dried. Afterwards, they were placed in 

the UV-ozone cleaner, and irradiated for 7 min. The chips were functionalized 

immediately after activation. 

For alkenylation, activated chips were introduced into a solution of vinyltrimethoxy silane 

(2% v/v in toluene) for 2 h at room temperature. The chips were cleaned with toluene, 

then with 2-propanol, and blow dried with compressed air. Then they were baked at 

150 °C in an oven for 30 min. 

To introduce the alkynyl groups, the chips were immersed under argon atmosphere into 

a solution of (3-glycidyloxypropyl)trimethoxysilane (GOPTS) 2% in toluene for 2 h at 

room temperature. After 2 h, the chips were washed with 2-propanol and air-dried. Next, 

the chips were baked for 30 min at 150 °C and after cooling at room temperature, they 

were immersed in a solution of propargylamine 2% in toluene for 4 h. Finally, the chips 

were washed with 2-propanol, air-dried, and baked for 30 min at 150 °C. 

Probe immobilization studies. To perform this study, solutions of oligonucleotides T1.I*, 

T2.I* and T4.I* at 2, 1 and 0.5 µM were prepared in PBS1x from a starting concentration 

of 20 μM (50 μL of oligonucleotide 100 μM, 150 μL MilliQ water and 50 μL of TCEP 

0.1M in MilliQ water). 

These solutions were spotted (40 nL/spot, humidity set at 95%) onto the functionalized 

surfaces creating microarrays where each row contained 5 replicas (spots); the number of 

rows was nine (one row per oligo and concentration).  

The microarrays were then exposed to UV-light at 365 nm, with the lamp placed at a fixed 

distance (5 cm) from the slide, for 60 min to induce the immobilization (mono or 

multipoint attachment). Finally, slides were thoroughly rinsed with water and air-dried. 

By the SFR, fluorescence measurements let us to quantify the immobilization yield. 

Measurements were made by accumulation of emitted light by the samples during 15 

seconds with a device gain of 3. 

Hybridization studies. Solutions of oligonucleotides T1.H, T2.H and T4.H 0.1, 0.2, 0.4, 

0.5 1, 2, 3 and 5 μM were prepared in PBS1x from a starting concentration of 20 μM. For 

each type of oligonucleotide, a microarray was printed on a functionalized surface (5 

spots/row, 40 nL/spot, 8 rows, humidity set at 95%) using the robotic arrayer. The slides 

were then irradiated as before, rinsed with water, and air dried. Afterwards, 50 μL of 

Target A* (0.5 μM in SSC1x) were spread over the entire surface with a coverslip. After 
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incubation in a slim box for 45 min at 37 °C, the coverslip was gently removed and the 

chip washed with SSC0.1x and air dried. The fluorescence intensity of the spots was 

registered with the SFR as described above. 

Salmonella PCR products detection. Glass slides were cut in 2 x 1 cm2 pieces and 

activated and functionalized with alkene groups as described above for silicon surfaces. 

Then microarrays of probes T1.Sal, T2.Sal, T4.Sal at 2 μM in PBS1x, T1.I* as 

immobilization control, and T4.Cam as non-specific hybridization control (both at 2 μM), 

were printed and immobilized as described before. 

After irradiation, washing and drying, the chips were ready for hybridization. Firstly, they 

were pre-hybridized in SSC1x, 15% formamide, at 37 °C for 30 min. Then, 35 μL of PCR 

product (dilutions ranging from 1/10 to 1/100) in SSC1x, 15% formamide, were 

dispensed on the chips and spread out over the surface using a coverslip. The target PCR 

products were denaturalized at 95 °C for 5 min and then cooled down in ice for 2 min 

immediately before the hybridization. The chips were incubated at 37 °C for 60 min, then 

washed with SSC0.1x and air dried. 

For naked-eye detection, a mixture containing rabbit anti-digoxigenin antibody (1/10000) 

and gold labeled goat anti-rabbit antibody (1/100) in PBS-T were applied over the chip, 

and incubated for 30 min at room temperature. After washing with PBS-T, the chips were 

incubated with 20 μL of silver developer solution, and after 12 min, positive results (silver 

deposition) appeared on the microarrays. 

For fluorescence detection and quantification, 30 μL of anti-digoxigenin antibody 

produced in rabbit, 1/100 in PBS-T, were spread over the chip and incubated for 30 min 

at room temperature. After washing with PBS-T, 30 μL of Alexa647-labeled goat anti-

rabbit antibody, 1/50 in PBS-T, were incubated over the chip for another 30 min at room 

temperature. Finally, the chip was washed with PBS-T, water and air dried, and the 

fluorescence registered with the SFR. 

DPI hybridization experiments. Unmodified Anachips were functionalized with alkenyl 

or alkynyl groups as described before. One of the channels was used to immobilize T1.H, 

while the other channel was employed to attach T2.H in one case, and T4.H in the other 

case. The spatial selectivity for the probe tethering only on one of the two channels 

available was achieved by selective irradiation using a homemade photomask.  The chip 

was inserted in the device, and calibrated following fabricant instructions. The carrier 

buffer was SSC1x. Target B 5 μM in SSC1x was flowed over both channels for 25 min 
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at a flow rate of 10 μL/min. Afterwards, water (25 min, 10 μL/min) was injected to 

dehybridize. Then, a non-complementary strand (25 μM, 10 μL/min, 5 min) was flowed 

to assess the specificity of the recognition. 

 

3. Results and discussion 

The process of DNA hybridization at surfaces is a critical part of nucleic acid-based array 

technology and fundamental understanding of this process under relevant conditions for 

actual assays is currently very challenging. Thus, controlling probe density on substrates 

to further optimize probe-target binding kinetics is important. 

This will allow to develop new microarray surfaces with better performance within 

complex media. For the first time, a double control on the microarray performance is 

exerted by combining surface hydrophobicity tuning and multi-point probe attachment. 

The modulation of the hybridization capability allows detecting the presence of bacterial 

DNA and, at the same time, in the same chip, quantifying the microorganism level. 

Polythiolated oligonucleotides with and without Cy5 dye were obtained on a DNA 

synthesizer according to standard phosphoramidite chemistry, starting from nucleoside or 

Cy5 solid supports. After elongation of the sequence, the thiol functions were introduced 

with the same chemistry allowing a straightforward obtaining of mono and polythiolated 

oligonucleotides.34 The crucial point was to remove the cyanoethyl protecting group of 

the phosphate before deprotection of the thiol functions. Indeed, the acrylonitrile formed 

during classic ammonia treatment strongly reacts with a thiol leading to further unreactive 

thiol-cyanoethyl. For that purpose, the solid-supported thiolated oligonucleotides were 

firstly treated with piperidine allowing the selective removal of the cyanoethyl groups. 

Secondly, after washes, the ammonia treatment was applied for the release from the solid 

support and the deprotection of the oligonucleotide. Note that the thiol function rapidly 

oxidized due to oxygen dissolved in solvent leading to a disulfide bridge that should be 

reduced before immobilization of the mono and polythiolated oligonucleotides on a 

surface. 

 

Studies in microarray format. Before organosilanization, the silicon oxide chips were 

activated employing a UV-ozone cleaning system. Different exposition times were tried, 

and water contact angles measured. Finally, an activation time of 7 min was set (Figure 

S2, Supporting Information.). Immediately after activation, the chips were immersed into 
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a solution of 2% organosilane in toluene for 2 h, under mild stirring. In the case of alkenyl 

surfaces, two organosilanes were tried showing similar results, allyltrimethoxysilane and 

vinyltrimethoxysilane, we decided to use vinyltrimethoxysilane for further studies. In the 

case of alkynyl derivatization, after silanization, the chips were treated with 2% 

propargylamine in toluene for 4 h. The success in the surface functionalization was 

evaluated by measuring the water contact angle (Figure 1 and Table S2, Supporting 

Information). 

In this way, alkenylated and alkynylated surfaces were ready to immobilize mono, di and 

tetrathiolated oligonucleotide probes using thiol-ene and thiol-yne coupling chemistries. 

 

 

Figure 1. Scheme showing the different functionalization approaches providing alkyne and alkene ended 

surfaces, to attach mono-, di- and tetra-thiolated oligonucleotides. Water contact angles were measured for 

each surface to assess the progress in the derivatization 

 

Firstly, the mono and polythiolated probes were compared regarding their immobilization 

capabilities. For this, an array was created onto the functionalized surfaces containing 

T1.I*, T2.I* and T4.I* at three different concentrations (0.5, 1 and 2 μM). T1.I* stands 

for the monothiolated probe, while T2.I* and T4.I* correspond to the di- and tetra-

thiolated probes, respectively. All of them bore a fluorescence tag. Three replicas of each 

microarray were done and, after irradiating at 365 nm and washing, the fluorescence was 

registered and compared. The results are summarized in Figure 2, where immobilized 
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probe density is plotted against the spotted probe concentration for each attachment 

approach. The amount of immobilized probe was calculated from the decrease in the 

fluorescence signal after washings, and considering the printed volume (40 nL) and the 

area of the spots. 

 

 

Figure 2. Immobilized probe density (pmol/cm2) for mono (blue), di (red) and 

tetrathiolated (green) oligonucleotides onto alkenylated (thiol-ene coupling: TEC) and 

alkynylated (thiol-yne coupling: TYC) surfaces after irradiation at 365 nm for 1h. 

 

The conclusion extracted for alkenyl-terminated surfaces was that polythiolated probes 

immobilized more effectively on the surface than the monothiolated ones when the probes 

were spotted at low concentration (0. 5 and 1 μM). For alkynyl-ended surfaces, the three 

probes showed similar immobilization behavior, with no significant differences between 
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them for concentration of 1 and 2 μM, while at 0.5 μM concentration, the monothiolated 

probe exhibited a much lower density of immobilization. In all cases, the amount of 

immobilized probes was higher for thiol-yne coupling chemistry (30.52 pmol/cm2) than 

for thiol-ene one (13.27 pmol/cm2) (Table S3). 

Besides, the use of tetrathiolated probes reached the maximal immobilization density 

regardless the probe concentration used, whereas for the mono- and di-thiolated probes, 

higher probe concentrations were needed to achieve maximum immobilization densities. 

Experiments carried out by Raman spectroscopy and using the Ellman’s test did not show 

evidence of free thiol on the surface after the attachment. However, no conclusive results 

were obtained. The Ellman’s test was not sensitive enough to detect amounts of thiols in 

the order of our amounts. In the Raman spectra, the presence of other bands from the 

oligonucleotide structure overlapped the band at 2546 cm-1 specific for free thiols. 

As it is known, a higher immobilization density can render less effective hybridization 

yield.7 Thus, a new set of chips were functionalized and arrays of probes printed as before, 

but now using T1.H, T2.H and T4.H. These probes were similar to T1.I*, T2.I* and T4.I* 

but without the fluorescent tag. Microarrays with growing concentrations of probe (from 

0.5 to 5 μM) were printed. After irradiation at 365 nm for 60 min, and washing, the chips 

were hybridized with Target A* 0.5 μM in SSC1x for 60 min at 37 °C. The amount of 

hybridized oligonucleotide was determined interpolating the fluorescence intensity in the 

corresponding calibration curve (Figure S3, Supporting Information). What is explained 

on the basis of the higher surface hydrophobicity, which reduces the contact area and 

forces the probes to anchor the surface in a denser way. 

The hybridization densities were higher for thiol-yne coupling chemistry than for thiol-

ene coupling, indicating that the highest immobilization density still allows for the 

complementary strand to reach most of the probes, and there is not crowding effects.  

Thus, the immobilized probe density was double in thiol-yne than in thiol-ene coupling, 

and also the hybridization densities. However, the most important feature for our study 

was that in thiol-ene approach, the multipoint attachment of probes improved 

significantly the immobilization density and thus the hybridization with the 

complementary strand (Figure 3a).  

From the obtained data of immobilization densities for probes T1.I*, T2.I* and T4.I* at 

1 and 2 μM; and referring them to the values of hybridization density, it was possible to 

calculate the hybridization efficiency in each case. In Table 1, the estimated hybridization 

yields are shown. 
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a) 

 

b) 

 

Figure 3. Hybridization densities obtained for Target A* 0.5 μM in microarrays with 

growing concentrations of mono- (T1.H), di- (T2.H) and tetra-thiolated (T4.H) probes 

attached to the surface by means of a) thiol-ene coupling and b) thiol-yne coupling. In a) 

the dashed lines are for hybridization curves obtained under similar hybridization 

conditions, but for TH.1 and TH.4 irradiated for 2 h instead of 1 h. 

 

Regardless of the concentration of spotted probe (1 or 2 μM), the hybridization efficiency 

increased when the number of thiols contained in the probe grew. This feature was 

observed for both thiol-ene and thiol-yne approaches. However, it was enhanced in the 

case of thiol-ene coupling, where the hybridization yield increased from 54% for T1.H at 
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1 μM to 85% and 100% for T2.H and T4.H, respectively. In the case of thiol-yne 

approach, the effect was less pronounced due to the high yields obtained in all the cases. 

Thus, yields changed from 90% for T1.H (1 μM) to 98 and 99% for T2.H and T4.H, 

respectively. Same pattern was observed at the 2 μM concentration. 

In the case of thiol-ene coupling, longer reaction times did not lead to higher probe 

immobilization or better hybridization densities. Thus, irradiation times of 2 h instead of 

1 h provided hybridization yields very similar to that obtained for 1 h irradiation, for both 

TH.1 and TH.4 (Figure 3a, dashed lines) 

When analyzing the influence of the multipoint attachment in the molecular crowding 

effect, higher differences between thiol-ene and thiol-yne coupling were appraised. Thus, 

when comparing the hybridization percentages under saturation of probe, changing from 

1 to 2 μM, for T1.H, meant a decrease in hybridization efficiency, which lowered from 

53% to 42%. This fact, although, was not noticed for T2.H and T4.H, which even 

increased the hybridization yields (from 85 to 96% in T2.H). T4.H kept the maximal 

hybridization efficiency for both probe concentrations (Table 1). 

 

Table 1: Hybridization percentage referred to the immobilized density for a probe concentration 

of 1 and 2 μM, for thiol-ene and thiol-yne approaches and using mono-, di- and tetra-thiolated 

probes. 

 

Probe conc. (μM) Thiol-ene approach  Thiol-yne approach 

T1.I* T2.I* T4.I* T1.I* T2.I* T4.I* 

 Immobilized density (pmol/cm2) 

1 8.7 12.4 12.9 22.9 23.3 25.5 

2 13.7 12.7 13.3 30.4 29.5 30.5 

  Hybridization density (pmol/cm2) 

1 4.6 10.5 14.1 20.7 22.7 25.1 

2 5.7 12.2 15.1 21.2 23.4 26.0 

 Hybridization yield (%) 

1 54 85 100 90 98 99 

2 42 96 100 70 79 85 

 

The molecular crowding effect was also noticed using the monothiolated probe in thiol-

yne coupling surfaces, lowering the yield from 90 to 70%, when spotted concentrations 

of T1.H moved from 1 to 2 μM. Di- and tetra-thiolated probes showed also a slight 
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crowding effect. However, it was much lower than in the case of the monothiolated probe. 

Thus, the hybridization yield decreased from 98 to 79% in T2.H, and from 99 to 85% in 

T4.H. To assess reproducibility, the assays were done in triplicate, and repeated on 

different days. The intrachip RSD oscillated between 5% and 12%, meanwhile interchip 

RSD was in the range from 12% to 15%.   

AFM and XPS studies on alkene biofunctionalized chips were also performed before and 

after hybridization (Figures S4 and S5, Supporting Information). The results agreed with 

that observed in the microarrays, the amount of immobilized probe was higher for di and 

tetrathiolated probes than for monothiolated one.  

As conclusion, the use of di- and tetra-thiolated improved the performance of the 

hybridization, especially in the case of thiol-ene coupling surfaces or when the crowding 

effect acted. Briefly, there are two ways to improve the performance of a microarray: to 

focus on the surface functionalization and tune its features, or to link the probe using a 

multipoint attachment. Both options seem to be closely related to the configuration 

adopted by the probe once attached, which determines its bioavailability, and which is 

influenced by the properties of the surface itself (hydrophobicity, etc.) and the anchoring 

way.  

In order to look more deeply in the hybridization process for the different situations, a 

complete study was done using dual polarization interferometry (DPI). In this technique, 

the hybridization is monitored label-free in real time and thus, data about the mass surface 

density, the change in thickness and density are obtained. This can give some light on 

how the immobilized probes are set in each case, and the changes that they experience 

after hybridization. 

For that purpose, unmodified Anachips (containing two channels available for 

measurements) were derivatized with alkenyl or alkynyl groups. Taking advantage of our 

immobilization chemistry, the chips were functionalized with a different thiolated probe 

on each channel, using selective irradiation through a homemade photomask. Thus, a set 

of four chips were ready for DPI studies containing the following pairs of probes 

immobilized in the channels: Probes T1.H vs T2.H as well as T1.H vs T4.H by thiol-ene 

coupling chemistry and the pairs T1.H vs T2.H and T1.H vs T4.H anchored by thiol-yne 

coupling chemistry. In all the cases, the concentration of probe was 1 μM. For each chip 

the experiment was the same, after flowing hybridization buffer (SSC1x), Target B at 5 

μM was injected in both chips and flowed over for 25 min (Figure S6, Supporting 

Information). After flowing buffer for several min, water was injected to dehybridize and 
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a non-complementary strand was later flowed in order to assess the specificity in the 

hybridization. From the transverse electric (TE) and transverse magnetic (TM) plots, 

quantitative data were extracted, as mass density, volume density, refractive index 

variations, and layer thickness.  

Considering the immobilization density obtained from the microarray assays for 1 μM 

probe concentration, hybridization efficiencies were calculated in each case and 

compared with those obtained in microarray format. Trends observed in these DPI 

experiments were in agreement with the observed in microarrays. For thiol-ene coupling 

approach, the density of hybridized oligonucleotide rose as the number of thiol moieties 

in the probe increased. However, for thiol-yne immobilization, the hybridization 

efficiency remained constant regardless the number of thiols present in the probe. 

Interestingly, the same ratio of improvement in the hybridization efficiency was observed 

for both microarray assays and DPI experiments in thiol-ene coupling and thiol-yne 

coupling plots, when the number of thiols in the probes grew. 

Using DPI, in thiol-ene coupling to move from one to two points attachment in the probe 

increased the hybridization density 3.85-fold (in the case of microarray, it was 2.3-fold), 

and to move from one to four thiols improved it 4.4-fold (3-fold for microarray). In the 

case of thiol-yne immobilization, to change from one to two thiols raised the hybridization 

density 1.24-fold (1.07-fold for microarray assays); and 1.4-fold more hybridization was 

obtained when changing from one to four thiol groups (1.14-fold in the microarray). Thus, 

using thiol-yne approach, the number of thiol moieties in the probe did not enhance 

significantly the hybridization efficiency, as it was close to the maximal in all the cases. 

On the contrary, the use of polythiolated probes is very adequate when working with 

thiol-ene immobilization approach.  

Regarding DPI data interpretation, the results pointed towards a tilted probe 

immobilization, as was previously described,32 where the hybridization takes place also 

in planar orientation. It is supported by the values of thickness increase and density 

obtained after hybridization. As shown in Table 2, the thickness increase was very low 

and nearly constant for all the cases, about 0.3 nm, whereas the density increased 

considerably when mass was loaded on the surface by the effect of hybridization. 
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Table 2: DPI figures obtained for thiol-ene and thiol-yne coupling for T1.H, T2.H and T4.H after 

hybridization with Target B 0.5 μM. 

 Thiol-ene Thiol-yne 

 T1.H T2.H T4.H T1.H T2.H T4.H 

Refractive Index 1.36 1.41 1.43 1.49 1.50 1.53 

Thickness (nm) 0.33 0.34 0.29 0.28 0.32 0.39 

Mass (ng/mm2) 0.04 0.14 0.15 0.24 0.30 0.42 

Density (g/cm3) 0.11 0.42 0.53 0.87 0.94 1.06 

Mass* (pmol/cm2) 0.50 1.89 2.16 3.37 4.18 5.87 

*Calculated from the mass surface and considering a molecular weight for Target B of 7,127 g/mol 

 

Considering the theoretical density of a double stranded DNA, 1.7 g/cm3, the obtained 

densities would correlate with the following percentages of dsDNA after hybridization 

having one, two and four thiol groups in the probe, respectively: 6%, 25% and 31% for 

thiol-ene coupling approach, and 51%, 55%, and 62% for thiol-yne strategy (Table 3).  

 

Table 3: Probe immobilized density obtained from microarray assays, and hybridization 

efficiencies obtained in DPI experiments calculated considering the immobilized probe and the 

theoretical density of a double stranded DNA. 

 Thiol-ene Thiol-yne 

 T1.I* T2.I* T4.I* T1.I* T2.I* T4.I* 

Immobilized density 

(pmol/cm2)a 

8.08 12.6 13.11 22.9 23.3 25.5 

Hybridization yieldb (%) 6  15 17 12 15 20 

Hybridization yieldc (%) 6 25 31 51 55 62 

aMicroarray data for 1 μM of probe, bcalculated using the mass obtained in DPI, and the immobilized 

density determined by microarray, ccalculated using the density obtained in DPI and the theoretical density 

of a double stranded DNA. 

 

Nevertheless, taking into account that the amount of immobilized probe by thiol-ene 

coupling was half the immobilized probe reached by thiol-yne approach, we concluded 

that the four-thiol attachment enhances the performance in hybridization of thiol-ene 

coupling strategy, reaching the level of efficiency of thiol-yne coupling. This indicates 

that the control in the solid-probe-fluid interface can be done by using different surface 

chemistries, or by using probe multi-point attachment as well. 
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DPI experimental data suggest that the probes stand up in all cases for thiol-yne coupling 

attachment, while in the case of thiol-ene coupling attachment, the monothiolated probe 

lays down on the surface, and polythiolated probes stand up on the surface. This is 

determined by the theoretical thickness increase considering a perfect close packed 

dsDNA layer on the surface (when the surface coverage is less than 20%, the provided 

thickness is the averaged thickness, that is 0.20×Thickness dsDNA). Thus, when dividing 

the obtained experimental thickness by the hybridization percentage, the theoretical 

thickness obtained resulted 2 nm for all cases, except for the case of thiol-ene coupled 

monothiolated probe, whose thickness resulted 5.5 nm. This indicates that the probe, in 

the last case has been straightened much more that in the other cases, which means that it 

was much more tilted, laying down on the surface. This would difficult target 

accessibility, diminishing then the hybridization capability. 

It is worth noticing that DPI usually yields worse hybridization than microarray because 

the incubation time is shorter, 25 min instead of 1 h, and the flow can negatively affect 

the hybridization process. 

In Figure 4, the Transverse Electric (TE) variation is plotted is shown for hybridization 

of T1.H, T2.H and T4.H attached by thiol-ene coupling. The evolution of TE follows the 

same trend in the three cases but the change in TE is bigger as the number of thiols in the 

probe increases. 

 

Figure 4: Transverse Electric evolution during hybridization of 0.5 μM of Target B in DPI for 

immobilized probes T1.H, T2.H and T4.H (1 μM). Black arrows indicate the start and the end of 

the Target B injection in the channels. 
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PCR products detection 

Finally, in order to demonstrate the applicability of the developments for real samples, 

further experiments were done to detect PCR products of an innocuous specie of 

Salmonella. In this case, glass was used as solid support instead of silica. The reason was 

to assay colorimetric detection, which would allow naked eye identification without any 

instrumental detection.  

The functionalization proceeded in the same way as silica, as glass surfaces respond also 

very well to organosilane functionalization. Three glass chips were functionalized with 

vinyl triethoxysilane as before. Then each array was printed with the probes specific for 

Salmonella T1.Sal, T2.Sal, and T4.Sal, containing one, two and four thiol groups, 

respectively. Two sequences were also printed: the T1.I* as immobilization control and 

the T4.Cam targeting Campylobacter as a probe specificity control. Hybridization was 

carried out for 1 h at 37 °C with a 1/10 dilution of the PCR products corresponding to a 

500 pM concentration. 

After hybridization with Salmonella digoxigenin-labeled PCR products, two chips were 

incubated with a mixture containing anti-digoxigenin rabbit antibody (1/10000) and gold-

labeled goat anti-rabbit antibody (1/100). The microarrays were then developed with 

silver enhancer solution, showing a black precipitate only in the rows corresponding to 

T1.Sal, T2.Sal and T4.Sal (Figure 5a). 

The third chip was treated, after PCR products hybridization, with anti-digoxigenin rabbit 

antibody (1/100) in PBS-T for 30 min, washed with water and incubated again with 

Alexa647-labeled goat anti-rabbit antibody 1/50 in PBS-T for another 30 min. After 

washing, the fluorescence was measured (Figure 5b). Fluorescence signal could be 

observed for the rows T1.Sal, T2.Sal and T4.Sal, and for control T1.I* as well. 
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Figure 5. Microarrays on glass after hybridization with Salmonella PCR products. a) Colorimetric 

detection using silver development format and b) Fluorescence detection. First row corresponds 

to T1.Sal, row 2 corresponds to T2.Sal, row 3 corresponds to T4.Sal, row 4 is T1.I*, and row 5 

corresponds to T4.Cam, both controls. 

 

Fluorescence labelling allowed detection and quantification of the signal reached for each 

probe. We observed that the dithiolated probe enhanced the signal 10% related to the 

monothiolated T1.Sal, while tetrathiolated probe raised the signal up to 26% (Table S4, 

Supporting Information). Although good sensitivity was obtained for all probes, it was 

demonstrated again that multipoint probe attachment improved the hybridization 

efficiency, even for large DNA fragments such the current PCR products (150 bp). In 

addition, no hybridization was observed with the T4.Cam probe, demonstrating the 

selectivity of the hybridization and the absence of non-specific immobilization on the 

chip. 

Using colorimetric detection, further experiments with more diluted PCR products (from 

1/10 to 1/100) were done. Hybridization was detected up to dilution 1/40, which 

corresponds to a concentration of 125 pM. 

For dilutions below 1/40, only T4.Sal showed positive results. Thus, serial dilutions were 

done and assayed for the tetrathiolated probe, in order to determine the lowest 

concentration to be detected using the most sensitive probe (Figure S7, Supporting 

Information). Under these conditions, the probe hybridized with dilutions up to 1/240, 

which means a concentration of 20 pM. The selectivity of the probe of this concentration 

level was assessed including a control row with a tetrathiolated probe specific for 

Campylobacter bacteria. This probe didn´t develop positive assay for Salmonella PCR 

products but did for Campylobacter PCR products at 1/100. 
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As final demonstration of the applicability of the method proposed herein, a fluorescence-

based microarray assay was designed. In it T1.Sal, T4.Sal, T1.Cam, T4.Cam and T1.I* 

were immobilized as depicted in Figure 6a). 

This design would allow easy differentiation of samples containing higher and lower 

concentrations of Salmonella, and the same for Campylobacter (Figure 6b). These arrays 

were prepared and assayed (by duplicate) with samples containing PCR products of 

Salmonella and/or Campylobacter at different concentrations. The results obtained are 

shown in Figure 6c, where two plus marks were obtained for Salmonella 1/10, while only 

one plus mark was observed for dilution 1/60. The number and location of plus marks 

indicated the bacteria specie present in the sample (Salmonella, Campylobacter or both) 

and the concentration level (two plus marks for dilution up to 1/40, and only one mark 

for higher dilutions). 

 

 

Figure 6. a) Scheme of the designed microarray where rows are printed with immobilization 

control probe T1.I*, whereas columns are printed with monothiolated (2) and tetrathiolated (3) 

probes for Salmonella and monothiolated (4) and tetrathiolated (5) probes for Campylobacter (1 

μM) b) expected results for different situations with low or high concentrations of bacterial DNA 

in samples c) obtained results for samples without bacterial DNA (top-left), with low (top-right) 

and high (bottom-left) concentration of Salmonella’s DNA and with a mixture of Salmonella and 

Campylobacter PCR products (bottom-right). 
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4. Conclusions 

In this work, thiol-ene and thiol-yne coupling chemistries have been evaluated to attach 

mono and polythiolated probes onto alkenylated and alkynylated surfaces, respectively. 

Studies tackled by dual polarization interferometry and on chip microarray fluorescence 

format indicated that alkynyl terminated surfaces rendered higher immobilization yields 

than thiol-ene linking. Polythiolated probes were more effectively immobilized on the 

surface than the monothiolated ones. Closely related to the immobilized probe, the 

hybridization density was also double in thiol-yne approach. However, it was observed 

with the thiol-ene coupling chemistry that multipoint probe attachment improved 

significantly the immobilization density and thus, the hybridization yield with the 

complementary strand. This trend was also observed for thiol-yne coupling although less 

pronounced. Also, for hybridization of large DNA strands, such as real bacterial PCR 

products, the same behavior was noticed and detection was improved using multi-point 

attachment in thiol-ene approach. 

Consequently, there are two ways to improve the performance of a microarray; the first 

one is to focus on the surface functionalization, tuning surface properties such as 

hydrophobicity, and the second one is to control the surface-probe-fluid interface by 

multi-point probe attachment. Both approaches seem to be closely related to the 

configuration adopted by the attached probe, leading to its good availability for 

hybridization with  

PCR product. Considering these issues together when designing new microarrays could 

help to reach advanced performance in the hybridization assays. 

As demonstrated in the experiments, the created microarrays can be used with both 

colorimetric and fluorescence detection techniques. The first provides higher sensitivity; 

however, the second presents the advantages of lower number of steps and rapid readout. 

The flexibility in the detection approach would allow the development of an assay where 

the presence and concentration of bacterial DNA would be read by the naked eye. 
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Table S1: MALDI-TOF MS of oligonucleotides. 

 

Na 

 

Sequence (5’ to 3’) 

5’-
end 

3’-
end 

 MALDI-TOF MS 

   Found      Calculated 

T2.I* CCC GAT TGA CCA GCT AGC ATT 2 SH Cy5 7492.39 7492.90 

T4.I* CCC GAT TGA CCA GCT AGC ATT 4 SH Cy5 8087.05 8088.18 

T2.H CCC GAT TGA CCA GCT AGC ATT 2 SH  6961.80 6961.72 

T4.H CCC GAT TGA CCA GCT AGC ATT 4 SH  7558.47 7558.65 

T1.Sal T4GATTACAGCCGGTGTACGACCCT 1 SH  8539.43 8538.65 

T2.Sal T4GATTACAGCCGGTGTACGACCCT 2 SH  8836.13 8836.98 

T4.Sal T4GATTACAGCCGGTGTACGACCCT 4 SH  9432.95 9433.66 

T4.Cam T4AGACGCAATACCGCGAGGTGGAGCA 4 SH  10159.30 10159.13 

 

 

MALDI-TOF MS spectra 

T2.I* 

Maldi of 5’-SS-CCC GAT TGA CCA GCT AGC ATT-Cy5-3’ with NH4OH and Extraction 
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T4.I* 

Maldi of 5’-SSSS-CCC GAT TGA CCA GCT AGC ATT-Cy5-3’ with NH4OH and Extraction 

 

 

T2.H 

Maldi of 5’-SS-CCC GAT TGA CCA GCT AGC ATT-3’ with NH4OH and Extraction 
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T4.H 

Maldi of 5’-SSSS-CCC GAT TGA CCA GCT AGC ATT-3’ with NH4OH and Extraction 

 

 

T1.Sal 

Maldi of 5’-S-TTTT-GAT TAC AGC CGG TGT ACG ACC CT-3’ PUR 
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T2.Sal 

Maldi of 5’-SS-TTTT-GAT TAC AGC CGG TGT ACG ACC CT-3’ 

 

 

T4.Sal 

Maldi of 5’-SSSS-TTTT-GAT TAC AGC CGG TGT ACG ACC CT-3’ 
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T4.Cam’ 

Maldi of 5’-SSSS-TTTT-AGA CGC AAT ACC GCG AGG TGG AGC A-3’ 

 

 

 

Table S2. Contact angle values (º) obtained for each functionalization step. 

Raw 33 ± 2  

Ozone Activated ≈ 0 

Vinyl functionalized 68 ± 3 

Vinyl functionalized after baking 76 ± 2 

Glycidyloxy functionalized 51 ± 2 

Glycidyloxy functionalized after baking 56 ± 2 

Alkynyl functionalized 103 ± 2 

Oligonucleotide functionalized 50 ± 2 
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Table S3: Immobilization density for thiol-ene coupling (TEC) and thiol-yne coupling (TYC) 

approaches using mono, di and tetrathiolated probes, calculated by interpolation in the 

corresponding calibration curve. Immobilization yields calculated by the quotient of the actual 

density obtained and the theoretical density to be reached, assuming that all the probes in the spot 

are anchored to the surface. 

 
[Probe] 
M 

Theoretical Immobilization 

Dens. (pmol/ cm2) 

Immobilized Density (pmol/cm2) 

TEC TYC 

T1.I* T2.I* T4.I* T1.I* T2.I* T4.I* 

0.5 15.915 1.57 9.2 9 10.74 7.74 14.9 15.9 

1 31.83 8.66 12.38 12.87 22.9 23.3 25.45 

2 63.66 13.69 12.74 13.27 30.4 29.54 30.52 

  Immobilization Yield (%) 

  TEC TYC 

[Probe] M T1.I* T2.I* T4.I* T1.I* T2.I* T4.I* 

0.5 10 58 67 49 94 100 

1 27 39 40 72 73 80 

2 22 20 21 48 46 48 

 

 

 

 

Table S4: Fluorescence intensity and signal increase (referred to T1.Sal) for T1.Sal, T2.Sal and 

T4.Sal, after PCR products hybridization and development with anti-digoxigenin rabbit antibody 

and Alexa647-labeled goat anti-rabbit antibody. 

Probe Neat intensity (a.u.) Signal increase (%) 

T1.Sal 4903.3 - 

T2.Sal 5394.0 10 

T4.Sal 6192.3 26 
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Figure S1: Structure of thiolated probes with and without cyanine 5 (Cy5) dye. 
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Figure S2. Contact angle variation with the irradiation time for surface activation at 264 nm 

wavelength. 

 

 

 

 

Figure S3. Calibration curve for Target A* used in hybridization assays. 
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Figure S4: AFM Surface characterization of alkene-ended surfaces (topography 1.5x1.5 m), 

with a) mono-thiolated, b) dithiolated, and c) tetrathiolated probes attached, resulting rms values 

are also shown. d) –f) Characterization of those surfaces after hybridization with the 

complementary strand. 

 
 

 

 

 

 

 

Figure S5. XPS C1s deconvolution of alkene-ended surfaces, with a) mono-, b) di- and 

tetrathiolated probes (1 M) attached.  The increase in C-O peak contribution in b) and c) agrees 

with the higher probe immobilization detected by microarray. 
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Figure S6. Screen print of data obtained with Dual Polarization Interferometry for thiol-yne 

coupling immobilization. The DPI has three channels in each chip, T1.H was immobilized in 

Channel 1, and T4.H in Channel 3. Channel 2 is the reference channel and no liquid pass through 

it. 

 

1. Chip calibration 

2. Start injection of complementary strand (both channels) 

3. Ends injection 

4. Water injection for dehybridization 

5. Water injection ends 

6. Start injection of non-complementary strand (both channels) 

7. Ends injection of non-complementary strand 
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Figure S7. Results obtained for a microarray containing T4.Sal (1x4 spots) and T4.Cam (1x4 

spots) at 10 M, attached by thiol-ene approach, and hybridized with different dilutions (from 

1/40 to 1/240) of PCR products from Salmonella. The microarray was developed using digoxin 

labelled PCR products, incubating with anti-digoxigenin primary antibody from rabbit, and gold-

labelled goat antirabbit secondary antibody, and finally developing with silver enhancer solution. 

The images were taken with a conventional document scanner placing a piece of silicon on the 

back of the glass slide. Red arrows indicate the row that develop positive assay, and which 

corresponds to T4.Sal probe, T4.Cam did not developed black precipitate, as expected. 



 

 
 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Application of thiol-ene coupling 

reaction for the preparation of half 

antibodies’ microarrays 
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This chapter focuses on the development of protein microarrays as an alternative to DNA 

microarrays. Due to the limitations of DNA microarrays and the advances made in 

proteomics, protein microarrays appears as an alternative to overcome the current 

challenges. 

Within the protein microarray category, antibodies were chosen due to the wide 

applicability of these systems.  Nonetheless, as it is mentioned in the general introduction, 

an oriented anchoring, without loss of activity is hard to achieve. Thus, the following 

strategy is studied. Because of the successful results reached with the thiol-ene 

photocoupling reaction in the previous chapter, glass slides functionalized with alkenyl 

groups were employed. In addition, it is the first time that thiol-ene photocoupling 

reaction is applied to the development of antibody microarrays.  

At this point, free thiol groups are necessary to accomplish our goals. Therefore, a 

selective reduction of the hinge region is performed, providing the required motifs in the 

biorecognition probe. This way, half antibodies are anchored to the surfaces with the 

paratope accessible to the analytes. 

This work allowed the detection and quantification of interesting biomarkers with a 

higher performance than the whole antibody system. In addition, it opens the way to 

numerous biorecognition events, due to the great affinity and selectivity of the antibodies 

for its antigen.

 

  



 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Thiol-ene click chemistry towards easy microarraying of 

half-antibodies 

"Reproduced from Chem. Commun. 2018, 54 (48), 6144–6147 with permission from the 

Royal Society of Chemistry." 
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ABSTRACT 

A UV light-induced thiol-ene coupling reaction (TEC) between half-antibodies (hIgG) 

and vinyl functionalized glass surfaces was run for biosensing in the microarray format. 

The accomplished performance improved that obtained with whole antibodies.  

1. Introduction 

The thiol-ene coupling reaction (TEC) fulfills all the desirable requirements of a click 

reaction [1]. It is highly effective, proceeds in high yields under mild reaction conditions 

and does not generate side products. TEC is normally initiated by UV light, which induces 

the formation of a thiol radical that reacts with a carbon–carbon double bond and leads to 

a thioether. This reaction is extremely tolerant to a variety of functional groups and is 

orthogonal [2]. Moreover, it can be performed in aqueous media, which allows this 

methodology to be used for biomolecules [3,4]. All these features make the TEC reaction 

a very interesting methodology for the covalent immobilization of biomolecules in 

microarray format and for its use in biosensing. 

Liu et al. recently reported the use of thiol-ene click chemistry for an efficient and 

cysteine-selective thiol-ene click reaction-based bioconjugation strategy using colloidal 

nanoparticles [5]. They demonstrated its applicability with thiolated organic compounds, 

aptamers and enzymes (HRP), but not for antibodies, which is surely due to the difficulty 

of making free thiol moieties available in them.  

In line with our previous studies on the microarraying of thiolated oligonucleotides onto 

silicon-based surfaces by means of TEC [6–10], we envisioned the use of UV light-

induced thiol-ene coupling to pattern antibodies microarrays rapidly and cleanly. 

Immunoglobulin G antibodies (IgG) are the most prominent class of immunoglobulins 

employed in biosensing. They consist of four subunits, two heavy protein chains (H) and 

two light protein chains (L). The two halves are connected through the hinge region by a 

number of disulphide bonds, which depends on both the species [11] and the antibody 

subclass [12]. IgG immobilization is key in the development of sensing devices to detect 

analytes, such as proteins or drugs. IgGs can be immobilized either randomly or in an 

oriented fashion [13,14]. The latter is especially relevant for immunosensing applications 

since the antibody’s paratopes must be available for antigens to be captured. Several 

approaches are reported for the oriented immobilization of IgGs, of which the most 
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relevant are those that employ protein A or G [15,16]. Due to unique capabilities of the 

antibody microarray and its applicability in a range of biomedical projects, a series of 

different antibody microarrays have been developed, of which some have become 

commercially available [17]. However, regardless the rapid technological advances in the 

last years, there are still technical issues that need to be overcome to ensure high-

specificity and reproducibility of antibody arrays, to ensure high impact data and 

meaningful conclusions. The surface chemistry and the mode of antibody immobilization 

are within the experimental factors that may help to solve these problems.  

Besides the whole antibody, antibody fragments like Fab’ and scFv fragments can also 

be successfully employed as probes for immunosensing [18]. For the purpose of using the 

TEC approach to create antibody microarrays, we selected half antibodies (hIgG) as 

capture probes. Then the disulphide bonds bridging the two halves of an IgG must be 

properly reduced, which results in two half-antibodies that bear as many free-thiol groups 

as the disulphide bonds that exist in the hinge region [19]. hIgG have been reported to 

covalently link to maleimide-functionalized surfaces [20] and to chemisorb onto gold 

[21,22] and zinc [23] surfaces. However, a direct, rapid and efficient attachment of hIgGs 

on glass or other Si-based surfaces has not yet been reported. 

More importantly, none of the reported approaches allows the site-directed 

immobilization of probes. Thus we hypothesized the use of UV light-induced thiol-ene 

coupling for the reaction between the exposed sulfhydryl groups in hIgG and alkene 

functionalized glass surfaces. The new free thiol moieties generated by the reduction of 

antibodies would be available for reaction via TEC with alkenes attached to surfaces, 

which would allow them to be immobilized in an oriented fashion, and be ready to be 

employed in biosensing. Figure 1.  
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Figure 1. Reduction of Immunoglobulin G antibodies (IgG) to half-antibodies (hIgG) and their 

use to generate planar microarrays on alkene-functionalized surfaces. 

 

2. Experimental section 

Chemical, Reagents and Buffers. Glass microscope slides were obtained from Labbox 

(Barcelona, Spain). Triethoxyvinylsilane, tris(2-carboxyethyl)phosphine (TCEP), bovine 

serum albumin (BSA), human C-reactive protein (CRP) and bovine serum albumin 

polyclonal antibody (IgG αBSA) were purchased from Sigma Aldrich. The human C-

reactive protein monoclonal antibody (IgG αCRP) and Alexa Fluor 647 NHS ester, and 

NuPAGE™ Bis-Tris Welcome Pack, 4-12%, for SDS electrophoresis were purchased 

from ThermoFisher Scientific. Human cardiac troponin I (cTnI) and the human cardiac 

troponin I monoclonal capture antibody (IgG αcTnI) were ordered from Abcam. The 

human cardiac troponin I monoclonal detection antibody (IgG αcTnI) was obtained from 

Hytest and then labelled by the methodology described below. Toluene and 2-propanol 

were purchased from Scharlau. Ellman’s reagent 5,5′-dithiobis(2-nitrobenzoic acid) 

(DTNB) was acquired from Acros Organics. Milli-Q water with a resistivity above 18 

mΩ was used to prepare the aqueous solutions. The employed buffers were phosphate 

buffer saline (PBS 1x, 0.008 M sodium phosphate dibasic, 0.002 M sodium phosphate 

monobasic, 0.137 M sodium chloride, 0.003 M potassium chloride, pH 7.5), PBS-T (PBS 

1x containing 0.05 % Tween 20), acetate buffer (0.15 M sodium acetate, 0.01 M EDTA, 

0.1 M sodium chloride, pH 4.5) and bicarbonate buffer (0.1 M sodium bicarbonate, pH 

8.3). All the buffer solutions were filtered through a 0.22 μm pore size nitrocellulose 

membrane from Whatman GmbH (Dassel, Germany) before use. 
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Instrumental methods. Surface activation was carried out with a UV−ozone cleaning 

system UVOH150 LAB (FHR, Ottendorf-Okrilla, Germany). Microarrays were printed 

with a low-volume non-contact dispensing system from Biodot (Irvine, CA, USA), model 

AD1500. Probe photoattachment was done with the same UV-ozone cleaning system 

described above. Contact angle measurements were taken with Attension Theta Lite (by 

Biolin Scientific) and images were processed with OneAttension (version 3.1; Biolin 

Scientific). Measurements were taken in triplicate at room temperature with a volume 

drop of 5 μL employing 18 mΩ water quality. The fluorescence signal of the spots in the 

microarrays was recorded with a homemade surface fluorescence reader (SFR) [27], with 

a high-sensitivity charge-coupled device camera Retiga EXi from Qimaging, Inc. 

(Burnaby, Canada), equipped with light-emitting diodes Toshiba TLOH157P as the light 

source or with a GenePix 4000B Microarray Scanner (Axon instruments). Microarray 

image treatment and quantification were done using the GenePix Pro 4.0 software from 

Molecular Devices, Inc. (Sunnyvale, CA, USA). The concentrations of proteins and 

antibodies were determined by measuring the optical density at 280 nm in a NanoDrop 

ND 1000 Spectrophotometer (ThermoFisher Scientific, Wilmington, Delaware, USA). 

Reduction of IgG to hIgG. IgG in acetate buffer (0.15 M sodium acetate, 0.01 M EDTA, 

0.1 M sodium chloride, pH 4.5) at the 4 mg/mL concentration, in the presence of 25 

mmol/L TCEP, were incubated for 90 minutes at 37oC. The corresponding hIgG were 

purified by employing a 50 kDa centrifugal filter unit. The concentrations of the solutions 

were determined by a NanoDrop spectrophotometer. hIgG were characterized by 

Ellman’s assay and SDS-PAGE electrophoresis.  

SDS-PAGE electrophoresis. SDS-PAGE assays were performed using NuPAGE 4-12% 

Bis-Tris minigels under non-reducing conditions. Figure 2. Firstly, 5 μg of whole 

antibodies and antibody fragments were solved in 2.5 μL NuPAGE LDS sample buffer 

and water up to a volume of 20 μL. Then each sample was loaded to a well and gels were 

run at a constant voltage of 200 V for 35 minutes. After electrophoresis, gels were 

developed with Coomassie Brilliant Blue R solution for 1 h, washed with water milli-Q 

and destained 3 times with acetic acid/methanol (40%/10%) for 15 minutes until any 

excess staining was removed. Finally, gels were rehydrated in milli-Q water. 
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Figure 2. SDS-PAGE analysis of α-BSA, α-CRP and α-cTnI in the reduced and non-reduced 

forms. IgG antibodies show mainly the expected H2L2 bands, while hIgG antibodies display the 

corresponding HL, H and L fragments. 

Ellman’s assay. Ellman’s reagent (10-fold molar excess) was added to a solution of 3.5 

mg/mL in phosphate buffer and the resulting solution was stirred at room temperature for 

15 minutes. The formation of 2-nitro-5-thiobenzoic acid was quantitatively determined at 

412 nm with an extinction coefficient of 14,150 M-1cm-1. 

Surface chemical modification. Glass microscope slides were cut into pieces of ≈ 2 × 1 

cm2, cleaned with water and 2-propanol, and then air-dried. Afterwards they were placed 

in the UV−ozone cleaner and irradiated for 10 min at 254 nm. Subsequently, chips were 

immersed in a solution of triethoxyvinylsilane 2% in toluene for 2 h at room temperature. 

Finally, chips were washed with 2-propanol and air-dried before being baked for 20 min 

at 100°C.  

The surface was characterized by the WCA (water contact angle), with evidence for the 

presence of alkene groups on the surface shown in all cases. Figure 3. 
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Figure 3. The water contact angle for the surface a) before and b) after activation using UV light, 

c) for the surface functionalized with triethoxyvinylsilane and d) for the vinylated surface after 

the baking step. 

Labelling probes with Alexa Fluor 647 (BSA, αBSA, CRP, αcTnI). Firstly, 1 mg of protein 

was dissolved in 0.1 mL of bicarbonate buffer. Amine-reactive Alexa Fluor 647 (0.1 mg) 

was dissolved in 0.01 mL of DMSO and the resulting solution was immediately added to 

the solution of protein while stirring. The resulting mixture was protected from ambient 

light and stirred at room temperature for 1 h. The reaction mixture was purified by 

employing 30 kDa centrifugal filter units. The concentration and the label to probe ratio 

were determined by spectrophotometry. 

Photoimmobilization procedure. hIgG microarrays were printed over the previously 

functionalized glass chips with the low-volume non-contact 

dispensing system from Biodot. The buffer employed was acetate buffer (0.15 M sodium 

acetate, 0.01 M EDTA, 0.1 M sodium chloride, pH 4.5), and 25 nL/spot were employed 

for the microarrays read with the microarray scanner, while 50 nL/spot were dispensed 

for the microarrays read with the SFR. The microarray had 4 spots per row and in both 

cases only one drop was printed on a single spot. 

Five minutes after printing, chips were irradiated for 5 seconds with UV light (λ = 254 

nm) with the UV-ozone 

cleaner. Afterwards, chips were stored in the dark for 10 minutes and then washed with 

PBS-T, rinsed with water and dried. They were subsequently incubated in the dark with 

a) b)

c) d)



Chapter 4 

111 
 

the labelled probe dissolved in 10% human serum for 30 min at ambient temperature. 

After washing with PBS-T and water, the fluorescence of the dried chips was measured 

by either the SFR or the microarray scanner. With the sandwich immunoassays, an 

additional 30-minute incubation step was run with the corresponding labelled detection 

antibody solution. 

 

3. Results and discussion 

Anti-bovine serum albumin polyclonal antibodies (IgG αBSA), anti-human C-reactive 

protein monoclonal antibodies (IgG αCRP) and anti-cardiac troponin I monoclonal 

antibodies (IgG αcTnI) were chosen as capture probes for microarraying. hIgG were 

obtained by treating the commercially available whole antibodies with tris(2-

carboxyethyl)phosphine (TCEP) [19,24]. When employing other reductants, such as 

mercaptoethylamine (MEA), over reduction occurred, and additional disulphide bonds 

between light and heavy chains were cleaved, which led to loss of recognition capability. 

For the case of TCEP several temperatures, times, and concentrations were assayed. The 

chosen conditions were those providing the best biorecognition capability of the 

immobilized hIgG. The hIgG generated by TCEP reduction were characterized by SDS-

PAGE electrophoresis (Figure 2). Additionally, in order to determine the available 

number of free thiol groups after reduction, hIgG were subjected to Ellman’s assay [25]. 

This experimental procedure showed that the polyclonal hIgG aBSA prepared by TCEP 

reduction bore 3.7 free sulfhydryl groups while monoclonal hIgG acTnI had 2.6 thiol 

groups. These values agree with the average number of disulphide bridges in the hinge 

region for the rabbit polyclonal and mouse monoclonal IgG2a subtype, respectively [26]. 

Besides, the maintenance of the recognition ability indicated that the link between H and 

L was not disrupted.  

Due to the presence of free thiols after the cleavage of disulphide bonds, the new 

generated hIgG were used for UV light-induced thiol-ene coupling (TEC) on vinyl-

functionalized glass surfaces. Glass slides were activated by UV light irradiation and were 

subsequently functionalized by immersion in a solution of triethoxyvinylsilane in toluene 

(2%; 2 h), which led to an alkene coated surface. The water contact angle (WCA) 

increased from 24° for the non-functionalized surface to 77° for the organosilane coated 

chip (Figure 3).  
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The bovine serum albumin (BSA)/rabbit polyclonal hIgG αBSA system was selected as 

the model system to optimize the methodology. Thus freshly protein A purified 

polyclonal IgG αBSA was reduced with TCEP to the corresponding hIgG. Alexa Fluor 

647-labelled hIgG αBSA was dispensed over the vinyl-functionalized glass chips at 

different concentrations (0–20 µg mL-1). Then chips were irradiated for 5 s at 254 nm and 

were subsequently washed. By measuring the fluorescence emission with a homemade 

surface fluorescence reader (SFR) [27], the immobilized probe density was determined 

as 2.36 ± 0.18 pmol cm-2 which corresponds to the maximum theoretical immobilization 

density for a half-antibody by assuming that the dimensions of an antibody are ca. 15 × 

5 × 5 nm3.  

Several hIgG αBSA solutions at different concentrations (between 25 and 500 µg mL-1) 

were microarrayed over the vinyl-functionalized glass chips, and irradiated with UV-light 

to induce TEC. Whole IgG αBSA antibodies were also immobilized for comparison 

purposes. After washing, chips were subsequently incubated for 30 min in the dark with 

different solutions of freshly prepared Alexa Fluor 647-labelled BSA (BSA*). The 

fluorescence of the cleaned and dried chips was measured with the SFR. hIgG performed 

significantly better than the corresponding whole antibodies in all cases. The fluorescence 

intensity of the signal obtained for hIgG was 7-fold stronger than the signal obtained for 

the immobilized IgG. When comparing to the performance of a standard microarray 

created by immobilizing the IgG onto an epoxylated surface, the fluorescence obtained 

for our microarray was up to 4-fold higher than for the case of the reference microarray. 

The control experiments done in the absence of UV-light showed that irradiation was 

needed for the TEC reaction to take place and to immobilize the hIgG. Figure 4. Under 

these experimental conditions, the sensitivity assay showed that the system can detect up 

to 0.2 µg mL-1 of labelled BSA when the hIgG is immobilized at concentrations that equal 

or were higher than 50 µg mL-1. Figure 5. The reached sensitivity fell within the limit of 

detection (LOD) that was intrinsic to the detection system employed and the obtained 

BSA labelling ratio. The density of labelled protein retained on the surface by the 

immobilized hIgG resulted 1.54 picomol cm-2, which provides a 65% of biorecognition 

yield from the attached probes. 
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Figure 4. Fluorescence intensities recorded for the microarrays obtained by spotting hIgG αBSA 

and IgG αBSA at the 200 µg mL-1 concentration for the chips irradiated at 254 nm for either 0 or 

5 seconds, and the subsequent incubation with 5 µg mL-1 Alexa Fluor 647-labelled BSA. 

 

 

Figure 5. Fluorescence intensities recorded for the microarray of hIgG αBSA at different 

concentrations, incubated with decreasing concentrations of Alexa Fluor 647-labelled BSA. The 

bar graph represents the data for the arrays of hIgG αBSA immobilized at 150 µg mL-1. 

Once the BSA/polyclonal hIgG αBSA model system was fully optimized, the 

methodology was applied to detect analytes of clinical interest, C-reactive protein (CRP) 

and cardiac troponin I (cTnI). CRP is an annular pentameric protein found in blood 

plasma, whose levels rise in response to inflammation. The sensitivity of the CRP assay 

using the corresponding monoclonal hIgG was determined by preparing microarrays and 

incubating them with different concentrations of Alexa Fluor 647 labelled CRP (CRP*, 
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in 10% diluted human serum, following the procedure described for the BSA system). In 

this case, system performance was assessed by employing a commercially available 

microarray scanner to avoid the LOD constraints associated with the SFR (when 

employing the microarray scanner for the BSA/hIgG αBSA model system the sensitivity 

reached was 2.3 ng mL-1). The minimum concentration detected under these experimental 

conditions was 2 ng mL-1 for a hIgG aCRP microarray generated by TEC when employing 

a 50 mg mL-1 concentration of half-antibody. Figure 6. 

 

Figure 6. Sensing curve for recognizing the Alexa Fluor 647 labelled C-reactive protein (CRP*) by 

the hIgG aCRP microarray generated by UV-light-induced thiol-ene coupling for a 50 µg mL-1 

solution of half-antibodies. 

The immunodetection of cTnI was also carried out. cTnI is a cardiac and skeletal muscle 

protein considered to be the most sensitive and, significantly, the most specific marker in 

myocardial infarction diagnosis [28]. Due to the fact that cTnI is most unstable to buffer 

changes, and it could not, therefore, be labelled with the Alexa Fluor fluorophore, a 

sandwich-type immunoassay had to be performed. Thus the detection of cTnI was done 

by creating microarrays of the hIgG of monoclonal αcTnI by the TEC methodology as 

described above, and by incubating with different cTnI concentrations in 10% diluted 
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human serum, and by finally developing with a labelled detection antibody. This 

optimized methodology obtained a sensitivity of 10 ng mL-1 of cTnI. Figure 7. 

 

Figure 7. Sensitivity assay for cTnI using a sandwich immunoassay with hIgG acTnI (50 mg mL-1) 

immobilized by TEC as the capture agent. 

Finally, in order to test the selectivity of the optimized systems, microarrays were created 

following the same biofunctionalization protocol with a row of each hIgG αBSA, hIgG 

αCRP and hIgG αcTnI. Some chips were incubated only with labelled BSA, others with 

labelled CRP, others with cTnI, and others with a mixture of the three targets, in 10% 

diluted human serum. Fluorescence was recorded after the development step with the 

labelled detection antibody for cTnI. All the results demonstrated the specificity of 

capture. Figure 8.  
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Figure 8. Multiplexing assay in the microarray format for protein/antibody systems: BSA/hIgG 

αBSA, CRP/hIgG αCRP and cTnI/hIgG αcTnI. Incubating with (A) BSA* (10 ng mL-1); (B) CRP* 

(10 ng mL-1); (C) cTnI (10 ng mL-1); (D) mixture of BSA* (10 ng mL-1), CRP* (10 ng mL-1) and 

cTnI (10 ng mL-1). 

4. Conclusions 

To the best of our knowledge, we herein report the first example of a UV light-induced 

thiol-ene coupling reaction between the free thiol groups present in half-antibodies and 

vinyl-functionalized surfaces to construct microarrays. The performance of these half-

antibody microarrays generated by TEC dramatically improved the response compared 

to whole antibody microarrays, which is likely due to the fixed orientation of hIgG under 

these conditions. The methodology described herein allowed us to successfully determine 

interesting analytes (CRP and cTnI in this case), perform multiplexing experiments, and 

represent a non-reported approach for the effective immobilization of antibodies under 

very mild, rapid and biocompatible conditions. The approach is applicable to a wide range 

of materials that can be functionalized with organosilane chemistry, and can selectively 

pattern antibodies on the surface by using selective irradiation through a photomask.  
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With the goal of going a step forward in microarray features and taking into account the 

results achieved in the chapter 3, development of a novel photocoupling reaction, merged 

with the use of highly hydrophobic surfaces, is pursued. More concretely, able to provide 

a quick, clean and biocompatible probe attachment to the support surface.  

Regarding to the substrate, highly hydrophobic surfaces containing C-F motifs were cho-

sen to undertake the covalent anchoring, being glass slides functionalized with a perfluor-

inated organosilane, the main platform employed. These hydrophobic surfaces allow the 

confinement of the probes in very hydrophilic and small spots, with hydrophobic protein 

repellent surrounding. This reduces the unspecific interactions, and favors the approxi-

mation of the analyte only where the probe is immobilized. 

Finally, wettability modulation of these hydrophobic surfaces was performed physical 

and chemically, and different irradiation sources were studied. 

Thus, the development of photoinduced reactions to produce the immobilization of thio-

lated probes onto these low reactive surfaces, is a very interesting methodology to favor 

and increase the immobilization densities and detection capacity of the measuring device. 

This chapter is arranged in three sections. 

The first section (chapter 5.1), displays a scientific publication, reporting all the work 

carried out to clear up the main aspects of the developed fluor-thiol photoinduced reac-

tion. In this section, three different surfaces containing C-F bonds are employed to cor-

roborate the reaction: perfluorinated glass slides, polyvinylidene fluoride and polytetra-

fluoroethylene membranes. The role of a thiol group in the molecule to be anchored, and 

light in the coupling process, is demonstrated in this work.  In addition, chemical modu-

lation of surface wettability employing a hydrophilic and repellant organosilane, to in-

crease the immobilization anchoring and recognition capability, is performed. The ap-

plicability of this system to the discrimination of SNPs and the detection of bacterial PCR 

products is proven as well.  

The second section (chapter 5.2), shows the results reached through a 2-month placement 

at the Aalborg University (Denmark). Aiming the improvement of microarray resolution 

and density immobilization, employment of a more sophisticated laser-based irradiation 
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system, is pursued. This setup allows a controlled irradiation of the surface through femto-

second pulses, which permits the miniaturization and patterning of the microarrays. Com-

bining this irradiation mode and the fluor-thiol photoclick reaction, a high resolution is 

reached, having immobilization only where the laser beam illuminate. Application to sev-

eral bioreceptors such as oligonucleotides, antibodies and half antibodies, is demon-

strated. 

The third section, (chapter 5.3), focuses on the introduction to microstructured surfaces. 

During a 3-month placement at the Fraunhofer Institute for Laser Technology (Aachen, 

Germany), physical modulation of glass surface properties (roughness), is studied. With 

the goal of getting higher microarray performances, surfaces with different topographies 

are prepared and characterized. We hypothesize that configuration of the surface affects 

to the emission of light, so controlling the surface roughness, an enhancement of fluores-

cence intensity would be observed. Then, assays are performed onto these structured sur-

faces, and compared to non-structured surfaces, to analyze the effect of the different mi-

crostructures in the fluorescence signal. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Fluor-thiol photocoupling reaction for developing high per-

formance nucleic acid (NA) microarrays 

"Reprinted with permission from Anal. Chem. 2018, 90 (19), 11224–11231. Copyright 

2018 American Chemical Society." 
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ABSTRACT 

Spatially controlled anchoring of NA probes onto microscope glass slides by a novel 

fluor-thiol coupling reaction is performed. By this UV-initiated reaction, covalent immo-

bilization in very short times (30 s at 254 nm) is achieved with probe densities of up to 

39.6 pmol/cm2. Modulating the surface hydrophobicity by combining a hydrophobic 

silane and a hydrophilic silane allows the fabrication of tuned surfaces where the analyte 

approaches only the anchored probe, which notably reduces nonspecific adsorption and 

the background. The generated substrates have proven clear advantages for discriminat-

ing single-basepair mismatches, and for detecting bacterial PCR products. The hybridi-

zation sensitivity achieved by these high-performance surfaces is about 1.7 pM. Finally, 

this anchoring reaction is demonstrated using two additional surfaces: polytetrafluoroeth-

ylene (PTFE) and polyvinylidene fluoride (PVDF) membranes. This provides a very in-

teresting pathway for anchoring thiolated biomolecules onto surfaces with C−F motifs 

via a quick clean UV reaction. 

1. Introduction 

Nowadays, the development of new biosensors to diagnose and prevent different illnesses 

in specifically, selectively and quickly using inexpensive devices is still required. NA 

microarrays have revolutionized basic research in molecular and cellular biology, bio-

chemistry and genetics.1-3 Although the technology in NA is most advanced, protein mi-

croarrays also emerge as a potential and useful tool.4, 5  

During the fabrication of NA microarrays, glass microscope slides are widely used as a 

support because of their good optical properties, high resistance and rigidity, low cost, 

and surface chemical derivatization by organosilane chemistry.2 Effective surface activa-

tion and functionalization protocols are key for microarray production. A good control of 

these processes improves the performance and quality of assays. For instance, the prop-

erties of functionalized surfaces will define efficient immobilization of probes and their 

biorecognition capacity. 

Regarding the immobilization process, covalent anchoring of NA probes is preferred to 

adsorption because of its robustness and reliability.6, 7 Besides, photoactivated reactions 

like fluor-thiol photocoupling chemistry that is herein reported, offer several advantages, 
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such as that associated with click chemistry reactions. These reactions are fast, clean and 

enviro-friendly, and allow oriented immobilization8, 9 in aqueous media, which is crucial 

for their bioutility.10, 11 When light activates the reaction, additional advantages, such as 

site-specific immobilization, come into play. One example of these photo-click-chemistry 

reactions that has been recently applied to microarray technology is thiol-ene coupling,12–

15 which allows biomolecules to be anchored to silicon-based surfaces selectively under 

mild conditions, with quantitative or near-quantitative yields. 

Another important parameter to take into account in either the immobilization or the hy-

bridization process is the surface. Superhydrophobic surfaces are based on nonreactive 

and low-surface energy functional groups which prevent most chemical and biological 

substances from adhering.16 Thanks to this good property, hydrophobic surfaces can be 

applied to develop NA microarrays with a water-repellent background that confines the 

sample only to the point where the probe is anchored by reducing nonspecifity and im-

proving sensitivity. Nevertheless, poor surface wettability can hamper proper contact be-

tween the groups on the surface and the probes in the solution by lowering immobilization 

yields and hindering effective hybridization.17, 18 

Although the use of perfluorinated surfaces is challenging, it can be very useful for ap-

plications in microarray technology, among others.19-22 In fact in this study we report the 

fluor-thiol photocoupling reaction to covalently bond thiolated probes directly to a per-

fluoroalkyl surface for the first time. This methodology allows the probes bearing a thiol 

group to be anchored to the C-F bond of highly hydrophobic surfaces quickly and cleanly. 

To support the nature of the formed bond, two additional surfaces (PVDF and PTFE mem-

branes) containing C-F motifs are used apart from silanized glass slides. 

Given the extreme hydrophobicity of this surface, which hinders effective hybridization, 

modulating surface hydrophobicity by an optimal combination of paramount water-repel-

lent silane as 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFTS) and a hydrophilic re-

pellent silane, such as 2-[methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane) (PEGS), 

is necessary in the functionalization process. 

The new developed surface favors the selective approach of the target solution only at the 

point to which the probe is anchored as it is the most hydrophilic area of the entire surface. 

This fact minimizes the background and nonspecific binding without having to resort to 

a blocking step before the hybridization assay. Following this strategy, DNA microarrays 
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can be applied to discriminate single nucleotide polymorphisms (SNPs) and to detect bac-

terial DNA (e.g. Salmonella). SNPs are the most abundant form of genetic variation in 

the human genome23 and allow disease predispositions and drug responses to be pre-

dicted,24 whereas Salmonella bacteria have been the main cause of foodborne bacterial 

illnesses in humans in many countries for at least more than 100 years.25 

2. Experimental section 

Chemicals, reagents and buffers. The glass microscope slides used as substrates for the 

microarrays were obtained from Labbox Labware, S.L. (Spain). The Immobilon-P PVDF 

membranes were acquired from Merck (Spain). The PTFE membranes came from Wolf-

pack (Spain). 2-[Methoxy(polyethyleneoxy)6-9propyl]trimethoxysilane was purchased 

from Gelest (Germany). 1H,1H,2H,2H-Perfluorodecyltriethoxysilane and vinyltri-

methoxysilane were supplied by Sigma-Aldrich (Spain). Toluene was purchased from 

Scharlau (Spain). 3,3′,5,5′-Tetramethylbenzidine liquid substrate was acquired from SDT 

(Germany). Note: all the chemicals were handled following the corresponding material 

safety data sheets. All the chemicals were used without further purification. 

Milli-Q water, with a resistivity above 18 mΩ, was used to prepare the aqueous solutions. 

The employed buffers, phosphate buffer saline (PBS1х, 0.008 M sodium phosphate diba-

sic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M potassium 

chloride, pH 7.5), PBS-T (PBS1х containing 0.05% Tween 20) and saline sodium citrate 

(SSC1х, 0.15 M sodium chloride, 0.02 M sodium citrate, pH 7) were filtered through a 

0.45 µm pore size nitrocellulose membrane of the Fisher brand (Germany) before being 

used. 

The oligonucleotides in Table 1 were acquired from Eurofins Genomic (Ebersberg, Ger-

many). DNA concentration and quality were determined by measuring optical density at 

260/280 nm in a NanoDrop ND 1000 Spectrophotometer (Thermo Fisher Scientific, Wil-

mington, Delaware, USA). The PCR-amplified Salmonella products were obtained as 

previously described.26, 27  

 

 

 



Chapter 5 

130 

 

Table 1. Used oligonucleotides sequences 

Name Sequence (5’ to 3’) 5’- 3’- 

Probe 1* CCCGATTGACCAGCTAGCATT- (T)15 Cy5 SH 

Probe 1 (T)15-CCCGATTGACCAGCTAGCATT SH - 

Probe 2 (T)15-CCCGATTGACCTGCTAGCATT SH - 

Probe 3 (T)15-CCCGATTGATTAGCTAGCATT SH - 

Probe 4 (T)15-CCATATTGACCAGCTATCATT SH - 

Probe 5 CGCCGATAACTCTGTCTCTGTA SH - 

Probe 6 TTTTGATTACAGCCGGTGTACGACCCT SH - 

Probe 7 TTTTAGACGCAATACCGCGAGGTGGAGCA SH  

Probe 8 TTTTGATTACAGCCGGTGTACGACCCT SH Diga 

Target 1* AATGCTAGCTGGTCAATCGGG Axb - 

a Digoxigenin, b Alexa Fluor® 647 

 

Instrumental methods. Contact angle system OCA20, equipped with the SCA20 software, 

was provided by Dataphysics Instruments GmbH (Filderstadt, Germany). Measurements 

were taken in quintuplicate at room temperature with a volume drop of 5 μL employing 

the 18 mΩ water quality. 

Microarray printing was done with a low-volume noncontact dispensing system from Bi-

odot (Irvine, CA, USA), model AD1500. Irradiation at 254 nm was carried out in a UV-

Ozone Surface Cleaner (UVOH 150 LAB; FHR, Anlagenbau, Germany, GMBH), while 

irradiation at 365 nm was performed with a mercury capillary lamp (6 mW/cm2, Jelight 

Irvine, CA, USA) placed at a fixed distance (0.5 cm). 

The fluorescence signal of the spots was recorded with a homemade surface fluorescence 

reader (SFR) operating with a high-sensitive charge couple device camera Retiga EXi 

(Qimaging Inc., Burnaby, Canada) with light-emitting diodes Toshiba TLOH157P as the 

light source.28 A microarray scanner Axon4000B (Molecular Devices, CA, USA) was 

employed for the immobilization density determinations. The GenePix Pro 4.0 software 

(Molecular Devices, Inc. Sunnyvale, CA, USA) was utilized for the microarray image 

analysis and subsequent quantification. 
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X-ray photoelectron spectra were recorded with a Sage 150 spectrophotometer (SPECS 

Surface Nano Analysis GmbH, Berlin, Germany). Non monochromatic Al Kα radiation 

(1486.6 eV) was used as the X-ray source operating at 30 eV constant pass energy for the 

elemental specific energy binding analysis. The vacuum in the spectrometer chamber was 

9 x 10-9 hPa and the analyzed sample area was 1 mm2. Attenuated total reflectance infra-

red spectra were recorded by a Bruker Tensor 27 FT-IR coupled to a Platinum ATR ac-

cessory. 

Silanization of slides. Commercial glass slides were cut into chips (2 х 1 cm) and were 

cleaned with a UV-Ozone Surface Cleaner for 7 min at 254 nm to remove organic con-

taminants. To introduce the reactive functional groups, these chips were immersed in a 

2% v/v solution of the corresponding silane in toluene for 45 min at room temperature. 

Then samples were withdrawn from the silane solution, washed several times with tolu-

ene and air-dried. Next chips were baked for 1 h at 110 °C. To generate the hydrophobic 

surfaces, chips were treated with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (surface 

A), whereas a combination of 2-[methoxy(polyethyleneoxy)6-9propyl] trimethoxysilane 

and 1H,1H,2H,2H-perfluorodecyltriethoxysilane was used at a ratio of 4:1 v/v (surface 

B) for the optimized surfaces. The control substrates were functionalized with vinyltri-

methoxysilane (surface C), and with 2-[methoxy(polyethyleneoxy)6-9propyl] (surface D), 

as explained before.  

Oligonucleotide immobilization. The attachment of the thiolated and nonthiolated oligo-

nucleotides onto different surfaces was studied. On the one hand, glass microscope slides 

were treated following the above-described procedure to obtain the corresponding surface 

A, B and D. To prove covalent anchoring, Probe 1* consisting of a 5’-Cy5- and 3’-SH-

labeled oligonucleotide, and Target 1* consisting of a 5’-AlexaFluor®647-labeled oligo-

nucleotide (Table 1), were spotted at 0.5, 1 and 2 µM in PBS1х onto surfaces A and D, 

and were exposed to UV-light at 254 nm for 30 s to induce the immobilization. Afterward 

slides were thoroughly rinsed with SSC1х and air-dried. On the other hand, the PVDF 

and PTFE membranes were used as supports with no further modification. Probe 1* and 

Target 1* at 0.5, 1 and 2 µM in PBS1х were spotted onto both surfaces and exposed to 

UV-light at 254 nm for 5 s to encourage immobilization. Afterward substrates were thor-

oughly rinsed with PBS-T and air-dried. Finally, in order to calculate immobilization den-

sity, increasing concentrations of Probe 1* (from 0.01 to 10 µM; 40 nL/spot; 4 spots/row) 

in PBS1х were spotted onto surface B and exposed to UV-light at 254 nm for 30 s to 
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produce immobilization. Slides were thoroughly rinsed with SSC1х and air-dried. The 

immobilization results were obtained from the fluorescence signals using a microarray 

scanner. 

Hybridization Assays. To study the hybridization efficiency on the developed surface, 

glass chips were treated as described above to obtain surface B. Afterward the solutions 

containing serial dilutions of Probe 1 (from 0.25 to 5 µM) in PBS1х were spotted (40 nL) 

onto surface B to create the microarray (four spots per concentration). Then slides were 

exposed to UV-light at 254 nm for 30 s, washed with SSC1х and air-dried. After washing, 

15 µL of Target 1* (concentrations ranging from 0.0005 to 0.25 µM in SSC1х) were 

spread over the surface with a coverslip. After incubation in a humid chamber for 1 h at 

37 °C, the coverslip was gently removed, and the chip was washed with SSC1х. The 

fluorescence intensity of the spots was recorded using the SFR as before.  

Mismatches detection. Four oligonucleotide sequences, Probes 2, 3, 4 and 5 having zero, 

one, two and three base mismatches for Target 1*, respectively, and Probe 5 as the nega-

tive control (no complementary) were spotted (0.5 μM, 40 nL/spot) with a noncontact 

dispenser onto surface B to create the microarray. After probe immobilization, the micro-

array was subjected to hybridization with Target 1* (50 nM) in SSC under different as-

tringency conditions (salt concentration from 0.1х to 5х and formamide content from 0-

25%) for 1 h at 37 °C. After washing and drying, fluorescence was measured with the 

SFR. 

Detection of the Salmonella PCR products. Glass slides were perfluoro-functionalized as 

described above. Then the solutions containing SH-labeled Probe 6 (the Salmonella-spe-

cific probe), Probe 7 (the negative hybridization control) and Probe 8 (the positive devel-

opment control) at 1 and 2 μM were spotted in PBS1х onto surface B to fabricate the 

microarrays. Afterward slides were exposed to UV-light at 254 nm for 30 s and subse-

quently washed with SSC1х and air-dried. Then the digoxigenin-labeled PCR product 

solutions (15 μL) in hybridization buffer (SSC1х) were distributed over the chip.  PCR 

duplexes were first denaturated by a 10-minute incubation at 95 °C followed by fast cool-

ing for 1 min on ice. After incubating 1 h at 37 °C, slides were washed with SSC1х and 

air-dried. Finally, slides were incubated with an HRP-labeled anti-digoxigenin antibody 

produced in goat (dilutions ranging from 1/10 to 1/10000 in SSC1х and 15% of forma-

mide) for 30 min at room temperature, washed with SSC1х, air-dried and revealed with 

TMB solution for around 2 min. 
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3. Results and discussion 

Surface Chemical Derivatization. Surface functionalization was studied to achieve a re-

producible protocol to fabricate homogenous and stable surfaces that allowed the covalent 

anchoring of NA probes and the hybridization process. First, glass microscope slides were 

cleaned with a UV-ozone lamp for 7 minutes to provide the high density of the hydroxyl 

groups on the surface, which are key for effective silanization. Then substrates were func-

tionalized by immersion in organosilane solution (2% in toluene). Given the potential 

difficulties of the microarray in the later hybridization process due to the high hydropho-

bicity of perfluorinated surfaces (surface A), different derivatizations to modulate surface 

wettability were studied. The proper combination of an excellent water repellent as PFTS, 

with a highly hydrophilic and anti-fouling compound as PEGS, could allow tuned sur-

faces to be obtained on which the analyte approaches specifically to the appropriate im-

mobilized probe, thus preventing nonspecific adsorption and lowering the background. 

In an attempt to achieve a commitment between the surface repellence and bioavailability 

of the anchored probes, the PEGS-PFTS ratio and functionalization times were optimized. 

After several experiments to modulate surface hydrophobicity, functionalization times of 

45 minutes and a volume ratio of 1:4 (PFTS/PEGS) showed an optimal contact angle 

(about 100°) and, thus, promising surfaces for successful hybridization. Longer times or 

higher PFTS concentrations were not suitable for the hybridization process because of the 

excessive surface hydrophobicity, which lowered the surface wettability too much by im-

peding the target solution to properly reach the anchored probes. Thus, every substrate 

was functionalized for 45 minutes at room temperature to acquire the corresponding sur-

face properties, and hydrophobicity was controlled to ensure reproducible and homoge-

neous surfaces.  

Six different surfaces were used in this study: first, a highly hydrophobic surface only 

made of PFTS to prove the fluor-thiol reaction (surface A). Second, a wettability-tuned 

surface with an optimal PFTS-PEGS ratio (1:4) to facilitate the hybridization process 

(surface B). Third, a control standard surface was functionalized with vinyltrimethox-

ysilane (surface C)29 in comparison to surface B. Fourth, an anti-fouling control surface 

using organosilane PEGS (surface D) was prepared. Finally, two additional surfaces 

(PVDF and PTFE membranes) were used to support the anchoring mechanism. These 

surfaces did not require further activation or functionalization, which cut the assay time. 
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The quality of the surface was monitored by thoroughly measuring the water contact an-

gle (WCA) on the whole surface. As seen in Figure S1, the commercial glass slides dis-

played a contact angle of 37°, whereas the activated surfaces showed contact angles 

around 0° by the UV-lamp. This is attributed to an increased number of hydroxyl moieties 

generated on the surface by the oxidation and cleaning treatment. Upon functionalization 

with the corresponding organosilanes, hydrophobic surface A, with a WCA of 110°, and 

modulated surface B, with a WCA of around 100°, were obtained. Surfaces C and D pro-

vided a WCA of around 70º and 27°, respectively. The raw PVDF and PTFE membranes 

displayed a contact angle of 130 ºand 148°, respectively. 

The X-ray photoelectron spectroscopy (XPS) experiments with the raw glass slides, and 

with surfaces A and B, were performed. The emergence of CF2 and CF3 peaks at 290 and 

292 eV on the functionalized surfaces corroborated the success of the functionalization 

process (Figure S2). The chemical composition of modulated surface B was established 

from high-resolution XPS as a part of the surface characterization (Table S1). 

DNA immobilization assays. Based on the paper of Al-Gharabli et al. who established C-

F cleavage in the presence of an oxidizing agent,30 immobilization of a thiolated probe 

for its reactivity with perfluorinated surfaces under UV irradiation was investigated. This 

is an unknown reaction with an excellent potential in microarray technology, among oth-

ers, inspired in the para-fluoro-thiol “click” chemistry. In this reaction, the para-F posi-

tion in the aromatic ring showed high reactivity to nucleophilic substitution.19–21 Thus in 

order to demonstrate the use of the fluor-thiol photochemical reaction for tethering thio-

lated DNA, a 5’ thiol-ended probe, labeled with Cy5 at its 3’ end (Table 1, Probe 1*), was 

spotted at different concentrations in PBS1х (from 0.01 to 4 µM; 40 nL/spot; 4 spots/row) 

onto surface A, and displayed successful fluorescence intensity after thorough washing. 

Several irradiation times (from a few seconds to 1 h) and two wavelengths (365 and 254 

nm) were investigated. The best results in fluorescence intensity terms were obtained for 

UV exposure times of 30 seconds at 254 nm. This time noticeably reduced those previ-

ously reported to create DNA microarrays by thiol-ene and thiol-yne photo click reac-

tions, where times of at least 20 minutes, and 365 nm are used.11, 13, 29, 31 This difference 

was due to the low-power irradiation of the 365 nm lamp (6 mW/cm2) compared to the 

current 254 nm lamp (50 mW/cm2), and was also due to the change of wavelength itself 

from 365 nm to 254 nm, the latter of which is more energetic irradiation.  
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This novel immobilization has a clear advantage over the published work as regards irra-

diation times, and is an interesting technique to be applied to many fields, like nanoparti-

cles biofunctionalization.  

Several assays were run to corroborate the linking nature and to prove the reliability of 

the system.   

 

Figure 1. The labeled thiolated and nonthiolated probes were spotted at different concentrations 

onto surfaces A, D, PVDF and PTFE. Afterward, surfaces were irradiated. Fluorescence images 

were recorded, after washing, by SFR. The control surfaces without irradiation were also meas-

ured after the washing steps.  

First, immobilization studies on surfaces A and D were performed (Figure 1). Surfaces 

were spotted with the fluorescence-tagged thiolated and non thiolated probes (Probe 1* 

and Target 1*, respectively) at different concentrations (from 0.5 to 2 µM). Afterward, 

surfaces were exposed for 30 seconds to UV-light at 254 nm, or were kept in dark, and 

washed. Then, the fluorescence of the microarray was recorded with the SFR. Successful 

thiolated probe immobilization onto surface A occurred after irradiation, whereas the 

nonthiolated probe did not anchor. The thiolated and nonthiolated probes did not adsorb 

onto surface A when kept in the dark without irradiation. Surface D showed the expected 

anti-bioadsorption capability, and the thiolated and nonthiolated probes were not immo-

bilized after irradiation. Therefore, we conclude that a thiol motif and UV irradiation are 

necessary to achieve covalent bonding to surface A, and suggest the formation of a reac-

tive thiol radical. 
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Second to identify the anchoring moiety on the surface, the above protocol was applied 

to two additional surfaces: PVDF and PTFE (Figure 1). With surface A, three anchoring 

points were possible; bonds Si-O, the C-H and C-F. Thus, the PVDF membranes that only 

had C-H and C-F motifs were used. Different irradiation times, from 1 s to 1 min, were 

assayed. The assays showed that a 5-second photoexposure were enough to achieve suc-

cessful probe immobilization. Regarding the results, the attachment of the thiolated probe 

to this surface continued to occur, whereas the nonthiolated probe did not anchor to the 

surface. Moreover, without irradiation, no fluorescence signal was detectable. These re-

sults ruled out the bonding between the thiol and the silane, and left open the possibility 

of nucleophilic substitution or dehydrohalogenation taking place. To this end, the same 

experiments on the PTFE surface -(CF2-CF2)n- were performed. These surfaces, irradiated 

with the thiolated probes for only 30 seconds, showed successful probe immobilization 

with high-fluorescence intensity after thorough washing. Additionally, the nonirradiated 

surfaces showed nofluorescence, as well as the nonthiolated probes. These results support 

a covalent attachment between the thiol and the C of the C-F bonds, with F being dis-

placed as it was the only common motif in all the substrates.  

Third, X-ray photoelectron spectroscopy (XPS) analyses were done to know the nature 

of the chemical bonding between a thiolated compound and the perfluorinated surfaces 

(Figure 2). Surface A was irradiated for 1 minute at 254 nm under the UV lamp in pres-

ence of a thiolated probe and washed, and compared with the raw surface A. The contri-

bution of the C-C bond increased dramatically and a new contribution from COO bonds 

was observed. All this pointed to the attachment of the probe to the surface. It should be 

noted that the profile of the C1s peak did not vary significantly when the raw surface was 

irradiated in the absence of the thiolated compound (Figure S2). The CF3/CF2 ratio re-

mained unchanged for all the control surfaces and only changed in the case of the surface 

A irradiated in presence of thiolated probe, demonstrating the role of C-F bonds in the 

probe attachment.  
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Figure 2. XPS high-resolution spectra. Left. C 1s spectrum of surface A. Right C 1s spectrum of 

surface A + thiolated compound + UV irradiation and washing. C-F2 bond at 291 eV and C-F3 

bond at 293 eV. 

Finally, the ATR-IR experiments on the PVDF membranes were performed. This surface 

was chosen for its composition to allow very thin layers to be better detected. No changes 

in the glass slides and Teflon surfaces were detected using these instruments. Microscope 

glass slides are too wide compared to the thin thiolated compound layer formed. With the 

Teflon membranes, the C-F signals of the anchored compound matched the C-F peaks of 

the membrane itself. Thus 40 µL of 1H,1H,2H,2H-perfluorodecanethiol 0.90 M in meth-

anol were added to a PVDF membrane (1 x 1 cm). After solvent evaporation, membranes 

were irradiated for 1 minute at 254 nm under the UV lamp. Afterward, membranes were 

washed with methanol for 30 minutes to ensure the complete removal of the nonanchored 

compound. After washing thoroughly, the C-F signals of the thiolated compound re-

mained. However, no significant spectral change was observed after washing when the 

membrane was not irradiated in the presence of the thiolated compound. This corroborates 

a covalent attachment between the thiolated compound and the PVDF surface. Figure 3 

shows the FTIR-spectra obtained for the raw and treated membranes, where new peaks 

appear and are attributed to the aliphatic -CF2 (1000-1150 cm-1) and –CF3 (1350-1100 

cm-1) stretchings, and, more importantly, to the aliphatic CF stretching (1100-1000 cm-1), 

which supports the bonding of the thiol compound to the CF2 moieties of the surface. 

Therefore, we report that, upon irradiation, the formed radical thiols attack the C of a CF2 

unit by displacing the F of the substrate, and shows the anchoring of a thiolated probe to 

a C-F bond for the first time (Figure S3). 
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Figure 3. ATR-FTIR spectra. Blue. Raw PVDF membrane. Green. PVDF membrane irradiated 

in the presence of 1H,1H,2H,2H-perfluorodecanethiol before washing. Red. PVDF membrane 

irradiated in the presence of 1H,1H,2H,2H-perfluorodecanethiol after washing. 

Having demonstrated the fluor-thiol photo-click reactions, and knowing that the low wettability 

of these surfaces can hinder successful hybridization, immobilization efficiency and further hy-

bridization on surface B were studied. As explained above, the wettability of surface B was tuned 

by a combination of two different repellent organosilanes to provide an optimal WCA of 100o. 

Thus a standard calibration curve was constructed by spotting Probe 1* in PBS1x onto surface B 

(from 0.01 to 10 µM), irradiating 30 seconds with the UV-surface cleaner and recording fluores-

cence with a microarray scanner. After washing, fluorescence was once again recorded and the 

resulting intensity was interpolated to the calibration curve to determine immobilization density 

(Figure S4). Under the studied conditions, surface saturation was reached for Probe 1* at 4 µM 

with an immobilization density of 39.6 pmol/cm2 (Figure 4). Higher concentrations did not lead 

to any increment in fluorescence intensity. These values were around 8-fold higher than those 

reported by the thiol-ene coupling reaction on the vinyltrimethoxysilane functionalized surfaces 

(C).13 Moreover, surface B led to smaller and reproducible spot sizes, and higher fluorescence 

intensities than surface C, which implies better performance for the new surfaces. These results 

support the potential application of a fluorinated surface to construct high-density NA microarrays 

given that the covalent anchoring of thiolated oligonucleotides to aliphatic fluorinated surfaces 

by photoactivation is herein demonstrated. Taking into account that the maximum packing density 
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of double-stranded DNA is around 3 х 1013 molecules/cm2 (i.e., 50 pmol/cm2),32 our surfaces came 

close to a maximal feasible surface immobilization.  

 

Figure 4. (a) Fluorescence image of an array with Probe 1* immobilized at different concentra-

tions and (b) the oligonucleotide immobilization densities obtained for Probe 1* vs. the spotted 

concentration. These values were obtained from the interpolation on the corresponding calibration 

curve. The error bars where obtained from 3 chips, with 4 spots per concentration for each chip. 

DNA hybridization assays. To prove the capability of surface B to improve the detection of com-

plementary strands in a sensitive and selective way, hybridization assays were carried out. Serial 

dilutions of 3’ SH nonlabeled Probe 1 (from 0.25 to 5 µM, PBS1х) were immobilized onto surface 

B as optimized before, and hybridization with AlexaFluor647-labeled fully complementary 

strand, Target 1*, at different concentrations (from 0.0005 to 0.25 µM in SSC1х), was performed. 

After incubation in a humid chamber for 1 h at 37 °C and washing, the fluorescence intensity of 

the spots was recorded by the SFR. The obtained fluorescence intensity against the Target 1* 

concentration is plotted in Figure 5 for each assayed concentration of Probe 1. The hybridization 

signal increased with target concentration, with up to 0.5 nM detected, which corroborates the 

suitability of these microarrays to detect hybridized oligonucleotide sequences at very low levels. 

This excellent sensitivity was attributed to the hydrophobicity modulation, a small spot size and 

the high immobilization density obtained by the proposed approach. Identical experimental con-

ditions were used on surface C for comparison reasons. The lowest detected Target 1* concentra-

tion improved the value obtained with control surface C 2-fold and, with previous reported work 

onto alkynyl surfaces,11 it fell within the order of the estimated limit of detection, for the target, 

and the detection device used for these experiments (calculated as the concentration providing the 

blank signal, plus three times its standard deviation). Here, it should be noticed that the ionic 
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strength used (SSC1x) is low to overcome the electrostatic repulsion due to the high probe cov-

erage achieved. But, the hydrophobic environment surrounding the probe spots concentrates the 

target solution uniquely on the hydrophilic areas where the probes are attached. Thus, water evap-

oration leads to a selective concentration of target molecules and salts on the probe spots, improv-

ing the efficiency of the hybridization. 

Hybridization assays with Target 1* were replicated to determine the intrachip and inter-

chip relative standard deviations (RSD). Intrachip RSD ranged from 6% to 11%, whereas 

interchip RSD varied from 9% to 16%. Unlike most of the reported methods in DNA 

microarrays, a blocking step was not necessary, which simplified the process and reduced 

times.33 

 

Figure 5. Neat fluorescence intensity vs. concentration of Target 1* for different concentrations 

of Probe 1. The error bars where obtained from 2 chips, with 4 spots per concentration for each 

chip. 

Having demonstrated the successful hybridization process, which proves the wide ap-

plicability of these DNA microarrays, patterned surfaces were used to discriminate single 

nucleotide polymorphisms (SNPs) and to detect bacterial PCR amplification products 

with high sensitivity and selectivity.  
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In the medical field, the use of SNPs assays allows the influence of different factors to be 

studied in disease susceptibility and responses to drugs.34 The ability to differentiate SNPs 

in DNA assays is most important in selectivity terms.23, 35 Therefore, a base mismatch 

study was performed by immobilizing five 5’ SH modified probes at 0.5 µM in PBS1х 

(containing from zero to three mismatches and an additional noncomplementary probe) 

onto surface B. Afterward, substrates were subjected to hybridization with a labeled tar-

get, complementary to the zero mismatches probe, at 50 nM using different salt concen-

trations (SSC from 0.1х to 5х) and formamide content (from 0% to 25%). Fluorescence 

was measured by SFR after washing and drying chips. The fully complementary probe 

displayed the highest fluorescence intensity, while the other probes clearly showed lower 

fluorescence. A higher formamide concentration and a lower salt concentration made the 

hybridization process difficult, which rendered it more specific (Figure S5). Using astrin-

gency conditions (SSC0.1х, 25% formamide), the results revealed a clear discrimination 

between the fully complementary probe and all the probes (see Figure 6). The signals 

obtained for one mismatch and the fully complementary probes were differentiated by 

85%, while three mismatches and noncomplementary probes did not exhibit any detecta-

ble signal. The results indicate that under the described conditions, the microarray is quite 

able to distinguish a single base mutant sequence at a very good sensitivity level. 
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Figure 6. The relative fluorescence intensity signals obtained for fully complementary, 1-3 mis-

matches, and non-complementary probes at 0.5 µM in PBS1х by hybridizing with Target 1* at 

0.05 µM in SSC0.1х to display different formamide contents for the analysis of SNPs on surface 

B. *ND not detectable. The error bars where obtained from 3 chips, with 4 spots per concentration 

for each chip. 

The early detection of pathogens, i.e. bacteria strains, in water or food is paramount to 

maintain good human and animal safety. In our case, as proof of concept, the optimized 

substrates (surface B) were used to detect PCR products from an innocuous serotype of 

Salmonella bacteria. A specific nucleotide sequence (Probe 6, 1 and 2 µM), complemen-

tary to the central region of a 152 bp amplicon, was immobilized as before. Additional 

probes, used as a negative hybridization control (Probe 7) and a positive development 

control (Probe 8), were also included in the microarray. Hybridization with the digoxig-

enin-labeled PCR product solutions (denaturated and cooled with ice previously), incu-

bation with anti-digoxigenin HRP-labeled antibody produced in goat, and development 

with 3,3′,5,5′-tetramethylbenzidine (TMB) substrate, were carried out.  
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As seen in Figure 7, the spots corresponding to Probe 6 show a dark precipitate, whereas 

no precipitation happened in the negative controls (Probe 7), which indicates the speci-

ficity of the hybridization process. Under the reported conditions, the generated DNA 

microarray was able to detect up to 1.7 pM of Salmonella amplification products. These 

figures were 75-fold lower than those reported in the literature for vinyl-functionalized 

surfaces, where thiolated probes were attached by thiol-ene coupling chemistry.29 These 

results corroborate the good performance of our approach to determine genomic DNA at 

very low levels. Thus combining light-induced probe anchoring with the modulation of 

surface hydrophobicity properties, an advanced surface material for microarraying was 

designed.  

 

 

Figure 7. The absorbance signal obtained for the selective recognition of the PCR-amplified DNA 

samples of Salmonella using specific capture Probe 6 (1 and 2 µM), Probe 7 (1 and 2 µM) as the 

nonspecific hybridization control, and Probe 8 (0.5 µM) as the development control. Biochip after 

development read by a document scanner. 

4. Conclusions 

The fluor-thiol photocoupling reaction has been demonstrated in heterogeneous medium 

for the first time using non-aromatic fluoride compounds and light as the catalyst. The 

reaction was successfully applied to prepare DNA microarrays by probe covalent immo-

bilization in a reproducible and oriented manner onto glass microscope slides, PVDF and 

PTFE membranes as substrates. These surfaces are very useful for the design and devel-

opment of DNA biosensors as they allow the specific confinement of the analyte solution 

to the anchored probe sites. 

Probe 6 (1 µM) 

Probe 7 (1 µM) 

Probe 6 (2 µM) 

Probe 7 (2 µM) 

Probe 8 (0.5 µM) 
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The reported immobilization process is fast, compatible with aqueous media and enviro-

friendly. Moreover, like the elevated surface hydrophobicity, platforms showed a high 

density of probes at the interface, which avoids nonspecific adsorption and significantly 

reduces the background. Thanks to its simplicity, quickness and use of green chemistry, 

this route is very promising for the immobilization of thiolated oligos onto any support 

that involves C-F motifs (e.g. perfluoro-functionalized slides, PVDF and PTFE mem-

branes).  

The optimized surfaces showed the maximum immobilization density achievable for a 

DNA self-assembled monolayer. The wettability modulation of the microscope glass 

slides through specific functionalization allowed robustness, stability and optimal surface 

conditions for later DNA probe strand hybridization. This improved by 2-fold the limit of 

quantification compared to a control surface and to previous works.  

As demonstrated, the surface properties modulation and the application of the fluor-thiol 

coupling reaction enabled to perform interesting applications, like discriminating single 

nucleotide polymorphisms and the sensitive detection of PCR amplified DNA products, 

and gave better results compared to conventional methods.  

From these results, we offer a very interesting pathway to develop diverse detection de-

vices with a heterogeneous format. Moreover, linking chemistry can be applied to the 

biofunctionalization of nanoparticles where, for instance, repellent properties would help 

to avoid aggregation. 
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SUPPORTING INFORMATION 

 

Fluor-thiol photocoupling reaction for developing high performance nu-

cleic acid (NA) microarrays 

 

List of contents: 

 

Figure S1: Water contact angles. 

Figure S2: XPS analysis, C 1s peak deconvolution for functionalized surfaces A and B. 

Table S1: XPS high-resolution chemical composition onto the surface B for every bound. 

Figure S3: Possible mechanism of fluor-thiol click reaction. 

Figure S4: Calibration curve for Target 1* used in the hybridization assays. 
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Figure S1: Water contact angle obtained for each surface. 

Treatment Non activated Light activation 

(254 nm) 

Surface A Surface B 

Structure 

 
 

 
 

WCA 

37 ± 2 ° 

 

≈ 0 ° 

 

110 ± 2 ° 

 

100 ± 3 °  

 

 

 

Figure S2: XPS analysis, C 1s peak deconvolution for functionalized surfaces A, B, surface A 

irradiated without any compound, Surface A irradiated in presence of a non-thiolated compound 

and Surface A irradiated in presence of a thiolated compound. The increase in C-C peak in the 

case of Surface A irradiated with a non-thiolated probe was attributed to organic contamination, 

as no fluorescence was detected after the immobilization process. 
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Table S1: XPS high-resolution chemical composition onto the surface B for every bound. 

Sample Surface B 

Name C-C C-O COO- CF2 CF3 

BE (eV) 284.7 286.7 288.4 290.2 292.5 

% At 28.6 10.4 11.1 41.4 8.5 

 

 

 

Figure S3: Possible mechanism of fluor-thiol click reaction. 
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Figure S4: Calibration curve for Target 1* used in the hybridization assays. 

 

Figure S5. SFR images obtained for the microarrays to discriminate SNPs after hybridization 

under different conditions a) Hybridization assay increasing the formamide concentration using 

SSC0.1x as buffer. b) Hybridization assay decreasing the salt concentration using 0% of forma-

mide. Row 1 fully complementary sequence, row 2 1-mismatch sequence, row 3 2-mismatches, 

row 4 3-mismatches sequence, row 4 fully non-complementary sequence, and row 5 labeled probe 

acting as a positive immobilization control. 
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5.2 Study of other irradiation sources for improving the 

performance of the fluor-thiol reaction 

This chapter is derived from the work developed through a 2-month placement in the 

Biophotonics Group headed by Professor Steffen Petersen at Aalborg University 

(Denmark) in 2017. 
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A selective procedure for the anchoring of thiolated oligonucleotides to surfaces 

containing C-F bonds by simple UV irradiation has been just demonstrated in section 5.1. 

Nonetheless, the exploration of other irradiation sources aiming for better resolution was 

pursued. This is of outmost importance for the fabrication of higher density microarrays 

which improve the performance of the system. Hence, a different UV irradiation system 

was studied through a placement supervised by Dr. Maria Teresa Neves Petersen, in the 

Biophotonics Group at the Department of Clinical Medicine of Aalborg University 

(AUU). 

Up to now, printing low density microarrays and irradiation of the whole surface was 

performed. Using our available irradiation sources, the fluor-thiol photocoupling reaction 

was proven and optimized as much as possible. Therefore, a controlled illumination using 

laser pulses was studied. This could lead to the miniaturization of the microarrays, which 

reduces their fingerprint and increases their high throughput capabilities, and also the 

sensitivity. 

The optical set up available in the host group (Figure 1), was employed to perform 

photoimmobilization studies of different bioreceptor probes, containing available thiols, 

on silicon-based surfaces (mainly quartz) using the coupling reactions optimized within 

this thesis. 

 

Figure 1. The irradiation optical set up available in the host group. 

This system consists of a microfabrication stage coupled to a femtosecond laser (fs-laser), 

through one-photon excitation. The fundamental 840 nm output is tripled to 280 nm and 

focused onto the sample, leading to one-photon excitation. The sample is placed onto an 

xyz-stage with a micrometer step resolution. The pattern to be irradiated is uploaded to 
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the software to control the stage and the shutter. Molecules are attached according to such 

a pattern. Spatial masks can be inserted in the light path to get sub-micrometer spatial 

resolution by light diffraction patterns. Patterns are recorded by an inverted confocal 

fluorescence microscope. 

The hosting group optimized the optical set up to be used for the immobilization of 

proteins by LAMI (Light‐assisted molecular immobilization) technique.1 This technique 

is based on the excitation of aromatic amino acid residues by UV-light (275-295 nm), 

which leads to the disruption of the proximal disulfide bridges. Then, the obtained free 

thiol groups can be attached covalently to thiol reactive surfaces, in an oriented and 

localized way. Tryptophan (Trp) and tyrosine (Tyr) amino acids are the best absorbers 

due to their characteristic aromatic structure. Taking advantage of this technology, 

patterns can be irradiated at ~280 nm with femtosecond pulses to anchor the bioreceptors, 

which improves the resolution and accuracy of the microarrays.  

Hence, during the stay, support surfaces were functionalized through organosilane 

chemistry. To apply the developed fluor-thiol photocoupling reaction (first section from 

chapter 3), functionalization of optically flat quartz slides with 1H,1H,2H,2H-

perfluorodecyltriethoxysilane was performed to provide C-F bonds over the surface 

(PFTS surface). For comparison, a thiol ended surface was also employed. This surface, 

functionalized with (3-mercaptopropyl)trimethoxysilane (MPTS), is used by the host 

group for the fabrication of their protein microarrays on the basis of LAMI 

immobilization.2,3 Quartz slides were chosen instead of glass slides for optical reasons, to 

avoid the distortion of the pattern due to the capacity of glass slides to absorb light at the 

working wavelength (280 nm). The functionalization procedure was adjusted to the 

available resources in the laboratory. Activation by immersion in a hydroxylation solution 

of K2S2O8 for 1 hour at 99 °C, was carried out. Immersion in respective solutions of 

organosilanes to incorporate the reactive groups over the quartz slides was done as well. 

In the case of PFTS surfaces, overnight functionalization at 2% PFTS in ethanol was 

done. For MPTS surfaces, the same protocol described by the host group was followed, 

so immersion in MPTS at 0.3% in a xylene solution for 30 minutes was performed (Figure 

2). 
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Figure 2. Scheme of the functionalization procedure of both PFTS and MPTS surfaces. 

During this placement, the fabrication of different microarrays was studied. As free thiol 

groups are a requirement for application of the fluor-thiol photocoupling reaction, 

thiolated oligonucleotides and hIgG fragments were employed. In addition, taking 

advantage of the LAMI technique which disrupts disulfide groups by activation of 

proximal aromatic residues, whole antibodies were employed as well. Bioreceptor 

attachment and further biorecognition capacity were assessed by fluorescence confocal 

microscopy. As the probes employed were labeled with Cy5 or Alexa-Fluor 647 

fluorophores, it was possible to measure the presence of the probe on the surface. Exciting 

at 633 nm and reading from 670 to 780 nm in a fluorescence confocal microscope, signal 

intensity was recorded. This way, the extent of the photoimmobilization and recognition 

could be assessed.  

Regarding the photoimmobilization assays, different parameters were studied. 

Illumination parameters such as pattern, irradiation speed and power are of outmost 

importance to accomplish successful immobilization results. Regarding the probe to be 

immobilized, concentration and buffer conditions are also key for the proper working of 

the assay. Hence, some studies were carried out to provide the best conditions for every 

system. The results obtained for oligonucleotide microarrays are presented first, followed 

by the results observed for antibody microarrays. 
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I.    Oligonucleotide microarrays  

First, the optimization of the fabrication process was performed. For that, 2 µL drops of 

a labeled thiolated probe (Probe 1*) at 10 µM, were placed onto both surfaces (MPTS 

and PFTS platforms). Different buffers such as water, PBS1x and PBS0.5x were studied. 

After drying, surfaces were placed in the irradiation stage, and the drop to be irradiated 

was focused. Two patterns (array and lines) were employed for the irradiation process as 

well. Irradiation speed of 100 µm/s and irradiation power of 40 µW were settled as a first 

approximation. After irradiation, surfaces were exhaustively washed with PBS1x for 1 

hour, and patterns recorded using the fluorescence confocal microscope. Regarding the 

amount of salts, different effects were observed. For the immobilization of labeled 

oligonucleotide probes onto the MPTS surfaces, the use of water as a solvent showed 

good immobilization (Figure 3a), while PFTS surfaces displayed better results with 

PBS0.5x as a buffer (Figure 3b). 

For further information about oligonucleotide sequences, see table 3 in the experimental 

section. 

a) MPTS surface                    b) PFTS surface          

          

Figure 3. a) Immobilization of Probe 1* in water onto the MPTS surface. b) Immobilization of 

Probe 1* in PBS0.5x onto the PFTS surface. Image recording was performed with a confocal 

fluorescence microscope. 

Regarding the patterning, the array pattern displayed better results than the line pattern. 

Therefore, a pattern of 500 x 500 µm, having 18 spots for each line was employed for this 

work. Each spot was made of five lines of different length, very close to each other, so a 

spherical spot was achieved. Good spatial resolution was accomplished using this 

methodology, with spot sizes around 10 µm, and a pitch distance (distance between the 

center of neighboring spots) of 30 µm. Figure 4.  
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Figure 4. The layout of the immobilization of thiolated probes using the fs-laser. 

Then, lower concentrations (1 and 5 µM) were studied, using PBS0.5x and water as 

buffers, as they displayed better results. Nonetheless, results were not improved, so the 

probe concentration of 10 µM was established. Finally, irradiation speeds and irradiation 

powers were studied using three different conditions (Table 1). Nonetheless, spatial 

resolution was not improved.  

Table 1. Studied irradiation parameters. 

Irradiation speed (µm/s) Irradiation power (µW) 

100 40 

100 20 

50 40 

 

It is important to note that the fluor-thiol photocoupling reaction displays a wide range of 

irradiation wavelengths to work. Using this optical set up, successful anchoring of 

thiolated probes onto surfaces containing C-F moieties irradiating at 280 nm was reached, 

while in the case of the low density microarrays discussed in section 3.1, the working 

wavelength was 254 nm. Outside of the irradiated pattern, no immobilization was 

observed, which corroborates the essential role of light for the anchoring. 

The homogeneity of the spots is quite good; however, some dark areas appear in the 

recorded images due to undesired optic effects. Also, the concentration of salts during 

drying can lead to poor immobilization. 
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To corroborate even more the role of the light and the thiol moiety in the fluor-thiol 

coupling reaction, two controls were completed. On the one hand, a non-thiolated probe 

(Target 1*) was deposited onto the PFTS surface (Figure 5a). Irradiation under the same 

conditions than above and thorough washing was performed. On the other hand, non-

irradiation of the thiolated probe (Probe 1*) and exhaustive washing were made (Figure 

5b). A comparison of the previous results was carried out (Figure 5c). As demonstrated 

in Figure 5, both UV irradiation (280 nm) and thiol group were required to accomplish a 

successful attachment.  

 

Figure 5. a) and b) Negative controls supported the needed of a thiol moiety and irradiation to 

undertake the fluor-thiol photocoupling reaction c) Anchoring of a thiolated probe was 

corroborated.  

Once optimized the immobilization process, recognition assays were carried out. For that, 

immobilization of a non-labeled probe (Probe 1), in the optimized conditions of 

irradiation power (40 µW), and irradiation speed (100 µm/s), was done. Later, the 

hybridization step with the labeled complementary strand (Target 1*), was performed. 

Target concentrations from 0.5 to 5 µM in SSC1x, and hybridization times from 1 to 2 

hours, at 37 °C, were studied. A concentration of 0.5 µM was enough to get worthy 

recognition signals. Hybridization times were increased in comparison to chapter 3 

experiments (from 1 to 2 hours) to ensure successful hybridizations, while incubation 

temperatures were kept at 37 °C.  

Although probe immobilization in water showed the best results using MPTS 

functionalized substrates, later hybridization process provided low fluorescence signal. 

This can be attributed to the poor bioavailability of the anchored probe. For that, other 



Chapter 5 

 

163 

 

buffers were studied for probe linking. PBS1x buffer solution gave the best hybridization 

efficiencies (Figure 6a). In the case of the PFTS modified surface, probe immobilization 

in PBS0.5x displayed the best hybridization capacity (Figure 6b).  

                            a)                                           b) 

       

Figure 6. a) Immobilization of a non-labeled DNA probe (Probe 1) in PBS0.5x and hybridization 

with the complementary labeled strand (0.5 µM Target 1* in SSC1x) onto MPTS surface. b) 

Immobilization of Probe 1 in PBS0.5x and hybridization with 0.5 µM Target 1* in SSC1x onto 

the PFTS surface. 

As can be observed in Figure 6, the anchored thiolated probe, through fluor-thiol 

photocoupling reaction, displayed a successful recognition however the signals obtained 

with MPTS derivatized surface were higher. It is important to note that irradiation is 

taking place at a different wavelength (280 nm) that the optimized at the beginning of this 

chapter to accomplish the fluor-thiol photocoupling reaction (254 nm). Furthermore, 

optimized surfaces were not able for these experiments. The modified substrates 

contained PEGS which improved the hydrophilicity of the surfaces. Nonetheless, fully 

perfluorinated surfaces were employed during this work, which worsens the 

immobilization and hybridization capacity. Thus, optimization of the surface wettability 

and irradiation wavelength could lead to improve these promising results.  

II.    Antibodies (IgG) and half antibody fragments (hIgG) microarrays. 

Before starting with the immobilization of antibodies with the optical setup of the host 

group, previous optimization work was done at our laboratory regarding the 

phtotoimmobilization of hIgG and IgGs using C-F functionalized surfaces. 

Immobilization of both hIgG and IgG αBSA at several concentrations (from 100 to 400 

µg/mL) in PBS1x onto PFTS surfaces by UV irradiation at 254 nm, was studied. These 

bioreceptors were previously employed in chapter 2, and the same purification and 

reductive process were followed. After washing with PBS-T and water, incubation with 
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AlexaFluor 647-labeled BSA (5 µg/mL) was carried out for 30 minutes at room 

temperature. Microarrays were recorded using our homemade surface fluorescence reader 

(SFR).  

As preliminary results, a higher recognition capacity of the hIgG αBSA versus the IgG 

αBSA was achieved (Figure 7). This is attributed to the orientation of the hIgG fragments 

which allows more bioavailable receptors. This encouraged us to its implementation with 

the laser system of the host group.  

 

 

 

 

 

Figure 7. Fluorescence intensities recorded for the microarrays obtained by spotting hIgG αBSA 

and IgG αBSA at 100, 200 and 400 µg/mL concentrations. The chip was irradiated at 254 nm for 

5 seconds, washed, incubated with AlexaFluor 647-labeled BSA, and washed again. 

Having these preliminary results, the immobilization of hIgG and IgG labeled with 

AlexaFluor647 on PFTS and MPTS modified surfaces was studied using the same fs-

laser system explained above for the fabrication of oligonucleotide microarrays.  

Based on the expertise of the hosting group for the immobilization of antibodies, 

irradiation power of 60 µW and speed of 100 µm/s were employed.1,4 Afterwards, 

surfaces were washed with PBS-T buffer overnight. Regarding the bioreceptor 

concentration, IgG αBSA was employed at 1000 and 200 µg/mL in PBS1x, while hIgG 

αBSA was used at 100 µg/mL in acetate buffer, as this was the maximum available 

concentration for this fragment.  

The whole antibody (IgG αBSA) showed good immobilization onto both MPTS and 

PFTS surfaces, which corroborates the LAMI technique as an adequate method for the 

photo-assisted immobilization of antibodies. Although both concentrations gave good 

resolution patterns, the higher concentration (1000 µg/mL) displayed better results. In the 

case of the PFTS surface, this technique has been adapted for the anchoring of such 

antibodies to surfaces containing C-F bonds, taking the advantage of generated free thiol 

groups during illumination.  

hIgG αBSA 100 µg/mL 

 

IgG αBSA 100 µg/mL 

hIgG αBSA 200 µg/mL   

IgG αBSA 200 µg/mL   

hIgG αBSA 400 µg/mL   

IgG αBSA 400 µg/mL 



Chapter 5 

 

165 

 

Regarding the hIgG αBSA fragments, immobilization onto the PFTS modified surface 

was achieved, while non-successful immobilization was observed onto MPTS surfaces. 

This could be due to the higher hydrophobicity of PFTS surfaces, which confines the 

probe solution, and thus concentrates the amount of bioreceptor. A comparison between 

hIgG and IgG could not be undertaken, as different concentrations were employed. 

Finally, recognition assays were performed. For that, immobilization of non-labeled 

bioreceptors (hIgG αBSA and IgG αBSA) at 1000 µg/mL and incubation with labeled 

BSA in PBS-T (100 µg/mL), for 30 minutes at room temperature, were carried out. MPTS 

surface showed weak recognition in the case of the IgG αBSA and an inverted pattern in 

the case of the hIgG αBSA. For PFTS surfaces, IgG and hIgG showed good 

biorecognition capacity, improving the results obtained with the control surfaces. This 

improvement, using PFTS surfaces, corroborated the advantages of these hydrophobic 

surfaces for the fabrication of microarrays. Employing these PFTS surfaces, reduction of 

the undesired non-specific adsorption and minimization of the background was reached. 

This confirmed our initial hypothesis about perfluorinated surfaces. Confinement effect 

is favored, allowing the approximation of the analyte only where the bioreceptor is linked, 

and reducing the background. Table 2 shows the results achieved. 

Table 2. Immobilization and recognition assays of hIgG αBSA and IgG αBSA bioreceptors onto 

MPTS and PFTS surfaces. 

Surface Bioreceptor Immobilization Recognition 

MPTS 

 

hIgG 

αBSA 

 

None immobilization 

 

 

Weak recognition (inverted 

pattern) 

IgG αBSA 

 

Immobilization 

 

Weak recognition 
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PFTS 

 

hIgG 

αBSA 

 

Weak immobilization  

 

Recognition 

IgG αBSA 

 

Immobilization 

 

Recognition 

 

In addition, adsorption experiments were performed onto both surfaces, by placing a 2 

µL drop of labeled antibody at 1000 µg/mL in PBS1x, resting for 20 minutes, and washing 

exhaustively with PBS-T. As can be seen in Figure 8, PFTS modified surfaces reduced 

significantly the non-specific adsorption then lowering the background. 

 

Figure 8. Confocal fluorescence images of an adsorbed labeled antibody onto PFTS and MPTS 

surfaces, after washing. 

Lastly, comparing IgG and hIgG results onto the PFTS surface (Figure 9), the whole 

antibody gave better results, which is opposite to our preliminary results. Nevertheless, 

the LAMI technique is recognized to break disulfide groups by exciting proximal 

aromatic residues with UV light (275-295 nm). Therefore, if the LAMI technique is 

adapted to our perfluorinated surfaces, without previous fragmentation of the antibodies.  

The program ImageJ was employed to get a profile analysis of the arrays. Figure 9 shows 

the original image, a 3D plot and the intensity average of the spots. The homogeneity of 
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the spots is quite good for preliminary results, and high intensities were obtained. 

 

Figure 9. a) Left. Detection of labeled BSA by an immobilized hIgG BSA array onto the PFTS 

surface. Medium. 3D surface plot of the selected area. Right. Analysis of the average fluorescence 

emission intensity profiles (red line). b) Left. Detection of labeled BSA by an immobilized IgG 

BSA array onto the PFTS surface. Medium. 3D surface plot of the selected area. Right. Analysis 

of the average fluorescence emission intensity profiles (red line).  

In conclusion, results have demonstrated the anchoring of thiolated bioreceptors 

(oligonucleotide probes and antibodies), to PFTS quartz slides surfaces, being both UV 

irradiation (280 nm) and thiol groups required to accomplish a successful attachment. 

Furthermore, anchoring of whole antibodies in an oriented way, without previous 

reduction, was achieved by adapting the developed technique in the host group to our 

system. All this demonstrates the high versatility of the fluor-thiol photocoupling reaction 

(chapter 3). 

Experimental section 

Chemicals, reagents, and buffers. Optically flat quartz slides were purchased from ArrayIt 

(EEUU). 1H,1H,2H,2H-Perfluorodecyltriethoxysilane, (3-mercaptopropyl)trimethoxysilane, 

potassium persulfate (K2S2O8) ≥ 99%, and m-xylene were supplied by Sigma-Aldrich 

(Denmark). Ethanol 99% and 76% were purchased from Scharlau (Denmark). It is to be 

noted that all the chemicals were handled following the corresponding material safety 

data sheets. All chemicals were used without further purification.  

Milli-Q water, with a resistivity above 18 mΩ, was used to prepare the aqueous solutions. 

The employed buffers, phosphate buffer saline (PBS1х, 0.008 M sodium phosphate 
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dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M 

potassium chloride, pH 7.5), PBS-T (PBS1х containing 0.05% Tween 20) and saline 

sodium citrate (SSC1х, 0.15 M sodium chloride, 0.02 M sodium citrate, pH 7), were 

filtered through a 0.45 µm pore size nitrocellulose membrane of the Fisher brand 

(Germany) before being used. 

Employed oligonucleotides were acquired from Eurofins Genomic (Germany). Table 3. 

The DNA concentration and quality were controlled by measuring optical density at 

260/280 nm in a NanoDrop ND 1000 Spectrophotometer from Thermo Fisher Scientific 

(USA). 

Table 3. Employed oligonucleotide sequences. 

Name Sequence (5’ to 3’) 5’- 3’- 

Probe 1* CCCGATTGACCAGCTAGCATT- (T)15 Cy5 SH 

Probe 1 (T)15-CCCGATTGACCAGCTAGCATT SH - 

Target 1* AATGCTAGCTGGTCAATCGGG Axa - 

a Alexa Fluor 647  

Bovine serum albumin (BSA) and bovine serum albumin polyclonal antibody (IgG 

αBSA) were purchased from Sigma Aldrich (Spain). hIgG αBSA was obtained by 

selective reduction as described in Chapter 2. 

Silanization of slides. Optically flat quartz slides were hydroxylated by immersion in a 

solution of K2S2O8 (30 g in 600 mL of water milli-Q) for 1 hour at ~99 °C. Washing with 

deionized water immediately after activation, to avoid the formation of crystals over the 

surface was performed. To introduce the reactive functional groups, these chips were 

immersed in the corresponding solution. For the control surfaces, immersion into a 

solution of 0.3% v/v (3-mercaptopropyl)trimethoxysilane in m-xylene for 30 min was 

carried out. Subsequently, the surfaces were washed with pure xylene, 76% ethanol and 

deionized water, dried with compressed dry air and placed in an oven for 1 hour at 100 

°C. For the perfluorinated surfaces, immersion into a 1% v/v solution of 1H,1H,2H,2H-

perfluorodeciltriethoxysilane in ethanol 99% overnight at room temperature, was done. 

Then, samples were withdrawn from the silane solution, washed with ethanol (76%), air-

dried, and baking into an oven for 1 hour at 100 °C. 
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UV irradiation optical setup. The one-photon UV optical setup employed for the 

immobilization of the patterned microarrays onto the functionalized quartz slides and the 

software used to control the experimental setup have been described previously 1,4. In 

brief, the laser light resource is a Tsunami XP (Spectra-Physics, USA), pumped by a 

Millennia eV (Spectra-Physics, USA). This femtosecond laser source (100 fs pulse width 

and 80 MHz repetition rate) is manually tunable in a range between 700-1080 nm. For 

LAMI illumination, typical operation wavelength is around 840 nm with a maximum 

average power of 3 W. The output of the Tsunami is frequency tripled in a UGH module 

(Spectra-Physics, USA) to produce ~280 nm UV femtosecond pulses, with an efficiency 

of ~10%. The third harmonic is then directed into the illumination setup through a 

different path of the fundamental 840 nm beam. The third harmonic beam at 280 nm 

passes through a computer controlled attenuator (PR50CC-Newport, USA) and a 

polarized beam cube. Power is monitored by a photodiode placed after each attenuator. 

In order to control sample exposure to light, the beam is also directed through safety 

shutters (LS6S2ZM1, Vincent Associates, USA). A CCD camera (MCE-B013-UW, 

Mightex, Canada) is placed above the objective through which the 280 nm light is finally 

directed onto the sample to allow sample visualization.  

XYZ Moving stage. To simplify positioning of the sample a custom holder was settled to 

allow transmitted LED illumination (LCS-0420-03-22, LCS-0850-03-22, Mightex, 

Canada). The sample holder is fixed to an XYZ stage stack contained two XMS100 stages 

(XY) and one VP-5ZA (Z). All stages, including the rotation stages for power control, 

the piezo Z stage for fine positioning, and the XYZ stack, are controlled with the Newport 

XPS-Q8 (USA) motion controller with appropriate driver cards. This system allows the 

patterning with micrometer spatial resolution. 

DNA immobilization assays. Anchoring of labeled oligonucleotide probes (Probe 1*) onto 

MPTS and PFTS functionalized quartz slides was extensively studied. Thus, 2 µL drops 

of Probe 1* (10 µM) were placed onto the surface and let them dry. Then, irradiation with 

the laser at 280 nm was performed. Array pattern of 500 x 500 µm, with an irradiation 

speed of 100 µm/s, an irradiation power of 40 µW and a concentration of 10 µM, was 

performed. Different immobilization buffers were used (PBS1x, PBS0.5x, and water). 

After irradiation, washing of the surfaces by immersion in PBS1x for 1 hour to remove 

the non-anchored probes, was carried out. 
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DNA hybridization assays. To carry out the recognition assays, the immobilization of 

probes was performed as described above. For that, immobilization of a non-labeled 

probe (Probe 1) in the same conditions of irradiation power, irradiation speed, and 

concentration were performed. Substrates were washed with PBS1x for 1 hour. Later 

hybridization step with the labeled complementary strand (Target 1*; 0.5 µM in SSC1x) 

for 1 hour at 37 °C, was done. Finally, washing in SSC1x for 1 hour was done. 

Antibody immobilization assays. Whole antibodies (IgG αBSA at 1000 µg/mL) and half 

antibody fragments (hIgG αBSA at 100 µg/mL) labeled with AlexaFluor647 were 

immobilized onto both surfaces, as well. As before, immobilization parameters were 

optimized, and final conditions resulted; an irradiation power of 60 µW, an irradiation 

speed of 100 µm/s, an array pattern of 500 x 500 µm, and PBS1x as dilution buffer. After 

irradiation, surfaces were washed with PBS-T buffer overnight. 

Antibody recognition assays. Recognition assays were performed as follows. 

Immobilization of non-labeled bioreceptors (hIgG αBSA and IgG BSA) at 1000 µg/mL, 

exhaustive washing, and incubation with labeled BSA in PBS-T (100 µg/mL) for 30 

minutes at room temperature were carried out. Final washing with PBS-T for 15 minutes 

was performed. 

Probe detection. After immobilization and recognition assays, the patterns were 

visualized in an inverted confocal fluorescence microscope (Leica TCS SP5), through 

UV 10x and 20x objectives. For imagining of the immobilized labeled biomolecules 

(AlexaFluor647 and Cy5 fluorophores), the patterns were excited using the 633 nm laser 

line from the HeNe laser and emission was visualized from ≈ 670-780 nm. Visualization 

of fluorescence patterns could only be observed when successful immobilization and 

recognition are achieved. 

Data analysis. Fluorescence intensity profiles and fluorescence intensity 3D plots of the 

patterns were obtained using the program ImageJ 1.50i. 

 

 

 



Chapter 5 

 

171 

 

REFERENCES 

(1)  Neves-Petersen, M. T.; Gonçalves, O. S.; Bañuls, M.-J.; Alonso, R.; Jiménez-

Meneses, P.; Maquieira, Á.; Vorum, H.; Petersen, S. B. Photonic Immobilization 

Techniques Used for the Detection of Cardiovascular Disease Biomarkers. In 

Biophotonics: Photonic Solutions for Better Health Care VI; Popp, J., Tuchin, V. 

V., Pavone, F. S., Eds.; SPIE: Strasbourg, France, 2018; p 106. 

(2)  Neves-Petersen, M. T. Photonic Activation of Disulfide Bridges Achieves Oriented 

Protein Immobilization on Biosensor Surfaces. Protein Sci. 2006, 15 (2), 343–351.  

(3)  Parracino, A.; Neves-Petersen, M. T.; di Gennaro, A. K.; Pettersson, K. Arraying 

Prostate Specific Antigen PSA and Fab AntiPSA Using Lightassisted Molecular 

Immobilization Technology. 2010, 19, 1751—17599. 

(4)  Gonçalves, O.; Snider, S.; Zadoyan, R.; Nguyen, Q.-T.; Vorum, H.; Petersen, S. B.; 

Neves-Petersen, M. T. Novel Microfabrication Stage Allowing for One-Photon and 

Multi-Photon Light Assisted Molecular Immobilization and for Multi-Photon 

Microscope; Achilefu, S., Raghavachari, R., Eds.; San Francisco, California, United 

States, 2017; p 100790F.  





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Study of microstructuration for the improved performance 

of oligonucleotide microarray performance  

This chapter is derived from the work developed through a 2-month placement in the 

Ablation and Joining Department headed by Dr. -Ing Arnold Gillner at the Fraunhofer 

Institute for Laser Technology (Germany) in 2018. 
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The development of oligonucleotide microarrays onto glass and quartz slides by the novel 

fluor-thiol photocoupling reaction has been just demonstrated by using 2 different 

irradiation resources. Nonetheless, the exploration of structured slides, aiming better 

immobilization and sensitivity results was pursued. This is key for the fabrication of 

higher density microarrays which enhances the performance of the microarray. Hence, 

the effect of the different microstructures in the fluorescence intensity was studied 

through a placement in the Biofabrication and Laser Therapy Group, in close relationship 

with the Microstructuring Group, at the Fraunhofer Institute for Laser Technology 

(Germany). 

Fabrication of superhydrophobic and superhydrophilic surfaces mimicking natural 

elements is an interesting idea for the development of DNA microarray technology. The 

capability of micro/nanostructuring of surfaces to become water-repellant allows a 

phenomenon known as lotus effect. This nanotechnology advances provide the 

development of new superhydrophobic materials to improve the characteristics of 

antiadherence, anti-fog, self-cleaning, etc.1 

In addition, it is known that the surface roughness increases the capacity of the surface to 

harbor a higher amount of bioreceptors, as the surface available is larger.2,3 Therefore, 

controlling the roughness of the surface, immobilization capacity can be improved, so a 

higher fluorescence signal is obtained. Nonetheless, some studies have demonstrated that 

there are other factors implicated in this enhancement of fluorescence.4,5  

To clear up this event, in our laboratory, deposition of the same amount of labeled 

biomolecule onto surfaces with different roughness and recording of the fluorescence 

emission was performed. Oligonucleotide and protein systems were studied, employing 

the surfaces available in the laboratory (glass slides and polymeric substrates), whose 

roughness varied from 0.02 to 2 µm. Effectively, the results revealed that rough surfaces 

displayed higher fluorescence intensities, in comparison to smooth surfaces, no matter 

the analyte, the fluorophore or the composition of the material employed. Based on these 

preliminary results, a controlled microstructuration of glass slides by the laser technology 

available in the host group was tackled. Those microstructured surfaces were combined 

in Section 5.1 to explore whether assay sensitivity and probe immobilization could 

perform further.  
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For that, the microstructuration of glass slides was undertaken by using a Hyperrapid 100 

laser source with a maximum average power of 100 W and an emission radiation at λ = 

1064 nm. This ultra-short pulsed laser allowed the microstructuration of the microscope 

glass slides, achieving different roughness depending on the power employed during 

radiation. This material is ideal to compare to previous results (section 3.1). 

A complete characterization of the different structures is key for a better understanding 

of the substrate behavior onto the later bioassay processes, exhaustive roughness 

measurements by 3D Laser Scanning Microscopy (LSM), were performed. The different 

substrates displayed arithmetic mean roughness (Ra) from 20 nm to 1.8 µm. (Figure 1). 

Platform Ra (µm) Amplification 50X Amplification 150X 

Glass slides 0.02 

  

A 0.30 

  

B 0.35 

  

C 0.40 

  

D 0.60 

  

E 0.85 
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F 1.80 

  

Figure 1. LSM images of the structured and non-structured platforms at 50x and 150x objective. 

Roughness measurements were analyzed on the 150x amplification images. 

These seven structures were chosen to undertake the assay experiments based on the 

roughness and topography obtained. Then, preliminary assays were performed to ensure 

the suitability of the structured platforms for microarray technology. For that, the 

functionalization of the substrates, by using an adapted methodology to the employed in 

our laboratory, was carried out (see section 3.1). Water contact measurements of the 

functionalized substrates with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFTS) were 

checked to control the hydrophobicity of the surfaces (Table 1). Additional LSM 

measurements demonstrated that functionalization does not affect the surface roughness 

structure. 

Table 1. The relation between roughness measured before functionalization and water contact 

angle obtained after functionalization with PFTS. Water contact angles around 110 ° were 

achieved.  

Platform Glass slides A B C D E F 

Ra (µm) 0.02 0.3 0.35 0.4 0.6 0.85 1.8 

WCA (°) 110 107 107 107 108 107 108 

 

Once the substrates were functionalized with a hydrophobic silane, immobilization and 

hybridization assays of oligonucleotide probes, were performed.  

For immobilization, 0.7 µL drops of a thiolated and labeled probe (Probe 1* at 1 and 2 

µM in PBS1x) were placed onto the different microstructures with a standard 

micropipette. After drying, substrates were irradiated with a portable UV lamp at 254 nm 

for 5 minutes and washed with PBS1x for 15 minutes. Fluorescence was recorded using 

a confocal laser scanning microscope (CLSM), by exciting at 633 nm and reading from 

640-700 nm. Regarding hybridization, 0.7 µL drops of a thiolated and non-labeled probe 

(Probe 1 at 1 and 2 µM in PBS1x) were placed onto the different microstructures. After 

drying, platforms were irradiated as above and washed. Then, platforms were incubated 

with the complementary strand (Target 1* at 0.1 µM) for 1 hour at 37 °C. After washing, 
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imaging of the samples was performed as above. The microstructured surfaces displayed 

successful immobilization and hybridization results, which corroborates their suitability 

for the fabrication of oligonucleotide microarrays. Thanks to these successful results, 

these structured platforms were introduced in our usual fabrication procedure for 

comparison to all the previous work. Thus, further structures were fabricated keeping the 

same parameters, and brought to the Department of Chemistry at the Polytechnic 

University of Valencia, to perform the biofunctionalization and biorecognition assays, 

using our optimized methodologies.  

Henceforth, experiments were performed onto the structured slides accomplished during 

the placement, but using our optimized fabrication methodology. To carry out the first 

objective and checking the fluorescence signal enhancement with the roughness, a 

comparison between Ra and fluorescence signal intensity was done. For that, the printing 

of Probe 1* (40 nL/spot; 4 spots/row; 1 and 2 µM in PBS1x) onto perfluorinated 

substrates with different roughness by a noncontact dispensing system was done. 

Registration of fluorescence signal was performed in the surface fluorescence reader 

(SFR). As can be observed in Figure 2, all the structured platforms (platforms A, B, C, 

D, and E) displayed a fluorescence signal (blue bars) of at least twice the obtained with 

the same glass material without structuration on it.  

 

Figure 2. Fluorescence intensity after probe spotting of the different platforms (blue bars) in 

relation to their roughness (yellow bars). Structured platforms revealed higher fluorescence 

intensity.  
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As the amount of labeled probe was exactly the same for all the surfaces, an identical 

fluorescence intensity would be expected. However, an unknown effect is occurring as 

different intensities were obtained. Our hypothesis is that due to the increase of the surface 

roughness, the non-radiative process could be reduced as emitting molecules are partially 

isolated, which would reduce the spatial vibrations and intermolecular collisions.  

Taking advantage of these interesting results, further experiments were undertaken. 

Therefore, the study of immobilization was performed by spotting the thiolated probe (40 

nL of Probe 1* at 1 and 2 µM) and irradiating at 254 nm for 5 minutes. As obtained above, 

successful immobilization was achieved after washing. However, a deeper study of this 

process was completed this time. For that, the fluorescence intensity of the immobilized 

biomolecules was compared before and after washing. As may be seen in Table 2, a 

constant percentage loss of fluorescence was observed for every surface. This means that 

all the surfaces are displaying a very similar anchoring capacity. This corroborates our 

previous hypothesis as the higher surface roughness does not provide a higher 

immobilization density, and the increase in fluorescence intensity is due to other reasons 

like scattering. 

Table 2. Percentage of immobilization for Probe 1* at 2 µM. Fluorescence intensity was 

measured before and after washing to calculate the immobilization extend. 

Platform Glass slides A B C D E F 

Immobilization 

yield (%) 
88 87 86 88 88 87 78 

Ra (µm) 0.02 0.27 0.33 0.45 0.58 0.83 1.86 

 

Finally, sensitivity reached by the different platforms was studied through hybridization 

assays. For that, the spotting of the non-labeled thiolated probe (Probe 1 at 1 and 2 µM in 

PBS1x) and irradiation of the surface at 254 nm for 5 minutes was performed. After 

washing, platforms were incubated with the labeled complementary strand (Target 1* at 

0.1 µM in SSC1x) for 1 hour at 37 °C. Fluorescence intensities were registered in the SFR 

after washing. All the structured platforms increased significantly the fluorescence 

intensity (green bars), being the platform E which displayed a higher sensitivity (Figure 

3). 
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Figure 3. Neat fluorescence intensity obtained after hybridization assay over each platform (green 

bars) in relation to their roughness (yellow bars). Sensitivity is significantly enhanced on the 

structured ones, in comparison to the non-structured surface.  

Taking into account all these preliminary results (Figure 2, Table 2 and Figure 3), a 

different supposition is attained. These results are opposite to the previous hypothesis that 

attributed the increased of fluorescence to the higher immobilization density that allows 

the microstructured surfaces. Then, further studies have to be made to understand the 

process is happening over the surfaces.  

With these results in mind, the design of new structured surfaces that improve the 

performance of the microarrays would be the next challenge, as microstructured surfaces 

show advantages versus non-structured ones. 

Although structuration of glass is not an easy task due to the inertness of glass at high 

irradiation wavelengths, further studies to create specific patterns onto the surface can 

help to the performance of the microarray as demonstrated with these preliminary results.  

Structuration of other materials, such as metals and polymers, provides a higher versatility 

than glass, however, the functionalization process should be optimized onto the new 

surface to apply it to microarray technology. 
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Experimental section 

Chemicals, reagents, and buffers. See section 3.1. 

Instrumental methods. For controlling the structuration of the surfaces during the stay, 

the next instruments were employed.  

Water contact angle (WCA) measurements were taken using a Mobile Surface Analyzer 

provided by KRÜSS GmbH (Germany). The analysis was performed making use of the 

ADVANCE software.  

For visualization and roughness measurements, a Color 3D Laser Scanning Microscope 

(LSM, Keyence, VK-9700, Germany) with a resolution of 1 nm, was employed. 

Afterward, pictures were analyzed with a special LSM-Software (VK-Analyzer, 

Keyence) 

For fluorescence measurements, a Leica TCS SP2 confocal laser scanning microscope 

(CLSM, Leica Microsystems Heidelberg GmbH, Germany) was employed. For 

imagining, the surfaces were illuminated using the HeNe laser at 633 nm at a voltage of 

750 V, and reading was made in the emission range from 640-700 nm with a 5x objective. 

Silanization of slides. See the Experimental section from chapter 3.1 for the fabrication 

of PFTS surfaces.  

Oligonucleotide immobilization. See Experimental section from chapter 3.1 for anchoring 

of thiolated probes to surfaces containing C-F bonds through fluor-thiol photocoupling 

reaction.  

Hybridization Assays. See the Experimental section from chapter 3.1 for recognition 

assays. 

Methodology for immobilization and hybridization was performed as explained in section 

3.1, excepting the irradiation resource employed. Instead, a UV-ozone surface cleaner, a 

portable mercury capillary lamp (6 mW/cm2, Jelight Irvine, USA) was employed for 

immobilization, by irradiating at 254 nm for 5 minutes. In addition, during the stay, 0.7 

µL drops were deposited using a micropipette for spotting of the different probes, as an 

automatic dispensing system was not able at the host group. 
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6. Thiol-click reactions for 

oligonucleotide microarrays onto 

polyvinylidenfluoride membranes 

  



 
 

 

  



Chapter 6 

185 
 

As established in the introduction, glass slides are the most employed material in 

microarray technology. Nevertheless, extrapolation to other materials is interesting to 

provide certain features in the substrate. In this chapter, microarrays using polymeric 

polyvinylidene fluoride (PVDF) membranes as solid substrate, are performed.  

Because of its good resistivity and flexibility, PVDF membranes are widespread applied 

in numerous fields, such as separation process. Since the 1990s, PVDF substrates were 

broadly employed for the preparation of protein microarray by passive adsorption mainly, 

due to its efficient hydrophobic interactions. However, poor immobilization densities and 

high background were reached.  

For that, a covalent anchoring is proposed in this work using two different routes, with 

the goal of improving the immobilization densities, and detection capacity.  

The first one, performs a prior alkenyl functionalization of the PVDF substrate through 

organosilane chemistry. The activation of the membrane by UV light irradiation is widely 

studied, making use of a powerful lamp. This UV activation improves the previous 

activation methodologies, which entails an important milestone in this work, as well. 

Then, anchoring of thiolated oligonucleotides by the thiol-ene photocoupling reaction is 

carried out. These results demonstrate a novel activation (generation of hydroxyl groups) 

of PVDF membranes, and its application to microarray technology by thiol-ene 

photocoupling reaction. 

The second strategy consists in the direct immobilization of thiolated oligonucleotides, 

by the fluor-thiol photoclick reaction. This result paves the way to apply this novel UV 

reaction to other substrates, in a fast and simple way. In addition, functionalization is not 

necessary, as PVDF membranes already provide the C-F bonds. 

Both strategies are comparatively analyzed in terms of immobilization densities, 

hybridization capacity, and consumed bioassay time.  

The applicability of thiol-click reactions to other systems is demonstrated in this work, 

therefore, further progresses could be done making use of these available methodologies.

 

  



 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Novel and rapid activation of polyvinylidene fluoride 

membranes by UV light 

"Reprinted with permission from React. Funct. Polym. 2019, 140, 56–61. Copyright 2019 

Elsevier  
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ABSTRACT 

Polyvinylidene fluoride (PVDF) membranes have become essential because of their huge 

applicability to the industry; however, they still present some limitations. This study 

focuses on the modification of PVDF membrane properties such as hydrophobicity, 

wettability, and functionality. To obtain a stable grafting, the surface of the membrane is 

hydroxylated using UV light at 254 nm, followed by covalent immobilization of (3-

aminopropyl)triethoxysilane (APTES) and vinyltriethoxysilane (VTES). The 

physicochemical and morphological properties of modified and raw PVDF membranes 

were analyzed by spectroscopy, microscopy, and goniometry. Finally, nucleic acid 

microarray technology results showed that PVDF and PVDF-VTES membranes had 

probe immobilization densities of 5 and 11 pmol/cm2 and hybridization limits of detection 

of 1 and 5 nM, respectively.  

Keywords: PVDF membranes; Hydroxylation; Silanization; Photoinduced 

immobilization; Nucleic acid microarrays 

1.  Introduction 

PVDF membranes have been extensively applied to industrial processes and scientific 

research because of their mechanical, chemical, and thermal resistance properties, and 

their simple fabrication in mass scale [1,2]. PVDF is a semi-crystalline fluoropolymer 

that exists in four forms, and it is made of −CH2CF2− units. It has three types of bonds, 

namely, C−C, C−H, and C−F, whose energies are 88, 106, and 111 kcal/mol, respectively 

[1].  

Because of the strong hydrophobic interactions exerted by the PVDF membrane, organic 

matter such as proteins accumulates into the pores, thereby lowering the filtration 

performance [3–5]; therefore, the antifouling properties of the membrane need to be 

improved. For that, if the membrane hydrophilicity is increased,  protein adsorption and 

energy consumption can be reduced in separation processes [1,2,6]. In addition, 

enhancement of the membrane hydrophobicity increases the wetting resistance, which is 

an important property addressed in different ways [2,7–10]. 

Therefore, change in the PVDF membrane composition to improve its applicability and 

performance by addition of hydrophilic or hydrophobic compounds is still under 
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development. The main methodologies used thus far in the reformulation of PVDF 

membranes are surface modification by coating or grafting and blending modification by 

the addition of hydrophilic or amphiphilic polymers or inorganic nanoparticles in the 

fabrication process [1,2,11–13]. In this work, the membrane was modified by 

organosilane chemistry to achieve a covalent grafting. Hence, addition of hydroxyl 

groups onto the membrane surface by hydroxylation is necessary. Effective 

methodologies are necessary for hydroxylation, as most polymeric membranes such as 

PVDF do not present this functional group in their structure. 

For a long time, hydroxylation by alkaline treatment using concentrated sodium 

hydroxide has been extensively performed to increase the resistivity of the membrane to 

harsh environments by generating hydroxyl groups over the surface [14,15]. However, 

membrane degradation by dehydrofluorination, as a secondary effect, has been broadly 

reported [1,10,14,16]. Alternative methods as piranha-based process [17] and plasma 

treatment [18,19] have been described, which show different limitations [10], and 

therefore, it is necessary to develop new methodologies to carry out PVDF membrane 

modification.  

In this work, although direct activation of the PVDF membranes by UV light is difficult 

because of the good UV photo-irradiation resistance of the PVDF membrane [20], 

activation using methanol and a powerful UV lamp has been accomplished. This 

approach is easy and rapid for the generation of oxygen-based reactive motifs on the 

structure, and it is also cleaner, simpler, and milder than the previous reported methods 

[14,15,17–19]. Through this methodology, hydroxyl groups are formed onto the surface, 

without affecting the bulk properties of the membrane. Thus far, UV light has been 

extensively applied by our group as a powerful tool for the hydroxylation of silicon-based 

surfaces [21–23]. Hence, silanization was easily performed later, which allowed the 

docking of the membranes with different organosilanes. Functionalization of PVDF-

based materials by organosilane chemistry is scarcely reported in the literature, and the 

available studies have always used the difficult activation processes mentioned above 

(alkaline, plasma, and piranha treatments); therefore, this field has to be explored 

[9,10,24].  

Another interesting application of PVDF-based materials relies on the microarray 

technology. Since the advent of this technology in the 1990s, PVDF substrates have been 

widely used for the fabrication of protein microarrays. As mentioned before, PVDF 
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materials demonstrate efficient hydrophobic interactions; hence, passive binding of 

proteins and other biomolecules to the substrate occurs, thereby displaying limited 

immobilization densities and high background signals [25–30]. For that, as a proof of 

concept, raw PVDF membrane and those functionalized with vinyltriethoxysilane 

(PVDF-VTES) were used for the development of covalently anchored nucleic acid 

microarrays. The covalent immobilization of thiolated probes allows a rapid, stable, and 

orientated bonding, hence increasing the amount of active receptors over the surface. For 

the tethering of the thiolated probes to PVDF membranes, thiol-ene and fluor-thiol 

photocoupling reactions were applied. Thiol-ene reaction has been extensively applied in 

the preparation of high-density microarrays, taking the advantages of the click chemistry 

reactions [22,31–33]. For that, the surface functionalization of the PVDF membranes was 

carried out to generate active alkene groups on it. For raw PVDF membranes, fluor-thiol 

reaction was employed. This promising reaction has been recently proposed by our group 

and allows the direct covalent bonding of thiolated probes to C-F motifs over the surface 

[21]. Finally, detection capacity of both membrane types was compared to that obtained 

in a previous work by performing hybridization assays [21].  

Hence, in this study, we demonstrate an easy, rapid, and effective method to graft PVDF 

membranes with different functional groups by using microarray technology applications.  

2. Experimental section 

Chemicals, reagents, and buffers. Immobilon-P PVDF membranes with 0.45 µm nominal 

pore size were obtained from Merck Millipore (Spain). Ninhydrin, (3-

aminopropyl)triethoxysilane (APTES), and vinyltriethoxysilane (VTES) were purchased 

from Sigma-Aldrich (Spain). Toluene and methanol were acquired from Scharlau (Spain). 

It is to be noted that all the chemicals were handled following the corresponding material 

safety data sheets. All chemicals were used without further purification. 

Milli-Q water with a resistivity above 18 mΩ was used to prepare aqueous solutions. All 

the buffers employed, phosphate-buffered saline (PBS1х, 0.008 M sodium phosphate 

dibasic, 0.002 M sodium phosphate monobasic, 0.137 M sodium chloride, 0.003 M 

potassium chloride, pH 7.5), PBS-T (PBS1х containing 0.05% Tween 20), saline sodium 

citrate (SSC1х, 0.15 M sodium chloride, 0.02 M sodium citrate, pH 7), and SSC-T 
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(SSC1х comprising 0.5% Tween 20), were filtered through a 0.22 μm pore size 

nitrocellulose membrane from Whatman GmbH (Germany), before use.  

The oligonucleotides listed in Table 1 were acquired from Eurofins Genomics (Germany). 

The quality and concentration of DNA were determined by measuring optical density at 

260/280 nm using a NanoDrop ND 1000 spectrophotometer from Thermo Fisher 

Scientific (USA).   

Instrumental methods. Water contact angle (WCA) measurements were made with 

Attension Theta Lite from Biolin Scientific (Sweden), and images were processed with 

version 3.1 of One Attension software from Biolin Scientific (Sweden). The 

measurements were made in quintuplicate at room temperature with a volume drop of 2 

μL employing 18 mΩ water quality. 

Microarray printing was carried out with a low-volume noncontact dispensing system 

(AD 1500 model, Biodot, USA). Irradiation at 254 nm was carried out using a UV-Ozone 

Surface Cleaner, UVOH 150 Lab, from FHR (Germany), while irradiation at 365 nm was 

performed with a mercury capillary lamp from Jelight Irvine (USA), 6 mW/cm2, placed 

at a fixed distance (0.5 cm). 

The fluorescence signal of the spots was recorded with a homemade surface fluorescence 

reader (SFR) having a high sensitive charge-coupled device camera, Retiga EXi from 

QImaging Inc., (Canada), with light emitting diodes, Toshiba TLOH157P, as the light 

source [34]. For microarray image analysis and subsequent quantification, GenePix Pro 

4.0 software from Molecular Devices, Inc. (USA), was employed. 

X-ray photoelectron spectra were documented with a Sage 150 spectrophotometer from 

SPECS Surface Nano Analysis GmbH (Germany). Nonmonochromatic Al Kα radiation 

(1486.6 eV) operating at 30 eV constant pass energy for elemental specific energy binding 

analysis was used as an X-ray source. Vacuum in the spectrometer chamber was 9 x 10-9 

hPa, and the sample area examined was 1 mm2. Attenuated total reflectance infrared 

spectra were recorded using a Bruker Tensor 27 FT-IR system coupled to a Platinum ATR 

accessory from Bruker (Germany). Atomic force microscopy (AFM) measurements were 

carried out with a Veeco model Dimension 3100 Nanoman from Veeco Metrology (USA) 

at a tapping mode of 300 kHh. Imaging was performed in AC mode in air using OMCL-

AC240 silicon cantilevers from Olympus Corporation (Japan). The AFM images were 

taken at room temperature under ambient conditions, using tips from Nano World with a 

radius of 8 nm. All images were processed with NanoScope software. 
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Derivatization of membranes. Immobilon-P PVDF membranes were cut into 2 х 1 cm pieces, 

activated with methanol for 15 seconds, irradiated with a UV-Ozone surface cleaner for 10 

minutes at 254 nm, and immersed again in methanol for 15 seconds. To modify the surface 

properties, the PVDF membranes were then immersed into a 2% v/v solution of the corresponding 

silane in toluene at 40 °C for 1 hour. Then, the samples were withdrawn from the silane solution, 

washed several times with toluene and isopropanol, and air-dried. Finally, substrates 

functionalized with (3-aminopropyl)triethoxysilane (PVDF-APTES) were baked for 1 hour at 60 

°C, whereas those functionalized with vinyltriethoxysilane (PVDF-VTES) were baked for 1 hour 

at 80 °C. To corroborate the presence of primary amines in PVDF-APTES substrates, the 

ninhydrin test was performed. To carry out this selective test, a small piece of PVDF-APTES was 

immersed in 1.5 mL of ethanol. Then, 30 µL of fresh ninhydrin solution in ethanol at 1% was 

added to the membrane. Finally, the mixture was heated for 5 minutes at 100 °C. A piece of raw 

PVDF membrane underwent the same process to serve as a negative control. 

Microarray of nucleic acid probes by covalent anchoring. Covalent anchoring of 

thiolated oligonucleotides onto raw PVDF and PVDF-VTES membranes by UV light at 

365 nm was assessed. PVDF-VTES membranes were silanized as described above. Thus, 

40 nL of Probe 1*, bearing Cy5 fluorophore in the 3’ position and SH motif in the 5’ 

position (Table 1), prepared at 1 and 2 µM in PBS1х was spotted onto both surfaces to 

create the microarray (four spots per concentration). When the drops were dried, the 

PVDF membranes were exposed to UV light at 365 nm for 5 minutes to achieve 

immobilization. Afterwards, membranes were thoroughly rinsed with PBS-T for 10 

minutes and air-dried, and fluorescence was measured using the SFR. Pictures of the 

membranes after irradiation as well as before and after washing were analyzed using 

GenePix software. Immobilization densities were calculated by comparing the 

fluorescence intensities before and after washing. For negative controls, two experiments 

were performed: first, adsorption of Probe 1* was verified, and hence, the irradiation step 

was skipped; second, printing of a non-thiolated probe bearing a fluorophore in the 5’ 

position (Target 1*) was performed, followed by irradiation later.  
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Table 1. Oligonucleotide sequences used.  

Name Sequence (5’ to 3’) 5’ 3’ 

Probe 1* (T)15-CCCGATTGACCAGCTAGCATT SH Cy5 

Probe 1 (T)15-CCCGATTGACCAGCTAGCATT    SH - 

Target 1* AATGCTAGCTGGTCAATCGGG Axa - 

a Alexa Fluor® 647 

 

Hybridization Assays. To study the sensitivity of the modified and nonmodified surfaces, 

recognition assays were performed with raw PVDF and PVDF-VTES membranes. For 

that, PVDF-VTES membranes were functionalized as described above. Then, a thiolated 

oligonucleotide non-fluorescence labeled (Probe 1) prepared in 1 and 2 µM PBS1х was 

spotted (40 nL/spot; 4 spots/row) onto both substrates. Once the drops dried, PVDF 

membranes were exposed to UV light at 365 nm for 5 minutes, washed with PBS-T, and 

air-dried. After washing, 25 µL of Target 1* (concentrations ranging from 0.0005 to 0.1 

µM, in SSC1x and SSC-T) was spread over the surface with a coverslip. After incubation 

in a humid chamber for 1 h at 37 °C, the coverslip was gently removed, and the chip was 

then washed with PBS-T. The fluorescence intensity of the spots was recorded using the 

SFR, as mentioned above.  

3. Results and discussion 

Surface chemical derivatization. Derivatization was performed as follows: first, PVDF 

membranes were immersed in methanol for 15 seconds to remove the air trapped inside 

the pores, following the instructions of the manufacturer. Then, the membrane was 

activated by irradiation with a UV lamp at 254 nm, as a promising procedure for the 

generation of hydroxyl groups onto the surface. Different irradiation times were assayed, 

and the contact angle was measured. As shown in Figure S1, the raw PVDF membranes 

showed a water contact angle of 130°, whereas contact angles of the activated surfaces 

lowered up to 83° after 10 minutes of UV irradiation because of the number of hydroxyl 

moieties generated on the surface by the oxidation and cleaning treatments. Membranes 

activated for a longer time did not show a stable contact angle and tended to filtrate 

quickly, which made us think that a change occurred in the physical structure. For that, 
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an activation time of 10 minutes, which displayed stable contact angles of 83°, was 

established for accomplishing this process (PVDF-OH). Then, the membranes were again 

soaked in methanol for 15 seconds to break the barrier between PVDF and the 

functionalization solution. Immediately, the membranes were functionalized by 

organosilane chemistry, considering different conditions such as solvents, reaction times, 

temperatures, and organosilanes. Finally, the membranes were immersed in a 2% 

organosilane solution in toluene for 1 hour at 40 °C to create a thin layer over the surface. 

Compared to previous studies that used longer procedures [9,17,24], the present 

methodology required less time.  

Two hydrophilic silanes were used for this work: APTES and VTES. APTES silane was 

chosen as the first functionalization reagent on the basis of the extended work performed 

by Arafat et al. [17], in which membrane activation by piranha treatment is performed, 

followed by silanization using the same silane later. In this way, comparison of our 

activation and functionalization methods can be done in an easy and rapid manner. In 

addition, primary amine groups allow a quick detection by the ninhydrin test and show 

characteristic peaks in FT-IR. VTES silane was selected to introduce alkene groups, 

which are necessary for the later thiol-ene photocoupling reaction. Moreover, 

hydrophobicity of the PVDF membranes is reduced, thereby allowing a better 

approximation of targets to the anchored probes. Figure 1 shows the layout of the general 

PVDF modification. 

 

Figure 1. Layout of the simple activation and functionalization processes of PVDF 

membranes. 

APTES and VTES functionalization slightly decreased the water contact angle of the raw 

PVDF membranes (119° and 118°, respectively), thereby enhancing its hydrophilicity. 

To corroborate the presence of primary amines on the PVDF-APTES membrane, the 
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ninhydrin test was performed. The apparition of a deep blue color in the PVDF-APTES 

mixture verified the appropriate functionalization of the membrane. As a negative control, 

a piece of the raw PVDF membrane underwent the same test conditions to modify the 

membrane; however, no color change occurred [17,35] (Figure 2).  

 

Figure 2. Ninhydrin test performed for a functionalized PVDF-APTES membrane (left) 

and a raw PVDF membrane (right). As can be seen, blue color indicating the presence of 

amines was developed only by the PVDF-APTES membrane.  

Hence, the activation of PVDF membranes by UV light and the subsequent 

functionalization by organosilane chemistry constitute an advancement that allows a 

rapid, simple, mild, and effective procedure to modify PVDF properties.  

Thus, to achieve a reproducible protocol to graft surfaces in a homogeneous, non-

damaging, and stable way, a broad number of reaction conditions for hydroxylation and 

silanization processes were studied. A new protocol has been developed in this work, as 

hydroxyl groups over the membrane are necessary to silanize the substrates, and 

previously reported methods are aggressive and/or time consuming (alkaline, plasma, and 

piranha treatments) [14,15,17–19]. 

Characterization of nonmodified and modified membranes. To establish the chemical 

configuration of the raw and functionalized membranes, appropriate spectroscopic tools 

were applied.  

ATR-FTIR 

To detect the presence of new functional groups in the modified PVDF membranes, ATR-

IR measurements of raw and modified membranes (PVDF-OH, PVDF-APTES, and 

PVDF-VTES) were made. The spectrum of the raw PVDF membrane displayed the 

characteristic bands corresponding to this material. With regard to the functional group 
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region, bands related to C−H stretching vibrations (symmetric and asymmetric modes) at 

3022 and 2981 cm−1 were identified [36]. These stretching bands appeared in all the 

modified membranes. Remarkably, in comparison to the spectrum of the raw PVDF 

membrane, the FT-IR spectrum of the PVDF-OH membrane showed the apparition of 

two additional C−H stretching bands located at 2920 and 2852 cm−1. This result, 

previously reported using piranha activation, [17] is due to the change in the environment 

of the CH2, in which some neighbors have changed from CF2 to CHOH motifs as a result 

of UV light treatment; thus, a red shift is expected to occur. In addition, for functionalized 

membranes (PVDF-APTES and PVDF-VTES), new signals in the range of 3000 to 2800 

were detected. In the case of PVDF-APTES, the new generated CH2 mode of vibration 

appeared at 2930 and 2876 cm−1 with higher intensity and minor shift, which might be 

due to the contribution of the propyl group [17]. For PVDF-VTES, two new stretching 

vibrations situated at 2912 and 2841 cm−1 were recognized. In addition, the spectrum of 

the PVDF-APTES membrane displayed two other new significant features related to 

primary amine groups. First, two characteristic peaks for the amine group can be clearly 

detected at 3349 and 3287 cm−1, which represent typical primary amine stretching 

vibrations (Figure 3). Second, two additional peaks related to bending vibrations of 

primary amines at 1574 and 1477 cm−1 were observed (Figure S2). Figure S3 displays the 

fingerprint region (from 1500 to 400 cm−1) of nonmodified and modified membranes. FT-

IR spectra in this region followed a highly similar profile for all the membranes. 
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Figure 3. Comparison of ATR-IR spectra of nonmodified and modified PVDF 

membranes. Additional functional groups generated on the membranes displayed new 

peaks in the spectra. Blue: Raw PVDF membrane presents two C−H stretching vibrations, 

characteristic of this material (3022 and 2981 cm−1). Yellow: PVDF-OH membrane 

reveals two additional peaks at 2920 and 2952 cm−1, which corresponds to new C-H 

stretching bands and a broad band related to the hydroxyl groups. Green: PVDF-VTES 

membrane shows the emergence of CH2 vibrations at 2912 and 2941 cm−1. Orange: 

PVDF-APTES membrane displays two peaks related to primary amines (3356 and 3288 

cm−1) and two additional peaks related to C−H stretching vibrations at 2930 and 2876 

cm−1. 

XPS 

XPS spectra of raw PVDF and PVDF-APTES membranes were also recorded. The 

spectrum of the PVDF-APTES membrane showed new peaks at 398, 157, and 102 eV 

related to the binding energies of N1s, Si2s, and Si2p. These results corroborated the 

presence of silicon (Si) and nitrogen (N) motifs in the modified membrane, which 

demonstrated the successful functionalization. The intensity of the O1s band (531 eV) 

was also increased because of the silanol groups generated onto the surface (Figure 4). In 

addition, quantification of peak C1s contributions revealed an increase in the signals due 

to the C−C band (284.8 eV), which proved the presence of propyl groups of the 

organosilane, and a decrease in C−F bond contribution (289.4 eV) due to the 

dehydrofluorination process [37]. (Figure S4, ESI).  
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Figure 4. XPS spectra comparison between the raw PVDF membrane and PVDF 

membrane functionalized with APTES. Apparition of new peaks in the functionalized 

membranes (PVDF-APTES) at 398, 157, and 102 eV, revealed the presence of N1s, Si2s, 

and Si2p motifs, respectively. Increase in the O1s intensity (531 eV) was appreciated. 

 

Microarray bioassays. The demonstration of the derivatization methodology of PVDF 

membranes by simple UV irradiation and silanization and its availability at a mass scale 

made us consider its use as a support for carrying out biological recognition assays to 

endow membranes for new applications. As a proof of concept, raw PVDF and PVDF-

VTES membranes were applied for microarray technology. Hence, immobilization of 

nucleic acids and hybridization assays were performed with both membranes, and results 

were compared between the two assays and also with the results of a previous work [21].  

Nucleic acid tethering 

Here, we compare the immobilizations of thiolated probes onto the raw PVDF membrane 

and the PVDF-VTES membrane. The novel fluor-thiol photocoupling reaction allowed 

the covalent anchoring of thiolated probes onto the C−F bonds of the raw PVDF 

membrane [21], whereas the well-known thiol-ene photocoupling reaction allowed fixing 

of the probes to the alkene motifs generated on the membrane [10–12,15]. 

Thus, membranes were spotted with a thiolated probe that is fluorescent tag (Probe 1*) 

in 1 and 2 µM PBS1х. After the drops were dried, irradiated with UV light at 365 nm for 
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5 minutes, and washed with PBS-T, the fluorescence of the microarray was recorded 

using the SFR. Both membranes immobilized the thiolated nucleic acids successfully; 

however, the PVDF-VTES membrane showed a higher immobilization density 

(approximately twofold) than the raw PVDF membrane. As negative controls, two 

experiments were performed: First, the irradiation step was skipped to corroborate the use 

of UV light to immobilize the thiolated probe (Probe 1*). Second, a nonthiolated probe 

(Target 1*) was used to confirm the presence of the thiol group. Figure 5 displays both 

immobilization and negative control experiments. 

 

Figure 5. Top. Maximal immobilization densities of raw PVDF and PVDF-VTES membranes. 

Fluorescence intensities before and after washing were compared to calculate these values. 

Bottom. Negative controls corroborated the needed of irradiation and thiol group to undertake the 

fluor-thiol photocoupling reaction. 

Immobilization studies were performed on both membrane sides. Although successful 

immobilizations were demonstrated on both sides, the bottom side displayed a better 

consistency and homogeneity of the spots (Figure S5). Therefore, further experiments 

were performed on the bottom side of the PVDF membranes. 

Target detection 

Hybridization with the complementary target was performed in raw PVDF and PVDF-

VTES membranes. Thus, nonlabeled thiolated probe (Probe 1) in 1 and 2 µM PBS1х was 

spotted onto both surfaces, and immobilization was carried out in the same way as that 

before. After washing with PBS-T and drying, hybridization was carried out with a fully 

complementary AlexaFluor647-labeled probe (Target 1*) at different concentrations 
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(from 0.0005 to 0.1 µM in SSC1x) in a humidity chamber. The microarrays were 

incubated for 1 h at 37 °C and then washed; the fluorescence intensity of the spots was 

recorded using the SFR. Owing to the high hydrophobicity of the raw PVDF membrane, 

the contact between the solution and the membrane surface was hindered; thus, a high 

amount of target (up to 0.1 µM) was necessary to achieve a detectable fluorescence signal 

(Figure 6).  

 

Figure 6. Raw PVDF membranes showed a low sensitivity detection in the hybridization process 

using SSC1x as a hybridization buffer. Minimal concentration of target to detect worthy 

fluorescence signal was 0.1 µM. 

To solve this problem, SDS or Tween 20 surfactant was added to the target solution in 

the hybridization step to reduce the hydrophobic interactions and favor the approximation 

of the target to the anchored probe. Using a small amount of the detergent (0.5%) in the 

recognition process, up to 5 nM of Target 1* was detected using the PVDF-VTES 

membrane as the substrate, whereas with the raw PVDF membrane, up to 1 nM was 

detected (Figure 7). The sensitivity of our microarray was limited by the sensitivity of the 

homemade fluorescence reader, SFR, which is within a detection limit of 1 and 5 nM, 

independent of the system and surface used. Considering the limitations of the reading 

device, both platforms revealed great suitability for the recognition of very low levels of 

nucleic acid sequences, and changing to other more sensitive detection devices or using 

colorimetric or enzymatic detection can lead to limits of detection in the range of pM, as 

we previously demonstrated [22, 23]. While the raw PVDF membrane showed slightly 

better limit of detection, the PVDF-VTES membranes could function without the need 

for surfactants and permit other methods of anchoring apart from thiol-ene coupling, i.e., 

alkene or acrylate polymerization. 
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Figure 7. Hybridization assays with decreasing concentrations of Target 1*, using PVDF and 

PVDF-VTES membranes as substrates, were performed. Addition of SDS as a surfactant provided 

successful recognitions. The image shows the neat fluorescence intensity versus concentration of 

Target 1* used in the hybridization process. Detection limits are 1 nM and 5 nM for PVDF and 

PVDF-VTES membranes, respectively. 

Finally, if we compare the performance of the raw PVDF membranes with recently 

reported perfluorinated glass slides [21], in which 0.5 nM of the target was detected, a 

slightly lower detection capacity was presented by this novel material. However, the 

PVDF membrane did not require previous modification steps for the probe 

immobilization and hybridization processes, as in the case of functionalized glass slides, 

thus saving reagents and time. Hence, PVDF membranes allowed a quicker detection 

evaluation, which affords an encouraging substrate for microarray technologies. 

Furthermore, the flexibility of the membranes permits an easier integration and 

applicability to other fields.  

4. Conclusions 

An alternative method for activating PVDF flat sheet membranes is shown in this study. 

The method is milder and easier than previous methods, as it uses only light for activation. 

The membranes activated in such way undergo silanization rapidly and as easily as 

membranes activated by other harsher methods.  



Chapter 6 
 

203 
 

As a proof of concept of its applicability, PVDF and PVDF-VTES membranes were used 

as substrates for microarray technology. For that, immobilization of thiolated nucleic 

acids and later hybridization with the complementary strand were carried out. The 

functionalized PVDF-VTES membrane displayed higher immobilization densities than 

the raw PVDF membranes; however, detection capacity was not improved. The raw 

PVDF membrane was had a detection of up to 1 nM of complementary strand by adding 

SDS surfactant to the target solution. This detection capacity is very close to the reported 

value using perfluorinated glass slides as supports and avoids the tedious previous 

functionalization process, thus saving reagents and time, without almost loss of 

sensitivity.  

Finally, these advances pave the way to the biofunctionalization of raw PVDF membranes 

with other bioreceptors such as antibodies and the direct functionalization using thiolated 

organic compounds taking the advantage of UV irradiation. The second approximation 

would allow the modification of surface properties in a rapid, easy, and effective way 

without using organosilanes.  
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SUPPORTING INFORMATION 

 

Novel and rapid activation of polyvinylidene fluoride membranes by UV 

light 

 

List of contents: 

 

Figure S1. Water contact angles displayed for PVDF membranes after different 

activation times. 

Figure S2. ATR-IR spectra (approximately 1700–1400 cm-1) of the PVDF-APTES 

membranes.  

Figure S3. ATR-IR spectra of the fingerprint region of the raw PVDF membrane, 

activated PVDF membrane, and functionalized PVDF-APTES and –VTES membranes.  

Figure S4. XPS experiments displayed the contributions of C−C and CF2 to the C1s 

binding energy for PVDF and PVDF-APTES membranes.  

Figure S5. Comparison between the top and bottom sides of the PVDF membranes.  
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Figure S1. Water contact angles displayed for PVDF membranes after different activation times. 
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Figure S2. ATR-IR spectra (approximately 1700–1400 cm-1) of the PVDF-APTES membranes. 

Bending vibrations corresponding to primary amines, at 1574 and 1477 cm−1, were recorded. 
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Figure S3. ATR-IR spectra (1500–400 cm-1) of the fingerprint region of the raw PVDF 

membrane, activated PVDF membrane, and functionalized PVDF-APTES and –VTES 

membranes. A similar profile is observed. 

 

 

 

Figure S4. XPS experiments displayed the contributions of C−C and CF2 to the C1s binding 

energy for PVDF and PVDF-APTES membranes. For functionalized membranes, the amount of 

C−C groups (284.8 eV) increased, whereas the percentage of CF2 (289.4 eV) decreased, which 

corroborates the functionalization of the membrane. 
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Figure S5. Comparison between the top and bottom sides of the PVDF membranes. Top. 

Microscope pictures and array image. Bottom. AFM measurements. 
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The present thesis, entitled “Study of substrate modulation and bioreceptor anchoring for 

the development of high performance microarrays”, was focused on the development of 

new designs able to improve microarray performance applied in biosensing. In the search 

of higher confinement of the probes that lead to the analytes approximating only where 

the probe is anchored while repulsion over the rest of the surface is increased, different 

solid substrates, surface modulation, and photoinduced anchoring strategies, for both 

oligonucleotide and antibodies, have been studied.  

The most relevant conclusions are summarized below, classified according to the 

particular objectives initially proposed. 

 Mono and polythiolated oligonucleotide probes have been immobilized onto 

alkenylated and alkynylated glass slides by thiol-ene and thiol-yne photocoupling 

reactions, respectively. Alkynylated surfaces displayed a higher immobilization 

and hybridization capacity. In addition, the higher the number of thiol groups was 

in the oligonucleotide, the higher the immobilization density and the hybridization 

capacity resulted. Nevertheless, this tendency was less pronounced in the case of 

alkynylated surfaces, as immobilization density of monothiolated probes is almost 

maximal for this surface.  

Therefore, hydrophobicity modulation and multipoint attachment have 

demonstrated to be two ways to improve the performance of the microarray. Both 

approaches are related to the configuration adopted by the probe, as it will 

determine its bioavailability for hybridization. 

 Thiol-ene photocoupling reaction has been applied for the first time to the 

covalent linking between the free thiol groups present in half-antibodies and 

alkenylated glass slides. This strategy is very interesting and innovative, 

improving the recognition capacity in comparison to whole antibodies, due to the 

orientation of immobilized half antibodies through their free thiol groups, which 

increased the bioavailability of the receptors. Moreover, this is an effective route 

for antibody immobilization under very mild, fast, easy and biocompatible 

conditions. 

Finally, this methodology demonstrated successful multiplexing and it was 

applied to the level determination of interesting biomarkers, such as CRP and 

cTnI, very useful to assess the risk of cardiovascular diseases.  
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 The fluor-thiol photoclick reaction has been demonstrated for the first time, as a 

novel covalent anchoring methodology between free thiols and C-F motifs. This 

photoinduced reaction allows the modulation of highly hydrophobic surfaces, 

which is of outmost importance.  

This radical initiated reaction has been applied to the preparation of 

oligonucleotide microarrays onto perfluorinated glass slides, being a fast, mild 

and biocompatible strategy. The high hydrophobicity of the surfaces allowed the 

confinement of the probes in very small spots, which favors the specific 

approximation of the analyte only where the probe is attached, reducing the 

nonspecific signals over the rest of the surface. This strategy has improved the 

immobilization capacity, in comparison to previous work (i.e. thiol-ene and thiol-

yne approximations) and the assay sensitivity. Moreover, several irradiation 

setups have been employed to demonstrate the versatility of this reaction. 

Finally, preliminary results have demonstrated that the physical structuration of 

these substrates previous functionalization, increases significantly the microarray 

performance, as well.  

 

 Fluor-thiol and thiol-ene photoclick reactions have been applied for the first time 

to the development of oligonucleotide microarrays onto raw PVDF and 

alkenylated PVDF membranes, respectively. 

Alkenylated membranes displayed higher immobilization densities than raw 

PVDF membranes, unlike hybridization capacity that was higher for raw PVDF 

membranes. 

Modulation of the hydrophobicity of alkenylated membranes was done through a 

novel procedure that is milder and easier than previous methods, as it uses only 

light for activation. After the generation of the hydroxyl groups over the surface 

by UV irradiation, the membranes were successfully silanized by organosilane 

chemistry.  

To sum up, click chemistry is an excellent via for the preparation of different microarray 

systems. Thiol-ene and thiol-yne reactions have demonstrated a successful anchoring 

capacity of thiolated nucleic acids, increasing the microarray performance. Besides, the 

thiol-ene reaction has proven to be a good manner to tether antibody fragments. Related 
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to the novel reaction developed in this work, the fluor-thiol photoclick reaction means a 

step forward in the modulation of highly hydrophobic surfaces. This reaction has allowed 

the anchoring of thiolated probes onto surfaces of different nature containing C-F motifs, 

improving the immobilization density, and reducing the spot size and nonspecific 

interactions, even more. Also, adjustment of the wettability through the 

hydrophobicity/hydrophilicity surface modulation to control immobilization and 

hybridization capacity has been another key during all the course of this thesis. 

As we can observe, all the approaches presented in this thesis are especially focused on 

the surface properties, and interface interactions between the probes and the substrate. 

Thus, surface modulation, and exploration of novel anchoring methodologies, able to 

immobilize the probes in an easy, fast, and biocompatible way, was achieved. This 

rational design has contributed to the development of microarrays with improved 

performance in biosensing. 
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Annex 2. Schematic summary of the main features employed in each chapter. The solid substrate, 

functionalization, photoattachment and immobilized probe employed are displayed. 

 
Solid 

substrate 
Functionalization Photoattachment Immobilized probe 

Chapter 3 Glass slides 
Alkenylated and 

alkynylated 

Thiol-ene and 

thiol-yne 

photoinduced 

reactions 

Mono-, di-, and tetra-

oligonucleotides 

Chapter 4 Glass slides Alkenylated 

Thiol-ene 

photoinduced 

reaction 

Ab and hIgG 

Chapter 5 Glass slides Perfluorinated 

Fluor-thiol 

photoinduced 

reactions 

Mono-

oligonucleotides 

(Ab and hIgG) 

Chapter 6 
PVDF 

membranes 

Raw and 

alkenylated 

Fluor-thiol and 

thiol-ene 

photoinduced 

reactions 

Mono-

oligonucleotides 
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