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Resum

Aquesta tesi doctoral s’emmarca dins de l’anàlisi dels subespais de successions
ortogonals de funcions de quadrat integrable respecte d’una mesura vectorial que
és numeràblement aditiva i pren valors en un espai de Banach. La motivació
d’aquest treball és la generalització dels arguments geomètrics que proporcio-
nen els procediments clàssics d’aproximació als espais de Hilbert. La noció
d’ortogonalitat representa un punt clau que permet el desenvolupament de la
teoria de la convergència de successions en aquests espais. Actualment, la con-
vergència gairebé per a tot punt, la convergència en norma i la convergència
feble són temes ben coneguts en la teoria d’espais de funcions de Hilbert.

Els espais de Banach de funcions L2(m) d’una mesura de vectorial m rep-
resenten una àmplia classe de reticles de Banach: cada reticle de Banach 2-
convex ordre continu amb una unitat feble pot ser representat (a través d’un
isomorfisme d’ordre) com un espai L2(m) de una mesura vectorial adequada m.
L’estructura integral que l’operador integració proporciona en aquests espais
permet generalitzar arguments de ortogonalitat de la teoria d’espais de Hilbert,
tot i que els espais L2(m) estan lluny de ser espais de Hilbert.

En el primer caṕıtol d’aquesta memòria s’introdueixen alguns conceptes
bàsics dels espais de Banach de funcions, integració sobre mesures vectorials
i altres temes que seran necessaris al llarg de tot el treball. Es desenvolupen
alguns resultats sobre la convergència de successions en espais de Banach de
funcions, igual que es mostren alguns procediments que seran de gran utilitat.
Alguns arguments sobre ortogonalitat també són introdüıts, tant en el context de
succesions de L2(m) com en les integrals d’aquestes successions quan la mesura
vectorial m pren valors en un espai de Hilbert H. S’analitza la convergència
incondicional de successions des del punt de vista abstracte dels espais de fun-
cions integrables, i és proporciona una versió del mètode de disjuntificació de
Kadec i Pelczynsky per a mesures vectorials.

En el segon caṕıtol, es presenten formalment tres nocions d’ortogonalitat
d’una successió respecte d’una mesura vectorial. La m−ortogonalitat feble,
la (natural) m−ortogonalitat i la m−ortogonalitat forta, proporcionant també
alguns exemples que mostren la relació amb problemes clàssics del anàlisi fun-
cional. També s’estudia la geometria d’aquestes successions.



En el caṕıtol 3 analitzem la convergència gairebé per a tot punt de succes-
sions que són febles m−ortogonals. El resultat més rellevant d’aquesta secció
ens mostra una versió general del teorema de Menchoff-Rademacher. A con-
tinuació es mostra un cas particular que involucra les c0-sumes d’un espai de
Hilbert amb la finalitat de mostrar les propietats de la convergència gairebé per
a tot punt.

Finalment, al caṕıtol 4 es desenvolupa una aplicació concreta en el context
de les mesures vectorials. Es facilita un mètode d’aproximació respecte d’una
mesura paramètrica. Els principals elements d’aquest procediment són una
successió feble m−ortonormal i una funció integrable Bochner que definirà la
nostra mesura, sobre la qual podrem calcular uns coeficients de Fourier - que en
aquest cas seran funcions mesurables - per una determinada funció de L2(m). I
finalment, es mostraran algunes aplicacions d’aproximació de senyals procedents
de dades experimentals en el camp de l’acústica.



Resumen

Esta tesis doctoral se enmarca dentro del análisis de los subespacios de suce-
siones ortogonales de funciones de cuadrado integrable respecto de una medida
vectorial que es numerablemente aditiva y toma valores en un espacio de Ba-
nach. La motivación de este trabajo es la generalización de los argumentos
geométricos que proporcionan los procedimientos clásicos de aproximación en
los espacios de Hilbert. La noción de ortogonalidad representa un punto clave
que permite el desarrollo de la teoŕıa de la convergencia de sucesiones en estos
espacios. Hoy en d́ıa, la convergencia casi por todas partes, la convergencia en
norma y la convergencia débil son temas bien conocidos en la teoŕıa de espacios
de funciones de Hilbert.

Los espacios de Banach de funciones L2(m) de una medida de vectorial m
representan una amplia clase de ret́ıculos de Banach: cada ret́ıculo de Banach
2-convexo orden continuo con una unidad débil puede ser representado (a través
de un isomorfismo de orden) como un espacio L2(m) para una medida vectorial
adecuada m. La estructura integral que el operador integración proporciona en
estos espacios permite generalizar argumentos de ortogonalidad de la teoŕıa del
espacios de Hilbert, a pesar de que los espacios L2(m) están lejos de ser espacios
de Hilbert.

En el primer caṕıtulo de esta memoria se introducen algunos conceptos
básicos de los espacios de Banach de funciones, integración sobre medidas vec-
toriales y otros temas que serán necesarios a lo largo de todo el trabajo. Se
desarrollan algunos resultados sobre la convergencia de sucesiones en espacios
de Banach de funciones, al igual que se muestran algunos procedimientos que
serán de gran utilidad. Algunos argumentos sobre ortogonalidad también son
introducidos, tanto en el contexto de sucesiones de L2(m) como en las integrales
de estas sucesiones cuando la medida vectorial m toma valores en un espacio
de Hilbert H. Se analiza la convergencia incondicional de sucesiones desde el
punto de vista abstracto de los espacios de funciones integrables, y se propor-
ciona una versión del método de disyuntificación de Kadec y Pelczynsky para
medidas vectoriales.

En el segundo caṕıtulo, se presentan formalmente tres nociones de ortogo-
nalidad de una sucesión respecto de una medida vectorial. La m−ortognalidad



débil, la (natural) m−ortogonalidad y la m−ortogonalidad fuerte, proporcio-
nando también algunos ejemplos que muestran la relación con problemas clásicos
del análisis funcional. También se estudia la geometŕıa de estas sucesiones.

En el caṕıtulo 3 analizamos la convergencia casi por todas partes de suce-
siones que son débil m−ortogonales. El resultado más relevante de esta sección
nos muestra una versión general del teorema de Menchoff-Rademacher. A con-
tinuación se muestra un caso particular que involucra las c0-sumas de un espacio
de Hilbert con el fin de mostrar las propiedades de la convergencia casi por todas
partes.

Finalmente, en el caṕıtulo 4 se desarrolla una aplicación concreta en el con-
texto de las medidas vectoriales. Se facilita un método de aproximación respecto
de una medida paramétrica. Los principales elementos de este procedimiento son
una sucesión débil m−ortonormal y una función integrable Bochner que definirá
nuestra medida, sobre la cual podremos calcular unos coeficientes de Fourier –
que en este caso serán funciones medibles– para una determinada función de
L2(m). Y por último, se mostrarán algunas aplicaciones de aproximación de
señales procedentes de datos experimentales en el campo de la acústica.



Summary

This doctoral thesis is devoted to the analysis of orthogonal sequences in sub-
spaces of spaces L2(m) of square integrable functions with respect to a Banach
space valued countably additive measure m. The motivation of our work is
to generalize the geometric arguments that provide the classical approximation
procedures in Hilbert spaces. The notion of orthogonality lies in the center of
the Hilbert space theory, and it allows to develop the theory of convergence of
sequences in these spaces. Almost everywhere convergence, norm convergence
and weak convergence are nowadays well known topics in the Hilbert space func-
tion theory.

The Banach function spaces L2(m) of a vector measure m represent a broad
class of Banach lattices: each 2-convex order continuous Banach lattice with a
weak unit can be represented (by means of an order isomorphism) as a space
L2(m) for an adequate vector measure m. The integral structure that the vector
measure integration provides in these spaces allows to generalize the orthogo-
nality arguments of the Hilbert space theory, although the spaces L2(m) are far
from being Hilbert spaces.

The first chapter of this memoir is devoted to introduce some fundamen-
tal concepts on Banach function spaces, vector measure integration and other
topics that will be necessary in the rest of the work. Some results on conver-
gence of sequences in Banach function spaces and Banach spaces are explained,
and the general framework is established. Some orthogonality arguments are
already introduced, both for sequences in L2(m) and for the integrals of these
sequences when the vector measure m is Hilbert space valued. Unconditional
convergence for sequences from the abstract point of view of the function spaces
of integrable functions is analyzed, and a version of the Kadec and Pelczynsky
method for finding disjoint sequences for the vector measure setting is given.

In the second chapter three notions of orthogonality of a sequence with
respect to a vector measure are formally introduced, and the main characteri-
zations of these sequences are given. Weak m-orthogonal sequences, (natural)
m-orthogonal sequences and strongly m-orthogonal sequences are defined and
studied, providing also examples that show the relation with some classical prob-



lems in analysis. The geometry of these sets of sequences are also studied.

In Chapter 3 we analyze almost everywhere convergence of weak m-orthogonal
sequences. Our main result is a general vector measure version of the Menchoff-
Rademacher Theorem. A particular case involving c0-sums of Hilbert spaces is
also intensively studied in order to show the properties of the convergence.

Finally, Chapter 4 is devoted to show a concrete application. We develop an
approximation method with respect to a parametric measure based on our ideas.
A Bochner integrable function and an weak m-orthonormal sequence are the
main elements of our procedure, that allows to find the Fourier coefficients –that
are in this case measurable functions– for a given function in the space L2(m).
Some applications for signal approximation for data coming from experimental
acoustics are also shown.



Contents

0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
0.2 Notes and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . ii

0.2.1 Moment’s problem . . . . . . . . . . . . . . . . . . . . . . ii
0.2.2 L2(m) spaces from the point of view of the vector measure

theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
0.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
0.4 The structure of the thesis . . . . . . . . . . . . . . . . . . . . . . vi

1 Notation and Preliminaries 1
1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Unconditional basis in L2(m) . . . . . . . . . . . . . . . . . . . . 7
1.3 Kadec− Pelczyński decomposition . . . . . . . . . . . . . . . . 13

2 m−Orthogonal sequences with respect to a vector measure 19
2.1 m−Orthogonal sequences of functions with respect to a vector

measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Weak m-orthogonal sequences . . . . . . . . . . . . . . . . . . . . 20
2.3 m−Orthogonal sequences . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Strongly m−orthogonality . . . . . . . . . . . . . . . . . . . . . . 31

3 The Menchoff-Rademacher Theorem for L2(m) 39
3.1 About almost everywhere convergence of sequences in L2(m) . . 41
3.2 The Menchoff-Rademacher Theorem for

weak m-orthogonal sequences . . . . . . . . . . . . . . . . . . . . 44
3.3 Almost everywhere convergence in c0-sums of L2(µ) spaces . . . 50

4 Pointwise dependent Fourier coefficients 53
4.1 Pointwise dependent Fourier coefficients . . . . . . . . . . . . . . 54
4.2 Continuity of the pointwise dependent

Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 An example of approximation with finite m-orthogonal sequences 65
4.4 Application to acoustic data . . . . . . . . . . . . . . . . . . . . . 72

References 77



Introduction

0.1 Motivation

The notion of orthogonality lies in the center of the Hilbert and Banach spaces

theory and it has a clear geometrical meaning. Even for the case of finite di-

mensional spaces with the Euclidean norm the notion of orthogonality is deeply

connected with the topological properties of the space and mainly with the no-

tion of best approximation. The same relation can be extended to the setting of

the Hilbert spaces, which has as a canonical example the space L2[0, 1]. In the

year 2000, a new class of Banach function spaces was introduced: the spaces

Lp(m) of p-integrable functions with respect to a vector measure m. Those

spaces are rather general, since they represent the class of all order continuous

p-convex Banach function spaces with a weak unit. So, the space L2(m) is 2-

convex, but it is far of having a Hilbert space structure. However, and due to its

integration structure, several notions of orthogonality still make sense in it. The

geometric consequences of these notions and some applications in the context of

the best approximation and Fourier analysis has been studied in recent years,

as the reader can notice by checking the references in this memoir.

The aim of this thesis is to analyze and to show some applications of the

three notions of vector measure orthogonality that has been introduced in the

literature up to this moment, and to develop a systematic theory of vector

measure orthogonality including all these cases. This of course imply to study

the structure of the spaces L2(m) of a vector measure and the main properties

i
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of the integration map restricted to these spaces.

One of the basic concepts that leads to the one of vector measure orthog-

onality is the vector measure duality. It consists on considering the duality

induced by the bilinear form defined by the integration map, i.e. if m : Σ→ X

is a countably additive vector measure with values in the Banach space X and

1 = 1/p+1/q, the integral defines a bilinear form Bm : Lp(m)×Lq(m)→ X by

Bm(f, g) :=
∫
fg dm. Duality results can be found in [30, 31, 59, 60, 61]. These

duality results, that provide for instance a representation of the dual space, are

applied in this thesis in the symmetric case given by p = 2.

0.2 Notes and remarks

In this section we are going to show the concept of orthogonality with respect

to a vector measure has its roots in the XIX century.

0.2.1 Moment’s problem

The orthogonality with respect to a vector measure can be easily related to some

classical mathematical problems, as the so called Moment´s problem. Actually,

as will be shown in Chapter 2, orthogonality with respect to a vector measure is a

general setting that includes for instance orthogonality of a sequence of functions

with respect to a family of measures, or what is called in statistics, a parametric

measure. The analysis of the properties of functions that are orthogonal with

respect to a family of measures has a long mathematical history, for instance

regarding orthogonal polynomials. In 1885 Tchebyshev established the following

question. If the relations∫ ∞
−∞

xnω(x)dx =

∫ ∞
−∞

xne−x
2

dx

holds for all n ∈ N this implies that ω(x) = e−x
2

? The answer is yes and today

we say that the problem is determinate.



Introduction iii

There are different points of view to try to solve this problem. The first pro-

cedure was developed by Stieljes in 1894 (see [62]). According Dieudonné (see

[26]), the moment’s problem is no stranger to the birth of Banach theory. M.

Riesz in [52] provided a solution using the Helly’s Representation Theorem (see

[13]) , and Nevalinna introduced a new tool into the analytic function theory in

[4] for trying to solve this problem.

When the problem is not determined we obtain a family of scalars measures

such that
∫∞
−∞ xnω(x)dx = Sn, n = 0, 1, 2... have the same moments. At the

end of the 19th century some relevant cases of families of polynomials that

are orthogonal with respect to a large set of scalar measures —indeterminate

measures— were known. The first example of such an indeterminate measure

was presented by Stieltjes in 1894 (see [62]). If we start with the two following

integrals ∫ ∞
0

e−t
2

dt =
√
π and

∫ ∞
0

e−t
2

sin(2πt)dt = 0

and now we do the next transformation t = ln(x)− (n+ 1)/2, then

e−t
2

= e− ln2(x)xn+1e−(n+1)2/4 and dt =
dx

x
.

So we obtain∫ ∞
0

xne− ln2(x)dx =
√
πe(n+1)2/4,

∫ ∞
0

xne− ln2(x) sin(2π ln(x))dx = 0.

Then if we multiply the second integral by a constant K ∈ R and we add the

first integral, we obtain∫ ∞
0

e− ln2(x)xn[1 +K sin(2π ln(x))]dx =
√
πe(n+1)2/4.

If we take |K| < 1 then e− ln2(x)[1 + K sin(2π ln(x))] > 0 is a positive function

for all x ∈ [0,∞[, thus FK(y) =
∫ y

0
e− ln2(x)xn[1 +K sin(2π ln(x))]dx is a family

of non decreasing distributions with support into [0,∞[ which have the same

moments
√
πe(n+1)2/4. The polynomials that are orthogonal with respect to

this class of measures are a special case of the Stieltjes-Wigert polynomials.

Using the family (FK)K∈[−1,1] of distributions, a vector measure can be defined

in an easy way (see Example 2.3.2). In general this construction can be done

for abstract sets of measures —for instance, parametric models in statistics—,

and then to find sequences of functions that are orthogonal for all the elements
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of a family of measures is equivalent to the problem of finding sequences that

are orthogonal with respect to a vector measure.

Our main references on measure spaces, scalar measures, integration with

respect to scalar measures, vector measures and function spaces are [25, 33,

42, 49]. The reader can find general definitions and results on integration with

respect to vector measures and the related spaces of m-integrable functions

L1(m) in [15, 40, 41].

0.2.2 L2(m) spaces from the point of view of the vector
measure theory

From the point of view of the integration with respect to a vector measure, the

properties of the integration map that are nowadays well known provide relevant

information with important consequences on the properties of the orthogonal

sequences in the spaces L2(m). Compactness properties of the integration map

—weak compactness, compactness, complete continuity— have direct conse-

quences on the structure of the corresponding spaces of integrable functions.

For instance, if the integration operator is compact, the corresponding space is

order isomorphic to the L1-space of the variation |m|, i.e. an L1-space. Con-

sequently, in this case L2(m) is order isomorphic to the Hilbert space L2(|m|)
(see Proposition 3.48 in [49] and the references therein). Regarding weak com-

pactness, it is also known that the integration map restricted to L2(m) is always

weakly compact (see [28, 29, 60]). Also, the geometric properties of the integra-

tion map will be used in this thesis. For instance, p-concavity of the integration

map restricted to Lp(m) implies that this space is order isomorphic to an Lp-

space (see [9, 16, 17]).

In recent years, some applications of the spaces L2(m) have been developed

in the setting of the function approximation. In particular, the geometry of the

strongly m-orthogonal sequences is well known and can be found in the papers

[34, 48, 59]. Some applications on function approximation of m-orthogonal

sequences were developed also in the papers [34, 35, 36].
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Some results that follows the general research program of analyzing conver-

gence of sequences in the spaces Lp of a vector measure has been published yet,

and do not constitute a part of this memoir, although they are closely related.

In this direction, we must mention two papers. The first one, [10], analyzes and

improves some known results on decompositions of unconditional convergence

of sequences in Banach function spaces using the structure of the spaces Lp(m).

The second one, [37], provides a general analysis of the Komlós property re-

garding a.e. convergence of the Cesàro sums in spaces of measurable functions.

In this case, a most general theory of vector measure integration involving δ-

rings is used in order to establish how far, in the scale of ideals of measurable

functions, the Fatou property and the Komlós property are equivalent.

Those results have not being included in this memoir because they do not

use any orthogonality argument, although the subject that they deal with is very

much concerned with the one of the work presented in this memoir: different

aspects of the convergence of sequences in the spaces L2 of a vector measure.

0.3 Applications

The last part of the thesis (Chapter 4) is devoted to show some new applications

of the spaces L2(m) in the setting of the function approximation. In particular,

we develop an approximation structure that consists of providing a parametric

set of measures by means of the action of a Bochner integrable function with

the vector measure. A suitable error criterion is defined and the corresponding

approximation formulae are given. This leads to a non linear approximation for

a given function of L2(µ), that has the advantage that a small orthogonal set of

functions is enough for obtaining a good approximation, improving the one that

is obtained when the Hilbert space structure is used. Some examples are given,

and a concrete application to representation of acoustic signals is developed.
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0.4 The structure of the thesis

Chapter 1 is devoted to recall and adapt some well known results on the behavior

of sequences in Banach function spaces. An adapted version of the Bessaga−
Pelczynski for weakly null sequences (see [7]) and the Kadec − Pelczynski

method for obtaining disjoint sequences that approximate special sequences is

given (see [32, 38]).

In Chapter 2, the three notions of m-orthogonality are given and analyzed,

showing some examples and existence results for such sequences in the L2(m)

spaces.

Chapter 3 shows how the Menchoff-Rademacher results on almost every-

where convergence of sequences can be adapted and improved for the case of

m-orthogonal sequences, that comes from the fact that the vector measure or-

thogonality is stronger than the scalar notion. The last chapter provides the

applications of the theory that has been explained above.



Chapter 1

Notation and Preliminaries

1.1 Basic notions

In this chapter, we introduce the concepts and results used throughout the

memory about Banach function spaces and integration of real functions with

respect to a vector measure. We will use standard Banach and function space

notation; our main references are [25, 42, 64]. Let X be a Banach space. We

will denote by BX the unit ball of X, that is BX := {x ∈ X : ‖x‖ = 1}. X ′ is

the topological dual of X and BX′ its unit ball. If 1 ≤ p ≤ ∞, we write q for

the (extended) real number satisfying 1/p+ 1/q = 1. A Banach space X is said

of type p for some 1 < p ≤ 2 respectively, of cotype q for some q ≥ 2, if there

exists a constant M < ∞ so that, for every finite set of vectors {xj}nj=1 in X,

we have ∫ 1

0

‖
n∑
i=1

rj(t)xj‖dt ≤M(

n∑
j=1

‖xj‖p)1/p,

respectively ∫ 1

0

‖
n∑
i=1

rj(t)xj‖dt ≥
1

M
(

n∑
j=1

‖xj‖q)1/q,

where {rj}j denotes the sequence of the Rademacher functions. The Hilbert

spaces have the best possible type and cotype, i.e. are simultaneously of type 2

1



2 Chapter 1. Notation and Preliminaries

and cotype 2 and the converse of this assertion is also true (see [42, 1.e.12]).

Let X and Y be Banach spaces. An operator T : X → Y is 2-absolutely

summing if there exists a constant C > 0 such that for every finite sequence

x1, ..., xn ∈ X,

(

n∑
i=1

‖T (xi)‖2)
1
2 ≤ C sup{(

n∑
i=1

|〈xi, x′〉|2)
1
2 : x′ ∈ X ′, ‖x′‖ ≤ 1}. (1.1)

We define the 2-summing norm of T as

π2(T ) = inf{C : (1.1) holds for all {xi}ni=1 ⊂ X, n ∈ N}. (1.2)

Let X be a Banach lattice, that is a real Banach space endowed with a norm

‖ · ‖ and a partial order ≤ such that

(1) if x, y, z ∈ X with x ≤ y, then x+ z ≤ y + z,

(2) if x, y ∈ X with x ≤ y, then αx ≤ αy for all α > 0,

(3) for x, y ∈ X, there exists the supremum of x and y with respect to the

order,

(4) if x, y ∈ X with |x| ≤ |y|, then ‖x‖ ≤ ‖y‖, where |x| = sup{x,−x} is the

modulus of x.

Note that (3) implies that also there exists the infimum of every x, y ∈ X. The

supremum and the infimum of two elements x and y of X are usually denoted

by x∨ y and x∧ y respectively. A weak unit of X is an element 0 ≤ e ∈ X such

that x ∧ e = 0 implies that x = 0.

We say that a Banach lattice X is order continuous if for every sequence {xn}n ⊂
X with xn ↓ 0 it follows that ‖xn‖ ↓ 0. We say that X has the Fatou property

if for every net (xτ ) ⊂ X with 0 ≤ xτ ↑ such that sup ‖xτ‖ <∞ if follows that

there exists x = supxτ in X and ‖x‖ = sup ‖xτ‖. Let T : X → Y be a linear

operator between two Banach lattices. The operator T is said to be positive

if T (x) ≥ 0 whenever 0 ≤ x ∈ X. Every positive linear operator between two

Banach lattices is continuous. We will say that T is an order isomorphism if it is

one to one, onto and satisfies that T (x∧y) = T (x)∧T (y) for all x, y ∈ X. In this

case, T is continuous as it is positive and also satisfies T (x ∨ y) = T (x) ∨ T (y)

for all x, y ∈ X. If moreover, ‖T (x)‖Y = ‖x‖X for all x ∈ X, we will say that

T is an order isometry. Let E and F be Banach lattices and 1 ≤ p < ∞. An

operator T : E → F is p-concave if there is a constant K > 0 such that for
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every finite set x1, x2, ..., xn ∈ E, it follows

(

n∑
i=1

‖ T (xi) ‖p)
1
p ≤ K ‖ (

n∑
i=1

| xi |p)
1
p ‖ . (1.3)

The infimum of such constants K is the p-concavity constant of the operator.

An operator T : E → F is p-convex if there is a constant K > 0 such that for

each finite set x1, x2, ..., xn ∈ E, it follows

‖ (
n∑
i=1

| T (xi) |p)
1
p ‖≤ K(

n∑
i=1

‖ xi ‖p)
1
p . (1.4)

As in the case of p-concavity, the infimum of such constants K is the p-convexity

constant of T . A Banach lattice E is p-concave (p-convex) if the identity map

Id : E → E is p-concave (p-convex). Throughout the memoir we will consider

Banach function spaces as Banach lattices with the usual µ-a.e. pointwise order.

For the aim of simplicity, we will assume that the corresponding p-concavity/p-

convexity constants of the spaces are 1; it is known that each r-convex and

s-concave Banach lattice, 1 ≤ r ≤ s ≤ ∞, can be renormed equivalently so that

with the new norm, the r-convexity and s-concavity constants are both equal

to 1 (see [42, 1.d.8]).

Let (Ω,Σ, µ) be a σ-finite measure space. Following the definition in [42, p.28],

a Banach space X(µ) of (classes of) locally µ-integrable real functions is said

to be a Banach function space over µ (Köthe function space) if it satisfies the

next two properties.

• If f is measurable and g ∈ X(µ) such that |f(w)| ≤ |g(w)| µ−a.e. on Ω,

then f ∈ X(µ) and ‖f‖ ≤ ‖g‖.

• If A ∈ Σ, and µ(A) < ∞, then the characteristic function χA belongs to

X(µ).

We write as usual `p, 1 ≤ p < ∞, and c0 for the classical sequence spaces,

and ‖.‖p, ‖.‖0 for the corresponding norms. The sequence spaces that we deal

with (L, ` ...) are assumed to be such kind of spaces. Thus, we will consider

spaces of real functions on the standard measure space on the set of natural

numbers N with an unconditional normalized basis with unconditional constant

1. We will write ei, i ∈ N, for the elements of the canonical basis of the space.

Moreover, we also assume that its dual space can be represented as a sequence

space, i.e. its elements can be written as sequences {τi}i, and the duality is

given by 〈{τi}, {λi}〉 =
∑∞
i=1 τiλi, {λi}i ∈ L. For instance, this always happens
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when the space is order continuous (see the comments that follow Definition

1.b.17 in [42]). We will use the following construction for the particular case of

sequence spaces (i.e. the measure is the discrete one on the set of the natural

numbers). Let (Ω,Σ) be a measurable space and X a Banach space. Throughout

the memory m : Σ → X will be a countably additive vector measure, i.e.

m(∪∞n=1An) =
∑∞
n=1 m(An) in the norm topology of X for all sequences {An}n

of pairwise disjoint sets of Σ. It is well known that every Banach space valued

countably additive vector measure on a σ−algebra is bounded. We say that

a countably vector measure m : Σ → X, where X is a Banach lattice, is

positive if m(A) ≥ 0 for all A ∈ Σ. For each element x′ ∈ X ′ the formula

〈m, x′〉(A) := 〈m(A), x′〉, A ∈ Σ, defines a (countably additive) scalar measure.

We write |〈m, x′〉| for its variation, i.e. |〈m, x′〉|(A) := sup
∑
B∈Π |〈m(B), x′〉|

for A ∈ Σ, where the supremum is computed over all finite measurable partitions

Π of A. Sometimes we write mx′ for 〈m, x′〉. We say that an element x′ ∈ X ′

is m−positive if the scalar measure mx′ is positive, i.e. |mx′ | = mx′ . We write

(X ′)+
m for the set of these elements. The semivariation of m is the extended

nonnegative function ‖m‖ whose value on a set A ∈ Σ is given by:

‖m‖(A) = sup{|〈m, x′〉|(A) : x′ ∈ X ′, ‖x′‖ ≤ 1}.

Direct computations show that the variation |m| is a monotone countably ad-

ditive function on Σ, while the semivariation ‖m‖ is a monotone subadditive

function on Σ, and for each A ∈ Σ we have that ‖m‖(A) ≤ |m|(A). A vector

measure m defined on a σ−algebra is always bounded, i.e. m(A) < ∞ for all

A ∈ Σ. In general, a vector measure m is of bounded semivariation on Ω if and

only if its range is bounded in X, as for A ∈ Σ, sup{‖m(B)‖ : A ⊇ B ∈ Σ} ≤
‖m‖(A) ≤ 4 sup{‖m(B)‖ : A ⊇ B ∈ Σ}. As usual, we say that a sequence

of functions converges |〈m, x′〉|-almost everywhere if it converges pointwise in

a set A ∈ Σ such that |〈m, x′〉|(Ω \ A) = 0. A sequence converges m-almost

everywhere if it converges in a set A that satisfies that the semivariation of m

in Ω \A is 0.

We will say that a scalar positive measure µ is equivalent to m if

lim
µ(A)→0

‖m‖(A) = 0 and lim
‖m‖(A)→0

µ(A) = 0.

The measure m is absolutely continuous with respect to µ if limµ(A)→0 m(A) =

0; in this case we write m � µ and we say that µ is a control measure for m.

Countably additive vector measures always have a control measure. The Bartle,
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Dunford and Schwartz theorem (see [25, Ch.I,2, Corollary 6]) produces a finite

nonnegative real-valued measure µ on Σ such that m � µ. Furthermore, it is

known that there exists always an element x′ ∈ X ′ such that m� |〈m, x′〉| and

so m � |〈m, x′〉| is a control measure for m. We call such a scalar measure a

Rybakov measure for m (see [25, Ch.IX,2]). If |〈m, x′〉| is a Rybakov measure

for m, then a sequence of functions converges m-almost everywhere if and only

if it converges |〈m, x′〉|-almost everywhere. Notice that if m is positive and x′

is a positive element of the Banach lattice X ′, then |〈m, x′〉| = 〈m, x′〉.
The space L1(m) of integrable functions with respect to m is a Banach function

space over any Rybakov measure µ for m (see [15, 42]). The elements of this

space are (classes of µ-a.e. measurable) functions f that are integrable with

respect to each scalar measure 〈m, x′〉, and for every A ∈ Σ there is an element∫
A
fdm ∈ X such that 〈

∫
A
fdm, x′〉 =

∫
A
fd〈m, x′〉 for every x′ ∈ X ′. When

no explicit reference is needed, we write
∫
fdm instead of

∫
Ω
fdm. The reader

can find the definitions and fundamental results concerning the space L1(m) in

[15, 40].

The space of (classes of µ−a.e. equal) real measurable functions on (Ω,Σ)

is denoted by L0(µ). The formula

| ‖f‖ |L1(m):= sup
A∈Σ

∥∥∥∥∫
A

fdm

∥∥∥∥
X

, f ∈ L1(m).

where ‖ · ‖X denotes the norm of X, gives a norm on L1(m), since functions

that are equal m−a.e. are identified. Moreover,

| ‖f‖ |L1(m)≤ ‖f‖L1(m) ≤ 2 | ‖f‖ |L1(m) for every f ∈ L1(m).

The space L1(m) of m−a.e. equal m−integrable functions is a Banach lattice

endowed with the norm ‖ · ‖L1(m) and the m−a.e. order. It is an ideal of

measurable functions, that is |f | ≤ |g| m−a.e. with f ∈ L0(µ) and g ∈ L1(m),

then f ∈ L1(m) and an order continuous Banach lattice.

We build the spaces Lp(m), that are also order continuous Banach function

spaces over the space (Ω,Σ, |mx′0
|) with weak unit where |mx′0

| is a Rybakov

measure. We say that a measurable function f : Ω → R is p−integrable with

respect to m if |f |p ∈ L1(m) with the norm

‖f‖Lp(m) := ‖|f |p‖
1
p

L1(m), f ∈ Lp(m).
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We denote the integration operator associated to the vector measure m by

Im : Lp(m) −→ X
f 7−→ Im(f) =

∫
A
fdm

.

The properties of the integration map associated to a vector measure has been

largely studied in several recent papers (see [22, 49]).

Before introducing several results concerning basic sequences, we provide

a representation of the dual space of Lp(m) in terms of the space Lq(m) (m

is a countably additive vector measure), as in the case of classical Lp-spaces.

It is well know that the dual of Lp coincides with Lq only in the case that

m is a scalar measure. Let L(Lp(m), X) be the subspace of all the operators

that satisfy Theorem 2.2 [30], i.e. that can be identified (isometrically and

isomorphically) with functions of Lq(m). Indeed Lq(m) is always the dual of

a certain topological tensor product. In the same paper, the autors prove the

following result: the spaces (((Lp(m) ⊗ X ′)/ keru, τũ)′, ‖ · ‖ũ) and (Lq(m), ‖ ·
‖Lq(m)) are isometrically isomorphic if and only if the unit ball of Lq(m) is

m−weakly compact, where u(z) = sup‖g‖Lq(m)≤1 |
∑n
i=1〈

∫
figdm, x′i〉| if z =∑n

i=1 fi ⊗ x′i ∈ Lp(m)⊗X ′ and the quotient space (Lp(m)⊗X ′)/ keru define

the quotient topology τũ generated by the seminorm ũ([z]) := u(z). Since

the m-weak topology is weaker than the weak topology of the space Lp(m),

the compactness property required in the above result is satisfied if the space

Lq(m) is reflexive. Another prove of this result can be found in [31]. Some

results regarding reflexivity of this space may be found in [28]. We recall that

a Banach lattice X is a KB-space whenever every norm bounded, positive,

increasing sequence is norm convergent, then it is known that for q > 1 Lq(m)

is reflexive if and only if Lq(m) is a KB-space, and a Banach lattice is a KB

space if and only if X has the Fatou property and is an order continuous Banach

lattice, so Lq(m) is reflexive if and only if Lq(m) has the Fatou property.

In this memoir we deal with sequences of functions in L2(m). If 〈m, x′〉 is

a Rybakov measure for m, then the inclusion map ix′ : L2(m) → L2(|〈m, x′〉|)
is well-defined and continuous; in fact, even if x′ do not define a Rybakov

measure this identification map is well-defined and continuous, although it is not

injective. In this work we only need some particular properties of the functions

in L2(m). For instance, if f, g are functions in L2(m), we use the fact that the

product fg is m-integrable (see [28, 49] or [60]).
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If L0(µ) is the space of (classes of µ-a.e. equal) real measurable functions,

0 < r <∞ and E(µ) is a Banach function space, we define the r-power of E(µ)

as the space

E(µ)[r] := {x ∈ L0(µ) : |x|1/r ∈ E(µ)}

endowed with the (quasi-)norm ‖x‖E[r]
:= ‖|x|1/r‖rE . The space E(µ)[r] is always

a Köthe function space when 0 < r ≤ 1 and for r > 1 it is so whenever E(µ) is r-

convex; in this case the expression above gives a norm if the r-convexity constant

is 1 (see [19, 49] for the basic properties of r-powers of Köthe function Banach

spaces). For instance, if m is a countably vector measure, the space L2(m)

above can be written as the 1/2-power of L1(m), i.e. L2(m) = (L1(m))[1/2].

1.2 Unconditional basis in L2(m)

A sequence {xn}∞n=1 in a Banach space X is called a Schauder basis of X if there

exists a unique sequence of scalars {αn}∞n=1 such that x = limn→∞
∑n
k=1 αkxk

for all x ∈ X. A sequence {xn}∞n=1 which is a Schauder basis of its closed span is

called a basic sequence. A series
∑∞
n=1 xn in a Banach spaceX is unconditionally

convergent if for every permutation σ : N→ N the series
∑∞
n=1 xσ(n) converges.

A space with a basis is always separable. The most of the natural separable

spaces have bases, although Pel Enflo [27] was the first who found that there

are separable Banach spaces without bases, looked inside c0. The fact that a

separable Banach space has a basis does provide some structural information

about the space. It must be pointed out that finding a basis for a well know

space is sometimes difficult. For instance, in the case of the classical separable

sequence spaces c0 and `p (1 ≤ p <∞), the sequence {en}∞n=1 of unit coordinate

vectors en = (0, 0, ..., 0, 1(n-th place), 0, ...) is a basis. In the case of the space of

convergent sequences c, if we denote 1 = (1, 1, ...) then the sequence (1, e1, e2, ...)

is a basis for c. In the case of C[0, 1], the Schauder basis is a basis for this

space, generally if n ≥ 1 and 1 ≤ i ≤ 2n, then the sequence f1(t) = 1, f2(t) =

t, f3(t) = 2tχ[0,1/2](t) + 2(2− t)χ[1/2,1], ..., f2n+i+1(t) = f3(2nt+ 1− i) whenever

2n + n − i ∈ [0, 1] is a Schauder basis, see Figure 1.1. In the case of Lp[0, 1],

where 1 ≤ p <∞, the Haar system is a basis for this space, see 1.2. It is given
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Figure 1.1: Schauder basis.

by

f0(t) = 1,

f2n+i(t) = χ[(2i−2)/2n+1,(2i−1)/2n+1](t)− χ[(2i−1)/2n+1,2i/2n+1](t),

if n ≥ 1 and 1 ≤ i ≤ 2n, and therefore if 1 < p <∞ it is an unconditional basis.

For the case of vector measures, there are examples such that the space of square

integrable with respect to a particular vector measure is known, for instance, if

m : Σ −→ L2[0, 1] and m(A) = χ(A) then L2(m) = L4[0, 1]. For this case the

Haar system is a basis for L2(m). For the case of the spaces L1(m) it is also

possible to find criteria for obtaining basic sequences, for instance Theorem 3,

[15]. In fact the Haar system is a basis for all Lp(µ), 1 ≤ p < ∞ (see Chapter

5, [24]).

We use standard Banach function space notation. Let {xn}n be a ba-

sic sequence. The symbol [xn] denote the smallest closed linear set spanned

upon the elements {xn}∞n=1 ⊂ X. The projections Pn : X → X defined by

Pn(
∑∞
i=1 αixi) =

∑n
i=1 αixi are bounded operators and supn ‖Pn‖ < ∞. The

number K = supn ‖Pn‖ is called the basic constant of {xn}∞n=1. Equivalence of

basic sequences (and in particular of bases) will become a powerful technique for
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Figure 1.2: Haar basis.

studying the isomorphic structure of Banach spaces. In general, let {xn}∞n=1 and

{yn}∞n=1 be two bases for the Banach spaces X and Y respectively. Then say

that {xn}∞n=1 and {yn}∞n=1 are equivalents if and only if there exists a constant

C > 0 such that for all nonzero sequences of scalars {αi}∞i=1,

C−1‖
∞∑
i=1

αiyi‖ ≤ ‖
∞∑
i=i

αixi‖ ≤ C‖
∞∑
i=1

αiyi‖. (1.5)

If the constant C = 1 then the basic sequence {xn}∞n=1 and {yn}∞n=1 are said to

be isometrically equivalent.

The following stability results dates back to 1940 [39].

Remark 1.2.1. If {xi}∞i=1 is a basic sequence of a Banach space X and {yi}∞i=1

is another sequence in X so that ‖xn−yn‖ → 0 then {yi}∞i=1 is a basic sequence.

Let {xi}∞i=1 be a basis sequence of a Banach space X and take two sequences

of positive integers {pi}∞i=1 and {qi}∞i=1 satisfying that pi < qi < pi+1 for every

i ∈ N. A block basic sequence {yi}∞i=1 associated to {xi}∞i=1 is a sequence of
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vectors of X defined as finite linear combinations as

yi =

qi∑
k=pi

αi,kxk,

where αi,k are real numbers (see also [24], Ch.V for the definition of block basic

sequence and also for the standard definition of equivalence between basis). Let

S be a subspace of X, S is called complemented in X if and only if there exists

a continuous projection from S onto X.

Fundamental to the study of bases in a separable Hilbert space H is the

notion of a biorthogonal system. If n,m are indexes of a set I, we write δn,m

for the Kronecker’s delta as usual. Two sequences {xn}n and {yn}n of elements

from H are said to be biorthogonal if 〈xn, ym〉 = δn,m.

Now, we consider the particular case when X is a space of 2−integrable

functions with respect to a vector measure m. In this case, the question of how

to recognize a basic sequence arises. The following remark provide a basic test

for recognizing a basis in a subspace of L2(m), (see Theorem 1. Ch.V [24]).

Remark 1.2.2. Let {fn}∞n=1 be a sequence of non zero functions in L2(m),

then in order {fn}∞n=1 to be a basic sequence, it is both necessary and sufficient

that there exists a positive finite constant K so that for any choice of scalars

{αi}∞i=1 and any integers m < n we have∥∥∥∥∥
m∑
i=1

αifi

∥∥∥∥∥
L2(m)

≤ K

∥∥∥∥∥
n∑
i=1

αifi

∥∥∥∥∥
L2(m)

. (1.6)

For instance, if m : Σ→ X is a positive vector measure, ‖f‖L2(m) = ‖
∫
|f |2‖1/2X

for all f ∈ L2(m) (see [23]), and so the criterion above can be written as follows.

For any finite sequences of scalars {αi}∞i=1 and any integers m < n,∥∥∥∥∥
∫

(

m∑
i=1

αifi)
2dm

∥∥∥∥∥
X

≤ K2

∥∥∥∥∥
∫

(

n∑
i=1

αifi)
2dm

∥∥∥∥∥
X

. (1.7)

In Chapter 2 we will provide the adequate requirements on {fi}∞i=1 in order to

obtain 1.7 that is equivalent to∥∥∥∥∥
m∑
i=1

α2
i

∫
f2
i dm

∥∥∥∥∥
X

≤ K2

∥∥∥∥∥
n∑
i=1

α2
i

∫
f2
i dm

∥∥∥∥∥
X

. (1.8)
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Let S be a subspace of L2(m) with a normalized basis {fn}∞n=1, if we

perturb each element fn ∈ S by a sufficiently small vector we still get a basis

and the perturbed basis is equivalent to the original one, see (Proposition 1.a.9,

Vol I, [42]). The following remark show this.

Remark 1.2.3. Let {xn}∞n=1 be a normalized basis of a Banach space X with a

basis constant K. Let {yn}∞n=1 be a sequence of vectors in X with
∑∞
n=1 ‖xn−

yn‖ < 1/(2K). Then {yn}∞n=1 is a basis of X which is equivalent to {xn}∞n=1.

In what follows we consider vector measures which take values in Hilbert

spaces. We present a version of a principle for selecting basic sequences due to

Bessaga and Pelczyński (Corollaries 1.2.4 and 2.4.3 below and see also [7]).

We will consider first properties of the range of the vector measure and not of

the space L2(m).

Corollary 1.2.4. Let H be a Hilbert space and let m : Σ −→ H be a count-

ably additive vector measure. Let {en}∞n=1 be a basic sequence of H and {e′n}n
be a biorthogonal sequence to {en}n. If the sequence

{∫
f2
ndm

}∞
n=1

fulfills the

condition
∞∑
n=1

∥∥en − ∫ f2
ndm

∥∥
H
‖e′n‖H = δ < 1,

then
{∫

f2
ndm

}∞
n=1

is a basic sequence which is equivalent to en.

Proof. For arbitrary integer i, p, q such that i < p < q, we have

|αi| = |e′i(
p∑
j=1

αjej)| ≤ ‖
p∑
j=1

αjej‖H‖e′i‖H .

From the above expression, we obtain

‖
p∑
j=1

αj(

∫
f2
j dm)‖H ≤ ‖

p∑
j=1

αjej‖H + ‖
p∑
j=1

αj(ej −
∫
f2
j dm)‖H

≤ ‖
p∑
j=1

αjej‖H +

p∑
j=1

|αj |
∥∥ej − ∫ f2

j dm
∥∥
H

≤ ‖
p∑
j=1

αjej‖H +

∞∑
i=1

|αi|
∥∥ei − ∫ f2

i dm
∥∥
H

≤ ‖
p∑
j=1

αjej‖H +

∞∑
i=1

‖
p∑
j=1

αjej‖H‖e′i‖H‖ei −
∫
f2
i dm‖H
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≤ (1 + δ)‖
p∑
j=1

αjej‖H ,

and using the same computations that above, we obtain

‖
q∑
j=1

αj(

∫
f2
j dm)‖H ≥ |‖

q∑
j=1

αjej‖H − ‖
q∑
j=1

αj(ej −
∫
f2
j dm)‖H |

≥ (1− δ)‖
q∑
j=1

αjej‖H .

Hence

‖
p∑
j=1

αj(

∫
f2
j dm)‖H ≤ K

1 + δ

1− δ
‖

q∑
j=1

αj(

∫
f2
j dm)‖H .

Remark 1.2.5. In general, if we take {xn}∞n=1 a weakly null, normalized se-

quence in a Banach space X then {xn}∞n=1 admits a subsequence that is a basic

sequence, (see Bessaga-Pelczynski Selection Principle theorem [24]).

Example 1.2.6. Consider the Lebesgue measure space ([0,∞),Σ, dx) and de-

fine the positive vector measure ν : Σ→ c0 as

ν(A) =

∞∑
n=0

(∫
A∩[n,n+1]

(x− n)ndx

)
en.

It is clearly countably additive and then the corresponding space L2(ν) is well-

defined. If f ∈ L1(ν) then
∫
fdν = {

∫
[n,n+1]

f(x)(x − n)ndx}∞n=1 ∈ c0. Con-

sider now the sequence of functions {fk}∞k=0 = {e−k(x−k)/2χ[k,∞)(x)}∞k=0, then

f2
k (x) = e−k(x−k)χ[k,∞)(x) ∈ L1(ν) and so fk ∈ L2(ν).

‖fk‖2L2(ν) =

∥∥∥∥∥
∫

[0,∞)

f2
kdν

∥∥∥∥∥
c0

=

∥∥∥∥∥
{∫

[n,n+1]

e−k(x−k)χ[k,∞)(x)(x− k)ndx

}∞
n=0

∥∥∥∥∥
c0

and note that for each k we find a constant Mk as follows,

sup
n

{∫
[n,n+1]

e−k(x−k)χ[k,∞)(x)(x− n)ndx

}∞
n=0

=

∫
[k,k+1]

e−k(x−k)(x− k)kdx = Mk <∞.
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Thus is easy to find a normalized sequence for applying the Remark 1.2.5, since

that for all n ∈ N

lim
k→∞

〈
∫

[0,∞)

f2
k

Mk
dν, en〉 = lim

k→∞

∫
[n,n+1]

f2
k

Mk
(x− n)ndx

= lim
k→∞

∫
[n,n+1]

e−k(x−k)

Mk
(x− n)nχ[k,∞](x)dx = 0.

Therefore {fk}∞k=1 admits a subsequence that is a basic sequence.

1.3 Kadec− Pelczyński decomposition

The aim of this section is to give a canonical procedure for obtaining disjoint se-

quences in the space L2(m). This will be the first step for finding m−orthogonal

sequences (see Definition 2.3.1), and providing the corresponding existence the-

orems. In what follows a well known result of Kadec and Pelczyński (see for

instance [38]) will be applied to the context of sequences of functions on spaces

of integrable functions with respect to a vector measure. Through this section

we will consider a positive vector measure m.

Let H be a Hilbert space and let us consider a positive countably additive

vector measure m : Σ → H. We suppose that ‖χΩ‖L2(m) = ‖χΩ‖1/2L1(m) =

‖m‖(Ω) = 1 and {fn}∞n=1 ∈ L2(m). We define the subsets of Ω

σ(f, ε) = {t ∈ Ω : |f(t)| ≥ ε‖f‖L2(m)}

and the subsets of L2(m)

ML2(m)(ε) = {f ∈ L2(m) : ‖m‖(σ(f, ε)) ≥ ε}.

By normalizing if necessary, we assume that ‖fn‖L2(m) = 1 for all n ∈ N.

Remark 1.3.1. Note that the classes ML2(m)(ε) have the following properties:

(1) If ε1 < ε2 , then ML2(m)(ε1) ⊃ML2(m)(ε2).

(2)
⋃
ε>0ML2(m)(ε) = L2(m).
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(3) If f 6= 0 does not belong to ML2(m)(ε), then there exists a set A such that

‖m‖(A) < ε and ∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

‖f‖L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

≥ 1− ε2.

The first property is obvious. To prove the second, we suppose that there

exists a square m−integrable function g so that it is not in
⋃
ε>0ML2(m)(ε)

for all ε > 0, in particular g 6= 0, that is, ‖m‖(Supp g) > 0. Since Supp g =

∪n≥1σ(g, ε2n ) for every ε > 0, then

‖m‖(Supp g) ≤
∑
n≥1

‖m‖(σ(g,
ε

2n
)) ≤

∑
n≥1

ε

2n
= ε.

So ‖m‖(Supp g) = 0 which is a contradiction. For proving the third we denote

by A the set σ(f, ε). Then

1 =

∥∥∥∥∥
∫

Ω

∣∣∣∣ f(t)

‖f‖L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

≤

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

‖f‖L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2‖m(Ω/A)‖H

≤

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

‖f‖L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2‖m‖(Ω/A) ≤

∥∥∥∥∥
∫
A

∣∣∣∣ f(t)

‖f‖L2(m)

∣∣∣∣2 dm
∥∥∥∥∥
H

+ ε2.

This finishes the proof of (3).

Lemma 1.3.2. Let (Ω,Σ, µ) be a measure space and let X(µ) be an order

continuous Banach function space, then for all f ∈ X(µ)

lim
µ(A)→0

‖fχA‖X(µ) = 0.

Proof. We suppose that limµ(A)→0 ‖fχA‖X(µ) 6= 0. Then there exists a se-

quence of subsets A1, A2, ..., An, ... into Σ such that limn→∞ µ(An) = 0 and

‖fχAn‖X(µ) > δ > 0 for all n ∈ N. We take a subsequence Ã1, ..., Ãn, ... of

(An)n such that 0 < µ(Ãi) ≤ 1
2i , and we define the following collection of sets

B1 =

∞⋃
k=1

Ãk, B2 =

∞⋃
k=2

Ãk, ..., Bn =

∞⋃
k=n

Ãk, ...

It follows that µ(Bn) ≤
∑∞
k=n µ(Ãk) ≤

∑∞
k=n 1/2k ≤ 1/2n−1. On the other

hand µ(Bn) = ‖χBn‖X(µ) and therefore ‖χBn‖X(µ) converges to 0 µ−a.e. So

there exists a subsequence χBnj of χBn that converges pointwise to 0 and
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fχBnj converges to 0. From the order continuity we deduce that ‖fχBnj ‖L1(µ)

converges to 0 µ−a.e. For every nj , since Ãnj ⊂ Bnj , we have that δ <

‖χÃnj f‖X(µ) ≤ ‖χBnj f‖X(µ). This gives a contradiction and proves the lemma.

The following result shows two mutually excluding possibilities for a se-

quence {fn}n of functions in L2(m). On one hand, when {fn}n is included in

the set ML2(m)(ε) for some ε > 0, the norms ‖ · ‖L2(m) and ‖ · ‖L1(µ) are equiv-

alent, where µ is a Rybakov control measure for m. On the other hand, when

{fn}n * ML2(m)(ε) for every ε > 0, we can built another sequence {hk}k of

disjoint functions of L2(m), in such a way that {fn}n and {hk}k are equivalent

(see Chapter 1.9. [32]). This procedure gives us a tool for building disjoint

sequences in subspaces of L2(m) that in fact are unconditional basic sequences.

The order continuity of the space is the key point for the construction.

Theorem 1.3.3. Let µ = |mx′0
| be a Rybakov measure for a vector measure

m and let (Ω,Σ, µ) be a probability measure space. Let {fn}n be a sequence of

functions into L2(m).

(1) If {fn}∞n=1 ⊂ ML2(m)(ε) for some ε > 0 then {fn}∞n=1 converges to zero

in L2(m) if and only if {fn}∞n=1 converges to zero in L1(µ).

(2) If {fn}∞n=1 * ML2(m)(ε) for all ε > 0 then there exists a subsequence

{nk}∞k=1 and a disjointly supported functions {hk}∞k=1 ⊂ L2(m) such that

|hk| ≤ |fnk | for all k and {hk}∞k=1 and {fnk}∞k=1 are equivalent uncondi-

tional basic sequences that satisfy limk→∞ ‖fnk − hk‖L2(m) = 0.

Proof. It is well known that L2(m) is continuously embedded into L1(µ) and it

is an order continuous Banach lattice with weak unit. There are two excluding

cases.

(1) We suppose that {fn}n ⊂ML2(m)(ε) for some ε > 0 then

‖fn‖L2(m) ≥ ‖fn‖L1(µ) =

∫
Ω

|fn(t)|dµ ≥
∫
σ(fn,ε)

|fn(t)|dµ

≥ ε‖fn‖L2(m)µ(σ(fn, ε)).

The direct implication is obtained from the inclusion L2(m) ↪→ L1(µ).

Conversely, we suppose that µ(σ(fn, ε)) converges to 0. Since µ is a Ry-

bakov measure and thus it is a control measure ‖m‖(σ(fn, ε)) converges
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to 0, but it gives a contradiction because ML2(m)(ε) = {f ∈ L2(m) :

‖m‖(σ(f, ε)) ≥ ε}. Therefore, (fn) converges to zero in L2(m) if and only

if (fn) converges to zero in L1(µ).

(2) If the above supposition does not hold, then (fn)n *ML2(m)(ε) for all ε.

In order to simplify the notation we consider ‖fn‖L2(m) = 1. Thus, there

exists an index n1 ∈ N such that fn1 is not in ML2(m)(ε) where j1 = 2.

We take ε = 4−j1 . Then ‖m‖(σ(fn1 , 4
−j1)) < 4−j1 and

‖χσ(fn1 ,4
−j1 )cfn1

‖L2(m) =

∥∥∥∥∫ |χσ(fn1 ,4
−j1 )cfn1

|2dm
∥∥∥∥1/2

H

=

∥∥∥∥∥∥
∫
χ
σ(fn1

,4−j1 )c

|fn1 |2dm

∥∥∥∥∥∥
1/2

H

≤ 4−j1
∥∥m(σ(fn1 , 4

−j1)c)
∥∥1/2

H

≤ 4−j1‖m‖(Ω)1/2 = 4−j1 .

Now we apply 1.3.2, so there exists δ1 > 0 such that for all A ∈ Σ with

‖m‖(A) < δ1 it follows ‖χAfn1‖ < 4−(j1+1). We take j2 > j1 such that

4−j2 < δ1. By the same argument, there exists n2 > n1 such that fn2 is

not in ML2(m)(4
−j2), thus ‖m‖(σ(fn2 , 4

−j2)) < 4−j2 < δ1

‖χσ(fn2
,4−j2 )cfn1

‖ ≤ 4−(j1+1),

‖χσ(fn2
,4−j2 )cfn2

‖ ≤ ‖4−j2χσ(fn2
,4−j2 )c‖ ≤ 4−j2 .

We take ε = 4−(j2+1). Again, we apply Lemma 1.3.2 and there exists δ2 >

0 such that for all A ∈ Σ with ‖m‖(A) < δ2 it follows ‖χAfn1
‖, ‖χAfn2

‖ <
4−(j2+1). Let j3 > j2 be an integer satisfying that 4−j3 < δ2. Again there

exists a integer n3 > n2 > n1 such that fn3
is not in ML2(m)(4

−j3), as in

the above case we have ‖m‖(σ(fn3
, 4−j3)) < 4−j3 < δ2, and therefore

‖χσ(fn3
,4−j3 )fn1‖, ‖χσ(fn3

,4−j3 )fn2‖ ≤ 4−(j2+1),

‖χσ(fn3
,4−j3 )cfn3

‖ ≤ 4−j3 .

In the same way, it is possible to find two subsequences {fnk}∞k=1 and

σ(fnk , 4
−jk)k that satisfy the following inequalities:

‖m‖(σ(fnk , 4
−jk)) < 4−jk ,

‖χσ(fnk ,4
−jk )cfnk‖ ≤ 4−jk ,
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‖χσ(fnk ,4
−jk )fni‖ ≤ 4−(jk−1+1), i = 1, ..., k − 1.

Now, we define the following disjoint sequence of sets:

ϕk = σ(fnk , 4
−jk)\

∞⋃
i=k+1

σ(fni , 4
−ji).

ϕck = σ(fnk , 4
−jk)c

⋃
(

∞⋃
i=k+1

σ(fni , 4
−ji)).

Thus ϕk ∩ ϕl = ∅ for k 6= l. This allows to construct the sequence of

disjoint functions hk = χϕkfnk . Due to the lattice properties of L2(m)

and Remark 1.2.2 we obtain that the sequence {hk}∞k=1 is a basic sequence.

On the other hand we check that limk→∞ ‖fnk − hk‖ = 0. Indeed

‖fnk − hk‖ = ‖χϕckfnk ‖ ≤ ‖χσ(fnk ,4
−jk )cfnk‖+ ‖χ⋃∞

i=k+1 σ(fni ,4
−ji )fnk‖

≤ 4−jk +

∞∑
i=k+1

‖χσ(fni ,4
−ji )fnk‖ ≤ 4−jk +

∞∑
i=k+1

4−(ji−1+1)

≤ 4−jk +
4−(jk+1)

1− 1/4
= 4−jk +

1

3
4−jk =

1

3
4−(jk−1).

So if we apply Remark 1.2.1 and 1.5, we obtain that {fnk}∞k=1 and {hk}∞k=1

are equivalent unconditional basic sequences.



Chapter 2

m−Orthogonal sequences
with respect to a vector
measure

2.1 m−Orthogonal sequences of functions with
respect to a vector measure

Given a measure space (Ω,Σ, µ) where µ is an scalar measure, a sequence

{fn}∞n=1 in L2(µ) integrable functions is said to be µ−orthogonal, if
∫
fnfmdµ =

0 for m 6= n holds and none of the functions fn vanishes almost everywhere. In

this chapter we present reasonable extensions of this notion when the measure

involved is a positive vector measure m : Σ → X where X is a Banach lattice.

Our aim is to show that these definitions lead us to different geometrical prop-

erties of the subspaces generated by the sequences of functions. Actually, the

notion of orthogonality of two functions with respect to a vector measure can

be broached under different perspectives.

We recall that if f, g ∈ L2(m) then fg ∈ L1(m) (see [60]); so the integral∫
fgdm is well-defined. The representation theorem for 2-convex order contin-

uous Banach lattices with a weak unit establishes that such an space can be al-

19
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ways identified (isomorphically and in order) with a space L2(m) of 2-integrable

functions with respect to a positive Banach lattice valued vector measure m on

a σ-algebra (see [28, Proposition 2.4] or [49, Proposition 3.9]). Although these

spaces are not in general Hilbert spaces, the integration structure of the spaces

L2(m) provides several extensions of the notion of orthogonality. Some theo-

retical results and applications have been already obtained in this setting. The

notion of (weak, strong) orthogonality with respect to a vector measure m in

spaces L2(m) of 2-integrable functions has been defined an studied in the last

ten years, see for instance ([35, 36]). In this memoir we consider the three no-

tions of orthogonality with respect to a vector measure, the weak orthogonality,

the orthogonality itself and the strongly version of it that we will formalize in

the following sections.

2.2 Weak m-orthogonal sequences

Definition 2.2.1. A sequence of functions {fn}∞n=1 in L2(m) is weak m-

orthogonal if there is an element x′ ∈ (X ′)+
m such that

∫
f2
i d〈m, x′〉 > 0 for

all i ∈ N, and for all i 6= j

〈
∫
fifjdm, x′〉 =

∫
fifjd〈m, x′〉 = 0.

For such a sequence we also say that it is orthogonal with respect to 〈m, x′〉
when an explicit reference to the scalar measure 〈m, x′〉 is convenient.

Although for many purposes it is not necessary, we will assume that m is

a positive vector measure. It is easy to find examples of sequences that satisfy

this property.

Example 2.2.2. (1) Consider the Lebesgue measure space ([0, 1],Σ, dx). We

can define the positive vector measure ν : Σ→ c0 as ν(A) = {
∫
A
xn dx}∞n=1.

It is clearly countably additive and then the corresponding space L2(ν) is

well-defined. Consider now the sequence of functions

fi(x) =
√

2e−x/2 sin(2πix) i ∈ N.

Note that f2
i ≤ 2 ∈ L1(ν) and so fi ∈ L2(ν). Take the sequence x′0 :=

{ 1
n!e}

∞
n=0 ∈ `1 = (c0)′. A direct calculation shows that

∫
fifjd〈ν, x′0〉 =

δi,j
1
e .
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(2) Let γ := arc sinh( 1
2 ). Take the Lebesgue measure space ([−γ, γ],Σ, dx).

The positive countably additive vector measure ν(A) = {
∫
A
x2ndx}∞n=0 ∈

c0 is then well defined. Note that if f ∈ L1(ν) then∫
fdν =

{∫ γ

−γ
f(x)x2ndx

}
n

∈ c0.

Consider the sequence fm(x) = cos
(
2mπ sinh(x)

)
. Note that f2

m ≤
1 ∈ L1(ν) and so fm ∈ L2(ν). Take the norm one sequence x′0 :={

1
cosh(1)(2n)!

}∞
n=0
∈ `1 = (c′0). A direct calculation shows that∫

fnfmd〈ν, x′0〉 =
1

2 cosh(1)
δm,n.

In what follows we provide a characterization of the situation given in the

example above, i.e. when we can find an element x′ such that the sequence {fn}n
is orthogonal in the space L2(〈m, x′〉). Let us introduce first some notation and

remarks. A family Φ of R−valued defined on a non-empty set Ψ is called concave

if, for every finite set {φ1, ..., φn} ⊆ Φ with n ∈ N and non negative scalars

γ1, ..., γn satisfying
∑n
j=1 γj = 1, there exists φ ∈ Φ such that

∑n
j=1 γjφj ≤ φ

pointwise on Ψ. The following result is known as Ky Fan’s Lemma. Let Ψ be

a compact convex subset of a Hausdorff topological vector space and let Φ be

a concave family of lower semi-continuous, convex, R−valued functions defined

on Ψ. Let γ ∈ R. Suppose that for every φ ∈ Φ there exists xφ ∈ Ψ such that

φ(xφ) ≤ γ. Then there exists x ∈ Ψ such that φ(x) ≤ γ for all φ ∈ Φ.

Let m : Σ→ X be a positive vector measure and take a sequence S = {fi}∞i=1 ⊆
L2(m) and a sequence of positive real numbers ∆ = {εi}∞i=1. Then we write

BS,∆ for the convex weak* compact subset

BS,∆ := BX′ ∩ (X ′)+
m ∩ {x′ : 〈

∫
f2
i dm, x′〉 ≤ εi, for all i ∈ N}. (2.2.1)

Let us define the following continuous seminorm on L1(m).

‖f‖BS,∆ := sup
x′∈BS,∆

( ∫
|f | d〈m, x′〉

)
. (2.2.2)

For every i, j ∈ N, i 6= j, let us write

ϕi,j,θ(w) :=
(
fi(w) + θfj(w)

)2
, w ∈ Ω, (2.2.3)

where θ ∈ {−1, 1}. Notice that 0 ≤ ϕi,j,θ ∈ L1(m).
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For instance, in Example 2.2.2 (1) the sequence ∆ is ∆ = {εi}∞i=0 = { 1
e}
∞
i=0,

and so BS,∆ ⊃ 1
eB`1 ∩ (`1)+

ν . Thus, ‖ · ‖BS,∆ is equivalent to the norm of L1(ν).

In the following result the scalar product notation 〈(γk), (δk)〉 :=
∑n
k=1 γkδk

for finite sequences {γk}nk=1 and {δk}nk=1 is used.

Theorem 2.2.3. Let m : Σ → X be a positive vector measure. Consider a

sequence S = {fi}i ⊆ L2(m) and a sequence of positive real numbers ∆ = {εi}i.
The following statements are equivalent.

(1) For every finite sequence of non negative real numbers {γk}k such that∑
k γk = 1, indexes ik, jk ∈ N, ik 6= jk, and θk ∈ {−1, 1},

〈(γk), (εik + εjk)〉 ≤ ‖〈(γk), (ϕik,jk,θk)〉‖BS,∆ .

(2) There is an element 0 ≤ x′0 ∈ BX′ such that S is weak m−orthogonal with

respect to 〈m, x′0〉 and
∫
f2
i d〈m, x′0〉 = εi for every i ∈ N.

Proof. Let us prove first that (1) implies (2). Consider the family of functions

φ : BS,∆ → R given by

φ(x′) =

n∑
k=1

γk(εik + εjk)−
n∑
k=1

γk〈
∫
ϕik,jk,θkdm, x′〉,

where γ1, ..., γn is a family of non negative real numbers such that
∑
k γk =

1. Each such a function is convex, weak* continuous and the set of all these

functions is concave. Moreover, since the functions Tφ : BS,∆ → [0,∞) given

by Tφ(x′) = 〈
∫ ∑n

k=1 γkϕik,jk,θkdm, x
′〉 =

∫ ∑n
k=1 γkϕik,jk,θkd〈m,x′〉 are weak*

continuous and BS,∆ is weak* compact, there exists an element x′φ ∈ BS,∆

such that ‖〈(γk), (ϕik,jk,θk)〉‖BS,∆ = supx′∈BS,∆ Tφ(x′) = Tφ(x′φ) and so, by the

inequality en (1), we have that φ(x′φ) ≤ 0. Ky Fan Lemma gives an element

x′0 ∈ BS,∆ such that φ(x′0) ≤ 0 for all φ (see [49, Lemma 6.13.]). Consequently

for every {γk}nk=1 and {ϕik,jk,θk}nk=1 we have that

〈(γk), (εik + εjk)〉 ≤ 〈 (γk), (

∫
ϕik,jk,θkd〈m, x′0〉) 〉.

In particular, for each couple i, j ∈ N, i 6= j, taking γ1 = 1, ϕi,j,1 and ϕi,j,−1 we

obtain

εi+εj ≤
∫

(f2
i +f2

j +2θfifj)d〈m, x′0〉 ≤ εi+εj+2θ

∫
fifjd〈m, x′0〉, θ ∈ {−1, 1}.
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Therefore,
∫
fifjd〈m, x′0〉 = 0 for each pair i 6= j. Fix now three different

indexes {i, j, k} ∈ N. We have the inequalities

εr + εs ≤
∫
f2
r d〈m, x′0〉+

∫
f2
s d〈m, x′0〉 ≤ εr + εs,

and so the equalities

εr + εs =

∫
f2
r d〈m, x′0〉+

∫
f2
s d〈m, x′0〉

for different r and s; r, s ∈ {i, j, k}. This implies that
∫
f2
r d〈m, x′0〉 = εr for

each r ∈ {i, j, k} and finishes the proof.

The proof of (2)→ (1) is a straightforward calculation; suppose that there

is an element x′0 as in (2) and take non negative real numbers γ1, ..., γn such

that
∑
k γk = 1. Consider a sequence of functions {ϕik,jk,θk}nk=1. Then

〈(γk), (εik + εjk)〉 =

n∑
k=1

γk(εik + εjk) =

n∑
k=1

γk(

∫
f2
ik
d〈m, x′0〉+

∫
f2
jk
d〈m, x′0〉)

=

n∑
k=1

γk(

∫
f2
ik
d〈m, x′0〉+

∫
f2
jk
d〈m, x′0〉+ 2θk

∫
fikfjkd〈m, x′0〉)

≤ sup
x′∈BS,∆

|〈
n∑
k=1

γk

∫
(f2
ik

+f2
jk

+2θkfikfjk) dm , x′〉)| = ‖〈(γk)k, (ϕik,jk,θk)k〉‖BS,∆ .

Remark 2.2.4. For particular cases, the condition given in part (1) of Theorem

2.2.3 can be written in a simpler way. Consider a positive vector measure

ν : Σ→ `1 and take the sequence ∆ given by {‖
∫
f2
i dν‖}∞i=1, i.e. εi = ‖

∫
f2
i dν‖

for all i. The positivity of ν and the 1-concavity of `1 implies that the condition

(1) in Theorem 2.2.3 is equivalent to the inequality∥∥∥∥∫ f2
i dν

∥∥∥∥
`1

+

∥∥∥∥∫ f2
j dν

∥∥∥∥
`1
≤
∥∥∥∥∫ (fi + θfj)

2dν

∥∥∥∥
`1

for all i, j ∈ N, i 6= j, and θ ∈ {−1, 1}.

In Examples 2.2.2, the element of the dual space that defines the measure

was explicitly computed. However, sometimes this is not possible and then the

characterization theorem given above becomes useful. This is the situation that

is shown in the following example.
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Example 2.2.5. (1) Let (Ω,Σ, µ) be a probability space. Consider a rela-

tively weakly compact sequence {gk}k ⊂ L1(µ) where each gk is positive

with norm one. Let us define the vector measure ν : Σ→ `∞ given by the

expression ν(A) := {
∫
A
gkdµ}∞k=1. It is well defined, and since {gk}k is uni-

formly integrable, it is countably additive. Recall that L2(ν) ⊂ L1(ν) and

note that if f ∈ L1(ν) then
∫
fdν = {

∫
fgkdµ}k ∈ `∞. Take a sequence

S := {fi}i ∈ L2(ν) satisfying the following properties: ‖
∫
f2
i dν‖ ≤ 1 for

all i and for every finite subset I0 ⊆ N there is an index n ∈ N such

that {fi : i ∈ I0} is orthonormal in L1(gndµ). Then the set BS,∆ is just

B(`∞)′ ∩
(
(`∞)′

)+
ν

. Let us show that this is enough to prove that condition

(1) in Theorem 2.2.3 is satisfied.

Take the sequence ∆ := (εi)i, where εi = 1 for every i. Then the set BS,∆

is just B(`∞)′ . For every i, j ∈ N, i 6= j and θ ∈ {−1, 1}, recall that

ϕi,j,θ :=
(
fi + θfj

)2
.

So we have to prove the inequality

2 ≤ ‖〈(γk), (ϕik,jk,θk)〉‖BS,∆

for γk > 0 such that
∑m
k=1 γk = 1 and {fik , fjk ∈ S : ik, jk ∈ I0} for a

finite set I0. But this is a direct consequence of the requirements of {fi}i
and the definition of the `∞ norm; we find an index n such that

2 =

n∑
k=1

γk

∫
(f2
ik

+ f2
ij )gndµ =

n∑
k=1

γk

∫
(fik + θkfij )

2gndµ

= 〈
∫ n∑

k=1

γkϕik,jk,θkdν, en〉 =

∫ n∑
k=1

γkϕik,jk,θkd〈ν, en〉

≤
∥∥∥ n∑
k=1

γkϕik,jk,θk

∥∥∥
BS,∆

.

Therefore, by Theorem 2.2.3 there is an element x′ ∈ B(`∞)′ ∩
(
(`∞)′

)+
ν

such that S is orthonormal when considered as a sequence in L2(|〈ν, x′〉|).
Notice also that, although the element x′ do not belong in general to `1

and cannot be identified with a sequence, the measure 〈ν, x′〉 is absolutely

continuous with respect to µ, so there is an integrable function such that

〈ν, x′〉(A) =
∫
A
hdµ for every A ∈ Σ.
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(2) An example of the situation above is given by the following elements. Take

the Lebesgue space ([0, 1],Σ, dx) and the functions gn(x) := 2 sin2(2n−1πx),

n ∈ N. Consider the Rademacher functions

fi(x) := sgn(sin(2iπx)) i ∈ N.

A direct computation shows that
∫
f2
i gndx = 1 for all i, n ∈ N, and that

for all i, j ≤ n,
∫
fifjgndx = 0 if i 6= j. Consequently, the inequality in

Theorem 2.2.3 is satisfied, and there is a measure 〈ν, x′〉 such that {fi}i
is a weak m−orthonormal sequence in L2(m).

2.3 m−Orthogonal sequences

Let (Ω,Σ) be a measurable space and X a Banach space. Given a vector mea-

sure m : Σ → X, consider a sequence of (non zero) real functions {fn}n that

are square m-integrable. We say that it is orthogonal with respect to m if for

every pair j, k ∈ N,
∫
fjfkdm = 0 if j 6= k. Roughly speaking, it is defined by

imposing simultaneously orthogonality with respect to all the elements of the

family of scalar measures defined by the vector measure. This notion generalizes

the usual orthogonality given by the integral with respect to a scalar measure,

and provides a natural setting for studying the properties of functions that are

orthogonal with respect to a family of measures. The analysis of this kind of

sequences has a long mathematical history, for instance regarding orthogonal

polynomials. At the end of the 19th century some relevant cases of families

of polynomials that are orthogonal with respect to a large set of scalar mea-

sures —indeterminate measures— were known. The first example of such an

indeterminate measure was presented by Stieltjes in 1894 (see [62]). He showed

that ∫ ∞
0

xn−log x sin[2π log(x)]dx = 0 for each n = 0, 1, 2...

which implies that all the densities on the half-line

dλ(x) =
(1 + λ sin[2π log(x)])

xlog x
, λ ∈ [−1, 1]

have the same moments. The polynomials that are orthogonal with respect to

this class of measures are a special case of the Stieltjes-Wigert polynomials.
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The study of this kind of measures was the starting point of a mathematical

theory that was firstly developed by Riesz and Nevalinna and is still now a

fruitful research area (see for instance §2.7 in [63], and [8, 47, 52]). Using the

family (dλ)λ∈[−1,1] of densities, a vector measure can be defined in an easy way

(see Example 2.3.2). In general this construction can be done for abstract sets

of measures —for instance, parametric models in statistics—, and then to find

sequences of functions that are orthogonal for all the elements of a family of

measures is equivalent to the problem of finding sequences that are orthogonal

with respect to a vector measure. From the point of view of the vector measure

theory, orthogonality with respect to a vector measure has been studied in a

series of papers in the last 10 years (see [34, 35, 36, 59]). We define now formally

the notion of m−orthogonality with respect to a vector measure.

Definition 2.3.1. Let (Ω,Σ) be a measurable space and X a Banach space.

Given a vector measure m : Σ → X, consider a sequence of real functions

{fi}∞i=1 that are square m-integrable. We say that {fi}∞i=1 is m-orthogonal if∫
f2
i dm 6= 0, for all i ∈ N, and

∫
fifjdm = 0, i 6= j i, j ∈ N. (2.3.1)

Furthermore, we say that {fn}n is a m−orthonormal sequence in L2(m) if for

all n ∈ N ∥∥∥∥∫ f2
ndm

∥∥∥∥
X

= 1.

Example 2.3.2. The first example of an indeterminate measure was presented

by Stieltjes in 1894 (see [62]). For each n ∈ N, consider the integrals:∫ ∞
0

xne− ln2(x)[1 + λ sin(2π ln(x))]dx =
√
πe(n+1)2/4.

If we take |λ| < 1 then µλ(x) = e− ln2(x)[1 + λ sin(2π ln(x))] > 0 is a positive

function for all x ∈ [0,∞[, thus Fλ(y) =
∫ y

0
e− ln2(x)xn[1+λ sin(2π ln(x))]dx is a

family of non decreasing distributions with support into [0,∞[ which have the

same moments Sn =
√
πe(n+1)2/4. We consider the (n + 1) × (n + 1) Hankel

matrix:

∆n =



S0 S1 . . . Sn

S1
. . .

...
...

Sn ... S2n

 (2.3.2)
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The sequence {Sn}∞n=0 is defined positive if det(∆n) > 0 for all n ∈ N. We

define the linear operator L : P[x] → R such that L(Qn(x)) =
∑∞
k=0 akSk

where Qn(x) =
∑n
k=0 akx

k.

Remark 2.3.3. If the sequence {Sn}∞n=0 is defined positive then the polynomial

Pn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

S0 S1 . . . Sn

S1
. . .

...
...

Sn−1 . . . S2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣
(2.3.3)

satisfies that

L(xkPn(x)) =

{
0 if k < n

det(∆n) if k = n
(2.3.4)

It is immediate to prove that the sequence {Sn =
√
πe(n+1)2/4}∞n=0 is de-

fined positive and:∫ ∞
0

xkPn(x)e− ln2(x)[1 + λ sin(2π ln(x))]dx =

{
0 if k < n

det(∆n) if k = n

for every λ ∈ R, |λ| < 1. The remark 2.3.3 provides a procedure for building a

m−orthogonal sequence for a suitable vector measure. For instance, consider

the following polynomials

p0(x) = S0 = 2.27588,

p1(x) = −4.81803 + 2.27588x,

p2(x) = 183.457− 139.22x+ 15.059x2,

p4(x) = −655344.+ 611203.x− 106211.x2 + 3438.93x3,

...

Now we take Ω = (0,∞) and Σ the σ−algebra of the Lebesgue subsets of Ω.

We can define ν : Ω→ c0 by

ν(A) =

{∫
A

e− ln2(x)

m
[1 +

1

m+ 1
sin(2π ln(x))]dx

}∞
m=1

,

where dx is the Lebesgue measure and A ∈ Σ. Using elementary integral calcu-

lus, it is easy to prove that for every A ∈ Σ,

lim
m→∞

∫
A

e− ln2(x)

m
[1 +

1

m+ 1
sin(2π ln(x))]dx = 0.



28 Chapter 2. m−Orthogonal sequences with respect to a vector measure

This shows that ν is well defined and so countably additive. Moreover, it is also

clear that the functions pl(x) ∈ L2(m) and they satisfy that for all j < l,∫ ∞
0

pj(x)pl(x)dν = Blδjl

where Bl is a non null constant for all l ∈ N.

Example 2.3.4. Let us provide another example of ν-orthogonal sequence with

respect to a vector measure ν. Consider the family {Pn,k}∞n,k of Stieltjes-Wigert

polynomials. For every n ∈ N and k ∈ N,

Pn,k(x) =
(−1)nq(k)n/2+1/4√∏k

j=1(1− q(k)j)

n∑
i=0

[(
n

i

)]
q

q(k)(i2)(−
√
q(k)x)i

where q(k) = exp(−(2k2)−1), k is a positive integer and we call[(
n

i

)]
q

=
(1− q(k)n)(1− q(k)n−1) · · · (1− q(k)n−i+1)

(1− q(k))(1− q(k)2) · · · (1− q(k)i)
,

as a q-binomial coefficient also called a Gaussian coefficient or Gaussian poly-

nomial. Let us also consider the family of normalized weights {wk}∞k=1 =

{ 1
α(k)
√
π
kx−k

2 log x}∞k=1 in [0,∞), where α(k) = e
1

4k2 . It is well-known that

the family of polynomials above is orthogonal in the following sense: for a fixed

k ∈ N, the sequence {Pn,k}∞n=1 is orthogonal with respect to the weight wk, i.e.∫ ∞
0

Pn,k(x)Pm,k(x)wk(x)dµ(x) = 0, n 6= m,

see [63, 2.7]. Consider the Lebesgue measure space ([0,∞),B, µ) and take the

set Ω0 =
⋃∞
k=1([0,∞)× {k}). Let us define the σ-algebra Σ0 given by elements

of the form A =
⋃∞
k=1(Ak × {k}) ⊆ Ω0, where Ak is a Lebesgue measurable

subset of [0,∞) for every k. Let us define the vector measure ν : Σ0 → c0 as

ν(A) :=

∞∑
k=1

(1

k

∫
Ak

wk(x)dµ(x)
)
ek,

where A is an element of Σ0 as above.

Suppose now that the polynomials Pn,k are normalized in the Hilbert space

L2([0,∞), wkdµ) given by the weighted measure wk(x)dµ(x). Define the func-

tions Qn,k : Ω0 → [0,∞) by

Qn,k((xj , j)) := k1/2 Pn,k(xj) δk,j ,
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for (xj , j) ∈ Ω0. A careful writing of the integrals with respect to ν of the

products of such functions shows that∫
Ω0

Qn,kQm,sdν = 0

whenever n 6= m or k 6= s. To see this, just take into account that if k 6= s, then∫
Ω0

Qn,kQm,sdν =
( ∑
j 6=s,k

(s1/2k1/2

j

∫ ∞
0

0 · 0wj(x)dµ(x)
)
ej

)

+
(s1/2k1/2

k

∫ ∞
0

Pn,k(x) · 0wk(x)dµ(x)
)
ek

+
(s1/2k1/2

s

∫ ∞
0

0 · Pm,s(x)ws(x)dµ(x)
)
es = 0

and for k = s and n 6= m,∫
Ω0

Qn,kQm,kdν =
(∑
j 6=k

(k
j

∫ ∞
0

0 · 0wj(x)dµ(x)
)
ej

)

+
( ∫ ∞

0

Pn,k(x) · Pm,k(x)wk(x)dµ(x)
)
ek = 0.

Therefore, every subsequence of {Qn,k}∞n,k=1 defines a ν-orthonormal sequence.

Now we are going to provide some results on the existence of m−orthonormal

sequences in L2(m). It is easy to prove the existence of m-orthonormal se-

quences of functions in any (non trivial) space of square integrable functions

with respect to a vector measure.

Lemma 2.3.5. Suppose that there is a sequence {An}∞n=1 into Σ of disjoint

non ‖m‖−null sets. Then there is a m-orthonormal sequence in L2(m).

Proof. The characteristic functions χAn ∈ L2(m), for every n ∈ N. Moreover,

since ‖m‖(A) 6= 0, there is a subset Bn ⊂ A such that ‖m(Bn)‖X > 0. Let us

define fn =
χBn

‖m(Bn)‖1/2 , n ∈ N. Then∫
f2
ndm =

∫
χ2
Bn

‖m(Bn)‖
dm =

1

‖m(Bn)‖

∫
χBndm =

m(Bn)

‖m(Bn)‖
6= 0.

On the other hand, if n 6= k for n, k ∈ N, it is clear that
∫
fnfkdm = 0,

since Bn ∩Bk = ∅, and the result is obtained.
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It is clear that an m-orthonormal sequence also is also orthogonal for each

associated m-positive measure 〈m, x′〉. The notion of m-orthonormal sequence

is the natural generalization of the concept of orthonormal sequence in a Hilbert

space L2(µ) and has been studied in [48, 59]. As the reader will see, the results on

almost everywhere convergence that will be shown in next chapter prove the ones

that hold for the case of series in Hilbert spaces. However, the m-orthonormality

requirement for a sequence of functions in the non scalar case introduces a strong

restriction, in particular regarding completeness of the orthogonal sequence. An

orthonormal set Ψ is said to be complete if there exists no other orthonormal

set containing Ψ, that is, Ψ must be a maximal orthonormal set. It is easy

to prove that an orthonormal set Ψ is complete if and only if for any f such

that f is orthogonal to Ψ, f must be zero. Let us show this fact with an easy

construction. Suppose that (Ω0,Σ0, µ0) is a probability measure space, and

consider a complete orthonormal sequence {gi}∞i=1 in L2(µ0) such that g1 =

χΩ0 . Suppose that {gi}∞i=1 is also m0-orthonormal sequence for a countably

additive measure m0 : Σ0 → X that is absolutely continuous with respect to

µ0. Then every measure (m0)x′ , x
′ ∈ X ′, is µ0-continuous, and there is a

function hx′ ∈ L1(µ0) such that d(m0)x′ = hx′dµ0. For every k ≥ 2,

0 = 〈
∫
g1gkdm0, x

′〉 =

∫
gkhx′dµ0.

If moreover hx′ ∈ L2(µ0), since the sequence {gi}∞i=1 is complete, the equalities

above imply hx′ = r(x′)χΩ0
for a real number r(x′). Therefore, if we assume

that for every x′ ∈ X ′ the corresponding Radon-Nikodým derivative belongs to

L2(µ0), we obtain that

(m0)x′(A) = r(x′)µ0(A), A ∈ Σ0, x′ ∈ X ′.

This relation establishes a strong restriction on m0. For instance, suppose that

X is a Banach space with an unconditional basis {ei}∞i=1. Then m0(A) =∑∞
i=1〈m0(A), e′i〉ei, where {e′i}∞i=1 are the corresponding biorthogonal function-

als and A ∈ Σ0. In this case the relation above implies that

m0(A) = (

∞∑
i=1

r(e′i)ei)µ0(A)

for every A ∈ Σ0, i.e. m0 can be in fact considered as a scalar positive measure.

Remark 2.3.6. The above argument shows that in general we cannot expect

completeness for m-orthonormal sequence of functions, although under certain
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(strong) assumptions it is possible to obtain m-orthonormal basis for L2(m)

(see [48]). Thus, although the results that we present in what follows can be

used to obtain information about standard orthonormal sequences {fi}∞i=1 in

Hilbert spaces L2(µ), the procedure of splitting the scalar measure µ into a

vector measure m preserving orthonormality is essentially limited by a certain

non completeness assumption for {fi}∞i=1.

The next result is a direct consequence of the Kadec and Pelczynski pro-

cess for obtaining disjoint sequences -see Chapter 1.3 for notation-. It provides

a method for, given a convenient sequence {fn}n, finding a disjoint (and then

m−orthogonal) subsequence of {fn}n.

Corollary 2.3.7. Let H be Hilbert space which is also a Banach lattice and

m : Σ → H a positive vector measure such that ‖m‖(Ω) = 1. Take a Rybakov

control measure µ = |x′0m| for m with ‖x′0‖ = 1. If {fn}n ⊂ L2(m) is such that

‖fn‖L2(m) = 1 for all n and {fn}n * ML2(m)(ε) for all ε > 0 then there exists

a subsequence {hk}∞k=1 ⊂ L2(m) such that |hk| ≤ |fnk | for all k and {hk}∞k=1

is a m−orthogonal sequence in L2(m). Moreover, {fnk}∞k=1 and {hk}∞k=1 are

equivalent unconditional basic sequences that satisfies limk→∞ ‖fnk−hk‖L2(m) =

0.

The proof is a direct application of Theorem 1.3.3. Note that limk→∞ ‖fnk−
hk‖L2(m) = 0 and ‖fnk‖L2(m) = 1 for all k implies that

∫
h2
kdm 6= 0 for large

enough k.

2.4 Strongly m−orthogonality

In this section we present the last notion of orthogonality, that is the most

restrictive. In what follows we will establish the conditions that are required in

order to construct a strongly m−orthonormal system.

Definition 2.4.1. Let us consider a separable Hilbert space H with an or-

thonormal sequence {ei}∞i=1 and a countably additive vector measure m : Σ →
H. We say that {fi}∞i=1 ⊂ L2(m) is a strongly m-orthogonal sequence if∫
fifjdm = δijeiki, ki > 0. If ki = 1 for every i, we say that it is a strongly

m-orthonormal sequence.
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It is clear that if {fn}n is a strongly m-orthogonal sequence then {fn}n is

a m-orthogonal sequence and therefore, in the case when H is also a Banach

lattice and m is positive, {fn}n is weak m-orthogonal. The converse is not true.

Example 2.4.2. Let rk(x) = sgn[sin(2k−1x)] be the Rademacher function of

period 2π, defined at the interval Ek = [2(k − 1)π, 2kπ], k ∈ N. We define the

following countably additive vector measure,

m(A) :=

∞∑
k=1

(−1)

2k

(∫
A∩Ek

rkdµ

)
ek ∈ `2.

Note that if f ∈ L1(m) then
∫
fdm = (− 1

2k

∫
Ek
frkdµ)k ∈ `2. We consider the

next sequence of functions

f1(x) = sinx · χ[π,2π]

f2(x) = sin 2x · (χ[0,2π] + χ[ 7
2π,4π])

f3(x) = sin 4x · (χ[0,4π] + χ[ 23
4 π,6π])

...

fk(x) = sin 2k−1x · (χ[0,2(k−1)π] + χ[(2k− 1

2k−1 )π,2kπ]), k ≥ 2.

These family of functions of L2(m) can be used to define a strongly m−orthogonal

Figure 2.1: Functions f1(x), f2(x) and f3(x).

sequence (see figure 2.1), since〈∫
f2
ndm, en

〉
= − 1

2n

∫
En

f2
nrndµ =

π

22n〈∫
f2
ndm, ek

〉
= − 1

2k

∫
Ek

f2
nrkdµ = 0, ∀k 6= n〈∫

fnfmdm, ek

〉
= − 1

2k

∫
Ek

fnfmrkdµ = 0, for n 6= m and ∀k
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If we define

Fn(x) =
2n√
π
fn(x),

we obtain∫
F 2
i dm = ei, ∀i ∈ N and

∫
FiFjdm = 0, ∀i, j ∈ N, i 6= j.

Now we adapt a well know result of Bessaga and Pelczynski (see for in-

stance [24], Ch.V) to the context of sequences of functions on spaces of integrable

functions with respect to a vector measure in the following sense. We want to

identify when a sequence
{∫

f2
ndm

}∞
n=1
⊂ H is a basic sequence of H. This will

be the main tool for obtaining what we have denoted strongly m−orthogonal

sequences. The first requirement in Corollary 2.4.3 is obviously satisfied in the

case of m-orthonormal sequences. The second condition constitutes the key of

the problem.

Corollary 2.4.3. Let m : Σ −→ H be a vector measure, and consider the

basis {en}∞n=1 of H. Let {fn}∞n=1 be a sequence in L2(m). If the sequence{∫
f2
ndm

}∞
n=1

satisfies

(1) infn
∥∥∫ f2

ndm
∥∥
H

= ε > 0, and

(2) limn

〈
ek,
∫
f2
ndm

〉
= 0, k ∈ N,

then
{∫

f2
ndm

}∞
n=1

has a subsequence which is a basic sequence, moreover it is

equivalent to a block basic sequence of {en}∞n=1 .

The proof of this corollary is an immediate consequence of Theorem 3 [7].

Let us highlight with an example the geometrical meaning of this condition by

showing a particular sequence of functions that satisfies Remark 1.2.5. This is

in a sense the canonical situation, involving disjointness.

Example 2.4.4. Let (Ω,Σ, µ) be a probability measure space. Let us consider

the following vector measure m : Σ→ `2,

m(A) :=

∞∑
i=1

µ(A ∩Ai)ei ∈ `2, A ∈ Σ,

where {Ai}∞i=1 is a disjoint measurable partition of Ω, with µ(Ai) 6= 0 for all i ∈
N. Notice that

∫
f2dm =

∑∞
i=1(

∫
Ai
f2dµ)ei ∈ `2 for all f ∈ L2(m). Consider
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the sequence of functions {fn}∞n=1 in L2(m), defined by fn := χAn/(µ(An))1/2.

For every k ∈ N, the following holds:

lim
n

〈
ek,

∫
f2
ndm

〉
= lim

n

〈
ek,

∞∑
i=1

(∫
Ai

f2
ndµ

)
ei

〉
= lim

n

∫
Ak

f2
ndµ = 0.

‖
∫
f2
ndm‖`2 = 1 for all n.

Therefore, condition (2) of Corollary 2.4.3 is fulfilled in this example: the

role of disjointness is clear. The geometrical meaning of this condition by show-

ing a particular sequence of functions that satisfies Remark 1.2.5. This is in a

sense the canonical situation, involving disjointness.

For the case of vector measures m having a compact integration operator,

we provide an easy argument showing that there are no strong m−orthogonal

sequences in L2(m) (see Proposition 3.48 [49]). In particular, this shows that the

existence of such sequences is a pure vector measure phenomenon. In fact, this

property is closely related to the existence of strongly m-orthonormal sequences.

Compactness of the integration map is nowadays well characterized. It is a very

strong property in the sense that it implies that the space L1(m) is isomorphic

to an L1 space of an scalar measure. The result can be found in Proposition

3.48. [49] (see also the references there in). The following necessary condition

for the compactness of the integration operator shows this.

Lemma 2.4.5. Let m : Σ −→ H be an countably additive vector measure. If

there exists a strongly m-orthonormal sequence in L2(m), then the integration

operator Im : L1(m) −→ H is not compact.

Proof. Let us consider an orthonormal sequence {ei}i in H and let {fi}i be a

strongly m−orthogonal sequence in L2(m). Then
∫
fifjdm = δijei, an thus∫

f2
i dm = ei = Im(f2

i ).

Therefore
{
f2
i

}∞
i=1
⊂ BL1(m) and so the sequence{
Im(f2

i )
}∞
i=1
⊂ Im(BL1(m)) ⊂ Im(BL1(m))

does not admit any convergent sub-sequence, from what follows that Im(BL1(m))

is not compact and so, Im(BL1(m)) is not relatively compact, what allows us to

conclude that Im is not compact.
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Therefore, if Im : L1(m) −→ H is compact then no strongly m-orthonormal

sequence exists in L2(m).

The following theorem gives a necessary condition -and, in a sense, also

a sufficient condition- for the existence of strongly orthonormal sequences in a

space of functions L2(m) starting from a given m-orthonormal sequence. In

general, it is not possible to find a subsequence satisfying this condition. How-

ever, as the reader will see, it is possible to find a vector measure m∗ satisfying

that L2(m) = L2(m∗) and with respect to which there is a subsequence that

is strongly m∗-orthonormal. We need first the following lemma, which proof is

elementary.

Lemma 2.4.6. Let m : Σ → `2 be a vector measure. Let ϕ : `2 → H be

an isomorphism, where H is a separable Hilbert space, and consider the vector

measure m∗ = ϕ ◦m. Then the spaces L2(m) and L2(m∗) are isomorphic, and

for every f ∈ L2(m),
∫
f2dm∗ = ϕ(

∫
f2dm).

We need the following formal requirement for the elements of the sequence

{fn}∞n=1 in the result below. We say that a function f ∈ L2(m) is normed by

the integral if ‖f‖L2(m) = ‖
∫
f2 dm‖1/2. This happens for instance when the

vector measure is positive —i.e. it has its range in the positive cone of a Banach

lattice—, see [23] or [49, Lemma 3.13]. We impose this condition for the aim

of clarity, although the result could be adapted using a convenient renorming

process in order to avoid this requirement.

Theorem 2.4.7. Let us consider a vector measure m : Σ → `2 and an m-

orthonormal sequence {fn}∞n=1 of functions in L2(m) that are normed by the

integrals. Let {en}∞n=1 be the canonical basis of `2. If

lim
n

〈
ek,

∫
f2
ndm

〉
= 0

for every k ∈ N, then there exists a subsequence {fnk}∞k=1 of {fn}∞n=1 and a

Hilbert space valued measure m∗ : Σ → H such that {fnk}∞k=1 is a strongly

m∗-orthonormal. Moreover, m∗ can be chosen as m∗ = φ◦m for some Banach

space isomorphism φ from `2 onto H.

Proof. Consider an m-orthonormal sequence {fn}∞n=1 in L2(m) and the se-

quence of integrals
{∫

f2
ndm

}∞
n=1

. As an application of Corollary 2.4.3, we
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get a subsequence
{∫

f2
nk
dm
}∞
k=1

that is equivalent to a block basic sequence

{e′nk}
∞
k=1 of the canonical basis of H. Recall that following the notation given

in the Preliminaries αi,j are the constants that appear in the definition of the

block basic sequence. Associated to the block basic sequence obtained there is

an isomorphism ϕ

A := span(e′nk)
H ϕ−→ B := span

(∫
f2
nk
dm

)`2
such that ϕ(e′nk) :=

∫
f2
nk
dm, k ∈ N.

We can suppose without loss of generality that the elements of the sequence

{e′nk}
∞
k=1 have norm one. To see this, it is enough to consider the following in-

equalities. First note that there are positive constants k and K such that for

every n ∈ N, k = k‖
∫
f2
nk
dm‖ ≤ ‖e′nk‖ ≤ K‖

∫
f2
nk
dm‖ = K as a conse-

quence of the existence of the isomorphism ϕ. Let {λi}∞i=1 be a sequence of real

numbers. Then

‖
∞∑
i=1

λi
e′i
‖e′i‖
‖22 =

∞∑
i=1

|λi|2(
∑qi
j=pi
|αi,j |2)

‖e′i‖2
=

∞∑
i=1

qi∑
j=pi

|λi|2|αi,j |2

‖e′i‖2
.

The existence of an upper and a lower bound for the real numbers ‖e′i‖ given

above provides the equivalence between this quantity and

‖
∞∑
i=1

λie
′
i‖22

for every sequence of real numbers {λi}∞i=1.

Since each closed subspace of a Hilbert space is complemented, there is a

subspace Bc such that

`2 = B ⊕2 B
c

isometrically, where this direct sum space is considered as a Hilbert space (with

the adequate Hilbert space norm). We write PB and PBc for the corresponding

projections. Let us consider the linear map φ := ϕ−1⊕ Id, where Id : Bc → Bc

is the identity map.

B ⊕2 B
c φ−→ A⊕2 B

c.

Note that H := A⊕2 B
c is a Hilbert space when the scalar product

〈x+ y, x′ + y′〉H = 〈x, x′〉H + 〈y, y′〉H , x+ y, x′ + y′ ∈ A⊕2 B
c
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is considered. Obviously, φ is an isomorphism. Let us consider also the vector

measure m∗ := φ ◦m,

Σ
m−→ `2

φ−→ A⊕2 B
c.

By Lemma 2.4.6, L2(m) = L2(φ ◦m) = L2(m∗). Let us show that {fnk}∞k=1

is a strongly m∗-orthonormal sequence. We consider the orthonormal sequence

{(e′nk , 0)}∞k=1 in H. The first condition in the definition of strongly orthonormal

sequence is fulfilled, since∫
f2
nk
dm∗ =

∫
f2
nk
d(φ ◦m) = φ

(
PB(

∫
f2
nk
dm), PBc(

∫
f2
nk
dm)

)

=

(
ϕ−1(

∫
f2
nk
dm), 0

)
= (e′nk , 0)

for every k ∈ N. The second one is given by the following calculations. For

k 6= l,∥∥∥∥∫ fnkfnldm
∗
∥∥∥∥ =

∥∥∥∥∫ fnkfnld(φ ◦m)

∥∥∥∥ =

∥∥∥∥φ(

∫
fnkfnldm)

∥∥∥∥ = ‖φ(0)‖ = 0,

since φ is continuous and {fnk}∞k=1 is a m-orthonormal sequence. Thus∫
fnkfnldm

∗ = 0.

This proof the theorem.

Corollary 2.4.8. Let m :
∑
−→ Υ (Υ a separable Hilbert space) and let

{fn}∞n=1 be an m-orthonormal sequence in L2(m), such that
{∫

Ω
f2
ndm

}∞
n=1

is

weakly null in H. Then there is a subsequence {fnk}∞k=1 and a complete or-

thonormal basis {nj}∞j=1 for Υ, such that {fn(k)}∞k=1 is strongly m-orthonormal

with the basis {nj}∞j=1.

Remark 2.4.9. In a certain sense, the converse of the theorem above also holds.

Take as the vector measure m∗ the measure m itself with values in `2 and

consider the canonical basis {en}∞n=1. Clearly, every strongly m-orthonormal

sequence is m-orthonormal and satisfies the condition limn

〈
ek,
∫
f2
ndm

∗〉 = 0,

since 〈
ek,

∫
f2
ndm

∗
〉

= 〈ek, en〉 = 0, k 6= n.



Chapter 3

The Menchoff-Rademacher
Theorem for L2(m)

One of the key issues that arose in the late XIX, it is when the development of a

Fourier series of a continuous function converges pointwise to the function. The

first result that answered partially this question was given by Dirichlet showing

that if a function has bounded variation then its Fourier series converges point-

wise everywhere to the local average of the function. If we change the summation

method we can obtain the convergence almost everywhere. Later Fejer showed

that if we consider the sums of Cesàro sums instead of the ordinary sums then

the Fourier series of a continuous function converges pointwise everywhere to the

function. Luzin conjectured that the Fourier series of a Lebesgue-measurable

function of L2 converges almost everywhere. Kolmogorov showed an example

of a function in L1 whose Fourier series diverges almost everywhere. Finally

Carleson proved the conjecture of Luzin in 1966. In this section we analyze

almost everywhere convergence of weak m-orthogonal sequences, and we obtain

a version of a Mechoff-Rademacher Theorem.

Let (Ω,Σ, µ) be a finite measure space, and consider an orthonormal se-

quence {fi}i of real functions in L2(µ) and a sequence of real numbers {ai}i. The

Menchoff-Rademacher Theorem (see [45, 46, 51]) is the main result concerning

39
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µ-almost everywhere convergence of the norm convergent series
∑∞
i=1 aifi, and

establishes that it converges µ-a.e. if
∑∞
i=1 |ai|2log2(i + 1) < ∞. Although for

particular (even complete) orthonormal sequences this result can be improved

(for instance, it is enough that
∑∞
i=1 |ai|2 < ∞ for the Haar and the trigono-

metric sequences, see 1.6.1 in [1] and [11]), it is optimal if we consider any

orthonormal sequence.

In this chapter we prove a Menchoff-Rademacher type theorem on almost

everywhere convergence of series in L2(m) and we analyze some particular

cases regarding c0-sums of Lebesgue spaces. Although several properties and

applications of orthogonal series with respect to a vector measure are known

([35, 36, 48]), the question of the almost everywhere convergence of series de-

fined by such functions has not been studied yet. Following this research and

as an application of the criterion for weak orthogonality, the results that we

present provide also reasonable answers to the problems concerning almost ev-

erywhere convergence of (strongly orthogonal) series that appear in [48, 59].

From the methodological point of view, we follow the technique that is used in

[64] to study the almost everywhere convergence of series. In Section III.H of

this book it is shown that there exists a deep link between the evaluation of

2-summing norms for a special class of operators between sequence spaces and

the problems concerning almost everywhere convergence of series; the origin of

this idea can be already found in [6, Section 4] (see also [50]). Recently, related

techniques have been used in [14, 20, 21], for instance for proving generaliza-

tions of the Menchoff-Rademacher Theorem for vector valued Banach function

spaces ([21]). We explain the required version of this argument for our work

in the proof of Theorem 3.2.2 and we establish the requirements for obtain-

ing the almost everywhere convergence of series defined by weak orthogonal

sequences. Finally, we provide a technique to construct non trivial examples of

weak m-orthogonal sequences {fi}∞i=0 in particular Banach lattices such that

the requirement
∑∞
i=1 a

2
i <∞ on the sequence of scalar coefficients implies the

a.e. convergence of the series
∑∞
i=1 aifi.
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3.1 About almost everywhere convergence of se-
quences in L2(m)

Let (Ω,Σ) be a measureble space, X a Banach lattice and m : Σ→ X a vector

measure. Let us establish first some general results on m−a.e. convergence

of sequences in L2(m). Throughout this section {fn}n will be a sequence of

measurable functions of integrable square with respect to a vector measure m.

Definition 3.1.1. Given a function f ∈ L2(m), we define the set

En(α) = {ω ∈ Ω :| fn(ω)− f(ω) |≥ α}. (3.1.1)

The sequence {fn}∞n=1 is said to convergence in vector measure m to f if

lim
n→∞

‖m ‖ (En(α)) = 0 (3.1.2)

for each α. Since m is a positive vector measure, the condition (3.1.2) is equiv-

alent to the following expression

lim
n→∞

‖m(En(α)) ‖X= 0.

The following two results can be found in Section 7 [5] for scalar measures.

Lemma 3.1.2. Let {fn}∞n=1 be a sequence of measurable real-valued functions

which converge to a measurable function f in L2(m), then {fn}∞n=1 converges

to f in vector measure m.

Proof. Since the inequalities

‖fn−f‖L2(m) ≥ ‖(fn−f)χEn(α)‖L2(m) ≥ ‖αχEn(α)‖L2(m) = |α|‖m‖
(
En(α)

)1/2
.

hold for any constant K and it is clear that if fn → f in L2(m) then the last

term converges to 0.

The above result can be obtained immediately if we apply the following

implications. Let µ be a Rybakov measure. Then

• fn → f in vector measure m if and only if fn → f in µ measure.

• If fn → f in L2(m) then fn → f in L2(µ).
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Definition 3.1.3. The sequence {fn}∞n=1 of measurable real-valued functions

converges m-almost everywhere to a measurable function f if there exists a set

M in Ω with ‖m‖(M) = 0, such that for every ε > 0 and ω ∈ Ω−M there exists

a natural number N(ε, ω) such that if n ≥ N(ε, ω) then | fn(ω)− f(ω) |< ε.

Proposition 3.1.4. Let {fn}∞n=1 be a sequence of real-valued measurable func-

tions such that converges to a measurable function f in the norm of L2(m).

Then there is a subsequence which converges m-almost everywhere to f .

Proof. By Lemma 3.1.6 we have that if {fn}∞n=1 converge to a measurable

function f in the norm of L2(m) then {fn}∞n=1 converges to f in vector measure

m. Now we proof that there exists a subsequence that converges m-almost

everywhere to f . Select a subsequence {fnk} of {fn} such that the set

Ek = {ω ∈ Ω :| fnk(ω)− f(ω) |≥ 2−k}

satisfies ‖m‖(Ek) < 2−k. Let Fk =
⋃∞
j=k Ej so that Fk ∈ Σ then

‖m‖(Fk) = ‖m‖(
∞⋃
j=k

Ej) ≤
∞∑
j=k

‖m‖(Ej) ≤
∞∑
j=k

2−j = 2−(k−1).

If i ≥ k and ω is not into Fk then |fni(ω) − f(ω)| ≤ 2−k. Let F =
⋂∞
k=1 Fk.

Then ‖m‖(F ) = 0. From the argument just given it follows that {fnk} converges

m-almost everywhere to the measurable real-valued function f .

In what follows we analyze some properties of the integrals in the subspaces

generated by m−orthogonal sequences.

Lemma 3.1.5. Let {fi}∞i=1 be an m−orthonormal sequence. For all I0 ⊂ N and

(λi)i∈I0 ⊂ R such that g =
∑
i∈I0 λifi converges in L2(m), then

∫
gfjdm = 0

if j ∈ N\I0

Proposition 3.1.6. Let Y (ν) be a Banach function space, m : Σ → Y (ν) a

positive vector measure and {fi}∞i=1 a m−orthogonal sequence and let f0 be a

measurable function such that f0 ∈ L2(m). Then if ‖ f0 −
∑n
i=1 λifi ‖L2(m)

converges to 0 we have:

(1)
∫

(
∑n
i=1 λ

2
i f

2
i )dm is an increasing positive sequence that converges to∫

f2
0 dm in norm and so ν−almost everywhere.
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(2)
∫

(
∑n
i=1 λifi − f0)2dm is a decreasing positive sequence that converges 0

in norm and so ν−almost everywhere.

(3)
∫ ∑n

i=1 λifidm converges to
∫
f0dm ν−almost everywhere.

Proof. We suppose that ‖ f0 −
∑n
i=1 λifi ‖L2(m) converges to 0. Then∫

|
n∑
i=1

λifi − f0 |2 dm =

∫
(

n∑
i=1

λifi − f0)2dm

=

n∑
i=1

∫
λ2
i f

2
i dm +

∫
f2

0 dm− 2
n∑
i=1

λi

∫
fif0dm

=

n∑
i=1

∫
λ2
i f

2
i dm +

∫
f2

0 dm

−2

n∑
i=1

λi

∫
fi(

n∑
k=1

λkfk)dm− 2

n∑
i=1

λi

∫
fi(

∞∑
k=n+1

λkfk)dm

=

n∑
i=1

∫
λ2
i f

2
i dm +

∫
f2

0 dm− 2

n∑
i=1

∫
λ2
i f

2
i dm

=

∫
f2

0 dm−
n∑
i=1

λ2
i

∫
f2
i dm.

Hence, we have that
{∑n

i=1 λ
2
i

∫
f2
i dm

}
n

is an increasing sequence that con-

verges to
∫
f2

0 dm in norm and so ν−almost everywhere, and also we have that

(2) holds. In order to prove (3), recall that if T : X(ν)→ Y (ν) is a positive op-

erator between Banach function spaces, we always have that if 0 ≤ f, g ∈ X(µ),

f · g ∈ X(µ) then T (f · g) ≤ T (f2)1/2 · T (g2)1/2. Since the integration operator

with respect to m is positive, just consider the (pointwise) inequalities

(

∫
(f0 −

n∑
i=1

λifi)
2dm)

1
2 (m(Ω))

1
2 ≥|

∫
(f0 −

n∑
i=1

λifi)dm |

=|
∫
f0dm−

∫
(

n∑
i=1

λifi)dm |

so the sequence
{∫ ∑n

i=1 λifidm
}
n

converges ν−almost everywhere to
∫
f0dm.

Remark 3.1.7. Let Y (ν) be a Banach function space, m : Σ→ Y (ν) a vector

measure and and {fi}∞i=1 a m−orthogonal sequence and let f0 be a measurable

function such that f0 ∈ L2(m). If we consider an m−orthogonal subsequence

{fik}k of {fi}i such that ‖ f0 −
∑n
i=1 λifik ‖L2(m) converges to 0 then the

Proposition 3.1.6 holds.
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3.2 The Menchoff-Rademacher Theorem for
weak m-orthogonal sequences

In this section we study the almost everywhere convergence of functional series

defined by (real valued) functions that are weak m-orthogonal for a vector

measure m. The vector measure is supposed to be positive through all the

chapter. We develop a technique for generalizing the arguments that prove the

Menchoff-Rademacher Theorem to our setting (see [64, III.H.22] for the scalar

measure case). It provides the adequate elements for proving more specialized

versions of this theorem depending on the properties of the space where the

vector measure is defined. Let m : Σ → X be a positive vector measure over

(Ω,Σ). Our aim is to obtain conditions on a weak m-orthogonal sequence

{fi}i and a sequence of real numbers {ai}i to assure 〈m, x′〉-almost everywhere

convergence of the series
∑∞
i=1 aifi for a certain x′ ∈ (X ′)+

m.

Let x′ ∈ (X ′)+
m. Let {fi}i be a sequence that is orthogonal with respect to

〈m, x′〉. Consider Banach sequence space L over the standard measure space on

N with canonical (normalized) basis {ei}i. If s is a natural number, we write

Φs for the function Φs : Ω→ L given by the formula

Φs(ω) :=

s∑
i=1

fi(ω)ei, ω ∈ Ω.

Note that this function belongs to the Bochner space L2(〈m, x′〉, L) for every

x′ ∈ (X ′)+
m, since fi ∈ L2(m) for every i ∈ N can be considered as a (class of)

function(s) of L2(〈m, x′〉).

Definition 3.2.1. Consider a Banach sequence space L and a sequence of real

numbers a := {ai}i. We denote by σa,L the operator σa,L : L→ `∞ given by

σa,L((λi)i) :=

{
(

n∑
i=1

aiλi)

}∞
n=1

, {λi}i ∈ L,

if it is well defined and continuous. We also write σNa,L for the operator σNa,L :

L→ `∞ defined as σa(N),L, where a(N)i = ai for every i ≥ N , and 0 otherwise.

Theorem 3.2.2. Let x′ ∈ BX′ ∩ (X ′)+
m. Consider a sequence of real numbers

a = {ai}∞i=1 and a sequence {fi}∞i=1 ∈ L2(m) that is orthogonal with respect to



3.2 The Menchoff-Rademacher Theorem for
weak m-orthogonal sequences 45

〈m, x′〉. Let L be a 2-concave sequence space and let M be a sequence space such

that (L′)[2] = M ′. Suppose that

(1) there is a constant K such that ‖{〈
∫
f2
i dm, x′〉}si=1‖M < K for every s ∈ N

and

(2) the operators σNa,L : L→ `∞ are 2-summing and limN→∞ π2(σNa,L) = 0.

Then the series
∑∞
i=1 aifi converges 〈m, x′〉-a.e.

Proof. First we prove the following claim: Let Y be a Banach space and let

T : L→ Y be a 2-summing operator, then for every natural number s,

‖TΦs‖L2(〈m,x′ 〉,Y ) ≤ π2(T )‖{〈
∫
f2
i dm, x

′
〉}si=1‖

1
2

M .

To prove this, first note that the elements of the space (L′)[2] are sequences

τ = {τi}i that satisfy that there is a sequence z′ = {z′i}i ∈ L′ such that for

every i ∈ N, |z′i|2 = |τi|. Since L′ is 2-convex (see [42, Proposition 1.d.4(iii)]),

(L′)[2] is a Banach space with norm ‖τ‖(L′)[2]
:= ‖{τi}i‖(L′)[2]

= ‖(|τi|1/2)i‖2L′
(recall that we assume for simplicity that the 2-concavity constant of L is 1 and

then the 2-convexity constant of L′ also equals 1; see [18] and [42, Proposition

1.d.4(iii)]). Since T is 2-summing, a direct calculation (see [64, Proposition

III.F.33,b)]) gives

‖TΦs‖2L2(〈m,x′〉,Y ) ≤ π
2
2(T ) sup

z′∈BL′

∫
|〈Φs(ω), z′〉|2d〈m, x′〉.

Since {fi}i is orthogonal with respect to 〈m, x′〉, the inequality above can be

written as

‖TΦs‖2L2(〈m,x′〉,Y ) ≤ π
2
2(T ) sup

z′∈BL′

s∑
i=1

|z′i|2
∫
f2
i d〈m, x′〉;

all the integrals in this expression are positive, so we also obtain

sup
z′∈BL′

s∑
i=1

|z′i|2
∫
f2
i d〈m, x′〉 = sup

τ∈B(L′)[2]

s∑
i=1

|τi|
∫
f2
i d〈m, x′〉

= ‖(〈
∫
f2
i dm, x′〉)si=1‖M < K.

This gives the desired inequality and proves the claim.

Now we just need to show that the requirements for the operators σNa,L
are enough to apply an standard almost everywhere convergence criterion (see
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for instance [64, III.H.22]). A direct calculation shows that for each natural

numbers N and s, consider the function gN,s : Ω→ [0,∞) defined by

gN,s(ω) =
∥∥σNa,L(Φs(ω)

)∥∥
∞ = max

n=N,...,s

∣∣∣ n∑
i=N

aifi(ω)
∣∣∣.

Applying the claim for T = σNa,L we have that

‖gN,s‖L2(〈m,x′〉) = ‖σNa,LΦs‖L2(〈m,x′〉,`∞) ≤ π2(σNa,L)K1/2.

Fixing N , the sequence {g2
N,s}s increases to h2

N where

hN (ω) = sup
n≥N

∣∣∣ n∑
i=N

aifi(ω)
∣∣∣.

Then, the monotone convergence theorem gives∫
h2
Nd〈m, x′〉 = lim

s→∞

∫
g2
N,sd〈m, x′〉 ≤ π2

2(σNa,L)K

and so hN ∈ L2(〈m, x′〉) with ‖hN‖L2(〈m,x′〉) ≤ π2(σNa,L)K1/2. Thus, condi-

tion (2) in the statement of the theorem implies that the sequence {hN}∞N=1

converges to 0 in L2(〈m, x′〉), and then there is a subsequence that converges

〈m, x′〉-a.e. to 0. This clearly implies that the sequence itself converges 〈m, x′〉-
a.e. to 0 since it is decreasing. Hence, for 〈m, x′〉-a.e. every ω ∈ Ω and ε > 0

there is a natural number R such that for every N ≥ R,

|
N∑
i=1

aifi(ω)−
R−1∑
i=1

aifi(ω)| ≤ sup
n≥R
|
n∑
i=R

aifi(ω)| = hR(ω) < ε

and then the series
∑∞
i=1 aifi(ω) converges 〈m, x′〉-a.e.

Note that the almost everywhere convergence with respect to a measure

defined by a positive element x′ do not provide m-almost everywhere conver-

gence, since such measures are not in general Rybakov measures. This means

that such a measure can have more null sets in the σ-algebra Σ.

Remark 3.2.3. The requirements on L in Theorem 3.2.2 show that the problem

of the almost everywhere convergence of weak m-orthogonal series is closely

related to the calculus of estimates of 2-summing norms for the operators σNa,L :

L→ `∞ for suitable sequence spaces L. The canonical examples of such spaces

are sequence spaces that satisfy that the inclusions `1 ⊆ L ⊆ `2 are well defined
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and continuous; take L = `p for 1 ≤ p ≤ 2. Then (L′)[2] = (`p
′
)[2] = `p

′/2. If we

consider 1 ≤ q ≤ ∞ such that 1/q = 1/p − 1/p′, then the space M satisfying

M ′ = ((`p)′)[2] is `q (c0 if p = 2). In the following section we develop the case

p = 1, for which (L′)[2] = (`∞)[2] = `∞, and then M = `1.

Let us finish this section by giving two estimates for these norms (we give

the estimates for σa,L, the ones for σNa,L are obtained with the same arguments).

Note that a direct application of the following inequalities to Theorem 3.2.2

provides formulas involving the sequence ”a” that can be directly computed.

(1) The first one comes from an application of Grothendieck´s Theorem and

can be used for the case of operators σa,`1 : `1 → `∞ that are still contin-

uous when defined as σa,`2 : `2 → `∞. Consider a sequence a ∈ `2. In this

case we can write a factorization of σa,`1 as σa,`2 ◦ id, where id : `1 → `2 is

the inclusion map. This map is 1-summing (see for instance 17.14 in [19]),

which implies that it is also 2-summing, and thus σa,`1 is so. Moreover,

π2(σa,`1) ≤ π2(id)‖σa,`2‖`1 ≤ (

∞∑
i=1

a2
i )

1
2 ,

(see e.g Exercise 11.5 in [19] for the estimate of π2(id)). Of course, the

same argument can be used for general σa,L : L → `∞ whenever it can

be factored through id : `1 → `2. This estimate gives the following result:

If {fi}i ⊂ L2(m) is orthogonal with respect to 〈m, x′〉 for some x′ ∈
BX′ ∩ (X ′)+

m and (
∫
f2
i d〈m, x′〉)i ∈ `1, then

∑
i≥1 aifi converges 〈m, x′〉-

a.e. for all {ai}i ∈ `2.

(2) For the second one the argument is similar, but using the fact that the

operator σb,`1 is integral —we write ι(T ) for the integral norm of an op-

erator T—, where b = {1/log(i + 1)}i (see the reference to the Bennet-

Maurey-Nahoum Theorem in [20, Section 4], and [19] for the definition and

properties of integral operators). Suppose that the sequence ”a” satisfies

that

‖{ailog(i+ 1)}i‖L′ <∞.

This requirement is the natural generalization of the Menchoff-Rademacher

condition for a.e. convergence. We can obtain the factorization through

`1 given by σa,L = σb,`1 ◦Dc, where Dc is the diagonal operator defined
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by the sequence ci = ailog(i+ 1), since

π2(σa,L) ≤ ι(σa,L) ≤ ι(σb,`1)‖Dc‖ ≤ ι(σb,`1)‖{ailog(i+ 1)}i‖L′ .

The same factorization can be used for every sequence b such that σb,`1

is 2-summing. This estimate gives the following result: If {fi}i ⊂ L2(m)

is orthogonal with respect to 〈m, x′〉 for some x′ ∈ BX′ ∩ (X ′)+
m and

{
∫
f2
i d〈m, x′〉}i ∈ `r for 1 < r ≤ ∞, then

∑
i≥1 aifi converges 〈m, x′〉-a.e.

for all {ai}i ⊂ R such that
(
ai log(i+ 1)

)
∈ `q for q = 2r

r−1 .

The following results combine Theorem 2.2.3, Theorem 3.2.2 and the remark

above to give several criteria for 〈m, x′〉-a.e. convergence of sequences in L2(m).

Corollary 3.2.4. Let {fi}∞i=1 be a sequence in L2(m). Let L be a 2-concave

sequence space and let M be a sequence space such that (L′)[2] = M ′. Let ∆ =

{εi}i a sequence such that {εi}si=1 ∈ M for all s ∈ N with sups ‖{εi}∞i=1‖ < ∞
and let a = {ai}i be a sequence of real numbers, let BS,∆ be the convex weak*

compact subset (see 2.2.1 for definition) and suppose that

(1) the operators σNa,L : L → `∞ are 2-summing and limN→∞ π2(σNa,L) = 0

and

(2) for every finite sequence of non negative real numbers {γk}k such that∑
k γk = 1, indexes ik, jk ∈ N, ik 6= jk, and θk ∈ {−1, 1},

〈(γk), (εik + εjk)〉 ≤ ‖〈(γk), (ϕik,jk,θk)〉‖BS,∆ .

Then there is an element x′ ∈ X ′ such that the sequence
{

fi√
εi

}
i

is orthonormal

in L2(〈m, x′〉) and the series
∑∞
i=1 aifi converges 〈m, x′〉-a.e.

The same result can be written in terms of the properties of the sequence

of the integrals.

Corollary 3.2.5. Let {fi}∞i=1 be a sequence in L2(m) such that {‖
∫
f2
i dm‖}si=1 ∈

M for all s ∈ N with sups ‖{‖
∫
f2
i dm‖}∞i=1‖ < ∞. Let L be a 2-concave se-

quence space and let M be a sequence space such that (L′)[2] = M ′. Let a = {ai}i
be a sequence of real numbers and suppose that

(1) the operators σNa,L : L → `∞ are 2-summing and limN→∞ π2(σNa,L) = 0

and
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(2) there exists ∆ = {εi}i such for every finite sequence of non negative real

numbers {γk}k such that
∑
k γk = 1, indexes ik, jk ∈ N, ik 6= jk, and

θk ∈ {−1, 1},

〈(γk), (εik + εjk)〉 ≤ ‖〈(γk), (ϕik,jk,θk)〉‖BS,∆ .

Then there is an element x′ ∈ X ′ such that the sequence
{

fi√
εi

}
i

is orthonormal

in L2(〈m, x′〉) and the series
∑∞
i=1 aifi converges 〈m, x′〉-a.e.

Example 3.2.6. (1) For the case of `1-valued measures and L = `2, we ob-

tain using Remark 2.2.4 that the result is similar to the one that holds

for scalar measures. Let m : Σ → `1 be a positive vector measure and

consider a sequence {fi}i ⊆ L2(m) of norm one functions. Let a = {ai}i
be a sequence of real numbers and suppose that

(a) the operators σNa,`2 : `2 → `∞ are 2-summing and limN→∞ π2(σNa,`2) =

0, and

(b)
√

2 ≤ ‖fi + θfj‖L2(m) for all i, j ∈ N, i 6= j, and θ ∈ {−1, 1}.

Then Corollary 3.2.5 gives an element x′ ∈ `∞ such that the sequence {fi}i
is orthonormal in L2(〈m, x′〉) and the series

∑∞
i=1 aifi converges 〈m, x′〉-

a.e. For example, a direct calculation shows that for x′ = (1, 1, 1, ...), the

result holds.

(2) Let us show an application regarding Example 2.2.5 also for L = `2.

Let {ei}i be the canonical basic sequence in `∞ and take an `∞ valued

(countably additive) positive vector measure ν, a sequence of functions

{fi}i ∈ L2(m) such that
∫
f2
i d〈ν, ej〉 = 1 for every i, j ∈ N and a sequence

a = {ai}i such that the operators σNa,`2 : `2 → `∞ are 2-summing with

limN→∞ π2(σNa,`2) = 0. Assume also that for every finite sequence of non

negative real numbers {γk}k such that
∑
k γk = 1, indexes ik, jk ∈ N,

ik 6= jk, and θk ∈ {−1, 1},

2 ≤ sup
i

∣∣ ∫ ∑
k

γk(fik + θkfjk)2d〈ν, ei〉
∣∣.

Then by Corollary 3.2.5 there is an element x′ ∈ (`∞)′ such that the se-

quence {fi}i is orthonormal in L2(〈m, x′〉) and the series
∑∞
i=1 aifi con-

verges 〈m, x′〉-a.e.
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3.3 Almost everywhere convergence in c0-sums
of L2(µ) spaces

In this section we use the representation of `−sums of L2-spaces as spaces L2(m)

for a suitable m to apply our results. In particular, we develop the case of c0-

sums of L2-spaces.

Let be (Ω,Σ, µ) a finite measure space and consider a disjoint partition

{Ei}i ⊂ Σ of Ω. Consider the sequence space c0. We define a countably additive

vector measure n : Σ→ c0 by

n(E) :=

∞∑
i=1

µ(E ∩ Ei)ei,

where ei is the canonical basis of c0.

Let µi = µ |Ei be the restriction of µ to the subset Ei. We will denote

by ⊕c0L2(µi) the space of (classes of µ-a.e. equal) measurable functions f such

that

(1) fχEi ∈ L2(µi), and

(2) (‖ fχEi ‖L2(µi))
∞
i=1 ∈ c0.

The (lattice) norm for this space is given by

‖f‖⊕c0L2(µi) := sup
i
‖fχEi‖L2(µi), f ∈ ⊕c0L2(µi).

The following result shows that we can identify the spaces L2(n) and ⊕c0L2(µi);

for related examples, see [35, Example 4], [48, Example 8], [49, Example 6.47],

and [59, Example 10].

Proposition 3.3.1. The natural identification map between L2(n) and ⊕c0L2(µi)

is an order isometry.

Proof. Let f ∈ L2(n). Then f2 ∈ L1(n) and so f2χEi ∈ L1(µi) and
∫
f2dn =

(
∫
Ei
f2dµi)i ∈ c0. That is, fχEi ∈ L2(µi) and (‖fχEi‖L2(µi))i ∈ c0 since∫

Ei
f2dµi = ‖fχEi‖2L2(µi)

. Hence, f ∈ ⊕c0L2(µi) with

‖f‖2⊕c0L2(µi)
= sup

i
‖fχEi‖2L2(µi)

=
∥∥∥∫ f2dn

∥∥∥
c0

= ‖f2‖L1(n) = ‖f‖2L2(n).
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Therefore, L2(n) ⊂ ⊕c0L2(µi) and the containment is an isometry.

Let now f ∈ ⊕c0L2(µi). For every x′ = {λi}i ∈ `1 = c′0 we have that

〈n, x′〉(A) =
∑
i λiµ(A ∩ Ei). Then, 〈n, x′〉 = λiµi and |〈n, x′〉| = |λi|µi on Ei.

Hence, ∫
f2d|〈n, x′〉| =

∑
i

∫
Ei

f2d|〈n, x′〉| =
∑
i

|λi|
∫
Ei

f2dµi

≤ ‖x′‖`1 sup
i
‖fiχEi‖2L2(µi)

= ‖x′‖`1‖f‖2⊕c0L2(µi)
<∞

and so f2 ∈ L1(〈n, x′〉). Moreover, {
∫
A∩Ei f

2dµi}i ∈ c0 is such that〈
x′,
(∫

A∩Ei
f2dµi

)
i

〉
=
∑
i

λi

∫
A∩Ei

f2dµi =

∑
i

∫
A∩Ei

f2d〈n, x′〉 =

∫
A

f2d〈n, x′〉,

so f2 ∈ L1(n) with
∫
A
f2dn = {

∫
A∩Ei f

2dµi}i. Then, f ∈ L2(n).

The proofs of the following corollaries are straightforward applications of

Theorem 2.2.3, Theorem 3.2.2 with M = L = `1 and Remark 3.2.3 (1).

Corollary 3.3.2. Let X(µ) = ⊕c0L2(µi) be the c0−sum of the spaces L2(µi),

i ∈ N. Let {ai}i ∈ `2, and assume that there exists an element x′ ∈ (`1)+ such

that {fi}∞i=1 is orthogonal with respect to 〈n, x′〉. If ‖(〈
∫
f2
i dn, x

′〉)∞i=1 ‖`1<∞,
then

∑∞
i=1 aifi converges 〈n, x′〉-a.e.

Corollary 3.3.3. Let X(µ) = ⊕c0L2(µi) be the c0−sum of the spaces L2(µi),

i ∈ N. Let ({ai}i ∈ `2, and assume that there is a sequence of positive real

numbers ∆ = {εi} ∈ (`1)+ satisfying the inequalities in (1) of Theorem 2.2.3

for the vector measure n. Then there is a sequence 0 ≤ x′ ∈ B`1 such that {fi}i
is orthogonal with respect to 〈n, x′〉 and

∑∞
i=1 aifi converges 〈n, x′〉-a.e.

Let us finish the section with a particular example of a sequence that sat-

isfies these corollaries.

Example 3.3.4. Let ([0, 1],Σ, µ) be the Lebesgue measure space. We consider

the following partition of the interval [0, 1].

E1 = [0,
1

2
], E2 = [

1

2
,

3

4
], E3 = [

3

4
,

7

8
], ..., En = [

2n−1 − 1

2n−1
,

2n − 1

2n
], ... .
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For each i = 1, 2, ..., take a µ|Ei-orthogonal sequence (gji )
∞
j=1 satisfying∫

gji g
k
i dµi =

{
0 if k 6= j

2 if k = j .

Now we define for each n ∈ N the function fn by fn :=
∑∞
k=1 λ

n
kg
n
kχEk , where

the scalar numbers λnk are given by

λnk =

{ 1

2
n−k+1

2

if k < n
1

2
k−n+1

2

if k ≥ n.

Note that fnχEi = λni g
n
i χEi ∈ L2(µi) and ‖fnχEi‖L2(µi) =

√
2|λni | → 0 when

i → ∞, so f ∈ ⊕c0L2(µi) = L2(n). Let α := {αk}∞k=1 = { 1
2k
}∞k=1 ∈ B`1 . It is

easy to see that the sequence {fn}n is orthogonal with respect 〈n, α〉 for any

α ∈ (`1)+
n . Taking α =

{
1
2k

}
k
, we have that

∑
n≥1

∫
f2
nd〈n, α〉 =

∑
n≥1

〈
∫
f2
ndn, α〉 =

∑
n≥1

∑
k≥1

1

2k

∫
Ek

f2
ndµk

=
∑
n≥1

∑
k≥1

(λnk )2

2k

∫
Ek

(gnk )2dµk =
∑
n≥1

∑
k≥1

(λnk )2

2k−1

=
∑
n≥1

n−1∑
k=1

1

2n
+
∑
n≥1

∑
k≥n

2n

22k
<∞,

Thus, ‖(〈
∫
f2
ndn, α〉)‖`1 is bounded. Remark 3.2.3 (1) provides the required

condition on {ai}i and so
∑∞
i=1 aifi converges 〈n, α〉-a.e.



Chapter 4

Pointwise dependent
Fourier coefficients

This chapter is devoted to show a natural application of the vector measure

orthogonality in the setting of function aproximation.

Throughout all the section m : Σ → X will be a Banach space valued

countably additive vector measure. Let g ∈ L2(m). We develop in this section

a formalism to find an approximation to g with respect to a distance defined

using the norm ‖.‖L2(m) by means of products of special sequences of functions

{fi}∞i=1 ⊂ L2(m) and other functions αφi , i ∈ N, whose definition depends

on a Bochner integrable function φ. Essentially the Bochner integrable function

provides a parametrization of a family of measures that are defined as 〈m, x′〉 for

different x′ ∈ X ′. The functions αφi will be called pointwise dependent Fourier

coefficients, since the construction is closely related to the usual way to define

these coefficients in the Hilbert space formalism. However, the series defined in

this way is not given by a linear combination of the elements of an orthonormal

system, since in our case the coefficients of the expansion are also functions.

Thus, we obtain a non linear approximation to the function g. We establish

our functional setting and we obtain our main approximation result (Theorem

4.1.7) giving some examples too. We also present in this section the explicit

53



54 Chapter 4. Pointwise dependent Fourier coefficients

formula for the pointwise dependent Fourier coefficients for the case that the

(parametric) measure is defined by a simple function. The easy representation

of the coefficients that is obtained motivates the results in this section, where

continuity of the pointwise dependent coefficients with respect to the Bochner

norm is analyzed.

Let us introduce first some concepts and notation that will be needed in

this chapter. Let (Ω,Σ, µ) be a finite measure space, and let f : Ω → X be a

vector valued function, where X is a Banach space. We say that f is strongly

µ−measurable if there exists a sequence {ϕn}n of simple functions such that

limn→∞ ‖f(ω)− ϕn(ω)‖X = 0 for µ−almost everywhere ω ∈ Ω. The collection

of all strongly measurable functions from Ω to X is denoted by M(Ω, X). A

strongly µ−measurable function f is Bochner integrable if there is a sequence

{ϕn}n of simple functions such that the real measurable function ‖f − ϕn‖X is

Lebesgue integrable for each n and limn

∫
‖f − ϕn‖Xdµ = 0. The collection of

all Bochner integrable functions L1(µ,X) is a vector subspace of M(Ω, X) and

the Bochner integral acts as a linear operator from this space into X. Now let µ

be a control measure for m that satisfies that L1(m) ⊆ L1(µ). Such a measure

always exists and it can be written as what is called Rybakov measure for m,

i.e. a measure |〈m, x′0〉| for a certain x′0 ∈ X ′ (see [25]). Since each element

x′ ∈ X ′ defines a scalar measure we can consider Bochner integrable functions φ

of the space L1(µ,X ′) that satisfy that 〈m, φ(ω)〉 is a positive measure for each

ω ∈ Ω µ-a.e. The notion of m-orthogonality for sequences of functions becomes

useful to assure the orthogonality of the sequence with respect to every scalar

product defined by each positive measure 〈m, φ(ω)〉, ω ∈ Ω. In fact, this leads to

the definition of the pointwise dependent Fourier coefficients, that are functions

αi : Ω→ R.

4.1 Pointwise dependent Fourier coefficients

In this section we establish the main results concerning approximation of func-

tions. Roughly speaking, we provide the mathematical tools to define parametric

measures by means of Bochner integrable functions, which leads to the defini-
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tion of the pointwise dependent Fourier coefficients and motivates the definition

of the adequate error for our technique. We also compute the coefficients when

the Bochner integrable function that defines the parametric measure is a simple

function. This leads to show how we can compute these coefficients in the gen-

eral case by approximating by the ones that hold in the simple functions case.

Throughout this section (Ω,Σ, µ) will be a finite measure space that controls

the Banach space valued measure m : Σ→ X and L1(m) ⊆ L1(µ).

Let 1 ≤ p < ∞. Let φ : Ω → X be a Bochner integrable function. We use

such kind of individual functions for defining the class of measures that will be

considered in the following sections. We will considered also the space Lp(µ,X)

of classes of Bochner p-integrable functions, that is, functions φ ∈ M(µ,X)

such that
∫

Ω
‖φ(ω)‖pXdµ(ω) <∞. The norm of this space is given by

‖φ‖ :=
(∫

Ω

‖φ(ω)‖pXdµ(ω)
) 1
p

, φ ∈ Lp(µ,X).

Although the functions φ as above will be considered as single functions, for

the approximation results we will use the Bochner norm, so the functions φ

will be considered sometimes as elements of Lp(µ,X), i.e as a representative of

class of functions. For the aim of clarity, we will use sometimes the notation

[φ] to denote the class of φ. The set of (classes of) simple functions is dense in

Lp(µ,X) (see for instance Definition 11.42 in [3, Ch.11]).

Definition 4.1.1. Let X be a Banach space and X ′ its dual space. We say

that a Bochner integrable function φ ∈ L1(µ,X ′) defines a parametric measure

mφ(ω) if the formula

mφ(ω)(A) := 〈m, φ(ω)〉(A), A ∈ Σ

gives a positive measure that controls µ for every ω ∈ Ω.

Note that for a function h ∈ L1(m), the function w 7→
∫

Ω
hdmφ(ω) =

〈
∫
hdm, φ(ω)〉 is measurable, since by hypothesis φ is strongly (and then weak*)

measurable and
∫
hdm ∈ X. This implies in particular that the functions αφi

that appear in the Definition 4.1.2 are measurable. For the Definition 4.1.2

and some purposes of this section it is enough to assume that the function φ is

Gel´fand integrable (see for instance [3, 11.9]). However, for the approximation

procedure that is developed the Bochner integrability is needed.
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Definition 4.1.2. Consider a m-orthogonal sequence {fi}∞i=1 and a Bochner

integrable function φ that defines the parametric measure mφ(ω). For each

i ∈ N , we define the i-th pointwise dependent Fourier coefficient of a function

g ∈ L2(m) as the function αφi : Ω→ R given by

αφi (ω) :=

∫
Ω
gfidmφ(ω)∫

Ω
f2
i dmφ(ω)

.

Definition 4.1.2 makes sense µ-a.e.; in fact, if we have two different Bochner

integrable functions φ1 and φ2 that belong to the same class of L1(µ,X ′), the

coefficients αφ1

i (ω) and αφ2

i (ω) are equal µ-a.e. However, note that these func-

tions are defined pointwise, and will be considered in this way through all the

section.

Definition 4.1.3. Let φ→ X ′ be a Bochner integrable function. We say that a

sequence of measurable functions {βi}∞i=1, βi : Ω→ R, is φ−compatible with the

m-orthogonal sequence {fi}∞i=1 (compatible for short if the function φ is clear in

the context) if the function ω 7→
∑∞
i=1 β

2
i (ω)

( ∫
Ω
f2
i dmφ(ω)

)
is integrable with

respect to µ.

Lemma 4.1.4. Let φ : Ω→ X ′ be a Bochner integrable function that defines a

parametric measure mφ(ω). Let {fi}∞i=1 be a m-orthogonal sequence and consider

a function g ∈ L2(m). Then the corresponding sequence of pointwise dependent

Fourier coefficients {αφi }∞i=1 is φ−compatible with {fi}∞i=1.

Proof. Each function αφi is measurable since it is defined as a quotient of

measurable functions. Recall that g ∈ L2(mφ(ω)) for every ω ∈ Ω. Clearly for

every ω ∈ Ω,
∑∞
i=1 α

φ
i (ω)fi(η) is integrable with respect to the measure mφ(ω)

as a consequence of the definition of the functions αφi and the Hilbert space

structure of L2(mφ(ω)) at each point ω. Fix such an ω ∈ Ω. Bessel´s inequality

gives

∞∑
i=1

|αφi (ω)|2
∫

Ω

f2
i dmφ(ω) =

∞∑
i=1

(
∫

Ω
gfidmφ(ω))

2∫
Ω
f2
i dmφ(ω)

≤ ‖g‖2L2(mφ(ω))
.

The function ω 7→ ‖g‖2L2(mφ(ω))
is measurable. Thus, the computation∥∥∥‖g‖2L2(mφ(ω))

∥∥∥
L1(µ)

=

∫
Ω

|
∫

Ω

g2(η)dmφ(ω)(η)|dµ(ω)

=

∫
Ω

〈
∫

Ω

g2(η)dm(η), φ(ω)〉dµ(ω)
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≤ ‖
∫

Ω

g2(η)dm(η)‖ ·
∫

Ω

‖φ(ω)‖dµ(ω) = ‖g‖2L2(m) · ‖φ‖L1(µ,X′) <∞

finishes the proof.

Lemma 4.1.5. Let φ : Ω → X ′ be a Bochner integrable function. Let {βi}∞i=1

be a sequence of functions that is φ−compatible with the m-orthogonal sequence

{fi}∞i=1 and let g ∈ L2(m). Then the function

ψ(ω) :=

∫
Ω

(
g(η)−

∞∑
i=1

βi(ω)fi(η)
)2
dmφ(ω)(η)

is defined µ-a.e and integrable with respect to µ.

Proof. By the definition of compability we have that

h(ω) =

∞∑
i=1

βi(ω)2

∫
f2
i dmφ(ω) ∈ L1(µ).

Then, h(ω) < ∞ for µ-a.e. ω ∈ Ω and so
∑∞
i=1 βi(ω)fi ∈ L2(mφ(ω)) µ-a.e.

ω ∈ Ω. Hence, ψ is well defined µ-a.e. and

ψ(ω) =
∥∥∥g − ∞∑

i=1

βi(ω)fi

∥∥∥2

L2(mφ(ω))

=

∫
g2dmφ(ω) +

∞∑
i=1

βi(ω)2

∫
f2
i dmφ(ω) − 2

∞∑
i=1

βi(ω)

∫
gfidmφ(ω)

is measurable. Moreover,

ψ(ω)1/2 ≤ ‖g‖L2(mφ(ω)) +
∥∥∥ ∞∑
i=1

βi(ω)fi

∥∥∥
L2(mφ(ω))

∈ L2(µ)

since ω → ‖g‖2L2(mφ(ω))
is in L1(µ) as φ ∈ L1(µ,X ′) (see the proof of Lemma

4.1.4) and ω →
∥∥∥∑∞i=1 βi(ω)fi

∥∥∥2

L2(mφ(ω))
= h(ω) ∈ L1(µ). Then, ψ ∈ L1(µ).

Lemma 4.1.5 allows us to give the following definition.

Definition 4.1.6. Let φ ∈ L1(µ,X ′) be a function that defines a parametric

measure mφ(ω) and let {fi}∞i=1 be a m-orthogonal sequence. Let g ∈ L2(m)

and consider a sequence of functions {βi}∞i=1 which is compatible with {fi}∞i=1.

We define the error ε associated to the function g ∈ L2(m) and the sequence

{βi}∞i=1 by

ε(g, {βi}∞i=1) :=

∫
Ω

(∫
Ω

(
g(η)−

∞∑
i=1

βi(ω)fi(η)
)2
dmφ(ω)(η)

)
dµ(ω).
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The following result is a direct consequence of the definitions and Lemma

4.1.5 and relates the best approximation with respect to the error ε to the

sequence of pointwise dependent Fourier coefficients.

Theorem 4.1.7. Let φ ∈ L1(µ,X ′) be a function that defines a parametric

measure mφ(ω) and let g ∈ L2(m). Let {fi}∞i=1 be a m-orthogonal sequence. If

{βi}∞i=1 is a sequence of functions that is φ−compatible with {fi}∞i=1, then

ε(g, {αφi }
∞
i=1) ≤ ε(g, {βi}∞i=1).

Moreover, ε(g, {αφi }∞i=1) = ε(g, {βi}∞i=1) only in the case that αφi = βi µ-a.e.

Proof. Consider the functions

ψα(ω) := (

∫
Ω

(

∞∑
i=1

αφi (ω)fi(η))2dmφ(ω)(η))
1
2

and

ψβ(ω) := (

∫
Ω

(

∞∑
i=1

βi(ω)fi(η))2dmφ(ω)(η))
1
2

and take a µ-null set A satisfying that ψα and ψβ are defined for the points

ω ∈ Ω \ A. Then, since g ∈ L2(m), we have that g ∈ L2(mφ(ω)) for every

ω ∈ Ω \ A. The Hilbert space structure of the spaces L2(mφ(ω)) gives the

inequalities∫
Ω

(g −
∞∑
i=1

αφi (ω)fi(η))2dmφ(ω)(η) ≤ (

∫
Ω

(g −
∞∑
i=1

βi(ω)fi(η))2dmφ(ω)(η))

for each point ω ∈ Ω\A, since the pointwise dependent Fourier coefficients gives

the best approximation at such ω in each space L2(mφ(ω)). Then the result is

a direct consequence of the lattice properties of L2(µ) (see Section 1 of [42]).

The fact the equality ε(g, {αi}∞i=1) = ε(g, {βi}∞i=1) holds only in the case when

αφi = βi µ− a.e. is a direct consequence of the above proof.

Let φ1 and φ2 be Bochner integrable functions that define parametric mea-

sures mφ1 and mφ2 . Suppose that they satisfy that there is a positive function

k(ω) such that φ1(ω) = k(ω)φ2(ω) µ-a.e.. Then it is clear by the definition of

the pointwise dependent Fourier coefficients that we obtain the equality

αφ1

i (ω) = αφ2

i (ω)

for every ω µ-a.e. This motivates the following definition.
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Definition 4.1.8. We say that a strongly measurable function φ : Ω → X is

pointwise normalized if ‖φ(ω)‖X = 1 for every ω ∈ Ω. We will write C(µ,X)

for the set of all (classes of) these functions. Note that C(µ,X) is included in

all spaces Lp(µ,X), 1 ≤ p ≤ ∞.

Proposition 4.1.9. Let 1 ≤ p < ∞ and let X be a Banach space. The set

C(µ,X) is closed subset in Lp(µ,X), and the set of simple functions

SC(µ,X) = {
m∑
i=1

viχAi : ‖vi‖X = 1, {Ai}mi=1 ⊂ Σ partition of Ω, m ∈ N}

is dense in C(µ,X).

Proof. Consider a sequence {φn}n ⊂ C(µ,X) converging to φ in Lp(µ,X).

Then,

‖φ− φn‖pLp(µ,X) =

∫
Ω

‖φ(ω)− φn(ω)‖pXdµ(ω)

≥
∫

Ω

∣∣‖φ(ω)‖X − ‖φn(ω)‖X
∣∣pdµ(ω)

=

∫
Ω

∣∣‖φ(ω)‖X − 1
∣∣pdµ(ω)

for all n and so
∫

Ω

∣∣‖φ(ω)‖X − 1
∣∣pdµ(ω) = 0. Therefore, ‖φ(ω)‖X = 1 µ-a.e.

ω ∈ Ω.

Now let us show that SC(µ,X) is dense in C(µ,X). Let φ be a function

of C(µ,X). Since the set of all the simple functions is dense in Lp(µ,X), there

is a sequence of simple functions {φn}n converging to φ in Lp(µ,X). We can

assume without loss of generality that ‖φn(ω)‖ 6= 0 for all ω ∈ Ω. Otherwise,

we can take φ′n = φn + x0

n χAn where x0 is a norm one element of X and An =

{ω ∈ Ω : ‖φn(ω)‖ = 0}, and so ‖φ− φ′n‖Lp(µ,X) ≤ ‖φ− φn‖Lp(µ,X) + 1
nµ(Ω)1/p.

Taking ψn(ω) = φn(ω)
‖φn(ω)‖X ∈ SC(µ,X), we have that

‖φ− ψn‖Lp(µ,X) ≤ ‖φ− φn‖Lp(µ,X) +
(∫ ∥∥∥φn(ω)

(
1− 1

‖φn(ω)‖X

)∥∥∥p
X
dµ
)1/p

= ‖φ− φn‖Lp(µ,X) +
(∫ ∣∣‖φn(ω)‖X − 1

∣∣pdµ)1/p

≤ 2‖φ− φn‖Lp(µ,X).
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We can obtain with a direct calculation the expression of the pointwise

dependent Fourier coefficient when the function φ that defines the parametric

measure mφ(ω) is a simple function. If φ(ω) :=
∑m
i=1 x

′
iχAi(ω) and fj is an

element of the m-orthogonal sequence {fi}∞i=1, we obtain

αφj (ω) =

∑m
i=1〈

∫
Ω
gfjdm, x′i〉χAi(ω)∑m

i=1〈
∫

Ω
f2
j dm, x′i〉χAi(ω)

=

m∑
i=1

〈
∫

Ω
gfjdm, x′i〉

〈
∫

Ω
f2
j dm, x′i〉

χAi(ω),

where 〈
∫

Ω
f2
j dm, x′i〉 6= 0 for every i = 1, ...,m since

∫
f2
j dmφ(ω) for all ω and

{Ai}mi=1 is a disjoint sequence. In other case, the corresponding i-th term does

not appear in the sum.

This shows that the calculus of the pointwise dependent Fourier coefficients

is easy when φ is a simple function. On the other hand, Proposition 4.1.9 implies

that we can approximate every normalized function that can be used to define a

parametric measure by means of simple functions of the set SC(µ,X ′). There-

fore, the construction of an approximation procedure depends on the definition

of reasonable conditions to assure the continuity of the pointwise dependent

Fourier coefficients αφi with respect to φ in Lp(µ,X ′) for a certain 1 ≤ p < ∞.

We will establish such conditions in the following section.

Example 4.1.10. (1) Let ([−π, π],Σ, µ) be the Lebesgue measure space and

consider the vector measure m0 : Σ→ `∞ given by

m0(A) :=

{∫
A∩[−π,π]

cos2(kx)dµ

}∞
k=1

.

The measure m0 is clearly countably additive since each integral in A in

the definition is bounded by µ(A). Consider the functions f1(x) = sinx,

f2(x) = sin 2x, ... , fn(x) = sinnx, n > 1. Let us show that this family of

functions defines an m0− orthogonal sequence. For every couple n,m ∈ N
and k ∈ N such that the following expressions are defined, we obtain the

following equalities.

a) If m 6= n, the integral of the product fnfm and the corresponding

weight is given by∫
fnfmdm0 =

{∫ π

−π
sin(nx) sin(mx) cos2(kx)dx

}∞
k=1
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=
{1

8

( sin[(2k −m− n)π]

−2k +m+ n
+

sin[2(m− n)π]

m− n
+

sin[(2k +m− n)π]

2k +m− n

+
sin[(2k −m+ n)π]

2k −m+ n
− 2 sin[(m+ n)π]

m+ n
− sin[(2k +m+ n)π]

2k +m+ n

)}∞
k=1

.

b) For m = n and k 6= n, we get∫
fnfndm0 =

{∫ π

−π
sin2(nx) cos2(kx)dx

}∞
k=1

=
{1

8

(
4π +

2 sin(2kπ)

k
− sin(2(k − n)π)

k − n

−2 sin(2nπ)

n
− sin(2(k + n))π

k + n

)}∞
k=1

.

Notice that the quotients of the expressions above are 0 for some values

n,m, k. Consider now the functions that are given for i, j, r ∈ N, k = 2r,

n = 3i and m = 3j. Define the (countably additive) vector measure

n0(A) := {
∫
A∩[−π,π]

2
π cos2(2rx)dµ}∞r=1. Then, as a consequence of the

calculations written above,

∫
fnfmdn0 = {δnm}∞r=1

Thus, for these values, the sequence {f3i}∞i=1, i ∈ N defines an n0-orthogonal

sequence.

(2) Let us define a parametric measure using the vector measure n0 given

above. Consider the family of sets In = [−π + π
2n , π −

π
2n ] and the basis

{en}n of `1. Let us take the Bochner integrable function φ given by

φ(ω) =
∑
n≥1

χIn\In−1
(ω)en,

It is easy to proof that this function is strongly measurable that is the

limit of the sequence of simple functions φN (ω) :=
∑N
n=1 χIn\In−1

(ω)en,

n ∈ N. Let g(x) = x and compute the corresponding pointwise dependent

Fourier coefficients. For every i ∈ N,

αφi (ω) =
〈
∫

[−π,π]
gfidn0, φ(ω)〉

〈
∫

[−π,π]
f2
i dn0, φ(ω)〉

=
∑
r≥1

(
cos((21+r − 3i)π)

21+r − 3i
− 2 cos(3iπ)

3i
− cos((21+r − 3i)π)

21+r + 3i
)χ[Ir\Ir−1](ω).

Therefore, the function h(ω) :=
∑∞
i=1 α

φ
i (ω) sin(3iω) approximates g.
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4.2 Continuity of the pointwise dependent
Fourier coefficients

Take a vector measure m and a Bocher integrable function φ and a sequence of

simple functions {φn}∞n=1 whose classes converges to [φ] in the Bochner space

L1(µ,X ′) such that each φn defines a parametric measure. In this point we an-

alyze the convergence properties of the pointwise dependent Fourier coefficients

αφni to αφi for a given m-orthogonal sequence {fi}∞i=1 and a function g ∈ L2(m).

Our aim is to show that under the adequate requirements on the functions φn

and φ, the projections
∑∞
i=1 α

φn
i fi converge to

∑∞
i=1 α

φ
i fi in L2(m). Further

assumptions are necessary to obtain the results of this section. It is important

to note that the results of the technique that we present are meaningful even

in the case of finite (even small) sequences of m-orthogonal functions, since the

formulas provide a nonlinear approximation that is completely different to the

usual (Hilbert space) linear approximations. We will show an easy example.

We use that L1(m) ⊆ L1(µ), so the m-orthogonal sequence {fi}∞i=1 belongs to

L2(µ). For instance, this happens in the case when µ is defined as 〈m, x′〉 for a

certain element x′ ∈ X ′. In general, we will assume that the vector measure m

is equivalent to µ.

We use a pointwise boundedness condition for the functions that define a

parametric measure.

Definition 4.2.1. Let ε > 0. We say that a Bochner integrable function φ :

Ω → X ′ that defines a parametric measure mφ(ω) is ε-lower bounded with

respect to {fi}∞i=1 if for every i ∈ N,

ε < 〈
∫

Ω

f2
i dm, φ(ω)〉

µ-a.e.

Lemma 4.2.2. Let g ∈ L2(m) and let φ ∈ L1(µ,X ′) be a Bochner integrable

function that defines a parametric measure mφ(ω) such that φ is ε-lower bounded

with respect to {fi}∞i=1. Then the pointwise dependent Fourier coefficient αφi of

g is square integrable with respect to µ for every i ∈ N. Moreover, {αφi }∞i=1 is a

norm bounded sequence of L2(µ).
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Proof. Let i ∈ N, then

(αφi (ω))2 =
(
∫

Ω
gfidmφ(ω))

2

(
∫

Ω
f2
i dmφ(ω))2

≤
∫

Ω
g2dmφ(ω)

∫
Ω
f2
i dmφ(ω)

(
∫

Ω
f2
i dmφ(ω))2

≤
‖
∫

Ω
g2dm‖‖φ(ω)‖

ε
.

Thus, ∫
Ω

(αφi (ω))2dµ ≤
‖
∫

Ω
g2dm‖
ε

‖φ‖L1(µ,X′).

This inequality and the properties of the Banach function space L2(µ) give the

result.

Theorem 4.2.3. Let g ∈ L2(m). Let ε > 0 and let φ ∈ C(µ,X ′) be a function

such that it defines a parametric measure mφ(ω) and it is ε-lower bounded with

respect to {fi}∞i=1. Let {φn}∞n=1 be a sequence of functions of SC(µ,X ′) such

that it defines a sequence of parametric measures mφn(ω) and that converges to

φ in L2(µ,X ′). Then for every i ∈ N,

lim
n→∞

‖αφi − α
φn
i ‖L2(µ) = 0.

Proof. Let i ∈ N. Then there is a natural number n0 such that for every

n ≥ n0,

ε < 〈
∫

Ω

f2
i dm, φn(ω)〉

µ-a.e. We will simply write {φn}∞n=1 for the subsequence {φn}∞n=n0
. Since µ is

a finite measure, an application of Lemma 4.2.2 gives that αφi , α
φn
i ∈ L2(µ) for

each n ∈ N. Now we define the function

hn(ω) :=
〈
∫

Ω
f2
i dm, φ(ω)〉

〈
∫

Ω
f2
i dm, φn(ω)〉

, ω ∈ Ω,

for every n ∈ N. Then the result is a direct consequence of the following

calculations.

‖αφi − α
φn
i ‖L2(µ)

=

(∫
Ω

(〈
∫

Ω
gfidm, φ(ω)〉 − hn(ω)〈

∫
Ω
gfidm, φn(ω)〉)2

〈
∫

Ω
f2
i dm, φ(ω)〉2

dµ

) 1
2

≤ ‖
∫

Ω

gfidm‖
1

ε

(∫
Ω

‖φ− hnφn‖2dµ
) 1

2
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≤ ‖
∫

Ω

gfidm‖
1

ε

(∫
Ω

‖φ− φn‖2dµ
) 1

2

+‖
∫

Ω

gfidm‖
1

ε

(∫
Ω

(1− hn)2‖φn‖2dµ
) 1

2

≤ ‖
∫

Ω

gfidm‖
1

ε

[(∫
Ω

‖φ− φn‖2dµ
) 1

2

+
1

ε
‖
∫

Ω

f2
i dm‖

(∫
Ω

‖φ− φn‖2dµ
) 1

2

]
.

The previous results show that the set of simple functions is dense in

C(µ,X ′) in all spaces Lp(µ,X ′). Therefore, Theorem 4.2.3 implies that un-

der the assumption that φ is ε-lower bounded with respect to {fi}∞i=1, we can

approximate each Fourier coefficient αφi (i ∈ N) by the sequence {αφni }∞n=1

whenever {φn}∞n=1 is a sequence of simple functions defining a sequence of para-

metric measures mφn(ω) and converging to φ in L2(µ,X ′). In the case that the

m-orthogonal sequence is finite we obtain an approximation calculus under the

assumptions given above.

Definition 4.2.4. Let m ∈ N and consider a finite m-orthogonal sequence

{fi}mi=1. Let φ ∈ C(µ,X ′) be an ε−lower bounded that defines a parametric

measure. Then we define the 1-error for the approximation of a function g ∈
L2(m) by

E1(g, φ) := ‖g −
m∑
i=1

αφi fi‖L1(µ).

Corollary 4.2.5. Let m ∈ N and consider a function φ ∈ C(µ,X ′) that defines

a parametric measure and it is ε-lower bounded with respect to the (finite) m-

orthogonal sequence {fi}mi=1. Let δ > 0. Then there is a simple function φ′ ∈
C(µ,X ′) such that

‖
m∑
i=1

αφi fi −
m∑
i=1

αφ
′

i fi‖L1(µ) ≤ δ

and consequently,

|E1(g, φ)− E1(g, φ′)| ≤ δ.

Proof. We just need to consider the following inequalities and apply Theorem

4.2.3.

‖
m∑
i=1

αφi fi −
m∑
i=1

αφ
′

i fi‖L1(µ) ≤
∫

Ω

(

m∑
i=1

(αφi − α
φ′

i )2)
1
2 (

m∑
i=1

f2
i )

1
2 dµ

≤ (

∫
Ω

m∑
i=1

(αφi − α
φ′

i )2dµ)
1
2 (

∫
Ω

m∑
i=1

f2
i dµ)

1
2 .
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4.3 An example of approximation with finite m-
orthogonal sequences

In this section we develop an easy numerical example in order to show the

nonlinear approximation that can be obtained with our procedure. Let n : Σ→
X be a countably additive vector measure, and let υ be a finite control measure

for n that is equivalent to it and L1(n) ⊆ L1(υ).

Definition 4.3.1. We say that n is υ-simply representable if there is a natural

number m ∈ N and a simple function Ψ(ω) :=
∑m
j=1 xjχAj (ω) such that {Aj :

j = 1, ...,m} defines a (measurable) partition of Ω, {xj : j = 1, ...,m} is a

linearly independent subset of X, and

n(A) =

∫
A

Ψ(ω)dυ(ω) =

m∑
j=1

υ(A ∩Aj)xj , A ∈ Σ.

Note that in this case the integral of a function f ∈ L1(n) can be directly

computed by means of the formula∫
A

fdn =

m∑
j=1

(

∫
A∩Aj

fdυ)xj , A ∈ Σ.

If A ∈ Σ, we denote by L2(A,Σ|A, υ|A) to the function space defined by means

of the restriction of the measure space (Ω,Σ, υ) to A. In particular, we can

consider the functions of L2(υ) as functions of L2(A,Σ|A, υ|A).

Lemma 4.3.2. Let n be a υ-simply representable vector measure and let {fi}∞i=1

be an n-orthogonal sequence. Then this sequence belongs to the space L2(υ) and

is also orthogonal in it. Moreover, it is orthogonal in each space

L2(Aj ,Σ|Aj , υ|Aj ), j = 1, ...,m.

Proof. Since n is simply representable we can find a function Ψ(ω) :=∑m
j=1 xjχAj related to it that satisfies the conditions of Definition 4.3.1. A direct

calculation leads to the equivalence of the norms ‖.‖L2(υ) and ‖.‖L2(n), and then

it is easy to show that L2(n) = L2(υ). Moreover, since the set {xj : j = 1, ...,m}
is linearly independent we can get for each j = 1, ...,m a functional x′j ∈ X ′



66 Chapter 4. Pointwise dependent Fourier coefficients

that satisfies that 〈xj , x′j〉 = τj > 0 and 〈xi, x′j〉 = 0 for every i 6= j. Then, for

every i, j, k = 1, ...,m such that i 6= j we obtain

τk

∫
Ak

fifjdυ = 〈
∫

Ω

fifjdn, x
′
k〉 = 〈0, x′k〉 = 0.

This gives the result.

The following lemma is a direct consequence of Lemma 4.3.2.

Lemma 4.3.3. Let n be a simply representable vector measure by means of

a function Ψ :=
∑m
j=1 xjχAj that satisfies the conditions of Definition 4.3.1.

Let n ∈ N and let {fi}ni=1 be a n-orthogonal sequence. Then the sequence

{fi,j}n,mi=1,j=1 of L2(υ) given by the functions fi,j := fiχAj , i = 1, ..., n, j =

1, ...,m is orthogonal.

Theorem 4.3.4. Let n, Ψ, {fi}ni=1 and {fi,j}n,mi=1,j=1 as in Lemma 4.3.3. Then

there is a Bochner integrable simple function Ψ′ such that for every g ∈ L2(υ)

and every i = 1, ..., n, the corresponding pointwise dependent Fourier coefficient

satisfies the equality

αΨ′

i (ω)fi(ω) =

m∑
j=1

αi,jfi,j(ω),

where the constants αi,j =

∫
Aj

gfidυ∫
Aj

f2
i dυ

are the Fourier coefficients related to the

functions fi,j.

Consequently, the projection of the function g on the subspace of L2(υ)

generated by {fi,j}n,mi=1,j=1 is given by

n∑
i=1

αΨ′

i (ω)fi(ω).

Proof. The function Ψ′ can be defined by means of the functionals x′j that

appear in the proof of Lemma 4.3.2. Using the elements introduced there, we

define

Ψ′(ω) :=

m∑
j=1

x′jχAj (ω).

Now we just need to compute for every index i = 1, ..., n the Fourier coefficient

αΨ′

i (ω) by means of the corresponding straightforward calculation.

αΨ′

i (ω) =
〈
∫

Ω
gfidn,Ψ

′(ω)〉
〈
∫

Ω
f2
i dn,Ψ

′(ω)〉
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=

∑m
j=1 τj(

∫
Aj
gfidυ)χAj∑m

j=1 τj(
∫
Aj
f2
i dυ)χAj

=

m∑
j=1

(

∫
Aj
gfidυ∫

Aj
f2
i dυ

)χAj .

These equalities imply the result.

We finish this section with an example.

Example 4.3.5. Consider the 3-dimensional Euclidean space `32 and the vector

measure n0 : Σ→ `32 given by

n0(A) :=

3∑
j=1

υ0(A ∩ [j − 1, j])ej , A ∈ Σ,

where {ei}3i=1 is the basis of `32 and ([0, 3],Σ, υ0) is the Lebesgue measure space

associated with the interval [0, 3]. It is clear that n0 is a simply representable

vector measure.

We consider the following polynomials. For every x ∈ [0, 3], we define

(1) p1(x) := 1,

(2) p2(x) := 3
2 −

11
2 x+ 9

2x
2 − x3,

(3) p3(x) := 171
175 −

63
5 x+ 393

10 x
2 − 252

5 x3 + 309
10 x

4 − 9x5 + x6.

Figure 4.1 shows the functions of this sequence. A direct calculation shows that

Figure 4.1: The functions of the n0-orthogonal sequence.

it defines a (finite) n0-orthogonal sequence of square n0-integrable functions.
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Let g(x) := 3.5
10x2+1 + 2e(−3(x−1.5)2) be a function of L2(n0). Figure 4.2

shows this function.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gHxL

Figure 4.2: The function g(x) := 3.5
10x2+1 + 2e(−3(x−1.5)2) .

Let us consider different functions φ and compute the corresponding point-

wise dependent Fourier coefficients αφi . It is clear that in this case L2(n0) =

L2(υ0).

Let φ1(x) :=
∑3
j=1 χ[j−1,j](x)ej . This function satisfies the conditions of

Theorem 4.3.4, and then the approximation given by the pointwise dependent

Fourier coefficients

αφ1

i (x) =

3∑
j=1

∫
[j−1,j]

pigdυ0∫
[j−1,j]

p2
i dυ0

χ[j−1,j](x),

i = 1, 2, 3, gives the approximation

h1(x) :=

3∑
i=1

αφ1

i (x)pi(x)

to the function g given by the projection on the subspace of L2(υ0) generated by

the functions pi,j := piχ[j−1,j], i, j = 1, 2, 3. Therefore, note that this function

is not necessarily continuous, since it is a linear combination of noncontinuous

functions (see Figure 4.3).
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Figure 4.3: The function h1(x) :=
∑3
j=1 α

φ1

i pi(x).
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Figure 4.4: The function g(x) and the approximation h1(x) using parametriza-
tion corresponding to φ1(x).
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If we consider the function φ2(x) := χ[0,3]
(e1+e2+e3)√

3
and apply the same

procedure (see Figure 4.5), we obtain a set of coefficients αφ2

i , i = 1, 2, 3, that

are constant functions. In fact, we obtain the coefficients of the standard ap-

proximation on the Hilbert space L2(υ0) by the functions p1, p2 and p3,

h2(x) =

3∑
i=1

αφ2

i pi(x) = 1.22283p1(x) + 0.735055p2(x) + 0.104471p3(x).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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1.0

<Φ2,e3>

<Φ2,e2>

<Φ2,e1>

Figure 4.5: The graph of the projections of the function φ2(x). All of them
coincides.
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Figure 4.6: The function h2(x) :=
∑3
j=1 α

φ1

i pi(x).

We can obtain a continuous function that approximate g and is close to

h1(x) just by applying the results of the previous point. Consider the function

ψ(x) :=

3∑
j=1

exp(−(
x− (j − 1

2 )

0.4
)2)ej ,
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and define the function (see Figure 4.7)

φ3(x) :=
ψ(x)

‖ψ(x)‖
, x ∈ [0, 3].

In this case, the pointwise dependent Fourier coefficients that give the ap-

proximation h3(x) =
∑3
i=1 α

φ3

i (x)pi(x) are

αφ3

i (x) =

∑3
j=1(

∫
[j−1,j]

pigdυ0)exp(−(
x−(j− 1

2 )

0.4 )2)∑3
j=1(

∫
[j−1,j]

p2
i dυ0)exp(−(

x−(j− 1
2 )

0.4 )2)
, i = 1, 2, 3.
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Figure 4.7: The graph of the projections of function φ3(x).

Figure 4.8 shows g(x) and the approximation h3(x) that is continuous by

the construction.
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Figure 4.8: The function g(x) and the approximations h3(x) using parametriza-
tion corresponding to φ3(x).

The results on the continuity of the pointwise dependent Fourier coefficients

can be applied to obtain the corresponding errors of this kind of approximation.
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If φ, φ′ ∈ L1(υ,X ′) satisfy that there is an ε > 0 such that both φ and φ′ are

ε-lower bounded with respect to the corresponding n-orthogonal sequence (as in

the case of the example), we can obtain bounds for the distances ‖αφi −α
φ′

i ‖L2(υ),

in terms of ‖φ−φ′‖L1(υ,X′) following the technique given in the proof of Theorem

4.2.3. Therefore, we can also obtain a bound for the L1(υ)-norm of the difference

between the approximations associated to the corresponding functions φ and φ′,

the 1-errors E1(g, φ) and E1(g, φ′) and a bound for the difference between them

using the procedure given in the proof of Corollary 4.2.5.

Remark 4.3.6. As a concluding remark, we want to point out that Figure 4.8

tries to show that our approach is fundamentally different from the classical one.

This procedure —that weights every function fi with a Fourier coefficient that

depends on the parametrized measure and it is in fact a function itself depend-

ing also on the variable— produces a non-linear approximation of the original

function g. That is, consider that our function g is the result of sampling a

signal during an interval of time with length ∆T (in the precedent example, the

interval is [0, 3], i. e., ∆T = 3. Then we choose functions fi (in the example

{p1(x), p2(x), p3(x)}) according with the shape of g and we can produce the two

approximations showed in the example. Suppose that these three functions are

so suitable in shape that the Hilbert space approximation is very good. Now

we sample again the signal and we obtain a new function g. If we are interested

in keeping the same functions fi, it is not guaranteed that the shape of them is

suitable for this new approximation of g. In fact, Hilbert’s approximation can

be very bad. In our approach, parametrized Fourier coefficients avoid this and

allow to keep the same bases of functions during iterative approximations. Con-

sequently, our procedure is a natural framework for a dynamic approximation

of functions depending on one parameter for example the time. In the following

section, we show how this technique can be applied to a real problem.

4.4 Application to acoustic data

In the previous sections we have developed our approximation considering a

function g that mimics the true signals in some applied areas as it can be

Physics. In this section we are going to present an analysis of a true signal

coming from the field of Acoustics. In order to be consistent we are going to
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use the same sequence of functions that in the previous section. We will see

that our technique is so flexible that functions that are not adequate “a priori

”because its shape does not fit the shape of the signal, can be used in our case.

Our approximation produces better results that the corresponding standard

approximation.

We are going to use a particular example related to the Acoustics, more

precisely to the Sonic Crystals. These are periodic arrangements of scatterers

embedded in a medium with different physical properties -in our case cylinders

of a rigid material embedded in air- [44]. These structures when are considered

as an infinite periodic medium - eigenvalue problem- present ranges of frequen-

cies where the transmission of waves is forbidden. These ranges are known as

band gaps (BGs). In the last years, an increasing interest has appeared in the

potential exploitation of SC as environmental noise barriers [56], [57]. However,

the acoustical properties of SC depend on several factors showing some partic-

ularities in their attenuation properties. For example, the size and position of

the BGs depend on several factors such as the direction of incidence of the wave

on the SC and the type of arrangement of the scatterers [58]. As a consequence,

the development of the screens based on SC is not a trivial process. An example

of such type of structures can be seen in Figure 4.9.

Figure 4.9: Example of Noise barrier based on a Sonic Crystal.

When a finite structure is considered the correct understanding of these

Band Gaps implies Multiple Scattering Theory [12], [65]. Then waves are
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not transmitted throughout the structures due to the appearance of evanes-

cent modes (see [53, 54, 55]). In this section we are dealing with one of these

evanescent modes that are the modes that cannot be transmitted through the

structure. The physical nature of such modes remains elusive and recent de-

velopments has allowed to clarify part of its nature. But the comparison of

experimental measurements with theoretical models implies having good ap-

proximations of such a kind of signals. In this section we will try to show that

orthogonal functions respect to vector measures could be an interesting tool in

such kind of phenomena. If we measure the acoustic pressure between two rows

of a SC, we observe a signal corresponding to an evanescent mode (see Figure

4.10). That is, a mode which amplitude decreases as the wave flies throughout

the periodic structure.

Figure 4.10: Measurement of normal modes (b1, b2) in front of evanescent modes
(a1, a2) and (c1, c2).

In order to make clear the comparison with the precedent approximations

we are going to use the same finite sequence of n0-orthogonal functions (n0 de-

fined as before; see 4.3.5), shown in Figure 4.1 and also the same parametriza-

tions φ2(x), that provide the same coefficients than the standard approximation

on the Hilbert space L2(υ0) by the functions p1, p2 and p3, and φ3(x). The

signal to be approximated is represented in Figure 4.11.

If we apply our approximation with parametrization corresponding to func-

tion φ2(x), we obtain the result shown in Figure 4.12. The result is not surprising

because “a priori ”the shape of the functions considered for our approximation

is not the adequate for the shape of the signal, keeping apart the oscillations of
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Figure 4.11: Data points of the signal to be approximated.

the signal. The approximation equivalent to the Hilbert’s approximations it is

not able to reproduce the decay of the original signal.
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Figure 4.12: Hilbert approximation of the signal.

But in the case we consider the parametrization due to the φ3(x), that

allows us to weight the different behaviour of the signal in the support, then

the result is much more satisfactory, keeping the same finite sequence of n0-

orthogonal functions {p1, p2, p3}. The result can be seen in Figure 4.13
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Figure 4.13: Vector Measure non-linear approximation.

As a summary if this section, it is clear that a much more suitable finite

sequence of functions can be found in order to have a correct approximation
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from the Hilbert space point of view but, when a determined sequence have to

be kept for doing the approximation of different signals which shape can change

in different time intervals, this procedure based on the orthogonality respect to

a vector measure is revealed as an interesting tool that provides approximations

that reproduce correctly the shape of the original signal.
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