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Resum

Aquesta tesi doctoral s’emmarca dins de ’analisi dels subespais de successions
ortogonals de funcions de quadrat integrable respecte d’una mesura vectorial que
és numerablement aditiva i pren valors en un espai de Banach. La motivacié
d’aquest treball és la generalitzacié dels arguments geometrics que proporcio-
nen els procediments classics d’aproximacié als espais de Hilbert. La nocié
d’ortogonalitat representa un punt clau que permet el desenvolupament de la
teoria de la convergencia de successions en aquests espais. Actualment, la con-
vergencia gairebé per a tot punt, la convergeéncia en norma i la convergencia
feble sén temes ben coneguts en la teoria d’espais de funcions de Hilbert.

Els espais de Banach de funcions L?(m) d’una mesura de vectorial m rep-
resenten una amplia classe de reticles de Banach: cada reticle de Banach 2-
convex ordre continu amb una unitat feble pot ser representat (a través d’un
isomorfisme d’ordre) com un espai L?(m) de una mesura vectorial adequada m.
L’estructura integral que I'operador integracié proporciona en aquests espais
permet generalitzar arguments de ortogonalitat de la teoria d’espais de Hilbert,
tot i que els espais L?(m) estan lluny de ser espais de Hilbert.

En el primer capitol d’aquesta memoria s’introdueixen alguns conceptes
basics dels espais de Banach de funcions, integracié sobre mesures vectorials
i altres temes que seran necessaris al llarg de tot el treball. Es desenvolupen
alguns resultats sobre la convergencia de successions en espais de Banach de
funcions, igual que es mostren alguns procediments que seran de gran utilitat.
Alguns arguments sobre ortogonalitat també sén introduits, tant en el context de
succesions de L%(m) com en les integrals d’aquestes successions quan la mesura
vectorial m pren valors en un espai de Hilbert H. S’analitza la convergencia
incondicional de successions des del punt de vista abstracte dels espais de fun-
cions integrables, i és proporciona una versié del metode de disjuntificacié de
Kadec i Pelczynsky per a mesures vectorials.

En el segon capitol, es presenten formalment tres nocions d’ortogonalitat
d’una successié respecte d’una mesura vectorial. La m—ortogonalitat feble,
la (natural) m—ortogonalitat i la m—ortogonalitat forta, proporcionant també
alguns exemples que mostren la relacié amb problemes classics del analisi fun-
cional. També s’estudia la geometria d’aquestes successions.



En el capitol 3 analitzem la convergencia gairebé per a tot punt de succes-
sions que son febles m—ortogonals. El resultat més rellevant d’aquesta seccid
ens mostra una versié general del teorema de Menchoff-Rademacher. A con-
tinuacié es mostra un cas particular que involucra les cg-sumes d’un espai de
Hilbert amb la finalitat de mostrar les propietats de la convergencia gairebé per
a tot punt.

Finalment, al capitol 4 es desenvolupa una aplicacié concreta en el context
de les mesures vectorials. Es facilita un meétode d’aproximacié respecte d’una
mesura parametrica. Els principals elements d’aquest procediment sén una
successié feble m—ortonormal i una funcié integrable Bochner que definira la
nostra mesura, sobre la qual podrem calcular uns coeficients de Fourier - que en
aquest cas seran funcions mesurables - per una determinada funcié de L?(m). I
finalment, es mostraran algunes aplicacions d’aproximacié de senyals procedents
de dades experimentals en el camp de ’actstica.



Resumen

Esta tesis doctoral se enmarca dentro del anélisis de los subespacios de suce-
siones ortogonales de funciones de cuadrado integrable respecto de una medida
vectorial que es numerablemente aditiva y toma valores en un espacio de Ba-
nach. La motivacién de este trabajo es la generalizaciéon de los argumentos
geométricos que proporcionan los procedimientos clasicos de aproximacién en
los espacios de Hilbert. La nocién de ortogonalidad representa un punto clave
que permite el desarrollo de la teoria de la convergencia de sucesiones en estos
espacios. Hoy en dia, la convergencia casi por todas partes, la convergencia en
norma y la convergencia débil son temas bien conocidos en la teoria de espacios
de funciones de Hilbert.

Los espacios de Banach de funciones L?(m) de una medida de vectorial m
representan una amplia clase de reticulos de Banach: cada reticulo de Banach
2-convexo orden continuo con una unidad débil puede ser representado (a través
de un isomorfismo de orden) como un espacio L?(m) para una medida vectorial
adecuada m. La estructura integral que el operador integracién proporciona en
estos espacios permite generalizar argumentos de ortogonalidad de la teoria del
espacios de Hilbert, a pesar de que los espacios L?(m) estén lejos de ser espacios
de Hilbert.

En el primer capitulo de esta memoria se introducen algunos conceptos
bésicos de los espacios de Banach de funciones, integracion sobre medidas vec-
toriales y otros temas que serdn necesarios a lo largo de todo el trabajo. Se
desarrollan algunos resultados sobre la convergencia de sucesiones en espacios
de Banach de funciones, al igual que se muestran algunos procedimientos que
serdn de gran utilidad. Algunos argumentos sobre ortogonalidad también son
introducidos, tanto en el contexto de sucesiones de L?(m) como en las integrales
de estas sucesiones cuando la medida vectorial m toma valores en un espacio
de Hilbert H. Se analiza la convergencia incondicional de sucesiones desde el
punto de vista abstracto de los espacios de funciones integrables, y se propor-
ciona una versién del método de disyuntificacién de Kadec y Pelczynsky para
medidas vectoriales.

En el segundo capitulo, se presentan formalmente tres nociones de ortogo-
nalidad de una sucesién respecto de una medida vectorial. La m—ortognalidad



débil, la (natural) m—ortogonalidad y la m—ortogonalidad fuerte, proporcio-
nando también algunos ejemplos que muestran la relaciéon con problemas clasicos
del analisis funcional. También se estudia la geometria de estas sucesiones.

En el capitulo 3 analizamos la convergencia casi por todas partes de suce-
siones que son débil m—ortogonales. El resultado maés relevante de esta secciéon
nos muestra una versién general del teorema de Menchoff-Rademacher. A con-
tinuacién se muestra un caso particular que involucra las cp-sumas de un espacio
de Hilbert con el fin de mostrar las propiedades de la convergencia casi por todas
partes.

Finalmente, en el capitulo 4 se desarrolla una aplicacién concreta en el con-
texto de las medidas vectoriales. Se facilita un método de aproximacién respecto
de una medida paramétrica. Los principales elementos de este procedimiento son
una sucesién débil m—ortonormal y una funcién integrable Bochner que definird
nuestra medida, sobre la cual podremos calcular unos coeficientes de Fourier —
que en este caso seran funciones medibles— para una determinada funcién de
L?(m). Y por tltimo, se mostrardn algunas aplicaciones de aproximacién de
senales procedentes de datos experimentales en el campo de la actstica.



Summary

This doctoral thesis is devoted to the analysis of orthogonal sequences in sub-
spaces of spaces L?(m) of square integrable functions with respect to a Banach
space valued countably additive measure m. The motivation of our work is
to generalize the geometric arguments that provide the classical approximation
procedures in Hilbert spaces. The notion of orthogonality lies in the center of
the Hilbert space theory, and it allows to develop the theory of convergence of
sequences in these spaces. Almost everywhere convergence, norm convergence
and weak convergence are nowadays well known topics in the Hilbert space func-
tion theory.

The Banach function spaces L?(m) of a vector measure m represent a broad
class of Banach lattices: each 2-convex order continuous Banach lattice with a
weak unit can be represented (by means of an order isomorphism) as a space
L?(m) for an adequate vector measure m. The integral structure that the vector
measure integration provides in these spaces allows to generalize the orthogo-
nality arguments of the Hilbert space theory, although the spaces L?(m) are far
from being Hilbert spaces.

The first chapter of this memoir is devoted to introduce some fundamen-
tal concepts on Banach function spaces, vector measure integration and other
topics that will be necessary in the rest of the work. Some results on conver-
gence of sequences in Banach function spaces and Banach spaces are explained,
and the general framework is established. Some orthogonality arguments are
already introduced, both for sequences in L?(m) and for the integrals of these
sequences when the vector measure m is Hilbert space valued. Unconditional
convergence for sequences from the abstract point of view of the function spaces
of integrable functions is analyzed, and a version of the Kadec and Pelczynsky
method for finding disjoint sequences for the vector measure setting is given.

In the second chapter three notions of orthogonality of a sequence with
respect to a vector measure are formally introduced, and the main characteri-
zations of these sequences are given. Weak m-orthogonal sequences, (natural)
m-orthogonal sequences and strongly m-orthogonal sequences are defined and
studied, providing also examples that show the relation with some classical prob-



lems in analysis. The geometry of these sets of sequences are also studied.

In Chapter 3 we analyze almost everywhere convergence of weak m-orthogonal
sequences. Our main result is a general vector measure version of the Menchoff-
Rademacher Theorem. A particular case involving c¢p-sums of Hilbert spaces is
also intensively studied in order to show the properties of the convergence.

Finally, Chapter 4 is devoted to show a concrete application. We develop an
approximation method with respect to a parametric measure based on our ideas.
A Bochner integrable function and an weak m-orthonormal sequence are the
main elements of our procedure, that allows to find the Fourier coefficients —that
are in this case measurable functions— for a given function in the space L?(m).
Some applications for signal approximation for data coming from experimental
acoustics are also shown.
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Introduction

0.1 Motivation

The notion of orthogonality lies in the center of the Hilbert and Banach spaces
theory and it has a clear geometrical meaning. Even for the case of finite di-
mensional spaces with the Euclidean norm the notion of orthogonality is deeply
connected with the topological properties of the space and mainly with the no-
tion of best approximation. The same relation can be extended to the setting of
the Hilbert spaces, which has as a canonical example the space L?[0,1]. In the
year 2000, a new class of Banach function spaces was introduced: the spaces
LP(m) of p-integrable functions with respect to a vector measure m. Those
spaces are rather general, since they represent the class of all order continuous
p-convex Banach function spaces with a weak unit. So, the space L?(m) is 2-
convex, but it is far of having a Hilbert space structure. However, and due to its
integration structure, several notions of orthogonality still make sense in it. The
geometric consequences of these notions and some applications in the context of
the best approximation and Fourier analysis has been studied in recent years,

as the reader can notice by checking the references in this memoir.

The aim of this thesis is to analyze and to show some applications of the
three notions of vector measure orthogonality that has been introduced in the
literature up to this moment, and to develop a systematic theory of vector
measure orthogonality including all these cases. This of course imply to study

the structure of the spaces L?(m) of a vector measure and the main properties
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of the integration map restricted to these spaces.

One of the basic concepts that leads to the one of vector measure orthog-
onality is the vector measure duality. It consists on considering the duality
induced by the bilinear form defined by the integration map, i.e. if m: ¥ — X
is a countably additive vector measure with values in the Banach space X and
1=1/p+1/q, the integral defines a bilinear form B,,, : L?(m) x LY(m) — X by
Bm(f.9) :== [ fgdm. Duality results can be found in [30, 31, 59, 60, 61]. These
duality results, that provide for instance a representation of the dual space, are

applied in this thesis in the symmetric case given by p = 2.

0.2 Notes and remarks

In this section we are going to show the concept of orthogonality with respect

to a vector measure has its roots in the X7X century.

0.2.1 Moment’s problem

The orthogonality with respect to a vector measure can be easily related to some
classical mathematical problems, as the so called Moment ‘s problem. Actually,
as will be shown in Chapter 2, orthogonality with respect to a vector measure is a
general setting that includes for instance orthogonality of a sequence of functions
with respect to a family of measures, or what is called in statistics, a parametric
measure. The analysis of the properties of functions that are orthogonal with
respect to a family of measures has a long mathematical history, for instance
regarding orthogonal polynomials. In 1885 Tchebyshev established the following

question. If the relations

/ 2"w(x)dx = / e d

holds for all n € N this implies that w(z) = e~®"? The answer is yes and today

we say that the problem is determinate.
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There are different points of view to try to solve this problem. The first pro-
cedure was developed by Stieljes in 1894 (see [62]). According Dieudonné (see
[26]), the moment’s problem is no stranger to the birth of Banach theory. M.
Riesz in [52] provided a solution using the Helly’s Representation Theorem (see
[13]) , and Nevalinna introduced a new tool into the analytic function theory in

[4] for trying to solve this problem.

When the problem is not determined we obtain a family of scalars measures
such that ffooo 2"w(z)dr = Sp, m =0,1,2... have the same moments. At the
end of the 19th century some relevant cases of families of polynomials that
are orthogonal with respect to a large set of scalar measures —indeterminate
measures— were known. The first example of such an indeterminate measure
was presented by Stieltjes in 1894 (see [62]). If we start with the two following

integrals
o 2 e 2
/ e Vdt = /7 and / e sin(2nt)dt = 0
0 0
and now we do the next transformation ¢t = In(z) — (n + 1)/2, then

et = e~ W@l -+ /4 Gng gt = d—x

So we obtain

/ gme @ gy = \fremtD/4 / ghe™ (@) sin(27 In(z))dz = 0.
0 0
Then if we multiply the second integral by a constant K € R and we add the

first integral, we obtain
/ e ln2(z)x"[l + K sin(27 In(z))]dz = ﬁe("+1)2/4.
0

If we take |K| < 1 then e*1n2(3”)[1 + K sin(2mIn(z))] > 0 is a positive function
for all z € [0, 00[, thus Fi(y) = [ e~ n*(@) g1 1 + K sin(27 In(x))]dz is a family
of non decreasing distributions with support into [0, co[ which have the same
moments ﬁe("+1)2/ 4. The polynomials that are orthogonal with respect to
this class of measures are a special case of the Stieltjes- Wigert polynomials.
Using the family (Fi)ge[—1,1) of distributions, a vector measure can be defined
in an easy way (see Example 2.3.2). In general this construction can be done
for abstract sets of measures —for instance, parametric models in statistics—,

and then to find sequences of functions that are orthogonal for all the elements
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of a family of measures is equivalent to the problem of finding sequences that

are orthogonal with respect to a vector measure.

Our main references on measure spaces, scalar measures, integration with
respect to scalar measures, vector measures and function spaces are [25, 33,
42, 49]. The reader can find general definitions and results on integration with
respect to vector measures and the related spaces of m-integrable functions
L'(m) in [15, 40, 41].

0.2.2 [L?(m) spaces from the point of view of the vector
measure theory

From the point of view of the integration with respect to a vector measure, the
properties of the integration map that are nowadays well known provide relevant
information with important consequences on the properties of the orthogonal
sequences in the spaces L?(m). Compactness properties of the integration map
—weak compactness, compactness, complete continuity— have direct conse-
quences on the structure of the corresponding spaces of integrable functions.
For instance, if the integration operator is compact, the corresponding space is
order isomorphic to the L!-space of the variation |m|, i.e. an L'-space. Con-
sequently, in this case L?(m) is order isomorphic to the Hilbert space L?(|m)])
(see Proposition 3.48 in [49] and the references therein). Regarding weak com-
pactness, it is also known that the integration map restricted to L?(m) is always
weakly compact (see [28, 29, 60]). Also, the geometric properties of the integra-
tion map will be used in this thesis. For instance, p-concavity of the integration
map restricted to LP(m) implies that this space is order isomorphic to an LP-
space (see [9, 16, 17]).

In recent years, some applications of the spaces L?(m) have been developed
in the setting of the function approximation. In particular, the geometry of the
strongly m-orthogonal sequences is well known and can be found in the papers
[34, 48, 59]. Some applications on function approximation of m-orthogonal

sequences were developed also in the papers [34, 35, 36].
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Some results that follows the general research program of analyzing conver-
gence of sequences in the spaces L? of a vector measure has been published yet,
and do not constitute a part of this memoir, although they are closely related.
In this direction, we must mention two papers. The first one, [10], analyzes and
improves some known results on decompositions of unconditional convergence
of sequences in Banach function spaces using the structure of the spaces LP(m).
The second one, [37], provides a general analysis of the Komlés property re-
garding a.e. convergence of the Cesaro sums in spaces of measurable functions.
In this case, a most general theory of vector measure integration involving 6-
rings is used in order to establish how far, in the scale of ideals of measurable

functions, the Fatou property and the Komlds property are equivalent.

Those results have not being included in this memoir because they do not
use any orthogonality argument, although the subject that they deal with is very
much concerned with the one of the work presented in this memoir: different

aspects of the convergence of sequences in the spaces L? of a vector measure.

0.3 Applications

The last part of the thesis (Chapter 4) is devoted to show some new applications
of the spaces L?(m) in the setting of the function approximation. In particular,
we develop an approximation structure that consists of providing a parametric
set of measures by means of the action of a Bochner integrable function with
the vector measure. A suitable error criterion is defined and the corresponding
approximation formulae are given. This leads to a non linear approximation for
a given function of L?(u), that has the advantage that a small orthogonal set of
functions is enough for obtaining a good approximation, improving the one that
is obtained when the Hilbert space structure is used. Some examples are given,

and a concrete application to representation of acoustic signals is developed.



vi Introduction

0.4 The structure of the thesis

Chapter 1 is devoted to recall and adapt some well known results on the behavior
of sequences in Banach function spaces. An adapted version of the Bessaga —
Pelczynski for weakly null sequences (see [7]) and the Kadec — Pelczynski
method for obtaining disjoint sequences that approximate special sequences is
given (see [32, 38]).

In Chapter 2, the three notions of m-orthogonality are given and analyzed,
showing some examples and existence results for such sequences in the L?(m)

spaces.

Chapter 3 shows how the Menchoff-Rademacher results on almost every-
where convergence of sequences can be adapted and improved for the case of
m-orthogonal sequences, that comes from the fact that the vector measure or-
thogonality is stronger than the scalar notion. The last chapter provides the

applications of the theory that has been explained above.



Chapter 1

Notation and Preliminaries

1.1 Basic notions

In this chapter, we introduce the concepts and results used throughout the
memory about Banach function spaces and integration of real functions with
respect to a vector measure. We will use standard Banach and function space
notation; our main references are [25, 42, 64]. Let X be a Banach space. We
will denote by Bx the unit ball of X, that is By :={z € X : ||z| = 1}. X' is
the topological dual of X and Bx- its unit ball. If 1 < p < oo, we write ¢ for
the (extended) real number satisfying 1/p+1/¢ = 1. A Banach space X is said
of type p for some 1 < p < 2 respectively, of cotype ¢ for some ¢ > 2, if there
exists a constant M < oo so that, for every finite set of vectors {z;}}_; in X,

we have
n

/0 1S s 0)glide < MY o5 1P)7,

i=1 j=1

respectively
1 n n
1
JRDRCB RS WP OR
i=1 j=1

where {r;}; denotes the sequence of the Rademacher functions. The Hilbert

spaces have the best possible type and cotype, i.e. are simultaneously of type 2

1



2 Chapter 1. Notation and Preliminaries

and cotype 2 and the converse of this assertion is also true (see [42, 1.e.12]).
Let X and Y be Banach spaces. An operator T : X — Y is 2-absolutely
summing if there exists a constant C' > 0 such that for every finite sequence

L1,y Ty € X7

Z IT(2:)]|?)? < Csup{( Z\ zi,2)?)? 2l e X', ||| < 1} (1.1)
i=1 =1
We define the 2-summing norm of 7" as
mo(T) = inf{C : (1.1) holds for all {z;}}*; C X, n € N}. (1.2)

Let X be a Banach lattice, that is a real Banach space endowed with a norm

|l - || and a partial order < such that

(1) ifz,y, 2 € X with x <y, then .+ 2 <y+ 2z,
(2) if x,y € X with z <y, then az < ay for all « > 0,

(3) for x,y € X, there exists the supremum of 2 and y with respect to the

order,

(4) if z,y € X with |z| < |y|, then ||z| < |ly||, where |z| = sup{z, —z} is the

modulus of x.

Note that (3) implies that also there exists the infimum of every z,y € X. The
supremum and the infimum of two elements = and y of X are usually denoted
by x Vy and x Ay respectively. A weak unit of X is an element 0 < e € X such
that A e = 0 implies that x = 0.

We say that a Banach lattice X is order continuous if for every sequence {x,, },, C
X with z,, | 0 it follows that ||z,|| | 0. We say that X has the Fatou property
if for every net (z,) C X with 0 < z, 1 such that sup ||z,| < oo if follows that
there exists z = supz, in X and ||z|| = sup||z;|. Let T: X — Y be a linear
operator between two Banach lattices. The operator T is said to be positive
if T(x) > 0 whenever 0 < x € X. Every positive linear operator between two
Banach lattices is continuous. We will say that 7" is an order isomorphism if it is
one to one, onto and satisfies that T'(zAy) = T'(z) AT (y) for all z,y € X. In this
case, T is continuous as it is positive and also satisfies T'(z Vy) = T'(z) V T(y)
for all z,y € X. If moreover, |T(z)||y = ||z||x for all z € X, we will say that
T is an order isometry. Let E and F' be Banach lattices and 1 < p < co. An
operator T : ¥ — F' is p-concave if there is a constant K > 0 such that for
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every finite set z1,xo,...,x, € F, it follows
= 1 = 1
O NT@) IP)yr <K O i [?)7 |- (1.3)
i=1 i=1

The infimum of such constants K is the p-concavity constant of the operator.
An operator T : E — F' is p-convex if there is a constant K > 0 such that for
each finite set x1, 2o, ..., 2, € E, it follows

n

n
Q- 1T IP)7 ll< K N |IP)5. (1.4)
i=1 i=1

As in the case of p-concavity, the infimum of such constants K is the p-convexity
constant of T. A Banach lattice E is p-concave (p-convex) if the identity map
Id : E — E is p-concave (p-convex). Throughout the memoir we will consider
Banach function spaces as Banach lattices with the usual p-a.e. pointwise order.
For the aim of simplicity, we will assume that the corresponding p-concavity /p-
convexity constants of the spaces are 1; it is known that each r-convex and
s-concave Banach lattice, 1 < r < s < 0o, can be renormed equivalently so that
with the new norm, the r-convexity and s-concavity constants are both equal
to 1 (see [42, 1.d.8]).

Let (2, %, 1) be a o-finite measure space. Following the definition in [42, p.28],
a Banach space X (u) of (classes of) locally u-integrable real functions is said
to be a Banach function space over p (Koéthe function space) if it satisfies the

next two properties.

e If f is measurable and g € X (u) such that |f(w)| < |g(w)| p—a.e. on £,
then f € X (p) and [[f]| < {|g]l-

o If Ac ¥ and pu(A) < oo, then the characteristic function x4 belongs to
X ().

We write as usual /P, 1 < p < oo, and ¢ for the classical sequence spaces,
and |.||p, [|-llo for the corresponding norms. The sequence spaces that we deal
with (L, ¢ ...) are assumed to be such kind of spaces. Thus, we will consider
spaces of real functions on the standard measure space on the set of natural
numbers N with an unconditional normalized basis with unconditional constant
1. We will write e;, i € N, for the elements of the canonical basis of the space.
Moreover, we also assume that its dual space can be represented as a sequence
space, i.e. its elements can be written as sequences {7;};, and the duality is
given by ({r:},{\i}) = >, Tidi, {\i}i € L. For instance, this always happens
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when the space is order continuous (see the comments that follow Definition
1.b.17 in [42]). We will use the following construction for the particular case of
sequence spaces (i.e. the measure is the discrete one on the set of the natural
numbers). Let (€2, X) be a measurable space and X a Banach space. Throughout
the memory m : ¥ — X will be a countably additive vector measure, i.e.
m(US, A4,) =Y 07 m(A,) in the norm topology of X for all sequences {4, },
of pairwise disjoint sets of X. It is well known that every Banach space valued
countably additive vector measure on a o—algebra is bounded. We say that
a countably vector measure m : ¥ — X, where X is a Banach lattice, is
positive if m(A4) > 0 for all A € ¥. For each element #' € X’ the formula
(m,2')(A) := (m(A),z"), A € X, defines a (countably additive) scalar measure.
We write |(m, z’)| for its variation, i.e. [(m,2')|(A) := sup )z [(m(B),2")]
for A € X, where the supremum is computed over all finite measurable partitions
IT of A. Sometimes we write m,s for (m,z’). We say that an element 2’ € X’
is m—positive if the scalar measure m,, is positive, i.e. |m,/| = m,,. We write
(X")1, for the set of these elements. The semivariation of m is the extended

nonnegative function |m| whose value on a set A € ¥ is given by:
[[m||(A) = sup{|(m, 2')|(4) : 2" € X, [|2|| < 1},

Direct computations show that the variation |m| is a monotone countably ad-
ditive function on X, while the semivariation ||m|| is a monotone subadditive
function on ¥, and for each A € ¥ we have that |jm|(4) < |m|(4). A vector
measure m defined on a o—algebra is always bounded, i.e. m(A) < oo for all
A € X. In general, a vector measure m is of bounded semivariation on € if and
only if its range is bounded in X, as for A € ¥, sup{|m(B)||: AD B € ¥} <
|m||(A) < 4sup{|m(B)|| : A D B € £}. As usual, we say that a sequence
of functions converges |(m, z'}|-almost everywhere if it converges pointwise in
a set A € X such that [(m,2")|(Q2\ A) = 0. A sequence converges m-almost
everywhere if it converges in a set A that satisfies that the semivariation of m
in Q\ Ais 0.

We will say that a scalar positive measure p is equivalent to m if

lim |ml|(4)=0 and lim  p(A) =0.
u(A)—=0 [lm[|(A)—0

The measure m is absolutely continuous with respect to j if lim,,(4)—o m(A4) =
0; in this case we write m <« p and we say that p is a control measure for m.

Countably additive vector measures always have a control measure. The Bartle,
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Dunford and Schwartz theorem (see [25, Ch.1,2, Corollary 6]) produces a finite
nonnegative real-valued measure g on ¥ such that m < p. Furthermore, it is
known that there exists always an element 2’ € X’ such that m < |(m, 2")| and
so m < |(m, z)| is a control measure for m. We call such a scalar measure a
Rybakov measure for m (see [25, Ch.IX,2]). If [(m,z’)| is a Rybakov measure
for m, then a sequence of functions converges m-almost everywhere if and only
if it converges |(m, a’)|-almost everywhere. Notice that if m is positive and '’
is a positive element of the Banach lattice X', then |(m,2’)| = (m, z’).

The space L*(m) of integrable functions with respect to m is a Banach function
space over any Rybakov measure p for m (see [15, 42]). The elements of this
space are (classes of u-a.e. measurable) functions f that are integrable with
respect to each scalar measure (m, z’), and for every A € ¥ there is an element
J, fdm € X such that ([, fdm,z') = [, fd(m,a’) for every 2’ € X'. When
no explicit reference is needed, we write f fdm instead of fQ fdm. The reader
can find the definitions and fundamental results concerning the space L!(m) in
[15, 40].

The space of (classes of yp—a.e. equal) real measurable functions on (€2, 3)
is denoted by L°(u). The formula

[l resm

A1 ot oy = sup ‘
AeX

where || - ||x denotes the norm of X, gives a norm on L'(m), since functions

that are equal m—a.e. are identified. Moreover,

A ey < I lermy S 211N ey for every  f € LY (m).

The space L'(m) of m—a.e. equal m—integrable functions is a Banach lattice
endowed with the norm || - ||z1(m) and the m—a.e. order. It is an ideal of
measurable functions, that is | f| < |g| m—a.e. with f € L%(u) and g € L*(m),

then f € L'(m) and an order continuous Banach lattice.

We build the spaces LP(m), that are also order continuous Banach function
spaces over the space (€2, %, |m,,|) with weak unit where |m,| is a Rybakov
measure. We say that a measurable function f : Q@ — R is p—integrable with
respect to m if |f|P € L'(m) with the norm

1
1 llzogm = NP1y € LP(on).
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We denote the integration operator associated to the vector measure m by

Iy @ LP(m) — X
f — Im(f) = [, fdm ~
The properties of the integration map associated to a vector measure has been

largely studied in several recent papers (see [22, 49]).

Before introducing several results concerning basic sequences, we provide
a representation of the dual space of LP(m) in terms of the space L?(m) (m
is a countably additive vector measure), as in the case of classical LP-spaces.
It is well know that the dual of LP coincides with L? only in the case that
m is a scalar measure. Let L(L?(m), X) be the subspace of all the operators
that satisfy Theorem 2.2 [30], i.e. that can be identified (isometrically and
isomorphically) with functions of L4(m). Indeed L%(m) is always the dual of
a certain topological tensor product. In the same paper, the autors prove the
following result: the spaces (((LP(m) ® X')/keru,z)’, | - ||z) and (L4(m), || -
| La(m)) are isometrically isomorphic if and only if the unit ball of L(m) is
m—weakly compact, where u(z) = supy .. <1 I > ([ figdm, 2})| if 2 =
Yo, fi®a) € LP(m) ® X’ and the quotient space (LP(m) ® X')/keru define
the quotient topology 75 generated by the seminorm u([z]) := wu(z). Since
the m-weak topology is weaker than the weak topology of the space LP(m),
the compactness property required in the above result is satisfied if the space
L%(m) is reflexive. Another prove of this result can be found in [31]. Some
results regarding reflexivity of this space may be found in [28]. We recall that
a Banach lattice X is a KB-space whenever every norm bounded, positive,
increasing sequence is norm convergent, then it is known that for ¢ > 1 L?(m)
is reflexive if and only if L4(m) is a KB-space, and a Banach lattice is a KB
space if and only if X has the Fatou property and is an order continuous Banach

lattice, so L9(m) is reflexive if and only if L¢(m) has the Fatou property.

In this memoir we deal with sequences of functions in L?(m). If (m, 2’) is
a Rybakov measure for m, then the inclusion map 4,/ : L?(m) — L*(|(m, z')|)
is well-defined and continuous; in fact, even if 2’ do not define a Rybakov
measure this identification map is well-defined and continuous, although it is not
injective. In this work we only need some particular properties of the functions
in L?(m). For instance, if f,g are functions in L?(m), we use the fact that the
product fg is m-integrable (see [28, 49] or [60]).
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If LO(u) is the space of (classes of p-a.e. equal) real measurable functions,
0 <r < oo and E(u) is a Banach function space, we define the r-power of E(u)

as the space
E(u)yy = {z € L°(p) : |2]'" € E(u)}

endowed with the (quasi-)norm ||z g, == || |2[*/7||%. The space E(u) (] is always
a Kothe function space when 0 < r < 1 and for r > 1 it is so whenever E(u) is r-
convex; in this case the expression above gives a norm if the r-convexity constant
is 1 (see [19, 49] for the basic properties of r-powers of Kothe function Banach
spaces). For instance, if m is a countably vector measure, the space L?(m)

above can be written as the 1/2-power of L'(m), i.e. L?(m) = (L'(m)) /9.

1.2 Unconditional basis in L?(m)

A sequence {z,,}5°, in a Banach space X is called a Schauder basis of X if there
exists a unique sequence of scalars {a, }22; such that z = lim, o0 Y p_; QxTk
for all z € X. A sequence {z, }52; which is a Schauder basis of its closed span is
called a basic sequence. A series Zzozl T, in a Banach space X is unconditionally

convergent if for every permutation o : N — N the series > 7, Ty(n) CONVETEES.

A space with a basis is always separable. The most of the natural separable
spaces have bases, although Pel Enflo [27] was the first who found that there
are separable Banach spaces without bases, looked inside c¢g. The fact that a
separable Banach space has a basis does provide some structural information
about the space. It must be pointed out that finding a basis for a well know
space is sometimes difficult. For instance, in the case of the classical separable
sequence spaces ¢g and P (1 < p < 00), the sequence {e, }52; of unit coordinate
vectors e, = (0,0, ...,0, L(n-th place)> 0, ...) is a basis. In the case of the space of
convergent sequences ¢, if we denote 1 = (1,1, ...) then the sequence (1, e1, e, ...)
is a basis for c¢. In the case of C[0,1], the Schauder basis is a basis for this
space, generally if n > 1 and 1 <4 < 2", then the sequence fi(t) = 1, fo(t) =
t, f3(t) = 2tx(0,1/2)(t) +2(2 = O)X(1/2,1), s for4it1(t) = f3(2"t 4+ 1 — i) whenever
2" + n—1i € [0,1] is a Schauder basis, see Figure 1.1. In the case of LP[0,1],

where 1 < p < oo, the Haar system is a basis for this space, see 1.2. It is given
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Figure 1.1: Schauder basis.

by
fo(t) =1,
fanti(t) = Xj(2i—2)/2n+1,2i—-1) 27+ (F) — X[(2i—1) 2741 2i/20+1) (1),

ifn>1and 1 <4< 2" and therefore if 1 < p < oo it is an unconditional basis.
For the case of vector measures, there are examples such that the space of square
integrable with respect to a particular vector measure is known, for instance, if
m: Y — L%0,1] and m(A) = x(A) then L?(m) = L*[0,1]. For this case the
Haar system is a basis for L?(m). For the case of the spaces L'(m) it is also
possible to find criteria for obtaining basic sequences, for instance Theorem 3,
[15]. In fact the Haar system is a basis for all LP(u), 1 < p < oo (see Chapter
5, [24]).

We use standard Banach function space notation. Let {z,}, be a ba-
sic sequence. The symbol [z,] denote the smallest closed linear set spanned
upon the elements {z,}2%; C X. The projections P, : X — X defined by
P,(>o2 aimi) = Y i, ayx; are bounded operators and sup,, ||P,|| < co. The
number K = sup,, || P, is called the basic constant of {z,,}°2 ;. Equivalence of

basic sequences (and in particular of bases) will become a powerful technique for
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Figure 1.2: Haar basis.

studying the isomorphic structure of Banach spaces. In general, let {z,}5° ; and
{yn}22; be two bases for the Banach spaces X and Y respectively. Then say
that {x,}52; and {y,}72; are equivalents if and only if there exists a constant

C > 0 such that for all nonzero sequences of scalars {«a;}5°;,

CTYauyll < 11 auwill < CIIY - awwil. (1.5)
i=1 i=i i=1

If the constant C' = 1 then the basic sequence {z,}52; and {y,}52, are said to
be isometrically equivalent.
The following stability results dates back to 1940 [39].

Remark 1.2.1. If {z;}$2, is a basic sequence of a Banach space X and {y;}32;

is another sequence in X so that ||z, —y, || — 0 then {y;}$2, is a basic sequence.

Let {z;}2, be a basis sequence of a Banach space X and take two sequences
of positive integers {p;}2, and {q;}$2, satisfying that p; < ¢; < p;41 for every

i € N. A block basic sequence {y;}32, associated to {x;}2; is a sequence of
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vectors of X defined as finite linear combinations as

qi
Yi = E QG kT,

k=p;

where a; j are real numbers (see also [24], Ch.V for the definition of block basic
sequence and also for the standard definition of equivalence between basis). Let
S be a subspace of X, S is called complemented in X if and only if there exists

a continuous projection from S onto X.

Fundamental to the study of bases in a separable Hilbert space H is the
notion of a biorthogonal system. If n,m are indexes of a set I, we write 0,
for the Kronecker’s delta as usual. Two sequences {x,, },, and {y, }» of elements

from H are said to be biorthogonal if (z,, Ym) = dp m.

Now, we consider the particular case when X is a space of 2—integrable
functions with respect to a vector measure m. In this case, the question of how
to recognize a basic sequence arises. The following remark provide a basic test

for recognizing a basis in a subspace of L?(m), (see Theorem 1. Ch.V [24]).

Remark 1.2.2. Let {f,}52, be a sequence of non zero functions in L?*(m),
then in order {f,}72, to be a basic sequence, it is both necessary and sufficient
that there exists a positive finite constant K so that for any choice of scalars

{a;}92, and any integers m < n we have

> aifi <KDY aifs (1.6)
i=1 L2(m) i=1 L2(m)
For instance, if m : ¥ — X is a positive vector measure, || f|lr2(m) = || [ |f\2||§(/2

for all f € L?(m) (see [23]), and so the criterion above can be written as follows.

For any finite sequences of scalars {a;}$2; and any integers m < n,

H/(i_n: a; f;)?dm /(Zj: a;f;)*dm

In Chapter 2 we will provide the adequate requirements on {f;}52, in order to

< K? (1.7)

X X

obtain 1.7 that is equivalent to

iﬁ/ﬁm
i=1

(1.8)

< K?
X

iﬁ/ﬁm
i=1

X
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Let S be a subspace of L?(m) with a normalized basis {f,}3>,, if we
perturb each element f,, € S by a sufficiently small vector we still get a basis
and the perturbed basis is equivalent to the original one, see (Proposition 1.a.9,

Vol 1, [42]). The following remark show this.

Remark 1.2.3. Let {x,,}>2; be a normalized basis of a Banach space X with a
basis constant K. Let {y, }22; be a sequence of vectors in X with > | [z, —
Ynll < 1/(2K). Then {y,}52, is a basis of X which is equivalent to {x,,}22 ;.

In what follows we consider vector measures which take values in Hilbert
spaces. We present a version of a principle for selecting basic sequences due to
Bessaga and Pelczynski (Corollaries 1.2.4 and 2.4.3 below and see also [7]).
We will consider first properties of the range of the vector measure and not of
the space L?(m).

Corollary 1.2.4. Let H be a Hilbert space and let m : 3 — H be a count-
ably additive vector measure. Let {e,}52 1 be a basic sequence of H and {e,},
be a biorthogonal sequence to {en}n. If the sequence {f fﬁdm}zozl fulfills the

condition -
S e _/fgdm”HHe;HH _s<,
n=1

then {f fﬁdm}:o:l is a basic sequence which is equivalent to e,,.

Proof. For arbitrary integer i, p, ¢ such that ¢ < p < ¢, we have
P P
ol = 1e; (O ae) | < 1D asesllmliela
j=1 Jj=1

From the above expression, we obtain

P P p
[ Zozj(/ffdm)HH <UD ajeslla + 1Y ajle; — /szdm)HH
Jj=1 j=1 j=1
p p
IR aseslar+ D laslles ~ [ il
j=1 j=1
p o]
<1 ageslln + 3 falfes —/ffdmnH
Jj=1 i=1

P

P %)
< IIZ%%IIH+Z||Zajejl\HHeéHHlleif/ffdeH
Jj=1 J

=1 j=1
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p
<@+ ajesln,

Jj=1

and using the same computations that above, we obtain

q q q
I Zaj(/ffdm)HH > 1> aseglla — 11> asle; — /ffdm)HH\
Jj=1 j=1 j=1

q
> (1=0) ) ajeslla
j=1
Hence
- > 146, ¢ 2
1> ([ famll < KIS0 oy [ fdm) .
j=1 j=1
O

Remark 1.2.5. In general, if we take {z,,}52; a weakly null, normalized se-
quence in a Banach space X then {z,}52; admits a subsequence that is a basic

sequence, (see Bessaga-Pelczynski Selection Principle theorem [24]).

Example 1.2.6. Consider the Lebesgue measure space ([0, 00), 3, dx) and de-

fine the positive vector measure v : ¥ — ¢g as

oo

v(A) = Z </Am[n,n+1] (x — n)"da:) en.

n=0

It is clearly countably additive and then the corresponding space L?(v) is well-
defined. If f € L'(v) then [ fdv = {f[n S (@) (@ —n)"da}e, € co. Con-

sider now the sequence of functions {f;}32, = {e *@=F/2x;  (2)}32,, then

JR(@) = e MRy (@) € LM(v) and so fi € L2(v).

||fkuiz<u>:/ fdv| = / e ) — k) de
[0,00) co [n,n+1]

and note that for each k we find a constant M, as follows,

sup {/ e ) X oo (@) (@ — n)"dw}
n [n,n+1]

- / e Fe=R) (g — k)rdr = M), < 0.
[k,k+1]

oo

n=01Il¢qy

[e.°]

n=0
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Thus is easy to find a normalized sequence for applying the Remark 1.2.5, since
that for all n € N

2 2
lim ( f—kdu, en) = lim Ji

z —n)"dx
koo [0,00) My, k—oo [n,n+1] Mk( )

I ) (@) = 0
= lim —(x—n ool (x)dx = 0.
k0 Jipmieny My X[k,o0]

Therefore { f;}72; admits a subsequence that is a basic sequence.

1.3 Kadec — Pelczynski decomposition

The aim of this section is to give a canonical procedure for obtaining disjoint se-
quences in the space L?(m). This will be the first step for finding m—orthogonal
sequences (see Definition 2.3.1), and providing the corresponding existence the-
orems. In what follows a well known result of Kadec and Pelczynski (see for
instance [38]) will be applied to the context of sequences of functions on spaces
of integrable functions with respect to a vector measure. Through this section

we will consider a positive vector measure m.

Let H be a Hilbert space and let us consider a positive countably additive
vector measure m : ¥ — H. We suppose that |[xolr2m) = ||XQH1L/12(m) =
|m|[(Q) =1 and {f,}2>, € L*(m). We define the subsets of

o(fe) ={teQ:|f)] = el fllzom)}

and the subsets of L?(m)

Mp2(my(e) = {f € L*(m) : |lml|(o(f,¢)) = }.
By normalizing if necessary, we assume that || f, | z2(m) = 1 for all n € N.
Remark 1.3.1. Note that the classes My2(m)(€) have the following properties:

(1) If &1 < &g, then MLz(m)(El) D MLZ(m)(EQ).

(2) Ueso Mr2(my(e) = L?(m).
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3) If f #£ 0 does not belong to M2y (€), then there exists a set A such that
(m)
|m|[(A) < e and

2
dm

ft)
(m)

21—52.

H

The first property is obvious. To prove the second, we suppose that there
exists a square m—integrable function g so that it is not in ..o Mr2(m)(€)
for all € > 0, in particular g # 0, that is, |m||(Supp g) > 0. Since Supp g =
Un>10(g, 5+) for every € > 0, then

g
Im|(Supp 9) < 3" Imll(o(g, =) < o o = &
n>1 n>1

So ||m||(Supp g) = 0 which is a contradiction. For proving the third we denote
by A the set o(f,e). Then

2
dm

2
dm

ft) ft)

1= +?m(Q/A) |

H

ft)
(m)

H

2
dm

2

dm 2

+ £°.
H

O T2 ml|(2/4) <
(m) "

This finishes the proof of (3).

Lemma 1.3.2. Let (2,%, 1) be a measure space and let X(u) be an order
continuous Banach function space, then for all f € X (u)

(gm | fxallx( = 0.

Proof. ~ We suppose that lim,4)—o [|fxallx() # 0. Then there exists a se-
quence of subsets Aj, Ay, ..., Ay, ... into X such that lim, . u(A,) = 0 and
lfxa,llx@y >0 > 0 for all n € N. We take a subsequence Ay, Ay, of

(A,)n such that 0 < pu(A4;) < 4, and we define the following collection of sets
U Ay, By = U Ag, oy Bu=J A,
k=n

It follows that w(B,) < oo, u(Ag) < Sop2, 1/2F < 1/2"1. On the other
hand p(By) = |[xB,|lx(u and therefore ||xp, ||x(.) converges to 0 p—a.e. So

there exists a subsequence XB., of xp, that converges pointwise to 0 and
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fxs,, converges to 0. From the order continuity we deduce that IIfx B., |21 ()

converges to 0 u—a.e. For every nj, since flnj C By,, we have that § <

x4, flix@ < lIxB., fllx (- This gives a contradiction and proves the lemma.
7Zj Y

O

The following result shows two mutually excluding possibilities for a se-
quence {f,}n of functions in L?(m). On one hand, when {f,}, is included in
the set Mp2(m)(e) for some € > 0, the norms || - ||z2(m) and || - ||£1(,) are equiv-
alent, where p is a Rybakov control measure for m. On the other hand, when
{fatn € Mpr2(m)(e) for every e > 0, we can built another sequence {hy}x of
disjoint functions of L?(m), in such a way that {f,}, and {h;}, are equivalent
(see Chapter 1.9. [32]). This procedure gives us a tool for building disjoint
sequences in subspaces of L?(m) that in fact are unconditional basic sequences.

The order continuity of the space is the key point for the construction.

Theorem 1.3.3. Let u = |mI6| be a Rybakov measure for a vector measure
m and let (Q,%, ) be a probability measure space. Let {fn}n be a sequence of

functions into L?(m).

(1) If {fu}pZy C Mr2(m)(e) for some e > 0 then {fn}52, converges to zero

in L?(m) if and only if {fn}32, converges to zero in L' ().

(2) If {fu}pzy & Mp2(my(e) for all € > 0 then there exists a subsequence
{ni}72, and a disjointly supported functions {hj};>; C L*(m) such that
|hi| < |fuil for all k and {hg}3S, and {fn, }32, are equivalent uncondi-

tional basic sequences that satisfy limy oo || fn,, — Pl £2(m) = 0.

Proof. 1Tt is well known that L?(m) is continuously embedded into L!(x) and it
is an order continuous Banach lattice with weak unit. There are two excluding

cases.
(1) We suppose that {fn}, C Mr2(m)(e) for some € > 0 then
alzem) 2 ol = [ 1@l [ (fu0ldu
Q o(fn:€)
2 6”fn||L2(rr1),u(0'(fna“5))'

The direct implication is obtained from the inclusion L?(m) < L!(u).
Conversely, we suppose that p(o(f,,e)) converges to 0. Since u is a Ry-

bakov measure and thus it is a control measure |m||(c(fn,¢€)) converges
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to 0, but it gives a contradiction because Mp2(m)(e) = {f € L*(m) :
|lml|(c(f,€)) > €}. Therefore, (f,,) converges to zero in L?(m) if and only

if (f,,) converges to zero in L1 (u).

If the above supposition does not hold, then (f,)n € Mp2(m)(e) for all e.
In order to simplify the notation we consider || fy||z2(m) = 1. Thus, there

exists an index n; € N such that f,, is not in Myz2(y)(e) where j; = 2.
We take = 4. Then [m](¢(f,,.47#)) < 4~ and

1/2
IXo(f0, a-i1)e foull22(m) = H/ Xo(fy a=i1)e Fy [*dm
H
1/2
i Ciiner|1/2
= |f7ll|2dm S4 . ||m(a(fm,4 jl) )HH
Xo(fnya~91)e I

<479 m||(Q)Y/2 =477,

Now we apply 1.3.2, so there exists §; > 0 such that for all A € ¥ with
|m|[(A) < 6; it follows ||xafn, || < 4~U1FD. We take jo > j; such that
4792 < §;. By the same argument, there exists ny > n; such that f,, is
not in M2 (pm)(4772), thus [|m||(o(fy,,4772)) <4772 < 64

Xo(fnya=2)e fr | < 4=+

X0 (fuy a=72)e Frall < 14772 X0 (5, 4m02)e | < 4772
2 2

We take ¢ = 4~ U211 Again, we apply Lemma 1.3.2 and there exists dy >
0 such that for all A € ¥ with ||m||(A) < 02 it follows || xa fn, ||, X4 Srall <
4=+ Let js > jo be an integer satisfying that 4773 < §5. Again there
exists a integer n3 > ny > ny such that f,,, is not in M2 (y) (4773), as in

the above case we have ||m||(o(fy,,4773)) < 4793 < &5, and therefore
Xo(frg a3y Frnlls Xo(fyamia) froll < 4702FD,

X0 (fny a-35)e fra |l <4772

In the same way, it is possible to find two subsequences {f,,}%>,; and

0 (fn,,477%), that satisfy the following inequalities:

lmll(o(fn,, 477%)) < 477,

IXo(fn, a=in)e frill < 477,
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X, amany Fusll S 470D i =1,k — 1

Now, we define the following disjoint sequence of sets:

Pk = 0(fry 477%)\ U O (frir477).

i=k+1

oo

o = o (a4 JC U o(fnind77)).

i=k+1

Thus ¢ N, = O for k # . This allows to construct the sequence of
disjoint functions hy = Xy, fn,. Due to the lattice properties of L?(m)
and Remark 1.2.2 we obtain that the sequence {h}32 , is a basic sequence.

On the other hand we check that limy_, oo || frn, — k|| = 0. Indeed

[ = il = X £, | < WX g, amiye Frll + 1IXUS L 0y ia=50) Sl
k i=k+1 i

oo oo
<470k 4 Z ||Xa(fni,4*ji)fnk” <47k 4 Z 4= (i1 t1)
i=k+1 i=k+1

—(jr+1
4~0kFY =4Ik 4 14—]’1@' — 14_(.7k—1)_
1-1/4 3 3

So if we apply Remark 1.2.1 and 1.5, we obtain that { f,,, }72; and {hx}32,
are equivalent unconditional basic sequences. O

<470



Chapter 2

m—Orthogonal sequences
with respect to a vector
measure

2.1 m—Orthogonal sequences of functions with
respect to a vector measure

Given a measure space (2,3, ) where p is an scalar measure, a sequence
{fn}52 in L?(p) integrable functions is said to be p—orthogonal, if [ f,, fmdu =
0 for m # n holds and none of the functions f,, vanishes almost everywhere. In
this chapter we present reasonable extensions of this notion when the measure
involved is a positive vector measure m : ¥ — X where X is a Banach lattice.
Our aim is to show that these definitions lead us to different geometrical prop-
erties of the subspaces generated by the sequences of functions. Actually, the
notion of orthogonality of two functions with respect to a vector measure can

be broached under different perspectives.

We recall that if f,g € L?(m) then fg € L'(m) (see [60]); so the integral
| fgdm is well-defined. The representation theorem for 2-convex order contin-

uous Banach lattices with a weak unit establishes that such an space can be al-

19
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ways identified (isomorphically and in order) with a space L?(m) of 2-integrable
functions with respect to a positive Banach lattice valued vector measure m on
a o-algebra (see [28, Proposition 2.4] or [49, Proposition 3.9]). Although these
spaces are not in general Hilbert spaces, the integration structure of the spaces
L?(m) provides several extensions of the notion of orthogonality. Some theo-
retical results and applications have been already obtained in this setting. The
notion of (weak, strong) orthogonality with respect to a vector measure m in
spaces L?(m) of 2-integrable functions has been defined an studied in the last
ten years, see for instance ([35, 36]). In this memoir we consider the three no-
tions of orthogonality with respect to a vector measure, the weak orthogonality,
the orthogonality itself and the strongly version of it that we will formalize in

the following sections.

2.2 Weak m-orthogonal sequences

Definition 2.2.1. A sequence of functions {f,}°; in L?(m) is weak m-
orthogonal if there is an element 2’ € (X'){ such that [ f?d(m,z’) > 0 for
all i € N, and for all ¢ # j

([ figyims) = [ fifydtm.at) o

For such a sequence we also say that it is orthogonal with respect to (m,z’)

when an explicit reference to the scalar measure (m, z’) is convenient.

Although for many purposes it is not necessary, we will assume that m is
a positive vector measure. It is easy to find examples of sequences that satisfy

this property.

Example 2.2.2. (1) Consider the Lebesgue measure space ([0, 1], X, dx). We
can define the positive vector measure v : & — co as v(A) = { [, 2" dx}5> ;.
It is clearly countably additive and then the corresponding space L?(v) is

well-defined. Consider now the sequence of functions
fi(z) = V2e~*/?sin(2miz) i€ N.

Note that f? < 2 € L'(v) and so f; € L?(v). Take the sequence z{ :=
{2, € 08 = (co). A direct calculation shows that [ f;f;d(v, z{)

5 1

i
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(2) Let v := arcsinh(}). Take the Lebesgue measure space ([—7,7], %, dz).
The positive countably additive vector measure v(A) = { [, r?dz ) €
co is then well defined. Note that if f € L'(v) then

/fdz/ _ {/j7 f(x)x%dx}n € co.

Consider the sequence f,,(z) = cos (2mmsinh(z)). Note that f2

IN

1 € LY(v) and so f,, € L?*(v). Take the norm one sequence x(,
o0

{W}nzo € ! = (c}). A direct calculation shows that

1

/fnfmd<l/, ZL'/0> = Wh(l)émﬂl

In what follows we provide a characterization of the situation given in the
example above, i.e. when we can find an element 2’ such that the sequence {f, }»,
is orthogonal in the space L?((m,z’)). Let us introduce first some notation and
remarks. A family ® of R—valued defined on a non-empty set ¥ is called concave
if, for every finite set {¢1,...,¢,} C ® with n € N and non negative scalars
Vi, e Yo Satisfying YO0, 5 = 1, there exists ¢ € ® such that 337, v;¢; < ¢
pointwise on ¥. The following result is known as Ky Fan’s Lemma. Let ¥ be
a compact convex subset of a Hausdorff topological vector space and let ¢ be
a concave family of lower semi-continuous, convex, R—valued functions defined
on ¥. Let v € R. Suppose that for every ¢ € ® there exists z4 € ¥ such that
@#(xp) < 7. Then there exists € ¥ such that ¢(x) < v for all ¢ € .

Let m : ¥ — X be a positive vector measure and take a sequence S = {f;}52, C
L?*(m) and a sequence of positive real numbers A = {g;}2°;. Then we write

Bg, a for the convex weak* compact subset
Bs.a = Bx N (X" n{a": (/ fidm,2') <¢g;, forallie N}.  (2.2.1)
Let us define the following continuous seminorm on L' (m).
I£l0s = swp ([ Ifldm.a). 2:22)
r'€Bs A
For every i,j € N, i # j, let us write

pijo(w) = (fi(w) +0f;(w))”, weQ, (2.2.3)

where 8 € {—1,1}. Notice that 0 < ¢; j 9 € L'(m).
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For instance, in Example 2.2.2 (1) the sequence A is A = {g;}52 = {1},
and so Bga D 2Bn N (1)} Thus, | - |/ ps 4 is equivalent to the norm of L(v).

In the following result the scalar product notation ((yx), (6x)) == > p_y VkOk

for finite sequences {vx}7_; and {Jx}}_; is used.

Theorem 2.2.3. Let m : ¥ — X be a positive vector measure. Consider a
sequence S = {fi}; C L?(m) and a sequence of positive real numbers A = {e;};.

The following statements are equivalent.

(1) For every finite sequence of non negative real numbers {vi}r such that
Yok Yk =1, indexes i, jr € N, iy # ji, and 6, € {—1,1},

<(7k)7 (sik + sjk)> < ||<(7k)a (Soikyjk70k)>||BS,A'

(2) There is an element 0 < x(, € Bx such that S is weak m— orthogonal with
respect to (m,x}) and [ f?d(m,z() =e; for every i € N.

Proof. Let us prove first that (1) implies (2). Consider the family of functions
¢ : Bga — R given by

n n

8 = e+ 25 = 3ol [ prsandm ),
k=1 k=1
where 71, ...,7, is a family of non negative real numbers such that >, v =
1. Each such a function is convex, weak* continuous and the set of all these
functions is concave. Moreover, since the functions Ty: Bga — [0,00) given
by Tp(x') = (J >y VePirjn,0x M T’y = [ D0 VkPin,jr.0:d(m, z') are weak*
continuous and Bg a is weak™® compact, there exists an element ac:b € Bsa
such that [[{(7x), (ir.jx.00 )| Bs.a = SUPweps o To(2") = Tp(zy) and so, by the
inequality en (1), we have that (i)(x;) < 0. Ky Fan Lemma gives an element
xy € Bg a such that ¢(z() < 0 for all ¢ (see [49, Lemma 6.13.]). Consequently

for every {vi}7_; and {@i, j..6, }7_; we have that

() +230) < 00, ([ prandam. )

In particular, for each couple i,j € N, i # 7, taking v1 = 1, ¢; ;1 and @; ;1 we
obtain

gite; < /(fi2+fj2+29f¢fj)d<m, 1’6> < €¢+5j+29/f,;fjd<m, $6>, 0e{-1,1}.
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Therefore, [ f;fjd(m,z() = 0 for each pair i # j. Fix now three different
indexes {i,j,k} € N. We have the inequalities

er+es < /ffd(m,a:é) + /ffd(m,a:é) <ep + e,

and so the equalities

et es = / Pdim, ) + / f2d(m, z})

for different » and s; r,s € {i,j,k}. This implies that [ f?d(m,z}) = e, for
each r € {i, j, k} and finishes the proof.

The proof of (2) — (1) is a straightforward calculation; suppose that there
is an element x{, as in (2) and take non negative real numbers 7, ...,7, such

that ), v = 1. Consider a sequence of functions {y;, j, 0, }7—;- Then

<(7k)a(€ik +€jk)> = Z’Wf(sik +5]k /kad m xO /fJQk m 1‘0

k=1
ki / d(m, z(,) / d{m, xy) +29k/fikfjkd<m,$6>)

sip 11> % / 2 4 f2 490 fo fi) dm, 7)) = {0k (910 00)8) | Boa-

_£€BSA k=1
O

Remark 2.2.4. For particular cases, the condition given in part (1) of Theorem
2.2.3 can be written in a simpler way. Consider a positive vector measure
v: X — (' and take the sequence A given by {|| [ f2dv||}2,, ie. g; = | [ fdv||
for all . The positivity of v and the 1-concavity of ¢! implies that the condition
(1) in Theorem 2.2.3 is equivalent to the inequality

H/fl?d” , +H/fj2dv WS H/(fi—l-ﬁfj)de/

foralli,j €N, i# j,and 6 € {—1,1}.

el

In Examples 2.2.2, the element of the dual space that defines the measure
was explicitly computed. However, sometimes this is not possible and then the
characterization theorem given above becomes useful. This is the situation that

is shown in the following example.
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Example 2.2.5. (1) Let (2,3, u) be a probability space. Consider a rela-
tively weakly compact sequence {gi}x C L'(u) where each gy is positive
with norm one. Let us define the vector measure v : ¥ — £°° given by the
expression v(A) := { [, grdp}72,. It is well defined, and since {gi }» is uni-
formly integrable, it is countably additive. Recall that L?(v) C L(v) and
note that if f € L'(v) then [ fdv = {[ fgrdu}r € ¢>°. Take a sequence
S :={f;}; € L*(v) satisfying the following properties: || [ f2dv| <1 for
all © and for every finite subset Iy C N there is an index n € N such
that {f; : i € Io} is orthonormal in L'(gndu). Then the set Bg a is just
By N ((Z“)’)j. Let us show that this is enough to prove that condition
(1) in Theorem 2.2.3 is satisfied.

Take the sequence A := (g;);, where &; = 1 for every 7. Then the set Bg a
is just Bgeoy . For every 4,5 € N, i # j and 6 € {—1,1}, recall that

2
ige = (fi +0f;)".
So we have to prove the inequality

2< ||<(’W€)’ (‘pik,jkﬁk»HBs,A

for v, > 0 such that > ;" v, = 1 and {fi,, fj, € S : ik, Jx € Lo} for a
finite set Ip. But this is a direct consequence of the requirements of { f;};

and the definition of the /°° norm; we find an index n such that

2= o [(F2+ £2)gnd = Z% [ i+ 008 Pond
k=1

/Z’Vk‘ﬁm,]kﬂkdy €n) = /ZVk@ucmﬂkd(V en)

k=1 k=1

n
< H § VePik,jr .0k
B
k=1

Therefore, by Theorem 2.2.3 there is an element 2’ € By N ((Ew)’)j

such that S is orthonormal when considered as a sequence in L2(|(v, z')|).

Notice also that, although the element z’ do not belong in general to ¢!
and cannot be identified with a sequence, the measure (v, z’) is absolutely
continuous with respect to p, so there is an integrable function such that
(v,2')(A) = [, hdp for every A € 3.



2.3 m—Orthogonal sequences 25

(2) An example of the situation above is given by the following elements. Take
the Lebesgue space ([0, 1], ¥, dr) and the functions g, (z) := 2sin?(2" " !7x),

n € N. Consider the Rademacher functions
fi(z) := sgn(sin(2'nz)) i€ N.

A direct computation shows that [ f2g,dz =1 for all i,n € N, and that
for all 4,5 < n, [ fifjgndz = 0 if i # j. Consequently, the inequality in
Theorem 2.2.3 is satisfied, and there is a measure (v, 2’) such that {f; };

is a weak m—orthonormal sequence in L?(m).

2.3 m—Orthogonal sequences

Let (2, %) be a measurable space and X a Banach space. Given a vector mea-
sure m : ¥ — X, consider a sequence of (non zero) real functions {f,}, that
are square m-integrable. We say that it is orthogonal with respect to m if for
every pair j,k € N, [ f; frdm = 0 if j # k. Roughly speaking, it is defined by
imposing simultaneously orthogonality with respect to all the elements of the
family of scalar measures defined by the vector measure. This notion generalizes
the usual orthogonality given by the integral with respect to a scalar measure,
and provides a natural setting for studying the properties of functions that are
orthogonal with respect to a family of measures. The analysis of this kind of
sequences has a long mathematical history, for instance regarding orthogonal
polynomials. At the end of the 19th century some relevant cases of families
of polynomials that are orthogonal with respect to a large set of scalar mea-
sures —indeterminate measures— were known. The first example of such an
indeterminate measure was presented by Stieltjes in 1894 (see [62]). He showed
that

oo

phlogz sin[2mlog(x)]de =0 for each n=0,1,2..
0

which implies that all the densities on the half-line

(1 + Asin[27 log(z)])
rlogx

da(z) = , Ae-1,1]

have the same moments. The polynomials that are orthogonal with respect to

this class of measures are a special case of the Stieltjes- Wigert polynomials.
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The study of this kind of measures was the starting point of a mathematical
theory that was firstly developed by Riesz and Newalinna and is still now a
fruitful research area (see for instance §2.7 in [63], and [8, 47, 52]). Using the
family (dx)ae[—1,1) of densities, a vector measure can be defined in an easy way
(see Example 2.3.2). In general this construction can be done for abstract sets
of measures —for instance, parametric models in statistics—, and then to find
sequences of functions that are orthogonal for all the elements of a family of
measures is equivalent to the problem of finding sequences that are orthogonal
with respect to a vector measure. From the point of view of the vector measure
theory, orthogonality with respect to a vector measure has been studied in a
series of papers in the last 10 years (see [34, 35, 36, 59]). We define now formally

the notion of m—orthogonality with respect to a vector measure.

Definition 2.3.1. Let (£2,3) be a measurable space and X a Banach space.
Given a vector measure m : ¥ — X, consider a sequence of real functions

{fi}2, that are square m-integrable. We say that {f;}:;~; is m-orthogonal if

/ffdm7éo, forall i€N, and/fifjdm:O, i#j i,7€N. (23.1)

Furthermore, we say that {f,}, is a m—orthonormal sequence in L?(m) if for

X

Example 2.3.2. The first example of an indeterminate measure was presented
by Stieltjes in 1894 (see [62]). For each n € N, consider the integrals:

/ ghe n* @1 + Asin(27 In(z))]de = N E
0

If we take |A| < 1 then py(z) = e—ln% [1 4+ Asin(2r In(z))] > 0 is a positive
function for all # € [0, 00, thus Fx(y) = [ e~ n*(@) zn[1 4 Asin(27 In(z))]d is a
family of non decreasing dlstrlbutlons with support into [0, co[ which have the
same moments S, = ﬁe("+1)2/4. We consider the (n + 1) x (n + 1) Hankel
matrix:

So S1 ... Sh,

Sl . .
A= | (2.3.2)
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The sequence {S,}22, is defined positive if det(A,) > 0 for all n € N. We
define the linear operator £ : Plz] — R such that £(Qn(z)) = >.7— xSk

where Q,,(z) = Y1 _, arz”.

Remark 2.3.3. If the sequence {S,,}5° is defined positive then the polynomial

So S ... S
P.(z) = . (2.3.3)
Sno1 ... Son—1
1 T ... "
satisfies that 0 ;o
1 <n
£(zFP,(z)) = { det(A,) if k=n (2.3.4)

It is immediate to prove that the sequence {S, = /meT1*/4}2 s de-

fined positive and:

0 if E<n

/O 2" Py (z)e™ "™ [1 + Asin(27 In(z))]da = { det(A,) if k=n

for every A € R, |A| < 1. The remark 2.3.3 provides a procedure for building a
m—orthogonal sequence for a suitable vector measure. For instance, consider
the following polynomials

= Sy =2.27588,

= —4.81803 + 2.27588x,

= 183.457 — 139.22z + 15.05922,

= —655344. 4+ 611203.2 — 106211.22 + 3438.9323,

Now we take Q = (0,00) and ¥ the o—algebra of the Lebesgue subsets of €.
We can define v : Q — ¢y by

oo

e~ In?(x)
v(A) = {/A 1+ :_ sin(27m ln(x))]dx} ,

m m—+1
m=1

where dzx is the Lebesgue measure and A € 3. Using elementary integral calcu-

lus, it is easy to prove that for every A € 3,

e~ In?(z)
lim 1+
m—o0 [ 4 m m+1

sin(27 In(x))]dz = 0.
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This shows that v is well defined and so countably additive. Moreover, it is also
clear that the functions p;(z) € L?(m) and they satisfy that for all j < I,

/ pj(x)pi(x)dv = Bid;
0

where By is a non null constant for all [ € N.

Example 2.3.4. Let us provide another example of v-orthogonal sequence with
respect to a vector measure v. Consider the family {Pn,k},(fk of Stieltjes- Wigert

polynomials. For every n € N and k € N,
n ,2 .
=3 (7)] a0 vammar
HJ 1(1 — q z:O q
where g(k) = exp(—(2k?)~1), k is a positive integer and we call

[(n)} _ (1 - Q(k)n)(l - Q(k)"*l) Ce (]_ _ (](k)nfi*l)

as a g-binomial coefficient also called a Gaussian coefficient or Gaussian poly-

(71)n ( n/2+1/4

Pnk(sc) =

nomial. Let us also consider the family of normalized weights {wy}72, =
{a(k)ka’k legz1oo in [0,00), where a(k) = en?. Tt is well-known that
the family of polynomials above is orthogonal in the following sense: for a fixed

k € N, the sequence {P, }72, is orthogonal with respect to the weight wy, i.e.

/(;OO Pn,k(x)Pm,k(x)wk(-r)dﬂ(x) = O, n 75 m,

see [63, 2.7]. Consider the Lebesgue measure space ([0, 00), B, 1) and take the
set Qo = Uz, ([0,00) x {k}). Let us define the o-algebra X, given by elements
of the form A = (J;—,(Ax x {k}) C Qo, where A, is a Lebesgue measurable

subset of [0, 00) for every k. Let us define the vector measure v : g — ¢g as
=3 [, min)e.
k=1

where A is an element of X as above.

Suppose now that the polynomials P, ; are normalized in the Hilbert space
L?([0,00), wdu) given by the weighted measure wy,(z)du(x). Define the func-
tions Qnk : Qo — [0,00) by

Qnk((z5,7)) : =k'?P Py i(x5) 055
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for (z;,7) € Qo. A careful writing of the integrals with respect to v of the
products of such functions shows that
Qn,ka,st =0
Qo

whenever n # m or k # s. To see this, just take into account that if k # s, then

s1/2p1/2 oo
- Qn,ka,st = (j;k (f /0 0- Owj (m)d,u(x))ej)
1/23.1/2 oo
+(ST/O P, k() 'Owk(z)du(:c))ek

§1/211/2 oo
D / 0+ Py s(z) ws(z)dp(z))es = 0
0

S

and for k = s and n # m,

o Qn kQm kdv = (Z (E /OO 0- Owj(x)d,u(x))ej)

#kj 0

+(/0°° Py () - P ie(2) wi(z)dp(x)) e, = 0.

Therefore, every subsequence of {Qy, 1 }2°,_; defines a v-orthonormal sequence.

Now we are going to provide some results on the existence of m—orthonormal
sequences in L?(m). It is easy to prove the existence of m-orthonormal se-
quences of functions in any (non trivial) space of square integrable functions

with respect to a vector measure.

Lemma 2.3.5. Suppose that there is a sequence {Ay,},—, into ¥ of disjoint

non ||m|—null sets. Then there is a m-orthonormal sequence in L*(m).

Proof. The characteristic functions x4, € L?(m), for every n € N. Moreover,
since ||ml|(A) # 0, there is a subset B,, C A such that |m(B,)|y > 0. Let us

define fn = W, n € N. Then

g [ XBa g ] o~ (B
/ Jud / T(B,)] " ||m(Bn>||/ xpodm = o 7

On the other hand, if n # k for n,k € N, it is clear that [ f, frdm = 0,
since B,, N B, = 0, and the result is obtained. O
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It is clear that an m-orthonormal sequence also is also orthogonal for each
associated m-positive measure (m, z’). The notion of m-orthonormal sequence
is the natural generalization of the concept of orthonormal sequence in a Hilbert
space L? (1) and has been studied in [48, 59]. As the reader will see, the results on
almost everywhere convergence that will be shown in next chapter prove the ones
that hold for the case of series in Hilbert spaces. However, the m-orthonormality
requirement for a sequence of functions in the non scalar case introduces a strong
restriction, in particular regarding completeness of the orthogonal sequence. An
orthonormal set ¥ is said to be complete if there exists no other orthonormal
set containing W, that is, ¥ must be a maximal orthonormal set. It is easy
to prove that an orthonormal set ¥ is complete if and only if for any f such
that f is orthogonal to ¥, f must be zero. Let us show this fact with an easy
construction. Suppose that (£2g, X, po) is a probability measure space, and
consider a complete orthonormal sequence {g;}22; in L?(pg) such that g, =
Xq,- Suppose that {g;}32; is also mg-orthonormal sequence for a countably
additive measure my : Xy — X that is absolutely continuous with respect to
to. Then every measure (mg),, ' € X', is po-continuous, and there is a
function h,s € L'(pg) such that d(mg),s = h,dpg. For every k > 2,

0= </glgkdm0’m/> = /gkhx'duo-

If moreover h, € L%(up), since the sequence {g;}52; is complete, the equalities
above imply h,» = r(z')xq, for a real number r(z'). Therefore, if we assume
that for every ' € X’ the corresponding Radon-Nikodym derivative belongs to
L?(uo), we obtain that

(1’1’10)$I(A) = T(SL’/)/,L()(A), Ae o, e X'.

This relation establishes a strong restriction on mg. For instance, suppose that
X is a Banach space with an unconditional basis {e;}32;. Then mg(A) =
S oo (mg(A), e})e;, where {€}}52, are the corresponding biorthogonal function-

als and A € ¥j. In this case the relation above implies that

o0
mo(A) = (D r(e))ei)o(A)
i=1
for every A € Y, i.e. mg can be in fact considered as a scalar positive measure.

Remark 2.3.6. The above argument shows that in general we cannot expect

completeness for m-orthonormal sequence of functions, although under certain



2.4 Strongly m—orthogonality 31

(strong) assumptions it is possible to obtain m-orthonormal basis for L?(m)
(see [48]). Thus, although the results that we present in what follows can be
used to obtain information about standard orthonormal sequences {f;}$2; in
Hilbert spaces L2(u), the procedure of splitting the scalar measure y into a
vector measure m preserving orthonormality is essentially limited by a certain

non completeness assumption for {f;}5°;.

The next result is a direct consequence of the Kadec and Pelczynski pro-
cess for obtaining disjoint sequences -see Chapter 1.3 for notation-. It provides
a method for, given a convenient sequence {f,},, finding a disjoint (and then

m-—orthogonal) subsequence of {f,}..

Corollary 2.3.7. Let H be Hilbert space which is also a Banach lattice and
m: ¥ — H a positive vector measure such that |m|[(Q) = 1. Take a Rybakov
control measure p = |xym| for m with ||zf|| = 1. If {fu}tn C L*(m) is such that
I fallL2my =1 for all n and {fn}n € Mp2(m)(€) for all e > 0 then there exists
a subsequence {hy}32, C L*(m) such that |hi| < |fu,| for all k and {hi}3,
is @ m—orthogonal sequence in L*(m). Moreover, {fn, }3, and {hi}32, are
equivalent unconditional basic sequences that satisfies limy o0 || fr, —hil 2(m) =
0.

The proof is a direct application of Theorem 1.3.3. Note that limg_,o0 || fn, —
hillL2gm) = 0 and || fn, ||L2(m) = 1 for all k implies that [ hZdm # 0 for large
enough k.

2.4 Strongly m—orthogonality

In this section we present the last notion of orthogonality, that is the most
restrictive. In what follows we will establish the conditions that are required in

order to construct a strongly m—orthonormal system.

Definition 2.4.1. Let us consider a separable Hilbert space H with an or-
thonormal sequence {e;}5°, and a countably additive vector measure m: ¥ —
H. We say that {f;}22, C L?(m) is a strongly m-orthogonal sequence if
[ fifjdm = §;5e;k;, k; > 0. If k; = 1 for every i, we say that it is a strongly

m-orthonormal sequence.
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It is clear that if {f,}, is a strongly m-orthogonal sequence then {f,}, is
a m-orthogonal sequence and therefore, in the case when H is also a Banach

lattice and m is positive, {f,}, is weak m-orthogonal. The converse is not true.

Example 2.4.2. Let rx(x) = sgn[sin(2¥~1x)] be the Rademacher function of
period 27, defined at the interval Ey = [2(k — 1)m, 2kn], k € N. We define the

following countably additive vector measure,
o (-1) ( / 2
m(A) = — rrdp | ex € £°.

I; 2k ANEy

Note that if f € L'(m) then [ fdm = (=55 [ fredp)x € £2. We consider the

next sequence of functions

fl (l‘) = sinz- X[r,27]

fZ(x) = sin2z- (X[O,Qﬂ'] + X[%ﬂ'ATr])

f3(x) = sindz- (X[O,47r] + X[24—37r,67r])

fe(x) = sin oF—1y. (X[0,2(k=1)m] + X[(2k— oy )ﬂ—,Qkﬂ)y k> 2.

These family of functions of L?(m) can be used to define a strongly m—orthogonal
15 13 13

] Wy g Wh v b h )b

Figure 2.1: Functions fi(z), fo(x) and f3(z).

sequence (see figure 2.1), since

([ fdm.e.) - WLLﬁ“WZQL

([ sramee) =~ [

1
</fnfmdm, ek> ok : fofmredp =0, for n # m and Vk
k

frredp =0, Vk#n
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If we define

we obtain

/Ffdm:ei, VieN and /FiFjdmz(), Vi,j €N, i#j.

Now we adapt a well know result of Bessaga and Pelczynski (see for in-
stance [24], Ch.V) to the context of sequences of functions on spaces of integrable
functions with respect to a vector measure in the following sense. We want to
identify when a sequence { J f,%dm}::):l C H is a basic sequence of H. This will
be the main tool for obtaining what we have denoted strongly m—orthogonal
sequences. The first requirement in Corollary 2.4.3 is obviously satisfied in the
case of m-orthonormal sequences. The second condition constitutes the key of

the problem.

Corollary 2.4.3. Let m : ¥ — H be a vector measure, and consider the
basis {en},—, of H. Let {fn},—, be a sequence in L*(m). If the sequence
{J fﬁdm}:}:l satisfies

(1) inf, || [ f2dm]|, =< >0, and

(2) lim, <ek, i f,%dm> =0, k e N,

then { [ f2dm} "~ has a subsequence which is a basic sequence, moreover it is
n n=1 ’

equivalent to a block basic sequence of {en}, .

The proof of this corollary is an immediate consequence of Theorem 3 [7].
Let us highlight with an example the geometrical meaning of this condition by
showing a particular sequence of functions that satisfies Remark 1.2.5. This is

in a sense the canonical situation, involving disjointness.

Example 2.4.4. Let (2,3, 1) be a probability measure space. Let us consider
the following vector measure m : 3 — £2,

m(A) = > (AN Ae; € 12, A€y,
i=1

where {4;}.2 is a disjoint measurable partition of 2, with p(A4;) # 0 for all i €
N. Notice that [ f2dm = 72, ([, f*du)e; € €2 for all f € L?(m). Consider



34 Chapter 2. m—Orthogonal sequences with respect to a vector measure

the sequence of functions {f,}52, in L?(m), defined by f,, := xa,/(1(An))"/2.
For every k € N, the following holds:

o0

lim <ek,/f3dm> = lim <ek, Z </ fzdu> ei> = lim/ fdp = 0.
n n A; noJA,

=1

|| / Pdmlpe =1 for all n.

Therefore, condition (2) of Corollary 2.4.3 is fulfilled in this example: the
role of disjointness is clear. The geometrical meaning of this condition by show-
ing a particular sequence of functions that satisfies Remark 1.2.5. This is in a

sense the canonical situation, involving disjointness.

For the case of vector measures m having a compact integration operator,
we provide an easy argument showing that there are no strong m—orthogonal
sequences in L?(m) (see Proposition 3.48 [49]). In particular, this shows that the
existence of such sequences is a pure vector measure phenomenon. In fact, this
property is closely related to the existence of strongly m-orthonormal sequences.
Compactness of the integration map is nowadays well characterized. It is a very
strong property in the sense that it implies that the space L'(m) is isomorphic
to an L' space of an scalar measure. The result can be found in Proposition
3.48. [49] (see also the references there in). The following necessary condition

for the compactness of the integration operator shows this.

Lemma 2.4.5. Let m : ¥ — H be an countably additive vector measure. If
there erxists a strongly m-orthonormal sequence in L?(m), then the integration

operator I, : L'(m) — H is not compact.
Proof. Let us consider an orthonormal sequence {e;}; in H and let {f;}; be a
strongly m—orthogonal sequence in L?(m). Then [ f;fjdm = §;je;, an thus
[ fim =i = ().
Therefore {sz}Zl C Bri(m) and so the sequence
{Im(fvz)}zl C Im(BLl(m)) C Im(BLl(m))

does not admit any convergent sub-sequence, from what follows that I (Br1(m))
is not compact and 5o, Im (Br1(m)) is not relatively compact, what allows us to

conclude that I, is not compact. O



2.4 Strongly m—orthogonality 35

Therefore, if Iy, : L*(m) — H is compact then no strongly m-orthonormal

sequence exists in L?(m).

The following theorem gives a necessary condition -and, in a sense, also
a sufficient condition- for the existence of strongly orthonormal sequences in a
space of functions L?(m) starting from a given m-orthonormal sequence. In
general, it is not possible to find a subsequence satisfying this condition. How-
ever, as the reader will see, it is possible to find a vector measure m* satisfying
that L?(m) = L?(m*) and with respect to which there is a subsequence that
is strongly m*-orthonormal. We need first the following lemma, which proof is

elementary.

Lemma 2.4.6. Let m : ¥ — (2 be a vector measure. Let o : (> — H be
an isomorphism, where H is a separable Hilbert space, and consider the vector

measure m* = @ om. Then the spaces L?(m) and L?(m*) are isomorphic, and
for every f € L*(m), [ f?dm* = ([ f?dm).

We need the following formal requirement for the elements of the sequence
{fn}5%; in the result below. We say that a function f € L?(m) is normed by
the integral if || f||z2(m) = || [ f*>dm||'/2. This happens for instance when the
vector measure is positive —i.e. it has its range in the positive cone of a Banach
lattice—, see [23] or [49, Lemma 3.13]. We impose this condition for the aim
of clarity, although the result could be adapted using a convenient renorming

process in order to avoid this requirement.

Theorem 2.4.7. Let us consider a vector measure m : ¥ — (% and an m-
orthonormal sequence {f,}%, of functions in L?(m) that are normed by the

integrals. Let {e,}5%, be the canonical basis of £%. If

lim <ek,/f2dm> =0

for every k € N, then there exists a subsequence {fn,}32, of {fu}or, and a
Hilbert space valued measure m* : ¥ — H such that {fn, }72, is a strongly
m*-orthonormal. Moreover, m* can be chosen as m* = ¢om for some Banach

space isomorphism ¢ from €2 onto H.

Proof.  Consider an m-orthonormal sequence {f,}>°; in L?*(m) and the se-

quence of integrals { [ fﬁdm}:o:l. As an application of Corollary 2.4.3, we
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get a subsequence { Ik fflk dm};il that is equivalent to a block basic sequence
{en, 172, of the canonical basis of H. Recall that following the notation given
in the Preliminaries o; ; are the constants that appear in the definition of the
block basic sequence. Associated to the block basic sequence obtained there is
an isomorphism ¢

92

£

[ —
A := span(e}, ) —25 B := span </ fﬁkdm)

such that @(e], ) := [ f2 dm, k € N.

We can suppose without loss of generality that the elements of the sequence
{en,, 122, have norm one. To see this, it is enough to consider the following in-
equalities. First note that there are positive constants k and K such that for
every n € N, k = k| [ f2 dm| < |l || < K| [ f2 dm| = K as a conse-
quence of the existence of the isomorphism ¢. Let {A;}52, be a sequence of real

numbers. Then
NS ) A2l
”ZA |'||”2 > |fe;ﬁ2 >y T

=1 1=1 j=p;

The existence of an upper and a lower bound for the real numbers ||e}|| given

above provides the equivalence between this quantity and

oo
1> Neill3
i=1

for every sequence of real numbers {\;}$2;.

Since each closed subspace of a Hilbert space is complemented, there is a
subspace B¢ such that
(> = B®,y B°

isometrically, where this direct sum space is considered as a Hilbert space (with
the adequate Hilbert space norm). We write Pg and Pg. for the corresponding
projections. Let us consider the linear map ¢ := ¢~ @ Id, where Id : B¢ — B¢
is the identity map.

B @, B¢ -5 A, BC.
Note that H := A &, B is a Hilbert space when the scalar product

<I+yaxl+y/>H: <:C"T,>H+<yay/>]-[7 x+y7x/+yl GA@Q BC
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is considered. Obviously, ¢ is an isomorphism. Let us consider also the vector
measure m* := ¢ om,
S 02 2 Aw, B

By Lemma 2.4.6, L?(m) = L?(¢ om) = L?*(m*). Let us show that {f,, }3,
is a strongly m*-orthonormal sequence. We consider the orthonormal sequence
{(e},,,0)}32, in H. The first condition in the definition of strongly orthonormal

sequence is fulfilled, since

[ fam = [ g2 atoom) o (Pad [ 72,m). 2o [ 12,00 )

= (o7 sam).0) = (€,.0
for every £k € N. The second one is given by the following calculations. For

k1,

i

since ¢ is continuous and { f,, }3, is a m-orthonormal sequence. Thus

= | [ retmtoom]| = ot sucsustm]| =t =0

/fnkfnldm* =0.

This proof the theorem.

Corollary 2.4.8. Let m : >, — YT (Y a separable Hilbert space) and let
{fa}s2, be an m-orthonormal sequence in L?(m), such that { [, fﬁdm}zozl is
weakly null in H. Then there is a subsequence {fn,}32, and a complete or-
thonormal basis {n;}32, for T, such that {f,k)}32, is strongly m-orthonormal
with the basis {n;}72,.

Remark 2.4.9. In a certain sense, the converse of the theorem above also holds.
Take as the vector measure m* the measure m itself with values in ¢? and
consider the canonical basis {e,}52 ;. Clearly, every strongly m-orthonormal
sequence is m-orthonormal and satisfies the condition lim,, (e, [ f2dm*) = 0,
since

<ek,/f5dm*> = (ex,en) =0, k #n.



Chapter 3

The Menchofl-Rademacher
Theorem for L?(m)

One of the key issues that arose in the late XIX, it is when the development of a
Fourier series of a continuous function converges pointwise to the function. The
first result that answered partially this question was given by Dirichlet showing
that if a function has bounded variation then its Fourier series converges point-
wise everywhere to the local average of the function. If we change the summation
method we can obtain the convergence almost everywhere. Later Fejer showed
that if we consider the sums of Cesaro sums instead of the ordinary sums then
the Fourier series of a continuous function converges pointwise everywhere to the
function. Luzin conjectured that the Fourier series of a Lebesgue-measurable
function of L? converges almost everywhere. Kolmogorov showed an example
of a function in L' whose Fourier series diverges almost everywhere. Finally
Carleson proved the conjecture of Luzin in 1966. In this section we analyze
almost everywhere convergence of weak m-orthogonal sequences, and we obtain

a version of a Mechofl-Rademacher Theorem.

Let (2,3, 1) be a finite measure space, and consider an orthonormal se-
quence { f; }; of real functions in L?(11) and a sequence of real numbers {a;};. The

Menchoff-Rademacher Theorem (see [45, 46, 51]) is the main result concerning

39
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p-almost everywhere convergence of the norm convergent series Y .-, a; f;, and
establishes that it converges p-a.e. if > oo, |a;|*log?(i + 1) < co. Although for
particular (even complete) orthonormal sequences this result can be improved
(for instance, it is enough that Y ;- [a;|> < oo for the Haar and the trigono-
metric sequences, see 1.6.1 in [1] and [11]), it is optimal if we consider any

orthonormal sequence.

In this chapter we prove a Menchoff-Rademacher type theorem on almost
everywhere convergence of series in L?(m) and we analyze some particular
cases regarding co-sums of Lebesgue spaces. Although several properties and
applications of orthogonal series with respect to a vector measure are known
([35, 36, 48]), the question of the almost everywhere convergence of series de-
fined by such functions has not been studied yet. Following this research and
as an application of the criterion for weak orthogonality, the results that we
present provide also reasonable answers to the problems concerning almost ev-
erywhere convergence of (strongly orthogonal) series that appear in [48, 59].
From the methodological point of view, we follow the technique that is used in
[64] to study the almost everywhere convergence of series. In Section IIL.H of
this book it is shown that there exists a deep link between the evaluation of
2-summing norms for a special class of operators between sequence spaces and
the problems concerning almost everywhere convergence of series; the origin of
this idea can be already found in [6, Section 4] (see also [50]). Recently, related
techniques have been used in [14, 20, 21], for instance for proving generaliza-
tions of the Menchoff-Rademacher Theorem for vector valued Banach function
spaces ([21]). We explain the required version of this argument for our work
in the proof of Theorem 3.2.2 and we establish the requirements for obtain-
ing the almost everywhere convergence of series defined by weak orthogonal
sequences. Finally, we provide a technique to construct non trivial examples of
weak m-orthogonal sequences {f;}5°, in particular Banach lattices such that
the requirement Zfil a? < oo on the sequence of scalar coefficients implies the

a.e. convergence of the series Y .2, a; f;.
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3.1 About almost everywhere convergence of se-
quences in L*(m)

Let (€,3) be a measureble space, X a Banach lattice and m : ¥ — X a vector
measure. Let us establish first some general results on m—a.e. convergence
of sequences in L?(m). Throughout this section {f,}, will be a sequence of

measurable functions of integrable square with respect to a vector measure m.

Definition 3.1.1. Given a function f € L?(m), we define the set
Ea(a) = {w € Q| fulw) — fw) [> a}. (3.1.1)
The sequence { f,}52, is said to convergence in vector measure m to f if
Tl [ m | (Bu(0) =0 (3.1.2)

for each . Since m is a positive vector measure, the condition (3.1.2) is equiv-

alent to the following expression

lim || m(E, (@) |x=0.

n—oo

The following two results can be found in Section 7 [5] for scalar measures.

Lemma 3.1.2. Let {f,}>2, be a sequence of measurable real-valued functions
which converge to a measurable function f in L?(m), then {f,}5, converges

to f in vector measure m.

Proof. Since the inequalities

1/2
[ fa=Fllzzm) = | (Fo=F)XEn (@) lL2m) 2 llaxXE, @)llz2m) = lol|lm][ (B (a))

hold for any constant K and it is clear that if f,, — f in L?(m) then the last

term converges to 0. O

The above result can be obtained immediately if we apply the following

implications. Let p be a Rybakov measure. Then

e f, — f in vector measure m if and only if f, — f in u measure.

o If f, — fin L?(m) then f, — f in L?(p).
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Definition 3.1.3. The sequence {f,}>2; of measurable real-valued functions
converges m-almost everywhere to a measurable function f if there exists a set
M in Q with ||m]||(M) = 0, such that for every ¢ > 0 and w € Q— M there exists
a natural number N (g,w) such that if n > N(g,w) then | f,(w) — f(w) |< &.

Proposition 3.1.4. Let {f,}22, be a sequence of real-valued measurable func-
tions such that converges to a measurable function f in the norm of L*(m).

Then there is a subsequence which converges m-almost everywhere to f.

Proof. By Lemma 3.1.6 we have that if {f,}52, converge to a measurable
function f in the norm of L?(m) then {f,}5°; converges to f in vector measure
m. Now we proof that there exists a subsequence that converges m-almost

everywhere to f. Select a subsequence {fy, } of {f.} such that the set
By ={we Q| fa,(w) — flw) [227F}

satisfies | m||(Ey) < 27%. Let F, = U;ik E; so that Fj, € ¥ then

lml|(Fy) = [m|[(| ] Ej) <> llml|(E;) <> 277 =27 ¢,
j=k j=k j=k

If i > k and w is not into F, then |f,,(w) — f(w)| < 27%. Let F = N2, Fg.
Then ||m||(F) = 0. From the argument just given it follows that { f,, } converges
m-almost everywhere to the measurable real-valued function f. O

In what follows we analyze some properties of the integrals in the subspaces

generated by m—orthogonal sequences.

Lemma 3.1.5. Let {f;}2, be an m—orthonormal sequence. For all Iy C N and
(Mi)ier, C R such that g = Aifi converges in L*(m), then [ gfjdm =0
if j € N\Iy

i€ly

Proposition 3.1.6. Let Y(v) be a Banach function space, m : ¥ — Y(v) a
positive vector measure and {f;}52, a m—orthogonal sequence and let fo be a
measurable function such that fo € L*(m). Then if || fo — Yoiq Nifi l| 2 (m)

converges to 0 we have:

(1) [(O2i_, A2 f3)dm is an increasing positive sequence that converges to

ffgdm in norm and so v—almost everywhere.



3.1 About almost everywhere convergence of sequences in L?(m) 43

(2) [(Ci, Nifi — fo)*dm is a decreasing positive sequence that converges 0
in norm and so v—almost everywhere.
(3) [ X1 Nifidm converges to [ fodm v—almost everywhere.
Proof. 'We suppose that || fo — > ;"1 Xifi || 2(m) converges to 0. Then

/ | > Aifi = fo |? dm = /(Z Xifi = fo)?dm
i=1 i=1

:zn://\?ffdm+/f§dm—2zn:)\i/fifodm

1=1 =1

-y M fidm+ [ fidm
Y. [ssiam [ 5
23 [ B fodm 23N [ LY Mfidm
=1 k=1 =1

k=n-+1

:Z/A?ffder/fgdm—2Z/A§f3dm
=1 =1
:/fgdm—ZAf/ffdm.
i=1

Hence, we have that {}1"; A7 [ f2dm} is an increasing sequence that con-
verges to [ f@dm in norm and so v—almost everywhere, and also we have that
(2) holds. In order to prove (3), recall that if T : X (v) — Y (v) is a positive op-
erator between Banach function spaces, we always have that if 0 < f, g € X (u),
f-g€ X(p) then T(f-g) <T(f>)'?-T(g?)*/2. Since the integration operator

with respect to m is positive, just consider the (pointwise) inequalities

([ o= Yo nsfoam) (@) 2| [ (fo— 3" Aifi)dm

=| /fodm—/(é:&fi)dm|

so the sequence { [ Y7 | A, fidm}n converges v—almost everywhere to [ fodm.
O

Remark 3.1.7. Let Y(v) be a Banach function space, m : ¥ — Y (v) a vector
measure and and {f;}32; a m—orthogonal sequence and let fy be a measurable
function such that fo € L?(m). If we consider an m—orthogonal subsequence
{fir }r of {fi}i such that || fo — > Xifi. l|lL2(m) converges to 0 then the
Proposition 3.1.6 holds.
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3.2 The Menchoff-Rademacher Theorem for
weak m-orthogonal sequences

In this section we study the almost everywhere convergence of functional series
defined by (real valued) functions that are weak m-orthogonal for a vector
measure m. The vector measure is supposed to be positive through all the
chapter. We develop a technique for generalizing the arguments that prove the
Menchoff-Rademacher Theorem to our setting (see [64, III.H.22] for the scalar
measure case). It provides the adequate elements for proving more specialized
versions of this theorem depending on the properties of the space where the
vector measure is defined. Let m : ¥ — X be a positive vector measure over
(©,%). Our aim is to obtain conditions on a weak m-orthogonal sequence
{f:}: and a sequence of real numbers {a;}; to assure (m, z’)-almost everywhere
convergence of the series > o2 | a; f; for a certain 2’ € (X'),.

Let 2/ € (X')},. Let {f:}: be a sequence that is orthogonal with respect to
(m, 2’). Consider Banach sequence space L over the standard measure space on
N with canonical (normalized) basis {e;};. If s is a natural number, we write

®, for the function @, : Q — L given by the formula
D, (w) = Zfi(w)ei, w e .
i=1

Note that this function belongs to the Bochner space L?({m,z’), L) for every
x' € (X'){, since f; € L?(m) for every i € N can be considered as a (class of)
function(s) of L?((m,z’)).

Definition 3.2.1. Consider a Banach sequence space L and a sequence of real

numbers a := {a;};. We denote by o, 1, the operator o, 1, : L — £>° given by

oo

oa,.((Ni)i) = {(Z aMz‘)} : {Ni}i e L,

n=1
if it is well defined and continuous. We also write o2, for the operator o, :

L — (> defined as o4(ny,1,, where a(N); = a; for every i > N, and 0 otherwise.

Theorem 3.2.2. Let 2/ € Bx: N (X'){,. Consider a sequence of real numbers

a={a;}2; and a sequence {f;}52, € L*(m) that is orthogonal with respect to
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(m,2’). Let L be a 2-concave sequence space and let M be a sequence space such
that (L)g) = M'. Suppose that

(1) there is a constant K such that ||{{[ f2dm,z')};_;||m < K for every s € N
and
(2) the operators o)) : L — (> are 2-summing and limy oo m2(0) ;) = 0.

Then the series > ., a;f; converges (m,x’)-a.e.

Proof. First we prove the following claim: Let Y be a Banach space and let

T :L — Y be a 2-summing operator, then for every natural number s,

’ 1
170412 'y < 72(T) I / f2dm,z )y |k

To prove this, first note that the elements of the space (L')}5 are sequences
7 = {7;}; that satisfy that there is a sequence 2’ = {z}}; € L’ such that for
every i € N, |2/|2 = |r;|. Since L’ is 2-convex (see [42, Proposition 1.d.4(iii)]),
(L')iz) is a Banach space with norm ||7]|(z),, = [{7i}ill), = (723
(recall that we assume for simplicity that the 2-concavity constant of L is 1 and
then the 2-convexity constant of L’ also equals 1; see [18] and [42, Proposition
1.d.4(iii)]). Since T is 2-summing, a direct calculation (see [64, Proposition
ITL.F.33,b)]) gives

79, s ) <T@ sup [ 1@ (), P, o)
L’

Since {f;}; is orthogonal with respect to (m,z’), the inequality above can be

written as

1702 vy < 72(T) sup 3 [0 / f2d(m, 2');

zEBL/Z. 1

all the integrals in this expression are positive, so we also obtain

ap S JeP [ .ty = s S [ e,

ZGBL’Z' 1 TGB(L/ ]2 1
« / dm, "))y |y < K.

This gives the desired inequality and proves the claim.

Now we just need to show that the requirements for the operators aljx I

are enough to apply an standard almost everywhere convergence criterion (see
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for instance [64, III.LH.22]). A direct calculation shows that for each natural

numbers N and s, consider the function gy s: Q — [0, 00) defined by

n

Zaifi(w)"

i=N

QN,S("‘)) = ||Ul]1\jL ((bg(w))HOO - n:HZlVa.)E s

Applying the claim for T' = aé\{ 1, we have that

lgn.sllz2 ey = loa L ®sll L2 (m,ery,ex) < m(afo)Kl/z.

Fixing N, the sequence {g3; .}« increases to h3; where

hn —bup’z:cw”z ’

n>N

Then, the monotone convergence theorem gives

/h%d(m, 7'y = lim g?v’sd<m, 7'y < W%(U(JlYL)K

Ede el

and so hy € L*((m,2’)) with [[hn]|r2((ma)) < WQ(Ué\{L)Kl/Q. Thus, condi-
tion (2) in the statement of the theorem implies that the sequence {hy}%°_,
converges to 0 in L?((m,z')), and then there is a subsequence that converges
(m, z’)-a.e. to 0. This clearly implies that the sequence itself converges (m, z’)-
a.e. to 0 since it is decreasing. Hence, for (m,z')-a.e. every w € Q and € > 0

there is a natural number R such that for every N > R,

N R—1
|2 aifi(w) = 3 aifiw)] < sup | Zalfz )| = hrw) <e
i=1 i=1 2

and then the series > .° | a; fi(w) converges (m,z’)-a.e. O

Note that the almost everywhere convergence with respect to a measure
defined by a positive element z’ do not provide m-almost everywhere conver-
gence, since such measures are not in general Rybakov measures. This means

that such a measure can have more null sets in the o-algebra .

Remark 3.2.3. The requirements on L in Theorem 3.2.2 show that the problem
of the almost everywhere convergence of weak m-orthogonal series is closely
related to the calculus of estimates of 2-summing norms for the operators aé\f L
L — £°° for suitable sequence spaces L. The canonical examples of such spaces

are sequence spaces that satisfy that the inclusions ¢' C L C ¢? are well defined
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and continuous; take L = (7 for 1 <p < 2. Then (L')g) = (épl)[g] =(7'/2 1 we
consider 1 < ¢ < oo such that 1/¢ = 1/p — 1/p’, then the space M satisfying

M =

((P)" )2 is £9 (co if p = 2). In the following section we develop the case

p =1, for which (L')g = (£*°)[g) = £>°, and then M = ('

Let us finish this section by giving two estimates for these norms (we give

the estimates for o, 1, the ones for Ufl\f ;, are obtained with the same arguments).

Note that a direct application of the following inequalities to Theorem 3.2.2

provides formulas involving the sequence ”a” that can be directly computed.

(1)

The first one comes from an application of Grothendieck “s Theorem and
can be used for the case of operators o, g1 : ¢1 — ¢ that are still contin-
uous when defined as o, 2 : 02 — ¢>. Consider a sequence a € 2. In this
case we can write a factorization of o, g1 as o, ¢2 0id, where id : {* — (% is
the inclusion map. This map is 1-summing (see for instance 17.14 in [19]),

which implies that it is also 2-summing, and thus o, 1 is so. Moreover,

o0

m2(00,0) < ma(id) oz ler < (Y ad)?,
i=1
(see e.g Exercise 11.5 in [19] for the estimate of ma(id)). Of course, the
same argument can be used for general o, : L — ¢ whenever it can
be factored through id : ¢! — ¢2. This estimate gives the following result:
If {f;}; C L?(m) is orthogonal with respect to (m,z’) for some z’ €
Bx: N (X)), and ([ f2d(m,z’)); € (*, then Y, a;f; converges (m,z’)-
a.e. for all {a;}; € £2. B

For the second one the argument is similar, but using the fact that the
operator oy, g1 is integral —we write ¢(T) for the integral norm of an op-
erator T—, where b = {1/log(i + 1)}; (see the reference to the Bennet-
Maurey-Nahoum Theorem in [20, Section 4], and [19] for the definition and
properties of integral operators). Suppose that the sequence ”a” satisfies
that

[{ailog(i+ 1)}l < oo
This requirement is the natural generalization of the Menchoff-Rademacher

condition for a.e. convergence. We can obtain the factorization through

¢t given by 0,1, = 040 0 D, where D, is the diagonal operator defined
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by the sequence ¢; = a;log(i + 1), since
T2(0a,1) < U0a,L) < t(op,0)[[Dell < v(op,e)[{ailog(i+ 1)}l

The same factorization can be used for every sequence b such that oy g
is 2-summing. This estimate gives the following result: If {f;}; C L*(m)
is orthogonal with respect to (m,z’) for some 2’ € Bx/ N (X')} and

{J ffd(m,a’)}; € £" for 1 < r < oo, then > i>1 @ifi converges (m, z’)-a.e.
for all {a;}; C R such that (a;log(i + 1)) € ¢4 for ¢ = 2.

The following results combine Theorem 2.2.3, Theorem 3.2.2 and the remark

above to give several criteria for (m, z)-a.e. convergence of sequences in L?(m).

Corollary 3.2.4. Let {f;}32, be a sequence in L?>(m). Let L be a 2-concave
sequence space and let M be a sequence space such that (L)) = M'. Let A =
{€i}i a sequence such that {e;};_, € M for all s € N with sup, ||{:}52,]] < o0
and let a = {a;}; be a sequence of real numbers, let Bg A be the convex weak*
compact subset (see 2.2.1 for definition) and suppose that

(1) the operators aé\fL : L — £ are 2-summing and limy_ s 7T2(O'CIL\7/L) =0

and

(2) for every finite sequence of non negative real numbers {vyi}i such that
Yok Yk =1, indexes iy, jr € N, iy # ji, and 6, € {—1,1},

()5 (eir +€5)) < IO, (@i .06 ) Bs -

Then there is an element x' € X' such that the sequence {f—\/;} s orthonormal
i)y

in L?((m, 2')) and the series Y .o, a;f; converges (m,z’)-a.e.

The same result can be written in terms of the properties of the sequence

of the integrals.

Corollary 3.2.5. Let {f;}32, be a sequence in L*(m) such that {|| [ f2dm|};_, €
M for all s € N with sup, ||{|| [ fdm]|}32,|| < oo. Let L be a 2-concave se-
quence space and let M be a sequence space such that (L)) = M'. Let a = {a;};
be a sequence of real numbers and suppose that

(1) the operators oll; : L — £ are 2-summing and limy o0 ma (ol ) = 0

and
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(2)

there exists A = {e;}; such for every finite sequence of non negative real
numbers {yi}r such that >, v = 1, indezes ir,jr € N, i # ji, and
ek € {_]-7 1}7

(W), (&ir +€5)) < {OWk)s (Pin v 0 ) | Bs -

Then there is an element ' € X' such that the sequence {f—} is orthonormal
K3

Ve

m m,xr an € series 1 A4 J; converges (I, T )-a.e.
in L2 ")) and the series 52 /

Example 3.2.6. (1) For the case of ¢!-valued measures and L = ¢?, we ob-

tain using Remark 2.2.4 that the result is similar to the one that holds
for scalar measures. Let m : ¥ — ¢! be a positive vector measure and
consider a sequence {f;}; C L?(m) of norm one functions. Let a = {a;};

be a sequence of real numbers and suppose that

(a) the operators o2, : £2 — (°° are 2-summing and limy_, o ma (0 ,2) =
0, and

(b) V2 < || fi + 0f;llL2(m) for all i,j €N, i # j, and 6 € {~1,1}.

Then Corollary 3.2.5 gives an element 2’ € ¢*° such that the sequence { f;};
is orthonormal in L?((m, z’)) and the series > .- a; f; converges (m,z’)-
a.e. For example, a direct calculation shows that for ' = (1,1,1,...), the
result holds.

Let us show an application regarding Example 2.2.5 also for L = ¢2.
Let {e;}; be the canonical basic sequence in £*° and take an £*° valued
(countably additive) positive vector measure v, a sequence of functions
{fi}i € L*(m) such that [ f?d(v,e;) =1 for every i, j € N and a sequence
a = {a;}; such that the operators UCIL\’[@Q : 02 — (> are 2-summing with
lim o0 T2 (Ul]l\f ,2) = 0. Assume also that for every finite sequence of non
negative real numbers {y;}r such that >, vx = 1, indexes i, jr € N,
ix # ji, and 0 € {—1,1},

2< Sup ’ /Z’yk)(flk + ekfjk)2d<y7 ez>‘
’ k
Then by Corollary 3.2.5 there is an element 2’ € (£°°)’ such that the se-

quence {f;}; is orthonormal in L?({m, 2’)) and the series Y.~ a;f; con-

verges (m, x')-a.e.
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3.3 Almost everywhere convergence in cj-sums
of L?(11) spaces

In this section we use the representation of /—sums of L?-spaces as spaces L?(m)
for a suitable m to apply our results. In particular, we develop the case of co-

sums of L2-spaces.

Let be (2,%, 1) a finite measure space and consider a disjoint partition
{E;}; C ¥ of Q. Consider the sequence space ¢y. We define a countably additive

vector measure n : X — ¢g by

n(E) = ZM(E N E;)e;,

i=1

where e; is the canonical basis of ¢g.

Let u; = p

g, be the restriction of p to the subset ;. We will denote
by ¢, L?(;) the space of (classes of p-a.e. equal) measurable functions f such
that

(1) fxe, € L*(u;), and

(2) (I fxe; 221 € co-

The (lattice) norm for this space is given by
[ l@ey 22 i) = 5P 1 XE L2y, F € Beo L2 (11a)-
K3

The following result shows that we can identify the spaces L?(n) and @, L?(1;);
for related examples, see [35, Example 4], [48, Example 8], [49, Example 6.47],
and [59, Example 10].

Proposition 3.3.1. The natural identification map between L?(n) and @, L2 (j1;)

is an order isometry.
Proof. Let f € L*(n). Then f? € L'(n) and so f2xg, € L'(y;) and [ f2dn =

([, f2dpi)i € co. That is, fxp, € L*(w;) and ([|fxg,
fE f2du; = || fxE, %2(#1). Hence, f € @, L?(1;) with

L2(u;))i € Cco since

1918, 22y =50 1y = | [ ] = 157000 = 112
) Co
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Therefore, L?(n) C @&, L*(1;) and the containment is an isometry.

Let now f € @, L?(u;). For every o’ = {)\;}; € 1 = ¢} we have that
(n,2")(A) = >, (AN E;). Then, (n,2’) = A\;jp; and |[(n, z')| = |A\;|pw; on E;.

Hence,
2d " = 2d N = Ai 2dy;
/f [, 2")| Ei:/&f s =32 [

< |22 sup || fixE;
(2

Faguy = 10 e IF113 £y < 00

and so f2 € L'((n,2')). Moreover, { [, f2du;}i € co is such that

<x’, (/AﬁEi deMi)i> = Zi:)\i /AmEi Pdu; =
Z/AE frdin, ) = /Af2d<n,z’>,

so f2 € L'(n) with [, f?dn={ [, fdpi};. Then, f € L?(n). O

The proofs of the following corollaries are straightforward applications of
Theorem 2.2.3, Theorem 3.2.2 with M = L = ¢! and Remark 3.2.3 (1).

Corollary 3.3.2. Let X(u) = @, L*(ui) be the co—sum of the spaces L*(yu;),
i € N. Let {a;}; € (%, and assume that there exists an element z’' € ({*)T such
that {fi}32, is orthogonal with respect to (n,z'). If |({[ ffdn,z'))32; ||n< oo,

then Y=, a;f; converges (n,z’)-a.e.

Corollary 3.3.3. Let X(u) = @, L?*(ui) be the co—sum of the spaces L*(yu;),
i € N. Let ({a;}; € (2, and assume that there is a sequence of positive real
numbers A = {g;} € ({1)T satisfying the inequalities in (1) of Theorem 2.2.3
for the vector measure n. Then there is a sequence 0 < a2’ € Bp such that {f;};

is orthogonal with respect to (n,z’) and Y .o, a;f; converges (n,z’)-a.e.

Let us finish the section with a particular example of a sequence that sat-
isfies these corollaries.
Example 3.3.4. Let ([0,1], %, 1) be the Lebesgue measure space. We consider
the following partition of the interval [0, 1].

1 13 37 =l 1 on 1
B =1[0,2],E =], Es=[>, <], B, = :
1 [ 72]a 2 [27 4]3 3 [47 8]’ ) [ on—1 on

],
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For each i = 1,2, ..., take a | g,-orthogonal sequence (g’ )32 satisfying

ke [ 0 k#j
/gzgd“l - {Qif k=j .

Now we define for each n € N the function f, by f, := 2;11 AL9LXE,, Where

the scalar numbers A} are given by

\n 2n—++11f k<n

P 2

k ﬁif k> n.
2T

Note that f,xe, = APgPxe, € L*(w) and || fuXE:ll2(u) = V2|A?| — 0 when
i — 00, 80 f € ®ey L (1) = L*(n). Let a := {o}3, = {55 }72, € Bp. It is
easy to see that the sequence {f,}, is orthogonal with respect (n,a) for any
a € (M), Taking o = {5 },, we have that

Z/ﬂ n,a) /f%zna ZZ /f2duk
n>1 n>1 n>1k>1
/ n>1k>1
n—1 1 on
:§;ﬁ+zzﬁ<oo,

n>1k>n

-> >

n>1k>1

Thus, |[({[ f2dn, )|/, is bounded. Remark 3.2.3 (1) provides the required

condition on {a;}; and so Y .=, a;f; converges (n, a)-a.e.



Chapter 4

Pointwise dependent
Fourier coefficients

This chapter is devoted to show a natural application of the vector measure

orthogonality in the setting of function aproximation.

Throughout all the section m : ¥ — X will be a Banach space valued
countably additive vector measure. Let g € L?(m). We develop in this section
a formalism to find an approximation to g with respect to a distance defined
using the norm ||.|[z2(m) by means of products of special sequences of functions
{fi}22, € L?(m) and other functions a?, i € N, whose definition depends
on a Bochner integrable function ¢. Essentially the Bochner integrable function
provides a parametrization of a family of measures that are defined as (m, 2’) for
different ' € X’. The functions a? will be called pointwise dependent Fourier
coeflicients, since the construction is closely related to the usual way to define
these coefficients in the Hilbert space formalism. However, the series defined in
this way is not given by a linear combination of the elements of an orthonormal
system, since in our case the coefficients of the expansion are also functions.
Thus, we obtain a non linear approzimation to the function g. We establish
our functional setting and we obtain our main approximation result (Theorem

4.1.7) giving some examples too. We also present in this section the explicit

53
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formula for the pointwise dependent Fourier coefficients for the case that the
(parametric) measure is defined by a simple function. The easy representation
of the coefficients that is obtained motivates the results in this section, where
continuity of the pointwise dependent coefficients with respect to the Bochner

norm is analyzed.

Let us introduce first some concepts and notation that will be needed in
this chapter. Let (2,%, ) be a finite measure space, and let f : Q@ — X be a
vector valued function, where X is a Banach space. We say that f is strongly
p—measurable if there exists a sequence {¢,}, of simple functions such that
limy, o0 || f(w) — @n(w)]|x = 0 for p—almost everywhere w € Q. The collection
of all strongly measurable functions from € to X is denoted by M(Q2,X). A
strongly p—measurable function f is Bochner integrable if there is a sequence
{¢n }n of simple functions such that the real measurable function ||f — ¢, x is
Lebesgue integrable for each n and lim,, [ ||f — ¢n||xdw = 0. The collection of
all Bochner integrable functions L*(u, X) is a vector subspace of M(, X) and
the Bochner integral acts as a linear operator from this space into X. Now let u
be a control measure for m that satisfies that L'(m) C L*(p). Such a measure
always exists and it can be written as what is called Rybakov measure for m,
i.e. a measure |(m,x()| for a certain z{, € X’ (see [25]). Since each element
z' € X' defines a scalar measure we can consider Bochner integrable functions ¢
of the space £!(u1, X') that satisfy that (m, ¢(w)) is a positive measure for each
w € Q p-a.e. The notion of m-orthogonality for sequences of functions becomes
useful to assure the orthogonality of the sequence with respect to every scalar
product defined by each positive measure (m, ¢(w)), w € 2. In fact, this leads to
the definition of the pointwise dependent Fourier coefficients, that are functions
a; : Q — R,

4.1 Pointwise dependent Fourier coefficients

In this section we establish the main results concerning approximation of func-
tions. Roughly speaking, we provide the mathematical tools to define parametric

measures by means of Bochner integrable functions, which leads to the defini-
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tion of the pointwise dependent Fourier coefficients and motivates the definition
of the adequate error for our technique. We also compute the coefficients when
the Bochner integrable function that defines the parametric measure is a simple
function. This leads to show how we can compute these coefficients in the gen-
eral case by approximating by the ones that hold in the simple functions case.
Throughout this section (€2, %, 1) will be a finite measure space that controls

the Banach space valued measure m : ¥ — X and L'(m) C L(u).

Let 1 <p < o0. Let ¢: 0 — X be a Bochner integrable function. We use
such kind of individual functions for defining the class of measures that will be
considered in the following sections. We will considered also the space LP(u, X)
of classes of Bochner p-integrable functions, that is, functions ¢ € M(u, X)
such that [, [|¢(w)|/% dp(w) < oo. The norm of this space is given by

ol = ([ 1o@lkant@)’, o€ 17w )

Although the functions ¢ as above will be considered as single functions, for
the approximation results we will use the Bochner norm, so the functions ¢
will be considered sometimes as elements of LP(u, X), i.e as a representative of
class of functions. For the aim of clarity, we will use sometimes the notation
[¢] to denote the class of ¢. The set of (classes of) simple functions is dense in
LP(u, X) (see for instance Definition 11.42 in [3, Ch.11]).

Definition 4.1.1. Let X be a Banach space and X’ its dual space. We say
that a Bochner integrable function ¢ € £(u, X’) defines a parametric measure

my(,,) if the formula
my,)(A) == (m,d(w))(4), AeX

gives a positive measure that controls u for every w € Q.

Note that for a function h € L'(m), the function w — [, hdmgy,,) =

(J hdm, ¢(w)) is measurable, since by hypothesis ¢ is strongly (and then weak*)
¢

measurable and [ hdm € X. This implies in particular that the functions o
that appear in the Definition 4.1.2 are measurable. For the Definition 4.1.2
and some purposes of this section it is enough to assume that the function ¢ is
Gel "fand integrable (see for instance [3, 11.9]). However, for the approximation

procedure that is developed the Bochner integrability is needed.
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Definition 4.1.2. Consider a m-orthogonal sequence {f;}32; and a Bochner
integrable function ¢ that defines the parametric measure mg(,,). For each
1 € N, we define the i-th pointwise dependent Fourier coefficient of a function

g € L?*(m) as the function a : 0 — R given by

Jo 9fidmy )

¢
af (w) :== .
Jo fdmg)

Definition 4.1.2 makes sense p-a.e.; in fact, if we have two different Bochner
integrable functions ¢; and ¢» that belong to the same class of £(u, X’), the
coeflicients a¢1( ) and afz (w) are equal p-a.e. However, note that these func-
tions are defined pointwise, and will be considered in this way through all the

section.

Definition 4.1.3. Let ¢ — X’ be a Bochner integrable function. We say that a
sequence of measurable functions {5;}32,, 8; : Q@ — R, is ¢—compatible with the
m-orthogonal sequence {f;}5°, (compatible for short if the function ¢ is clear in
the context) if the function w — Y .2, B%(w (fQ dm¢(w)) is integrable with
respect to u.

Lemma 4.1.4. Let ¢ : Q — X' be a Bochner integrable function that defines a
parametric measure M. Let {f;}52, be a m-orthogonal sequence and consider
a function g € L*(m). Then the corresponding sequence of pointwise dependent
Fourier coefficients {a¢}°°1 is ¢—compatible with {f;}32,.

Proof.  Each function af

is measurable since it is defined as a quotient of
measurable functions Recall that g € L?(my,)) for every w € Q. Clearly for
every w € , Y70, a? () fi(n) is integrable with respect to the measure mg,,)

as a consequence of the definition of the functions o?

and the Hilbert space
structure of L? (mg,)) at each point w. Fix such an w € €. Bessel s inequality

gives

oo %) 2
E D)2 2 (fq gfidmg,)) )

a; (W fidmy,y = E =822 P <g o _
i=1 | ( )‘ /Q () i—1 Q ffdm¢(w) || ||L2( ¢(w))

The function w ~ | g]|? 12( is measurable. Thus, the computation

(mgy (o))

| = 1 P @ammidute)

= [{[ ndmin). o) dute)
Q JQ

191 )
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< II/Qgr"(n)dm(n)ll-/QH(b(w)lldu(w) = 190172 m) - 10l 21 x7) < 00
finishes the proof. O

Lemma 4.1.5. Let ¢ : Q — X’ be a Bochner integrable function. Let {5;}32,
be a sequence of functions that is ¢— compatible with the m-orthogonal sequence
{fi}s2, and let g € L?*(m). Then the function

wl) = [ (o) = 3 B i) g (1)

is defined p-a.e and integrable with respect to p.
Proof. By the definition of compability we have that

) = 3 6i(w)? [ Fdmacy < L.

Then, h(w) < oo for prae. w € Q and so Y ;o) Bi(w)f; € L*(my,)) p-ae.
w € . Hence, ¥ is well defined p-a.e. and

2

ww) = o - YA,

L2 (my(w))

= /QQdm¢(w) +Zﬁi(w)2/fi2dm¢(w) _QZﬁi(W)/gfidmd;(w)
=1 =1

is measurable. Moreover,

er?
() (1)

B2 < Nlglp2my + | 3 Bilw) i
i=1

since w — ||g||3. is in L'(p) as ¢ € LY (u, X') (see the proof of Lemma

(mg(wy)

2
4.1.4) and w — H Zzl Bi(w) fi
L2 (mg (o))

= h(w) € L*(). Then, ¢ € L(p).
O

Lemma 4.1.5 allows us to give the following definition.

Definition 4.1.6. Let ¢ € £!(u, X’) be a function that defines a parametric
measure my,,) and let {f;}2; be a m-orthogonal sequence. Let g € L?(m)
and consider a sequence of functions {3;}52, which is compatible with {f;}5°;.

We define the error e associated to the function g € L?(m) and the sequence

{Bi}i21 by
oty = [ ([ (0(0) = 32 Bu) i) dimy ) i)



58 Chapter 4. Pointwise dependent Fourier coefficients

The following result is a direct consequence of the definitions and Lemma
4.1.5 and relates the best approximation with respect to the error e to the

sequence of pointwise dependent Fourier coeflicients.

Theorem 4.1.7. Let ¢ € L' (u, X') be a function that defines a parametric
measure My(,) and let g € L*(m). Let {f;}$, be a m-orthogonal sequence. If
{Bi}2, is a sequence of functions that is p—compatible with {f;}32,, then

6(97 {O‘?}zoil) < 6(97 {ﬁl fil)
Moreover, e(g,{al}2,) = e(g,{B:}52,) only in the case that of = B; p-a.e.

Proof. Consider the functions

/ Za ))2dmm g (1))

[N

and

and take a p-null set A satlsfylng that 1, and 1 are defined for the points
w € Q\ A. Then, since g € L?(m), we have that g € L?(my,,) for every
w € Q\ A. The Hilbert space structure of the spaces Lz(m¢(w)) gives the

inequalities

L za Ddma () < ([ (9 Zﬁz i) dmg e ()

for each point w € Q\ A, since the pointwise dependent Fourier coefficients gives
the best approximation at such w in each space LQ(md,(w)). Then the result is
a direct consequence of the lattice properties of L?(u) (see Section 1 of [42]).
The fact the equality e(g, {a;}2,) = €(g,{B:}32,) holds only in the case when

= [B; u — a.e. is a direct consequence of the above proof. O

Let ¢1 and ¢2 be Bochner integrable functions that define parametric mea-
sures myg, and my,. Suppose that they satisfy that there is a positive function
k(w) such that ¢1(w) = k(w)d2(w) p-a.e.. Then it is clear by the definition of

the pointwise dependent Fourier coefficients that we obtain the equality

af (W) = af*(w)

for every w p-a.e. This motivates the following definition.
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Definition 4.1.8. We say that a strongly measurable function ¢ : @ — X is
pointwise normalized if |¢(w)||x = 1 for every w € Q. We will write C(p, X)
for the set of all (classes of) these functions. Note that C(u, X) is included in
all spaces LP(u, X), 1 < p < oc.

Proposition 4.1.9. Let 1 < p < oo and let X be a Banach space. The set
C(p, X) is closed subset in LP(u, X), and the set of simple functions

SC _{ZUZXA lvillx = 1,{A;}}%, C X partition of Q, m € N}
i=1

is dense in C'(u, X).

Proof.  Consider a sequence {¢,}, C C(p, X) converging to ¢ in LP(u, X).
Then,

16 = 6all ) = [ 1966) = dnle)dle)
> /Q 16l x — (@)l x|"dp(e)

- / l6@)lx — 1 du(w)

for all n and so [, |[lo(w)|x — 1’pdu(w) = 0. Therefore, ||p(w)|x = 1 p-a.e.
w € Q.

Now let us show that SC(u, X) is dense in C(u, X). Let ¢ be a function
of C(u, X). Since the set of all the simple functions is dense in L?(u, X), there
is a sequence of simple functions {¢,}, converging to ¢ in LP(u, X). We can
assume without loss of generality that ||¢,(w)] # 0 for all w € Q. Otherwise,
we can take ¢;, = ¢, + 72xa, where z is a norm one element of X and A, =
fw € R [ldnw)ll = 0, and so 6= &)l o(ux) < 16 = dull o) + 2u(@)17.

Taking i, (w) = m € SC(u, X), we have that

pd 1/p
<)

¢n(w)

¢ — YnllLrux) < ¢ = bnllLeux) + (/‘ ||¢n(1 )||X)

1/p

=l = énlzrgu + [ onte)lx - 117dn)

< 2[|¢ = bull Lo (u,x)-
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We can obtain with a direct calculation the expression of the pointwise
dependent Fourier coefficient when the function ¢ that defines the parametric
measure My, is a simple function. If ¢(w) := 31" afxa,(w) and f; is an

element of the m-orthogonal sequence {f;}$2,, we obtain

af(w) =

xa,; (W),

Z;‘ZNIQ gfjdm, )X A, (W) _ f: <fgz gfjdm, )
Yo fdm, xl)xa, (W) = ([ f7dm, @)

where ([, fdm, ;) # 0 for every i = 1,...,m since [ f7dmg,) for all w and
{A;}", is a disjoint sequence. In other case, the corresponding i-th term does

not appear in the sum.

This shows that the calculus of the pointwise dependent Fourier coefficients
is easy when ¢ is a simple function. On the other hand, Proposition 4.1.9 implies
that we can approximate every normalized function that can be used to define a
parametric measure by means of simple functions of the set SC(u, X’). There-
fore, the construction of an approximation procedure depends on the definition

of reasonable conditions to assure the continuity of the pointwise dependent
é

Fourier coefficients af with respect to ¢ in £P(p, X’) for a certain 1 < p < oo.

We will establish such conditions in the following section.

Example 4.1.10. (1) Let ([, 7], X, i) be the Lebesgue measure space and

consider the vector measure mg : ¥ — £°° given by

mg(A) := {/Am[ ]cos2(kx)du}

The measure myg is clearly countably additive since each integral in A in

o0

k=1

the definition is bounded by u(A). Consider the functions fi(x) = sinz,
fo(x) =sin2z, ... | fn(x) =sinnz, n > 1. Let us show that this family of
functions defines an mg— orthogonal sequence. For every couple n,m € N
and k£ € N such that the following expressions are defined, we obtain the
following equalities.

a) If m # n, the integral of the product f,f, and the corresponding
weight is given by

oo

/ Fofondimg = { / " sin(na) sin(ma) cos2(k;a;)dx}

—T

k=1
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sin[(2k —m —n)w| = sin[2(m —n)7]  sin[(2k +m — n)7]

7{ ( —2k+m+n m-—n 2k;+m—n
sm[(2k—m—|—n)77]_QSin[(m—i—n)] sin[(2k + m +n)w )}
2k—m-+n m-+n 2k+m+n k=1

b) For m = n and k # n, we get

/fnfndmo = {/W sin?(na) cos2(lm‘)dx}oo
- k=1

2sin(2km)  sin(2(k — n)w)

= {glr K k—n
2sin(2nmw)  sin(2(k +n)
B n a k+n )}k v

Notice that the quotients of the expressions above are 0 for some values
n,m, k. Consider now the functions that are given for i, j,r € N, k = 2",
n = 3i and m = 3j Define the (countably additive) vector measure

= {fAm Y- 2 cos?(2"x)du}e,. Then, as a consequence of the

calculatlons written above,

/fnfmdno = {Snm}iozl

Thus, for these values, the sequence { f3;}22,, ¢ € N defines an ng-orthogonal

sequence.

(2) Let us define a parametric measure using the vector measure ngy given
above. Consider the family of sets I, = [-7 + 35, m™ — 5] and the basis

{en}n of £1. Let us take the Bochner integrable function ¢ given by
w) = Z XIn\In—l(w)6n7
n>1
It is easy to proof that this function is strongly measurable that is the
limit of the sequence of simple functions ¢n(w) := Zﬁf:l X1\t (W)en,
n € N. Let g(x) = z and compute the corresponding pointwise dependent

Fourier coefficients. For every i € N,

<f[,7mr] gfidng, p(w))
0y 0o, 0(@)

Z cos((2'" = 3i)m)  2cos(3im)  cos((2"" — 3i)7r)) ()
= 21+r — 3 3 o1+ 1+ 35 X[I\Ir—1] .

a‘-b(w) =

r>1

Therefore, the function h(w) := 3°°, af (w) sin(3iw) approximates g.
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4.2 Continuity of the pointwise dependent
Fourier coefficients

Take a vector measure m and a Bocher integrable function ¢ and a sequence of
simple functions {¢,}22; whose classes converges to [¢] in the Bochner space
L1(11, X') such that each ¢,, defines a parametric measure. In this point we an-
alyze the convergence properties of the pointwise dependent Fourier coefficients
af’" to af for a given m-orthogonal sequence {f;}2°; and a function g € L?(m).
Our aim is to show that under the adequate requirements on the functions ¢,
and ¢, the projections > -, af" fi converge to pya a?f; in L?(m). Further
assumptions are necessary to obtain the results of this section. It is important
to note that the results of the technique that we present are meaningful even
in the case of finite (even small) sequences of m-orthogonal functions, since the
formulas provide a nonlinear approximation that is completely different to the
usual (Hilbert space) linear approximations. We will show an easy example.
We use that L'(m) C L'(u), so the m-orthogonal sequence {f;}3°; belongs to
L?(u). For instance, this happens in the case when y is defined as (m, z’) for a
certain element 2’ € X’. In general, we will assume that the vector measure m

is equivalent to p.

We use a pointwise boundedness condition for the functions that define a

parametric measure.

Definition 4.2.1. Let € > 0. We say that a Bochner integrable function ¢ :
0 — X' that defines a parametric measure my,) is e-lower bounded with
respect to {f;}72, if for every i € N,

c< ([ framow)

p-a.e.

Lemma 4.2.2. Let g € L*(m) and let ¢ € L' (u, X') be a Bochner integrable
function that defines a parametric measure my(,,y such that ¢ is e-lower bounded
with respect to {f;}52,. Then the pointwise dependent Fourier coefficient af of
g is square integrable with respect to p for every i € N. Moreover, {af};’il 8 a

norm bounded sequence of L*(p).
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Proof. Let i € N, then

_ (fQ gfidm(z&(w))z
(Jo FRdmg.))?

_ o gimyi fy Fdmy | Jyo%m] [9(w)]
B fo dme.))? - € .

Hng

Thus,
[ (af)idn <
Q

This inequality and the properties of the Banach function space L2(j) give the
result. O

H¢|| (X1

Theorem 4.2.3. Let g € L?>(m). Let € > 0 and let ¢ € C(u, X') be a function
such that it defines a parametric measure my(,,y and it is e-lower bounded with
respect to {fi}32,. Let {pn}S>, be a sequence of functions of SC(u, X') such
that it defines a sequence of parametric measures my, () and that converges to
¢ in L2(p, X'). Then for every i € N,

bn
Q;

; ¢ -
33 1o = ol gy =0

Proof. Let ¢ € N. Then there is a natural number ng such that for every

2
< /Q F2dm, 6,.(w)

p-a.e. We will simply write {¢,}22, for the subsequence {¢,

nznOa

Fon,- Since p is
a finite measure, an application of Lemma 4.2.2 gives that ozf , ozf" € L?(u) for

each n € N. Now we define the function

(Jo f2dm, $(w))
(Jo F7dm, n(w))’

for every n € N. Then the result is a direct consequence of the following

hp(w) ==

w €,

calculations.

o

_ (/ ((Jq 9fidm, p(w)) — hy(w)( [, 9.fidm, ¢n(w)>)2du> :
Q (Jo [7dm, ¢(w))?

laf -

L2 (w)

! )
<1 [ atami ([ o= s lan)
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) : ! :
<1 [ gt ([ 10 - ulPan) 41 [ apdmi 2 ([ 0= n2l600dn)
< [ afdun] [( L vo=ontza) 21 [ s2ami ([ ||¢—¢n|2du)2] .

O

The previous results show that the set of simple functions is dense in
C(u, X’) in all spaces LP(u, X'). Therefore, Theorem 4.2.3 implies that un-
der the assumption that ¢ is e-lower bounded with respect to {f;}5°,, we can
approximate each Fourier coefficient af (1 € N) by the sequence {af"}%"zl
whenever {¢,}52, is a sequence of simple functions defining a sequence of para-
metric measures my () and converging to ¢ in £?(u, X’). In the case that the
m-orthogonal sequence is finite we obtain an approximation calculus under the

assumptions given above.

Definition 4.2.4. Let m € N and consider a finite m-orthogonal sequence
{fi}~,. Let ¢ € C(p, X’) be an e—lower bounded that defines a parametric
measure. Then we define the 1-error for the approximation of a function g €
L?(m) by

Ei(g,0) == lg — Za?fiHLl(u)'
i=1

Corollary 4.2.5. Let m € N and consider a function ¢ € C(u, X') that defines
a parametric measure and it is e-lower bounded with respect to the (finite) m-
orthogonal sequence {f;},. Let § > 0. Then there is a simple function ¢' €
C(p, X') such that

m m
| Za?fi =Y o fillpiw <6
i=1 i=1
and consequently,

|E1(9,¢) — Ei(g,¢")| < 4.

Proof. We just need to consider the following inequalities and apply Theorem
4.2.3.

m m

1S 0l s =S 0 fllog < / (3 (0f —a))H(> )y
=1 =1

i=1 i=1

S f — o 2amd ([ ST 2
s(/ﬂgmi of')2dp) (/Q;fzdu) .
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4.3 An example of approximation with finite m-
orthogonal sequences

In this section we develop an easy numerical example in order to show the
nonlinear approximation that can be obtained with our procedure. Let n : ¥ —
X be a countably additive vector measure, and let v be a finite control measure
for n that is equivalent to it and L!(n) C L(v).

Definition 4.3.1. We say that n is v-simply representable if there is a natural
number m € N and a simple function ¥(w) := Z;nzl xjXa,(w) such that {A; :
j = 1,..,m} defines a (measurable) partition of 2, {z; : j = 1,...,m} is a
linearly independent subset of X, and

m

n(A) = /A U (w)dv(w) = ZU(A NAj)z;, Aey.

Jj=1

Note that in this case the integral of a function f € L'(n) can be directly

computed by means of the formula

/Afdﬂ = JZT:(/AOAJ fdv)z;, Ae.

If A €Y, we denote by L?(A, ¥|a,v)a) to the function space defined by means
of the restriction of the measure space (2,2, v) to A. In particular, we can
consider the functions of L?(v) as functions of L?(A, X4, v)4).

Lemma 4.3.2. Let n be a v-simply representable vector measure and let { f;}32,
be an n-orthogonal sequence. Then this sequence belongs to the space L*(v) and

is also orthogonal in it. Moreover, it is orthogonal in each space
LQ(Aj,Z|A].,U‘Aj), j:17...7m.

Proof. Since n is simply representable we can find a function ¥(w) :=
Z;’Ll xjXa; related to it that satisfies the conditions of Definition 4.3.1. A direct
calculation leads to the equivalence of the norms ||.|[z2(,y and ||| z2(n), and then
it is easy to show that L?(n) = L?(v). Moreover, since the set {z; : j = 1,...,m}

is linearly independent we can get for each j = 1,...,m a functional x; e X’
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that satisfies that (x;,27) = 7; > 0 and (z;,2}) = 0 for every i # j. Then, for
every i,j,k = 1,...,m such that ¢ # j we obtain

Tk flfjdv = / flf]dn $k> <O $k> =0.

This gives the result. O

The following lemma is a direct consequence of Lemma 4.3.2.

Lemma 4.3.3. Let n be a simply representable vector measure by means of
a function ¥ := Z;”:l xjxa, that satisfies the conditions of Definition 4.5.1.
Let n € N and let {f;}7, be a n-orthogonal sequence. Then the sequence
{fi}ilt j=1 of L*(v) given by the functions fij := fixa;, i = 1,.,n, j =
1,...,m is orthogonal.

Theorem 4.3.4. Letn, ¥, {f;}7; and {f;;};2] ;= as in Lemma 4.3.3. Then
there is a Bochner integrable simple function W' such that for every g € L*(v)
and every i = 1,...,n, the corresponding pointwise dependent Fourier coefficient

satisfies the equality
m
af (W) filw) =D aijfii(w)
j=1

Ja, gfidv
where the constants o, ; = IAW are the Fourier coefficients related to the

functions f; ;.

Consequently, the projection of the function g on the subspace of L?*(v)
generated by {fi ; }Zfﬁjzl is given by

Zaw’ ) filw

Proof.  The function ¥’ can be defined by means of the functionals z; that

appear in the proof of Lemma 4.3.2. Using the elements introduced there, we

define .
= alxa, (W)
j=1

Now we just need to compute for every index i = 1,...,n the Fourier coefficient

a‘»l’,(w) by means of the corresponding straightforward calculation.

(Jq 9fidn, ¥'(w))

a‘,P/ w) =
) = P, Uw)
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St milfa, 9fidv)xa, <[4, 9fidv

- m 7)X '
ijl Tj(fAj fiQdU)XAj j=1 fAj fiQdU 4

These equalities imply the result. O

We finish this section with an example.

Example 4.3.5. Consider the 3-dimensional Euclidean space £3 and the vector

measure ng : ¥ — £3 given by

3
ng(A) :=> vo(AN[j—1,5))e;, Acy,

j=1

where {e;}3_, is the basis of £3 and ([0, 3], 3, vg) is the Lebesgue measure space
associated with the interval [0,3]. It is clear that ng is a simply representable

vector measure.

We consider the following polynomials. For every z € [0, 3], we define

(1) pi(e) =1,

) pa(w) 1= § — Bt §a? —

. 171 _ 63, 393,2 _ 252,3 | 309,4 _ .5 | .6
(3) p3(z) = 175 T+ 55T FRE A M T 9x° 4 z°.

5

Figure 4.1 shows the functions of this sequence. A direct calculation shows that

Figure 4.1: The functions of the ng-orthogonal sequence.

it defines a (finite) ng-orthogonal sequence of square nyp-integrable functions.
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Let g(x) 1= ooy + 2e(730h 5% be a function of L%(ny). Figure 4.2

shows this function.

0.5 \

005 T

00 05 1.0 L5 20 25 30

Figure 4.2: The function g(z) := 4 2e(~3(=1.5)%)

1O;c2+1

Let us consider different functions ¢ and compute the corresponding point-
wise dependent Fourier coefficients af. It is clear that in this case L?(ng) =
L2 (UO)-

Let ¢1(z) = 23:1 X[j—1,j](z)ej. This function satisfies the conditions of
Theorem 4.3.4, and then the approximation given by the pointwise dependent
Fourier coefficients

23: Li— 1j]ngd7}0

2 + 72 S X[j-1.5] (%),

1 =1,2,3, gives the approximation

3
h(@) =Y af @pi(a)

to the function g given by the projection on the subspace of L?(vg) generated by
the functions p; ; := pix[j-14), i,J = 1,2,3. Therefore, note that this function
is not necessarily continuous, since it is a linear combination of noncontinuous

functions (see Figure 4.3).
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ol N/

00 05 10 15 20 25 30

Figure 4.3: The function hq(z) := Z?:l ol pi(x).

Figure 4.4: The function g(z) and the approximation h;(z) using parametriza-
tion corresponding to ¢y (x).
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(e1tea+tes)
V3

If we consider the function ¢z(z) := x|o,3) and apply the same

procedure (see Figure 4.5), we obtain a set of coefficients af’z, i =1,2,3, that
are constant functions. In fact, we obtain the coefficients of the standard ap-

proximation on the Hilbert space L?(vg) by the functions py, p2 and ps,

3
ha(z) =) af?pi(x) = 1.22283p; (z) + 0.735055p2 (x) + 0.104471ps ().
i=1

10

0.8

0.6

04

02

0ok J
00 05 10 15 20 25 30

Figure 4.5: The graph of the projections of the function ¢o(z). All of them
coincides.

10 /

| S
- hx
05

0.0 05 10 15 20 25 30

Figure 4.6: The function hy(z) := Z?Zl ol pi(z).

We can obtain a continuous function that approximate g and is close to

hi(x) just by applying the results of the previous point. Consider the function

IR e Ut )N
W) = exp(~ (2 e,
j=1 ’
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and define the function (see Figure 4.7)

e
S e TR

In this case, the pointwise dependent Fourier coefficients that give the ap-
proximation hz(z) = Z?:1 af’3 (z)pi(zx) are
3 —(G-%)
> (f[j,l,j]pigdvo)exp(—(xo%)z)

j=1
z—(j—1
Sy Prdvo)exp(— (220 )2)

af? () =

2

10 P e LT
/ \/
1
08 )
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| ! it
/ FAEAY
0.0 b et P g 3 o o ——

00 05 10 15 20 25 30

Figure 4.7: The graph of the projections of function ¢3(z).

Figure 4.8 shows g(x) and the approximation hz(x) that is continuous by

the construction.

Figure 4.8: The function g(z) and the approximations hs(z) using parametriza-

tion corresponding to ¢3(x).

The results on the continuity of the pointwise dependent Fourier coefficients

can be applied to obtain the corresponding errors of this kind of approximation.
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If ¢,¢' € L1 (v, X’) satisfy that there is an € > 0 such that both ¢ and ¢’ are
e-lower bounded with respect to the corresponding n-orthogonal sequence (as in
the case of the example), we can obtain bounds for the distances ||o? —af/ |2 (v,
in terms of ||¢—¢’|| L1 (., x) following the technique given in the proof of Theorem
4.2.3. Therefore, we can also obtain a bound for the L!(v)-norm of the difference
between the approximations associated to the corresponding functions ¢ and ¢’,
the l-errors (g, ¢) and E;(g,¢') and a bound for the difference between them

using the procedure given in the proof of Corollary 4.2.5.

Remark 4.3.6. As a concluding remark, we want to point out that Figure 4.8
tries to show that our approach is fundamentally different from the classical one.
This procedure —that weights every function f; with a Fourier coefficient that
depends on the parametrized measure and it is in fact a function itself depend-
ing also on the variable— produces a non-linear approximation of the original
function g. That is, consider that our function g is the result of sampling a
signal during an interval of time with length AT (in the precedent example, the
interval is [0, 3], i. e., AT = 3. Then we choose functions f; (in the example
{p1(x), p2(x), p3(x)}) according with the shape of g and we can produce the two
approximations showed in the example. Suppose that these three functions are
so suitable in shape that the Hilbert space approximation is very good. Now
we sample again the signal and we obtain a new function g. If we are interested
in keeping the same functions f;, it is not guaranteed that the shape of them is
suitable for this new approximation of g. In fact, Hilbert’s approximation can
be very bad. In our approach, parametrized Fourier coefficients avoid this and
allow to keep the same bases of functions during iterative approximations. Con-
sequently, our procedure is a natural framework for a dynamic approximation
of functions depending on one parameter for example the time. In the following

section, we show how this technique can be applied to a real problem.

4.4 Application to acoustic data

In the previous sections we have developed our approximation considering a
function g that mimics the true signals in some applied areas as it can be
Physics. In this section we are going to present an analysis of a true signal

coming from the field of Acoustics. In order to be consistent we are going to
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use the same sequence of functions that in the previous section. We will see
that our technique is so flexible that functions that are not adequate “a priori
"because its shape does not fit the shape of the signal, can be used in our case.
Our approximation produces better results that the corresponding standard

approximation.

We are going to use a particular example related to the Acoustics, more
precisely to the Sonic Crystals. These are periodic arrangements of scatterers
embedded in a medium with different physical properties -in our case cylinders
of a rigid material embedded in air- [44]. These structures when are considered
as an infinite periodic medium - eigenvalue problem- present ranges of frequen-
cies where the transmission of waves is forbidden. These ranges are known as
band gaps (BGs). In the last years, an increasing interest has appeared in the
potential exploitation of SC as environmental noise barriers [56], [57]. However,
the acoustical properties of SC depend on several factors showing some partic-
ularities in their attenuation properties. For example, the size and position of
the BGs depend on several factors such as the direction of incidence of the wave
on the SC and the type of arrangement of the scatterers [58]. As a consequence,
the development of the screens based on SC is not a trivial process. An example

of such type of structures can be seen in Figure 4.9.

Figure 4.9: Example of Noise barrier based on a Sonic Crystal.

When a finite structure is considered the correct understanding of these

Band Gaps implies Multiple Scattering Theory [12], [65]. Then waves are
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not transmitted throughout the structures due to the appearance of evanes-
cent modes (see [53, 54, 55]). In this section we are dealing with one of these
evanescent modes that are the modes that cannot be transmitted through the
structure. The physical nature of such modes remains elusive and recent de-
velopments has allowed to clarify part of its nature. But the comparison of
experimental measurements with theoretical models implies having good ap-
proximations of such a kind of signals. In this section we will try to show that
orthogonal functions respect to vector measures could be an interesting tool in
such kind of phenomena. If we measure the acoustic pressure between two rows
of a SC, we observe a signal corresponding to an evanescent mode (see Figure
4.10). That is, a mode which amplitude decreases as the wave flies throughout

the periodic structure.

(a1)

1 2 _v'l50.484 i
® 3 5 e (K =0.049
= 0 ’ 5 — | 47 — Im(K), =-0.053:0.004
-1 5 2173 @ Fitted points
0123456789 ) § ©  Experimental
x/a
; n
1 4 < —1=0619
o 1 0 rew ~ 21 o ©  Experimental
> ° 2 8y
B x
0123456789 0
x/a ] I
©) ¢ TR o
' i — —Im(K),=0.2120.03
\: [ » 3 25 ® Fitted points
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) 1
0123456789
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6 8 10

Figure 4.10: Measurement of normal modes (b1, b2) in front of evanescent modes
(al,a2) and (cl,c2).

In order to make clear the comparison with the precedent approximations
we are going to use the same finite sequence of ng-orthogonal functions (ng de-
fined as before; see 4.3.5), shown in Figure 4.1 and also the same parametriza-
tions ¢o(x), that provide the same coefficients than the standard approximation
on the Hilbert space L?(vp) by the functions p;, p2 and p3, and ¢3(z). The

signal to be approximated is represented in Figure 4.11.

If we apply our approximation with parametrization corresponding to func-
tion ¢o(x), we obtain the result shown in Figure 4.12. The result is not surprising
because “a priori ”the shape of the functions considered for our approximation

is not the adequate for the shape of the signal, keeping apart the oscillations of
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0.20

L
0.0 0.5 10 15 20

Figure 4.11: Data points of the signal to be approximated.

the signal. The approximation equivalent to the Hilbert’s approximations it is

not able to reproduce the decay of the original signal.

10 15 20 25 30

Figure 4.12: Hilbert approximation of the signal.

But in the case we consider the parametrization due to the ¢3(z), that
allows us to weight the different behaviour of the signal in the support, then
the result is much more satisfactory, keeping the same finite sequence of ng-

orthogonal functions {p1, pa2, ps}. The result can be seen in Figure 4.13

Figure 4.13: Vector Measure non-linear approximation.

As a summary if this section, it is clear that a much more suitable finite

sequence of functions can be found in order to have a correct approximation
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from the Hilbert space point of view but, when a determined sequence have to
be kept for doing the approximation of different signals which shape can change
in different time intervals, this procedure based on the orthogonality respect to
a vector measure is revealed as an interesting tool that provides approximations

that reproduce correctly the shape of the original signal.
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