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Abstract

This thesis concerns the analysis of differential equations with uncertain input
parameters, in the form of random variables or stochastic processes with any
type of probability distributions. In modeling, the input coefficients are set
from experimental data, which often involve uncertainties from measurement
errors. Moreover, the behavior of the physical phenomenon under study does
not follow strict deterministic laws. It is thus more realistic to consider mathe-
matical models with randomness in their formulation. The solution, considered
in the sample-path or the mean square sense, is a smooth stochastic process,
whose uncertainty has to be quantified. Uncertainty quantification is usually
performed by computing the main statistics (expectation and variance) and,
if possible, the probability density function.

In this dissertation, we study random linear models, based on ordinary differ-
ential equations with and without delay and on partial differential equations.
The linear structure of the models makes it possible to seek for certain prob-
abilistic solutions and even approximate their probability density functions,
which is a difficult goal in general.

A very important part of the dissertation is devoted to random second-order
linear differential equations, where the coefficients of the equation are stochas-
tic processes and the initial conditions are random variables. The study of this
class of differential equations in the random setting is mainly motivated be-
cause of their important role in Mathematical Physics. We start by solving
the randomized Legendre differential equation in the mean square sense, which
allows the approximation of the expectation and the variance of the stochastic
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solution. The methodology is extended to general random second-order lin-
ear differential equations with analytic (expressible as random power series)
coefficients, by means of the so-called Fröbenius method. A comparative case
study is performed with spectral methods based on polynomial chaos expan-
sions. On the other hand, the Fröbenius method together with Monte Carlo
simulation are used to approximate the probability density function of the
solution. Several variance reduction methods based on quadrature rules and
multilevel strategies are proposed to speed up the Monte Carlo procedure.
The last part on random second-order linear differential equations is devoted
to a random diffusion-reaction Poisson-type problem, where the probability
density function is approximated using a finite difference numerical scheme.

The thesis also studies random ordinary differential equations with discrete
constant delay. We study the linear autonomous case, when the coefficient of
the non-delay component and the parameter of the delay term are both random
variables while the initial condition is a stochastic process. It is proved that
the deterministic solution constructed with the method of steps that involves
the delayed exponential function is a probabilistic solution in the Lebesgue
sense.

Finally, the last chapter is devoted to the linear advection partial differential
equation, subject to stochastic velocity field and initial condition. We solve
the equation in the mean square sense and provide new expressions for the
probability density function of the solution, even in the non-Gaussian velocity
case.

Keywords: random differential equation, linear model, uncertainty quan-
tification, probability density function, Fröbenius method, polynomial chaos
expansions, Monte Carlo methods, random delayed equation, random linear
advection partial differential equation.

Mathematics Subject Classification 2010: 34A30, 34F05, 35R60, 60H10,
60H15, 60H35, 65C05, 65C30.
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Resum

Aquesta tesi tracta l’anàlisi d’equacions diferencials amb paràmetres d’entrada
aleatoris, en la forma de variables aleatòries o processos estocàstics amb qual-
sevol mena de distribució de probabilitat. En modelització, els coeficients
d’entrada són fixats a partir de dades experimentals, les quals solen compor-
tar incertesa pels errors de mesurament. A més a més, el comportament del
fenomen f́ısic sota estudi no segueix patrons estrictament deterministes. És
per tant més realista treballar amb models matemàtics amb aleatorietat en
la seua formulació. La solució, considerada en el sentit de camins aleatoris o
en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa
del qual s’ha de quantificar. La quantificació de la incertesa és sovint duta a
terme calculant els principals estad́ıstics (esperança i variància) i, si es pot, la
funció de densitat de probabilitat.

En aquest treball, estudiem models aleatoris lineals, basats en equacions di-
ferencials ordinàries amb retard i sense, i en equacions en derivades parcials.
L’estructura lineal dels models ens fa possible cercar certes solucions proba-
biĺıstiques i inclús aproximar la seua funció de densitat de probabilitat, el qual
és un objectiu complicat en general.

Una part molt important de la dissertació es dedica a les equacions diferencials
lineals de segon ordre aleatòries, on els coeficients de l’equació són processos
estocàstics i les condicions inicials són variables aleatòries. L’estudi d’aquesta
classe d’equacions diferencials en el context aleatori està motivat principalment
pel seu important paper en F́ısica Matemàtica. Comencem resolent l’equació
diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que
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permet l’aproximació de l’esperança i la variància de la solució estocàstica. La
metodologia s’estén al cas general d’equacions diferencials lineals de segon or-
dre aleatòries amb coeficients anaĺıtics (expressables com a sèries de potències),
per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi com-
paratiu amb mètodes espectrals basats en expansions de caos polinomial. Per
altra banda, el mètode de Fröbenius juntament amb la simulació de Monte
Carlo són emprats per a aproximar la funció de densitat de probabilitat de la
solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos
mètodes de reducció de la variància basats en regles de quadratura i estratègies
multinivell. L’última part sobre equacions diferencials lineals de segon ordre
aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en
què la funció de densitat de probabilitat és aproximada mitjançant un esquema
numèric de diferències finites.

En la tesi també es tracten equacions diferencials ordinàries aleatòries amb re-
tard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del
component no retardat i el paràmetre del terme retardat són ambdós variables
aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que
la solució determinista constrüıda amb el mètode dels passos i que involucra
la funció exponencial retardada és una solució probabiĺıstica en el sentit de
Lebesgue.

Finalment, el darrer caṕıtol el dediquem a l’equació en derivades parcials li-
neal d’advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem
l’equació en el sentit de mitjana quadràtica i donem noves expressions per a
la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat
no Gaussiana.

Paraules clau: equació diferencial aleatòria, model lineal, quantificació de la
incertesa, funció de densitat de probabilitat, mètode de Fröbenius, expansió de
caos polinomial, mètodes Monte Carlo, equació aleatòria amb retard, equació
en derivades parcials lineal d’advecció aleatòria.

Classificació temàtica de matemàtiques 2010: 34A30, 34F05, 35R60,
60H10, 60H15, 60H35, 65C05, 65C30.
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Resumen

Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de en-
trada aleatorios, en la forma de variables aleatorias o procesos estocásticos
con cualquier tipo de distribución de probabilidad. En modelización, los
coeficientes de entrada se fijan a partir de datos experimentales, los cuales
suelen acarrear incertidumbre por los errores de medición. Además, el com-
portamiento del fenómeno f́ısico bajo estudio no sigue patrones estrictamente
deterministas. Es por tanto más realista trabajar con modelos matemáticos
con aleatoriedad en su formulación. La solución, considerada en el sentido
de caminos aleatorios o en el sentido de media cuadrática, es un proceso es-
tocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación
de la incertidumbre es a menudo llevada a cabo calculando los principales es-
tad́ısticos (esperanza y varianza) y, si es posible, la función de densidad de
probabilidad.

En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones
diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas par-
ciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones
probabiĺısticas e incluso aproximar su función de densidad de probabilidad, lo
cual es un objetivo complicado en general.

Una parte muy importante de la disertación se dedica a las ecuaciones diferen-
ciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación
son procesos estocásticos y las condiciones iniciales son variables aleatorias. El
estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está
motivado principalmente por su importante papel en la F́ısica Matemática.
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Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en
el sentido de media cuadrática, lo que permite la aproximación de la espe-
ranza y la varianza de la solución estocástica. La metodoloǵıa se extiende al
caso general de ecuaciones diferenciales lineales de segundo orden aleatorias
con coeficientes anaĺıticos (expresables como series de potencias), mediante
el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo
con métodos espectrales basados en expansiones de caos polinomial. Por otro
lado, el método de Fröbenius junto con la simulación de Monte Carlo se uti-
lizan para aproximar la función de densidad de probabilidad de la solución.
Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de
reducción de la varianza basados en reglas de cuadratura y estrategias multi-
nivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden
aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción,
en el que la función de densidad de probabilidad es aproximada mediante un
esquema numérico de diferencias finitas.

En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con
retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando
el coeficiente de la componente no retardada y el parámetro del término re-
tardado son ambos variables aleatorias mientras que la condición inicial es un
proceso estocástico. Se demuestra que la solución determinista construida con
el método de los pasos y que involucra la función exponencial retardada es
una solución probabiĺıstica en el sentido de Lebesgue.

Finalmente, el último caṕıtulo lo dedicamos a la ecuación en derivadas par-
ciales lineal de advección, sujeta a velocidad y condición inicial estocásticas.
Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas ex-
presiones para la función de densidad de probabilidad de la solución, incluso
en el caso de velocidad no Gaussiana.

Palabras clave: ecuación diferencial aleatoria, modelo lineal, cuantificación
de la incertidumbre, función de densidad de probabilidad, método de Fröbenius,
expansión de caos polinomial, métodos Monte Carlo, ecuación aleatoria con
retardo, ecuación en derivadas parciales lineal de advección aleatoria.

Clasificación temática de matemáticas 2010: 34A30, 34F05, 35R60,
60H10, 60H15, 60H35, 65C05, 65C30.
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Monte Carlo simulation 75

5.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Analysis of second-order linear differential equations with analytic
uncertainties via the computation of the density function 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Stochastic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Computation of the probability density function . . . . . . . . . . . . . . . . . . . . . 101

6.4 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Variance reduction methods for Monte Carlo simulation in the
density estimation of random second-order linear differential equa-
tions 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

x



Contents

7.2 Variance reduction by path-wise selection of the initial condition used in the
density expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Variance reduction by using quadrature rule for the initial conditions . . . . . . . 152

7.4 Multilevel Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 On the Legendre differential equation with uncertainties at the
regular-singular point 1 191

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.2 Random Legendre differential equation at the regular singular point 1 . . . . . . 193

8.3 Approximation of the moments of the response: expectation and variance . . . . 198

8.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

9 Density function of random differential equations via finite differ-
ence schemes: a theoretical analysis of a random diffusion-reaction
Poisson-type problem 207

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.2 Random finite difference scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9.3 Probability density function of the solution stochastic process . . . . . . . . . . . . 213

9.4 Examples and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10 Lp-calculus approach to the random autonomous linear differen-
tial equation with discrete delay 223

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.2 Preliminary results on Lp-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10.3 Lp-solution to the random autonomous linear differential equation with dis-
crete delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

10.4 Lp-convergence to a random autonomous linear differential equation when
the delay tends to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

xi



Contents

11 Extending the study on the linear advection equation subject to
stochastic velocity field and initial condition 241

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

11.2 Mean square chain rule and application to solving the random linear advec-
tion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.3 Density function of the solution process . . . . . . . . . . . . . . . . . . . . . . . . . . 254

11.4 Partial differential equation for the density function . . . . . . . . . . . . . . . . . . 261

11.5 Joint density function of the solution process . . . . . . . . . . . . . . . . . . . . . . 263

11.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Bibliography 267

xii



List of Figures

3.1 Data on fish weights. In the horizontal axis, we represent the
years, from 1 to 33. In the vertical axis, we represent the weights
in lbs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Fit of the fish weight data. The blue points represent the real
weights, the red points represent the estimated weights (the
mean) and the green lines cover a 95% confidence interval con-
structed with the Gaussian rule [mean± 2 · standard deviation]. 56

3.3 Fit of the fish weight data. The blue points represent the real
weights, the red points represent the estimated weights (the
mean) and the green lines cover a 95% confidence interval con-
structed by taking the quartiles in the Monte Carlo sampling. . 57

5.1 Expectation and confidence interval for the solution stochastic
process, for orders of basis p = 1, 2, 3, 4. Example 5.3, assuming
independent random data. . . . . . . . . . . . . . . . . . . . . . 88

5.2 Expectation and confidence interval for the solution stochastic
process, for orders of basis p = 1, 2, 3, 4. Example 5.3, assuming
dependent random data. . . . . . . . . . . . . . . . . . . . . . . 90

xiii



List of Figures

5.3 Expectation and confidence interval for the solution stochastic
process, for orders of basis p = 4, 5, 6, 7. Example 5.4, assuming
independent random data. . . . . . . . . . . . . . . . . . . . . . 92

5.4 Expectation and confidence interval for the solution stochastic
process, for orders of basis p = 1, 2, 3. Example 5.5, assuming
independent random data. . . . . . . . . . . . . . . . . . . . . . 94

6.1 Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.5, t = 1 and t = 1.5, with orders of truncation N = 1–6,
N = 6–11 and N = 11–16, respectively. This figure corresponds
to Example 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Differences in consecutive estimates δεN(x, t) (see (6.7)) at t =
0.5, t = 1 and t = 1.5, with orders of truncation N = 1–5,
N = 6–10 and N = 11–15, respectively. This figure corresponds
to Example 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Error EN(t) (see (6.9)), for different times as indicated. This
figure corresponds to Example 6.13. . . . . . . . . . . . . . . . 117

6.4 Relation between logEN(t) and log ∆εN(t), for t = 0.5, t = 1
and t = 1.5. Also reported are linear regressions. This figure
corresponds to Example 6.13. . . . . . . . . . . . . . . . . . . . 118

6.5 Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.25, t = 0.5, t = 0.75 and t = 0.99, with orders of trun-
cation N as indicated. This figure corresponds to Example 6.14. 119

6.6 Differences in consecutive estimates δεN(x, t) (see (6.7)) at t =
0.25, t = 0.5, t = 0.75 and t = 0.99, and for orders of truncation
as indicated. The plots correspond to Example 6.14. . . . . . . 120

6.7 Error EN(t) in (6.9), for different times as indicated. This figure
corresponds to Example 6.14. . . . . . . . . . . . . . . . . . . . 120

6.8 Relation between logEN(t) and log ∆εN(t), for t = 0.25, 0.5,
0.75 and 0.99. Also reported are linear regressions. This figure
corresponds to Example 6.14. . . . . . . . . . . . . . . . . . . . 121

6.9 Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.5, t = 1 and t = 1.5, with varying orders of truncation
N as indicated. This figure corresponds to Example 6.15. . . . 122

xiv



List of Figures

6.10 Random trajectories of SN1 (t) for N = 11–14. For N = 12,
observe that some trajectories vanish very close to t = 1.5,
while for N 6= 12 the trajectories remain away from 0. This
figure corresponds to Example 6.15. . . . . . . . . . . . . . . . 124

6.11 Plot of σ2
N(x, t = 1.5), for N = 11–13. This figure corresponds

to Example 6.15. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.12 Differences in consecutive estimates δεN(x, t) at t = 0.5, t = 1
and t = 1.5, with orders of truncation as indicated. This figure
corresponds to Example 6.15. . . . . . . . . . . . . . . . . . . . 125

6.13 Error EN(t) (see (6.9)), for different times as indicated. This
figure corresponds to Example 6.15. . . . . . . . . . . . . . . . 126

6.14 Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.25, t = 0.5, t = 0.75 and t = 0.99, with orders of
truncation N = 1–5 in all cases. This figure corresponds to
Example 6.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.15 Differences in consecutive estimates δεN(x, t) (see (6.7)) at t =
0.25, t = 0.5, t = 0.75 and t = 0.99, with orders of trunca-
tion N = 1–4 in all three cases. This figure corresponds to
Example 6.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.16 Error EN(t) (see (6.9)), for different times as indicated. This
figure corresponds to Example 6.16. . . . . . . . . . . . . . . . 129

6.17 Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.5, t = 1 and t = 1.5, with orders of truncation N as
indicated. This figure corresponds to Example 6.17. . . . . . . 130

6.18 Differences in consecutive estimates δεN(x, t) (see (6.7)) at t =
0.5, t = 1 and t = 1.5, with orders of truncation N as indicated.
This figure corresponds to Example 6.17. . . . . . . . . . . . . 131

6.19 Error EN(t) (see (6.9)), for different times as indicated. This
figure corresponds to Example 6.17. . . . . . . . . . . . . . . . 132

7.1 Approximations of fX(t=10)(x) using estimates Ê[Z0(x, t = 10)]
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Chapter 1

Introduction

The important role played by differential equations in dealing with mathe-
matical modeling is beyond discussion. They are powerful tools to describe
the dynamics of phenomena appearing in a variety of distinct realms, such
as Engineering, Biomedicine, Epidemiology, Chemistry, Social Sciences, etc.
[13, 78, 86, 114, 145].

The differential equations governing the physical phenomena have inputs (ini-
tial and/or boundary conditions, forcing term and/or coefficients) that in prac-
tice need to be set from experimental data. These data often involve uncertain-
ties from measurement errors, lack of information, etc. Moreover, the behavior
of the physical phenomena does not follow strict deterministic laws. It is thus
more realistic to consider mathematical models with randomness in their for-
mulation. The model inputs are considered as random variables or stochastic
processes rather than constants or deterministic functions, respectively. This
approach leads to the area of random and stochastic differential equations.
The solutions of such differential equations are stochastic processes.

A stochastic differential equation [1, 68, 109, 129] has the general differential
form {

dx(t) = b(t, x(t)) dt+ σ(t, x(t)) dB(t), t ≥ 0,

x(0) = x0,

1
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where b, σ : [0,∞)×R→ R are given functions and B(t) is a Brownian motion.

Randomness is included into the deterministic model x′(t) = dx(t)

dt
= b(t, x(t))

via an irregular perturbation, based on the formal derivative of the Brownian
motion, ξ(t) = B′(t), usually referred to as white noise process. Formally, ξ(t)
is a Gaussian process, with E[ξ(t)] = 0 and E[ξ(t)ξ(s)] = δ0(t − s) (here E
is the expectation and δ0 is the Dirac delta function). Stochastic differential
equations are studied through Itô calculus and model trajectories x(t) with
irregular patterns.

On the contrary, random differential equations arise to model smooth random
phenomena, with not such irregular perturbations. The uncertainty, instead
of being introduced by means of a white noise process, arises from imposing
randomness into the input coefficients and the initial conditions, with any
probability distribution: Normal, Gamma, Binomial, etc. Essentially, random
differential equations arise from a direct randomization of their deterministic
counterpart. The general form of a random differential equation initial value
problem is the following:{

x′(t, ω) = f(t, x(t, ω), ω), t ∈ I, ω ∈ Ω,

x(t0, ω) = x0(ω), ω ∈ Ω.

Here, I ⊆ R is an interval containing t0, and Ω is the sample space of an under-
lying complete probability space (Ω,F ,P), where F ⊆ 2Ω is the σ-algebra of
events and P is the probability measure. The outcomes (i.e. the elements of Ω)
are generically denoted by ω. The term x(t, ω) represents a stochastic process
from I ×Ω to Rq, and x′(t, ω) = ẋ(t, ω) = d

dt
x(t, ω) represents its derivative in

some probabilistic sense. We emphasize the fact that I is independent of ω.

This dissertation will be concerned with random differential equations, not
with stochastic differential equations driven by irregular processes [157, pp. 96–
98]. Although these two terms are sometimes treated as synonymous, they
are conceptually different and require completely distinct techniques for the
analysis.

Random differential equations are usually studied using two distinct approaches:
sample-path calculus and Lp-calculus [124, 136, 160, 161, 167]. Essentially,
sample-path sense means working with x(·, ω) : I → Rq as a real map, for each
ω ∈ Ω fixed. While Lp-sense means to consider our stochastic solution as a
map x : I → Lpq(Ω) (or rather as an equivalence class), and thus work with
continuity, differentiability, Riemann integrability, etc. in the topology of the
random Lebesgue space Lpq(Ω). It is a classical result that any Lp-solution is
also a sample-path solution [124, p. 140].
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We recall that the Lebesgue space Lp(Ω) is formed by the set of random
variables Y : Ω → R such that ‖Y ‖p = E[|Y |p]1/p < ∞, 1 ≤ p < ∞, and
‖Y ‖∞ = inf{C > 0 : |Y | ≤ C almost surely} <∞ (essential supremum norm).
The Lebesgue space Lpq(Ω) consists of the random vectors Y = (Y1, . . . , Yq) :
Ω→ Rq such that ‖Y ‖p = max1≤i≤q ‖Yi‖p <∞. This space is Banach. In the
case of p = 2 it is Hilbert, and it corresponds to the random variables having
finite variance. The L2

q-calculus is usually referred to as mean square calculus.
A key feature of mean square calculus is that mean square convergence ensures
convergence of the expectation and the variance. The L4

q-calculus is often
regarded as mean fourth calculus. Given the stochastic process x, we say that
x is Lp-continuous at t1 ∈ I if limh→0 ‖x(t1 + h)− x(t1)‖p = 0. We say that x

is Lp-differentiable at t1 ∈ I if limh→0 ‖x(t1+h)−x(t1)

h
− x′(t1)‖p = 0, for certain

random variable/vector x′(t1) (called the derivative of x at t1). If I = [a, b],
we say that x is Lp-Riemann integrable on [a, b] if there exists a sequence
of partitions {Pn}∞n=1 with mesh tending to 0, Pn = {a = tn0 < tn1 < . . . <
tnrn = b}, such that, for any choice of points sni ∈ [tni−1, t

n
i ], i = 1, . . . , rn,

the limit limn→∞
∑rn

i=1 x(sni )(tni − tni−1) exists in Lpq(Ω); in this case, these
Riemann sums have the same limit, which is a random variable/vector and is

denoted by
∫ b
a
x(t) dt. Finally, the stochastic process x is Lp-analytic at t1 if

x(t) =
∑∞

n=0 xn(t − t1)n for every t in a neighborhood of t1, where x0, x1, . . .
are random variables/vectors and the sum is in the topology of Lpq(Ω).

Several methods have been proposed in the literature to obtain statistical
information of the stochastic solution (uncertainty quantification).

Monte Carlo simulation is a popular statistical method based on obtaining
independent realizations of the solution, x(t, ωi), by solving the deterministic
version of the problem for different realizations of the coefficients. This allows
approximating the statistical moments of x(t) from its generated sample [70].
Although it is a robust and easy to implement approach, this technique is
computationally expensive (the root mean square error in the approximation

of the expectation E[x(t)] is O(1/
√
M), where M is the finite number of real-

izations).

Another method consists in using spectral expansions of the solution in terms
of the random inputs, which present rapid mean square convergence. Polyno-
mial chaos (PC) methods expand the solution in terms of Hermite polynomials
when the inputs are Gaussian [169]. This method was extended using gener-
alized polynomial chaos (gPC) expansions, to deal with non-Gaussian inputs
[34, 51, 172, 173]. When the inputs of the differential equation are not inde-
pendent, polynomial expansions based on the canonical polynomial basis were

3
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proposed [49]. Essentially, the solution is approximated in the mean square

sense as x(t, ω) ≈
∑N

i=1 x̂i(t)φi(ζ(ω)), where the x̂i(t) are deterministic func-
tions, ζ(ω) is the vector of random input coefficients, and the φi are suitably
selected multivariate polynomials.

For specific random differential equation problems, one may seek a mean
square convergent random power series solution. This is the extension of the
deterministic Fröbenius method to the random setting, which shows important
applications for solving second-order linear differential equations [33]. Several
differential equations from Mathematical Physics have been randomized and
rigorously solved using the random Fröbenius method [27, 29, 43].

A more ambitious objective is the computation of the probability density func-

tion of x(t), denoted as fx(t)(x) = d(P◦x(t)−1)(x)

dx
. The probability density func-

tion is defined as a non-negative Borel measurable function characterized by
P[x(t) ∈ C] =

∫
C fx(t)(x) dx (where C ⊆ Rq is any Borel set). Random vari-

ables having a probability density function are called absolutely continuous,
meaning that their probability law is absolutely continuous with respect to
the Lebesgue measure. The density function allows calculating general statis-
tics (expectation, variance, skewness, kurtosis, median, quantiles, mode, etc.,
provided these statistical quantities exist) and confidence intervals via inte-
gration.

This thesis aims at studying several random linear models, based on ordinary,
delayed and partial differential equations. The linear structure of the models
allows seeking for certain probabilistic solutions in the Lebesgue sense and
even approximate their probability density functions, which is a difficult goal
in general.

The structure of this dissertation, which consists of eleven chapters, is de-
scribed in what follows:

Chapters 2–9 concern second-order random linear differential equations, where
the coefficients of the equation are stochastic processes and the two initial
conditions are random variables. The study of this class of differential equa-
tions in the random setting is mainly motivated on account of their important
role in Mathematical Physics. Relevant equations in this regard are Airy,
Hermite, Laguerre and Legendre random differential equations. We start in
Chapter 2 solving the randomized Legendre differential equation in the mean
square sense, which allows the approximation of the expectation and the vari-
ance of the stochastic solution. Chapter 3 generalizes the previous chapter to
general second-order linear random differential equations with analytic coeffi-
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cients (expressible as random power series). Chapter 4 relaxes the hypotheses
from the previous chapter for particular equations, namely Airy, Hermite and
Laguerre. The basis of these three chapters is the Fröbenius method, and
rapid approximations for the mean and the variance of the output are ob-
tained. In Chapter 5, the approximations of the statistics are constructed
through gPC expansions. Chapter 6 aims at approximating the probability
density function of the stochastic solution to general second-order linear ran-
dom differential equations with analytic coefficients, by using Monte Carlo
simulation methods. Chapter 7 proposes algorithmic improvements for the
Monte Carlo methods of the previous chapter, based on path-wise selections,
quadrature rules and multilevel Monte Carlo strategies. In Chapter 8, we
study the random Legendre differential equation at a regular-singular point,
by constructing a mean square solution based on random power series. Finally,
Chapter 9 deals with a randomized diffusion-reaction Poisson-type problem,
where a finite difference scheme is utilized to approximate the probability
density function of the stochastic solution.

On the other hand, Chapter 10 is devoted to the random autonomous linear
differential equation with discrete constant delay, in the case that the two
coefficients (delay and non-delay term) are random variables and the initial
condition is a stochastic process. The mean square solution is constructed
using the method of steps and the delayed exponential function, and approx-
imations of the mean and the variance are obtained.

In the last chapter, Chapter 11, we analyze the linear advection partial differ-
ential equation subject to stochastic velocity field and initial condition. We
solve the equation in the mean square sense and estimate the probability den-
sity function of the stochastic solution.

5





Chapter 2

Improving the approximation
of the first and second order

statistics of the response
process to the random

Legendre differential equation

In this chapter, we deal with uncertainty quantification for the random
Legendre differential equation, with input coefficient A and initial condi-
tions X0 and X1. In a previous study [G. Calbo et al. In: Comput. Math.
Appl. 61.9 (2011), pp. 2782–2792], a mean square convergent power series
solution on (−1/e, 1/e) was constructed, under the assumptions of mean
fourth integrability of X0 and X1, independence, and at most exponential
growth of the absolute moments of A. In this chapter, we relax these con-
ditions to construct an Lp solution (1 ≤ p ≤ ∞) to the random Legendre
differential equation on the whole domain (−1, 1), as in its deterministic
counterpart. Our hypotheses assume no independence and less integra-
bility of X0 and X1. Moreover, the growth condition on the moments of
A is characterized by the boundedness of A, which simplifies the proofs
significantly. We also provide approximations of the expectation and vari-
ance of the response process. The numerical experiments show the wide
applicability of our findings. A comparison with Monte Carlo simulation
is performed.
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Chapter 2.

2.1 Introduction

The Fröbenius method has been successfully used to deal with particular
second-order random linear differential equations. Without entering into the
details in this first chapter, we mention Airy [43], Hermite [29], Legendre [31]
and Bessel [46] differential equations. In this chapter, we will only deal with
the random Legendre differential equation:

(1− t2)Ẍ(t)− 2tẊ(t) +A(A+ 1)X(t) = 0, |t| < 1,

X(0) = X0,

Ẋ(0) = X1.

(2.1)

The coefficient A is a non-negative random variable and the initial conditions
X0 and X1 are random variables. All of them are defined in a common com-
plete probability space (Ω,F ,P). In the following chapters, we will extend the
discussion to general random second-order linear differential equations with
coefficients expressible as random power series (i.e. analytic).

Recall that, given a stochastic process Y (t) with the property that Y (t) ∈
Lp(Ω) for each t, one can define the Lp(Ω) continuity, differentiability or
analiticity of Y (t), by taking limits in Lp(Ω). This Lp(Ω) random calculus
is the setting in which one usually considers random differential equations
such as (2.1). The particular case p = 2, which arises from working in the
Hilbert space L2(Ω) and with random variables with well-defined expectation
E[·] and variance V[·], is the most extended in the literature, and it is usually
referred to as mean square calculus. An exposition of these topics is presented,
for instance, in [160, 167].

In [31], the authors constructed a mean square convergent power series solu-
tion X(t) to (2.1) on (−1/e, 1/e) under certain assumptions on the random
inputs A, X0 and X1. The goal of this chapter is to improve [31]: to weaken
the hypotheses from [31], to simplify the proofs significantly and to obtain
an Lp(Ω) random power series solution on the whole domain (−1, 1), as in
the deterministic counterpart of (2.1). Numerical examples that could not
be tackled via the hypotheses from [31] will be carried out in this chapter,
establishing a comparison with Monte Carlo simulation.

The structure of this chapter is the following. In Section 2.2, we will review
the techniques used in [31]. We will relax the assumptions from [31] and
we will improve the conclusions of the results. In Section 2.3, we will show
how to approximate the expectation and variance of the response process,
under no independence assumption. In Section 2.4, we will perform a wide
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2.2 Random Legendre differential equation

variety of examples and illustrate the potentiality of our findings by comparing
the numerical results with Monte Carlo simulation. Section 2.5 will draw
conclusions.

2.2 Random Legendre differential equation

In [31], the authors constructed a mean square power series solution to the
random Legendre differential equation (2.1) on the time interval (−1/e, 1/e).
The hypotheses assumed in [31] were that the absolute moments of A increased
at most exponentially, that is, there exist two positive constants H and M such
that

E[|A|n] ≤ HMn, n ≥ n0; (2.2)

that A is independent of the initial conditions X0 and X1; and that X0, X1 ∈
L4(Ω). Hypothesis (2.2) has been of constant use in the extant literature
to study significant linear random differential equations via the Fröbenius
method: [29, 31, 43]. In [31], the explicit solution to (2.1) was obtained in the
form of a random power series solution by means of the Fröbenius method:

X(t) = X0X̃1(t) +X1X̃2(t) (2.3)

for |t| < 1/e, where

X̃1(t) =
∞∑
m=0

(−1)m

(2m)!
P1(m)t2m, X̃2(t) =

∞∑
m=0

(−1)m

(2m+ 1)!
P2(m)t2m+1, (2.4)

P1(m) =
m∏
k=1

(A−2k+2)(A+2k−1), P2(m) =
m∏
k=1

(A−2k+1)(A+2k). (2.5)

The series in (2.4) were proved to be mean fourth convergent for |t| < 1/e.
Since X0, X1 ∈ L4(Ω), it follows that (2.3) is a mean square solution to (2.1)
on (−1/e, 1/e).

To summarize, the main result obtained in [31, Th. 11] was stated as follows:

Theorem 2.1 Suppose that X0, X1 ∈ L4(Ω), that A satisfies the growth con-
dition (2.2), and that A is independent of X0 and X1. Then the stochastic
process defined by (2.3)–(2.5) is a mean square solution to the random initial
value problem (2.1) on the time domain (−1/e, 1/e).

Our goal is to extend this theorem and to simplify its proof given in [31].
The growth condition (2.2) was established in order to demonstrate the mean
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fourth convergence of (2.4), by applying well-known inequalities: Hölder’s
inequality, cs-inequality and arithmetic-geometric inequality. We will simplify
the proof given in [31] by working with an equivalent but easier to manage
form of (2.2), see Lemma 2.2. Moreover, the L∞(Ω) convergence of (2.4)
(which implies mean fourth convergence) will be obtained on the whole interval
(−1, 1), see Theorem 2.4. This will provide the complete extension of the
deterministic counterpart for the random Legendre differential equation.

Lemma 2.2 The growth condition (2.2) is equivalent to the boundedness of
A: ‖A‖∞ <∞.

Proof. If ‖A‖∞ <∞, then E[|A|n] ≤ ‖A‖n∞, so that we can take H = 1 and
M = ‖A‖∞ and (2.2) is satisfied.
On the other hand, if (2.2) holds, then ‖A‖n ≤ H1/nM . By taking limits,
‖A‖∞ = limn→∞ ‖A‖n ≤M <∞.

�

Lemma 2.3 Let X(t) =
∑∞

n=0Xnt
n be a formal random power series on

(−1, 1). Let 1 ≤ p ≤ ∞. Then the given series converges in Lp(Ω) for all
t ∈ (−1, 1), if and only if

∑∞
n=0 ‖Xn‖p|t|n <∞ for all t ∈ (−1, 1).

Proof. If
∑∞

n=0 ‖Xn‖p|t|n < ∞ for all t ∈ (−1, 1), then the series converges
in Lp(Ω) for all t ∈ (−1, 1), because in a Banach space, absolute convergence
of a series implies convergence.
On the other hand, suppose that the series converges in Lp(Ω) for all t ∈
(−1, 1). Fix |t0| < 1. Let |t0| < |ρ| < 1. Since

∑∞
n=0 ‖Xn‖p|ρ|n < ∞, then

‖Xn‖p|ρ|n ≤ 1, for n ≥ n0. Thus, ‖Xn‖p|t0|n ≤ (|t0|/|ρ|)n, for n ≥ n0, with∑∞
n=0(|t0|/|ρ|)n <∞. By comparison,

∑∞
n=0 ‖Xn‖p|t0|n <∞.

�

We state and prove the main Theorem 2.4. It is a significant improvement
of Theorem (2.1) stated and proved in [31]: for p = 2, we only require mean
square integrability of X0 and X1, not mean fourth integrability; we do not
need any independence assumption on A, X0 and X1; and we demonstrate
mean square convergence of the series on the whole interval (−1, 1), not just
(−1/e, 1/e). Moreover, our proof is much simpler, because the hypothesis
of boundedness for A instead of the equivalent growth condition (2.2) allows
simpler and more direct inequalities (we do not need Hölder’s inequality, cs-
inequality, arithmetic-geometric inequality, etc.).
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2.2 Random Legendre differential equation

Theorem 2.4 Suppose that X0, X1 ∈ Lp(Ω), for certain 1 ≤ p ≤ ∞, and
‖A‖∞ < ∞. Then the stochastic process defined by (2.3)–(2.5) is the unique
Lp(Ω) solution to the random initial value problem (2.1) on the whole time
domain (−1, 1).

Proof. From (2.3) and X0, X1 ∈ Lp(Ω), it suffices to see that the two series
given in (2.4) converge in L∞(Ω) for t ∈ (−1, 1). That is,

∞∑
m=0

1

(2m)!
‖P1(m)‖∞|t|2m <∞,

∞∑
m=0

1

(2m+ 1)!
‖P2(m)‖∞|t|2m+1 <∞, (2.6)

for t ∈ (−1, 1) (see Lemma 2.3). We will check (2.6) for the first series, as for
the second one the reasoning is completely analogous.
Let L = ‖A‖∞. We have

‖P1(m)‖∞ =

∥∥∥∥∥
m∏
k=1

(A− 2k + 2)(A+ 2k − 1)

∥∥∥∥∥
∞

≤
m∏
k=1

(L+ 2k − 2)(L+ 2k − 1)

≤
m∏
k=1

(L+ 2k − 1)2 =

(∏2m−1
k=1 (L+ k)∏m−1
k=1 (L+ 2k)

)2

=

(
(L+ 2m− 1)!

L!
∏m−1
k=1 (L+ 2k)

)2

=

(
(L+ 2m− 1)!

L!2m−1
∏m−1
k=1 (L/2 + k)

)2

=

(
(L+ 2m− 1)!Γ(L/2 + 1)

L!2m−1Γ(L/2 +m)

)2

,

where the property Γ(x) = (x − 1)Γ(x − 1) of the Gamma function Γ(z) =∫∞
0
xz−1e−x dx has been used. By the root test, if we check that

lim
m→∞

(
(L+ 2m− 1)!Γ(L/2 + 1)

L!2m−1Γ(L/2 +m)(2m)!
1
2

)2/m

= 1,

then the first part of (2.6) will follow. By Stirling’s formula, as x → ∞, the
asymptotic behavior of the Gamma function is Γ(x) ∼

√
2πx(x−1

e
)x−1. As a

consequence,

lim
m→∞

(
(L+ 2m− 1)!Γ(L/2 + 1)

L!2m−1Γ(L/2 +m)(2m)!
1
2

)2/m

= lim
m→∞

 √
2π(L+ 2m− 1)

(
L+2m−1

e

)L+2m−1
Γ(L/2 + 1)

L!2m−1
√

2π(L/2 +m)
(
L/2+m−1

e

)L/2+m−1
4
√

4πm
(

2m
e

)m


2/m

= lim
m→∞

(
L+2m−1

e

)4
4
(
L/2+m−1

e

)2 (
2m
e

)2 = 1.
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As a conclusion, the stochastic process defined by (2.3)–(2.5) is an Lp(Ω)
solution to (2.1) on (−1, 1).
To demonstrate the uniqueness, we use [160, Th. 5.1.2], [161, Th. 5]. Rewrite

(2.1) as Ż(t) = B(t)Z(t), where

Z(t) =

(
X(t)

Ẋ(t)

)
, B(t) =

(
0 1

A(A+1)

1−t2
−2t
1−t2

)
.

We say that the random vector Z = (Z1, Z2) belongs to Lp2(Ω) if

‖Z‖p := max{‖Z1‖p, ‖Z2‖p} <∞.

Consider the random matrix norm |||B||| := maxi
∑

j ‖bij‖∞. If Z,Z ′ ∈ Lp2(Ω),
then ‖B(t)Z −B(t)Z ′‖p ≤ |||B(t)||| · ‖Z − Z ′‖p, where∫ a

−a
|||B(t)|||dt =

∫ a

−a

‖A‖∞(‖A‖∞ + 1) + 2|t|
1− t2

dt <∞

for each a ∈ (0, 1). Then the assumptions of [160, Th. 5.1.2], [161, Th. 5] hold.
�

The hypothesis ‖A‖∞ <∞ is satisfied by some standard probability distribu-
tions: Uniform, Beta, Binomial, etc. If one wants A to follow an unbounded
distribution, the truncation method permits bounding the support of A (see
[125]). For example, the truncated Normal or Gamma distributions can be
given to A. See Example 2.9 for a test of this methodology.

Remark 2.5 If ‖A‖∞ =∞, then (2.6) does not hold for any t ∈ (−1, 1)\{0}.
Indeed,

∞∑
m=0

1

(2m)!
‖P1(m)‖∞|t|2m ≥

1

2
‖P1(1)‖∞t2 =

1

2
‖A(A+ 1)‖∞t2 =∞.

By Lemma 2.3, the two series given in (2.4) do not converge in L∞(Ω), for any
t ∈ (−1, 1)\{0}.

Remark 2.6 If X0, X1, A ∈ L∞(Ω), then the response process X(t) defined
by (2.3)–(2.5) is the unique L∞(Ω) solution to (2.1) on (−1, 1). In particular,
X(t) is the unique solution in the sample-path sense [160, Appendix A].
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2.3 Approximation of the expectation and variance of the response process

2.3 Approximation of the expectation and variance of the
response process

Let X0, X1 ∈ L2(Ω) and A be a bounded random variable, not necessarily
independent. By Theorem 2.4, the stochastic process X(t) defined by (2.3)–
(2.5) is an L2(Ω) solution to the random initial value problem (2.1) on the

whole time domain (−1, 1). If we consider XM(t) = X0X̃
M
1 (t) + X1X̃

M
2 (t),

where

X̃M
1 (t) =

bM2 c∑
m=0

(−1)m

(2m)!
P1(m)t2m, X̃M

2 (t) =

bM−1
2 c∑

m=0

(−1)m

(2m+ 1)!
P2(m)t2m+1,

we know that XM(t) → X(t) in L2(Ω) as M → ∞, for each t ∈ (−1, 1).
This mean square convergence allows us to approximate the expectation and
variance of X(t) by using

E[X(t)] = lim
M→∞

E[XM(t)], V[X(t)] = lim
M→∞

V[XM(t)], (2.7)

see [160, Th. 4.2.1, Th. 4.3.1].

The expectation of XM(t) is given by

E[XM(t)] =

bM2 c∑
m=0

(−1)m

(2m)!
E[X0P1(m)]t2m +

bM−1
2 c∑

m=0

(−1)m

(2m+ 1)!
E[X1P2(m)]t2m+1,

where

E[X0P1(m)] =

∫
(0,∞)×R

x0

(
m∏
j=1

(a− 2j + 2)(a+ 2j − 1)

)
P(A,X0)(da,dx0),

E[X1P2(m)] =

∫
(0,∞)×R

x1

(
m∏
j=1

(a− 2j + 1)(a+ 2j)

)
P(A,X1)(da,dx1).

Here, PZ represents the probability law of the random vector Z, which com-
prises the different cases of absolute continuity, discrete support, etc.

On the other hand, the variance of XM(t) is given by

V[XM(t)] = E[XM(t)2]− (E[XM(t)])
2
,

so that we need to compute E[XM(t)2]. Let

X2m = X0

(−1)m

(2m)!
P1(m), X2m+1 = X1

(−1)m

(2m+ 1)!
P2(m).
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We have

E[XM(t)2] = E


bM2 c∑
m=0

X2mt
2m

2
+ E


bM−1

2 c∑
m=0

X2m+1t
2m+1

2


+2

bM2 c∑
m=0

bM−1
2 c∑

n=0

E[X2mX2n+1]t2(m+n)+1,

where

E


bM2 c∑
m=0

X2mt
2m

2
 =

bM2 c∑
m=0

bM2 c∑
n=0

E[X2mX2n]t2(m+n),

E


bM−1

2 c∑
m=0

X2m+1t
2m+1

2
 =

bM−1
2 c∑

m=0

bM−1
2 c∑

n=0

E[X2m+1X2n+1]t2(m+n)+2.

The expectations involved in these expressions can be computed as follows:

E[X2mX2n] =
(−1)m+n

(2m)!(2n)!
E[X2

0P1(m)P1(n)]

=
(−1)m+n

(2m)!(2n)!

∫
(0,∞)×R

x2
0

(
m∏
j=1

(a− 2j + 2)(a+ 2j − 1)

)

·

(
n∏
j=1

(a− 2j + 2)(a+ 2j − 1)

)
P(A,X0)(da,dx0),

E[X2m+1X2n+1] =
(−1)m+n

(2m+ 1)!(2n+ 1)!
E[X2

1P2(m)P2(n)]

=
(−1)m+n

(2m+ 1)!(2n+ 1)!

∫
(0,∞)×R

x2
1

(
m∏
j=1

(a− 2j + 1)(a+ 2j)

)

·

(
n∏
j=1

(a− 2j + 1)(a+ 2j)

)
P(A,X1)(da,dx1),

E[X2mX2n+1] =
(−1)m+n

(2m)!(2n+ 1)!
E[X0X1P1(m)P2(n)]

=
(−1)m+n

(2m)!(2n)!

∫
(0,∞)×R×R

x0x1

(
m∏
j=1

(a− 2j + 2)(a+ 2j − 1)

)

·

(
n∏
j=1

(a− 2j + 1)(a+ 2j)

)
P(A,X0,X1)(da,dx0, dx1).
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2.4 Numerical experiments

In this section we perform several numerical experiments. Since in [31] the
authors carried out numerical examples when A, X0 and X1 are independent
random variables, we will show three more examples in which A, X0 and X1

are not independent. To assess the reliability of the approximations obtained
for the expectation and variance by using (2.7), we will compare them with
Monte Carlo simulation.

Monte Carlo simulation generates samples of X(t) by computing realizations
of A, X0 and X1 and solving the corresponding deterministic problem (2.1).
Although it is an effective and easy to implement approach to quantify the
uncertainty, the slowness to get accurately the digits in the computations
makes this technique computationally expensive, [70], [173, pp. 53–54].

Example 2.7 We consider the random differential equation (2.1) with

(A,X0, X1) ∼ Dirichlet(5, 1, 2, 3).

Since X0, X1 and A are bounded random variables, Theorem 2.4 implies that
the stochastic process X(t) defined by (2.3)–(2.5) is the unique L∞(Ω) solution
to (2.1) on (−1, 1). In Table 2.1, we show E[XM(t)] for different orders M ,
which approximates E[X(t)] by (2.7). We observe that the approximations
achieved are more accurate for small M when t is near 0, because the random
power series is centered at 0 and the process X(t) is known at 0. For t ≤ 0.8,
stabilization of the results has been achieved for M = 80. For t = 0.9, a larger
M would be needed. We notice that Monte Carlo simulation with 500, 000
realizations give an approximate result up to three significant figures. To
obtain more exact approximations, more simulations and computational cost
are needed. In general, the approximations via Monte Carlo simulation are
worse than via our Fröbenius method. Table 2.2 provides analogous results
for the variance, where V[XM(t)] approximates V[X(t)] by (2.7). For t ≤ 0.7
stabilization of the approximations has been reached for M = 80. In general,
a larger M is required to achieve nearly exact approximations for the variance.
The results obtained agree with the Monte Carlo simulation.

Example 2.8 We set a joint discrete distribution to (A,X0, X1):

(A,X0, X1) ∼ Multinomial(10; 0.2, 0.3, 0.5).

Since X0, X1 and A are bounded random variables, Theorem 2.4 entails that
the response process X(t) defined by (2.3)–(2.5) is the unique L∞(Ω) solution
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t E[X10(t)] E[X20(t)] E[X40(t)] E[X80(t)] MC 500, 000
0 0.0909091 0.0909091 0.0909091 0.0909091 0.0906787

0.1 0.108855 0.108855 0.108855 0.108855 0.108648
0.2 0.126491 0.126491 0.126491 0.126491 0.126308
0.3 0.144059 0.144059 0.144059 0.144059 0.143903
0.4 0.161835 0.161835 0.161835 0.161835 0.161709
0.5 0.180166 0.180172 0.180172 0.180172 0.180080
0.6 0.199548 0.199591 0.199592 0.199592 0.199540
0.7 0.220733 0.220998 0.221002 0.221002 0.221000
0.8 0.24491 0.246266 0.246352 0.246352 0.246416
0.9 0.273962 0.280100 0.281585 0.281693 0.281863

Table 2.1: Approximation of the expectation of the solution stochastic process. Exam-
ple 2.7.

t V[X10(t)] V[X20(t)] V[X40(t)] V[X80(t)] MC 500, 000
0 0.00688705 0.00688705 0.00688705 0.00688705 0.00685105

0.1 0.00670461 0.00670461 0.00670461 0.00670461 0.00666882
0.2 0.00672130 0.00672130 0.00672130 0.00672130 0.00668621
0.3 0.00697044 0.00697045 0.00697045 0.00697045 0.00693658
0.4 0.00751088 0.00751091 0.00751091 0.00751091 0.00747887
0.5 0.00844437 0.00844482 0.00844482 0.00844482 0.00841536
0.6 0.00995308 0.00995823 0.00995825 0.00995825 0.00993237
0.7 0.0123829 0.0124269 0.0124276 0.0124276 0.0124068
0.8 0.0164346 0.0167508 0.0167712 0.0167714 0.0167582
0.9 0.0236175 0.0256974 0.0262304 0.0262699 0.0262712

Table 2.2: Approximation of the variance of the solution stochastic process. Example 2.7.
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2.4 Numerical experiments

t E[X10(t)] E[X20(t)] E[X40(t)] E[X80(t)] MC 500, 000
0 3 3 3 3 3.00207

0.1 3.39965 3.39965 3.39965 3.39965 3.40154
0.2 3.59067 3.59067 3.59067 3.59067 3.59226
0.3 3.57194 3.57194 3.57194 3.57194 3.57322
0.4 3.35661 3.35661 3.35661 3.35661 3.35768
0.5 2.97154 2.97154 2.97154 2.97154 2.97259
0.6 2.45625 2.45623 2.45623 2.45623 2.45738
0.7 1.86122 1.86112 1.86111 1.86111 1.86226
0.8 1.24584 1.24523 1.24515 1.24515 1.24558
0.9 0.675881 0.672543 0.670722 0.670550 0.668041

Table 2.3: Approximation of the expectation of the solution stochastic process. Exam-
ple 2.8.

to (2.1) on (−1, 1). Expression (2.7) allows approximating E[X(t)] and V[X(t)]
via E[XM(t)] and V[XM(t)], respectively. Analogous comments to the previous
example apply here, and the results are presented in Table 2.3 and Table 2.4.
The results obtained via our Fröbenius method are accurate.

Example 2.9 We set a truncated Multinormal distribution for the random
input parameters:

(A,X0, X1) ∼ Multinormal(

10
−2
1

 ,

 1 0.01 −0.02
0.01 4 2
−0.02 2 4

)|[6,14]×R×R.

Since X0, X1 ∈ Lp(Ω) for all 1 ≤ p < ∞ and A is bounded in [6, 14], Theo-
rem 2.4 shows that the stochastic process X(t) defined by (2.3)–(2.5) is the
unique Lp(Ω) solution to (2.1) on (−1, 1), for each 1 ≤ p <∞. Analogously to
the previous two examples, Table 2.5 and Table 2.6 show the results. Observe
that stabilization of the results for t ≤ 0.7 is achieved for M = 80. Notice
also that, for M ≤ 20 and t ≥ 0.4, the approximation of the expectation and
variance is not good. The results obtained from the Fröbenius method for
M ≥ 80 agree with the statistics calculated via the Monte Carlo simulation.
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t V[X10(t)] V[X20(t)] V[X40(t)] V[X80(t)] MC 500, 000
0 2.1 2.1 2.1 2.1 2.10094

0.1 1.81331 1.81331 1.81331 1.81331 1.81300
0.2 1.78089 1.78089 1.78089 1.78089 1.77973
0.3 2.43304 2.43304 2.43304 2.43304 2.43226
0.4 4.15996 4.15996 4.15996 4.15996 4.16027
0.5 7.12080 7.12077 7.12077 7.12077 7.12084
0.6 11.1844 11.1838 11.1838 11.1838 11.1812
0.7 16.1150 16.1090 16.1090 16.1090 16.1046
0.8 22.1109 22.0920 22.0932 22.0932 22.0965
0.9 31.1044 31.4557 31.6189 31.6324 31.6569

Table 2.4: Approximation of the variance of the solution stochastic process. Example 2.8.

t E[X10(t)] E[X20(t)] E[X40(t)] E[X80(t)] MC 500, 000
0 −2.01642 −2.01642 −2.01642 −2.01642 −2.00100

0.1 −0.905676 −0.905676 −0.905676 −0.905676 −0.905209
0.2 1.10885 1.10884 1.10884 1.10884 1.11031
0.3 1.94955 1.94909 1.94909 1.94909 1.94966
0.4 0.656784 0.643176 0.643176 0.643176 0.641893
0.5 −1.20831 −1.39804 −1.39804 −1.39804 −1.39941
0.6 0.111123 −1.57901 −1.57903 −1.57903 −1.57838
0.7 10.8410 0.602665 0.602084 0.602084 0.594087
0.8 51.7915 1.58890 1.57617 1.57615 1.57588
0.9 203.700 −0.987211 −1.20468 −1.20776 −1.20091

Table 2.5: Approximation of the expectation of the solution stochastic process. Exam-
ple 2.9.

18



2.5 Conclusions

t V[X10(t)] V[X20(t)] V[X40(t)] V[X80(t)] MC 500, 000
0 3.96931 3.96931 3.96931 3.96931 4.00268

0.1 1.23016 1.23016 1.23016 1.23016 1.22715
0.2 1.16167 1.16166 1.16166 1.16166 1.14804
0.3 3.86797 3.87079 3.87079 3.87079 3.86348
0.4 1.72091 1.76984 1.76984 1.76984 1.76343
0.5 2.59759 2.75802 2.75802 2.75802 2.71796
0.6 53.8179 3.79667 3.79665 3.79665 3.79030
0.7 1774.74 3.88379 3.87941 3.87941 3.88103
0.8 40373.8 5.25517 5.27273 5.27282 5.17336
0.9 658630 4.79558 7.67724 7.76726 7.73295

Table 2.6: Approximation of the variance of the solution stochastic process. Example 2.9.

2.5 Conclusions

In this chapter we have studied the random Legendre differential equation
with input coefficient A and initial conditions X0 and X1. In [Calbo G. et
al, Comput. Math. Appl., 61(9), 2782–2792 (2011)], a mean square conver-
gent random power series solution X(t) on (−1/e, 1/e) was constructed via
the Fröbenius method. The authors proved that, under the assumption that
the absolute moments of A grow at most exponentially, under mean fourth
integrability of X0 and X1, and under independence of A and the initial condi-
tions, the random power series becomes a mean square solution to the random
Legendre differential equation on (−1/e, 1/e). We have extended this result
by assuming less integrability of X0 and X1 and no independence between the
random inputs. Moreover, the growth condition on the absolute moments of A
has been characterized in terms of the boundedness of A. This has permitted
a simpler proof of our result, as no probabilistic inequalities (Hölder, cs, etc.)
have been required. Moreover, our random power series solution converges on
the whole (−1, 1), as it occurs with its deterministic counterpart. We have
provided expressions for the approximate expectation and variance of X(t),
by truncating the random power series. In the numerical examples, we have
illustrated the improvements developed by working with non-independent ran-
dom inputs. Our approach has improved the approximations from the Monte
Carlo simulation.
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Chapter 3

Random non-autonomous
second-order linear

differential equations: mean
square analytic solutions and

their statistical properties

In this chapter we study random non-autonomous second-order linear
differential equations. The coefficients are assumed to be stochastic pro-
cesses and the initial conditions are random variables defined in a common
underlying complete probability space. Under appropriate assumptions, we
prove the existence of an analytic stochastic process solution in the ran-
dom mean square sense. Truncating the random series that defines the
solution process, we are able to approximate the main statistical properties
of the solution, such as the expectation and the variance. We also obtain
error priori bounds to construct reliable approximations of both statistical
moments. We include a set of numerical examples to illustrate the main
theoretical results established throughout the chapter. We finish with an
example where our findings are combined with Monte Carlo simulation to
modeling uncertainty using real data.
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3.1 Introduction

In this chapter, we conduct a full probabilistic study of the random second-
order linear differential equation

Ẍ(t) +A(t)Ẋ(t) +B(t)X(t) = 0, t ∈ R,
X(t0) = Y0,

Ẋ(t0) = Y1.

(3.1)

The data coefficients A(t) and B(t) are stochastic processes and the initial con-
ditions Y0 and Y1 are random variables on an underlying complete probability
space (Ω,F ,P).

Particular cases of the random initial value problem (3.1) have been studied in
previous contributions using Lp(Ω) random calculus. As briefly mentioned in
the previous chapter, important deterministic models appearing in the area of
Mathematical Physics, such as Airy, Hermite, Legendre, Laguerre and Bessel
differential equations, have been randomized and rigorously studied in [29, 31,
43, 44, 46] and in Chapter 2. In these contributions, approximate solution
stochastic processes together with their main statistical moments (mean and
variance) are constructed by taking advantage of the random mean square
calculus. Since in the case of Hermite, Legendre and Laguerre deterministic
differential equations it is well-known that they admit polynomial solutions, in
those contributions the concept of random polynomial solution is introduced
in the stochastic framework as well.

In [77], the authors proposed a homotopy technique to solve some particular
random differential equations pertaining to the class given in (3.1). Other
solution techniques include variational iteration [99] and Adomian decomposi-
tion [100]. Finally, a technique, analogous to the Fröbenius method but relying
on the concept of differential transform, is proposed in [101, 168].

A very important case of problem (3.1) is when its coefficients are random
variables rather than stochastic processes, i.e., A(t) = A and B(t) = B, cor-
responding to the autonomous case. In [38] the authors construct approxi-
mations of the first and second probability density function of the solution
stochastic process using a complementary approach to mean square calculus.
In [57, 59, 87, 89, 90, 143] one addresses significant advances, for other ran-
dom differential equations, dealing with the computation of the probability
density function of the corresponding solution. Additional studies dealing
with random differential equations via random mean square calculus include
[97, 98, 100, 101, 115, 127], for instance.
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3.2 Results

The structure of this chapter is described as follows. In Section 3.2 we will
solve the random initial value problem (3.1) in a suitable way and we will
describe the manner of approximating the main statistical information of the
solution process (mean and variance). In Section 3.3 we will compare our
findings with the extant literature and we will also perform some numerical
examples including an illustrative application in a modeling setting using real
data. Finally, in Section 3.4 conclusions will be drawn.

3.2 Results

Our main goal is to find the solution stochastic process to the random initial
value problem (3.1). We will assume that the data stochastic process A(t) and
B(t) are analytic at t0, in the following sense:

A(t) =
∞∑
n=0

An(t− t0)n, B(t) =
∞∑
n=0

Bn(t− t0)n,

for t ∈ (t0 − r, t0 + r), being r > 0 fixed, and the sum is understood in the
L2(Ω) setting. We search for an analytic solution process X(t) of the form

X(t) =
∞∑
n=0

Xn(t− t0)n,

for t ∈ (t0 − r, t0 + r), where the sum is in L2(Ω). This stochastic process
will be a solution to the random problem (3.1) in the sense of L2(Ω) (so, in
particular twice differentiable in the mean square sense).

3.2.1 Auxiliary results concerning random power series

We need some auxiliary results to deal with random power series in the L2(Ω)
setting. First of all, we need a result to differentiate a power series in the
Lp(Ω) sense (in this chapter we will just use the cases p = 1 and p = 2, but
we do the proof for a general p ≥ 1 just for the sake of completeness). The
particular case p = 2 is a consequence of Theorem 3.1 in [52].

Theorem 3.1 (Differentiation of a power series in the Lp(Ω) sense)
Let A(t) =

∑∞
n=0An(t − t0)n be a random power series in the Lp(Ω) setting

(p ≥ 1), for t ∈ (t0 − r, t0 + r), r > 0. Then the random power series∑∞
n=1 nAn(t− t0)n−1 exists in Lp(Ω) for t ∈ (t0 − r, t0 + r) and, moreover, the
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Lp(Ω) derivative of A(t) is equal to it:

Ȧ(t) =
∞∑
n=1

nAn(t− t0)n−1,

for all t ∈ (t0 − r, t0 + r).

Proof. Let us see first that the random power series
∑∞

n=1 nAn(t − t0)n−1

exists in Lp(Ω) for t ∈ (t0 − r, t0 + r). Given 0 < ρ < r, we prove that

∞∑
n=1

n‖An‖pρn−1 <∞. (3.2)

Fix s : 0 < ρ < s < r. Since the sum
∑∞

n=0Ans
n exists in Lp(Ω), we have

limn→∞ ‖An‖psn = 0, so there exists K > 0 such that ‖An‖psn ≤ K, for every
n ≥ 0. Then

n‖An‖pρn−1 ≤ nK 1

s

(ρ
s

)n−1

.

As
∑∞

n=1 n(ρ/s)n−1 < ∞, by the comparison test for series we conclude that
(3.2) holds.
Let us see now that the Lp(Ω) derivative ofA(t) is equal to

∑∞
n=1 nAn(t−t0)n−1.

By definition of Lp(Ω) derivative, we have to check that

lim
h→0

∥∥∥∥∥
∞∑
n=0

An
(t+ h− t0)n − (t− t0)n

h
−
∞∑
n=1

nAn(t− t0)n−1

∥∥∥∥∥
p

= 0.

Fix s and h such that 0 < ρ < s < r and 0 < |h| < s−ρ. Fix t ∈ (t0−ρ, t0 +ρ).
By the triangular inequality,∥∥∥∥∥

∞∑
n=0

An
(t+ h− t0)n − (t− t0)n

h
−
∞∑
n=1

nAn(t− t0)n−1

∥∥∥∥∥
p

≤
∞∑
n=1

‖An‖p
∣∣∣∣(t+ h− t0)n − (t− t0)n

h
− n(t− t0)n−1

∣∣∣∣ . (3.3)

We know that

lim
h→0

∣∣∣∣(t+ h− t0)n − (t− t0)n

h
− n(t− t0)n−1

∣∣∣∣ = 0 (3.4)

(by definition of the pointwise derivative of (t − t0)n). On the other hand,

using the identity an−bn = (a−b)(
∑n−1

m=0 a
n−1−mbm), we perform the following
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3.2 Results

estimates:∣∣∣∣(t+ h− t0)n − (t− t0)n

h

∣∣∣∣ =

∣∣∣∣(t+ h− t0)n − (t− t0)n

(t+ h− t0)− (t− t0)

∣∣∣∣
=

∣∣∣∣∣
n−1∑
m=0

(t+ h− t0)n−1−m(t− t0)m

∣∣∣∣∣
≤

n−1∑
m=0

|t+ h− t0|n−1−m|t− t0|m

≤
n−1∑
m=0

(|t− t0|+ |h|)n−1−m|t− t0|m

≤ n(|t− t0|+ |h|)n−1 ≤ nsn−1,

where we have used that |t − t0| ≤ |t − t0| + |h|, |t − t0| < ρ and |h| < s − ρ.
Then

‖An‖p
∣∣∣∣(t− t0 + h)n − (t− t0)n

h
− n(t− t0)n−1

∣∣∣∣
≤ ‖An‖p

(∣∣∣∣(t− t0 + h)n − (t− t0)n

h

∣∣∣∣+ n|t− t0|n−1

)
≤ ‖An‖p(nsn−1 + nρn−1) ≤ ‖An‖p(nsn−1 + nsn−1) = 2‖An‖pnsn−1, (3.5)

being
∑∞

n=1 ‖An‖pnsn−1 < ∞. By the Dominated Convergence Theorem for
series, both (3.4) and (3.5) permit us to conclude that (3.3) tends to 0 as
h→ 0, as wanted.

�

As it shall see apparent later, we need a theorem to multiply random power
series. In the deterministic setting, the so-called Merten’s Theorem allows
multiplying two power series. The deterministic version of Merten’s Theorem
is proved in Theorem 8.46 of [3]. We adapt the proof in [3] to a stochastic
setting in Theorem 3.2. Notice that, from Theorem 3.2, when we multiply
two random power series we loose Lebesgue spaces of convergence. As we will
see in the proof, this fact will be a consequence of Cauchy-Schwarz inequality
(for two real numbers u and v, we always have |uv| = |u||v|, however, for
random variables U and V we do not have ‖UV ‖2 = ‖U‖2‖V ‖2 in general,
but ‖UV ‖1 ≤ ‖U‖2‖V ‖2).

Theorem 3.2 (Merten’s Theorem in the mean square sense) Let U =∑∞
n=0 Un and V =

∑∞
n=0 Vn be two random series that converge in L2(Ω). Sup-
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pose one of the series converges absolutely, say
∑∞

n=0 ‖Vn‖2 <∞. Then(
∞∑
n=0

Un

)(
∞∑
n=0

Vn

)
=
∞∑
n=0

Wn,

where

Wn =
n∑

m=0

Un−mVm

and
∑∞

n=0Wn is understood in L1(Ω). The series
∑∞

n=0Wn is known as the
Cauchy product of the series

∑∞
n=0 Un and

∑∞
n=0 Vn.

Proof. Let us write the N -th partial sum of
∑∞

n=0Wn in an appropriate way:

N∑
n=0

Wn =
N∑
n=0

n∑
m=0

Un−mVm =
N∑
m=0

Vm

N∑
n=m

Un−m =
N∑
m=0

Vm

N−m∑
n=0

Un

=
N∑
m=0

Vm

(
U −

∞∑
n=N−m+1

Un

)
= U

N∑
m=0

Vm −
N∑
m=0

Vm

∞∑
n=N−m+1

Un.

The first addend, U
∑N

m=0 Vm, tends to UV in L1(Ω) as N → ∞. In fact,
observe that because of Cauchy-Schwarz inequality, one gets∥∥∥∥∥U

N∑
m=0

Vm − UV
∥∥∥∥∥

1

=

∥∥∥∥∥U
(

N∑
m=0

Vm − V
)∥∥∥∥∥

1

≤ ‖U‖2

∥∥∥∥∥
N∑
m=0

Vm − V
∥∥∥∥∥

2

−−−−→
N→∞

0,

where we have used that ‖U‖2 < ∞ (since U ∈ L2(Ω) because it is the m.s.

limit of the series
∑∞

n=0 Un) and that
∥∥∥∑N

m=0 Vm − V
∥∥∥

2
−−−−→
N→∞

0 (since by

hypothesis
∑∞

n=0 Vn converges to V in L2(Ω)).

Thus, it remains to prove that the second addend,
∑N

m=0 Vm
∑∞

n=N−m+1 Un,
goes to 0 in L1(Ω) as N →∞.
Since limN→∞

∑∞
n=N Un = 0 in L2(Ω), there exists L > 0 such that∥∥∥∥∥

∞∑
n=N

Un

∥∥∥∥∥
2

≤ L, ∀N ∈ N.

Let K =
∑∞

n=0 ‖Vn‖2. Fix ε > 0. We can take Nε such that, for all N ≥ Nε,∥∥∥∥∥
∞∑
n=N

Un

∥∥∥∥∥
2

<
ε

2K
,

∞∑
n=N+1

‖Vn‖2 <
ε

2L
.
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3.2 Results

Then, for N ≥ 2Nε, by the triangular inequality and Cauchy-Schwarz inequal-
ity, ∥∥∥∥∥

N∑
m=0

Vm

∞∑
n=N−m+1

Un

∥∥∥∥∥
1

≤
Nε∑
m=0

‖Vm‖2

∥∥∥∥∥
∞∑

n=N−m+1

Un

∥∥∥∥∥
2

+
N∑

m=Nε+1

‖Vm‖2

∥∥∥∥∥
∞∑

n=N−m+1

Un

∥∥∥∥∥
2

≤ ε

2K

Nε∑
m=0

‖Vm‖2 + L
N∑

m=Nε+1

‖Vm‖2

≤ ε

2K

∞∑
m=0

‖Vm‖2 + L
∞∑

m=Nε+1

‖Vm‖2

≤ ε

2K
K + L

ε

2L
= ε.

This shows that
∑N

m=0 Vm
∑∞

n=N−m+1 Un tends to 0 in L1(Ω) as N →∞.
�

3.2.2 Main result: Constructing the solution stochastic process to
the random non-autonomous second-order linear
differential equation

We present the main results of this chapter. After stating and proving them,
a deeper analysis of the hypotheses and consequences will be performed.

Theorem 3.3 Let A(t) =
∑∞

n=0An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n be
two random series in the L2(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0
finite and fixed. Assume that the initial conditions Y0 and Y1 belong to L2(Ω).
Suppose that there is a constant Cr > 0, maybe dependent on r, such that
‖An‖∞ ≤ Cr/r

n and ‖Bn‖∞ ≤ Cr/r
n, n ≥ 0. Then the stochastic process

X(t) =
∑∞

n=0Xn(t− t0)n, t ∈ (t0 − r, t0 + r), where

X0 = Y0, X1 = Y1, (3.6)

Xn+2 =
−1

(n+ 2)(n+ 1)

n∑
m=0

[(m+ 1)An−mXm+1 +Bn−mXm] , n ≥ 0, (3.7)

is the unique analytic solution to the random initial value problem (3.1) in the
mean square sense.
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Proof. Suppose that X(t) =
∑∞

n=0Xn(t − t0)n is a solution to (3.1) in the
L2(Ω) sense, for t ∈ (t0 − r, t0 + r), r > 0. By Theorem 3.1 with p = 2, the
mean square derivatives of X(t) are given by:

Ẋ(t) =
∞∑
n=1

nXn(t− t0)n−1 =
∞∑
n=0

(n+ 1)Xn+1(t− t0)n,

Ẍ(t) =
∞∑
n=2

n(n− 1)Xn(t− t0)n−2 =
∞∑
n=0

(n+ 2)(n+ 1)Xn+2(t− t0)n.

By the random Merten’s Theorem 3.2,

A(t)Ẋ(t) =
∞∑
n=0

(
n∑

m=0

An−m(m+ 1)Xm+1

)
(t− t0)n,

B(t)X(t) =
∞∑
n=0

(
n∑

m=0

Bn−mXm

)
(t− t0)n,

where these two random series converge in L1(Ω). From Ẍ(t) + A(t)Ẋ(t) +
B(t)X(t) = 0,

∞∑
n=0

[
(n+ 2)(n+ 1)Xn+2 +

n∑
m=0

(An−m(m+ 1)Xm+1 +Bn−mXm)

]
(t−t0)n = 0,

(3.8)
for t ∈ (t0− r, t0 + r), where the random series is again in the L1(Ω) sense. By
Theorem 3.1 with p = 1, differentiating (3.8) over and over again in the L1(Ω)
sense and evaluating at t = t0 yield

(n+ 2)(n+ 1)Xn+2 +
n∑

m=0

(An−m(m+ 1)Xm+1 +Bn−mXm) = 0.

Isolating Xn+2 we obtain the recursive expression (3.7):

Xn+2 =
−1

(n+ 2)(n+ 1)

n∑
m=0

[(m+ 1)An−mXm+1 +Bn−mXm] .

The initial conditions of the random initial value problem (3.1) give (3.6), and
so X(t) is uniquely determined with probability 1.
It remains to check that the random series

∑∞
n=0Xn(t− t0)n is convergent in

L2(Ω). For that purpose, we will make use of the L∞(Ω) bounds for An and
Bn quoted in the hypotheses.
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From the hypothesis Y0, Y1 ∈ L2(Ω) and by induction on n in expression (3.7),
we obtain that Xn ∈ L2(Ω) for all n ≥ 0. By the triangular inequality and the
hypotheses,

‖Xn+2‖2 ≤
1

(n+ 2)(n+ 1)

n∑
m=0

[(m+ 1)‖An−mXm+1‖2 + ‖Bn−mXm‖2]

≤ 1

(n+ 2)(n+ 1)

Cr
rn

n∑
m=0

rm ((m+ 1)‖Xm+1‖2 + ‖Xm‖2) . (3.9)

Define H0 := ‖Y0‖2, H1 := ‖Y1‖2 and

Hn+2 :=
1

(n+ 2)(n+ 1)

Cr
rn

n∑
m=0

rm ((m+ 1)Hm+1 +Hm) . (3.10)

By induction on n it is trivially seen that ‖Xn‖2 ≤ Hn, for n ≥ 0. Thus,
given 0 < ρ < r, it is enough to see that

∑∞
n=0Hnρ

n <∞. For that purpose,
we rewrite (3.10) so that Hn+2 is expressed as a function of Hn+1 and Hn

(second-order recurrence equation):

Hn+2 =
1

(n+ 2)(n+ 1)

Cr
rn

(
n−1∑
m=0

rm ((m+ 1)Hm+1 +Hm) + rn ((n+ 1)Hn+1 +Hn)

)

=
1

(n+ 2)(n+ 1)

Cr
rn

(n+ 1)n

Cr
rn−1

(
1

(n+ 1)n

Cr
rn−1

n−1∑
m=0

rm ((m+ 1)Hm+1 +Hm)︸ ︷︷ ︸
=Hn+1

)

+
Cr
n+ 2

Hn+1 +
Cr

(n+ 2)(n+ 1)
Hn

=

(
n

(n+ 2)r
+

Cr
n+ 2

)
Hn+1 +

Cr
(n+ 2)(n+ 1)

Hn. (3.11)

Fix s : 0 < ρ < s < r. We have

Hn+2s
n+2 =

(
ns

(n+ 2)r
+

Crs

n+ 2

)
Hn+1s

n+1 +
Crs

2

(n+ 2)(n+ 1)
Hns

n.

Let Mn = max0≤m≤nHms
m. We have

Hn+2s
n+2 ≤

(
ns

(n+ 2)r
+

Crs

n+ 2
+

Crs
2

(n+ 2)(n+ 1)

)
Mn+1. (3.12)

Since

lim
n→∞

ns

(n+ 2)r
+

Crs

n+ 2
+

Crs
2

(n+ 2)(n+ 1)
=
s

r
< 1,
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it holds Mn+2 = Mn+1 for all large n, and call the common value M . Hence,
Hns

n ≤M for all large n, therefore Hnρ
n ≤M(ρ/s)n. Since

∑∞
n=0(ρ/s)n <∞,

by comparison the series
∑∞

n=0Hnρ
n converges, and we are done.

�

Theorem 3.4 Let A(t) =
∑∞

n=0An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n be
two random series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0
finite and fixed. Assume that the initial conditions Y0 and Y1 belong to L2(Ω).
Then the stochastic process X(t) =

∑∞
n=0Xn(t− t0)n, t ∈ (t0−r, t0 +r), whose

coefficients are defined by (3.6)–(3.7), is the unique analytic solution to the
random initial value problem (3.1) in the mean square sense.

Proof. By Lemma 2.3 in Chapter 2,

∞∑
n=0

‖An‖∞|t− t0|n <∞,
∞∑
n=0

‖Bn‖∞|t− t0|n <∞,

for t ∈ (t0 − r, t0 + r). Thus, for each 0 ≤ r1 < r,

∞∑
n=0

‖An‖∞rn1 <∞,
∞∑
n=0

‖Bn‖∞rn1 <∞.

Since the sequences {‖An‖∞rn1 }∞n=0 and {‖Bn‖∞rn1 }∞n=0 tend to 0, they are
both bounded by a number Cr1 > 0:

‖An‖∞ ≤
Cr1
rn1

, ‖Bn‖∞ ≤
Cr1
rn1

, n ≥ 0.

Then Theorem 3.3 is applicable with r1: the process X(t) =
∑∞

n=0Xn(t− t0)n

whose coefficients are given by (3.6)–(3.7) is a mean square solution to (3.1)
on (t0 − r1, t0 + r1). Now, since r1 is arbitrary, we can can extend this result
to the whole interval (t0 − r, r0 + r).

�

To deal with uniqueness, we use an habitual extension of the classical Picard’s
theorem to mean square calculus [160, Th. 5.1.2].

Theorem 3.5 If A(t) and B(t) are continuous stochastic processes in the
L∞(Ω) sense, then the mean square solution to (3.1) is unique.
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Proof. We write (3.1) as a first-order random differential equation, which is
the setting under study in [160]:(

Ẋ(t)

Ẍ(t)

)
︸ ︷︷ ︸

Ż(t)

=

(
0 1

−B(t) −A(t)

)
︸ ︷︷ ︸

M(t)

(
X(t)

Ẋ(t)

)
︸ ︷︷ ︸

Z(t)

+

(
0

C(t)

)
︸ ︷︷ ︸

q(t)

.

We work in the space L2
2(Ω) of 2-dimensional random vectors whose compo-

nents belong to L2(Ω). Given Z = (Z1, Z2) ∈ L2
2(Ω), its norm is defined as

‖Z‖2 = max{‖Z1‖2, ‖Z2‖2}.

On the other hand, given a random matrix B = (Bij), we define the following
norm:

|||B||| = max
i

∑
j

‖Bij‖∞.

In the case of the random matrix M(t), it holds

|||M(t)||| = max{1, ‖A(t)‖∞ + ‖B(t)‖∞}. (3.13)

Given Z,Z ′ ∈ L2
2(Ω), we have

‖(M(t)Z+q(t))−(M(t)Z ′+q(t))‖2 = ‖M(t)(Z−Z ′)‖2 ≤ |||M(t)|||︸ ︷︷ ︸
k(t)

·‖Z−Z ′‖2.

Since A(t) and B(t) are continuous stochastic processes in the L∞(Ω) sense,
the real maps

t ∈ (t0 − r, t0 + r) 7→ ‖A(t)‖∞, t ∈ (t0 − r, t0 + r) 7→ ‖B(t)‖∞

are continuous. By (3.13), the deterministic function k(t) is continuous on
(t0 − r, t0 + r). This implies that k ∈ L1([t0 − r1, t0 + r1]) for each 0 < r1 < r.
By [160, Th. 5.1.2], there is uniqueness of mean square solution for (3.1)
on [t0 − r1, t0 + r1]. Since r1 is arbitrary, there is uniqueness of solution on
(t0 − r, t0 + r).

�

3.2.3 Comments on the hypotheses of the theorems

The hypotheses concerning the L∞(Ω) growth of the coefficients An and Bn,
n ≥ 0, may seem quite restrictive. However, these hypotheses have been
necessary to relate the L2(Ω) norm of the coefficients X0, X1, X2, . . . in (3.9),
then define the random variables H0, H1, H2, . . . and finally bound ‖Xn‖2 ≤
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Hn by induction on n ≥ 0. Without the hypotheses ‖An‖∞ ≤ Cr/r
n and

‖Bn‖∞ ≤ Cr/rn of Theorem 3.3, this would not have been possible.

Moreover, these L∞(Ω) hypotheses are equivalent to a growth condition on
the moments of the random variables A0, A1, . . . and B0, B1, . . .. The key
fact is that, for a given random variable Z, we have that E[|Z|n] ≤ HRn

for certain H > 0 and R > 0, if and only if ‖Z‖∞ ≤ R. This key fact is
a direct consequence of the following result: if Z is a random variable, then
limn→∞ ‖Z‖n = ‖Z‖∞.

Growth hypotheses of the form E[|Z|n] ≤ HRn, for certain H > 0 and R > 0,
are common in the literature to find stochastic analytic solutions to particu-
lar cases of (3.1). See for example Airy’s random differential equation in [43]
and Hermite’s random differential equation in [29]. We have proved in this
subsection that controlling the growth of the moments is equivalent to con-
trolling the L∞(Ω) norm. Hence, Theorem 3.3 will allow us to generalize the
results obtained in previous articles, for instance [29, 43]. See Example 3.9
and Example 3.10 for the generalization.

To conclude this subsection, we prove that the hypotheses used in Theorem 3.4
are sharp, in the sense that counterexamples exist if any of them is relaxed.
The following two examples of (3.1) with an unbounded input coefficient have
no mean square solution X(t). The arguments to prove that these examples
have no solution follow the reasoning of [161, Example, pp. 541–542].

Example 3.6 Consider the initial value problem
Ẍ(t) + ZX(t) = 0, t ∈ R,
X(t0 = 0) = Y0,

Ẋ(t0 = 0) = 0,

where Z < 0 is an unbounded random variable (for example, Z = −U , where
U follows an Exponential, Gamma, Poisson, etc. distribution). Suppose that
for any initial condition Y0 ∈ L2(Ω) there is a mean square solution X(t).
By [161, Th. 3(a)], every mean square solution to a random differential equa-
tion problem is a sample-path solution. More specifically, there exists an
equivalent stochastic process, product measurable, whose sample paths solve
the deterministic counterpart of the problem almost surely. Therefore X(t)
is a sample-path solution (we choose the appropriate representative of the
equivalence class), with X(t) = Y0 cosh(

√
−Z t) for all t ∈ R, almost surely.

Fix t 6= 0. Consider the random variable T = cosh(
√
−Z t). Notice that
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‖T‖∞ =∞. Consider the operator ∆ : L2(Ω)→ L2(Ω), ∆(Y ) = Y T . This op-
erator is linear and continuous, as a consequence of the closed graph theorem.
Hence, there is a constant C > 0 such that ‖Y T‖2 ≤ C‖Y ‖2, for all Y ∈ L2(Ω).
In fact, this inequality holds for any random variable Y (since, if Y /∈ L2(Ω),
then ‖Y ‖2 = ∞). Let Y = Tm. We have ‖Tm+1‖2 ≤ C‖Tm‖2, which yields
‖Tm‖2 ≤ Cm. That is, ‖T‖2m ≤ C. Hence, ‖T‖∞ = limm→∞ ‖T‖2m ≤ C,
but this is a contradiction. Thus, we conclude that there must exist an initial
condition Y0 ∈ L2(Ω) such that the stochastic problem has no mean square
solution.

The case in which Z > 0 is unbounded (let us suppose that Z is Gamma
distributed) may be tackled analogously, although with a subtlety. Proceeding
again by contradiction, let us suppose that for any initial condition Y0 ∈
L2(Ω) there exists a mean square solution X(t). By [161, Th. 3(a)], X(t) =

Y0 cos(
√
Z t) for all t ∈ R, almost surely. In contrast with the previous case,

now cos(
√
Z t) is bounded. As X(t) is mean square differentiable, its mean

square derivative must be given by Ẋ(t) = −Y0

√
Z sin(

√
Z t) [56, p. 536]. Fix

t 6= 0 and let T = −
√
Z sin(

√
Z t). Now we do have that ‖T‖∞ = ∞, so

the previous reasoning based on the closed graph theorem can be applied to
deduce that there exists an initial condition Y0 ∈ L2(Ω) such that Ẋ /∈ L2(Ω).
This is a contradiction.

The general case, in which Z is an unbounded random variable, is easily
addressed now (this includes, for instance, the case of Gaussian random vari-
ables). If Z is unbounded, then it must be unbounded on the positive or neg-
ative axis. Let us suppose it unbounded on the positive axis (the other case is

completely analogous). Take Ω̃ ⊆ Ω such that P[Ω̃] > 0 and Z(ω) > 0 for each

ω ∈ Ω̃. Consider the new probability subspace (Ω̃,FΩ̃ = F ∩ 2Ω̃,PΩ̃ = P|FΩ̃
).

We restate the random differential equation problem on this new probability
space, where Z > 0 is unbounded. The previous case thus applies. Therefore
we are done since every mean square solution on Ω must also be a mean square
solution on Ω̃. This analysis terminates the example.

Example 3.7 Let us consider
Ẍ(t) + ZẊ(t) = 0, t ∈ R,
X(t0 = 0) = 0,

Ẋ(t0 = 0) = Y1,

where Z is any unbounded random variable. Suppose that for any initial
condition Y1, there exists a mean square solution X(t). Let Y (t) = Ẋ(t),
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which satisfies {
Ẏ (t) + ZY (t) = 0, t ∈ R,
Y (t0 = 0) = Y1.

By [161, Th. 3(a)], Y (t) = Y1e−Zt for all t ∈ R, almost surely. Fix t 6= 0
and let T = e−Zt. The random variable T is unbounded. Hence, the same
reasoning from Example 3.6 based on the closed graph theorem applies again.
We conclude that there must exist Y1 ∈ L2(Ω) such that Y (t) /∈ L2(Ω), which
is a contradiction, and we are done with this example.

3.2.4 Comparison with the random differential transform method

We compare our methodology with the random differential transform method
proposed in [168]. Given a stochastic process U(t), its random differential
transform is defined as

Û(k) =
U (k)(t0)

k!
.

Its inverse transform is defined as

U(t) =
∞∑
k=0

Û(k)(t− t0)k.

Notice that we are actually considering Taylor series in a random calculus
setting. It is formally assumed that the series

∑∞
k=0 Û(k)(t − t0)k is mean

square convergent on an interval (t0−r, t0 +r), r > 0. The computations with
the random differential transform method are analyzed in [168, Th. 2.1].

Proposition 3.8 [168, Th. 2.1] Let F (t) and G(t) be two second-order stochas-
tic processes, with mean square derivatives of k order F (k)(t) and G(k)(t). Then
the following results hold:

(i) If U(t) = F (t)±G(t), then Û(k) = F̂ (k)± Ĝ(k).

(ii) If U(t) = λF (t), where λ is a bounded random variable, then Û(k) =

λF̂ (k).

(iii) If U(t) = G(m)(t), then Û(k) = (k+ 1) · · · (k+m)Ĝ(k+m) (here m is a
nonnegative integer).

(iv) If U(t) = F (t)G(t), then Û(k) =
∑k

n=0 F̂ (n)Ĝ(k − n).
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Notice that (iii) and (iv) can be seen as consequences of differentiating random
power series (Proposition 3.1) and multiplying random power series (Propo-
sition 3.2), respectively. Thereby, the random transform method is actually

the random Fröbenius method. The recursive equations found for X̂(k) are
(3.7). Our Theorem 3.3 and Theorem 3.4 give the conditions under which the

inverse transform
∑∞

k=0 X̂(k)(t− t0)k converges.

3.2.5 Statistical information of the solution stochastic process:
mean and variance

The expectation and the variance of the stochastic processX(t) =
∑∞

n=0Xn(t−
t0)n given by (3.6)–(3.7) can be approximated. Indeed, first, one has to obtain
Xn as a function of Y0, Y1, A0, . . . , An−1 and B0, . . . , Bn−1 by recursion via
(3.7), for n = 0, 1, . . . , N . After this, we construct a truncation

XN(t) =
N∑
n=0

Xn(t− t0)n (3.14)

of the solution stochastic process X(t). Since XN(t) → X(t) in L2(Ω) as
N →∞, we have

lim
N→∞

E[XN(t)] = E[X(t)], lim
N→∞

V[XN(t)] = V[X(t)],

see [160, Th. 4.2.1, Th. 4.3.1].

As an example of the manner one can proceed, we show by hand some random
coefficients Xn:

X2 =
−1

2
(A0Y1 +B0Y0),

X3 =
−1

6
(A1Y1 +B1Y0 + 2A0X2 +B0Y1)

=
−1

6
(A1Y1 +B1Y0 −A2

0Y1 −A0B0Y0 +B0Y1),

X4 =
−1

12
(A2Y1 +B2Y0 + 2A1X2 +B1X1 + 3A0X3 +B0X2)

=
−1

12

(
A2Y1 +B2Y0 −A1A0Y1 −A1B0Y0 +B1Y1 −

1

2
A0A1Y1 −

1

2
A0B1Y0

+
1

2
A3

0Y1 +
1

2
A2

0B0Y0 −
1

2
A0B0Y1 −

1

2
B0A0Y1 −

1

2
B2

0Y0

)
.
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From these computations, we have the truncation (3.14) for N = 4, X4(t) =
Y0 + Y1t+X2t

2 +X3t
3 +X4t

4. We need to compute E[X4(t)] to approximate
E[X(t)]. By linearity of the expectation, E[X4(t)] = E[Y0] +E[Y1]t+E[X2]t2 +
E[X3]t3+E[X4]t4. Assuming independence of Y0, Y1, A0, A1, . . . , B0, B1, . . . and
applying a property from [80, p. 93], we are able to compute the expectation
of the addends by hand:

E[X2] =
−1

2
(E[A0]E[Y1] + E[B0]E[Y0]),

E[X3] =
−1

6
(E[A1]E[Y1] + E[B1]E[Y0]− E[A2

0]E[Y1]

−E[A0]E[B0]E[Y0] + E[B0]E[Y1]),

E[X4] =
−1

12

(
E[A2]E[Y1] + E[B2]E[Y0]− E[A1]E[A0]E[Y1]− E[A1]E[B0]E[Y0]

+E[B1]E[Y1]− 1

2
E[A0]E[A1]E[Y1]− 1

2
E[A0]E[B1]E[Y0]

+
1

2
E[A3

0]E[Y1] +
1

2
E[A2

0]E[B0]E[Y0]− 1

2
E[A0]E[B0]E[Y1]

−1

2
E[B0]E[A0]E[Y1]− 1

2
E[B2

0 ]E[Y0]
)
.

For large values of n, we need a computer to manage the big expressions for
Xn, and as a consequence E[XN(t)] and V[XN(t)] for large values of N . We
show how to implement the necessary formulas to compute the expectation and
variance of the truncated series in the software MathematicaR©. The recurrence
relation (3.6)–(3.7) is defined as follows:

X[n_?NonPositive] := Y0;

X[1] = Y1;

X[n_] := X[n] = -1/(n*(n - 1))*Sum[(m + 1)*A[n - 2 - m]*X[m + 1]

+ B[n - 2 - m]*X[m], {m, 0, n - 2}];

Truncation (3.14) is implemented by writing

seriesX[t_, t0_, N_] := X[0] + Sum[X[n]*(t - t0)^n, {n, 1, N}];

Using the Expectation or NExpectation function, in which one can set the
distributions of A[n], B[n], Y0 and Y1, both the expectation and the variance
of (3.14) can be calculated by the computer.
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There are other approaches to approximate the expectation of the solution
to the random initial value problem (3.1). One of these approaches is the
so-called dishonest method [11], [85, p. 149], which assumes that A(t) and

Ẋ(t) are independent and that B(t) and X(t) are independent. Denoting

µX(t) = E[X(t)], the idea is that, since E[Ẍ(t)] = d2

dt2
(µX(t)) and E[Ẋ(t)] =

d
dt

(µX(t)), because of the commutation between the mean square limit and
the expectation operator (see [160, Ch. 4]), by the assumed independence we
arrive at a deterministic initial value problem to compute µX(t):

d2

dt2
(µX(t)) + E[A(t)] d

dt
(µX(t)) + E[B(t)]µX(t) = 0, t ∈ R,

µX(t0) = E[Y0],
d
dt

(µX(t0)) = E[Y1].

(3.15)

In [11] and [85, p. 149] this method is used to handle the problem of com-
puting the expectation of the solution stochastic process of certain random
differential equations. In [29, 43] approximations of the expectation of the
corresponding solution stochastic process obtained via specific methods have
been compared with the ones calculated by the dishonest approach. In our
context, the dishonest method will work on cases where Cov[A(t), Ẋ(t)] and
Cov[B(t), X(t)] is small, but in general, there is no certainty that this may

hold. In Example 3.9 and Example 3.10, we approximate Cov[A(t), Ẋ(t)] and
Cov[B(t), X(t)] in order to understand better the accuracy of the dishonest
method. Nevertheless, the approximations via the truncation method previ-
ously described allow us to obtain reliable approximations for the expectation,
and also for the variance, of the solution process.

Another popular approach, already mentioned in the Introduction chapter,
consists in using Monte Carlo simulation. Sample from the distributions of
A(t), B(t), Y0 and Y1 to obtain, say M realizations, for M large. That is,
we have A(t, ω1), . . . , A(t, ωM), B(t, ω1), . . . , B(t, ωM), Y0(ω1), . . . , Y0(ωM) and
Y1(ω1), . . . , Y1(ωM), for M outcomes ω1, . . . , ωM ∈ Ω. Then we solve the M
deterministic initial value problems

Ẍ(t, ωi) +A(t, ωi)Ẋ(t, ωi) +B(t, ωi)X(t, ωi) = 0, t ∈ R,
X(t0, ωi) = Y0(ωi),

Ẋ(t0, ωi) = Y1(ωi),

(3.16)

so that we obtain M realizations of X(t): X(t, ω1), . . . , X(t, ωM). The law of
large numbers permits approximating E[X(t)] and V[X(t)] by computing the
sample mean and sample variance of X(t, ω1), . . . , X(t, ωM).
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Monte Carlo simulation, in contrast to the dishonest method, always gives
correct approximations, and as M grows, these approximations are more ac-
curate, although the Monte Carlo method possesses a slow convergence rate,
namely, O(1/

√
M) [172, p. 53]. Thereby, the statistical information computed

by means of Monte Carlo simulation must approximate our truncation method.

3.2.6 Obtaining error estimates for the approximation of the
solution stochastic process, its mean and its variance

Given an error ε, we want to obtain Nε so that ‖XN(t) − X(t)‖2 < ε for
all N ≥ Nε. Notice that, in such a case, by Jensen’s and Cauchy-Schwarz
inequalities we have

|E[XN(t)]− E[X(t)]| = |E[XN(t)−X(t)]|
≤ E[|XN(t)−X(t)|] ≤ ‖XN(t)−X(t)‖2 < ε,

therefore we will be able to estimate the error when approximating the mean
E[X(t)] via E[XN(t)].

The method to estimate errors for ‖XN(t)−X(t)‖2 is as follows. We use the
notation from the proof of Theorem 3.3. If we denote ρ = |t − t0| and take
ρ < s < r, we have

‖XN(t)−X(t)‖2 =

∥∥∥∥∥
∞∑

n=N+1

Xn(t− t0)n

∥∥∥∥∥
2

≤
∞∑

n=N+1

‖Xn‖2ρn ≤
∞∑

n=N+1

Hnρ
n.

(3.17)
To boundHns

n, we base our reasoning on (3.12). GivenMn=max0≤m≤nHms
m,

we saw in the proof of Theorem 3.3 that Mn = M for sufficiently large n. In
fact, for n satisfying

ns

(n+ 2)r
+

Crs

n+ 2
+

Crs
2

(n+ 2)(n+ 1)
< 1, (3.18)

it holds Mn = M , so M can be computed just by knowing r, Cr, s, ‖Y0‖2 and
‖Y1‖2, because from these values we can see when (3.18) holds and compute
Hn via the recursion (3.10) or (3.11), and thereby M . Notice that, if a lot of
the random variables An and Bn are 0, then Hn will not be a tight bound for
‖Xn‖2, in general.
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3.2 Results

Once we know M , recall from the end of the proof of Theorem 3.3 that Hnρ
n ≤

M(ρ/s)n. We bound from (3.17):

‖XN(t)−X(t)‖2 ≤M
∞∑

n=N+1

(ρ
s

)n
= M

(
ρ
s

)N+1

1− ρ
s

.

If we want ‖XN(t) − X(t)‖2 to be smaller than a prefixed error ε > 0, we
impose

M

(
ρ
s

)N+1

1− ρ
s

< ε.

This yields

Nε =


log

(
(1− ρs )ε
M

)
log
(
ρ
s

) − 1

 (3.19)

(here, dxe denotes the least integer that is greater than or equal to x, commonly
known as the ceiling of x).

In Example 3.9 and Example 3.12, we will apply these computations to find
an Nε for which the approximation of E[X(t)] via E[XN(t)] at the point t = 1
and t = 0.25, respectively, gives an error smaller than ε.

We develop a similar method to estimate the errors in the approximations
for the variance. That is to say, given an error ε > 0, we want to find Nε

such that |V[XN(t)] − V[X(t)]| < ε for all N ≥ Nε. We start bounding the
difference |V[XN(t)]−V[X(t)]|, using triangular, Jensen’s and Cauchy-Schwarz
inequalities:

|V[XN (t)]− V[X(t)]| = |E[(XN (t))2]− (E[XN (t)])2 − E[(X(t))2] + (E[X(t)])2|

≤ E[|(XN (t))2 − (X(t))2|] + |(E[XN (t)])2 − (E[X(t)])2|
= E[|XN (t)−X(t)||XN (t) +X(t)|] + |E[XN (t)]− E[X(t)]||E[XN (t)] + E[X(t)]|
≤ ‖XN (t)−X(t)‖2‖XN (t) +X(t)‖2 + |E[XN (t)]− E[X(t)]|(|E[XN (t)]|+ |E[X(t)]|)
≤ ‖XN (t)−X(t)‖2(‖XN (t)‖2 + ‖X(t)‖2) + |E[XN (t)]− E[X(t)]|(|E[XN (t)]|+ |E[X(t)]|).

Let δ > 0 that will be determined later on to make the error smaller than
ε. By the results previously obtained in this subsection, we can choose Nδ

such that ‖XN(t) − X(t)‖2 < δ for all N ≥ Nδ (just applying (3.19) with
ε = δ > 0). Moreover, |E[XN(t)] − E[X(t)]| ≤ ‖XN(t) − X(t)‖2 < δ, by
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Jensen’s and Cauchy-Schwarz inequalities. Then,

|V[XN(t)]− V[X(t)]| ≤δ(‖XN(t)‖2 + ‖X(t)‖2) + δ(|E[XN(t)]|+ |E[X(t)]|)
≤δ(‖XN(t)−X(t) +X(t)‖2 + ‖X(t)‖2)

+ δ(|E[XN(t)]− E[XN(t)] + E[XN(t)]|+ |E[X(t)]|)
≤δ(‖XN(t)−X(t)‖2 + ‖X(t)‖2 + ‖X(t)‖2)

+ δ(|E[XN(t)]− E[XN(t)]|+ |E[X(t)]|+ |E[X(t)]|)
≤δ(δ + 2‖X(t)‖2) + δ(δ + 2|E[X(t)]|).

To bound ‖X(t)‖2, write

‖X(t)‖2 =

∥∥∥∥∥
∞∑
n=0

Xn(t− t0)n

∥∥∥∥∥
2

≤
∞∑
n=0

‖Xn‖2ρn

≤
∞∑
n=0

Hnρ
n ≤M

∞∑
n=0

(ρ
s

)n
= M

1

1− ρ
s

=: γ,

where ρ = |t − t0| and s is any number satisfying ρ < s < r. Before,
we saw how to compute M , so we have obtained a computable bound for
‖X(t)‖2. On the other hand, to bound |E[X(t)]| we have two options. One
option consists in using Jensen’s and Cauchy-Schwarz inequalities to derive
|E[X(t)]| ≤ ‖X(t)‖2 ≤ γ, and we are done. The second option, which provides
a tighter bound for |E[X(t)]|, consists in using the approximations performed
for E[X(t)] via E[XN(t)], and from them deducing an upper bound for E[X(t)].
For any of these two options, we denote the upper bound obtained for |E[X(t)]|
by β > 0. Thus, for N ≥ Nδ,

|V[XN(t)]− V[X(t)]| ≤ δ(2γ + δ) + δ(2β + δ).

Now choose δ so that

δ(2γ + δ) + δ(2β + δ) ≤ ε.

From here, we take

δ =
−(γ + β) +

√
(γ + β)2 + 2ε

2
> 0. (3.20)

Thus, to sum up, given a prefixed error ε > 0, the steps to be done in order
to guarantee the approximations V[XN(t)] of the exact variance V[X(t)] to
satisfy |V[XN(t)]− V[X(t)]| ≤ ε are the following ones:

1. compute γ = M/(1− ρ/s);
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2. compute β > 0, upper bound of |E[X(t)]|;

3. obtain δ > 0 from (3.20);

4. take Nδ as in the approximation of the mean (expression (3.19), but with
δ instead of ε).

To put forward these ideas, in Example 3.9 and Example 3.12 we will apply
these computations to find an Nε for which, given a priori error ε > 0, the
approximation of V[X(t)] by means of V[XN(t)] at the point t = 1 and t = 0.25,
respectively, gives an error smaller than ε.

3.3 Examples

The main goal of this section is to approximate the expectation and variance
of the solution process X(t) to particular random initial value problems (3.1).
Our tools will be the ones described in Subsection 3.2.5. That is, comput-
ing E[XN(t)] and V[XN(t)] for the truncation (3.14), the dishonest method
and Monte Carlo simulation. We will compare the three approaches in order
to realize the potentiality of using the truncation method. Our truncation
method and Monte Carlo simulation must give similar approximations of the
statistical moments (and equal and exact results in the limit).

In addition, we will take some particular problems (3.1) that have been already
studied in the literature, as the Airy’s and Hermite’s random differential equa-
tions [43, 29]. As we will see, our findings will generalize the results obtained
in those papers (recall Subsection 3.2.3).

Example 3.9 (Airy’s random differential equation) Airy-type differen-
tial equations appear in a variety of applications to Mathematical Physics, such
as the description of the solution to the Schrödinger equation for a particle
confined within a triangular potential, in the solution for the one-dimensional
motion of a quantum particle affected by a constant force, or in the theory
of diffraction of radio waves around the Earth’s surface [164]. Airy’s random
differential equation is given by [43]:

Ẍ(t) +AtX(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(3.21)

where A, Y0 and Y1 are random variables.
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In [43], the hypothesis used in order to obtain a mean square analytic solution
X(t) is E[|A|n] ≤ HRn, n ≥ n0. Notice that this hypothesis is equivalent to
‖A‖∞ ≤ R, by Subsection 3.2.3.

In the case E[|A|n] ≤ HRn, n ≥ n0 (that is, ‖A‖∞ ≤ R), we are under the
hypotheses of Theorem 3.3. Indeed, in the notation of Theorem 3.3, An = 0
for all n ≥ 0, B1 = A and Bn = 0 for every n 6= 1. For a fixed and finite
r > 0 and t0 = 0, we have ‖B1‖∞ ≤ Cr/r

1, being Cr = r‖A‖∞, for instance.
Then the stochastic process X(t) =

∑∞
n=0Xnt

n, defined as in Theorem 3.3, is
a mean square analytic solution to (3.21) in (−r, r). As r > 0 is arbitrary, in
fact X(t) =

∑∞
n=0Xnt

n is a mean square analytic solution to (3.21) in R.

Let us carry out a practical case. As in [43], consider A ∼ Beta(2, 3) and
Y0, Y1 independent random variables such that Y0 ∼ Normal(1, 1) and Y1 ∼
Normal(2, 1). Table 3.1 and Table 3.2 collect the simulations obtained in [43].
In Table 3.1 we show, for distinct values of t, E[XN(t)] for N = 15 and N = 16,
the expectation of the solution stochastic process obtained via the dishonest
method and also using Monte Carlo simulation with samples of size 50, 000
and 100, 000. In Table 3.2 we present, for distinct values of t, V[XN(t)] for
N = 15 and N = 16 and the corresponding approximations computed via
Monte Carlo sampling with 50, 000 and 100, 000 simulations.

We observe that convergence has been achieved for a small N . Compare with
Monte Carlo simulation, in which a lot of realizations are required in order
to obtain good approximations. Nevertheless, it must be remarked that a
small N is needed for the truncation order because Airy’s random differential
equation is not specially complex. For more complex data processes, as in
Example 3.11, Example 3.12 and Example 3.13, a larger order of truncation
N may be needed. This may imply a computational expense greater than or
similar to Monte Carlo simulation.

On the other hand, it is remarkable how well the dishonest method approx-
imates the correct expectation, although the required independence between
A(t), Ẋ(t) and B(t), X(t) does not hold. The key point is that Cov[A(t), Ẋ(t)]
and Cov[B(t), X(t)] are small, as Table 3.3 shows, which justifies the accuracy
of the dishonest method, especially for small t. Notice that, in this exam-
ple, Cov[A(t), Ẋ(t)] = 0, because A(t) ≡ 0 is deterministic. The value of
Cov[B(t), X(t)] is calculated by considering approximations XN(t) of X(t)
with N = 16, since for this order of truncation one gets good approximations
of X(t), in other words, approximations can be consider as fairly exact.
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t E[X15(t)] E[X16(t)] dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 0.99701 1.00138
0.25 1.49870 1.49870 1.49870 1.49519 1.49976
0.50 1.98752 1.98752 1.98752 1.98353 1.98829
0.75 2.45108 2.45108 2.45102 2.44667 2.45160
1.00 2.86856 2.86856 2.86818 2.86383 2.86893
1.25 3.21494 3.21494 3.21339 3.21008 3.21534
1.50 3.46310 3.46310 3.45812 3.45831 3.46376
1.75 3.58660 3.58660 3.57340 3.58215 3.58784
2.00 3.56336 3.56335 3.53286 3.55948 3.56552

Table 3.1: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.9, assuming independent random data.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 1 1 0.99610 0.99530
0.25 1.06035 1.06035 1.05902 1.05642
0.50 1.23142 1.23142 1.23408 1.22793
0.75 1.49261 1.49261 1.50041 1.48944
1.00 1.81392 1.81392 1.82744 1.81127
1.25 2.15870 2.15870 2.17768 2.15721
1.50 2.49379 2.49379 2.51690 2.49462
1.75 2.80560 2.80560 2.83029 2.81030
2.00 3.11530 3.11530 3.13783 3.12559

Table 3.2: Approximation of the variance of the solution stochastic process. Example 3.9,
assuming independent random data.
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t Cov[A(t), Ẋ16(t)] Cov[B(t), X16(t)]
0.00 0 0
0.25 0 −0.0000325384
0.50 0 −0.000622983
0.75 0 −0.00365252
1.00 0 −0.0130099
1.25 0 −0.0349332
1.50 0 −0.0778424
1.75 0 −0.151444
2.00 0 −0.264968

Table 3.3: Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] via accurate truncations
Ẋ16(t) and X16(t), respectively. Example 3.9, assuming independent random data.

We perform another example of the Airy’s random differential equation (3.21),
but this time the input random variables A, Y0 and Y1 will not be independent.
Indeed, take a random vector (A, Y0, Y1) that follows a multivariate Gaussian
distribution, with mean vector and covariance matrix

µ =

0.4
1
2

 , Σ =

 0.04 0.0001 −0.05
0.0001 1 0.5
−0.005 0.5 1

 ,

respectively. In order for the hypotheses of Theorem 3.3 to be satisfied, we need
to truncate A (because the Normal distribution is unbounded). Since A follows
a Normal distribution with mean µA = 0.4 and variance σ2

A = 0.04, the interval
[µA−3σA, µA+3σA] = [−0.2, 1] contains 99.7% of the observations of A. Thus,
the multivariate Gaussian distribution will be truncated to [−0.2, 1]× R× R.

In Table 3.4 and Table 3.5, we present the numerical experiments. We use
truncation (3.14) with N = 15 and N = 16, the dishonest method and Monte
Carlo simulation.

Once again, convergence has been achieved quite quickly, compared with
Monte Carlo simulation. The results obtained are more accurate than via
the dishonest method and Monte Carlo simulation. Nonetheless, it is remark-
able again the accuracy of the dishonest method, particularly in the time
interval t ∈ [0, 1], although not as good as in the previous case (see Table

3.1). In Table 3.6, we show approximations of the covariances Cov[A(t), Ẋ(t)]
and Cov[B(t), X(t)]. These covariances are small, especially for small t, which
explains the good approximation of the expectation via the dishonest method.
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t E[X15(t)] E[X16(t)] dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 1.00287 1.00114
0.25 1.50619 1.50619 1.49870 1.50202 1.50134
0.50 1.98755 1.98755 1.98750 1.99129 1.99168
0.75 2.45120 2.45120 2.45102 2.45529 2.45678
1.00 2.86893 2.86893 2.86818 2.87321 2.87583
1.25 3.23538 3.23538 3.21339 3.22008 3.22386
1.50 3.46485 3.46485 3.45812 3.46878 3.47374
1.75 3.58966 3.58966 3.57340 3.59290 3.59902
2.00 3.56817 3.56817 3.53286 3.57032 3.57755

Table 3.4: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.9, assuming dependent random data.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 1 1 1.01144 1.00603
0.25 1.31128 1.31128 1.32213 1.31611
0.50 1.75161 1.75161 1.73855 1.73153
0.75 2.22370 2.22370 2.22680 2.21842
1.00 2.72094 2.72094 2.73668 2.72659
1.25 3.06515 3.06515 3.20829 3.19619
1.50 3.57031 3.57031 3.58843 3.57424
1.75 3.83591 3.83590 3.85507 3.83916
2.00 4.02095 4.02100 4.04117 4.02478

Table 3.5: Approximation of the variance of the solution stochastic process. Example 3.9,
assuming dependent random data.
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t Cov[A(t), Ẋ16(t)] Cov[B(t), X16(t)]
0.00 0 0
0.25 0 −0.00106042
0.50 0 −0.00177052
0.75 0 −0.00618508
1.00 0 −0.0173
1.25 0 −0.0509053
1.50 0 −0.0858552
1.75 0 −0.161068
2.00 0 −0.276206

Table 3.6: Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] via accurate truncations
Ẋ16(t) and X16(t), respectively. Example 3.9, assuming dependent random data.

As an application of the error estimates studied in Subsection 3.2.6, we esti-
mate for which index Nε the error obtained in the approximation of E[X(t)] via
E[XN(t)] is smaller than ε = 0.00001. Take t = 1 and r = 2. Let, for instance,
s = 1.5. In both cases in this example (assuming independent and dependent
random data), we have Cr = r‖A‖∞. Since ‖A‖∞ = 1 (recall that in the two
cases considered throughout this example, the realizations A(ω), ω ∈ Ω, of the
random variable A lie either in [0, 1] or in [−0.2, 1], thus being less than 1),
we take Cr = r = 2. From these values, the least n0 such that (3.18) holds for
all n ≥ n0, is n0 = 7 (this value is obtained by plotting the left-hand side of
(3.18) and looking at the point n0 from which the graph is less than 1). Then,
from (3.12), M = M8 = max0≤m≤8Hms

m = 2024.49. Finally, using (3.19),
one gets Nε = 10. For N ≥ Nε = 10, it holds |E[XN(t)]− E[X(t)]| < 0.00001.

Now, given ε = 0.00001, we obtain an Nε such that |V[XN(t)]−V[X(t)]| < ε at
t = 1, for every N ≥ Nε. We use the ideas and notation from Subsection 3.2.6.
We have t = 1, ρ = 1, r = 2 and s = 1.5. We saw that M = 2024.49. Then,
γ = M/(1−ρ/s) = 6073.47. Recall that we could choose β equal to γ or, for a
tighter bound, use Table 3.1 and Table 3.4. We see that |E[X(t)]| ≤ 2.869 =: β.
From these values, we obtain δ = 8.22638 · 10−10. Finally, choose Nδ so that
‖XN(1)−X(1)‖2 < δ. Use formula (3.19) (with δ instead of ε) to get Nδ = 73.
Thus, for N ≥ 73, the inequality |V[XN(t)] − V[X(t)]| < 0.00001 holds for
sure.
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Example 3.10 (Hermite’s random differential equation) Hermite’s ran-
dom differential equation is defined as follows:

Ẍ(t)− 2tẊ(t) +AX(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(3.22)

where A, Y0 and Y1 are random variables.

In [29], the moments ofA are controlled as E[|A|n] ≤ HRn, n ≥ n0, to prove the
existence of a mean square analytic solution to random initial value problem
(3.22). As we saw in Subsection 3.2.3, this hypothesis reduces to ‖A‖∞ ≤ R.

If E[|A|n] ≤ HRn, n ≥ n0 (that is, ‖A‖∞ ≤ R), we are under the assumptions
of Theorem 3.3. Indeed, in the notation of Theorem 3.3, A1 = −2, An = 0
for all n 6= 1, B0 = A and Bn = 0 for every n 6= 0. For a fixed and finite
r > 0 and t0 = 0, we have ‖A1‖∞ ≤ Cr/r

1 and ‖B0‖∞ ≤ Cr/r
0 = Cr, being

Cr = max{2r, ‖A‖∞} for example. Then X(t) =
∑∞

n=0Xnt
n defined as in

Theorem 3.3 is an analytic solution to (3.22) in (−r, r). Again, as r > 0 is
arbitrary, X(t) =

∑∞
n=0Xnt

n is a mean square analytic solution stochastic
process to random initial value problem (3.22) in R.

As in [29], let A ∼ Normal(µ = 5, σ2 = 1) and Y0, Y1 independent random
variables such that Y0 ∼ Normal(1, 1) and Y1 ∼ Normal(2, 1). In this case,
since the Normal distribution is unbounded, it does not fulfill the hypotheses,
therefore we need to truncate it: in [29] it has been truncated to the interval
[µ−3σ, µ+3σ] = [2, 8], which contains approximately 99.7% of the observations
of a Gaussian random variable. Table 3.7 and Table 3.8 simulate the results
obtained in [29]. In Table 3.7 we show, for distinct values of t, E[XN(t)] forN =
15 and N = 16, the corresponding approximation obtained via the dishonest
method and Monte Carlo simulation with samples of size 50, 000 and 100, 000.
In Table 3.8 we present, for distinct values of t, V[XN(t)] for N = 15 and N =
16 and Monte Carlo simulation with samples of size 50, 000 and 100, 000. As it
occurred in the previous example, convergence has been achieved for a smallN .
In Table 3.9, we show approximations of the covariances Cov[A(t), Ẋ(t)] and
Cov[B(t), X(t)] to understand better the accuracy of the dishonest method.

Example 3.11 (Polynomial data processes) Let us consider more com-
plex data processes in our random differential equation (3.1). The data stochas-
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t E[X15(t)] E[X16(t)] dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 0.99750 0.99919
0.25 1.32907 1.32907 1.32889 1.32619 1.32703
0.50 1.26473 1.26473 1.26175 1.26351 1.26219
0.75 0.74510 0.74510 0.72906 0.74737 0.74316
1.00 −0.27157 −0.27157 −0.32467 −0.26484 −0.27144
1.25 −1.80636 −1.80635 −1.93991 −1.79597 −1.80237
1.50 −3.85882 −3.85868 −4.13681 −3.84872 −3.84906
1.75 −6.40911 −6.40754 −6.90081 −6.40873 −6.39186
2.00 −9.43553 −9.42222 −10.1448 −9.46498 −9.41066

Table 3.7: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.10.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 1 1 0.98671 1.00327
0.25 0.77433 0.77433 0.76716 0.77821
0.50 0.37752 0.37752 0.37822 0.37992
0.75 0.54181 0.54181 0.53554 0.54357
1.00 2.10396 2.10396 2.06444 2.10993
1.25 5.48674 5.48670 5.40047 5.50378
1.50 10.4476 10.4467 10.3456 10.4828
1.75 18.0186 18.0108 17.9539 18.0963
2.00 43.5731 43.6462 43.5773 44.1340

Table 3.8: Approximation of the variance of the solution stochastic process. Example 3.10.
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t Cov[A(t), Ẋ16(t)] Cov[B(t), X16(t)]
0.00 0 0
0.25 0 −0.0345004
0.50 0 −0.145742
0.75 0 −0.322733
1.00 0 −0.515142
1.25 0 −0.612961
1.50 0 −0.403919
1.75 0 0.522644
2.00 0 3.0078

Table 3.9: Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] via accurate truncations
Ẋ16(t) and X16(t), respectively. Example 3.10.

tic processes will be random polynomials. For example,
Ẍ(t) + (A0 +A1t)Ẋ(t) + (B0 +B1t)X(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(3.23)

where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35),
Y0 = −1 and Y1 ∼ Binomial(2, 0.29) are assumed to be independent. In order
for the hypotheses of Theorem 3.3 to be satisfied, the Gamma distribution
will be truncated. For the Gamma distribution with shape and rate 2, it can
straightforwardly be checked that the interval [0, 4] contains approximately
99.7% of the observations.

By Theorem 3.3, the mean square solution of (3.23) can be written as a random
power series X(t) =

∑∞
n=0Xnt

n that is mean square convergent for all t ∈ R.

In Table 3.10 and Table 3.11, the numerical experiments for the expectation
and variance are presented.

Example 3.12 (Infinite series data processes) In this example, the data
processes in the random differential equation (3.1) are non-polynomial analytic
stochastic process:

Ẍ(t) +A(t)Ẋ(t) +B(t)X(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(3.24)
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t E[X19(t)] E[X20(t)] dishonest MC 50, 000 MC 100, 000
0.00 −1 −1 −1 −1 −1
0.25 −0.886467 −0.886467 −0.886418 −0.886789 −0.886432
0.50 −0.809269 −0.809269 −0.808743 −0.809370 −0.809219
0.75 −0.747589 −0.747589 −0.745742 −0.747321 −0.747526
1.00 −0.693453 −0.693453 −0.689284 −0.692816 −0.693375
1.25 −0.643943 −0.643944 −0.636462 −0.642985 −0.643845
1.50 −0.598053 −0.598082 −0.586360 −0.596854 −0.597952

Table 3.10: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.11.

t V[X15(t)] V[X16(t)] MC 50, 000 MC 100, 000
0.00 0 0 0 0
0.25 0.0102077 0.0102074 0.0101172 0.0102664
0.50 0.0190996 0.0190999 0.0189214 0.0192053
0.75 0.0237400 0.0237403 0.0235191 0.0238499
1.00 0.0268721 0.0268711 0.0266311 0.0269620
1.25 0.0297852 0.0297465 0.0295049 0.0298201
1.50 0.0333309 0.0325867 0.0325021 0.0328009

Table 3.11: Approximation of the variance of the solution stochastic process. Example 3.11.
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where An ∼ Beta(11, 15), for n ≥ 0, Bn = 1/n2, for n ≥ 1, and Y0 ∼ Poisson(2)
and Y1 ∼ Uniform(0, 1) are assumed to be independent. We have E[An] =
11/26 and V[An] = 55/6084, therefore ‖An‖2 =

√
V[An] + E[An]2 = 0.12908,

n ≥ 0. Then
∞∑
n=0

‖An‖2tn = 0.12908
∞∑
n=0

tn,

which is convergent for t ∈ (−1, 1). On the other hand,

∞∑
n=0

‖Bn‖2tn =
∞∑
n=1

1

n2
tn,

which is convergent for t ∈ (−1, 1) as well. Therefore, the maximum r we can
take so that the random differential equation (3.24) makes sense is r = 1.

Since |An(ω)| ≤ 1 for all ω ∈ Ω, |Bn| ≤ 1 and r = 1, we can take Cr = 1
in Theorem 3.3 and the hypotheses hold. By Theorem 3.3, the mean square
solution of (3.24), X(t), is defined and is mean square analytic on (−1, 1).

In Table 3.12 and Table 3.13 we present the numerical experiments. To apply
the dishonest method, we need the following two computations:

E[A(t)] =
11

26

∞∑
n=0

tn =
11

26(1− t)
, t ∈ (−1, 1),

and

E[B(t)] =
∞∑
n=1

tn

n2
, t ∈ (−1, 1).

To apply Monte Carlo simulation, we need realizations of the stochastic process
A(t), that is, realizations of the random variables A0, A1, . . .. As we cannot
obtain infinite realizations of a Beta distribution in the computer, we will
approximate A(t, ω) ≈

∑100
n=0An(t, ω)tn, so from realizations of A0, . . . , A100,

we will obtain an approximation of a realization of A(t).

By contrast, our approximations using truncation XN(t), t ∈ (−1, 1), do not
require realizations of the infinite data stochastic process A(t).

As it is observed in Table 3.12 and Table 3.13, the convergence has been
practically achieved for N = 17.

As an application of the error estimates analyzed in Subsection 3.2.6, we es-
timate for which index Nε the error obtained in the approximation of E[X(t)]
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t E[X16(t)] E[X17(t)] dishonest MC 50, 000 MC 100, 000
0.00 2 2 2 2.01406 1.99858
0.25 2.11267 2.11267 2.11266 2.12676 2.11130
0.50 2.17662 2.17662 2.17654 2.19050 2.17531
0.75 2.15693 2.15693 2.15675 2.17021 2.15573

Table 3.12: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.12, assuming independent initial conditions.

t V[X17(t)] V[X18(t)] MC 50, 000 MC 100, 000
0.00 2 2 2.00274 2.00822
0.25 1.99421 1.99421 1.99725 2.00356
0.50 1.93408 1.93408 1.93725 1.94407
0.75 1.76917 1.76919 1.77222 1.77899

Table 3.13: Approximation of the variance of the solution stochastic process. Example 3.12,
assuming independent initial conditions.

via E[XN(t)] is smaller than ε = 0.00001. Take t = 0.25 and, for instance,
s = 0.5. We have r = 1 and Cr = 1, and from these values we obtain the
least n0 such that (3.18) holds for all n ≥ n0, by trial and error. We obtain
n0 = 0. From (3.12), M = M1 = max{H0, H1s} = max{‖Y0‖2, ‖Y1‖2 · 0.5} =
max{

√
6, 1/(2

√
3)} =

√
6, whence Nε = 18 by using (3.19).

Now we bound the error made when approximating the variance. Given an
error ε = 0.00001, we obtain an Nε such that |V[XN(t)]− V[X(t)]| < ε at the
point t = 0.25, for all N ≥ Nε. We use the ideas and notation from Subsec-
tion 3.2.6. We have t = 0.25, ρ = 0.25, r = 1 and s = 0.5. We computed
M =

√
6, whence γ = M/(1− ρ/s) = 4.89898. Recall that we could choose β

equal to γ or, for a tighter bound, use Table 3.12. In Table 3.12, we see that
|E[X(0.25)]| ≤ 2.113 =: β. From these values, δ = 7.13065 · 10−7. To end up,
pick Nδ such that ‖XN(0.25)−X(0.25)‖2 < δ. Using expression (3.19) (with δ
instead of ε) we get Nδ = 22. Thereby, |V[XN(0.25)]− V[X(0.25)]| < 0.00001
for N ≥ 22.

We perform another example for the random initial value problem (3.24),
again with An ∼ Beta(11, 15), for n ≥ 0, Bn = 1/n2, for n ≥ 1, but now the
random vector (Y0, Y1) follows a Multinomial distribution with 3 repetitions
and probabilities 0.29 and 0.15. The random variables/vectors A0, A1, . . . and
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(Y0, Y1) are independent, but, obviously, Y0 and Y1 are not independent. Again,
the solution stochastic process X(t) is defined on (−1, 1).

In Table 3.14 and Table 3.15, we show the numerical experiments. Conver-
gence has been practically achieved.

t E[X15(t)] E[X16(t)] dishonest MC 50, 000 MC 100, 000
0.00 0.87 0.87 0.87 0.866780 0.869210
0.25 0.973828 0.973828 0.973819 0.970205 0.973499
0.50 1.04817 1.04817 1.0481 1.04427 1.04823
0.75 1.07358 1.07358 1.0734 1.06961 1.07394

Table 3.14: Approximation of the expectation of the solution stochastic process. Exam-
ple 3.12, assuming dependent initial conditions.

t V[X14(t)] V[X15(t)] MC 50, 000 MC 100, 000
0.00 0.617700 0.617700 0.616645 0.621350
0.25 0.574373 0.574373 0.574355 0.577586
0.50 0.553754 0.553754 0.554522 0.556844
0.75 0.525683 0.525704 0.526991 0.528727

Table 3.15: Approximation of the variance of the solution stochastic process. Example 3.12,
assuming dependent initial conditions.

Example 3.13 (Truncation method and Monte Carlo for modeling)
In order to see a real application of our theoretical development, let us fit data
that describe the fish weight growth over the time via a random second-order
linear differential equation. In Figure 3.1, we show the fish weight in lbs (ver-
tical axis) per year (horizontal axis). The fish weight datum at the i-th year
will be denoted by wi, for 1 ≤ i ≤ 33.

These data have been previously used in [39], where a randomized Bernoulli
differential equation has been used, taking as reference Bertalanffy model [146,
p. 331].

Let W be the stochastic process that models the fish weight. The random
variable W (t) models the fish weight at year t, 1 ≤ t ≤ 33. Since W (t) is a
positive random variable, we will work with X(t) = log(W (t)), instead. The
observed data become log(w1), . . . , log(w33). We use the random initial value
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Figure 3.1: Data on fish weights. In the horizontal axis, we represent the years, from 1 to
33. In the vertical axis, we represent the weights in lbs.

problem 
Ẍ(t) +A0Ẋ(t) + (B0 +B1t)X(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1

(3.25)

to model the logarithm of the fish weight growth. The stochastic processes
A(t) = A0 and B(t) = B0 +B1t have been chosen in such a way by numerical
fit trials and computational viability. Notice that (3.25) is a generalization of
Airy’s random differential equation from Example 3.9.

Using the data drawn in Figure 3.1, we would like to find the best random
variables A0, B0, B1, Y0 and Y1 so that W (t) fits appropriately the uncertainty
associated to the fish weight growth. Since we do not have an explicit solution
process X, we will use truncation (3.14), XN(t), to approximate it in the L2(Ω)
sense. Using the truncation with a high N , we will be able to give a suitable
distribution for (A0, B0, B1, Y0, Y1).

There are two statistical approaches to deal with this problem: the frequen-
tist and the Bayesian techniques. Reference [112] provides an introduction
to Bayesian statistics. We do not carry out a Bayesian approach, because
XN(t) has a very large expression, which makes the use of Bayesian estima-
tion impracticable in the computer. Thereby, we use the ideas of the so-called
inverse frequentist technique for parameter estimation exhibited in [39] and
[157, Ch. 7]. In order not to depart from our reasoning, we will explain our
concrete frequentist approach in Remark 3.14 at the end of this example.
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Without entering into the theoretical details that will be explained in Remark
3.14, we specify the steps to solve our modeling problem. Computational
viability makes us to choose N = 24 as the order of truncation. We give
the random vector (A0, B0, B1, Y0, Y1) a sixth dimensional multinormal ran-
dom distribution (in the end, it will be truncated so that the hypotheses of
Theorem 3.3 fulfill). The mean vector µ is determined as the solution of the
deterministic minimization problem

min
a0, b0, b1, y0, y1∈R

33∑
i=1

(log(wi)−X24(ti|a0, b0, b1, y0, y1))
2
,

where X24(t|a0, b0, b1, y0, y1) corresponds to the value of X24(t) substituting A0,
B0, B1, Y0 and Y1 by the real numbers a0, b0, b1, y0 and y1. This minimization
problem can be solved with the built-in function FindFit with the option
Method -> NMinimize in MathematicaR©. We obtain

µ =


0.169695
−0.0123653
0.000347771
−2.09309
0.672599

 .

The covariance matrix Σ is estimated with σ2(JTJ)−1, where

σ2 =

∑33
i=1 (log(wi)−X24(ti|µ))

2

33− 5
= 0.00369358,

and J is the Jacobian matrix of X24(t) with respect to (A0, B0, B1, Y0, Y1)
evaluated at µ. We obtain

Σ =


0.000109461 −0.000010458 1.44986 · 10−7 −0.000645456 0.000435313
−0.000010458 2.47732 · 10−6 −7.94312 · 10−8 0.0000461867 −0.0000398354
1.44986 · 10−7 −7.94312 · 10−8 3.23082 · 10−9 −3.16049 · 10−7 5.53045 · 10−7

−0.000645456 0.0000461867 −3.16049 · 10−7 0.00624016 −0.00312264
0.000435313 −0.0000398354 5.53045 · 10−7 −0.00312264 0.00186506

 .

Once we know the estimated distribution of (A0, B0, B1, Y0, Y1), we know the
distribution of X24(t), at least theoretically. The computational complexity
of X24(t) is very big, so computing its exact expectation or even good ap-
proximations of it is nearly impossible. Due to the complexity of both the
truncation expression and the distribution of (A0, B0, B1, Y0, Y1), it is bet-
ter to perform Monte Carlo simulation directly on (3.25) via simulations of
(A0, B0, B1, Y0, Y1), which follows a (truncated) multivariate Gaussian distri-
bution (µ,Σ).
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By means of Monte Carlo simulation with 100, 000 iterates, we obtain sam-
ples of X(i), i = 1, . . . , 33. Applying exponential, we have samples of W (i),
i = 1, . . . , 33. Hence, approximations of both E[W (i)] and V[W (i)] can be
calculated. A confidence interval can be computed in two ways: either con-
sidering [E[W (t)]± 2

√
V[W (t)]] (this is based on how confidence intervals are

constructed in a Gaussian setting) or obtaining an accurate approximation
using the quartiles of the sample produced by Monte Carlo. In Figure 3.2 and
Figure 3.3, the results are shown. As it is observed in both plots, the mean
approximates well the real data. However, the confidence interval grows as
we move away from 0. Intuitively, this may hold because a truncated random
power series centered at t0 works better near t0. This phenomenon may be re-
solved by making the order of truncation N larger and larger (if the computer
permits it).

5 10 15 20 25 30
year

5

10

15

weight

Figure 3.2: Fit of the fish weight data. The blue points represent the real weights, the red
points represent the estimated weights (the mean) and the green lines cover a 95% confidence
interval constructed with the Gaussian rule [mean± 2 · standard deviation].

Remark 3.14 (Frequentist technique used in Example 3.13) LetX be
a random vector of size n to be modeled (in our case, (logW (1), . . . , logW (33))).
We set a model of the form X = f(V ), where V is a random vector with p
components (in our case (A0, B0, B1, Y0, Y1)) that follows a multinormal dis-
tribution with parameters (µ,Σ), and f : Rp → Rn is a function, maybe non-
linear (in our case, n = 33 and fi(a0, b0, b1, y0, y1) = X24(i|a0, b0, b1, y0, y1),
i = 1, . . . , 33, where X24(t|a0, b0, b1, y0, y1) is the truncation that approximates
the solution of the random differential equation). Let x = X(ω) be a vector
realization of X (in our example, the real data x = (log(w1), . . . , log(w33))).
From x, we want to estimate the best µ and Σ so that the model X = f(V )
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Figure 3.3: Fit of the fish weight data. The blue points represent the real weights, the red
points represent the estimated weights (the mean) and the green lines cover a 95% confidence
interval constructed by taking the quartiles in the Monte Carlo sampling.

can be considered correct. Let v̂ ∈ Rp be the minimizer of

min
v∈Rp

n∑
i=1

(xi − fi(v))2.

Using Taylor’s expansion,

X ≈ f(v̂) + Jf(v̂)(V − v̂),

where J stands for the Jacobian. Then

Z := X − f(v̂) + Jf(v̂)v̂ ≈ Jf(v̂)︸ ︷︷ ︸
J

V.

We derive that Z ≈ Jµ + E, where E follows a multivariate normal distri-
bution with parameters (0, JΣJT ) (here T stands for the transpose matrix
operator), i.e., E ∼ MN(0, JΣJT ). Write JΣJT = P TDP , where P and D
are an orthogonal and a diagonal matrix, respectively. Multiplying by P , we
have Z̄ ≈ J̄µ+ Ē, where Z̄ = PZ, J̄ = PJ and Ē = PE ∼ MN(0, D). There-
fore, Z̄ ≈ J̄µ + Ē is a classical linear model (see [134, Ch. 7], [157, Ch. 7])
with normal and independent errors. In a linear model, one should assume ho-
moscedasticity so that the estimation of the parameters makes sense. Thus, we
impose D = σ2In, where σ2 is the variance of the errors in the linear model. As
a consequence, Z̄ ≈ J̄µ+ Ē is a classical linear model with homoscedasticity,
and the estimations follow from general theory: µ̂ is the minimizer of

min
µ∈Rp
‖z̄ − J̄µ‖22 = min

µ∈Rp
‖Pz − PJµ‖22 = min

µ∈Rp
‖z − Jµ‖22,
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where z = x − f(v̂) + Jv̂ is the vector realization of Z, z̄ = Pz is the vector
realization of Z̄ and ‖ · ‖2 is the euclidean norm. Now,

‖z − Jµ‖22 = ‖x− (f(v̂) + J(µ− v̂))‖22 ≈ ‖x− f(µ)‖22,
so we can take µ̂ = v̂, which justifies our choice for the mean in the example.
On the other hand, by the general theory of linear models,

σ̂2 =
‖z̄ − J̄ µ̂‖22
n− p

=
‖Pz − PJµ̂‖22

n− p
=
‖z − Jµ̂‖22
n− p

≈ ‖x− f(µ̂)‖22
n− p

.

Finally, from JΣJT = P TDP = σ2P TP = σ2In, we derive Σ = σ2(JTJ)−1, by
multiplying by (JTJ)−1JT to the left and by J(JTJ)−1 to the right at both
sides of the equality (we assume rank(J) = p so that (JTJ)−1 exists). Thus,

we choose the estimator Σ̂ = σ̂2(JTJ)−1.

3.4 Conclusions

In this chapter we have determined analytic stochastic processes that are solu-
tions to the random non-autonomous second-order linear differential equation
in the mean square sense. After reviewing the Lp(Ω) random calculus and
results concerning random power series (differentiation of a random power se-
ries in the Lp(Ω) sense and Merten’s Theorem for random series in the mean
square sense), we stated the main theorem of the chapter, Theorem 3.3 and
3.4. These results give assumptions on the coefficient stochastic processes and
on the random initial conditions of a random non-autonomous second-order
linear differential equation, so that there exists an analytic stochastic pro-
cess that is a solution in the mean square sense. The mean square approach
permitted approximating the main statistical information of the solution, the
expectation and the variance. These approximations for the expectation and
the variance were compared with other methods previously used in the liter-
ature: the dishonest method and Monte Carlo simulation.

The numerical examples presented illustrate the potentiality of our results.
The examples show that our findings allow for much more complex random
non-autonomous second-order linear differential equations than those from the
extant literature. The ideas of this chapter permit dealing with any random
non-autonomous second-order linear differential equation in a general form.
The statistical information of the stochastic solution can be computed up to
any degree of accuracy.

Moreover, our truncation method provides a methodology to estimate the pa-
rameters of the multivariate normally distributed explanatory random vector,
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in the modeling of real data via random non-autonomous second-order linear
differential equations. This procedure together with the Monte Carlo simula-
tion give fitting approximations of the real data.

We mention that a future line of research could consist in extending our ideas
to a random non-autonomous linear differential equation of order higher than
two. One would need all input stochastic coefficients to be random power
series in L∞(Ω), in analogy to the hypotheses of Theorem 3.4.

We could also try to apply the random Fröbenius method to the random
Riccati differential equation with analytic input coefficients. In [168, Sec-
tion 3], the authors applied the random differential transform method (which
is equivalent to a formal random Fröbenius method, as seen in this chapter)
to a particular case of the random Riccati differential equation with a random
autonomous coefficient term. It would be interesting to apply the random
Fröbenius method in the situation in which all input coefficients are analytic
stochastic processes, by proving theoretical results and performing numerical
experiments.
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Chapter 4

Beyond the hypothesis of
boundedness for the random

coefficient of Airy, Hermite
and Laguerre differential

equations with uncertainties

In this chapter, we study the full randomized versions of Airy, Hermite
and Laguerre differential equations, which depend on a random variable
appearing as an equation coefficient as well as two random initial con-
ditions. In previous contributions, the mean square stochastic solutions
to the aforementioned random differential equations were constructed via
the Fröbenius method, under the assumption of exponential growth of the
absolute moments of the equation coefficient, which is equivalent to its es-
sential boundedness. In this chapter we aim at relaxing the boundedness
hypothesis to allow more general probability distributions for the equation
coefficient. We prove that the equations are solvable in the mean square
sense when the equation coefficient has finite moment-generating function
in a neighborhood of the origin. A thorough discussion of the new hypothe-
ses is included.
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4.1 Introduction

In the recent years, important efforts have been made in the analysis of random
second-order linear differential equations, in order to extend their determin-
istic counterpart. The main goal has been to construct the rigorous mean
square stochastic solution, thus obtaining approximations for its mean and its
variance. Important random differential equations from Mathematical Physics
that have been solved are Airy’s equation,

Ẍ(t) +AtX(t) = 0, t ∈ R, X(0) = Y0, Ẋ(0) = Y1, (4.1)

Hermite’s equation,

Ẍ(t)− 2tẊ(t) +AX(t) = 0, t ∈ R, X(0) = Y0, Ẋ(0) = Y1, (4.2)

and Laguerre’s equation,

tẌ(t) + (1− t)Ẋ(t) +AX(t) = 0, t ∈ R, X(0) = Y0. (4.3)

It is assumed that the equation coefficient A and the initial conditions Y0 and
Y1 are random variables on an underlying complete probability space (Ω,F ,P).
For the sake of generality, no statistical independence is assumed between A,
Y0 and Y1. The term X(t) is a stochastic process, which represents the mean
square solution.

In [43, 29, 44], the Fröbenius method was utilized to find a random power
series solution X(t) =

∑∞
n=0Xnt

n, i.e., a mean square analytic solution, to
Airy’s, Hermite’s and Laguerre’s equation, respectively. The coefficients Xn

are second-order random variables satisfying
∑∞

n=0 ‖Xn‖2|t|n < ∞, for t ∈ R.
A common hypothesis in those works was the exponential growth of the abso-
lute moments of A: E[|A|n] ≤ ηHn for n ≥ 1, for certain constants η,H > 0.
This assumption is equivalent to the boundedness of A, ‖A‖∞ <∞, as shown
in Chapter 2. Under boundedness of the equation coefficients, in Chap-
ter 3 we studied general random second-order linear differential equations,
Ẍ(t) +C(t)Ẋ(t) +D(t)X(t) = 0, by constructing the mean square convergent
power series solution via the Fröbenius method.

The boundedness assumption for A is quite general. Indeed, many standard
probability distributions have bounded support: Beta, Triangular, Uniform,
Binomial, etc. Moreover, the theorem of existence and uniqueness of mean
square solution to general random initial value problems, which is an extension
of the classical Picard’s theorem with Lipschitz assumption, requires bound-
edness of the equation coefficients [160, Ch. 5]. By truncating unbounded
supports one can use truncated Normal, Gamma and Poisson distributions,
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for instance. However, it would be interesting to prove the existence of mean
square solution under a more general assumption than boundedness. We take
as main reference here the works [28, 30, 27]. Reference [28] studies random
first-order linear differential equations, [30] is devoted to a specific random
second-order linear differential equation to introduce some random trigono-
metric functions, and [27] is a doctoral dissertation on the application of the
Fröbenius method to solve random differential equations. Following these
works, we will assume that Y0 and Y1 are fourth-order random variables and
that

‖An‖4 ≤ ηHn−1(n− 1)!p (4.4)

for n ≥ n0, for constants n0, η,H, p > 0. This includes the case of A being
bounded, but also the Normal (p = 1/2) and the Gamma (p = 1) distribu-
tions. The assumption (4.4) is a straightforward consequence of polynomial
growth for the ratio of moments: ‖An+1‖4/‖An‖4 = O(np), where the constant
corresponding to O is H, and η = ‖A‖4.

For Airy’s, Hermite’s and Laguerre’s equation, we will prove that the formal
power series solution X(t) =

∑∞
n=0Xnt

n constructed in [43, 29, 44] satisfies∑∞
n=0 ‖Xn‖2|t|n < ∞, for t ∈ R. This is enough since the random power

series can be differentiated termwise in the mean square sense (Theorem 3.1
in Chapter 3). Our reasoning will be more concise and optimized than in such
contributions.

In the last part of the chapter, we will include a thorough discussion about the
new hypotheses that permit extending the results published in [43, 29, 44]. We
will show the equivalence between condition (4.4) for p ≤ 1 and φA(t) <∞ in
a neighborhood of 0, where φA(t) = E[etA] is the moment-generating function
of A. This includes a lot of important probability distributions for A.

4.2 Random Airy differential equation

The formal solution to (4.1) is given by

X(t) = Y0X1(t) + Y1X2(t),

X1(t)=1+
∞∑
n=1

(−1)nAn(3n− 2)!!!

(3n)!
t3n, X2(t)= t+

∞∑
n=1

(−1)nAn(3n− 1)!!!

(3n+ 1)!
t3n+1,

see [43]. Essentially, the solution X(t) is a linear combination of the fun-
damental set {X1(t), X2(t)}, where X1(t) and X2(t) solve (4.1) with initial
conditions (1, 0) and (0, 1), respectively.
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If Y0 and Y1 are fourth-order random variables, we need to prove the mean
fourth convergence of X1(t) and X2(t), for each t ∈ R. That is,

∞∑
n=1

‖An‖4(3n− 2)!!!

(3n)!
|t|3n <∞,

∞∑
n=1

‖An‖4(3n− 1)!!!

(3n+ 1)!
|t|3n+1 <∞.

We work with the first series, as the analysis for the second one is analogous.
We have, as a direct consequence of (4.4),

∞∑
n=1

‖An‖4(3n− 2)!!!

(3n)!
|t|3n ≤ η

∞∑
n=1

Hn−1(n− 1)!p(3n− 2)!!!

(3n)!
|t|3n.

We use d’Alembert’s ratio test to derive the radius of convergence of the latter
power series. We have

lim
n→∞

Hnn!p(3n+1)!!!

(3n+3)!
|t|3n+3

Hn−1(n−1)!p(3n−2)!!!

(3n)!
|t|3n

= H|t|3 lim
n→∞

np(3n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)

=

{
0, 0 ≤ p < 2,
H|t|3

9
, p = 2.

Then, for 0 ≤ p < 2, the series converges for all t ∈ R; while for p = 2, it
converges for |t| < 3

√
9/H.

4.3 Random Hermite differential equation

The formal solution to (4.2) is given by a linear combination of a fundamental
set {X1(t), X2(t)},

X(t) = Y0X1(t) + Y1X2(t), (4.5)

X1(t) = 1+
∞∑
n=0

t2n+2

(2n+ 2)!

n∏
j=0

(4j−A), X2(t) = t+
∞∑
n=0

t2n+3

(2n+ 3)!

n∏
j=0

(4j+2−A),

(4.6)
see [29]. If Y0 and Y1 are fourth-order random variables, we prove that

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j −A)

∥∥∥∥∥
4

<∞,
∞∑
n=0

|t|2n+3

(2n+ 3)!

∥∥∥∥∥
n∏
j=0

(4j + 2−A)

∥∥∥∥∥
4

<∞,

for t ∈ R. We focus on the convergence analysis for the former series, as the
analysis for the second one is analogous.
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4.4 Random Laguerre differential equation

By Hölder’s and the triangular inequalities,∥∥∥∥∥
n∏
j=0

(4j −A)

∥∥∥∥∥
4

≤
n∏
j=0

‖4j −A‖4(n+1) ≤
n∏
j=0

(
4j + ‖A‖4(n+1)

)
≤
(
4n+ ‖A‖4(n+1)

)n+1
.

The last inequality would be tighter if we used the arithmetic-geometric mean
inequality, but the final conclusion that we will derive about the radius of
convergence is the same. We have, then,

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j −A)

∥∥∥∥∥
4

≤
∞∑
n=0

t2n+2

(2n+ 2)!

(
4n+ ‖A‖4(n+1)

)n+1
.

From (4.4) (just power it to 1/(n+ 1)), ‖A‖4(n+1) ≤ η1/(n+1)Hn/(n+1)n!p/(n+1).
Then

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j −A)

∥∥∥∥∥
4

≤
∞∑
n=0

t2n+2

(2n+ 2)!

(
4n+ η1/(n+1)Hn/(n+1)n!p/(n+1)

)n+1

.

Now we use the root test:

lim
n→∞

n

√
t2n+2

(2n+ 2)!
(4n+ η1/(n+1)Hn/(n+1)n!p/(n+1))

n+1

= lim
n→∞

|t|2+ 2
n

(2n+ 2)!
1
n

(
4n+ η1/(n+1)Hn/(n+1)n!p/(n+1)

)n+1
n

=

{
0, 0 ≤ p < 2,

t2H
4
, p = 2.

As a consequence, for 0 ≤ p < 2 the series converges for all t ∈ R; for p = 2 it
converges for |t| < 2/

√
H.

4.4 Random Laguerre differential equation

The formal solution to (4.3) is expressed as

X(t) = Y0

∞∑
n=0

tn
n∏
k=1

k − 1−A
k2

, (4.7)
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see [44]. In this case, there is only one initial condition because 0 is a regular
singular point. If Y0 is a fourth-order random variable, we prove that

∞∑
n=0

|t|n
∥∥∥∥∥

n∏
k=1

k − 1−A
k2

∥∥∥∥∥
4

<∞.

By Hölder’s and the triangular inequalities,∥∥∥∥∥
n∏
k=1

k − 1−A
k2

∥∥∥∥∥
4

≤
n∏
k=1

∥∥∥∥k − 1−A
k2

∥∥∥∥
4n

≤
n∏
k=1

k + ‖A‖4n
k2

≤
(
n+ η1/nHn/(n−1)(n− 1)!p/n

)n
n!2

.

At this point, we would like to point out a mistake in the inequality derived
for ‖

∏n
k=1

k−1−A
k2 ‖4 in [44], as the numerator of the final bound found by the

authors should be powered to the n-th. This mistake, however, does not
change their conclusions about the radius of convergence.

We use the root test:

lim
n→∞

n

√
(n+ η1/nHn/(n−1)(n− 1)!p/n)

n

n!2
|t|n

= |t| lim
n→∞

n+ η1/nHn/(n−1)(n− 1)!p/n

n!2/n
=

{
0, 0 ≤ p < 2,

|t|H, p = 2.

The series thus converges on R when 0 ≤ p < 2, and on (−1/H, 1/H) when
p = 2.

Remark 4.1 If the random vector (Y0, Y1) and A are independent, then we
can relax the hypotheses to Y0 and Y1 second-order random variables and

‖An‖2 ≤ ηHn−1(n− 1)!p.

Indeed, this is because ‖UV ‖2 = ‖U‖2‖V ‖2 whenever U and V are two inde-
pendent random variables.

Remark 4.2 In the contributions [43, 29, 44], when A is unbounded, its sup-
port gets truncated. Suppose that Y0 and Y1 are mean fourth integrable and A
satisfies (4.4). Consider truncations A(m) = A1{|A|≤am}, where limm→∞ am =
∞. These truncations are bounded and satisfy limm→∞ ‖A(m) − A‖k = 0, for
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4.5 About the hypotheses

all 1 ≤ k < ∞ (by the dominated convergence theorem). Let X(m)(t) be the
solution to the equation with coefficient A(m), and let X(t) be the solution
when the coefficient is A. These solutions are given by random power series,
see the previous sections. We have that limm→∞ ‖X(m)(t) − X(t)‖2 = 0, for
each t ∈ R (this is a consequence of the dominated convergence theorem for
series).

4.5 About the hypotheses

As a consequence of Stirling’s formula, (n − 1)! ≈
√

2π(n− 1)(n−1
e

)n−1 as
n→∞, hypothesis (4.4) is equivalent to

‖An‖4 ≤ γCn−1(n− 1)p(n−1) (4.8)

for n ≥ n1, for constants n1, γ, C, p > 0.

This condition (4.8) might be easier to check in practice. For example, let us
prove that the Poisson(λ) distribution for A satisfies (4.4), by taking advantage
of the well-known convergence of the Binomial distribution to the Poisson
distribution under specific hypotheses on their corresponding parameters. Let
k ≥ 1. Let Vs,α ∼ Binomial(s, α), where s ≥ k is a positive integer and
α ∈ (0, 1). By [92, Prop. 4.7], there is a constant C > 0 independent of α, s
and k such that

‖Vs,α‖k ≤ C
k

log( k
αs

)
,

when k/(αs) ≥ e. Let s → ∞, α → 0, αs → λ. Then Vs,α converges to a
Poisson(λ) random variable U , which satisfies

‖U‖k ≤ C
k

log( k
λ
)

when k ≥ eλ. In particular, if A ∼ Poisson(λ), then

‖An‖4 = ‖A‖n4n ≤ Cn (4n)n

logn(4n/λ)
≤ Cn(4n)n

for large n, so (4.8) holds with p = 1.

Up to now, we know that (4.4) is fulfilled by the bounded, Normal, Gamma and
Poisson distributions, with p = 0, p = 1/2 and p = 1, respectively. We show
that condition (4.4) for p ≤ 1 is equivalent to φA(t) < ∞ in a neighborhood
of 0, where φA(t) = E[etA] denotes the moment-generating function of A. We

67



Chapter 4.

use [116, Th. A, p. 5], (a)⇔(c): φA(t) <∞ in a neighborhood of 0 if and only
if E[A4k] ≤ Ck(4k)! for certain C > 0. Now, Ck(4k)! ∼ D4kk4k, for certain
D > 0, by Stirling’s approximation. Then E[A4k] ≤ Ck(4k)! is equivalent to
‖Ak‖4 ≤ Dkkk, which is in turn equivalent to (4.8) with p = 1.

Condition (4.4) for p ≤ 2 and A ≥ 0 is equivalent to φ√A(t) < ∞ in a
neighborhood of 0, by [116, Th. B, p. 6], (a)⇔(c).

Example 4.3 Condition (4.4) is not satisfied by the Log-Normal distribution,
for any 0 ≤ p ≤ 2. If A follows a Log-Normal distribution of parameters µ ∈ R
and σ > 0, then E[An] = enµ+n2σ2/2. In particular, ‖An‖4 = enµ+2n2σ2

. This
quantity grows faster than Cn−1(n − 1)p(n−1) as n → ∞, for any C, p > 0,
as the limit of their ratio is infinity. As a conclusion, the random Fröbenius
method does not work with the Log-Normal distribution. This issue also
occurs with other methods for uncertainty quantification, namely Monte Carlo
simulation and polynomial chaos expansions [172]. Due to the large growth
of the moments of the Log-Normal distribution and its fat tails, the classical
Monte Carlo procedure does not work well with this distribution. On the
other hand, polynomial chaos expansions and stochastic Galerkin projections
do not converge for the Log-Normal distribution [66].

Example 4.4 Consider Laguerre’s equation (4.3), A ∼ Laplace(−0.5, 0.5)
(µ = −0.5 is the location parameter and b = 0.5 is the scale parameter)
and Y0 ∼ Uniform(0.1, 0.2). These two random variables are independent.
The moment-generating function of the Laplace distribution is finite in a
neighborhood of zero defined by the interval (−1/b, 1/b). Then, according
to the theoretical discussion, there exists a mean square solution X(t) defined
by (4.7), t ∈ R. By taking the N -th partial sum of the random power se-
ries, the expectation and the variance of X(t), E[X(t)] and V[X(t)], can be
approximated as N → ∞. See the formulae from [44, p. 289] (the idea relies
on using the linearity of the expectation and the precomputed moments of
A). The convergence is exponentially fast with N , but not uniformly in t; as
t increases, a larger order N is required. In Tables 4.1 and 4.2, we show the
approximations of E[X(t)] and V[X(t)] for different N ’s. The results are com-
pared against Monte Carlo simulation with 100, 000 realizations. While the
Fröbenius method gives correct significant digits very fast, the Monte Carlo
procedure shows much slower convergence.

Example 4.5 Consider Hermite’s equation (4.2), with inputs A ∼ Poisson(2)
(the parameter 2 is the mean), Y0 ∼ Uniform(0.1, 0.2) and Y1 = −1, where A
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t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.150000 0.150000 0.150000 0.150000 0.150000 0.150000 0.149982

0.2 0.167021 0.167021 0.167021 0.167021 0.167021 0.167021 0.167247
0.4 0.188737 0.188738 0.188738 0.188738 0.188738 0.188738 0.188417
0.6 0.216310 0.216320 0.216321 0.216321 0.216321 0.216321 0.215913
0.8 0.251174 0.251230 0.251238 0.251239 0.251239 0.251239 0.250905
1.0 0.295083 0.295298 0.295333 0.295338 0.295339 0.295339 0.295943
1.2 0.350149 0.350791 0.350917 0.350939 0.350943 0.350943 0.35014
1.4 0.418889 0.420507 0.420879 0.420954 0.420968 0.420970 0.421562

Table 4.1: Approximations of the expectation of the solution (4.7) to the random Laguerre
differential equation (4.3) using the Fröbenius method, for different orders of truncation N
and Monte Carlo (MC) simulation. Example 4.4.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000834754

0.2 0.00161217 0.00161217 0.00161217 0.00161217 0.00161217 0.00161217 0.00161509
0.4 0.00428272 0.00428300 0.00428302 0.00428302 0.00428302 0.00428302 0.00427721
0.6 0.0105189 0.0105246 0.0105253 0.0105253 0.0105253 0.0105253 0.0104690
0.8 0.0234742 0.0235277 0.0235358 0.0235368 0.0235370 0.0235370 0.0235577
1.0 0.0489538 0.0492733 0.0493346 0.0493448 0.0493463 0.0493465 0.0486700
1.2 0.0973951 0.0988329 0.0991692 0.0992369 0.0992489 0.0992507 0.0991242
1.4 0.187108 0.192424 0.193900 0.194250 0.194323 0.194000 0.189003

Table 4.2: Approximations of the variance of the solution (4.7) to the random Laguerre
differential equation (4.3) using the Fröbenius method, for different orders of truncation N
and Monte Carlo (MC) simulation. Example 4.4.
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and Y0 are assumed to be independent. The moment-generating function of
the Poisson distribution is finite on the whole R, therefore there exists a mean
square solution X(t) defined by (4.5)–(4.6), t ∈ R. By using the formulae
from [29, Section 6], based on truncating the power series to the N -th partial
sum, the expectation and the variance of X(t), E[X(t)] and V[X(t)], can be
approximated as N →∞. In Tables 4.3 and 4.4, we show the approximations
of E[X(t)] and V[X(t)] for different N ’s, as well as the Monte Carlo estimates
with 100, 000 realizations.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.150000 0.150000 0.150000 0.150000 0.150000 0.150000 0.149969

0.2 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0559303
0.4 -0.274510 -0.274510 -0.274510 -0.274510 -0.274510 -0.274510 -0.274442
0.6 -0.507193 -0.507193 -0.507193 -0.507193 -0.507193 -0.507193 -0.507183
0.8 -0.758494 -0.758494 -0.758494 -0.758494 -0.758494 -0.758494 -0.758386
1.0 -1.03813 -1.03814 -1.03814 -1.03814 -1.03814 -1.03814 -1.03799
1.2 -1.36655 -1.3666 -1.36661 -1.36661 -1.36661 -1.36661 -1.36748
1.4 -1.78648 -1.78703 -1.78715 -1.78718 -1.78718 -1.78718 -1.79147

Table 4.3: Approximations of the expectation of the solution (4.5)–(4.6) to the random Her-
mite differential equation (4.2) using the Fröbenius method, for different orders of truncation
N and Monte Carlo (MC) simulation. Example 4.5.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000831451

0.2 0.000773883 0.000773883 0.000773883 0.000773883 0.000773883 0.000773883 0.000776030
0.4 0.000596974 0.000596974 0.000596974 0.000596974 0.000596974 0.000596974 0.000597567
0.6 0.000665335 0.000665336 0.000665336 0.000665336 0.000665336 0.000665336 0.000664739
0.8 0.00514877 0.00514884 0.00514884 0.00514884 0.00514884 0.00514884 0.00519014
1.0 0.0343588 , 0.0343611 0.0343612 0.0343613 0.0343613 0.0343613 0.0345285
1.2 0.163114 0.163173 0.163181 0.163182 0.163182 0.163182 0.163717
1.4 0.645706 0.646805 0.647026 0.647070 0.647077 0.647079 0.647087

Table 4.4: Approximations of the variance of the solution (4.5)–(4.6) to the random Hermite
differential equation (4.2) using the Fröbenius method, for different orders of truncation N
and Monte Carlo (MC) simulation. Example 4.5.

Example 4.6 In this last example, we consider Hermite’s equation (4.2), with
coefficient A ∼ Weibull(a, b) (a is the scale parameter and b is the shape pa-
rameter) and initial conditions Y0 ∼ Uniform(0.1, 0.2) and Y1 = −1, where
A and Y0 are assumed to be independent. The moments of the Weibull dis-
tribution are well-known: E[Am] = amΓ(1 + m/b), where Γ is the Gamma
function. Using this formula, one can estimate the ratio ‖Am+1‖2/‖Am‖2 (we
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use 2-norms instead of 4-norms because of the independence, see Remark 4.1).
By Stirling’s formula, Γ(x+ 1) ∼

√
2πx(x/e)x as x→∞, it is easy to obtain,

by direct computations, that

‖Am+1‖2
‖Am‖2

∼ a
(

2

b

) 1
b

m
1
b .

That is, p = 1/b, H = a(2/b)1/b and η = ‖A‖2 = a
√

Γ(1 + 2/b). We analyze
the mean square convergence of the series defined by (4.5)–(4.6). We show
the approximations of the variance of X(t), V[X(t)], for orders of truncation
N = 25, 26, 27, scale parameter a = 1 and shape parameters b = 2/3, 1/2, 1/3.
Notice that, for b = 2/3, we have p = 3/2 < 2, so convergence on the whole real
line is expected by the theoretical results. For b = 1/2, we have that p equals
the threshold 2 for convergence: the series defined by (4.5)–(4.6) only converges

in a small interval around 0, given by (−2/
√
H, 2/

√
H) = (−1/2, 1/2). Finally,

for b = 1/3, we have p = 3 > 2, therefore the series given by (4.5)–(4.6) is not
expected to converge for any t 6= 0. The numerical results are presented in
Tables 4.5, 4.6 and 4.7. They agree with our theoretical discussion about the
convergence domain. The results of the Monte Carlo simulation using 100, 000
realizations are also shown for validation.

t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000830033

0.2 0.000802005 0.000802005 0.000802005 0.000813572
0.4 0.000687696 0.000687696 0.000687696 0.000669479
0.6 0.00122022 0.00122022 0.00122022 0.0012146
0.8 0.00975692 0.00975692 0.00975692 0.0103762
1.0 0.0559536 0.0559536 0.0559536 0.0541698
1.2 0.233081 0.233081 0.233081 0.233012
1.4 0.830763 0.830763 0.830763 0.827578

Table 4.5: Approximations of the variance of the solution (4.5)–(4.6) to the random Her-
mite differential equation (4.2) using the Fröbenius method, for b = 2/3, different orders of
truncation N and Monte Carlo (MC) simulation. Example 4.6.
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t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000838800

0.2 0.000818187 0.000818187 0.000818187 0.000824624
0.4 0.000691749 0.000691749 0.000691749 0.000690404
0.6 238750 489177 1.00245× 106 0.00361506
0.8 1.05641× 1018 6.85769× 1018 4.45158× 1019 0.0275597
1.0 6.82155× 1027 1.08386× 1029 1.72173× 1030 0.121455

Table 4.6: Approximations of the variance of the solution (4.5)–(4.6) to the random Her-
mite differential equation (4.2) using the Fröbenius method, for b = 1/2, different orders of
truncation N and Monte Carlo (MC) simulation. Example 4.6.

t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000827802

0.1 3.67222× 1032 6.87049× 1034 1.38863× 1037 0.000927809
0.2 4.95578× 1062 1.48136× 1066 4.78402× 1069 0.00105165
0.3 2.05526× 1080 3.11183× 1084 5.09011× 1088 0.00104901

Table 4.7: Approximations of the variance of the solution (4.5)–(4.6) to the random Her-
mite differential equation (4.2) using the Fröbenius method, for b = 1/3, different orders of
truncation N and Monte Carlo (MC) simulation. Example 4.6.
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4.6 Conclusions and perspectives

In this chapter we have studied Airy, Hermite and Laguerre differential equa-
tions with random inputs. Using the Fröbenius method, the mean square
stochastic solution has been constructed in the form of a power series. The
main goal has been to weaken the usual hypothesis of boundedness for the
equation coefficient, so that the class of its probability distributions is enlarged
to those having certain growth of the moments. In particular, we include the
probability distributions having finite moment-generating function around the
origin.

More research on these methods should be carried out in the future. For in-
stance, the solution to the random Legendre differential equation still requires
boundedness of the equation coefficient, see Chapter 2. In the general case
of second-order linear differential equations, see Chapter 3, all the equation
coefficients are taken as bounded random variables. It would be interesting to
generalize the theoretical discussion therein to allow unbounded distributions.
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Chapter 5

Random second-order linear
differential equations via

adapted gPC: a comparative
study with the random

Fröbenius method and Monte
Carlo simulation

This chapter presents a methodology to quantify computationally
the uncertainty of random non-autonomous second-order linear differen-
tial equations, via adaptive generalized Polynomial Chaos (gPC) and the
stochastic Galerkin projection technique. Unlike the random Fröbenius
method, which can only deal with particular random linear differential
equations and needs the random inputs (coefficients and forcing term) to
be analytic, adaptive gPC allows approximating the expectation and co-
variance of the solution stochastic process to general random second-order
linear differential equations. The random inputs are allowed to function-
ally depend on random variables that may be independent or dependent,
both absolutely continuous or discrete with infinitely many point masses.
These hypotheses include a wide variety of particular differential equations,
which might not be solvable via the random Fröbenius method, in which the
random input coefficients may be expressed via a Karhunen-Loève expan-
sion.
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5.1 Introduction and Preliminaries

A powerful tool to deal with random differential equations is generalized Poly-
nomial Chaos (gPC) expansions [172, 173]. Let (Ω,F ,P) be a complete prob-
ability space. We will work in the Hilbert space (L2(Ω), 〈·, ·〉) that consists
of second-order random variables, i.e., random variables with finite variance,
where the inner product is defined by 〈ζ1, ζ2〉 = E[ζ1ζ2], being E[·] the expec-
tation operator. In its classical formulation, gPC consists in writing a random
vector ζ : Ω → Rn as a limit of multivariate polynomials evaluated at a ran-
dom vector Z : Ω → Rn: ζ ≈

∑P
i=0 ζ̂iφi(Z). Here {φi(Z)}∞i=0 is a sequence of

orthogonal polynomials in Z: E[φi(Z)φj(Z)] =
∫
Rn φi(z)φj(z) dPZ(z) = γiδij,

where PZ = P ◦ Z−1 is the law of Z and δij is the Kronecker delta symbol.
A stochastic Galerkin method can be applied to approximate the solution
to random differential equations [172, Ch. 6]. For some applications of this
theory, see for example [40, 171]. Given the random vector Z, the sequence
{φi(Z)}∞i=0 of orthogonal polynomials is taken from the Askey-Wiener scheme
of hypergeometric orthogonal polynomials, by taking into account the density
function fZ of Z (if Z is absolutely continuous) or the discrete masses of Z (if
Z is discrete), [172, 173].

Chapter 3 does not compare the Fröbenius method with gPC expansions, al-
though it has been proved to be a powerful technique to deal with general
continuous and discrete stochastic systems. Due to the spectral mean square
convergence of the Galerkin projections, the expectation and the variance
statistics of the response process can be approximated with small orders of
truncation. In the particular setting of random second-order linear differen-
tial equations, only [35, 36, 50] analyze the application of gPC expansions to
Airy’s random differential equation. Paper [35] analyzes the best trial basis for
applying gPC expansions; reference [36] compares gPC and random power se-
ries expansions when approximating statistical moments; and [50] studies the
application of gPC expansions for dependent Gaussian uncertainty, by map-
ping the vector of input coefficients to independent Gaussian random variables,
and compares it with the random Fröbenius method. It may be interesting
to analyze the application of gPC expansions to general random second-order
linear differential equations.

In the recent articles [34, 49, 51], an adaptive gPC method has been devel-
oped to approximate the solutions of random differential equations. Instead
of taking the orthogonal polynomials from the Askey-Wiener scheme, the au-
thors construct them directly from the random inputs that are involved in the
corresponding random differential equation formulation.
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More explicitly, in [34], the authors considered the random differential equation
F (t, y, ẏ) = 0, y(t0) = y0, where F : R2q+1 → Rq and y(t) = (y1(t), . . . , yq(t))>,
where > denotes the transpose operator. The set {ζ1, . . . , ζs} represents inde-
pendent and absolutely continuous random input parameters in the random
differential equation problem.

For each 1 ≤ i ≤ s, it is considered the canonical basis of polynomials
in ζi of degree at most p: Cpi = {1, ζi, (ζi)2, . . . , (ζi)

p}. One defines the
following inner product, with weight function given by the density of ζi:
〈g(ζi), h(ζi)〉ζi =

∫
R g(ζi)h(ζi)fζi(ζi) dζi. Using a Gram-Schmidt orthonormal-

ization procedure, one obtains a sequence of orthonormal polynomials in ζi
with respect to 〈, 〉ζi : Ξpi = {φi0(ζi), . . . , φ

i
p(ζi)}. The authors build a sequence

of orthonormal multivariate polynomials in ζ = (ζ1, . . . , ζs)
> of degree at most

p with respect to the inner product 〈g(ζ), h(ζ)〉ζ =
∫
Rs g(ζ)h(ζ)fζ(ζ) dζ. To do

so, they build the simple tensor product φj(ζ) = φ1
p1

(ζ1) · · ·φsps(ζs), 1 ≤ j ≤ P ,
where j is associated in a bijective manner to the multi-index (p1, . . . , ps) in
such a way that 1 corresponds to (0, . . . , 0) (for example, a graded lexico-
graphic ordering [172, p. 66]) and P = (p + s)!/(p!s!). By the independence
between ζ1, . . . , ζs, the built sequence Ξ = {φj(ζ)}Pj=1 is orthonormal with
respect to 〈, 〉ζ .

Once the basis is constructed, one looks for an approximate solution y(t) ≈∑P
j=1 yj(t)φj(ζ). Then, F (t,

∑P
j=1 yj(t)φj(ζ),

∑P
j=1 ẏj(t)φj(ζ)) = 0. To ob-

tain the deterministic coefficients yj(t), one computes the inner products

〈F (t,
∑P

j=1 yj(t)φj(ζ),
∑P

j=1 ẏj(t)φj(ζ)), φk(ζ)〉ζ = 0, k = 1, . . . , P . In this
manner, one arrives at a deterministic system of P differential equations, which
may be solved by standard numerical techniques. Once y1(t), . . . , yP (t) have
been computed, the expectation of the actual solution y(t) is approximated

by y1(t) and the covariance matrix is approximated by
∑P

i=1 yi(t)yi(t)
>.

In [51], the authors use the Random Variable Transformation technique [47,
Th. 1] in case that some random input parameters appearing in the random
differential equation come from mappings of absolutely continuous random
variables, whose probability density function is known.

In [49], the authors focus on the case that the random inputs ζ1, . . . , ζs are not
independent. They consider the canonical bases Cpi = {1, ζi, (ζi)2, . . . , (ζi)

p},
for 1 ≤ i ≤ s, and construct a sequence of multivariate polynomials in ζ, via
a simple tensor product: φj(ζ) = ζp1

1 · · · ζpss , where 1 ≤ j ≤ P corresponds
to the multi-index (p1, . . . , ps) and P = (p + s)!/(p!s!). Notice that this new
sequence {φj(ζ)}Pj=1 is not orthonormal with respect to 〈, 〉ζ . However, one
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proceeds with the random differential equation problem as in [34] and, in
practice, one obtains good approximations of the expectation and covariance
of y(t).

Based on ample numerical evidence, the gPC-based methods described in [34,
49, 51, 172, 173] converge in the mean square sense at spectral rate. Some
theoretical results that justify this assertion are presented in [172, pp. 33–35,
p. 73], [79, Th. 2.2], [18, 66, 150, 151].

In this chapter we deal with general random non-autonomous second-order
linear differential equations:

Ẍ(t) +A(t)Ẋ(t) +B(t)X(t) = C(t), t ∈ R,
X(t0) = Y0,

Ẋ(t0) = Y1.

(5.1)

Our goal is to obtain approximations of the stochastic solution X(t) as well
as of its main statistical features, by taking advantage of the adaptive gPC
techniques [34, 49]. Here, A(t), B(t) and C(t) are stochastic processes and
Y0 and Y1 are random variables in an underlying complete probability space
(Ω,F ,P). The term X(t) is the solution stochastic process to the random ini-
tial value problem (5.1) in some probabilistic sense. We will detail conditions
for existence and uniqueness of solution in the following section.

In this chapter, we want to go one step further and we will perform a com-
putational analysis based upon adaptive gPC, by showing its capability to
deal with the general random initial value problem (5.1) that comprises Airy,
Hermite, Legendre, Laguerre and Bessel differential equations, or any other
formulation of (5.1) based on analytic data processes, just as particular cases.

The chapter is organized as follows. Section 5.2 describes the application of
adaptive gPC to solve the random initial value problem (5.1) and the com-
putation of the expectation and covariance of X(t). The study is split into
two cases depending on the probabilistic dependence of the random inputs.
In Section 5.3, we show the algorithms corresponding to the theory previously
developed in Section 5.2. Section 5.4 is addressed to show particular examples
of (5.1) where adaptive gPC, Fröbenius method and Monte Carlo simulation
are carried out to obtain approximations for the expectation, variance and
covariance of the solution stochastic process. It is evinced that adaptive gPC
provides the same results as the Fröbenius method with small orders of ba-
sis p, and, moreover, in cases where the Fröbenius method is not applicable,
adaptive gPC might be successful. Finally, in Section 5.5, conclusions are
drawn.
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5.2 Method

Consider the random initial value problem (5.1), where

A(t) = a0(t) +
dA∑
i=1

ai(t)γi, B(t) = b0(t) +
dB∑
i=1

bi(t)ηi, C(t) = c0(t) +
dC∑
i=1

ci(t)ξi,

(5.2)
being γ1, . . . , γdA , η1, . . . , ηdB and ξ1, . . . , ξdC random variables (not necessarily
independent) and a0(t), . . . , adA(t), b0(t), . . . , bdB(t) and c0(t), . . . , cdC (t) real
functions. Representation (5.2) for the input stochastic processes includes
truncated random power series [160, p. 99] and Karhunen-Loève expansions
[172, Ch. 4], [119, Ch. 5]. This is an improvement with respect to the random
Fröbenius method, in which A(t), B(t) and C(t) are only expressed as random
power series.

As we are interested in constructive computational aspects of uncertainty
quantification, we will assume that there exists a unique solution stochas-
tic process X(t) to initial value problem (5.1) in some probabilistic sense, for
instance, sample-path [161, SP problem] [160, Appendix A], or Lq(Ω) sense
[160], in such a way that E[X(t)2] < ∞ for each t. We detail the conditions
under which there exists a unique solution X(t) to (5.1) in the following propo-
sitions. Proposition 5.1, which is concerned with sample-path solutions, is a
direct consequence of the deterministic theory on ordinary differential equa-
tions (Carathéodory theory on the existence of absolutely continuous solutions
[81, pp. 28–30]). Proposition 5.2 takes advantage of a natural generalization
to Lq(Ω) random calculus of the classical Picard’s theorem for deterministic
ordinary differential equations [160, Th. 5.1.2], see Theorem 3.5 from Chap-
ter 3.

Proposition 5.1 (Sample-path solution) If A(t), B(t) and C(t) have real
integrable sample paths, then there exists a unique solution stochastic process
X(t) to (5.1) with C1 sample paths and derivative Ẋ(t) with absolutely contin-
uous sample paths (i.e., X(t) is a classical solution that belongs to the Sobolev
space W 2,1). Moreover, if A(t), B(t) and C(t) have continuous sample paths,
then X(t) has C2 sample paths.

Proposition 5.2 (Lq-solution) If A(t) and B(t) are continuous stochastic
processes in the L∞(Ω) sense, and the source term C(t) is continuous in the
Lq(Ω) setting, then there exists a unique solution X(t) to (5.1) in the Lq(Ω)
sense.
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Our goal is to approximate the solution stochastic process X(t) to the random
initial value problem (5.1) by using adaptive gPC, which is described in [34, 49]
and has been reviewed in Section 5.1. In the case that the random inputs
γ1, . . . , γdA , η1, . . . , ηdB , ξ1, . . . , ξdC , Y0 and Y1 are independent, we will use the
method from [34], whereas in the case that they are not independent, [49]
will be utilized. In [34, 49], the random inputs are assumed to be absolutely
continuous, so that the weights in the inner products are given by density
functions. Notice, however, that a discrete distribution with infinitely many
point masses can be given to the random inputs. Indeed, the corresponding
inner product becomes an integral with respect to a discrete law, which is
a series with weights being the probabilities of the point masses. Moreover,
since the support has infinite cardinality, the corresponding canonical basis of
polynomials has infinite dimension, so that its length p can grow up to infinity.

For ease of notation and to identify the notation with the one used in Sec-
tion 5.1, we denote the random inputs γ1, . . . , γdA , η1, . . . , ηdB , ξ1, . . . , ξdC , Y0

and Y1 as ζ1, . . . , ζs, where s = dA + dB + dC + 2. The random variables
ζ1, . . . , ζs are not necessarily independent, and they are absolutely continuous
or discrete random variables with infinitely many point masses. We will denote
ζ = (ζ1, . . . , ζs)

>. The space of polynomials evaluated at ζi of degree at most
p will be denoted by Pp[ζi]. The space of multivariate polynomials evaluated
at ζ of degree at most P will be written as PsP [ζ].

In the next development, we distinguish two cases depending on whether the
random inputs ζ1, . . . , ζs are independent or not.

5.2.1 The random inputs are independent

In the notation from [34] and Section 5.1, let Cpi = {1, ζi, . . . , ζpi } be the canon-
ical basis of Pp[ζi], for i = 1, . . . , s. Let Ξpi = {φi0(ζi), . . . , φ

i
p(ζi)} be the or-

thonormalization of Cpi with respect to the inner product defined by the law
Pζi , via a Gram-Schmidt procedure. Let Ξ = {φ1(ζ), . . . , φP (ζ)} be the or-
thonormal basis of PsP [ζ] with respect to the law Pζ = Pζ1 × · · · × Pζs , where
P = (p+ s)!/(p!s!).

We approximate the solution stochastic process X(t) ≈
∑P

i=1 xi(t)φi(ζ) by
imposing the right-hand side to be a solution to random initial value prob-
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lem (5.1):

P∑
i=1

ẍi(t)φi(ζ) +

(
a0(t) +

dA∑
i=1

ai(t)γi

)(
P∑
i=1

ẋi(t)φi(ζ)

)

+

(
b0(t) +

dB∑
i=1

bi(t)ηi

)(
P∑
i=1

xi(t)φi(ζ)

)
= c0(t) +

dC∑
i=1

ci(t)ξi. (5.3)

We apply the stochastic Galerkin projection technique. By multiplying by
φk(ζ), k = 1, . . . , P , applying expectations, using the orthonormality of Ξ and
the fact that φ1 = 1, we obtain:

ẍk(t) + a0(t)ẋk(t) +
dA∑
i=1

P∑
j=1

ai(t)ẋj(t)E[γiφj(ζ)φk(ζ)] + b0(t)xk(t)

+
dB∑
i=1

P∑
j=1

bi(t)xj(t)E[ηiφj(ζ)φk(ζ)] = c0(t)δ1k +
dC∑
i=1

ci(t)E[ξiφk(ζ)]. (5.4)

Let us put this equation in matrix form. Consider the P ×P matrices M and
N defined by

Mkj(t) =
dA∑
i=1

ai(t)E[γiφj(ζ)φk(ζ)], Nkj(t) =
dB∑
i=1

bi(t)E[ηiφj(ζ)φk(ζ)], (5.5)

for k, j = 1, . . . , P . Consider the vector q of length P with

qk =
dC∑
i=1

ci(t)E[ξiφk(ζ)], (5.6)

for k = 1 . . . , P . We rewrite (5.4) as a deterministic system of P differential
equations:

ẍ(t) + (M(t) + a0(t)IP )ẋ(t) + (N(t) + b0(t)Ip)x(t) = q(t) + c0(t)e1, (5.7)

where x(t) = (x1(t), . . . , xP (t))>, IP is the P ×P identity matrix and e1 is the
first vector of the canonical basis: (1, 0, . . . , 0)>. It remains to find the initial

condition for (5.7). From
∑P

i=1 xi(t0)φi(ζ) = Y0 and
∑P

i=1 ẋi(t0)φi(ζ) = Y1,
we obtain that xk(t0) = E[Y0φk(ζ)] and ẋk(t0) = E[Y1φk(ζ)], for k = 1, . . . , P .
Thus, the initial conditions become x(t0) = y and ẋ(t0) = y′, where y =
(y1, . . . , yP )> and y′ = (y′1, . . . , y

′
P )>,

yk = E[Y0φk(ζ)], y′k = E[Y1φk(ζ)], (5.8)
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for k = 1, . . . , P .

The system of deterministic differential equations can be solved by using stan-
dard numerical techniques. Once we have the solution (x1(t), . . . , xP (t)), we

have obtained the approximation
∑P

i=1 xi(t)φi(ζ) for the solution stochastic
process X(t). Moreover, one can approximate the expectation and covariance
of X(t):

E[X(t)] ≈ x1(t), Cov[X(t1), X(t2)] ≈
P∑
i=2

xi(t1)xi(t2). (5.9)

5.2.2 The random inputs may not be independent

In the notation from [49] and Section 5.1, let Cpi = {1, ζi, . . . , ζpi } be the canon-
ical basis of Pp[ζi], for i = 1, . . . , s. We construct the basis Ξ = {φ1, . . . , φP}
of PsP [ζ] as in [49]. This basis is not orthonormal with respect to the law Pζ .

We approximate the solution stochastic process X(t) ≈
∑P

i=1 xi(t)φi(ζ) by
imposing the right-hand side to be a solution to the random initial value
problem (5.1). One obtains (5.3). By multiplying by φk(ζ) and applying
expectations, k = 1, . . . , P , we derive that

P∑
i=1

ẍi(t)E[φi(ζ)φk(ζ)] + a0(t)
P∑
i=1

ẋi(t)E[φi(ζ)φk(ζ)]

+
dA∑
i=1

P∑
j=1

ai(t)ẋj(t)E[γiφj(ζ)φk(ζ)] + b0(t)
P∑
i=1

xi(t)E[φi(ζ)φk(ζ)]

+
dB∑
i=1

P∑
j=1

bi(t)xj(t)E[ηiφj(ζ)φk(ζ)]

= c0(t)E[φk(ζ)] +
dC∑
i=1

ci(t)E[ξiφk(ζ)]. (5.10)

Define the P × P matrix R and the vector h of length P as

Rik = E[φi(ζ)φk(ζ)], hk = E[φk(ζ)], (5.11)

for i, k = 1, . . . , P . Expression (5.10) can be written in matrix form as a
deterministic system of P differential equations:

Rẍ(t) + (M(t) + a0(t)R)ẋ(t) + (N(t) + b0(t)R)x(t) = q(t) + c0(t)h. (5.12)
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The initial conditions are given by Rx(t0) = y and Rẋ(t0) = y′.

This system of deterministic differential equations is solvable by standard nu-
merical techniques. Once we have computed the approximation

∑P
i=1 xi(t)φi(ζ)

of the solution stochastic process X(t), the expectation and covariance of X(t)
can be approximated as follows:

E[X(t)] ≈
P∑
i=1

xi(t)E[φi(ζ)],

Cov[X(t1), X(t2)] ≈
P∑
i=1

P∑
j=1

xi(t1)xj(t2)Cov[φi(ζ), φj(ζ)]. (5.13)

5.3 Algorithm

In this section we present the algorithm corresponding to Section 5.2. From
the random inputs A(t), B(t) and C(t) having expression (5.2) and the initial
conditions Y0 and Y1, we will show the steps to be followed in order to approx-
imate the expectation and covariance of the solution stochastic process X(t).
As in Section 5.2, denote the random input parameters by ζ1, . . . , ζs.

Case ζ1, . . . , ζs are independent:

Step 1. Define the canonical basis Cpi = {1, ζi, . . . , ζpi }, i = 1, . . . , s.

Step 2. Via a Gram-Schmidt procedure, orthonormalize Cpi to a new basis
Ξpi = {φi0(ζ), . . . , φip(ζ)} with respect to the probability law Pζi of ζi.
In the software MathematicaR©, this can be readily done with the built-
in function Orthogonalize. For example, if p=3 and the probability
distribution is dist, then the command could be:

Expand[Orthogonalize[{1, Z, Z^2, Z^3},
Integrate[#1 #2 PDF[dist, Z], {Z, -Infinity, Infinity}] &]]

Step 3. By using a simple tensor product, define the orthonormal basis with
respect to the joint law Pζ = Pζ1 × · · · × Pζs , Ξ = {φ1(ζ), . . . , φP (ζ)}.

Step 4. Construct the matrices M(t) and N(t) given by (5.5), the vector
q(t) defined by (5.6), and the initial conditions y and y′ given by (5.8).
All the involved expectations can be calculated with the built-in function
Expectation from MathematicaR©.

83



Chapter 5.

Step 5. Solve numerically the deterministic system of P differential equa-
tions given by (5.7) with initial conditions x(t0) = y and ẋ(t0) = y′.
This system does not pose serious numerical challenges. We integrate the
equations over time with the standard NDSolve routine in MathematicaR©:
write the instruction

NDSolve[eqns,function,{t,t0,T}]

with automatic method, step size, etc. (the built-in function will auto-
matically try to estimate the best method for a particular computation).

Step 6. Approximate the expectation and covariance of the unknown solu-
tion stochastic process by using (5.9).

Case ζ1, . . . , ζs are not independent:

Step 1. Define the canonical basis Cpi = {1, ζi, . . . , ζpi }, i = 1, . . . , s.

Step 2. By using a simple tensor product, define the basis of canonical poly-
nomials Ξ = {φ1(ζ), . . . , φP (ζ)}.

Step 3. Construct the matrices M(t) and N(t) given by (5.5), the vector q(t)
defined by (5.6), the matrix R(t) and the vector h given by (5.11), and the
vectors y and y′ expressed by (5.8). All the involved expectations can be
calculated with the built-in function Expectation from MathematicaR©.

Step 4. Solve numerically the deterministic system of P differential equa-
tions given by (5.12) with initial conditions Rx(t0) = y and Rẋ(t0) = y′.
This system does not pose serious numerical challenges. We thus inte-
grate the equations over time with the standard NDSolve routine from
MathematicaR© with the option

Method -> {"EquationSimplification" -> "Residual"}

(to deal with the corresponding system of differential-algebraic equa-
tions): write the instruction

NDSolve[eqns,function,{t,t0,T},
Method -> {"EquationSimplification" -> "Residual"}]

with automatic method, step size, etc. (the built-in function will auto-
matically try to pick the best method for a particular computation).
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Step 5. Approximate the expectation and covariance of the unknown solu-
tion stochastic process by using (5.13).

5.4 Examples

In this section we show particular examples of the random initial value prob-
lem (5.1) to which we apply adaptive gPC to approximate the expectation and
covariance of the solution stochastic process X(t).

We will compare the results with Monte Carlo simulation. Sample from the
probability distributions of A(t), B(t), C(t), Y0 and Y1 to obtain, say m real-
izations, for m large:

A(1)(t), . . . , A(m)(t), B(1)(t), . . . , B(m)(t), C(1)(t), . . . , C(m)(t),

Y
(1)

0 , . . . , Y
(m)

0 , Y
(1)

1 , . . . , Y
(m)

1 .

Then we solve the m deterministic initial value problems
Ẍ(i)(t) +A(i)(t)Ẋ(i)(t) +B(i)(t)X(i)(t) = C(i)(t), t ∈ R,
X(i)(t0) = Y

(i)
0 ,

Ẋ(i)(t0) = Y
(i)

1 ,

so that we obtain m realizations of X(t): X(1)(t), . . . , X(m)(t). The law of
large numbers permits approximating E[X(t)] and V[X(t)] by computing the
sample mean and sample variance of X(1)(t), . . . , X(m)(t):

E[X(t)] ≈ µm(t) =
1

m

m∑
i=1

X(i)(t), V[X(t)] ≈ 1

m− 1

m∑
i=1

(X(i)(t)− µm(t))2.

The results of adaptive gPC agree with Monte Carlo simulation, although the
convergence rate of Monte Carlo is much slower (its error convergence rate is
inversely proportional to the square root of the number of realizations [172,
p. 53]).

The result of the expectation will also be compared with the dishonest method
[85, p. 149]. It consists in estimating E[X(t)] by substituting A(t), B(t),
C(t), Y0 and Y1 in (5.1) by their corresponding expected values. Denoting

µX(t) = E[X(t)], the idea is that, since E[Ẍ(t)] = d2

dt2
(µX(t)) and E[Ẋ(t)] =

d
dt

(µX(t)), because of the commutation between the mean square limit and the
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expectation operator (see [160, Ch. 4]), one solves:
d2

dt2
(µX(t)) + E[A(t)] d

dt
(µX(t)) + E[B(t)]µX(t) = E[C(t)], t ∈ R,

µX(t0) = E[Y0],
d
dt

(µX(t0)) = E[Y1].

In our context, the dishonest method will work on cases where Cov[A(t), Ẋ(t)]
and Cov[B(t), X(t)] are small, but in general, there is no certainty that this
may hold. Thus, this method is a naive approximation to the true expectation,
with no theoretical support, although with a certain use in the literature [85].

When possible, the results obtained via adaptive gPC for the expectation and
variance will be compared with the random Fröbenius method. The conver-
gence of the random Fröbenius method will be guaranteed by Chapter 3.

Several conclusions are drawn from these examples. Adaptive gPC allows for
random inputs (5.2) more general than the random Fröbenius method: A(t),
B(t) and C(t) may not be analytic, they may be represented via a truncated
Karhunen-Loève expansion, etc. Moreover, with a small length p of the bases,
accurate results are obtained (this is due to the well-known spectral conver-
gence of gPC-based methods). However, from a computational standpoint,
a large number s of random input parameters may make the computations
inviable, as the order P of the basis increases as P = (p+ s)!/(p!s!).

Example 5.3 Airy’s random differential equation is given by [43]:
Ẍ(t) +AtX(t) = 0, t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(5.14)

where A, Y0 and Y1 are random variables. It is well-known that the solution to
the deterministic Airy’s differential equation is highly oscillatory, hence it is
expected that, in dealing with its stochastic counterpart, differences between
distinct methods will be highlighted.

The existence and uniqueness of sample-path solution is guaranteed by Propo-
sition 5.1. Concerning the existence and uniqueness of mean square solution,
we refer to Chapter 4.

In [43], the following distributions for A, Y0 and Y1 are set: A ∼ Beta(2, 3),
Y0 ∼ Normal(1, 1) and Y1 ∼ Normal(2, 1). They are assumed to be inde-
pendent. Approximations for the expectation and variance via the random
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Fröbenius method and Monte Carlo simulation are obtained in [43]. We use
adaptive gPC (independent case) with p = 3, p = 4, ζ1 = A, ζ2 = Y0 and
ζ3 = Y1, η1 = A, A(t) = 0, C(t) = 0 and b1(t) = t. The results obtained are
shown in Table 5.1 (expectation), Table 5.2 (variance) and Table 5.3 (covari-
ance). The order of truncation in the random Fröbenius method is denoted
by N . Observe that gPC expansions have converged for t ∈ [0, 2] with order
p = 3. This rapid convergence shows the potentiality of this approach.

In Figure 5.1, we focus on the convergence of gPC expansions. The solid line
reflects the expectations, while the dashed lines represent confidence intervals
constructed with the rule mean±deviation (the standard deviation stands for
the square root of the variance). Observe that, as we move away from t = 0,
larger orders of p are required to achieve good approximations of the statistics
of X(t). Indeed, Galerkin projections deviate from the exact solution after a
certain time. Realize also that larger orders of p are needed to get accurate
results of the standard deviation than for the expectation (statistical moments
of order 2 are harder to approximate than moments of order 1). For p = 3
and p = 4, the approximate expectations agree up to time t = 7, whereas the
standard deviations up to t = 4.5. For p = 2 and p = 3, similar means are
obtained until t = 6, and similar standard deviations up to t = 4. Notice that
the convergence deteriorates for p = 1: the results for p = 1 and p = 2 agree
until t = 4 for the expectation, but up to instant t = 1.5 for the standard
deviation. As p grows, the approximation of the statistics will improve for
larger t.

t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 5 dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.99701 1.00138
0.25 1.49870 1.49870 1.49870 1.49870 1.49870 1.49519 1.49976
0.50 1.98752 1.98752 1.98752 1.98752 1.98752 1.98353 1.98829
0.75 2.45108 2.45108 2.45108 2.45108 2.45102 2.44667 2.45160
1.00 2.86856 2.86856 2.86856 2.86856 2.86818 2.86383 2.86893
1.25 3.21494 3.21494 3.21494 3.21494 3.21339 3.21008 3.21534
1.50 3.46310 3.46310 3.46310 3.46310 3.45812 3.45831 3.46376
1.75 3.58660 3.58660 3.58660 3.58660 3.57340 3.58215 3.58784
2.00 3.56335 3.56335 3.56336 3.56335 3.53286 3.55948 3.56552

Table 5.1: Approximation of E[X(t)]. Example 5.3, assuming independent random data.

By using the random Fröbenius method from [43], an example of Airy’s differ-
ential equation with dependent random inputs is performed. It is set (A, Y0, Y1)
to have a multivariate Gaussian distribution, with mean vector and covariance
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t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 5 MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.99610 0.99530
0.25 1.06035 1.06035 1.06035 1.06035 1.05902 1.05642
0.50 1.23142 1.23142 1.23142 1.23142 1.23408 1.22793
0.75 1.49261 1.49261 1.49261 1.49261 1.50041 1.48944
1.00 1.81392 1.81392 1.81392 1.81392 1.82744 1.81127
1.25 2.15870 2.15870 2.15870 2.15870 2.17768 2.15721
1.50 2.49379 2.49379 2.49379 2.49379 2.51690 2.49462
1.75 2.80560 2.80560 2.80560 2.80560 2.83029 2.81030
2.00 3.11530 3.11530 3.11530 3.11530 3.13783 3.12559

Table 5.2: Approximation of V[X(t)]. Example 5.3, assuming independent random data.

t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 1. 0.998959 0.991684 0.972072 0.934436 0.873965 0.787323 0.673299 0.533429

0.25 0.998959 1.06035 1.11507 1.15586 1.17516 1.16565 1.12103 1.03694 0.911972
0.5 0.991684 1.11507 1.23142 1.33242 1.40874 1.45067 1.44906 1.39647 1.28856
0.75 0.972072 1.15586 1.33242 1.49261 1.62561 1.7196 1.76286 1.74509 1.65909

1 0.934436 1.17516 1.40874 1.62561 1.81392 1.96032 2.05099 2.07321 2.01713
1.25 0.873965 1.16565 1.45067 1.7196 1.96032 2.1587 2.2997 2.3688 2.35387
1.5 0.787323 1.12103 1.44906 1.76286 2.05099 2.2997 2.49379 2.61793 2.65822
1.75 0.673299 1.03694 1.39647 1.74509 2.07321 2.3688 2.61793 2.8056 2.91699

2 0.533429 0.911972 1.28856 1.65909 2.01713 2.35387 2.65822 2.91699 3.1153

Table 5.3: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3 and p = 4.
Example 5.3, assuming independent random data.
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Figure 5.1: Expectation and confidence interval for the solution stochastic process, for
orders of basis p = 1, 2, 3, 4. Example 5.3, assuming independent random data.
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matrix given by

µ =

0.4
1
2

 , Σ =

 0.04 0.0001 −0.05
0.0001 1 0.5
−0.005 0.5 1

 ,

respectively. In Table 5.4, Table 5.5 and Table 5.6, the results obtained via
adaptive gPC with p = 3, p = 4 (dependent case) and [43] are shown. Adaptive
gPC converges for small order of basis p.

In Figure 5.2, we analyze the convergence of gPC expansions by depicting
the expectation (solid line) and confidence interval (dashed lines) for X(t),
where the confidence interval is constructed as mean ± deviation. Analogous
comments to those from Figure 5.1 apply in this case again. For orders p = 3
and p = 4, the expectations agree up to time t = 6, while the standard
deviations coincide until t = 4.6. For p = 2 and p = 3, the means are similar
until t = 6, whereas the dispersion estimates start separating from t = 3.8.
Finally, for p = 1 and p = 2, the approximations for the average statistic
coincide till t = 4.5, and for the deviation statistic until t = 2.5.

t gPC p = 3 gPC p = 4 Fröb. N = 4 Fröb. N = 5 dishonest MC 50, 000 MC 100, 000
0.00 1 1 1 1 1 1.00188 1.00597
0.25 1.49870 1.49870 1.49870 1.49870 1.49870 1.50166 1.50581
0.50 1.98755 1.98755 1.98755 1.98755 1.98752 1.99156 1.99575
0.75 2.45121 2.45121 2.45121 2.45121 2.45102 2.45622 2.46041
1.00 2.86895 2.86895 2.86895 2.86895 2.86818 2.87485 2.87900
1.25 3.21589 3.21589 3.21589 3.21589 3.21339 3.22247 3.22656
1.50 3.46503 3.46503 3.46503 3.46503 3.45812 3.47198 3.47601
1.75 3.59010 3.59010 3.59010 3.59010 3.57340 3.59700 3.60101
2.00 3.56914 3.56914 3.56915 3.56914 3.53286 3.57546 3.57949

Table 5.4: Approximation of E[X(t)]. Example 5.3, assuming dependent random data.

Example 5.4 Consider the random differential equation
Ẍ(t) + (γ1 + γ2t)Ẋ(t) + (η1 + t)X(t) = ξ1 cos(t) + g(t), t ∈ R,
X(0) = Y0,

Ẋ(0) = Y1,

(5.15)

where γ1 ∼ Poisson(3), γ2 ∼ Uniform(0, 1), η1 ∼ Gamma(2, 2), Y0 = −1,
Y1 ∼ Exponential(4), ξ1 ∼ Uniform(−8, 2) and g(t) = e−1/t1(0,∞)(t).

Proposition 5.1 ensures the existence and uniqueness of a sample-path solution.
To apply Proposition 5.2, one would need to truncate the supports of γ1 and
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t gPC p = 3 gPC p = 4 Fröb. N = 3 Fröb. N = 4 MC 50, 000 MC 100, 000
0.00 1 1 1 1 0.999223 0.99992
0.25 1.30997 1.30997 1.30997 1.30997 1.30713 1.30991
0.50 1.72535 1.72535 1.72535 1.72535 1.71989 1.72525
0.75 2.21241 2.21241 2.21241 2.21241 2.20395 2.21230
1.00 2.72122 2.72122 2.72122 2.72122 2.70957 2.72125
1.25 3.19236 3.19236 3.19236 3.19236 3.17745 3.19283
1.50 3.57361 3.57361 3.57361 3.57361 3.55537 3.57484
1.75 3.84459 3.84459 3.84454 3.84458 3.82262 3.84669
2.00 4.04087 4.04087 4.04090 4.04086 4.01420 4.04342

Table 5.5: Approximation of V[X(t)]. Example 5.3, assuming dependent random data.

t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 1. 1.12389 1.24064 1.34181 1.41793 1.45914 1.45614 1.40144 1.29068

0.25 1.12389 1.30997 1.48771 1.64683 1.77533 1.86031 1.88919 1.85125 1.7394
0.5 1.24064 1.48771 1.72535 1.94152 2.12187 2.25061 2.31202 2.29226 2.18163
0.75 1.34181 1.64683 1.94152 2.21241 2.4431 2.61534 2.71062 2.71235 2.60832

1 1.41793 1.77533 2.12187 2.4431 2.72122 2.93619 3.06742 3.09609 3.00785
1.25 1.45914 1.86031 2.25061 2.61534 2.93619 3.19236 3.36219 3.42552 3.36639
1.5 1.45614 1.88919 2.31202 2.71062 3.06742 3.36219 3.57361 3.68135 3.66862
1.75 1.40144 1.85125 2.29226 2.71235 3.09609 3.42552 3.68135 3.84459 3.89856

2 1.29068 1.7394 2.18163 2.60832 3.00785 3.36639 3.66862 3.89856 4.04087

Table 5.6: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3 and p = 4.
Example 5.3, assuming dependent random data.
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Figure 5.2: Expectation and confidence interval for the solution stochastic process, for
orders of basis p = 1, 2, 3, 4. Example 5.3, assuming dependent random data.
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η1. These truncations can be constructed on intervals as large as desired, in
order to maintain the results.

The input random variables ζ1 = γ1, ζ2 = γ2, ζ3 = η1, ζ4 = ξ1 and ζ5 =
Y1 are assumed to be independent. The involved functions are a1(t) = 1,
a2(t) = t, b1(t) = 1, b2(t) = t, c0(t) = g(t) and c1(t) = cos(t). Notice that
C(t) is not an analytic stochastic process, because g(t) is not a real analytic
function. The random Fröbenius method is not applicable for the random
initial value problem (5.15). However, we are going to see that adaptive gPC
(independent case) with p = 6 and p = 7 provides reliable approximations
of the expectation and covariance of X(t). We will compare the results with
Monte Carlo simulation. In Table 5.7, Table 5.8 and Table 5.9 we show the
estimates obtained.

In Figure 5.3, we focus on the convergence of gPC expansions. We depict
the estimates of the expectations (solid line) and confidence intervals (dashed
lines), with the rule mean ± deviation, for orders p = 4, 5, 6, 7. Note that
convergence is achieved for t ∈ [0, 10].

t gPC p = 6 gPC p = 7 dishonest MC 50, 000 MC 100, 000
0.00 −1 −1 −1 −1 −1
0.25 −0.930972 −0.930972 −0.931372 −0.931035 −0.930364
0.50 −0.855779 −0.855779 −0.852372 −0.855937 −0.854386
0.75 −0.780021 −0.780021 −0.759103 −0.780573 −0.778022
1.00 −0.700758 −0.700758 −0.647653 −0.702042 −0.698437
1.25 −0.609156 −0.609156 −0.518169 −0.611266 −0.606832
1.50 −0.496445 −0.496446 −0.374486 −0.499156 −0.494407
1.75 −0.359632 −0.359635 −0.222874 −0.362532 −0.358036
2.00 −0.203726 −0.203737 −0.070806 −0.206408 −0.202560

Table 5.7: Approximation of E[X(t)]. Example 5.4, assuming independent random data.

t gPC p = 6 gPC p = 7 MC 50, 000 MC 100, 000
0.00 0 0 0 0
0.25 0.0114271 0.0114271 0.0115378 0.0114953
0.50 0.0897916 0.0897916 0.0904703 0.090160
0.75 0.236135 0.236136 0.237288 0.237066
1.00 0.371625 0.371639 0.372899 0.373058
1.25 0.426921 0.427021 0.428690 0.428342
1.50 0.388485 0.388899 0.391305 0.38978
1.75 0.289622 0.290720 0.293631 0.291429
2.00 0.182954 0.184922 0.187906 0.185917

Table 5.8: Approximation of V[X(t)]. Example 5.4, assuming independent random data.
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t–s 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 0 0 0 0 0 0 0 0 0

0.25 0 0.0114271 0.0310997 0.0486065 0.0585142 0.0597207 0.0537473 0.042977 0.0295893
0.5 0 0.0310997 0.0897916 0.14431 0.176903 0.182770 0.165621 0.132554 0.0905903
0.75 0 0.0486065 0.14431 0.236136 0.293929 0.307634 0.281495 0.226547 0.154877

1 0 0.0585142 0.176903 0.293929 0.371639 0.394991 0.366485 0.29839 0.206021
1.25 0 0.0597207 0.182770 0.307634 0.394991 0.427021 0.403260 0.334311 0.235733
1.5 0 0.0537473 0.165621 0.281495 0.366485 0.403260 0.388899 0.330575 0.241178
1.75 0 0.042977 0.132554 0.226547 0.29839 0.334311 0.330575 0.29072 0.223109

2 0 0.0295893 0.0905903 0.154877 0.206021 0.235733 0.241178 0.223109 0.184922

Table 5.9: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 7. Example 5.4,
assuming independent random data.
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Figure 5.3: Expectation and confidence interval for the solution stochastic process, for
orders of basis p = 4, 5, 6, 7. Example 5.4, assuming independent random data.
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Example 5.5 Consider the random differential equation
Ẍ(t) +B(t)X(t) = C, t ∈ [0, 1],

X(0) = Y0,

Ẋ(0) = Y1,

(5.16)

where B(t) is a standard Brownian motion on [0, 1], C ∼ Poisson(2), and the
initial conditions are distributed as Y0 ∼ Beta(1/2, 1/2) and Y1 = 0. These
random inputs are assumed to be independent.

This stochastic system has a unique solution in the sample-path sense, by
Proposition 5.1. In principle, one cannot ensure the existence of a mean square
solution, since the sample paths of Brownian motion are not bounded.

Consider the Karhunen-Loève expansion of Brownian motion [119, p. 216]:

B(t) =
∞∑
j=1

√
2(

j − 1
2

)
π

sin

((
j − 1

2

)
πt

)
ξj,

where ξ1, ξ2, . . . are independent and Normal(0, 1) random variables. The series
is understood in L2([0, 1] × Ω). We truncate the Karhunen-Loève expansion
so that B(t) will have the form in (5.2). If we take dB = 7, we are capturing
more than 97% of the total variance of X. Thus, we take

B(t) =
7∑
j=1

√
2(

j − 1
2

)
π

sin

((
j − 1

2

)
πt

)
ξj.

The random inputs become ζ1 = ξ1, . . . , ζ7 = ξ7, ζ8 = C and ζ9 = Y0, with

functions bj(t) =
√

2
(j−1/2)π

sin((j − 1/2)πt), 1 ≤ j ≤ 7, and c1(t) = 1.

Notice that, if one truncates ξ1, . . . , ξ7 to a large but bounded support, Propo-
sition 5.2 entails that there exists a solution stochastic process in the mean
square sense.

In Table 5.10, Table 5.11 and Table 5.12, we show the results obtained by
adaptive gPC with p = 2, p = 3 and Monte Carlo simulation. Similar estimates
are obtained for p = 2 and p = 3, which agrees with the convergence of gPC-
based representations.

In Figure 5.4, we show graphically the convergence of gPC expansions on
[0, 1]: we plot the approximate expectations (solid line) and confidence inter-
vals (dashed lines) for X(t), where the confidence interval is constructed as
mean±deviation. For p = 1, 2, 3, no differences in the estimates are observed.
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t gPC p = 2 gPC p = 3 dishonest MC 50, 000 MC 100, 000
0.00 0.5 0.5 0.5 0.499302 0.499056
0.25 0.562504 0.562504 0.5625 0.561732 0.561438
0.50 0.75014 0.75014 0.75 0.749196 0.748740
0.75 1.06365 1.06365 1.0625 1.06245 1.06179
1.00 1.50536 1.50536 1.5 1.50396 1.50311

Table 5.10: Approximation of E[X(t)]. Example 5.5, assuming independent random data.

t gPC p = 2 gPC p = 3 MC 50, 000 MC 100, 000
0.00 0.125 0.125 0.124849 0.124826
0.25 0.126974 0.126974 0.126883 0.126841
0.50 0.157008 0.157008 0.157267 0.157033
0.75 0.290263 0.290265 0.291811 0.290766
1.00 0.664551 0.664592 0.670067 0.666466

Table 5.11: Approximation of V[X(t)]. Example 5.5, assuming independent random data.

t–s 0 0.25 0.5 0.75 1
0 0.125 0.125001 0.125033 0.125248 0.126043

0.25 0.125001 0.126974 0.132949 0.143104 0.157885
0.5 0.125033 0.132949 0.157008 0.197634 0.255578
0.75 0.125248 0.143104 0.197634 0.290265 0.422829

1 0.126043 0.157885 0.255578 0.422829 0.664592

Table 5.12: Approximation of Cov[X(t), X(s)] via adapted gPC with p = 3. Example 5.5,
assuming independent random data.
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Figure 5.4: Expectation and confidence interval for the solution stochastic process, for
orders of basis p = 1, 2, 3. Example 5.5, assuming independent random data.
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5.5 Conclusions

In this chapter, we have quantified computationally the uncertainty of ran-
dom non-autonomous second-order linear differential equations via adaptive
gPC. After reviewing adaptive gPC from the extant literature, we have pro-
vided a methodology and an algorithm to approximate computationally the
expectation and covariance of the solution stochastic process. The hypotheses
from our algorithm allow both independent and dependent random parame-
ter inputs, being both absolutely continuous or discrete with infinitely many
point masses. The generality of our computational results allows the random
input coefficients to be truncated random power series or truncated Karhunen-
Loève expansions. The former case permits comparing our methodology with
the random Fröbenius method, an approach already used in the literature with
particular random second-order linear differential equations, and Monte Carlo
simulation. A wide variety of examples show that adaptive gPC becomes suc-
cessful quantifying the uncertainty of random non-autonomous second-order
linear differential equations, even when the random Fröbenius method is not
applicable.
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The main results of this chapter have been published in [22].

95





Chapter 6

Analysis of second-order
linear differential equations
with analytic uncertainties
via the computation of the

density function

Usually, solving random second-order linear differential equations
consists of computing the first statistics of the response process, and that
task has been an essential goal in the literature. A more ambitious objec-
tive is the computation of the solution probability density function. We
present advances on these two aspects in the general case of analytic data
processes. The Fröbenius method is employed to obtain the stochastic so-
lution in the form of a mean square convergent power series. We rely on
the law of total probability to express the density function in closed-form
as an expectation. For the computation of this expectation, a sequence of
approximating density functions is constructed by reducing the dimension-
ality of the problem using the truncated power series of the fundamental
set. We prove several theoretical results regarding the pointwise conver-
gence of the sequence of density functions and the convergence in total
variation. The pointwise convergence turns out to be exponential under a
Lipschitz hypothesis. As the density functions are expressed in terms of
expectations, we propose a symbolic Monte Carlo sampling algorithm for
their estimation. This algorithm is applied on several examples.
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6.1 Introduction

For random second-order linear differential equations, important advances
have been achieved for the computation of the first moments of the solution,
via mean square calculus and the so-called Fröbenius method. The general
stochastic system is given by (3.1).

A more ambitious objective is the computation of the probability density func-

tion of X(t), denoted hereafter as fX(t)(x) = d(P◦X(t)−1)(x)

dx
. In [38], the authors

constructed approximations of the probability density functions of the solution
to (3.1) when A(t) and B(t) do not vary stochastically in time, that is, when
A(t) = A and B(t) = B are actually absolutely continuous random variables
(autonomous case). A recent paper, [48], presents the approximation of the
probability density function of X(t) when A(t) = p(t;D) and B(t) = q(t;D),
that is to say, when both A(t) and B(t) depend on a unique absolutely con-
tinuous random variable D. This approach does not extend to the general
problem (3.1) and certain theoretical points from that contribution are un-
clear.

In this work, we provide an analysis of (3.1) via the Fröbenius method. The so-
lution is expressed in the form of a mean square convergent power series, under
L∞(Ω) convergence of A(t) =

∑∞
n=0An(t− t0)n and B(t) =

∑∞
n=0Bn(t− t0)n

and mean square integrability of the initial data Y0 and Y1. Truncation of
unbounded supports of random coefficients can be carried out to assure the
required boundedness. The bias error of the Fröbenius method is proved to
decrease exponentially with the number of terms in the series. Therefore rapid
approximations of the statistical moments of X(t) can be derived. However,
the exponential convergence is not uniform in time, and it may deteriorate as
we move away from the initial instant t0. Section 6.2 considers these issues.
An additional issue is the computation of the probability density function of
X(t). Theoretically, it is given by a closed-form expression in terms of an
expectation derived from the law of total probability and by exploiting the
linearity of the problem. However, to evaluate it in practice, a dimension-
ality reduction of the problem is required. By truncating the power series,
we construct a sequence of probability density functions that, under certain
assumptions regarding Nemytskii operators, converges to the target density
function pointwise. In this setting, the pointwise convergence of the densities
implies convergence in L1(R) (total variation distance), and in fact, in Lp(R),
for 1 ≤ p <∞. The pointwise convergence rate is proved to be exponential un-
der a certain Lipschitz condition, albeit being again not uniform in time. This
theoretical analysis on the approximation of the probability density function is
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presented in Section 6.3. As each approximating density function is expressed
in terms of an expectation, they can be estimated via a Monte Carlo sampling
strategy. The procedure is implemented in the form of a symbolic algorithm,
whose computational aspects are detailed in Section 6.4. The proposed al-
gorithm is tested on several numerical examples in Section 6.5, to verify the
theoretical findings of the chapter and to illustrate computational aspects. Fi-
nally, Section 6.6 draws the main conclusions and points out potential lines of
research for the future.

6.2 Stochastic solution

The initial value problem (3.1) was studied in the mean square sense in Chap-
ter 3. The theory can be extended to a more general convergence measure,
by considering Lp(Ω) convergence, 1 ≤ p ≤ ∞: if A(t) and B(t) are two
random power series with convergence in L∞(Ω), for t ∈ (t0 − r, t0 + r), and
the initial conditions Y0 and Y1 belong to Lp(Ω), then the stochastic process
X(t) =

∑∞
n=0Xn(t− t0)n is the Lp(Ω) solution to (3.1) on (t0 − r, t0 + r).

Regarding the rapidity of convergence of the power series X(t) =
∑∞

n=0Xn(t−
t0)n introduced in Theorems 3.3 and 3.4, some theoretical estimates were ob-
tained in Chapter 3, although no rate of convergence was derived. Fixed r > 0
finite, given ρ := |t− t0| < r and given an arbitrary s such that ρ < s < r, the
following estimate holds:

‖XN(t)−X(t)‖2 ≤ K (r, s, {‖Ai‖∞}∞i=1, {‖Bi‖∞}∞i=1, ‖Y0‖2, ‖Y1‖2) · (ρ/s)N+1

1− ρ/s
.

In particular, estimates of |E[XN(t)] − E[X(t)]| and |V[XN(t)] − V[X(t)]| in
terms of ‖XN(t)−X(t)‖2 are derived by using Jensen’s and Cauchy-Schwarz
inequalities. In general, it holds for 1 ≤ p ≤ ∞,

‖XN(t)−X(t)‖p ≤ K (r, s, {‖Ai‖∞}∞i=1, {‖Bi‖∞}∞i=1, ‖Y0‖p, ‖Y1‖p) ·
(ρ/s)N+1

1− ρ/s
.

The constant K can be constructed as follows (see Chapter 3):

Step 1. Given u = (r + s)/2 ∈ (s, r), choose a constant Cu > 0 such that
‖Ai‖∞ ≤ Cu/u

i and ‖Bi‖∞ ≤ Cu/u
i, i ≥ 0. Such a constant Cu exists

because
∑∞

i=0 ‖Ai‖∞ui <∞ and
∑∞

i=0 ‖Bi‖∞ui <∞.

Step 2. Pick an integer n ≥ 0 such that

ns

(n+ 2)u
+

Cus

n+ 2
+

Cus
2

(n+ 2)(n+ 1)
< 1.
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Step 3. Take K = max0≤m≤nHms
m, where {Hm}∞m=0 satisfies the following

recursive equation:

Hm+2 =

(
m

(m+ 2)u
+

Cu
m+ 2

)
Hm+1 +

Cu
(m+ 2)(m+ 1)

Hm, m ≥ 0,

H0 = ‖Y0‖2, H1 = ‖Y1‖2.

From the constructed K and given a target error ε > 0, a truncation order

N >
log (ε−1K(1− ρ/s)−1)

log(s/ρ)
− 1 = O

(
log(ε−1)

)
guarantees a root mean square error ‖XN(t)−X(t)‖2 less than ε. The number s
is arbitrary in (ρ, r). Unfortunately, we are not aware of any method to choose
the optimal s ∈ (ρ, r) minimizing N = log(ε−1K(1− ρ/s)−1)/ log(s/ρ).

We stress several new consequences from these estimates. First, the rate of
convergence of {XN(t)}∞N=0 towards X(t) as N → ∞ is exponential, for t ∈
(t0 − r, t0 + r), because it is proportional to (ρ/s)N . Second, the convergence
rate may deteriorate severely for large ρ = |t − t0| and large norms of the
random input coefficients. Indeed, K is growing with s > ρ and the norms.

The fact that the convergence rate deteriorates for large |t−t0| is clear. Assume
that

∑∞
n=N ‖Xn‖2|t−t0|n < ε, for some target error ε > 0. As |t−t0|n increases

when |t− t0| grows, a larger N is needed to achieve a root mean square error
less than ε. This fact may especially occur for |t − t0| ≥ 1, as in this case
|t − t0|n does not tend to 0 when n → ∞, therefore a faster decay of the
coefficients ‖Xn‖2 is needed to assure convergence.

The numerical experiments presented in Chapter 3 also permitted analyz-
ing the behavior of convergence. As theoretically expected by our expo-
sition, the most important phenomenon observed was that the convergence
rate deteriorates severely when the distance |t − t0| increases, therefore mak-
ing the Fröbenius method computationally intractable. This issue also oc-
curs with PC-type methods, which require large orders for long-time inte-
gration [74]. Nonetheless, for not too large |t − t0| (this “not too large” is
problem-dependent), the Fröbenius method works very well.
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6.3 Computation of the probability density function

We now turn to the computation of the probability density function of X(t).
Having clarified the conditions for the existence of the solution in Chapter 3,
we start by rewriting X(t) in an alternative form.

Theorem 6.1 Let A(t) =
∑∞

n=0An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n

be two random series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being
r > 0 finite and fixed. Assume that the initial conditions Y0 and Y1 belong
to L2(Ω). Then the mean square analytic solution X(t) can be expressed as
X(t) = Y0S0(t)+Y1S1(t), t ∈ (t0−r, t0 +r), where S0(t) and S1(t) are random
power series solutions in L∞(Ω) to

S̈0(t) +A(t)Ṡ0(t) +B(t)S0(t) = 0, t ∈ (t0 − r, t0 + r),

S0(t0) = 1,

Ṡ0(t0) = 0,
S̈1(t) +A(t)Ṡ1(t) +B(t)S1(t) = 0, t ∈ (t0 − r, t0 + r),

S1(t0) = 0,

Ṡ1(t0) = 1.

Notice that we have written X(t) as a linear combination of the fundamental
set {S0(t), S1(t)}. This expression exploits the linearity of the problem. The
processes S0(t) and S1(t) are random power series in L∞(Ω),

S0(t) =
∞∑
n=0

S0,n(t− t0)n, S1(t) =
∞∑
n=0

S1,n(t− t0)n,

whose coefficients satisfy a difference equation as in Theorem 3.3:

S0,0 = 1, S0,1 = 0,

S0,n+2 =
−1

(n+ 2)(n+ 1)

n∑
m=0

[(m+ 1)An−mS0,m+1 +Bn−mS0,m] , n ≥ 0,

and
S1,0 = 0, S1,1 = 1,

S1,n+2 =
−1

(n+ 2)(n+ 1)

n∑
m=0

[(m+ 1)An−mS1,m+1 +Bn−mS1,m] , n ≥ 0.

These coefficients can be easily evaluated numerically.
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The following lemma is necessary to compute the probability density function
fX(t)(x). Its proof is a consequence of the law of total probability [4, Ch. 6],
[128, Def. 7.11].

Lemma 6.2 Let U be an absolutely continuous random variable, independent
of the random vector (Z1, Z2), where Z1 6= 0 almost surely. Then Z1U +Z2 is
absolutely continuous, with density function

fZ1U+Z2
(z) = E

[
fU

(
z − Z2

Z1

)
1

|Z1|

]
.

This lemma provides an alternative to the random variable transformation
method [48, Th. 1], in the case of affine mappings. It does not require that the
random quantities have an absolutely continuous probability law, a fact that
presents advantages from the practical perspective. The drawback is that
we need independence between U and (Z1, Z2) to represent the probability
density function as an expectation. The expectation can be approximated via
sampling-based statistical methods, as discussed later on.

The following theorem, which derives the probability density function of X(t),
is a straightforward consequence of Lemma 6.2.

Theorem 6.3 Let A(t) =
∑∞

n=0An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n be
two random series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0
finite and fixed. Suppose that the initial conditions Y0 and Y1 belong to L2(Ω).
If S0(t) 6= 0 almost surely, if Y0 is absolutely continuous, with density function
fY0

, and it is independent of the rest of random input parameters of (3.1),
then the mean square solution X(t) has for probability density function

fX(t)(x) = E
[
fY0

(
x− Y1S1(t)

S0(t)

)
1

|S0(t)|

]
. (6.1)

An important issue of expression (6.1) is that S0(t) and S1(t) are given by
infinite series, therefore truncated approximations are needed. We have to
justify that it is legitimate to reduce dimensionality and use truncated random
power series for S0(t) and S1(t). In what follows, we denote by SN0 (t) and
SN1 (t) the N -th partial sums of S0(t) and S1(t), respectively, which converge
in L∞(Ω) for each t. Let XN(t) = Y0S

N
0 (t) + Y1S

N
1 (t) be a truncation of the

solution X(t), which converges in the mean square sense for each time t.

In the study of random differential equation problems with no closed-form
expression of the solution process but only an infinite expansion, one usually
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constructs an approximating sequence of stochastic processes with reduced di-
mensionality and computable probability density function. One thus obtains
an approximating sequence of probability density functions, which hopefully
presents rapid convergence to the target density function. Moreover, the dis-
continuity and non-differentiability points of the target density function are
captured with no difficulty. In the literature, one may find applications of this
type of strategy with power series and Karhunen-Loève developments [19, 20],
finite difference schemes [62, 63], and gPC expansions [14].

If SN0 (t) 6= 0 almost surely, then the probability density function of the trun-
cation XN(t) is

fXN (t)(x) = E
[
fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|

]
. (6.2)

This expression involves a maximum of 2N +3 random variables (Y1, S0,n and
S1,n for 0 ≤ n ≤ N). Thus, the expectation can be computed by numerical
integration (in the case of absolutely continuous random input coefficients),
or by a Monte Carlo procedure [172, pp. 53–54], by sampling realizations
of Y1, SN0 (t) and SN1 (t). This is the same strategy as the one followed in
our recent paper [20]. The approach based on numerical integration would
be feasible only in the case of small N and A(t) = p(t;D), B(t) = q(t;D) (D
random), as in [48], otherwise it is impractical. This is because the integration
dimension relies on the dimension of the random space (the total number
of input random variables). The Monte Carlo strategy can cope with high
uncertainty dimension and large N , albeit at the expense of introducing a
statistical error due to sampling, in addition to the bias error. The sampling
error is reduced as the number of realizations increases, but at the cost of
higher computational burden.

We need to justify that, for each t, limN→∞ fXN (t)(x) = fX(t)(x), for x ∈ R.
This is a strong mode of convergence. Indeed, as we are working with density
functions, almost everywhere convergence on R implies convergence in L1(R):
‖fX(t)−fXN (t)‖L1(R) =

∫
R |fX(t)(x)−fXN (t)(x)| dx→ 0 as N →∞. This is due

to Scheffé’s lemma [170, p. 55], [144]. Convergence in L1(R) is also referred to
as convergence in total variation [162, p. 41]:∥∥(P ◦ (XN(t))−1

)
−
(
P ◦ (X(t))−1

)∥∥
TV

:= sup
F∈F

∣∣P[XN(t) ∈ F ]− P[X(t) ∈ F ]
∣∣

=
1

2
‖fXN (t) − fX(t)‖L1(R).
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It is also equivalent to convergence in terms of the Hellinger distance [84],

H
(
P ◦ (XN(t))−1,P ◦ (X(t))−1

)
:=

√
1

2

∫
R

(√
fXN (t)(x)−

√
fX(t)(x)

)2

dx

=
1√
2

∥∥∥√fXN (t) −
√
fX(t)

∥∥∥
L2(R)

,

via the elementary inequalities H2 ≤ ‖ · ‖TV ≤
√

2H.

In fact, convergence in L1(R) may be generalized to convergence in Lp(R), for
1 < p <∞, by imposing boundedness on R of fY0

. Indeed, in this case, taking
a constant C > 0 such that |fXN (t)(x)| ≤ C and |fX(t)(x)| ≤ C, for N ≥ 0, t
and x ∈ R, the mean value theorem leads to∣∣∣‖fXN (t)‖pLp(R) − ‖fX(t)‖pLp(R)

∣∣∣ ≤ ∫
R

∣∣(fXN (t)(x)
)p − (fX(t)(x)

)p∣∣ dx

≤ pCp−1‖fXN (t) − fX(t)‖L1(R),

therefore ‖fXN (t)‖Lp(R) → ‖fX(t)‖Lp(R) as N →∞. By Scheffé’s lemma, there is
convergence in Lp(R): ‖fX(t)−fXN (t)‖Lp(R) =(

∫
R |fX(t)(x)−fXN (t)(x)|p dx)1/p→

0 as N →∞.

The pointwise convergence is the object of the following important Theo-
rem 6.6. The result is proved in the spirit of our contribution [20], by utiliz-
ing the concept of Nemytskii operator [20, Remark 2.6], [2, pp. 15–17], [163,
pp. 154–163].

Lemma 6.4 Let {VN}∞N=1 be a sequence of random variables that converges
to V in L2(Ω). If P[V ∈ DfY0

] = 0, where DfY0
is the set of discontinuity

points of fY0
, and if fY0

(y) ≤ α + βy2, for certain constants α, β ≥ 0, then
fY0

(VN)→ fY0
(V ) as N →∞ in L1(Ω).

Proof. It suffices to prove that, for every subsequence {VNk}∞k=1, there exists
a subsequence {VNkl}

∞
l=1 such that liml→∞ fY0

(VNkl ) = fY0
(V ) in L1(Ω). Fix

any subsequence {VNk}∞k=1. Since limk→∞ VNk = V in L2(Ω), by [12, Th. 4.9]
there exist a subsequence {VNkl}

∞
l=1 and a random variable V ∈ L2(Ω) such

that liml→∞ VNkl (ω) = V (ω) and |VNkl (ω)| ≤ V (ω) almost surely. Since P[V ∈
DfY0

] = 0, the continuous mapping theorem [165, p. 7, Th. 2.3] guarantees
that liml→∞ fY0

(VNkl (ω)) = fY0
(V (ω)) almost surely. As fY0

(VNkl (ω)) ≤ α +

β(VNkl (ω))2 ≤ α+β(V (ω))2 ∈ L1(Ω), we can apply the dominated convergence

theorem to conclude liml→∞ fY0
(VNkl ) = fY0

(V ) in L1(Ω).
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�

Remark 6.5 As S0(t0) = 1 and S0(t) is continuous in L∞(Ω), we can find a
neighborhood of t0, say (t0−δ, t0+δ) for certain δ > 0, such that ‖S0(t)−1‖∞ <
1/4 for all t ∈ (t0 − δ, t0 + δ). Hence, S0(t) > 3/4 > 0 almost surely, for
t ∈ (t0 − δ, t0 + δ). Notice that δ might not be equal to ∞; for instance, the

deterministic function X(t) = sin t satisfies Ẍ(t)+X(t) = 0, X(t0 = π/2) = 1

and Ẋ(t0 = π/2) = 0.

For t ∈ (t0− δ, t0 + δ) fixed, there exists an integer Nt > 0 such that ‖SN0 (t)−
S0(t)‖∞ < 1/4, for all N ≥ Nt. Then ‖SN0 (t) − 1‖∞ ≤ ‖SN0 (t) − S0(t)‖∞ +
‖S0(t)− 1‖∞ < 1/2. This implies that SN0 (t) > 1/2 almost surely, N ≥ Nt.

From now on, we will work with times t in (t0 − δ, t0 + δ).

Theorem 6.6 Suppose the conditions of Theorem 6.3. If fY0
is continuous

on R and fY0
(y) ≤ α + βy2, for certain constants α, β ≥ 0, then we have

limN→∞ fXN (t)(x) = fX(t)(x), for each t ∈ (t0 − δ, t0 + δ) and for every x ∈ R.

Proof. Fix t ∈ (t0 − δ, t0 + δ) and x ∈ R. Let

VN =
x− Y1S

N
1 (t)

SN0 (t)
, V =

x− Y1S1(t)

S0(t)
(6.3)

(here we drop the explicit dependencies of VN and V on t and x).
First, notice that VN → V as N →∞ in L2(Ω), as an easy consequence of the
following facts: SN0 (t) > 1/2 almost surely, for all N ≥ Nt, S

N
0 (t)→ S0(t) and

SN1 (t)→ S1(t) as N →∞ in L∞(Ω), and Y1 ∈ L2(Ω).
The conditions imposed on fY0

imply that the Nemytskii operator V 7→ fY0
(V )

is continuous from L2(Ω) to L1(Ω), by Lemma 6.4.
Hence, limN→∞ fY0

(VN) → fY0
(V ) in L1(Ω). Since SN0 (t) > 1/2 almost

surely, for all N ≥ Nt, and limN→∞ S
N
0 (t) → S0(t) in L∞(Ω), we deduce

that fY0
(VN)/SN0 (t)→ fY0

(V )/S0(t) as N →∞ in L1(Ω).
In particular, the sequence of expectations, fXN (t)(x) = E[fY0

(VN)/SN0 (t)],
converges to fX(t)(x) = E[fY0

(V )/S0(t)], which completes the proof.
�

In Section 6.5, the application of Theorem 6.6 will be illustrated numerically
on Examples 6.13–6.14.

Remark 6.7 Having limN→∞ fY0
(VN)/SN0 (t) = fY0

(V )/S0(t) in L1(Ω) as-
sures the convergence of the expectations. If convergence of the variances is
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also needed, one needs to extend the convergence to L2(Ω). In this case, the
boundedness condition on fY0

should be fY0
(y) ≤ α+ β|y| (apply an analogous

proof to Lemma 6.4).

Remark 6.8 (Rate of convergence of the density functions) Note that,
under the conditions of Theorem 6.3, if fY0

is Lipschitz continuous on R (this
assumption is stronger than the hypotheses of Theorem 6.6), then fXN (t)(x)
converges with N exponentially to fX(t)(x), for t ∈ (t0 − δ, t0 + δ) and x ∈ R.
This is because the Lipschitz condition allows estimating |fXN (t)(x)− fX(t)(x)|
via the following inequality:

|fXN (t)(x)− fX(t)(x)| ≤ Ct
(

(|x|+ 1)‖SN0 (t)− S0(t)‖∞ + ‖Y1‖2‖SN1 (t)− S1(t)‖∞
)
,

and as discussed in Section 6.2, the Fröbenius method converges exponentially.
In the previous expression, Ct is a constant depending on t. Unfortunately,
the exponential convergence rate is not uniform with t and x. As |t−t0| grows,
one needs to increase N to maintain the accuracy. The same occurs with |x|,
which increases the bias error ‖SN0 (t)− S0(t)‖∞ linearly.

In general, if fY0
is γ-Hölder continuous on R with exponent 0 < γ ≤ 1 (the

case γ = 1 corresponds to Lipschitz continuity), then

|fXN (t)(x)− fX(t)(x)| ≤ Ct
{
‖SN0 (t)− S0(t)‖∞

+
(
|x|‖SN0 (t)− S0(t)‖∞ + ‖Y1‖2‖SN1 (t)− S1(t)‖∞

)γ}
.

The same conclusion on the convergence holds in this case.

Notice that the regularity of fXN (t)(x) is inherited from fY0
(y). These ideas

are formalized in the following theorem:

Theorem 6.9 Under the assumptions of Theorem 6.6, if fY0
is C1(R) with

bounded derivative on R, then fXN (t)(x) and fX(t)(x) are C1(R), with bounded
derivatives, and limN→∞ f

′
XN (t)(x) = f ′X(t)(x), for each t ∈ (t0 − δ, t0 + δ) and

for every x ∈ R.

Proof. Fix t ∈ (t0−δ, t0 +δ). The following facts permit differentiating under
the expectation operator that defines fXN (t)(x) and fX(t)(x) [104, p. 142]: fY0

is differentiable with bounded derivative, and SN0 (t) > 1/2 almost surely for
all N ≥ Nt. Hence,

f ′XN (t)(x) = E

[
f ′Y0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

(SN0 (t))
2

]
,
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f ′X(t)(x) = E

[
f ′Y0

(
x− Y1S1(t)

S0(t)

)
1

(S0(t))
2

]
.

The continuity and boundedness conditions imposed on f ′Y0
entail that the Ne-

mytskii operator V 7→ f ′Y0
(V ) is continuous from L2(Ω) to L1(Ω), by Lemma 6.4.

Thereby, as in the proof of Theorem 6.6, we deduce that limN→∞ f
′
XN (t)(x) =

f ′X(t)(x), x ∈ R.
�

Remark 6.10 It is important to realize that the previous theory works ex-
changing the role of Y1 and Y0. Indeed, even though S1(t0) = 0, in contrast

with S0(t0) = 1, we do have that Ṡ1(t0) = 1. We may choose a neighborhood of

t0, say (t0−µ, t0+µ) for certain µ > 0, such that Ṡ1(t) > 3/4 almost surely, for

t ∈ (t0−µ, t0 +µ). We know that, in the sense of L∞(Ω), S1(t) =
∫ t
t0
Ṡ1(r) dr.

Then |S1(t)| > 3
4
|t− t0| = mt almost surely, for t ∈ (t0 − µ, t0 + µ). In partic-

ular, as mt > 0 for t ∈ (t0 − µ, t0 + µ)\{t0}, the previous proofs work with Y1

in lieu of Y0. The previous theoretical results may be restated in a completely
analogous fashion, as

fX(t)(x) = E
[
fY1

(
x− Y0S0(t)

S1(t)

)
1

|S1(t)|

]
(6.4)

and

fXN (t)(x) = E
[
fY1

(
x− Y0S

N
0 (t)

SN1 (t)

)
1

|SN1 (t)|

]
, (6.5)

for t ∈ (t0−µ, t0 +µ)\{t0}. In this case, one requires Y1 to have an absolutely
continuous probability law, with density function fY1

, and to be independent
of the rest of the random input parameters in (3.1). For convergence, one
imposes continuity for fY1

on R and boundedness fY1
(y) ≤ α+βy2, for certain

constants α, β ≥ 0. If fY1
is Lipschitz continuous on R, then an exponential

convergence holds. Finally, if fY1
is also C1(R) with bounded derivative on R,

then both fXN (t)(x) and fX(t)(x) are C1(R), with bounded derivative, and the
sequence of derivatives converges. These cases are considered in Example 6.15.

The continuity condition on R imposed in Theorem 6.6 is somewhat restrictive,
as we do not allow some common probability distributions for Y0 whose density
function possesses discontinuity points, such as the Uniform, Exponential or
general truncated distributions. Notice that this assumption in Theorem 6.6
may be relaxed to almost everywhere continuity on R, by adding absolute con-
tinuity on Y1. This fact is a consequence of the continuous mapping theorem
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[165, p. 7, Th. 2.3]. Indeed, for t ∈ (t0 − min{δ, µ}, t0 + min{δ, µ})\{t0},
as |S1(t)| > mt > 0 almost surely and Y1 is absolutely continuous, then

V = x−Y1S1(t)

S0(t)
is absolutely continuous, by Lemma 6.2. Therefore, the prob-

ability that V lies in the discontinuity set of fY0
is 0. This assures that

fY0
(VN)→ fY0

(V ) in L1(Ω) as N →∞, by Lemma 6.4.

The precise restatement of Theorem 6.6 is the following:

Theorem 6.11 Suppose the conditions of Theorem 6.3. If fY0
is almost ev-

erywhere continuous on R, fY0
(y) ≤ α + βy2 for certain constants α, β ≥ 0,

Y1 is absolutely continuous, and Y1 is independent of (A,B), then we have
limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (t0 −min{δ, µ}, t0 + min{δ, µ})\{t0} and
for every x ∈ R.

Theorem 6.11 will be applied in Example 6.16. An alternative version, with
Y1 playing the role of Y0, can be formulated following Remark 6.10. Notice
that, nowhere in our theoretical exposition, we require independence between
the coefficients of A(t) and B(t). We do not need any assumption on their
probability distributions either, which might be discrete or continuous (but
always bounded).

The methodology and theory presented in the chapter do not cover all situa-
tions. For instance, let us study (3.1) involving discrete uncertainties. Other
situations could be analogously analyzed.

Theorem 6.12 Suppose the conditions of Theorem 6.3. Assume that all the
coefficients A0, A1, . . ., B0, B1, . . . are deterministic constants. If fY0

has at
most a countable number of discontinuities on R, fY0

(y) ≤ α + βy2 for cer-
tain constants α, β ≥ 0, and Y1 is a discrete random variable, then we have
limN→∞ fXN (t)(x) = fX(t)(x) for almost every x ∈ R, for each t ∈ (t0−δ, t0+δ).

Proof. Fix t ∈ (t0 − δ, t0 + δ). Let

VN(x) =
x− Y1S

N
1 (t)

SN0 (t)
, V (x) =

x− Y1S1(t)

S0(t)

(now we make the dependence of VN and V on x explicit). We know that
VN(x) → V (x) in L2(Ω) as N → ∞, for all x ∈ R. Given the discontinuity
set of fY0

, DfY0
, we need to justify that P[V (x) ∈ DfY0

] = 0, for almost every
x ∈ R. In this case, fY0

(VN(x)) → fY0
(V (x)) in L1(Ω) as N → ∞, for almost

every x ∈ R.
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Write DfY0
= {d1, d2, d3, . . .}. As Y1 is a discrete random variable, its support

may be expressed as SY1
= {y1

1, y
2
1, y

3
1, . . .}. Then the support of V (x) is

SV (x) = {x−y
j
1S1(t)

S0(t)
: j = 1, 2, 3, . . .}. The problematic x’s are those such that

x = yj1S1(t) + dkS0(t). Let Λ = {yj1S1(t) + dkS0(t) : j, k = 1, 2, 3, . . .}, which
is a countable set. For every x /∈ Λ, P[V (x) ∈ DfY0

] = 0. As a consequence,
limN→∞ fY0

(VN(x)) = fY0
(V (x)) in L1(Ω), x /∈ Λ, by Lemma 6.4. This gives

limN→∞ fXN (t)(x) = fX(t)(x), x /∈ Λ, and we are done.
�

Once again, one can state a similar version with Y1 playing the role of Y0 (see
Remark 6.10) and working on (t0 − µ, t0 + µ)\{t0}, instead. Example 6.17
covers this situation.

6.4 Computational aspects

We recast the proposed methodology in the form of Algorithm 1, which cor-
responds to the case of Y0 having a density, see (6.1); following Remark 6.10,
one can exchange the role of Y0 and Y1 in Algorithm 1, provided that Y1 has
a density.

By judiciously exploiting its expression in (6.2), fXN (t)(x) can be approximated
via a Monte Carlo procedure [172, pp. 53–54] to evaluate the expectation:
using M randomly generated realizations of Y1, SN0 (t) and SN1 (t), we compute
the sample average of VN(x, t) in (6.3). Algorithm 1 corresponds to symbolic
computations with symbolic variables x and t [73]; it computes a function
fN,MX (x, t), which is a complex closed-form expression approximating fX(t)(x).
To speed up the execution of the algorithm, numerical values of t and/or x
may be provided.

The estimation error can be split into two contributions: fX(t)(x)−fN,MX (x, t) =
θN(x, t) + EN,M(x, t). The first contribution, θN(x, t) = fX(t)(x) − fXN (t)(x),
is the bias error caused by the truncation order N in the Fröbenius method.
It is deterministic and decays exponentially as N → ∞ for each t and x
by Remark 6.8. The second contribution is the sampling error EN,M(x, t) =

fXN (t)(x)− fN,MX (x, t), due to using a finite number M of samples (statistical
error). This contribution is random and EN,M(x, t)→ 0 with M almost surely,
as a consequence of the law of large numbers. If the variance

σ2
N(x, t) := V

[
fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

SN0 (t)

]
(6.6)
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Algorithm 1 Estimation of fXN (t)(x) via a classical Monte Carlo procedure.

Inputs: t0; N ; fY0
; probability distribution of A0, . . . , AN , B0, . . . , BN ,

Y1; and number M of realizations in the classical Monte Carlo procedure.
Here, t and x will be symbolic variables.
Required: Hypotheses of Theorem 6.6 or Theorem 6.11.

1: S0,0 ← 1, S0,1 ← 0, S1,0 ← 0, S1,1 ← 1 . Initial conditions
2: Σ← 0 . Initialize the samples sum
3: for i = 1, . . . ,M do . Monte Carlo loop
4: Draw randomly a realization of (A0, . . . , AN−2, B0, . . . , BN−2) and Y1

5: for n = 0, . . . , N − 2 do
6: S0,n+2 ← −1

(n+2)(n+1)

∑n
m=0[(m+ 1)An−mS0,m+1 +Bn−mS0,m]

7: S1,n+2 ← −1
(n+2)(n+1)

∑n
m=0[(m+ 1)An−mS1,m+1 +Bn−mS1,m]

8: end for
9: SN0 (t)← 1 +

∑N
n=1 S0,n(t− t0)n . Realization of SN0 (t)

10: SN1 (t)←
∑N

n=1 S1,n(t− t0)n . Realization of SN1 (t)

11: Σ← Σ + fY0

(
x−Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)| . Update the samples sum

12: end for
13: fN,MX (x, t)← Σ/M . Set sample average
14: Return fN,MX (x, t) . Approximation of fXN (t)(x)
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is finite, then the asymptotic probability distribution of EN,M(x, t) as M →∞
is, by the central limit theorem, Normal(0, σ2

N(x, t)/M). The variance σ2
N(x, t)

tends, as N → ∞, to σ2(x, t) := V[fY0
(x−Y1S1(t)

S0(t)
) 1
S0(t)

] (see Remark 6.7).

In this case, we say that the sampling error is of order 1/
√
M , and write

O(1/
√
M). On the contrary, if σ2

N(x, t) = ∞, then the almost sure conver-
gence EN,M(x, t)→ 0 with M remains valid, although it might be much slower
and affect the approximation to fXN (t)(x) severely. See the forthcoming Ex-
ample 6.15 for an illustration of this issue.

Even though the bias error decays very fast, the sampling error is inevitable.
In numerical computations, for fixed M , there is usually an index N from
which the global error does not go down anymore because the sampling error
O(1/

√
M) becomes dominant.

Within the main loop of Algorithm 1 (loop over the samples), we first generate
one realization for each random variable A0, . . . , AN−2, B0, . . . , BN−2 and Y1;
these realizations are used to compute by recursion the corresponding real-
izations of SN0 (t) and SN1 (t). In our implementation, this procedure is more
effective than expressing first SN0 (t) and SN1 (t) recursively in terms of symbolic
variables A0, . . . , AN−2, B0, . . . , BN−2 and Y1, and then evaluate for the real-
izations of A0, . . . , AN−2, B0, . . . , BN−2 and Y1. This is due to the excessive
complexity of the symbolic expressions of SN0 (t) and SN1 (t), which makes the
computational time of their evaluation for specific realizations prohibitively
large.

The computational complexity of Algorithm 1 is at most O(MN2) (the nested

loop over n demands
∑N−2

n=0 O(n) = O(N2) operations in general). As we show
in the following Section 6.5, the implemented algorithm is certainly applicable
and suitable for stochastic computations.

By taking M = O(1/ε2), the variance of the statistical error is V[EN,M(x, t)] =
O(ε2) (assuming the variance in (6.6) finite). Under exponential conver-
gence of the bias, by picking N = O(log(1/ε)) + O(1) the bias error is
|θN(x, t)| = O(ε). Then the root mean square error of the algorithm is
‖fX(t)(x) − fN,MX (x, t)‖2 =

√
θN(x, t)2 + V[EN,M(x, t)] = O(ε), with a com-

putational complexity O(MN2) = O
(
ε−2 log2 ε

)
.

The complexity of Algorithm 1 is significantly reduced if A(t) and B(t) are
random polynomials, instead of infinite series. Suppose for instance that Aj =
0 and Bj = 0, for j ≥ N0 − 1. Then, within the nested loop over n, we
actually sumN0 terms, instead of n terms. Therefore, the nested loop demands
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N0O(N) = O(N) operations. The whole algorithm then requires O(MN)
operations only. If we take M = O(1/ε2) and N = O(log(1/ε)) + O(1) to
ensure a root mean square error of order ε, the computational complexity
becomes O(MN) = O(ε−2 log(ε−1)).

In the case in which A(t) and B(t) are deterministic expansions, the loop over
n and the assignments for SN0 (t) and SN1 (t) may be run once for all at the be-
ginning of the algorithm and before the loop over the samples. The computa-
tional complexity then reduces even more toO(M)+O(N2) operations and the
global cost is generally dominated by the sampling. To guarantee a global root
mean square error of order ε with M = O(1/ε2) and N = O(log(1/ε)) +O(1),
the computational complexity becomes O(ε−2)+O(log2 ε) = O(ε−2). This sce-
nario allows increasing M and obtaining more accurate results by improving
the statistical convergence. If A(t) and B(t) are simply deterministic poly-
nomials, then the overall cost reduces further to O(M) + O(N) operations,
which yields in the end O(ε−2) calculations.

In the view of computational applications, an important drawback of our ex-
position is the lack of awareness on the specific values of δ and µ, which are
necessary to prove the theoretical convergence. Given any t, one can apply
Algorithm 1 and check the convergence of the estimator with M and N . The
results can be validated using other stochastic methods and using statistics
based on the estimated density. Notice that, in Algorithm 1, we have put
|SN0 (t)| instead of SN0 (t). Even though we assume that SN0 (t) > 0 almost
surely, for t ∈ (t0− δ, t0 + δ) and N ≥ Nt, the absolute value ensures positive-
ness in numerical applications even if |t− t0| ≥ δ.

6.5 Numerical examples

In this section, we numerically illustrate our theoretical findings, using Algo-
rithm 1 to estimate the density of the solution to (3.1). Several cases, differing
by the probability distributions of the random input coefficients, are consid-
ered to cover a large class of situations and show the broad applicability of
our theory.

In each of these examples, we first check that the necessary theoretical condi-
tions hold; we then estimate the density function fXN (t)(x) for several increas-
ing values of N to highlight the convergence toward fX(t)(x). To this end, we
employ the symbolic Monte Carlo sampling procedure outlined in Algorithm 1.
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The theoretical results of Section 6.3 motivate the structure and the choice
of the following five examples. In Example 6.13, we address the case where
A(t) and B(t) are random polynomials; while Example 6.14 concerns infinite
expansions and infinite dimensionality. These first two examples showcase
the applicability of Theorem 6.6. Example 6.15 is designed to highlight Re-
mark 6.10. Up to this example, fY0

or fY1
are continuous on the whole real

line. In contrast, Example 6.16 considers experiments with fY0
possessing dis-

continuity points, thus evoking Theorem 6.11. Finally, Example 6.17 considers
the case where A(t) and B(t) are deterministic, so that Theorem 6.12 applies.

The implementations and computations are performed with MathematicaR©,
version 11.2, owing to its capability to handle symbolic computations. In
general, Algorithm 1 is applied with M = 20, 000 samples, as beyond this
limit, the computational burden is becoming massive. The output function
fN,M=20,000
X (x, t) is handled symbolically on t and x. To simplify the notations,

we refer to the Monte Carlo estimate fN,M=20,000
X (x, t) as f̂XN (t)(x). We recall

that the estimate f̂XN (t)(x) has two sources of error: bias and sampling. Al-
though the bias error decays very fast (exponentially under the conditions of

Remark 6.8), the sampling error is unavoidable and at least of orderO(1/
√
M).

In each one of the following examples, we perform a complete analysis of the
errors. As the exact density function fX(t)(x) is not known, we first analyze
differences in consecutive (in N) estimates, both pointwise, using

δεN(x, t) := |f̂XN+1(t)(x)− f̂XN (t)(x)|, (6.7)

and globally, using the norm

∆εN(t) := ‖f̂XN+1(t) − f̂XN (t)‖L1(R). (6.8)

As successive differences do not directly characterize the error, we also report

EN(t) := ‖f̂XL(t) − f̂XN (t)‖L1(R) (6.9)

for some pre-fixed L� 1, selected such that f̂XL(t) plays the role of a bias-free
estimate of function fX(t). We set L = 30 in the following. The L1(R) norms
are computed by direct numerical integration, using a standard quadrature
rule (standard NIntegrate routine in MathematicaR©).
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N = 1 N = 2 N = 3 N = 4 N = 5
t = 0.5 0.903091 0.622968 0.270690 0.0923362 0.0178834

N = 6 N = 7 N = 8 N = 9 N = 10
t = 1 0.691809 0.263246 0.0912177 0.0345686 0.026688

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.348643 0.180075 0.0721679 0.0320314 0.0198364

Table 6.1: Norm ∆εN (t) of differences in consecutive estimates (see (6.8)) for different
times t and truncation orders N . This table corresponds to Example 6.13.

Example 6.13 We start with the following stochastic problem where both
A(t) and B(t) are random polynomials of degree 1:

Ẍ(t) + (A0 +A1t)Ẋ(t) + (B0 +B1t)X(t) = 0, t ∈ R,
X(t0 = 0) = Y0,

Ẋ(t0 = 0) = Y1,

(6.10)

where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35),
Y0 ∼ Normal(2, 1) and Y1 ∼ Poisson(2) are independent random variables. In
order for the hypotheses of Theorem 3.4 and Theorem 6.6 to be satisfied, the
Gamma distribution is truncated. For the Gamma distribution with shape
and rate 2, it can be checked that the interval [0, 4] contains approximately
99.7% of the probability, so we actually consider B0 ∼ Gamma(2, 2)|[0,4].

By Theorem 3.4, the unique mean square solution to (6.10) can be written
as a random power series X(t) =

∑∞
n=0Xnt

n that is mean square convergent
for all t ∈ R. With Theorem 6.6, we approximate pointwise the probability
density function fX(t)(x) with f̂XN (t)(x), N ≥ 0, and use Algorithm 1 taking
advantage from the fact that A(t) and B(t) are random polynomials and not
infinite expansions.

We consider times t = 0.5, 1 and 1.5. In Figure 6.1 we present the graphs of
f̂XN (t)(x) at the corresponding times. Observe that the estimates are smooth,
due to the regularity of the initial density fY0

, see Theorem 6.9. Observe
also that, as N increases, the density functions become closer, reflecting the
theoretical convergence. The convergence is made clear in the corresponding
successive differences δεN(x, t) (see (6.7)) reported in Figure 6.2. Table 6.1
presents the L1(R) norms of the successive differences, ∆εN(t) (see (6.8)).

Figure 6.3 reports (in log-scale) the error estimate EN(t) (see (6.9)), for t =
0.5, t = 1 and t = 1.5. From the plot, it is clear that there is an index N from
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Figure 6.1: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.5,
t = 1 and t = 1.5, with orders of truncation N = 1–6, N = 6–11 and N = 11–16, respectively.
This figure corresponds to Example 6.13.
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Figure 6.2: Differences in consecutive estimates δεN (x, t) (see (6.7)) at t = 0.5, t = 1 and
t = 1.5, with orders of truncation N = 1–5, N = 6–10 and N = 11–15, respectively. This
figure corresponds to Example 6.13.
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Figure 6.3: Error EN (t) (see (6.9)), for different times as indicated. This figure corresponds
to Example 6.13.

which the error does not go down anymore, because of the sampling error
(recall that we used a fixed number of samples M = 20, 000). Notice also
that, as |t− t0| = |t| gets larger, a higher order of truncation N is required to
enhance the approximations of fX(t)(x).

In Figure 6.4, we report the error estimate, EN(t), as a function of the con-
secutive difference, ∆εN(t), for t = 0.5, t = 1 and t = 1.5. We also plot a
regression line through the data at a given t,

logEN(t) ≈ log β(t) + α(t) log ∆εN(t), (6.11)

to reflect the exponential relationship

EN(t) ≈ β(t)
(
∆εN(t)

)α(t)
. (6.12)

There are three regression lines, one for each time t. We observe a strong linear
relation with N between the errors and the successive differences in log-scale,
with slope α(t) being approximately 1, at least up to the truncation order at
which the sampling error becomes dominant. This finding suggests that it is
possible to estimate the norm of the bias error, ‖θN(·, t)‖L1(R), from the norm
of the successive differences ∆εN(t), provided that M is large enough, and
choose N according to the targeted accuracy.

Example 6.14 In the second example, we consider
Ẍ(t) +A(t)Ẋ(t) +B(t)X(t) = 0, t ∈ (−1, 1),

X(t0 = 0) = Y0,

Ẋ(t0 = 0) = Y1,

(6.13)
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Figure 6.4: Relation between logEN (t) and log ∆εN (t), for t = 0.5, t = 1 and t = 1.5.
Also reported are linear regressions. This figure corresponds to Example 6.13.

A(t) and B(t) having infinite expansions with coefficients An ∼ Beta(11, 15)

for n ≥ 0, B0 = 0, Bn = 1/n2 for n ≥ 1, while Y0 ∼ fY0
(y) =

√
2

π(1+y4)

(−∞ < y <∞) and Y1 ∼ Poisson(2). All these random quantities are assumed
to be independent. The power series of A(t) and B(t) converge on (−1, 1)
(that is for r = 1), so the mean square solution X(t) =

∑∞
n=0Xnt

n given by
Theorem 3.4 is defined on (−1, 1). Theorem 6.6 allows approximating fX(t)(x)

with f̂XN (t)(x), N ≥ 0.

Figure 6.5 shows graphical representations of f̂XN (t)(x) for times t = 0.25, 0.5,
0.75 and 0.99, with orders of truncation N = 1–5. The evident regularity of
f̂XN (t)(x) is inherited from the smoothness of the density fY0

, by Theorem 6.9.

To better assess the convergence, Figure 6.6 shows the successive differences
δεN(x, t) defined in (6.7) at the same times as in Figure 6.5; these differences
are decreasing to 0 pointwise as theoretically expected, see Theorem 6.6. As
pointwise convergence of densities implies L1(R) convergence, we report in
Table 6.2 the consecutive norms ∆εN(t) defined by (6.8). The norms decay,
albeit not monotonically; for instance, when t = 0.25 the difference is larger
for N = 4 than in N = 3.

Figure 6.7 reports the error estimates logEN(t) defined in (6.9). We see
that the errors decrease quickly before stagnating because of the sampling
error. This example, despite being more complex than the previous one in
Example 6.13, in terms of dimensionality, requires smaller orders N , since for
t ∈ (−1, 1) we have |t− t0| = |t| < 1, which implies |t− t0|n

n→∞−→ 0.
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Figure 6.5: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.25,
t = 0.5, t = 0.75 and t = 0.99, with orders of truncation N as indicated. This figure
corresponds to Example 6.14.

N = 1 N = 2 N = 3 N = 4
t = 0.25 0.0215530 0.00607417 0.000600201 0.00167170
t = 0.5 0.0776298 0.0226985 0.00913760 0.00318041
t = 0.75 0.147952 0.0545970 0.0436801 0.00419704
t = 0.99 0.225868 0.0945261 0.127495 0.00985133

Table 6.2: Norm ∆εN (t) of differences in consecutive estimates (see (6.8)) for different
times t and truncation orders N . This table corresponds to Example 6.14.
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Figure 6.6: Differences in consecutive estimates δεN (x, t) (see (6.7)) at t = 0.25, t = 0.5,
t = 0.75 and t = 0.99, and for orders of truncation as indicated. The plots correspond to
Example 6.14.
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Figure 6.7: Error EN (t) in (6.9), for different times as indicated. This figure corresponds
to Example 6.14.
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Figure 6.8: Relation between logEN (t) and log ∆εN (t), for t = 0.25, 0.5, 0.75 and 0.99.
Also reported are linear regressions. This figure corresponds to Example 6.14.

Figure 6.8 aims at showing the relation between the errors EN(t) and the
successive differences ∆εN(t). Specifically, for the times t shown, a collinearity
is found in log-scale through the models (6.11)–(6.12). In other words, the
decay pattern of the consecutive differences characterizes the convergence of
the global error as long as the bias error dominates the sampling error.

Example 6.15 In this example, we consider degree one polynomial problem
in (6.10), with the following independent probability distributions: A0 = 4,
A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35), Y0 ∼
Poisson(2) and Y1 ∼ Normal(2, 1). This example coincides with Example 6.13,
except that Y0 and Y1 have been interchanged: now Y0 is discrete, while Y1 is
absolutely continuous. This exchange puts this example in a different theo-
retical case compared to Example 6.13.

By Theorem 3.4, the unique mean square solution is expressible as a random
power series X(t) =

∑∞
n=0Xnt

n that is mean square convergent for all t ∈
R. According to Remark 6.10, we can approximate the probability density
function of X(t), fX(t)(x), for t 6= 0.

We work at times t = 0.5, 1 and 1.5. Figure 6.9 reports the approximations
f̂XN (t)(x). As N grows, the graphical representations tend to overlap, denoting
the convergence of the expansions. The densities are all smooth, as expected
from the smoothness of fY1

, except for f̂XN=12(t=1.5)(x) whose estimate presents
noisy features.

The noisy features in f̂XN=12(t=1.5)(x) are due to several reasons. First, there is
a computational issue of MathematicaR© caused by numerical overflow-underflow
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Figure 6.9: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.5,
t = 1 and t = 1.5, with varying orders of truncation N as indicated. This figure corresponds
to Example 6.15.
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N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.320171 0.618382 0.333094 0.0893759 0.0291202

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.308293 0.185148 0.0605758 0.0256469 0.0216692

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.301694 0.155185 0.0677696 0.0375570 0.0202081

Table 6.3: Norm ∆εN (t) of differences in consecutive estimates (see (6.8)) for different
times t and truncation orders N . This table corresponds to Example 6.15.

when too small or too large quantities are involved (for instance exp(z) for
|z| � 1). Some sample paths of SN=12

1 (t) are vanishing near t = 1.5, thus
making the denominator SN=12

1 (t) in the definition of VN(t) (in (6.3) by for
the role of Y0 and Y1 exchanged) very small, with a loss of precision as a
result. This is illustrated in Figure 6.10, where we show some randomly gen-
erated sample paths of SN=12

1 (t). We also report sample paths of SN1 (t) for
N ∈ {11, 13, 14} for comparison. Second, and not totally unrelated to the nu-
merical overflow, we have V[1/|SN1 (t = 1.5)|] =∞ for N = 12 when it remains
finite for N ∈ {11, 13, 14}. As a result, the variance σ2

N=12 in the Monte Carlo
method (see (6.6)) is unbounded or very large for N = 12, while it behaves
well for N ∈ {11, 13, 14} as shown in Figure 6.11. As a result, for N = 12, the
convergence of the Monte Carlo procedure is slowed down due to the large or
infinite variance, the rate O(1/

√
M) is not obtained (see the discussion from

Section 6.4), and some noisy features plague the estimator.

Luckily, the noise in f̂XN=12(t=1.5)(x) is not present for N > 12. In situations
where large or infinite variance occurs for some N , one should focus on the
truncation orders N for which the approximation f̂XN (t)(x) behaves nicely,
without noise. In this manner, correct approximations to fX(t)(x) are obtained
with a feasible number of samples.

Figure 6.12 presents the consecutive differences δεN(x, t) given by (6.7). These
consecutive differences are not monotonically decreasing with N , although
a decay pattern towards 0 is perceptible. Further, the impact of the noisy
estimate f̂XN=12(t=1.5)(x) is clearly visible in the reported differences. Besides,
the plots are entirely consistent with the theoretical results and Remark 6.10.
In Table 6.3, we report the corresponding L1(R) norms ∆εN(t) (see (6.8)) as
a summary of Figure 6.12.
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Figure 6.10: Random trajectories of SN1 (t) for N = 11–14. For N = 12, observe that some
trajectories vanish very close to t = 1.5, while for N 6= 12 the trajectories remain away from
0. This figure corresponds to Example 6.15.
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Figure 6.11: Plot of σ2
N (x, t = 1.5), for N = 11–13. This figure corresponds to Exam-

ple 6.15.
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Figure 6.12: Differences in consecutive estimates δεN (x, t) at t = 0.5, t = 1 and t = 1.5,
with orders of truncation as indicated. This figure corresponds to Example 6.15.
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Figure 6.13: Error EN (t) (see (6.9)), for different times as indicated. This figure corre-
sponds to Example 6.15.

Figure 6.13 reports the estimate errors logEN(t) in (6.9). Again, the con-
vergence and the sampling error are observed. This example also emphasizes
that the Fröbenius method deteriorates for large times, as N needs to increase
with t to maintain accurate approximations.

Example 6.16 Consider the problem (6.13), with An ∼ Beta(11, 15) for
n ≥ 0, B0 = 0, Bn = 1/n2 for n ≥ 1, Y0 ∼ Uniform(−1, 1) and Y1 ∼
Exponential(2). These random inputs are again assumed to be independent.
In contrast with Example 6.14, the probability density function of Y0 has now
two discontinuity points at y0 = ±1, while Y1 follows an absolutely continuous
law. Hence, Theorem 6.6 cannot be employed here.

The mean square analytic solution X(t) =
∑∞

n=0Xnt
n given by Theorem 3.4

is defined on (−1, 1) and we must apply Theorem 6.11 to approximate fX(t)(x)
for t 6= 0. We compute the approximations at times t = 0.25, 0.5, 0.75 and
0.99, with orders of truncation N = 1–5 for all the three times. Figure 6.14
depicts the graphs of f̂XN (t)(x). Promptly, the successive approximations of
the density function tend to superimpose, thus entailing rapid convergence
to the target density function fX(t)(x). In contrast to Example 6.14, the
non-differentiability of the approximated density functions inherited from fY0

is evident (here one cannot apply Theorem 6.9). Thereby, our method can
capture peaks induced by non-differentiability. This feature is a definite ad-
vantage of our method, compared to classical sample paths approximation
methods where a kernel density estimation of the density would smear-out the
approximation at the non-differentiability points.
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Figure 6.14: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.25,
t = 0.5, t = 0.75 and t = 0.99, with orders of truncation N = 1–5 in all cases. This figure
corresponds to Example 6.16.
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Figure 6.15: Differences in consecutive estimates δεN (x, t) (see (6.7)) at t = 0.25, t = 0.5,
t = 0.75 and t = 0.99, with orders of truncation N = 1–4 in all three cases. This figure
corresponds to Example 6.16.

A richer analysis of the convergence in this example is provided in Figure 6.15
and Table 6.4, which depict the consecutive differences δεN(x, t) (see (6.7))
and their norm ∆εN(t) (see (6.8)), respectively. Even though the errors are
not decreasing monotonically to 0 (as in the previous Example 6.15), the
convergence is evident and follows from Theorem 6.11.

Finally, in Figure 6.16 we plot the error estimate logEN(t) (see (6.9)), for
all the times considered. Similar to Example 6.14, the plot shows that this
example needs small orders N for all t ∈ (−1, 1) because of the decay of |t|N .

Example 6.17 In this final example, we deal with discrete uncertainties, un-
der the setting of Theorem 6.12. Consider (6.10) with A0 = 4, A1 = 2, B0 = 0,
B1 = −1, Y0 ∼ Bernoulli(0.4) and Y1 ∼ Uniform(−1, 1), being all independent.

By Theorem 3.4, there is a unique mean square solution X(t) =
∑∞

n=0Xnt
n

on R. For each t 6= 0, the random variable X(t) is absolutely continuous, due
to the absolute continuity of Y1. Theorem 6.12, with Y1 playing the role of Y0
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N = 1 N = 2 N = 3 N = 4
t = 0.25 0.00666810 0.00482414 0.00169730 0.00275401
t = 0.5 0.0266447 0.0301975 0.00469989 0.00524461
t = 0.75 0.0582143 0.0920184 0.0176119 0.00756466
t = 0.99 0.0947395 0.190933 0.0597380 0.0107980

Table 6.4: Norm ∆εN (t) of differences in consecutive estimates (see (6.8)) at different times
t and for different truncation orders N . This table corresponds to Example 6.16.
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Figure 6.16: Error EN (t) (see (6.9)), for different times as indicated. This figure corre-
sponds to Example 6.16.
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Figure 6.17: Graphical representations of the Monte Carlo estimates f̂XN (t)(x) at t = 0.5,
t = 1 and t = 1.5, with orders of truncation N as indicated. This figure corresponds to
Example 6.17.

(see Remark 6.10) allows approximating fX(t)(x) by utilizing the convergence
limN→∞ fXN (t)(x) = fX(t)(x), which holds for almost every x ∈ R.

In this particular example, Algorithm 1 is used with M = 1, 000, 000 iterations,
because the deterministic values for A(t) and B(t) make the computational
load much less demanding (see the discussion of Section 6.4). We will thus

identify f̂XN (t)(x) = fN,M=1,000,000
X (x, t).

For the times t = 0.5, 1 and 1.5, the numerical estimates f̂XN (t)(x) are dis-
played in Figure 6.17. Observe that the computed density functions are com-
pletely different to those of the previous examples: they are discontinuous, in
fact step functions, mainly due to the discontinuities in fY1

. This example
highlights the ability of our method to capture discontinuities.
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Figure 6.18: Differences in consecutive estimates δεN (x, t) (see (6.7)) at t = 0.5, t = 1 and
t = 1.5, with orders of truncation N as indicated. This figure corresponds to Example 6.17.

The analysis of the convergence is completed with Figure 6.18 and Table 6.5,
where the consecutive differences δεN(x, t) (see (6.7)) and their norms ∆εN(t)
(see (6.8)) are reported, respectively.

Finally, Figure 6.19 plots logEN(t) (see (6.9)) as a function of N . The lower
bound for the global error is the sampling error, which is smaller than in the
previous four examples, owing to the larger number of samples considered.
Comparing Figure 6.19 with the corresponding figures from the previous four
examples, the non-monotonic decay of the error is also more pronounced for
the three times. The discontinuity in the graph of the target distribution
fX(t)(x) can explain the highly non-monotonic decay with the truncation order.
Moreover, fY1

is not Lipschitz continuous, so the exponential convergence rate
discussed in Remark 6.8 is not applicable in the present example. Finally, as
for the other examples, the truncation order needed to reduce the error to the
sampling contribution increases as we move away from the origin t0 = 0. This
behavior may pose severe challenges for large times t.
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N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.833333 0.678571 0.140704 0.0280760 0.0190810

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.785425 0.0767401 0.187360 0.0665995 0.00866170

N = 15 N = 16 N = 17 N = 18 N = 19
t = 1.5 0.331941 0.0569325 0.0732120 0.0390644 0.00346696

Table 6.5: Norm ∆εN (t) of differences in consecutive estimates (see (6.8)) at different times
t and truncation orders N . This table corresponds to Example 6.17.
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Figure 6.19: Error EN (t) (see (6.9)), for different times as indicated. This figure corre-
sponds to Example 6.17.
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6.6 Conclusions and perspectives

In this chapter, we address the analysis of the random non-autonomous second-
order linear differential equation. When the data A(t) and B(t) are given by
random power series on (t0− r, t0 + r) in L∞(Ω), say A(t) =

∑∞
n=0An(t− t0)n

and B(t) =
∑∞

n=0Bn(t − t0)n, and the initial conditions Y0 and Y1 belong
to L2(Ω), it is possible to construct a random power series solution X(t) =∑∞

n=0Xn(t− t0)n on (t0−r, t0 +r) in the mean square sense, whose coefficients
satisfy a random difference equation. This approach is the generalization of
the Fröbenius method to the random setting. The convergence rate of the
power series of X(t) is exponential for each time t, but not uniformly on the
whole time domain (t0 − r, t0 + r). For a fixed tolerance on the root mean
square error of X(t), the order of truncation of the power series needs to be
increased, in general, when |t− t0| grows.

The probability density function of X(t) can be expressed as the expecta-
tion of a random process Z(x, t), fX(t)(x) = E[Z(x, t)], using the law of total
probability. A closed-form expression for Z is derived in terms of the fun-
damental set by exploiting the linearity of the system. However, to compute
this expectation, one needs to perform a dimension reduction of the problem,
by truncating the series of the fundamental set used to express the solution
X(t). Denoting XN(t), N ≥ 0, the truncation of X(t), we show that fXN (t)(x)
converges to fX(t)(x) pointwise as N → ∞ under certain conditions (regard-
ing Nemytskii operators); in some cases, an exponential convergence may be
achieved for each t and x. The pointwise convergence also implies convergence
in Lp(R), 1 ≤ p <∞. In particular, the convergence in L1(R) is equivalent to
the convergence in the total variation and the Hellinger distances, which are
instances of f -divergences.

From a numerical standpoint, the expectation defining fXN (t)(x) = E[ZN(x, t)]
is computable via a classical Monte Carlo strategy. We propose an algorithm
for that purpose, which estimates symbolically fXN (t)(x). This algorithm is
implemented in the software MathematicaR©, and it can be used to compute
pointwise approximations of the density function fX(t)(x). One key feature of
the algorithm is that it handles discontinuity and non-differentiability points
of fX(t)(x) appropriately, without smoothing them out.

To the best of our knowledge, this work is the first one to provide such analysis
of random second-order linear differential equations. However, we point out
certain limitations of our methodology, which constitute potential avenues for
future developments.
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To start with, despite the exponential convergence rate, the approximations
substantiated on the Fröbenius method may deteriorate for large |t− t0|. This
fact is inherent to Taylor series-based methods and also plagues other types
of stochastic computations, such as PC expansions. Following [111], using
random time-transformations may help to improve the convergence of the
Fröbenius method and mitigate this issue.

Another point requiring a more in-depth analysis is the ignorance of the spe-
cific values of δ and µ. In particular, we showed that if the truncated pro-
cesses from the fundamental set vanish for some trajectories near the time
t of interest, the numerical estimate of the density becomes very noisy (see
Example 6.15). This effect is due to the variance of ZN(x, t) that may be
very large or infinite, with a severely deteriorated Monte Carlo convergence in
these situations. In the following chapter we will explore different strategies
to sort out this issue, such as the path-wise selection of the variable (Y0 or Y1)
used in the expression of ZN(x, t), in order to control its variance.

Efforts to weaken or modify the theoretical hypotheses and enlarge the appli-
cability of our method shall also be carried out. As an example, the extension
of the method to the case of Y0 and Y1 not absolutely continuous would also
present a valuable achievement. Similarly, an extension of the present method-
ology to linear systems of second-order random differential equations may be of
great interest, while the application to other stochastic models of our expertise
on random expansions and density approximations could be interesting.

At the computational level, the Monte Carlo estimation of fXN (t)(x) introduces
a statistical error since, in numerical computations, we are restricted to a finite
number M of realizations. Therefore, an error of order 1/

√
M is unavoidable,

even for N ≈ ∞. The results presented in the chapter have highlighted the
crucial importance of bias and sampling errors. It would be beneficial to rely
on improved sampling strategies, such as multilevel Monte Carlo [75, 76], to
balance the bias and sampling errors, while reducing the computational cost
of the Monte Carlo estimates of the density. This topic is the focus of the
following chapter.
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École Polytechnique, Palaiseau, France.

I am also grateful to Inria (Centre de Saclay and DeFi Team), which hosted
me during my research stay at CMAP.

The main results of this chapter have been published in [94]. This chapter is an
international collaboration with the researcher Olivier P. Le Mâıtre (CMAP,
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Chapter 7

Variance reduction methods
for Monte Carlo simulation in

the density estimation of
random second-order linear

differential equations

This chapter concerns the estimation of the density function of the so-
lution to a random non-autonomous second-order linear differential equa-
tion with analytic data processes. In the previous chapter, we proposed
to express the density function as an expectation, and we used a stan-
dard Monte Carlo algorithm to approximate the expectation. Although the
algorithms worked satisfactorily for most test-problems, some numerical
challenges emerged for others, due to large statistical errors. In these situ-
ations, the convergence of the Monte Carlo simulation slows down severely,
and noisy features plague the estimates. In this chapter, we focus on com-
putational aspects and propose several variance reduction methods to rem-
edy these issues and speed up the convergence. First, we introduce a path-
wise selection of the approximating processes which aims at controlling the
variance of the estimator. Second, we propose a hybrid method, combining
Monte Carlo and deterministic quadrature rules, to estimate the expecta-
tion. Third, we exploit the series expansions of the solutions to design a
multilevel Monte Carlo estimator. The proposed methods are implemented
and tested on several numerical examples to highlight the theoretical dis-
cussions and demonstrate the significant improvements achieved.
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7.1 Introduction

In Chapter 6, the expectation from (6.2) and (6.5) is approximated using
Monte Carlo simulation, via an explicit algorithm. Either (6.2) or (6.5) are
selected, and realizations of the involved random variables are generated to
compute the sample average. This introduces a statistical error due to sam-
pling, apart from the bias error θN(x, t) = fX(t)(x) − fXN (t)(x). The conver-
gence rate of the Monte Carlo procedure towards fXN (t)(x) depends on the
finite number of realizations and on the variances

V
[
fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|

]
, (7.1)

V
[
fY1

(
x− Y0S

N
0 (t)

SN1 (t)

)
1

|SN1 (t)|

]
. (7.2)

If these variances are large or infinite, the convergence rate of the Monte Carlo
simulation deteriorates severely and noisy estimates of fXN (t)(x) are produced,
thus invalidating the results. This phenomenon was observed in the numerical
experiments from Chapter 6. It is highly related to having small denominators
|SN0 (t)| and |SN1 (t)| at certain realizable paths, as this may produce higher
dispersion of 1/|SN0 (t)| and 1/|SN1 (t)|.

The main goal of this chapter is to improve the algorithm from Chapter 6 via
variance reduction methods to achieve good convergence of the Monte Carlo
simulation and avoid noisy features. We will perform theoretical and numerical
analysis of the new methods and algorithms, which will successfully enhance
Chapter 6. The implementations and computations will be performed in the
software MathematicaR©, version 11.2.

In Section 7.2, we will path-wise select the initial condition used in the density
expressions (6.2), (6.5), to avoid the smallest denominator between |SN0 (t)| and
|SN1 (t)|. In this manner, the variance of the statistical error will be controlled.
We will thus be able to improve the quality of the numerical results from
Chapter 6 significantly. An important assumption to apply this selection is
that both initial conditions have probability density functions.

In Section 7.3, we will combine the algorithm from Section 7.2 with a quadra-
ture rule for integration to compute the expectation with respect to Y0–Y1. We
will see that this allows for reduction of variance, especially when Y0–Y1 are re-
sponsible for most of the estimator variability (this can be checked using Sobol
indices). A detailed comparison with the methodology from Section 7.2, with
regard to variance reduction, density approximation and error versus complex-

138



7.2 Variance reduction by path-wise selection of the initial condition used in the density expression

ity, will be carried out. In this chapter, complexity = cost = work, to avoid
any confusion with the wording.

In Section 7.4, the Monte Carlo approach from Section 7.2 will be developed
with a multilevel strategy. Originally introduced in [75, 76], the idea of mul-
tilevel Monte Carlo is to accelerate the convergence of the Monte Carlo simu-
lation by decomposing the target expectation into the sum of expectations of
increments (through a telescopic sum identity) whose variances decay rapidly.
Multilevel Monte Carlo simulation is an improved sampling strategy that bal-
ances the bias and statistical errors, to obtain an overall reduction of the
computational complexity compared to the standard Monte Carlo algorithm.
Multilevel sampling strategies have been employed for direct approximation
of statistics in stochastic differential equations and random partial differen-
tial equations, where the bias classically arises from a mesh discretization
[8, 42, 69, 131]. However, to our knowledge, the application to the density
estimation of random differential equations solution is completely original.

Finally, Section 7.5 will draw the main conclusions of the chapter. The
methodologies and the algorithms proposed in the present chapter will be
discussed. Potential avenues for future research on algorithmic improvements,
linear random differential equations and density approximations will be sug-
gested.

7.2 Variance reduction by path-wise selection of the initial
condition used in the density expression

Consider the random processes

Z0(x, t) = fY0

(
x− Y1S1(t)

S0(t)

)
1

|S0(t)| , Z1(x, t) = fY1

(
x− Y0S0(t)

S1(t)

)
1

|S1(t)| , (7.3)

and

ZN0 (x, t) = fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|
, ZN1 (x, t) = fY1

(
x− Y0S

N
0 (t)

SN1 (t)

)
1

|SN1 (t)|
, (7.4)

for N ≥ 0. Here we are assuming that both initial conditions Y0 and Y1 have
probability density functions fY0

and fY1
. The probability density function

of X(t) can be expressed through the expectation of Z0(x, t) or Z1(x, t), if
S0(t) 6= 0 or S1(t) 6= 0 almost surely, respectively (see (6.1) and (6.4)):

fX(t)(x) = E[Z0(x, t)] = E[Z1(x, t)].
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When the power series X(t) gets truncated, we obtain XN(t), whose prob-
ability density function is expressed through the expectation of ZN0 (x, t) or
ZN1 (x, t), assuming that SN0 (t) 6= 0 or SN1 (t) 6= 0 almost surely, respectively
(see (6.2) and (6.5)):

fXN (t)(x) = E[ZN0 (x, t)] = E[ZN1 (x, t)].

As justified in the previous chapter, fXN (t)(x) tends to fX(t)(x) as N → ∞,
pointwise and in Lp(R, dx), 1 ≤ p <∞. Under certain conditions (for instance,
if fY0

or fY1
are Hölder continuous on R), the pointwise convergence turns out

to be exponentially fast, although not uniform in t and x.

In Chapter 6, the density function fXN (t)(x) is approximated using a stan-
dard Monte Carlo sampling strategy, by initially selecting either ZN0 (x, t) or
ZN1 (x, t) (only one of these processes). The convergence rate of the sample av-
erage towards E[ZN0 (x, t)] or E[ZN1 (x, t)] depends on V[ZN0 (x, t)] or V[ZN1 (x, t)]
(see (7.1) and (7.2)). If V[ZN0 (x, t)] and V[ZN1 (x, t)] are large or infinity, the
convergence rate deteriorates severely and noisy features may plague the sta-
tistical approximation to fXN (t)(x). This issue was observed in the previous
chapter.

In this section we propose a variance reduction method by combining the
choices of ZN0 (x, t) and ZN1 (x, t). Consider one realization of SN0 (t) and SN1 (t).
These realizations are computed recursively in the computer from realizations
of A0, . . . , AN−2, B0, . . . , BN−2, see Chapter 6. If |SN0 (t)| ≥ |SN1 (t)| then we
pick ZN0 (x, t), and vice versa otherwise. In such a way, we avoid the smallest
denominator in the expressions of ZN0 (x, t) and ZN1 (x, t).

We assume that Y0, Y1 and (A0, A1, . . . , B0, B1, . . .) are independent. We also
suppose that Y0 and Y1 are absolutely continuous random variables (otherwise
this method is no longer applicable). Given the events

G0(t) = {|S0(t)| ≥ |S1(t)|}, G1(t) = {|S1(t)| > |S0(t)|},

GN
0 (t) = {|SN0 (t)| ≥ |SN1 (t)|}, GN

1 (t) = {|SN1 (t)| > |SN0 (t)|},
we define the random processes

Z(x, t) = Z0(x, t)1G0(t) + Z1(x, t)1G1(t), (7.5)

ZN(x, t) = ZN0 (x, t)1GN0 (t) + ZN1 (x, t)1GN1 (t). (7.6)

These processes correspond to path-wise selecting fY0
or fY1

according to
|S0(t)| ≥ |S1(t)| or |S1(t)| > |S0(t)| (in (7.5)), and |SN0 (t)| ≥ |SN1 (t)| or
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|SN1 (t)| > |SN0 (t)| (in (7.6)). The density functions of XN(t) and X(t) are
expressed as:

fXN (t)(x) = E
[
ZN(x, t)

]
≈ fX(t)(x) = E [Z(x, t)] . (7.7)

Let us formalize (7.7) with Lemma 7.1 and Proposition (7.2), by using condi-
tional probabilities.

Lemma 7.1 Let U be an absolutely continuous random variable, (Z1, Z2) be
a random vector such that Z1 6= 0 almost surely, and G ∈ F be an event of
non-zero probability. Suppose that U and (Z1, Z2,1G) are independent. Then
the probability law of Z1U +Z2 conditioned to G is absolutely continuous, with
density function

fZ1U+Z2
(z|G) = E

[
fU

(
z − Z2

Z1

)
1

|Z1|

∣∣∣∣G] .
Proof. On the measurable space (Ω,F), define the conditional probability
measure PG as PG[E] = P[E|G] := P[E ∩G]/P[G], for E ∈ F .
Since U and G are independent, the probability law of U with respect to PG
coincides with P. Then the law of U under PG is absolutely continuous, and
fU(u|G) = fU(u).
On the other hand, notice that U and (Z1, Z2) are independent under PG.
Finally, PG is absolutely continuous with respect to P, PG � P, therefore
Z1 6= 0 PG-almost surely.
Thus, on the probability space (Ω,F ,PG) we are in conditions of applying
Lemma 6.2:

fZ1U+Z2
(z|G) = E

[
fU

(
z − Z2

Z1

∣∣∣∣G) 1

|Z1|

∣∣∣∣G] = E
[
fU

(
z − Z2

Z1

)
1

|Z1|

∣∣∣∣G] .
�

Proposition 7.2 The following relationships hold:

fX(t)(x) = E [Z(x, t)] , fXN (t)(x) = E
[
ZN(x, t)

]
,

where Z(x, t) and ZN(x, t) are defined in (7.5) and (7.6).

Proof. We focus on the equality fX(t)(x) = E[Z(x, t)], as the other one
concerning fXN (t)(x) is analogous.
If either P[G0(t)] = 0 or P[G1(t)] = 0, then Z(x, t) = Z1(x, t) almost surely or
Z(x, t) = Z0(x, t) almost surely, respectively, so we are done.
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Let us then assume that both G0(t) and G1(t) have non-zero probability. By
the law of total probability,

fX(t)(x) = fX(t) (x|G0(t))P[G0(t)] + fX(t) (x|G1(t))P[G1(t)].

To compute the conditional densities, we use Lemma 7.1:

fX(t) (x|G0(t)) = E [Z0(x, t)|G0(t)] ,

fX(t) (x|G1(t)) = E [Z1(x, t)|G1(t)] .

As a consequence,

fX(t)(x) = E [Z0(x, t)|G0(t)]P[G0(t)] + E [Z1(x, t)|G1(t)]P[G1(t)]

= E
[
Z0(x, t)1G0(t)

]
+ E

[
Z1(x, t)1G1(t)

]
= E [Z(x, t)] .

�

The expectation fXN (t)(x) = E[ZN(x, t)] can be approximated via a standard
Monte Carlo sampling strategy. A key feature here is the uniform boundedness
of V[ZN(x, t)] with N , as shown in Proposition 7.4.

Lemma 7.3 Given any T > t0, there exists a constant α > 0 such that

max{|S0(t)|, |S1(t)|} ≥ 2α (7.8)

holds almost surely, for all t ∈ [t0, T ]. In particular, there exists an integer
NT,α ≥ 0 such that

max{|SN0 (t)|, |SN1 (t)|} ≥ α (7.9)

holds almost surely, for all t ∈ [t0, T ] and N ≥ NT,α.

Proof. Fix T > t0 and t ∈ [t0, T ]. Consider the Wronskian WS0,S1
(t) =

S0(t)Ṡ1(t)−S1(t)Ṡ0(t), where the derivatives are regarded in the L∞(Ω) sense.
Recall that S0(t) and S1(t) solve the differential equation in the L∞(Ω) sense,
see Section 7.1. In particular, the sample paths of S0(t) and S1(t) solve the de-
terministic version of the differential equation, for almost every ω ∈ Ω. By Li-
ouville’s formula for deterministic linear differential equations [41, Prop. 2.15],

WS0,S1
(t) = e

−
∫ t
t0
A(s) ds

almost surely. As A(t) is a power series in L∞(Ω), we can lower bound the
Wronskian as follows:

WS0,S1
(t) ≥ e

−
∫ T
t0
‖A(s)‖∞ ds

=: β > 0,
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almost surely. On the other hand, using the triangular inequality,

WS0,S1
(t) ≤ 2 max{|S0(t)|, |S1(t)|}max{|Ṡ0(t)|, |Ṡ1(t)|}
≤ 2 max{|S0(t)|, |S1(t)|}max{‖Ṡ0(t)‖∞, ‖Ṡ1(t)‖∞}
≤ 2 max{|S0(t)|, |S1(t)|}γ,

where γ is a constant upper bound for ‖Ṡ0(t)‖∞ and ‖Ṡ1(t)‖∞ on [t0, T ]. As
a consequence,

max{|S0(t)|, |S1(t)|} ≥ β

2γ
=: 2α,

almost surely, and (7.8) is proved.
Finally, we have that max{|SN0 (t)|, |SN1 (t)|} converges to max{|S0(t)|, |S1(t)|}
as N → ∞ in L∞(Ω), uniformly on [t0, T ]. This fact allows deducing that
there exists an integer NT,α ≥ 0 such that (7.9) holds.

�

Proposition 7.4 Suppose that fY0
and fY1

are bounded density functions.
Given any T > t0, the L2(Ω) norms of Z(x, t) and ZN(x, t) are controlled
as follows:

‖Z(x, t)‖2 ≤
max{‖fY0

‖∞, ‖fY1
‖∞}

2α
,

‖ZN(x, t)‖2 ≤
max{‖fY0

‖∞, ‖fY1
‖∞}

α
,

for x ∈ R, t ∈ [t0, T ] and N ≥ NT,α, where α is the constant from Lemma 7.3.

Proof. Observe that, by (7.5) and (7.6),

|Z(x, t)| ≤ max{‖fY0
‖∞, ‖fY1

‖∞}
(

1

|S0(t)|
1G0(t) +

1

|S1(t)|
1G1(t)

)
=

max{‖fY0
‖∞, ‖fY1

‖∞}
max{|S0(t)|, |S1(t)|}

,

|ZN(x, t)| ≤ max{‖fY0
‖∞, ‖fY1

‖∞}
(

1

|SN0 (t)|
1GN0 (t) +

1

|SN1 (t)|
1GN1 (t)

)
=

max{‖fY0
‖∞, ‖fY1

‖∞}
max{|SN0 (t)|, |SN1 (t)|}

.

Then Lemma 7.3 applies.
�
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As a consequence, the variance here is well controlled, in contrast with Chap-
ter 6. The estimate of fXN (t)(x) = E[ZN(x, t)] using Monte Carlo simulation
does not present convergence problems.

Remark 7.5 Lemma 7.3 is not only important from a numerical point of
view, but also for the following theoretical fact. Chapter 6 justified the point-
wise convergence of {fXN (t)(x)}∞N=0 towards fX(t)(x) in a neighborhood of t0.
The neighborhood was constructed in such a way that S0(t) and/or S1(t) are
greater than a positive constant almost surely (see Remarks 6.5 and 6.10 in
Chapter 6), so that the denominators from (7.4) are controlled. Lemma 7.3
shows that

1

|S0(t)|
1G0(t) +

1

|S1(t)|
1G1(t) =

1

max{|S0(t)|, |S1(t)|}
is upper bounded by a finite constant almost surely, for every t in the domain of
definition of (3.1). Hence, the theoretical results from Chapter 6 justifying the
convergence in (7.7) as N →∞ do hold for every t where X(t) is well-defined,
not just in a neighborhood of t0. Notice that this statement requires both Y0

and Y1 to be absolutely continuous, and Y0, Y1 and (A0, A1, . . . , B0, B1, . . .) to
be independent. These are the hypotheses under which the methodology from
this section is supported.

The whole procedure described in this section is structured in the form of Al-
gorithm 2. By path-wise selecting ZN0 (x, t) or ZN1 (x, t) according to |SN0 (t)| ≥
|SN1 (t)| or |SN1 (t)| > |SN0 (t)|, we approximate the expectation fXN (t)(x) =
E[ZN(x, t)] using a sample average of M realizations. The output function is
denoted as fN,MX (x, t), which tends to fXN (t)(x) as M →∞.

The complexity (cost, work) of Algorithm 2 is O(MN2), in general. Recall
that each realization of SN0 (t) and SN1 (t) is computed recursively with N and
requires O(N2) operations (see Chapter 6).

As discussed in Chapter 6, whenA(t) andB(t) are random polynomials instead
of infinite random series, the cost per realization of SN0 (t) and SN1 (t) is reduced
to O(N) operations. Then the global complexity of Algorithm 2 is O(MN)
only.

Obviously, in the case where S0(t) and S1(t) are known in closed-form ex-
pression (this occurs for simple problems (3.1), such as the autonomous case),
Algorithm 2 can be run with N = ∞, that is, by computing realizations of
S0(t) and S1(t) directly. The complexity of the algorithm is O(M) in such a
case. The error is statistical and only due to the finite sampling.
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7.2 Variance reduction by path-wise selection of the initial condition used in the density expression

Algorithm 2 Estimation of fXN (t)(x) using Monte Carlo simulation, Sec-
tion 7.2.

Inputs: t0; N ; fY0
; fY1

; probability distribution of A0, . . . , AN ,
B0, . . . , BN ; number M of realizations in the Monte Carlo procedure; t;
and discretization vector x of the density domain.

1: Σ← 0 . Initialize the samples sum
2: for i = 1, . . . ,M do . Monte Carlo loop
3: Set a realization of SN0 (t) and SN1 (t)
4: if |SN0 (t)| ≥ |SN1 (t)| then
5: Set a realization of Y1

6: Σ← Σ + ZN0 (x, t) . See (7.4)
7: else
8: Set a realization of Y0

9: Σ← Σ + ZN1 (x, t) . See (7.4)
10: end if
11: end for
12: fN,MX (x, t)← Σ/M . Set sample average
13: Return fN,MX (x, t) . Approximation of fXN (t)(x)

Algorithm 2 may be run symbolically on the variable x, thus having a symbolic
expression for the output fN,MX (x, t) in the end. The algorithm from Chapter 6
was run symbolically. However, symbolic computations do not allow a large
number of simulations M . Thus, in cases where M needs to be large enough
to achieve convergence, we recommend to discretize x in a domain of interest
for the target density.

In the following examples, we illustrate the theoretical discussion from this sec-
tion. The main goal is to highlight the improvement of Algorithm 2 compared
with Chapter 6.

Example 7.6 We start by considering a very simple problem (3.1):
Ẍ(t) +B2X(t) = 0, t ∈ R,
X(t0 = 0) = Y0,

Ẋ(t0 = 0) = Y1.

(7.10)

Despite its simplicity, (7.10) is a useful example to illustrate the theoretical
discussion from this section.

The following probability distributions are taken for the random inputs: B ∼
Uniform(1, 2.5), Y0, Y1 ∼ Normal(1, σ = 0.1), all of them independent. As

145



Chapter 7.

B is bounded and the initial conditions Y0 and Y1 have absolute moments
of any order, there exists an analytic solution X(t) in the Lp(Ω) sense, for
1 ≤ p < ∞. The fundamental system is explicitly known: S0(t) = cos(Bt),
S1(t) = sin(Bt)/B, t ∈ R. Thus, Algorithm 2 can be applied with N = ∞,
by taking realizations from S0(t) and S1(t) directly. We consider time t = 10,
and the goal is to approximate the density function fX(t=10)(x) using Monte
Carlo methods.

In Figure 7.1, we estimate E[Z0(x, t = 10)] and E[Z1(x, t = 10)] with the Monte
Carlo procedure from Chapter 6, by generating M = 100, 000 realizations of
the random inputs. These expectations correspond to fX(t=10)(x). Observe
that noisy features plague the estimates of the density function. In Figure 7.2,
we plot estimates of the variances V[Z0(x, t = 10)] and V[Z1(x, t = 10)]. Their
large values slow down the convergence of the Monte Carlo simulation, thus
explaining the noisy behavior of the estimates in Figure 7.1. In fact, at the
points x where the variance is larger, more noise is perceived in the estimate
of the expectation.

-2 -1 1 2
x

0.2

0.4

0.6

0.8

1.0

[Z0(x,t=10)]

[Z1(x,t=10)]

Figure 7.1: Approximations of fX(t=10)(x) using estimates Ê[Z0(x, t = 10)] and Ê[Z1(x, t =
10)]. This figure corresponds to Example 7.6.

In Figure 7.3, we approximate fX(t=10)(x) via E[Z(x, t = 10)], by using the
proposed Algorithm 2 with M = 100, 000 realizations. Observe that now the
estimate is smooth, thus resolving the convergence challenge. In Figure 7.4,
we depict an estimate for V[Z(x, t = 10)]. This variance is shown to be small,
thus allowing for faster convergence of the Monte Carlo simulation. Hence,
Algorithm 2 improves Chapter 6 significantly.

It is interesting to observe the different behaviors of Z0(x, t = 10), Z1(x, t =
10) and Z(x, t = 10) = Z0(x, t = 10)1G0(t=10) + Z1(x, t = 10)1G1(t=10) as
real functions of B, Y0 and Y1. Figure 7.5 depicts the 3D graphs of Z0(x =
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 [Z0(x,t=10)]

 [Z1(x,t=10)]

Figure 7.2: Estimates V̂[Z0(x, t = 10)] and V̂[Z1(x, t = 10)]. This figure corresponds to
Example 7.6.
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Figure 7.3: Approximation of fX(t=10)(x) using estimate Ê[Z(x, t = 10)]. This figure
corresponds to Example 7.6.
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[Z(x,t=10)]

Figure 7.4: Estimate V̂[Z(x, t = 10)]. This figure corresponds to Example 7.6.

0, t = 10), Z1(x = 0, t = 10), Z0(x = 0, t = 10)1G0(t=10) and Z1(x = 0, t =
10)1G1(t=10) (obviously, any other point x different from 0 can also be taken).
The functions Z0(x = 0, t = 10) and Z1(x = 0, t = 10) have singularities
(because of vanishing denominators | cos(10B)| and | sin(10B)/B|) and are
strongly peaked. On the contrary, although Z0(x = 0, t = 10)1G0(t=10) and
Z1(x = 0, t = 10)1G1(t=10) possess discontinuity points, their peaks are not
that sharp. As we are getting rid of small denominators, the sharp peaks are
avoided.

Example 7.7 We consider a more complex example now, based on degree
one polynomial coefficients. Let

Ẍ(t) + (A0 +A1t)Ẋ(t) + (B0 +B1t)X(t) = 0, t ∈ R,
X(t0 = 0) = Y0,

Ẋ(t0 = 0) = Y1,

(7.11)

A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35) and
Y0, Y1 ∼ Normal(2, 1), all of them independent. Since the random coefficients
A0, A1, B0 and B1 are bounded and the initial conditions Y0 and Y1 have
finite absolute moments, there is an analytic solution X(t) in the Lp(Ω) sense,
1 ≤ p <∞.

According to Chapter 6, the probability density function fX(t)(x) can be ap-
proximated pointwise using fXN (t)(x) (with exponential convergence with N
because fY0

and fY1
are Lipschitz continuous on R). We focus on the order
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Figure 7.5: 3D plots of the integrands Z0(x = 0, t = 10), Z1(x = 0, t = 10) (their
vertical axes have been restricted to [0, 50]), Z0(x = 0, t = 10)1G0(t=10) and Z1(x = 0, t =
10)1G1(t=10). This figure corresponds to Example 7.6.
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of truncation N = 10 to highlight the improvement of Algorithm 2 compared
with Chapter 6. We estimate fXN=10(t=1.5)(x) with both approaches.

In Figure 7.6 we estimate E[ZN=10
0 (x, t = 1.5)] and E[ZN=10

1 (x, t = 1.5)] with
the algorithm described in Chapter 6. With M = 20, 000 realizations, we
observe noise in both estimates. This phenomenon is accurately explained by
the plots of V[ZN=10

0 (x, t = 1.5)] and V[ZN=10
1 (x, t = 1.5)] in Figure 7.7. It

is very interesting to observe that the points x where the variances are larger
correspond to higher noise in Figure 7.6. Indeed, large variance affects the
rate of convergence of the Monte Carlo simulation severely.
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[Z1
N=10(x,t=1.5)]

Figure 7.6: Approximations of fXN=10(t=1.5)(x) using estimates Ê[ZN=10
0 (x, t = 1.5)] and

Ê[ZN=10
1 (x, t = 1.5)]. This figure corresponds to Example 7.7.
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N=10(x,t=1.5)]

 [Z1
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Figure 7.7: Estimates V̂[ZN=10
0 (x, t = 1.5)] and V̂[ZN=10

1 (x, t = 1.5)]. This figure corre-
sponds to Example 7.7.

Algorithm 2 has been designed to fix this issue. Figure 7.8 shows the smooth
estimate of fXN=10(t=1.5)(x) with E[ZN=10(x, t = 1.5)] and M = 20, 000 realiza-
tions. This good convergence is due to the small variance V[ZN=10(x, t = 1.5)],
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see Figure 7.9. Hence, Algorithm 2 shows significantly superior to a mere
Monte Carlo approach as in Chapter 6.
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Figure 7.8: Approximation of fXN=10(t=1.5)(x) using estimate Ê[ZN=10(x, t = 1.5)]. This
figure corresponds to Example 7.7.

-4 -2 2 4 6
x

0.01

0.02

0.03

0.04

0.05

0.06

0.07



[ZN=10(x,t=1.5)]

Figure 7.9: Estimate V̂[ZN=10(x, t = 1.5)]. This figure corresponds to Example 7.7.
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7.3 Variance reduction by using quadrature rule for the
initial conditions

By Proposition 7.2, the probability density function of the truncated series
XN(t) is expressed as fXN (t)(x) = E[ZN(x, t)], where ZN(x, t) was defined
in (7.6). The randomness in ZN(x, t) comes from the initial conditions, Y0 and
Y1, and from the truncated series from the fundamental set, SN0 (t) and SN1 (t).
A Monte Carlo sampling procedure generates M independent realizations from
these random quantities and approximates fXN (t)(x) using the sample average,
see Algorithm 2.

The convergence rate of the sample mean towards the true expectation depends
heavily on the variance of ZN(x, t) (which is uniformly bounded on N by
Proposition 7.4). In this section, we present a method for variance reduction.
Each time we generate a realization of SN0 (t) and SN1 (t) and check whether
|SN0 (t)| ≥ |SN1 (t)| or |SN1 (t)| > |SN0 (t)|, now we do not generate a realization
of Y0–Y1, but compute the expectation with respect to Y0–Y1 with a numerical
integration method, instead.

We write fXN (t)(x) as fXN (t)(x) = E[E[ZN(x, t)|SN0 (t), SN1 (t)]], by the law of
total expectation. By a Monte Carlo sampling procedure, we approximate the
outer expectation as

fXN (t)(x) ≈ 1

M

M∑
i=1

E[ZN(x, t)|SN0 (t) = sN0,i, S
N
1 (t) = sN1,i], (7.12)

where {(sN0,i, sN1,i)}Mi=1 are M independent realizations of (SN0 (t), SN1 (t)).

The variance of the statistical error from the approximation (7.12) is always
smaller than in the standard Monte Carlo approach from Algorithm 2. Indeed,
by the law of total variance,

V
[
E
[
ZN(x, t)|SN0 (t), SN1 (t)

]]
= V

[
ZN(x, t)

]
− E

[
V
[
ZN(x, t)|SN0 (t), SN1 (t)

]]
≤ V

[
ZN(x, t)

]
. (7.13)

Equality holds only when V[ZN(x, t)|SN0 (t), SN1 (t)] = 0. Essentially, using (7.12)
we gain more reduction in the statistical error when Y0–Y1 produce high vari-
ability in ZN(x, t). The extreme case occurs when A(t) and B(t) are deter-
ministic functions, as in such a case a deterministic integration rule for Y0–Y1

makes the method sampling error-free.

The influence of the variability of Y0, Y1, SN0 (t) and SN1 (t) on ZN(x, t) (variance-
based sensitivity analysis) can be assessed using Sobol indices [140, 158]. The
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7.3 Variance reduction by using quadrature rule for the initial conditions

random process ZN = ZN(x, t) has the following orthogonal decomposition:

ZN = E
[
ZN
]

+ Z̃NSN0 (t),SN1 (t) + Z̃NY0,Y1
+ Z̃NSN0 (t),SN1 (t),Y0,Y1

,

where

Z̃NSN0 (t),SN1 (t) =ZNSN0 (t),SN1 (t)−E
[
ZNSN0 (t),SN1 (t)

]
, ZNSN0 (t),SN1 (t) =E

[
ZN |SN0 (t), SN1 (t)

]
,

Z̃NY0,Y1
= ZNY0,Y1

− E
[
ZNY0,Y1

]
, ZNY0,Y1

= E
[
ZN |Y0, Y1

]
,

Z̃NSN0 (t),SN1 (t),Y0,Y1
= ZNSN0 (t),SN1 (t),Y0,Y1

− E
[
ZNSN0 (t),SN1 (t),Y0,Y1

]
,

ZNSN0 (t),SN1 (t),Y0,Y1
= ZN − Z̃NSN0 (t),SN1 (t) − Z̃

N
Y0,Y1

.

Applying squared L2(Ω) norms, we derive the ANOVA-Hoeffding decomposi-
tion of the variance of ZN(x, t):

V
[
ZN
]

= V
[
ZNSN0 (t),SN1 (t)

]
+ V

[
ZNY0,Y1

]
+ V

[
ZNSN0 (t),SN1 (t),Y0,Y1

]
,

where V[ZN
SN0 (t),SN1 (t)

], V[ZNY0,Y1
] and V[ZN

SN0 (t),SN1 (t),Y0,Y1
] measure the contribu-

tion to ZN(x, t) of (SN0 (t), SN1 (t)) alone, (Y0, Y1) alone, and the interactions
between them, respectively. The standardization of the variance decomposi-
tion gives rise to the Sobol indices:

SNSN0 (t),SN1 (t) =
V
[
ZN
SN0 (t),SN1 (t)

]
V [ZN ]

, SNY0,Y1
=

V
[
ZNY0,Y1

]
V [ZN ]

, (7.14)

SNSN0 (t),SN1 (t),Y0,Y1
=

V
[
ZN
SN0 (t),SN1 (t),Y0,Y1

]
V [ZN ]

, (7.15)

which are scaled in [0, 1]. When SNY0,Y1
is near 1, we expect more variance

reduction in the Monte Carlo estimate (7.12).

Fix the index of the realizations i = 1, . . . ,M . If |sN0,i| ≥ |sN1,i|, then

E
[
ZN (x, t)

∣∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
= E

[
ZN0 (x, t)

∣∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
=

1

|sN0,i|

∫
SY1

fY0

(
x− y1s

N
1,i

sN0,i

)
fY1(y1) dy1, (7.16)

where SY1
denotes the support of the random variable Y1. If |sN1,i| > |sN0,i|, then

E
[
ZN (x, t)

∣∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
= E

[
ZN1 (x, t)

∣∣∣ SN0 (t) = sN0,i, S
N
1 (t) = sN1,i

]
=

1

|sN1,i|

∫
SY0

fY1

(
x− y0s

N
0,i

sN1,i

)
fY0(y0) dy0, (7.17)

153



Chapter 7.

being SY0
the support of Y0. These integrals (7.16), (7.17), can be approxi-

mated using numerical integration schemes. For instance, Gaussian quadra-
ture rules [172, pp. 39–41] are appropriate since the density functions fY1

(y1)
and fY0

(y0) act as integration weights. In the case of (7.16) (the case of (7.17)
is analogous), one considers orthogonal polynomials {Pj(y1)}∞j=0 (the degree
of Pj is j) with respect to the inner product of L2(SY1

) with weight function
fY1

(y1): ∫
SY1

Pj(y1)Pk(y1)fY1
(y1) dy1 = 0, j 6= k.

For example, if Y1 has a Normal or Uniform distribution, then {Pj(y1)}∞j=0 cor-
responds to the family of Hermite and Legendre polynomials, respectively. In
other cases where Y1 does not possess a standard probability distribution from
the Askey scheme, {Pj(y1)}∞j=0 may be constructed through a Gram-Schmidt
orthogonalization procedure from the canonical basis {1, y1, y

2
1, y

3
1, . . .}. The

integral (7.16) is approximated as follows:

1

|sN0,i|

∫
SY1

fY0

(
x− y1s

N
1,i

sN0,i

)
fY1

(y1) dy1 ≈
1

|sN0,i|

Q∑
j=1

w
(Q)
1,j fY0

(
x− y(Q)

1,j s
N
1,i

sN0,i

)
.

(7.18)
Here, Q is the finite degree of the quadrature, the nodes {y1,j}Qj=1 are the zeros

of PQ(y1), and {w(Q)
1,j }

Q
j=1 are the weights so that the integration rule is exact

for polynomials of degree less than or equal to 2Q− 1

The nodes {y0,j}Qj=1, {y1,j}Qj=1, and the weights {w(Q)
0,j }

Q
j=1, {w(Q)

1,j }
Q
j=1, only

depend on fY0
and fY1

, therefore they are independent of the realization
(sN0,i, s

N
1,i), the number of simulations M and the truncation order N . Hence,

the nodes and the weights should always be computed once for all at the
beginning.

As more regularity we demand on fY0
and fY1

, faster convergence the quadra-
ture rule will achieve with Q. The extreme case appears when fY0

and fY1

are analytic real functions: the quadrature rule converges exponentially with
Q and therefore the bias error θN(x, t) = fX(t)(x)− fXN (t)(x) is not seriously
affected by the deterministic error arisen from the finite degree Q. Nonethe-
less, numerical problems in the quadrature approximations may arise when
the integrands are strongly peaked. In this case, the degree Q must be taken
larger, otherwise the bias error may increase dramatically.

The procedure described is implemented in the form of Algorithm 3. The den-
sity function fXN (t)(x) is approximated by combining Monte Carlo simulation
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7.3 Variance reduction by using quadrature rule for the initial conditions

on SN0 (t), SN1 (t), and quadrature rule for integration with respect to Y0–Y1.
The output function is denoted as fN,M,Q

X (x, t).

Algorithm 3 Estimation of fXN (t)(x) using Monte Carlo simulation and
quadrature rule for integration, Section 7.3.

Inputs: t0; N ; fY0
(smooth); fY1

(smooth); probability distribution of
A0, . . . , AN , B0, . . . , BN ; number M of realizations in the Monte Carlo
procedure; degree Q of the Gaussian quadrature rule; t; and discretization

vector x of the density domain. The zeros {y(Q)
0,j }

Q
j=1 and {y(Q)

1,j }
Q
j=1 of theQ-

th degree orthogonal polynomials with respect to fY0
and fY1

, respectively,

have been previously determined. The weights {w(Q)
0,j }

Q
j=1 and {w(Q)

1,j }
Q
j=1 of

the quadrature rules with weight functions fY0
and fY1

, respectively, have
been previously calculated.

1: Σ← 0 . Initialize the samples sum
2: for i = 1, . . . ,M do . Monte Carlo loop
3: Set a realization of SN0 (t) and SN1 (t)
4: if |SN0 (t)| ≥ |SN1 (t)| then

5: Σ← Σ +
∑Q

j=1w
(Q)
1,j Z

N
0 (x, t)|

Y1=y
(Q)
1,j
. Quadrature rule with weight
fY1

6: else
7: Σ← Σ +

∑Q
j=1w

(Q)
0,j Z

N
1 (x, t)|

Y0=y
(Q)
0,j
. Quadrature rule with weight
fY0

8: end if
9: end for

10: fN,M,Q
X (x, t)← Σ/M . Set sample average

11: Return fN,M,Q
X (x, t) . Approximation of fXN (t)(x)

The complexity of Algorithm 3 is O(M(N2 +Q)), in general. Recall that one
realization of SN0 (t) and SN1 (t) requires O(N2) operations when A(t) and B(t)
are given by infinite random expansions. The quadrature rule demands O(Q)
operations.

When A(t) and B(t) are random polynomials, one realization of SN0 (t) and
SN1 (t) requires O(N) operations only. The complexity of the whole algorithm
thus becomes O(M(N +Q)).

In the case of simple problems (3.1) in which S0(t) and S1(t) are exactly known,
Algorithm 3 is run with N = ∞, that is, by computing exact realizations of
S0(t) and S1(t). The error in this case comes from the Monte Carlo simulation
and the finite degree of the quadrature rule. The total complexity is given by
O(MQ).
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We finish this section with numerical experiments concerning the methodology
and Algorithm 3. In the following three examples, we will compare Algorithm 2
and Algorithm 3 in terms of variance reduction, density approximation and
error against complexity. The first two examples deal with problems having
closed-form expressions for the fundamental sets (N = ∞), while the third
example deals with orders of truncation N < ∞. After the three examples,
we will conclude the section with recommendations regarding the use of Algo-
rithm 2 or Algorithm 3.

Example 7.8 Consider (7.10) with input data B ∼ Uniform(1, 1.01) and
Y0, Y1 ∼ Normal(1, σ = 2), all of them independent. As the fundamental
set {S0(t), S1(t)} is known with closed-form expressions, S0(t) = cos(Bt) and
S1(t) = sin(Bt)/B, we take N =∞, by sampling from S0(t) and S1(t) directly.

Here the randomness mainly comes from the initial conditions. This is checked
using the Sobol indices from (7.14) and (7.15). As proposed in [139, 159], the
Sobol indices are computable using Monte Carlo simulation with the formulas

V
[
ZS0(t),S1(t)

]
≈ 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIi , y

II
i )− 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

II
i ),

(7.19)

V [ZY0,Y1
] ≈ 1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

I
i )−

1

M

M∑
i=1

Z(sIi , y
I
i )Z(sIIi , y

II
i ), (7.20)

where {sIi }Mi=1 ⊆ R2 and {sIIi }Mi=1 ⊆ R2 denote two sets of joint realizations
of (S0(t), S1(t)), and {yIi }Mi=1 ⊆ R2 and {yIIi }Mi=1 ⊆ R2 denote two sets of
joint realizations of (Y0, Y1), being all of them independent1. The notation
used here, for instance Z(sIi , y

I
i ), means evaluating Z(x, t) (given by (7.5))

at those specific realizations. In Figure 7.10, we report the estimates of the
Sobol indices for t = 10. We observe that SY0,Y1

is very close to 1, therefore
indicating that the variability of Z(x, t) is dominated by the initial conditions.

1If f is any function and U and V are independent random vectors, then V[E[f(U, V )|V ]] =
E[E[f(U, V )|V ]2]−E[E[f(U, V )|V ]]2 can be estimated using Monte Carlo simulation in the following
expressions:

E[E[f(U, V )|V ]2] = EV [EU [f(U, V )]2] = EV [EU,U′ [f(U, V )f(U ′, V )]] = EU,U′,V [f(U, V )f(U ′, V )],

E[E[f(U, V )|V ]]2 = EV [EU [f(U, V )]]2 = EU,V [f(U, V )]2 = EU,V,U′,V ′ [f(U, V )f(U ′, V ′)],

where U
d
= U ′, V

d
= V ′, and U, V, U ′, V ′ are independent. The subindices for E indicate with

respect to which random vectors the expectation is computed. This is a straightforward justification
of (7.19) and (7.20). Notice that we do not estimate E[E[f(U, V )|V ]]2 with a sample average estimate
for E[f(U, V )]2; according to [159, p. 959], [138, p. 284], the procedure we showed here yields better
estimates for Sobol indices.
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7.3 Variance reduction by using quadrature rule for the initial conditions

Thus we expect Algorithm 3 to be superior to Algorithm 2 in terms of variance
reduction.
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S0 (10),S1 (10)

Figure 7.10: Estimated Sobol indices of the random inputs for Z(x, t = 10). This figure
corresponds to Example 7.8.

In this example, the Gaussian quadrature rule is based on Hermite polynomi-
als. We work at time t = 10, with degree of quadrature Q = 30. Essentially,
the quadrature rule approximation is error-free. In Figure 7.11 we plot esti-
mates V̂[Z(x, t = 10)] and V̂[E[Z(x, t = 10)|S0(t = 10), S1(t = 10)]]. Observe

that the magnitude of V̂[E[Z(x, t = 10)|S0(t = 10), S1(t = 10)]] is smaller than

V̂[Z(x, t = 10)], due to the law of total variance (7.13). Anyway, none of the
variances becomes large at any point x, therefore good estimates of fX(t=10)(x)
are obtained with any of the two algorithms.
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Figure 7.11: Estimates of V̂[Z(x, t = 10)] and V̂[E[Z(x, t = 10)|S0(t = 10), S1(t = 10)]].
This figure corresponds to Example 7.8.

In Figure 7.12 we depict the estimates for fX(t=10)(x) with Algorithm 2 (leg-
end “Density MC”) and Algorithm 3 (legend “Density MCQ”). Very simi-
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lar smooth estimates are obtained, in fact they overlap, with Q = 30 and
M = 10, 000 realizations. We also compare the two estimates with the exact
density function (legend “Exact density”). The exact density function is com-
putable using a cubature rule for the double integral (6.1) (cubature rule con-
structed using a tensor product approach based on univariate Gauss-Hermite
and Gauss-Legendre quadrature rules), because the integrand is smooth with
no peaks (see Figure 7.13), thus posing no difficulties.

Density MC

Density MCQ

Exact density

-10 -5 5
x

0.05

0.10

0.15

0.20

Figure 7.12: Estimates of fX(t=10)(x) with Monte Carlo simulation (MC), Monte Carlo
simulation plus quadrature rule (MCQ), and exact density function. This figure corresponds
to Example 7.8.

Figure 7.13: 3D plots of the integrand Z0(x, t = 10) at different points x. This figure
corresponds to Example 7.8.

A further analysis is performed by studying the relation between the error
and the complexity of Algorithm 2 and Algorithm 3. In Figure 7.14 we show
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7.3 Variance reduction by using quadrature rule for the initial conditions

plots of mean relative error versus complexity in log-log scale for Algorithm 2
(legend “MC”) and Algorithm 3 (legend “MCQ”), at different points x. Here
we consider the complexity of Algorithm 2 as M , while the complexity of
Algorithm 3 as MQ, being Q = 30 (recall that M denotes the number of
realizations). The relative error is defined as the absolute error divided by the
value of the exact density function. We run both algorithms up to complexity
floor(1.444), and we keep the relative errors for complexities floor(1.4i), i =
14, 15, . . . , 44 (a geometric progression makes equidistant complexities in log-
scale). This gives a discretized realizable path of relative errors. We repeat
this demanding process n = 20 times with parallel computing to obtain an
estimate of the mean relative error (so that the analysis performed does not
depend upon a specific realizable relative error). A 95% confidence interval of
Gaussian-type for the mean relative error is constructed (this is justified by
the central limit theorem), as mean plus/minus 1.96 times the standard error,
where the standard error is the standard deviation of the original sample
of length n divided by

√
n 2. The relative error descends with slope 1/2

approximately, because the error of the Monte Carlo simulation goes down
with M at rate 1/

√
M . The mean relative error of Algorithm 3 is shifted

down the mean relative error of Algorithm 2, due to the variance reduction
of the estimators, thus indicating higher efficiency. Similar plots have been
obtained for the points x ∈ {−1, 3}. Indeed, the effect of the initial conditions
on the variability of Z is homogeneous in x, according to the Sobol indices
from Figure 7.10, therefore a similar performance of the algorithm is expected
for the different x’s.

Example 7.9 We consider the same setting as Example 7.6: (7.10) with B ∼
Uniform(1, 2.5) and Y0, Y1 ∼ Normal(1, σ = 0.1), all of them independent.

In this case, the variability of Z is mainly due to B. This is deduced from Fig-
ure 7.15, where we report the Sobol indices (7.14) and (7.15) for t = 10, using
the Monte Carlo estimates (7.19) and (7.20). The variance decomposition of Z
is dominated by the effect of the fundamental set and the interactions, being
the estimated Sobol index corresponding to the initial conditions very close to

2Here n might not be that large to apply the central limit theorem. Other types of confidence
intervals may be considered, for instance those constructed via bootstrapping [61] with b samples
with replacement from the original sample of length n. The percentile confidence interval has as
left endpoint the empirical 0.025 percentile, and as right endpoint the empirical 0.975 percentile [61,
p. 170], [55, p. 203]. The pivotal confidence interval generated by bootstrapping has left endpoint
given by twice the mean minus the empirical 0.975 percentile, and right endpoint given by twice the
mean minus the empirical 0.025 percentile [55, p. 194]. Finally, another Gaussian-type confidence
interval may consider the mean plus/minus 1.96 times the bootstrap standard deviation of the mean.
In all our examples, we checked that these confidence intervals are coinciding, thus showing robustness
of our estimates. As n increases, better estimates for the mean are obtained.
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100 1000 104 105 106
complexity

10-5

10-4

0.001

0.010

mean relative error

MC x=3

MCQ x=3

1000 104 105 106
complexity

10-4

0.001

0.010

0.100

mean relative error

Figure 7.14: Plots in log-log scale of mean relative error versus complexity, at t = 10. The
dashed lines represent 95% confidence intervals. This figure corresponds to Example 7.8.

0. Therefore, we do not expect much variance reduction from the quadrature
rule.
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Figure 7.15: Estimated Sobol indices of the random inputs for Z(x, t = 10). This figure
corresponds to Example 7.9.

We work at t = 10, with degree of quadrature Q = 30 and Hermite poly-
nomials. In Figure 7.16 we plot the variances of the statistical estimators
from Algorithm 2 and Algorithm 3. We observe that the variances are greater
than in Example 7.8. Also, in contrast with Example 7.8, the variance is not
much reduced now with the quadrature rule. This was already expected when
analyzing the effect of the inputs on the variability of Z using Sobol indices.

Figure 7.17 depicts the estimated density function fX(t=10)(x) with Algo-
rithm 2 (legend “MC”) and Algorithm 3 (legend “MCQ”), by setting M =
40, 000 realizations and Q = 30. Both algorithms show similar estimates.

Figure 7.18 reports the log-log relationship between the relative error and
the complexity at t = 10, for different points x. The setting is analogous to
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Figure 7.16: Estimates of V̂[Z(x, t = 10)] and V̂[E[Z(x, t = 10)|S0(t = 10), S1(t = 10)]].
This figure corresponds to Example 7.9.
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Figure 7.17: Estimates of fX(t=10)(x) with Monte Carlo simulation (MC), and Monte Carlo
simulation plus quadrature rule (MCQ). This figure corresponds to Example 7.9.
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Example 7.8. We consider the complexities of Algorithm 2 and Algorithm 3 as
M and MQ, respectively, where Q = 30 and M is the number of realizations.
The “absolute error” is calculated with respect to the density function obtained
from Algorithm 2 with 100, 000, 000 realizations (this is considered as our
“exact density function”). We define the relative error as such absolute error
divided by the value of the “exact density function”. We run both algorithms
up to complexity floor(1.444), while keeping the relative errors for complexities
floor(1.4i), i = 14, 15, . . . , 44. The procedure is repeated n = 20 times to
determine an estimate for the mean relative error. A 95% Gaussian confidence
interval for the mean relative error is constructed. See Example 7.8 for further
details. We observe that the relative errors decay approximately with slope
1/2, due to the rate of convergence proportional to 1/

√
M of the Monte Carlo

simulation. In this example, the decay rate with slope 1/2 is true for both
algorithms as long as the sampling error of the “exact density function” does
not become dominant. In the figure, we observe that the estimated relative
error of Algorithm 2 tends to be constant sometime after 106 complexity, as
it becomes of similar order of magnitude to the sampling error of the “exact
density function”. Algorithm 2 shows superior to Algorithm 3 in this example:
in the plots, the depicted relation between the error and the complexity of
Algorithm 3 is shifted to the right, because of the multiplication by Q of
the number of realizations M in the complexity. As the effect of the initial
conditions on the variability of Z is small, the potentiality of Algorithm 3 is
lessened.
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Figure 7.18: Plots in log-log scale of mean relative error versus complexity, at t = 10. The
dashed lines represent 95% confidence intervals. This figure corresponds to Example 7.9.

In the two Examples 7.8, 7.9 presented until now, we studied two cases. When
Y0–Y1 produce high variability on V[Z(x, t)], then Algorithm 3 clearly wins
Algorithm 2 in terms of error versus complexity. On the contrary, when the
dispersion of Y0–Y1 is small compared to S0(t) and S1(t), Algorithm 3 does
no longer beat Algorithm 2. But in general, when the cost of obtaining real-
izations of S0(t) and S1(t) is larger (because we are working with truncated
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power series in N , for instance), the cost due to the Monte Carlo procedure
alone is comparable with the whole complexity. In such a case, Algorithm 2
never defeats Algorithm 3 by a big difference. This is the case studied in the
following Example 7.10.

Example 7.10 Consider (7.11) with inputs A0 = 4, A1 ∼ Uniform(0, 1),
B0 ∼ Triangular(−1, 0), B1 ∼ Bernoulli(0.35) and Y0, Y1 ∼ Normal(1, σ =
0.1), all of them independent. The random coefficients A0, A1, B0 and B1 are
bounded and the initial conditions Y0 and Y1 have finite absolute moments,
therefore there is an analytic solution X(t) in the Lp(Ω) sense, 1 ≤ p <∞.

In this example, the fundamental set cannot be written with simple closed-
form formulas. One needs to perform a dimensionality reduction of the prob-
lem by truncating the random power series at certain order N . We work
at time t = 1.5 with order of truncation N = 15. The goal is to compare
the approximations to the density fXN=15(t=1.5)(x) offered by Algorithm 2 and
Algorithm 3.

In Figure 7.19 we show the Sobol indices (7.14) and (7.15) for t = 1.5, com-
puted with the Monte Carlo estimates (7.19) and (7.20). The Sobol indices
demonstrate that the effect of Y0–Y1 on the variability of ZN=15(x, t = 1.5) is
very small.

1.0 1.2 1.4 1.6 1.8 2.0
x

0.2

0.4

0.6

0.8

1.0

Y0,Y1

S0 (1.5),S1 (1.5)

Y0,Y1,S0 (1.5),S1 (1.5)

Figure 7.19: Estimated Sobol indices of the random inputs for ZN=15(x, t = 1.5). This
figure corresponds to Example 7.10.

Hence, the variance reduction due to the quadrature rule is not very signif-
icant. This is confirmed by Figure 7.20, first panel, where we depict the
variances of the statistical estimators. We use quadrature degree Q = 30, so
that the expectation with respect to Y0–Y1 is practically error-free. In the sec-
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ond plot, we estimate the density function fXN=15(t=1.5)(x) using Algorithm 2
and Algorithm 3. We generated M = 10, 000 realizations.



[Z15(x,1.5)]



[[Z15(x,1.5)|S0

15(1.5),S1
15(1.5)]]

1.0 1.5 2.0 2.5 3.0
x

0.5

1.0

1.5

2.0
Density MC

Density MCQ

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
x

0.5

1.0

1.5

2.0

Figure 7.20: Estimates of V̂[Z15(x, t = 1.5)] and V̂[E[Z15(x, t = 1.5)|S0(t = 1.5), S1(t =
1.5)]]. Estimates of fX15(t=1.5)(x) (the legend MC stands for the Monte Carlo method,
the legend MCQ refers to Monte Carlo plus quadrature rule). This figure corresponds to
Example 7.10.

An analogous analysis to Example 7.9 of relative error versus complexity is
carried out here. The complexity of Algorithm 2 is MN , whereas the complex-
ity of Algorithm 3 is M(N +Q). Recall that M is the number of realizations,
N is the truncation order for the power series, and Q is the quadrature de-
gree. We work at the point x = 1.4, which belongs to the density domain (any
other point is equally valid). We consider as our “exact density function”
the output of Algorithm 2 with M = 10, 000, 000 realizations, i.e., complex-
ity MN = 150, 000, 000. We run both algorithms for complexities floor(1.437),
and keep the relative errors for complexities floor(1.4i), i = 14, 15, . . . , 37. The
procedure is repeated n = 20 times (in parallel) to obtain the mean relative
error. A 95% Gaussian confidence interval for the mean relative error has been
constructed. Algorithm 3 is run with Q = 10 and Q = 30 degrees of quadra-
ture. Figure 7.21 shows the results. Notice that, although Y0–Y1 have small
dispersion compared with the fundamental set, both Algorithms show similar
performances. Indeed, as each realization of the truncated fundamental set re-
quires now more expense (cost N), Algorithm 2 cannot defeat Algorithm 3 by
a big difference. The relative errors decrease with slope 1/2, but for Q = 10 we
perceive constant error for complexities greater than 105. This is because the
bias error caused by the quadrature rule of degree Q = 10 has been attained,
in contrast to the case Q = 30. This reflects the importance of selecting a
sufficiently large quadrature degree, especially when fY0

and fY1
are peaked

by small dispersion of Y0 and Y1.
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5000 1×104 5×104 1×105 5×105 1×106
complexity

0.001

0.005

0.010

0.050

0.100

mean relative error

MC x=1.4

MCQ x=1.4, Q=30

MCQ x=1.4, Q=10

Figure 7.21: Plots in log-log scale of mean relative error versus complexity, at t = 1.5 and
N = 15. The dashed lines represent 95% confidence intervals. This figure corresponds to
Example 7.10.

The conclusion of this section is summarized as follows:

Case 1 When the dispersion of Y0–Y1 is large compared with S0(t) and S1(t)
(this is checked with Sobol indices), then Algorithm 3 should be used.
See Example 7.8.

Case 2 When the variability of Y0–Y1 is small compared with S0(t) and S1(t)
(Sobol indices), and each realization of S0(t) and S1(t) takes certain com-
putational burden (for instance, because we are dealing with truncated
power series), then Algorithm 2 and Algorithm 3 are similar in terms of
error versus complexity. See Example 7.10.

Case 3 Finally, if the variability of Y0–Y1 is small compared with S0(t) and
S1(t) (Sobol indices), and each realization of S0(t) and S1(t) is immedi-
ately computed (when S0(t) and S1(t) are known with simple closed-form
expressions), then Algorithm 2 beats Algorithm 3. See Example 7.9.

In any of the three cases, Q should be taken large enough to avoid a quadrature
error greater than the sampling error.
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7.4 Multilevel Monte Carlo simulation

The idea of multilevel Monte Carlo [75, 76] is to speed up the convergence of
the Monte Carlo simulation by decomposing the target expectation into the
sum of expectations of increments (through a telescopic sum identity), whose
variances decay rapidly. In our case, we consider the following increments:

∆Z l0(x, t) = Z l+1
0 (x, t)− Z l0(x, t), ∆Z l1(x, t) = Z l+1

1 (x, t)− Z l1(x, t), (7.21)

for each level l ≥ 0, where each term was defined in (7.4). If we start from the
level l0 ≥ 0, these increments yield the following telescopic sum identities:

fX(t)(x) = E
[
Z l00 (x, t)

]
+
∞∑
l=l0

E
[
∆Z l0(x, t)

]
≈ fXN (t)(x) = E

[
Z l00 (x, t)

]
+

N−1∑
l=l0

E
[
∆Z l0(x, t)

]
,

fX(t)(x) = E
[
Z l01 (x, t)

]
+
∞∑
l=l0

E
[
∆Z l1(x, t)

]
≈ fXN (t)(x) = E

[
Z l01 (x, t)

]
+

N−1∑
l=l0

E
[
∆Z l1(x, t)

]
.

Each one of these expectations is approximated with Monte Carlo simulation.
The rate of convergence of the Monte Carlo simulation depends on the number
of realizations and V[Z l00 (x, t)], V[∆Z l0(x, t)], and V[Z l01 (x, t)], V[∆Z l1(x, t)]. If
Z l0(x, t) or Z l1(x, t) tend to Z l(x, t) in the mean square sense, then the variances
of the increments, V[∆Z l0(x, t)], V[∆Z l1(x, t)], converge to 0, which fastens the
convergence of the Monte Carlo procedure. The first level l0 is usually chosen
satisfying that, for l ≥ l0, the variances of the increments per level l are
decaying monotonically and rapidly.

However, as we are selecting either fY0
or fY1

(as in Chapter 6), this may
lead to numerical instabilities due to small denominators and large or infinite
variance, which causes noisy features and slows down the convergence of the
Monte Carlo procedure. This may hide the potentiality of multilevel Monte
Carlo.

To sort out this issue, we path-wise select ∆Z l0(x, t) or ∆Z l1(x, t), by discard-
ing the increment with the lowest denominator. The minimum among the
denominators is considered as a time-dependent random variable

V l(t) = min
{
|Sl+1

0 (t)|, |Sl0(t)|, |Sl+1
1 (t)|, |Sl1(t)|

}
. (7.22)
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We pick the index with no smallest denominator through the random variable

U l(t) = {1− i : the minimum of V l(t) is attained at i ∈ {0, 1}}. (7.23)

This random variable gives rise to two events,

H l
0(t) = {U l(t) = 0}, H l

1(t) = {U l(t) = 1}.

Let
Z l∆(x, t) = ∆Z l0(x, t)1Hl0(t) + ∆Z l1(x, t)1Hl1(t).

This random process models the selection of ∆Z l0(x, t) and ∆Z l1(x, t), accord-
ing to whether their expressions do not have the smallest denominator.

Let us see that with the expectations of Z l∆(x, t) we recover fX(t)(x), by sum-
ming up to infinity, and fXN (t)(x), by summing up to N − 1.

Proposition 7.11 We have the following sum identities for the density func-
tions fX(t)(x) and fXN (t)(x):

fX(t)(x) = E
[
Z l0(x, t)

]
+
∞∑
l=l0

E
[
Z l∆(x, t)

]
,

fXN (t)(x) = E
[
Z l0(x, t)

]
+

N−1∑
l=l0

E
[
Z l∆(x, t)

]
.

Proof. First, by Proposition 7.2, E[Z l0(x, t)] = fXl0 (t)(x). On the other hand,

E[Z l∆(x, t)] = E
[
∆Z l0(x, t)1Hl0(t)

]
+ E

[
∆Z l1(x, t)1Hl1(t)

]
= E

[
∆Z l0(x, t)

∣∣H l
0(t)

]
P
[
H l

0(t)
]

+ E
[
∆Z l1(x, t)

∣∣H l
1(t)

]
P
[
H l

1(t)
]

= E
[
Z l+1

0 (x, t)
∣∣H l

0(t)
]
P
[
H l

0(t)
]
− E

[
Z l0(x, t)

∣∣H l
0(t)

]
P
[
H l

0(t)
]

+E
[
Z l+1

1 (x, t)
∣∣H l

1(t)
]
P
[
H l

1(t)
]
− E

[
Z l1(x, t)

∣∣H l
1(t)

]
P
[
H l

1(t)
]
.

By Lemma 7.1 and the law of total probability,

E[Z l∆(x, t)] = fXl+1(t)

(
x
∣∣H l

0(t)
)
P
[
H l

0(t)
]
− fXl(t)

(
x
∣∣H l

0(t)
)
P
[
H l

0(t)
]

+fXl+1(t)

(
x
∣∣H l

1(t)
)
P
[
H l

1(t)
]
− fXl(t)

(
x
∣∣H l

1(t)
)
P
[
H l

1(t)
]

= fXl+1(t)(x)− fXl(t)(x).

The proposition follows from the telescopic sum identities fX(t)(x) = fXl0 (t)(x)+∑∞
l=l0

(fXl+1(t)(x)− fXl(t)(x)) and fXN (t)(x) = fXl0 (t)(x) +
∑N−1

l=l0
(fXl+1(t)(x)−

fXl(t)(x)).
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With the objective of approximating the target density function fX(t)(x) point-
wise, we truncate the telescopic sum identity at increment N−1, which causes
the bias error θN(x, t) = fX(t)(x)− fXN (t)(x):

fX(t)(x) ≈ fXN (t)(x) = E
[
Z l0(x, t)

]
+

N−1∑
l=l0

E
[
Z l∆(x, t)

]
.

The expectations E[Z l0(x, t)], E[Z l∆(x, t)], l = l0, . . . , N − 1, are computed
independently with Monte Carlo simulation, whose rate of convergence de-
pends on the finite number of realizations and on V[Z l0(x, t)], V[Z l∆(x, t)],
l = l0, . . . , N − 1.

We have ∥∥Z l∆(x, t)
∥∥

2
≤
∥∥∆Z l0(x, t)

∥∥
2

+
∥∥∆Z l1(x, t)

∥∥
2
.

Thus, if both ∆Z l0(x, t) and ∆Z l1(x, t) have finite variances, then so does
Z l∆(x, t). On the contrary, if ∆Z l0(x, t) or ∆Z l1(x, t) have infinite variances,
then Z l∆(x, t) may have finite variance, instead. In any of these cases, we
cannot get worse in terms of infinite variance.

We hope to have the variances V[Z l0(x, t)] and V[Z l∆(x, t)], l = l0, . . . , N − 1,
finite, to exploit the decay of V[Z l∆(x, t)] to 0 with l. The first level l0 is
chosen such that V[Z l∆(x, t)] is decreasing with l ≥ l0, monotonically and fast.
The best case is when logV[Z l∆(x, t)] is decreasing linearly with l ≥ l0, as
exponential decay holds for the variances of the increments.

Let M = (Nl0 ;Ml0 , . . . ,MN−1) be the number of simulations performed: Nl0

for Z l0(x, t), Ml for Z l∆(x, t), l = l0, . . . , N − 1. In principle, the number of
simulations may depend on (x, t), although we drop this possible dependence
along this discussion.

Let fN,MX (x, t) be the final approximation to fX(t)(x):

fN,MX (x, t) =
1

Nl0

Nl0∑
i=1

Z l0(x, t, ωi,l0) +
N−1∑
l=l0

1

Ml

Ml∑
i=1

Z l∆(x, t, ωi,l,∆), (7.24)

where ω with the appropriate subindices denote outcomes. The mean square
error in the approximation to fXN (t)(x) is given by the variance of the statis-
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7.4 Multilevel Monte Carlo simulation

tical error EN,M(x, t) = fXN (t)(x)− fN,MX (x, t), which is∥∥∥fXN (t)(x)− fN,MX (x, t)
∥∥∥2

2
= V [EN,M(x, t)]

=
V
[
Z l0(x, t)

]
Nl0

+
N−1∑
l=l0

V
[
Z l∆(x, t)

]
Ml

. (7.25)

The total cost is

WN,M = Nl0cl0 +
N−1∑
l=l0

MlCl, (7.26)

where cl0 denotes the number of operations per realization of Z l0(x, t), and Cl
denotes the number of operations per realization of Z l∆(x, t), l = l0, . . . , N −1.
In our case, we consider cl = Cl = l2 when dealing with A(t) and B(t) as
random infinite expansions, and cl = Cl = l when A(t) and B(t) are random
polynomials.

Proposition 7.12 Given a fixed variance (7.25) ε2, the cost (7.26) is mini-
mized by selecting

Nl0(x, t) = ε−2

(√
V [Z l0(x, t)] cl0 +

N−1∑
l=l0

√
V [Z l∆(x, t)]Cl

)√
V [Z l0(x, t)]

cl0
,

(7.27)

Ml(x, t) = ε−2

(√
V [Z l0(x, t)] cl0 +

N−1∑
l=l0

√
V [Z l∆(x, t)]Cl

)√
V [Z l∆(x, t)]

Cl
,

(7.28)
for l = l0, . . . , N − 1. In such a case, the total cost (7.26) is given by

WN,M = ε−2

(√
V [Z l0(x, t)] cl0 +

N−1∑
l=l0

√
V [Z l∆(x, t)]Cl

)2

. (7.29)

Proof. To simplify the notation, we drop the dependencies on t and x. By
treating the integers Nl0 and Ml as continuous variables, we want to minimize
the real function

W (Nl0 ;Ml0 , . . . ,MN−1) = Nl0cl0 +
N−1∑
l=l0

MlCl

subject to the constrain

V (Nl0 ;Ml0 , . . . ,MN−1) =
V
[
Z l0
]

Nl0

+
N−1∑
l=l0

V
[
Z l∆
]

Ml

= ε2.
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Using Lagrange multipliers, we consider the Lagrangian function φ = W +λV.
We impose ∇φ = 0 to find its stationary points:

0 =
∂φ

∂Nl0

= cl0 − λ
V
[
Z l0
]

N2
l0

, 0 =
∂φ

∂Ml

= Cl − λ
V
[
Z l∆
]

M2
l

.

We obtain the unique critical point

Ñl0 = µ

√
V [Z l0 ]

cl0
, M̃l = µ

√
V [Z l∆]

Cl
,

being µ =
√
λ. Using the restriction on V we compute the parameter µ:

µ = ε−2

(√
V [Z l0(x, t)] cl0 +

N−1∑
l=l0

√
V [Z l∆(x, t)]Cl

)
. (7.30)

Hence, we obtain the stated number of simulations in (7.27)–(7.28).

Let us see that M̃ = (Ñl0 ; M̃l0 , . . . , M̃N−1) is indeed a global minimum of V on

Θ =
{
M = (Nl0 ;Ml0 , . . . ,MN−1) ∈ (0,∞)N−l0+1 : V (M) = ε2

}
.

First, notice that

Nl0 > V
[
Z l0
]
ε−2, Ml > V

[
Z l∆
]
ε−2, l = l0, . . . , N − 1.

Second, since V(M) → +∞ whenever any component of M tends to +∞,

we can find an interval (0, R)N−l0+1 such that V(M) ≥ 2V(M̃) for any M /∈
(0, R)N , M ∈ Θ. Hence, we can work in the compact set

Θ̃ = Θ ∩
([

V
[
Z l0
]
ε−2, R

]
×

N−1∏
l=l0

[
V
[
Z l∆
]
ε−2, R

])
,

where V attains a global minimum by Weierstrass extreme value theorem.
Let M be such a global minimum. By the previous discussion,

M ∈
(
V
[
Z l0
]
ε−2, R

)
×

N−1∏
l=l0

(
V
[
Z l∆
]
ε−2, R

)
.

As M belongs to an open set, necessarily ∇φ(M,λ) = 0, for some parameter

λ. Then M = M̃ , as wanted.
�
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7.4 Multilevel Monte Carlo simulation

For a truncation order N , and for a statistical error variance ε2 by running
ε−2V[ZN(x, t)] simulations, the cost of Algorithm 2 is ε−2V[ZN(x, t)]cN . For
fixed N , both approaches (standard Monte Carlo in Algorithm 2 and multi-
level Monte Carlo) yield a cost O(ε−2). However, there is a significant differ-
ence when N grows. The complexity cN = N (if A(t) and B(t) are random
polynomials) or cN = N2 (if A(t) and B(t) are infinite random series) per
realization of ZN(x, t) grows to infinity. Then the cost of Algorithm 2 tends
to infinity as N → ∞, linearly (if cN = N) or quadratically (if cN = N2). If
we choose N = O(log ε−1) to ensure a bias error less than ε (under exponen-
tial convergence of fXN (t)(x) with N), then the complexity of Algorithm 2 is

O(ε−2 log2 ε), when cN = N2, and O(ε−2 log ε−1), when cN = N . However, in
the multilevel approach the cost (7.29) remains O(ε−2) despite having N →∞,

as
√
V[Z l0(x, t)]cl0 +

∑∞
l=l0

√
V[Z l∆(x, t)]Cl <∞ in general. For instance, when

V[Z l∆(x, t)] decreases exponentially with l. Hence, from this theoretical analy-
sis, multilevel Monte Carlo is superior to standard Monte Carlo, at least when
N grows.

In practice, multilevel Monte Carlo shows up less complexity than standard
Monte Carlo from certain level l0 and N > l0. It is very convenient when it
comes to optimality of the multilevel Monte Carlo approach to pick l0 such
that its complexity is strictly less than that of Algorithm 2. This choice can
be made heuristically, on the fly, and it does not pose any challenge.

In numerical applications, the main computational burden of multilevel Monte
Carlo is due to the number of samples Nl0 of Z l0(x, t). For the last levels near
N , which are the most complex ones, we run only few samples. In general, from
a certain level l, only 1 realization of Z l∆(x, t) is required. From a certain order
of truncation N , the complexity of multilevel Monte Carlo will be constant;
whereas the complexity of the standard Monte Carlo strategy will be growing
up to infinity with N , linearly or quadratically. In our setting, multilevel
Monte Carlo turns out to be useful when high accuracy is required.

Given l0, N > l0 and ε, the cost of multilevel Monte Carlo is approximately
ε−2V[Z l0(x, t)]cl0 , because the sequence V[Z l∆(x, t)]Cl decreases rapidly with
l. The expense of standard Monte Carlo is ε−2V[ZN(x, t)]cN . Assuming that
V[Z l0(x, t)] ≈ V[ZN(x, t)], which is quite realistic if l0 and N > l0 are not
too small, the cost of multilevel Monte Carlo is reduced by factor cl0/cN ,
approximately. The largest reduction is thus obtained for problems (3.1) with
infinite series inputs, since in such a case cN grows quadratically with N .
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The complete multilevel Monte Carlo approach is presented in what follows
in the form of algorithms. Fixed the time t and the maximum level N , the
whole procedure is divided into different parts:

Part 1 In Algorithm 4, we determine V[Z l∆(x, t)] for 0 ≤ l ≤ N − 1. They
are computed à la Monte Carlo, but not using an excessive amount mV
of realizations, as we are only interested in their magnitudes. The main
loop over the levels l can be carried out in parallel.

A possible approach to pick mV is based on the following fact: the statis-
tical error variance in the Monte Carlo estimation of V[Z l∆(x, t)] is given
by

V
[(
Z l∆ − E

[
Z l∆
])2]

mV
=

(
κ
[
Z l∆
]
− 1
)
V[Z l∆(x, t)]2

mV
,

where κ denotes the kurtosis. Thus, the accuracy of the Monte Carlo
estimation of V[Z l∆(x, t)] depends on the kurtosis of Z l∆(x, t). In practice,
if desired, a preliminary analysis of the magnitude of κ[Z l∆(x, t)] using
Monte Carlo simulation could be carried out to select mV properly.

Part 2 In Algorithm 5, we estimate V[Z l(x, t)] for 1 ≤ l ≤ N (with par-
allel computing). Then we set the ratios between the complexities of
Algorithm 2,

WMC
N (t) = ε−2cN max

x
V[ZN(x, t)], (7.31)

and of the multilevel Monte Carlo strategy with initial level l1 =1, . . . , N−
1,

Wmulti
l1,N

(t) = ε−2 max
x

(√
V [Z l1(x, t)] cl1 +

N−1∑
l=l1

√
V [Z l∆(x, t)]Cl

)2

.

(7.32)
These estimates are done via standard Monte Carlo simulation with not
too many realizations mV. The ratio of the complexities is given by

Rl1,N (t) =
WMC
N (t)

Wmulti
l1,N

(t)
=

maxx V[ZN (x, t)]cN

maxx
(√

V [Zl1(x, t)] cl1 +
∑N−1
l=l1

√
V
[
Zl∆(x, t)

]
Cl
)2 .

(7.33)

Notice that this ratio is independent of any statistical error variance ε2.
In order not to have x-dependent complexities, we take the maximum on
x lying in the density domain of interest. If Rl1,N(t) > 1, then multilevel
Monte Carlo starting from level l1 is more efficient than standard Monte
Carlo.
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We define the first level l0 = l0(N, t) as the maximizer of

max
l1: 1≤l1<N

Rl1,N(t) > 1. (7.34)

This way we are achieving the maximum optimality of multilevel Monte
Carlo. In general, the variances V[Z l∆(x, t)] start to decrease monotoni-
cally and fast with l before the maximizer l0.

Part 3 Finally, in Algorithm 6, we perform the whole multilevel Monte Carlo
procedure. Given a statistical error variance ε2 (see (7.25)), and given
the first level l0 obtained in Part 2, we first determine the parameter µ
using (7.30). Then we obtain the optimal Nl0(x, t) and Ml(x, t) for l =
l0, . . . , N − 1, using (7.27) and (7.28) from the constrained minimization
problem. We set Nl0(t) and Ml(t) as the ceiling of the maximum on x
lying in the density domain of interest. Thus, the number of simulations
is an integer independent of x.

Once the number of simulations is fixed, we estimate E[Z l0(x, t)] and
E[Z l∆(x, t)], l = l0, . . . , N − 1, using standard Monte Carlo simulation.
The output discretized function fN,MX (x, t) is (7.24), which estimates
fXN (t)(x) with root mean square error ‖fXN (t)(x) − fN,MX (x, t)‖2 ≤ ε,
for all x.

In general, the statistical error variance ε2 and the order of truncation N
are chosen as follows. At the beginning, one can estimate the bias error of
the density approximation: given a very large order of truncation N∞ � 1,
and taking into account that ZN∞(x, t) ≈ Z(x, t), the bias error at order
1 ≤ N � N∞, |fX(t)(x)− fXN (t)(x)|, is estimated as∣∣∣Ê [ZN∞(x, t)− ZN(x, t)

]∣∣∣ . (7.35)

The expectation is estimated using standard Monte Carlo simulation. Suppose
we fix a target global error δ. We split the target error as the sum of the bias
error and the sampling error: δ = εbias + εsampling. We take N such that (7.35)
is less than εbias for all x. Then we apply the multilevel Monte Carlo procedure
with statistical error variance ε2sampling. Keep in mind that the error δ cannot
be as small as we want, since the sampling error εsampling must be achievable.

To apply the multilevel Monte Carlo procedure, we need N such that the
maximum (7.34) is greater than 1. This holds for large N for sure, according
to the theoretical discussion. Thus, in practice, we can choose εbias small
to make N large, and then run the multilevel Monte Carlo algorithm with
εsampling = δ − εbias. In general, the decomposition of δ into εbias and εsampling

173



Chapter 7.

Algorithm 4 Computation of V[Z l∆(x, t)] for 0 ≤ l ≤ N − 1, see Part 1 in
Section 7.4.

Inputs: t0; N ; fY0
; fY1

; probability distribution of A0, . . . , AN ,
B0, . . . , BN ; number mV of realizations in the Monte Carlo procedure;
t; and discretization vector x of the density domain.

1: for l = 0, . . . , N − 1 do . Loop through levels
2: Σ1,Σ2 ← 0 . Initialize the samples sum
3: for i = 1, . . . ,mV do . Monte Carlo loop
4: Set a realization of Sl0(t), Sl1(t), Sl+1

0 (t) and Sl+1
1 (t)

5: if Ul = 0 then . See (7.22)–(7.23)
6: Set a realization of Y1

7: Σ1 ← Σ1 + ∆Z l0(x, t) . See (7.21)
8: Σ2 ← Σ2 + ∆Z l0(x, t)2

9: else
10: Set a realization of Y0

11: Σ1 ← Σ1 + ∆Z l1(x, t) . See (7.21)
12: Σ2 ← Σ2 + ∆Z l1(x, t)2

13: end if
14: end for
15: V[Z l∆(x, t)]← Σ2/mV − (Σ1/mV)2 . Set sample variance
16: end for
17: Return V[Z l∆(x, t)], l = 0, . . . , N − 1 . Estimate of V[Z l∆(x, t)]
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7.4 Multilevel Monte Carlo simulation

Algorithm 5 Estimates of l0 and V[Z l0(x, t)], see Part 2 in Section 7.4.

Inputs: t0; N ; fY0
; fY1

; probability distribution of A0, . . . , AN ,
B0, . . . , BN ; variances V[Z l∆(x, t)], l = 0, . . . , N − 1, determined in Algo-
rithm 4; number mV of realizations in the Monte Carlo procedure; costs cl
and Cl, l = 0, . . . , N ; t; and discretization vector x of the density domain.

1: for l = 1, . . . , N do . Loop through levels
2: Σ1,Σ2 ← 0 . Initialize the samples sum
3: for i = 1, . . . ,mV do . Monte Carlo loop
4: Set a realization of Sl0(t) and Sl1(t)
5: if |Sl0(t)| ≥ |Sl1(t)| then
6: Set a realization of Y1

7: Σ1 ← Σ1 + Z l0(x, t) . See (7.4)
8: Σ2 ← Σ2 + Z l0(x, t)2

9: else
10: Set a realization of Y0

11: Σ1 ← Σ1 + Z l1(x, t) . See (7.4)
12: Σ2 ← Σ2 + Z l1(x, t)2

13: end if
14: end for
15: V[Z l(x, t)]← Σ2/mV − (Σ1/mV)2 . Set sample variance
16: end for
17: Set ratio (7.33) of complexities, Rl1,N(t), l1 = 1, . . . , N − 1
18: Take l0 as the maximizer of the ratio, between levels 1, . . . , N − 1

(see (7.34))
19: Return l0 and V[Z l0(x, t)]
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Algorithm 6 Computation of fXN (t)(x) with multilevel Monte Carlo simula-
tion, see Part 3 in Section 7.4.

Inputs: t0; N ; fY0
; fY1

; probability distribution of A0, . . . , AN ,
B0, . . . , BN ; first level l0 determined on the fly from Algorithm 5; vari-
ances V[Z l∆(x, t)], l = l0, . . . , N−1, determined from Algorithm 4; variance
V[Z l0(x, t)] determined from Algorithm 5; target root mean square error
ε; costs cl0 and Cl, l = l0, . . . , N − 1; t; and discretization vector x of the
density domain.

1: µ(x, t)← ε−2(
√
V [Z l0(x, t)] cl0 +

∑N−1
l=l0

√
V [Z l∆(x, t)]Cl) . See (7.30)

2: Nl0(x, t)← µ(x, t)
√
V[Z l0(x, t)]/cl0 . See (7.27)

3: Ml(x, t)← µ(x, t)
√

V[Z l∆(x, t)]/Cl, l = l0, . . . , N − 1 . See (7.28)
4: Nl0(t)← ceiling(maxxNl0(x, t))
5: Ml(t)← ceiling(maxxMl(x, t)), l = l0, . . . , N − 1
6: Σ← 0 . Initialize the samples sum for Z l0(x, t)
7: for i = 1, . . . , Nl0(t) do . Monte Carlo loop for E[Z l0(x, t)]
8: Set a realization of Sl00 (t) and Sl01 (t)
9: if |Sl00 (t)| ≥ |Sl01 (t)| then

10: Set a realization of Y1

11: Σ← Σ + Z l00 (x, t) . See (7.4)
12: else
13: Set a realization of Y0

14: Σ← Σ + Z l01 (x, t) . See (7.4)
15: end if
16: end for
17: E[Z l0(x, t)]← Σ/Nl0(t) . Set sample average for Z l0(x, t)
18: for l = l0, . . . , N − 1 do . Loop through levels
19: Σ← 0 . Initialize the samples sum for Z l∆(x, t)
20: for i = 1, . . . ,Ml(t) do . Monte Carlo loop for E[Z l∆(x, t)]
21: Set a realization of Sl0(t), Sl1(t), Sl+1

0 (t) and Sl+1
1 (t)

22: if Ul = 0 then . See (7.22)–(7.23)
23: Set a realization of Y1

24: Σ← Σ + ∆Z l0(x, t) . See (7.21)
25: else
26: Set a realization of Y0

27: Σ← Σ + ∆Z l1(x, t) . See (7.21)
28: end if
29: end for
30: E[Z l∆(x, t)]← Σ/Ml(t) . Set sample average for Z l∆(x, t)
31: end for
32: fN,MX (x, t)← E[Z l0(x, t)] +

∑N−1
l=l0

E[Z l∆(x, t)] . See (7.24)

33: Return fN,MX (x, t) . Approximation of fXN (t)(x)
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7.4 Multilevel Monte Carlo simulation

is made heuristically, depending on the size of N for which (7.34) is greater
than 1.

We showcase the multilevel Monte Carlo method in numerical experiments.
The first example deals with (3.1) having infinite series expansions in the
input data. We will showcase the methodology proposed step-by-step. We will
observe that (7.34) is greater than 1 for N ≥ 1, therefore multilevel Monte
Carlo will always show superior to standard Monte Carlo. In the second
example, (7.34) will be greater than 1 only for large N . To take advantage
of multilevel Monte Carlo, the error δ will be chosen small, so that N will be
large enough.

Example 7.13 Consider (3.1) with t0 = 0, Y0, Y1 ∼ Normal(2, 3), B(t) = t
and

A(t) =
∞∑
n=0

Un
n!
tn,

where U0, U1, . . . are independent random variables Beta(11, 15). The series
defining A(t) converges in L∞(Ω) for all t ∈ R. There is a unique analytic
stochastic process X(t) that solves (3.1) in the Lp(Ω)-sense, 1 ≤ p <∞.

Algorithm 4 is run for N ≤ 20, using mV = 10, 000 realizations. Using Algo-
rithm 5 (with costs cl = Cl = l2), we estimate the ratios of complexities (7.33)
for l1 ∈ [1, 19], N ∈ [l1 + 1, 20]. In Figure 7.22 we present the ratios. Observe
that they are greater than 1, therefore indicating higher efficiency of multilevel
Monte Carlo. For each N , we keep the level l0 maximizing the ratio, see (7.34).
For N ≥ 7, the same maximizer l0 = 6 is obtained.

Figure 7.23 reports the ratios for N > l0 = 6. The ratios grow roughly
quadratically with N , with growth constant 1/l20. This is because the com-
plexity of standard Monte Carlo increases quadratically with N , while the cost
of multilevel Monte Carlo becomes constant from a certain level N . Small os-
cillations may be observed because of the finite number of simulations mV used
to estimate the variances.

Once we have the parameters of the multilevel Monte Carlo strategy, we aim
at approximating pointwise the probability density function of X(t) at t = 1.5,
fX(t=1.5)(x). Figure 7.24 reports in log-scale the estimated bias errors (7.35)
with N (the maximum in x of (7.35) has been taken). We fix N∞ = 100 and
consider N ∈ [1, 20]. The estimates are computed with standard Monte Carlo
simulation, using 20, 000 realizations. Exponential decrease of the bias error is
perceived. The oscillating behavior of the bias estimates in the plot is due to
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Figure 7.22: Ratios of complexities between standard Monte Carlo and multilevel Monte
Carlo (see (7.33)). The points indicate the maximum ratio with l1 per truncation N . This
figure corresponds to Example 7.13.

8 10 12 14 16 18 20
N

2

4
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8

ratio

Figure 7.23: Ratios of complexities between standard Monte Carlo and multilevel Monte
Carlo (see (7.33)), for N > l0 = 6. This figure corresponds to Example 7.13.
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7.4 Multilevel Monte Carlo simulation

their possible non-monotonic decay, and to the finite number of Monte Carlo
realizations.

5 10 15 20
N

10-8

10-6

10-4

10-2

bias

Figure 7.24: Estimated bias errors with N in log-scale. This figure corresponds to Exam-
ple 7.13.

Suppose that we wish to approximate fX(t=1.5)(x) uniformly with root mean
square error δ > 0. Let ε = εbias = εsampling = δ/2. We pick the first N = N(ε)
for which the estimated bias error is less than ε. Multilevel Monte Carlo can be
applied with l0 = 6, that N(ε), and statistical error variance ε2. In Figure 7.25,
we illustrate the relation between ε and the complexities of multilevel and
standard Monte Carlo, with maximum level N = N(ε), using (7.31)–(7.32).
The following approximate relations hold:

WMC
N(ε) ∝ ε−2N(ε)2, Wmulti

l0,N(ε) ∝ ε−2l20 (7.36)

(the symbol ∝ denotes proportionality to a constant). The cost of multilevel
Monte Carlo is reduced by factor l20/N(ε)2. In log-log scale, the complexity
of multilevel Monte Carlo increases linearly with respect to ε−1, with slope 2.
On the contrary, for standard Monte Carlo, such relation is shifted up with
2 logN(ε). The sequence N(ε) increases very slowly with ε → 0, because of
the fast decrease of the bias errors towards 0. But as ε→ 0, multilevel Monte
Carlo becomes more and more efficient compared with standard Monte Carlo.

Table 7.1 reports, for different statistical error variances ε2, the first N(ε) for
which the estimated bias error is less than ε, the complexities of the multilevel
and the standard Monte Carlo strategies using (7.31)–(7.32), and the number
of simulations. The indices N(ε) grow slowly with ε, because of the fast decay
of the bias errors to 0. The cost of the multilevel approach is smaller than
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multilevel MC

standard MC
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complexityN (ϵ)
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Figure 7.25: Sampling error ε versus complexity using (7.31)–(7.32) (with N(ε)), in log-log
scale. The last plot is a zoom. This figure corresponds to Example 7.13.

ε N(ε) Wmulti
l0,N(ε) Nl0 ;Ml0 , . . . ,MN(ε)−1 WMC

N(ε) samples MC

0.002 8 3.5× 104 1173; 107, 52 5.8× 104 913
0.001 9 1.5× 105 4877; 447, 216, 99 3.0× 105 3673
0.0005 9 6.1× 105 19507; 1787, 861, 395 1.2× 106 14692
0.00025 9 2.4× 106 78028; 7147, 3442, 1580 4.8× 106 58767
0.0001 9 1.5× 107 487670; 44669, 21508, 9873 3.0× 107 367291
0.00005 12 6.4× 107 1974873;181699,87707,42121,12293,5128,2859 2.2× 108 1507941

Table 7.1: Sampling error ε, index N(ε), complexities of the multilevel and the standard
Monte Carlo strategies using (7.31)–(7.32), and the number of simulations. This table cor-
responds to Example 7.13.

standard Monte Carlo; for N = 9 it is half of the cost, for N = 12 it is
decreased by factor greater than three (see also Figure 7.23 concerning the
ratios of the complexities). In the multilevel Monte Carlo method, most of
the simulations are localized at the first level l0 = 6 with Nl0 realizations,
while for the increments the number of realizations Ml is decreasing.

The sampling errors ε considered in Figure 7.25 and Table 7.1 are theoretical.
Given a theoretical root mean square error δ, ε = δ/2 and N = N(ε), the

actual root mean square error δ̂ = maxx ‖fX(t)(x)− f̂XN (t)(x)‖2 is smaller than
δ. This is presented in Figure 7.26. As the exact density function fX(t=1.5)(x)
is unknown, we first estimate it with very small bias and sampling errors, and
regard this estimation as the exact density function. Then the real error δ̂
is estimated via a sampled root mean square error from several realizations
of f̂XN (t=1.5). In Figure 7.26, we observe that the multilevel strategy is more
efficient than the standard Monte Carlo simulation, as expected from our
theoretical analysis in Figure 7.25.
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5×104 1×105 5×105 1×106
complexityN (δ/2)

0.001

0.002

rmse

δ multilevel MC

δ
 multilevel MC

δ standard MC

δ
 standard MC

Figure 7.26: Root mean square error (rmse) versus complexity using (7.31)–(7.32) (with
N(δ/2)), in log-log scale. We plot the theoretical rmse δ (solid lines) and the real rmse δ̂
(dashed lines). This figure corresponds to Example 7.13.

Let us approximate fX(t=1.5)(x) uniformly with theoretical root mean square
error δ = 0.001. Let ε = δ/2 = 0.0005. We pick the first N for which
the estimated bias error is less than ε: N = N(ε) = 9. Then we apply
the multilevel Monte Carlo procedure from Algorithm 6 with statistical error
variance ε2. The optimal number of simulations for N = 9 is the following (see
Table 7.1): M = (N6;M6,M7,M8) = (19507; 1787, 861, 395). As expected,
most of the cost is localized at level 6, while for the increments the cost goes
down. The complexity of multilevel Monte Carlo is 6.1× 105, which is smaller
than that of standard Monte Carlo, 1.2 × 106. In Figure 7.27, first panel, we
plot the estimate f̂XN=9(t=1.5)(x) = fN=9,M

X (x, t = 1.5) (output of Algorithm 6).

It satisfies ‖fX(1.5)(x)− f̂X9(1.5)(x)‖2 ≤ δ, for all x ∈ R. In the second plot, we
show the estimated densities for N = 8, 9 and 10 computed with Algorithm 6,
with statistical error standard deviation ε = 0.0005. Observe that the densities
overlap, thus indicating the expected pointwise convergence.

Example 7.14 We study problem (7.11) with one degree polynomial coef-
ficients. The probability distributions for the random inputs are A0 = 4,
A1 ∼ Uniform(−3, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35) and
Y0, Y1 ∼ Normal(2, σ = 3), all them independent. Due to the boundedness
of A0, A1, B0 and B1, this problem has a unique analytic stochastic solution
X(t), t ∈ R, in the sense of the Lp(Ω) random calculus, for 1 ≤ p <∞.

The objective is to approximate the probability density function fX(t)(x) using
the multilevel Monte Carlo approach, by estimating fXN (t)(x). The theoretical
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Figure 7.27: Estimate f̂X9(1.5)(x). Estimates f̂XN (1.5)(x), for N = 8, 9, 10. This figure
corresponds to Example 7.13.

results guarantee that {fXN (t)(x)}N≥0 converges to fX(t)(x) pointwise and in
Lp(R), 1 ≤ p <∞, as N →∞. We work at time t = 1.5.

We run Algorithm 4 for N large (till N = 70), using parallel computing
and mV = 50, 000 realizations. The number of realizations mV is actually
excessively large, but we want to be quite exact in this example to show
accurate complexities.

Using Algorithm 5 (with costs cl = Cl = l), we obtain the ratios of complex-
ities between standard Monte Carlo and multilevel Monte Carlo, see (7.33).
In Figure 7.28, we vary the starting level l1 ∈ [1, 69] and the maximum level
N ∈ [l1 + 1, 70] and plot the corresponding ratios. Observe that the maxi-
mums (7.34) are greater than 1 (indicating that multilevel Monte Carlo has
higher efficiency) for N ≥ 36 only, in contrast to Example 7.13. For each N ,
we keep l0 maximizing the ratio, see (7.34). For N = 36, the maximizer is
l0 = 35; for N = 37 and 38, the maximizer is l0 = 36. For all N ≥ 39, it is
obtained the same l0 = 38 as the maximizer.

In Figure 7.29 we report the ratios for N > l0 = 38. The ratios are greater
than 1 and, as N increases, they tend to infinity at linear rate approximately,
although with small slope ≈ 1/l0. The complexity of standard Monte Carlo
grows linearly to infinity with N , while the complexity of multilevel Monte
Carlo becomes constant from a certain N . The oscillating behavior of the
depicted ratios is due to the statistical error driven by the previous Monte
Carlo estimates for the variances. When mV gets larger, the oscillations are
mitigated and more exact results are obtained.
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7.4 Multilevel Monte Carlo simulation

Figure 7.28: Ratios of complexities between standard Monte Carlo and multilevel Monte
Carlo (see (7.33)). The points indicate the maximum ratio with l1 per truncation N . The
transparent horizontal surface represents the ratio 1. This figure corresponds to Exam-
ple 7.14.
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Figure 7.29: Ratios of complexities between standard Monte Carlo and multilevel Monte
Carlo (see (7.33)), for N > l0 = 38. This figure corresponds to Example 7.14.
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Let us approximate fX(t=1.5)(x) uniformly with theoretical root mean square
error δ = 0.0001. Figure 7.30 shows the estimated bias errors (7.35), with
N∞ = 200 and 20, 000 Monte Carlo simulations (the maximum in x of (7.35)
has been taken). We denote the bias errors as εNbias. The bias error needs quite
large truncation order N to start decreasing (up to N = 25 the bias is 0.1
approximately), and for N ≥ 35 it drops abruptly. The estimated bias error
is less than δ only for N ≥ 37, therefore we are in the region where multilevel
Monte Carlo is more efficient than standard Monte Carlo. Notice that, in this
example, we have fixed δ small on purpose to take advantage of the multilevel
Monte Carlo strategy. In the previous Example 7.13, we did not worry about
δ nor its decomposition because multilevel Monte Carlo showed more efficient
than standard Monte Carlo from the very first truncation order.

10 20 30 40 50
N

10-6

10-3

bias

Figure 7.30: Estimated bias errors with N in log-scale. This figure corresponds to Exam-
ple 7.14.

In Figure 7.31 we plot, with N ≥ 37, the complexities of the multilevel and
the standard Monte Carlo approaches with εsampling = δ − εNbias (δ = 0.0001),
using (7.31)–(7.32). We observe that the complexity of multilevel Monte Carlo
is smaller, as expected. With formulas, we have

WMC
N (εsampling) ∝ (δ − εNbias)

−2N, Wmulti
l0,N

(εsampling) ∝ (δ − εNbias)
−2l0.

When N ≈ l0, we have δ− εNbias ≈ 0, so the complexities are large. When N is
large, then δ − εbias ≈ δ, so WMC

N (εsampling) ∝ N ↗∞ and Wmulti
l0,N

(εsampling)↘
constant.

Given δ = 0.0001, in the case of standard Monte Carlo the minimum complex-
ity is attained when N = 43 (bias εN=43

bias = 5× 10−7), this being 2× 108.

184



7.4 Multilevel Monte Carlo simulation

multilevel MC

standard MC

38 40 42 44 46 48 50
N

1×108
2×108
3×108
4×108
5×108
6×108
7×108

complexity(ϵsampling=δ-ϵbias
N )

Figure 7.31: Complexities of the standard and multilevel Monte Carlo approaches, see
(7.31)–(7.32), with εsampling = δ − εNbias, δ = 0.0001 fixed. This figure corresponds to Exam-
ple 7.14.

For N = 50 > l0 = 38, we run the multilevel Monte Carlo algorithm with
statistical error variance ε2sampling = (δ − εN=50

bias )2. We choose N = 50 because
the corresponding cost of multilevel Monte Carlo is uniformly cheaper than
standard Monte Carlo applied with any order of truncation. Also, the com-
plexity of multilevel Monte Carlo becomes constant for N ≥ 50. For N = 50,
the optimal number of simulations is M = (N38;M38, . . . ,M50) = (4527935;
12447, 4977, 2624, 1507, 475, 292, 126, 45, 22, 9, 4, 2), with a complexity that
is 1.7× 108. Figure 7.32, first panel, plots the graph of the estimated density
function f̂XN=50(t=1.5)(x), which approximates the true density fX(t=1.5)(x) with
root mean square error less than δ, for all x ∈ R. The second plot depicts the
density estimates for N = 49, 50 and 51, showing the expected overlapping.
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Figure 7.32: Estimate f̂X50(1.5)(x). Estimates f̂XN (1.5)(x), for N = 49, 50, 51. This figure
corresponds to Example 7.14.
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Remark 7.15 Our application of the multilevel Monte Carlo strategy is based
on L∞(R) norms. First, we acted pointwise in x in the constrained minimiza-
tion problem from Proposition 7.12, and in Algorithm 6 we took the L∞(R)
norm of the optimal number of simulations. Then the target density function
was approximated uniformly in x. Second, the ratio (7.33) of complexities
considered the L∞(R) norms of the standard and the multilevel Monte Carlo
approaches.

Other norms can be considered. For instance, we could minimize the cost (7.26)
given a fixed L1(R) norm of the statistical error variance (7.25):

∫
R ‖fXN (t)(x)−

fN,MX (x, t)‖22 dx = ε2. In this case, we substitute each variance in x by its inte-
gral on R. Then the approach becomes independent of x from the beginning.

When the cost is minimized pointwise in x, another possibility consists in
considering the ratio of the L1(R) norms of the complexities:

W
MC,‖·‖1
N (t) = ε−2cN

∫
R
V[ZN(x, t)] dx, (7.37)

W
multi,‖·‖1
l1,N

(t) = ε−2

∫
R

(√
V [Z l1(x, t)] cl1 +

N−1∑
l=l1

√
V [Z l∆(x, t)]Cl

)2

dx,

(7.38)

R
‖·‖1
l1,N

(t) =
W

MC,‖·‖1
N (t)

W
multi,‖·‖1
l1,N

(t)
(7.39)

(the ratio is independent of ε). In the two examples from this section, the
conclusions derived are analogous considering L1(R) norms, thus showing ro-
bustness.

We present results regarding Example 7.13. Using mV = 10, 000 realizations
and costs cl = Cl = l2, we estimate the ratios of complexities (7.39) for
l1 ∈ [1, 19] and N ∈ [l1 + 1, 20]. Figure 7.33, first panel, shows the ratios.
These ratios show a similar pattern to Figure 7.22. For each N , we keep the
level l0 maximizing the ratio (7.39). For N ≥ 7, the same maximizer l0 = 6 is
obtained, as in Example 7.13. The second panel of Figure 7.33 compares the
two ratios (7.33) and (7.39) for N ≥ l0 = 6. The two ratios are very similar,
only showing a small discrepancy in part due to the Monte Carlo procedure
with mV realizations. The fact that the two ratios are practically coinciding is

justified theoretically by the approximation R
‖·‖1
l1,N

(t) ≈ N2/l21, which also held
for (7.33).
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Figure 7.33: First panel: ratios of the L1(R) norms of the complexities between standard
and multilevel Monte Carlo (see (7.39)), where the points indicate the maximum ratio with
l1 per truncation N . Second panel: ratios of complexities between standard and multilevel
Monte Carlo with L∞(R) norms (see (7.33)) and L1(R) norms (see (7.39)), for N > l0 = 6.
This figure corresponds to Remark 7.15.

Figure 7.34 analyzes theoretical error against complexity, using (7.37)–(7.38).
It corresponds to Figure 7.25 by considering L1(R) norms, instead. When
changing the norm, the “line” corresponding to error versus complexity in
log-log scale is shifted up or down but has the same slope. This is because
changing the norm only modifies the proportionality constants in (7.36). This
is illustrated in Figure 7.35, where the two “lines” corresponding to multilevel
Monte Carlo are parallel, and also for standard Monte Carlo.

multilevel MC

standard MC

109 1013 1017 1021
complexityN (ϵ)

10-10

10-7

10-4

ϵ

Figure 7.34: Sampling error ε versus L1(R) norm of the complexity (with N(ε)), see (7.37)–
(7.38), in log-log scale. This figure corresponds to Remark 7.15.
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108 1012 1016 1020 1024
complexityN (ϵ)

10-10

10-7

10-4

ϵ

multilevel MC L1(ℝ)

standard MC L1(ℝ)

multilevel MC L∞(ℝ)

standard MC L∞(ℝ)

Figure 7.35: Sampling error ε versus the L1(R) (see (7.37)–(7.38)) and L∞(R) (see (7.31)–
(7.32)) norms of the complexity (with N(ε)), in log-log scale. This figure corresponds to
Remark 7.15.

7.5 Conclusions

This chapter focused on the improvement of the computational methods and
algorithms from Chapter 6. In Chapter 6, we studied the random second-order
linear differential equation with analytic data processes and random initial
conditions, and constructed approximations to the probability density function
of the stochastic solution based on dimensionality reduction and standard
Monte Carlo sampling strategy. The main goal in this chapter is to speed
up the convergence of the standard Monte Carlo algorithm used in Chapter 6
by controlling the variance of the statistical estimators, thus avoiding noisy
features in the density estimates.

The path-wise selection of the initial condition used in the density expression
leads to a stable algorithm with good convergence. It was proved theoretically
that the statistical estimators constructed with this method always possess
finite variance. The implementation of the algorithm was illustrated through
simple autonomous and non-autonomous linear differential equations.

Improvements are achieved by computing the expectation with respect to the
initial conditions via numerical integration methods. By considering the den-
sities of the initial conditions as integration weights, we focused on Gaussian
quadrature rules. The orthogonal polynomials were considered with respect
to standard probability distributions. Several conclusions are reached from
this approach. When the initial conditions are comparable with the input co-
efficients of the equation in terms of random variability, the quadrature rule
for integration allows significant variance reduction of the statistical estima-
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tors. Even when the initial conditions have small dispersion compared to the
input coefficients, if the cost of each realization of the fundamental set is quite
expensive, the quadrature rule yields similar expense to a plain Monte Carlo
strategy. The quadrature degree has to be selected sufficiently large to assure
error-free approximations of the integrals.

A multilevel version of the Monte Carlo algorithm allows reduction of the com-
plexity, by linear or quadratic factor. The multilevel Monte Carlo approach
turns out to be useful when high accuracy in the density approximation is
required. The starting level was selected on the fly to maximize the ratio of
complexities between the standard and the multilevel Monte Carlo approach.
Once the initial level is selected, and given a statistical error variance, we
obtained the optimal number of simulations per level to minimize the com-
plexity. The numerical results illustrated the methodology step-by-step in
order to show the improvement with regard to the standard version of the
Monte Carlo simulation algorithm.

Several fundamental extensions and algorithmic improvements may be con-
ceived, especially concerning the multilevel Monte Carlo methodology. Firstly,
the three parts in which we divided the multilevel procedure (variance of the
increments, selection of the initial level by maximizing the ratio, and approx-
imation of the density) could be combined in an automated algorithm, which
would obtain the bias error, the sampling error, the variances, the initial level
and the optimal number of simulations on the fly. Secondly, the multilevel
Monte Carlo approach may be combined with a numerical integration scheme
for the expectation with respect to the initial conditions. Finally, our multi-
level strategy relied on considering consecutive levels, while other strategies
could utilize different sequences of levels, such as linear or geometric ones.

An interesting area to explore is the extension of the presently methodology to
linear systems of second-order random differential equations. In this case, the
aim is at approximating the joint probability density function of the vector-
valued stochastic solution. With the exception of simple autonomous linear
systems whose density function can be computed through transformations of
random variables/vectors and direct integration, no analysis has been carried
out for non-autonomous systems. The application to non-autonomous sys-
tems would offer promising advances in the active field of random differential
equations.
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of three months at Centre de Mathématiques Appliquées (CMAP UMR7641),
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Chapter 8

On the Legendre differential
equation with uncertainties at

the regular-singular point 1

In this chapter, we construct two linearly independent response pro-
cesses to the random Legendre differential equation on (−1, 1) ∪ (1, 3),
consisting of Lp(Ω) convergent random power series around the regular-
singular point 1. A theorem on the existence and uniqueness of Lp(Ω) so-
lution to the random Legendre differential equation on the intervals (−1, 1)
and (1, 3) is obtained. The hypotheses assumed are simple: initial condi-
tions in Lp(Ω) and random input A in L∞(Ω) (this is equivalent to A
having absolute moments that grow at most exponentially). Thus, this
chapter extends the deterministic theory to a random framework. Uncer-
tainty quantification for the solution stochastic process is performed by
truncating the random series and taking limits in Lp(Ω). In the numeri-
cal experiments, we approximate its expectation and variance for certain
forms of the differential equation. The reliability of our approach is com-
pared with Monte Carlo simulation and gPC expansions.
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8.1 Introduction

The random Legendre differential equation (8.1),
(1− t2)Ẍ(t)− 2tẊ(t) +A(A+ 1)X(t) = 0,

X(t0) = Y0,

Ẋ(t0) = Y1,

(8.1)

where A, Y0 and Y1 are random variables in a common underlying complete
probability space (Ω,F ,P), has been already studied at the regular point t = 0
with initial condition at t0 = 0, see Chapter 2. In [31], a mean square power
series solution to (8.1) was constructed on (−1/e, 1/e), being e the Euler con-
stant. This result has been extended in the recent contribution [21] (it is
Chapter 2), where the solution has been constructed on the whole domain
(−1, 1) with weaker assumptions on the random input coefficients. A com-
mon hypotheses in both works [31, 21] was that the random variable A has
statistical absolute moments that increase at most exponentially, equivalently,
that A is a bounded random variable, see [21, Lemma 2.2] (Lemma 2.2). This
assumption of boundedness for A will be essential in our subsequent develop-
ment.

The aim of this chapter is to continue extending the classical deterministic
results for the Legendre differential equation to the random setting by taking
advantage of the so-called Lp(Ω), 1 ≤ p ≤ ∞, random calculus. It is worth
pointing out that the Lp(Ω) random calculus has been widely used to study
both theoretical and numerically random differential equations [77, 115, 121,
127, 168].

Our goal is to construct a fundamental set around the regular-singular point
t = 1, as well as to quantify reliable approximations to the main statisti-
cal functions of the solution stochastic process to the initial value problem
(8.1). To the best of our knowledge, this is the first contribution in the ex-
tant literature where the regular-singular point case is addressed for a random
second-order differential equation. In this sense, we want to point out that the
subsequent approach may be useful to study other important random second-
order linear differential equations around regular-singular points. This kind
of differential equations are met in many physical and engineering problems
[106, 110, 133]. In particular, the Legendre differential equation is very useful
for treating the boundary value problems exhibiting spherical symmetry.

The organization of the present chapter is as follows. In Section 8.2, the
main results regarding the random initial value problem (8.1) are stated and
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proved. In Section 8.3, we show how to approximate the moments of the solu-
tion stochastic process by truncating the corresponding random power series.
Section 8.4 is devoted to illustrate our theoretical findings via different exam-
ples of the random initial value problem (8.1), where approximations of the
expectation and the variance functions of the solution stochastic process are
computed and compared with Monte Carlo simulation and gPC expansions.
Finally, conclusions are drawn in Section 8.5.

8.2 Random Legendre differential equation at the regular
singular point 1

As it has been previously indicated, our goal in this section is to provide
an analogous analysis to [21, 31] for the regular-singular point t = 1 ([21]
corresponds to Chapter 2).

By the deterministic theory on the Legendre differential equation, if A is con-
stant, then a deterministic fundamental set {φ1(t), φ2(t)} is given by

φ1(t) =
∞∑
n=0

cn(t− 1)n, |t− 1| < 2,

where {cn}∞n=0 is defined by the recursive relation

c0 = 1, cn+1 =
(n+ 1−A)(A− n)

2(n+ 1)2
cn, n = 0, 1, 2, . . . ,

and

φ2(t) = φ1(t) log |t− 1|+
∞∑
n=1

dn(t− 1)n, |t− 1| < 2,

where {dn}∞n=1 is defined as follows:

d1 =
−c0 − 4c1

2
, dn+1 = −(n+ 1 +A)(n−A)dn + 4(n+ 1)cn+1 + (2n+ 1)cn

2(n+ 1)2
.

This may be checked by direct calculation, see [33, p. 205, pp. 217–218].

In our setting, we first randomize this fundamental set of solutions. Therefore,
we consider the following two stochastic processes

X1(t) =
∞∑
n=0

Cn(t− 1)n, X2(t) = X1(t) log |t− 1|+
∞∑
n=1

Dn(t− 1)n, (8.2)
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where the coefficients {Cn}∞n=0 and {Dn}∞n=1 are random variables defined in
our complete probability space (Ω,F ,P) recursively as follows:

C0 = 1, Cn+1 =
(n+ 1−A)(A− n)

2(n+ 1)2
Cn, n = 0, 1, 2, . . . , (8.3)

and

D1 =
−C0 − 4C1

2
, Dn+1 = − (n+ 1 +A)(n−A)Dn + 4(n+ 1)Cn+1 + (2n+ 1)Cn

2(n+ 1)2
. (8.4)

In the following Proposition 8.1, we will see that both series (8.2) converge
in L∞(Ω) on (−1, 1) ∪ (1, 3) (i.e., radius of convergence 2, so retaining their
deterministic counterpart), in particular, pointwise on ω ∈ Ω for t ∈ (−1, 1)∪
(1, 3). This L∞(Ω) convergence will imply that the stochastic processes X1(t)
and X2(t) are solutions to the random Legendre differential equation on the
domain (−1, 1)∪ (1, 3) in the L∞(Ω) sense, since the random power series can
be differentiated in the L∞(Ω) sense term by term.

Proposition 8.1 If A ∈ L∞(Ω), then both series defined by (8.2)–(8.4) con-
verge in L∞(Ω) on the interval (−1, 1) ∪ (1, 3). In particular, the stochastic
processes X1(t) and X2(t), given by (8.2)–(8.4), are solutions to the random
Legendre differential equation on the domain (−1, 1) ∪ (1, 3) in the L∞(Ω)
sense.

Proof. First, let us prove that the random power series defining X1(t) con-
verges in L∞(Ω), for every t ∈ (−1, 1) ∪ (1, 3). From (8.3), we have

‖Cn‖∞ ≤
(n+ ‖A‖∞)(n+ ‖A‖∞ + 1)

2n2
‖Cn−1‖∞,

that is,
‖Cn‖∞
‖Cn−1‖∞

≤ (n+ ‖A‖∞)(n+ ‖A‖∞ + 1)

2n2
.

Now if we multiply both sides of this last inequality by r, being 0 < r < 2,
and afterwards we take limits as n→∞, then we obtain that

lim sup
n→∞

‖Cn‖∞rn

‖Cn−1‖∞rn−1
≤ lim

n→∞
r

(n+ ‖A‖∞)(n+ ‖A‖∞ + 1)

2n2
=
r

2
< 1.

By applying the d’Alembert’s ratio test for numerical series, we derive that
the series with general term ‖Cn‖∞rn is convergent, i.e.,

∞∑
n=0

‖Cn‖∞rn <∞,
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for 0 < r < 2. This implies that the random power series X1(t), given by
(8.2), has radius of convergence 2 in the Banach space (L∞(Ω), ‖ · ‖∞).
Now let us check that

∞∑
n=1

‖Dn‖∞rn <∞,

for 0 < r < 2. Since
∑∞

n=0 ‖Cn‖∞rn < ∞, the sequence {‖Cn‖∞rn}∞n=0 is
bounded by a number M > 0. That is, ‖Cn‖∞ ≤ M/rn, n ≥ 0. Using this
inequality in (8.4), we obtain

‖Dn+1‖∞ ≤
(n+ ‖A‖∞)(n+ ‖A‖∞ + 1)‖Dn‖∞ + (2n+ 1)M

rn
+ 4(n+ 1) M

rn+1

2(n+ 1)2

≤
(n+ ‖A‖∞ + 1)2‖Dn‖∞ + (2n+ 1)M

rn
+ 4(n+ 1) M

rn+1

2(n+ 1)2
. (8.5)

Let us define the following sequence of positive numbers {Hn : n ≥ 1}:
H1 = ‖D1‖∞,

Hn+1 =
(n+ ‖A‖∞ + 1)2Hn + (2n+ 1)M

rn
+ 4(n+ 1) M

rn+1

2(n+ 1)2
, n = 1, 2, . . . .

From inequality (8.5), it is evident that the sequence {Hn : n ≥ 1} majorizes
{‖Dn‖∞ : n ≥ 1} , that is,

‖Dn‖∞ ≤ Hn, n ≥ 1.

Now, let us define
Kn = max

1≤k≤n
Hkr

k.

We obtain

Hn+1r
n+1 ≤ r(n+ ‖A‖∞ + 1)2

2(n+ 1)2
Hnr

n +
r(2n+ 1)M + 4(n+ 1)M

2(n+ 1)2

≤ r(n+ ‖A‖∞ + 1)2

2(n+ 1)2
Kn +

r(2n+ 1)M + 4(n+ 1)M

2(n+ 1)2
.

Observe

lim
n→∞

r(n+ ‖A‖∞ + 1)2

2(n+ 1)2
=
r

2
< 1, lim

n→∞

r(2n+ 1)M + 4(n+ 1)M

2(n+ 1)2
= 0.

(8.6)
Then, for 0 < ε < 1− r/2 arbitrary but fixed, using the limits in (8.6), we can
choose n0 = n0(r, ‖A‖∞,M) such that, for all n ≥ n0,

r(n+ ‖A‖∞ + 1)2

2(n+ 1)2
< 1− ε, r(2n+ 1)M + 4(n+ 1)M

2(n+ 1)2
< 1.
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Thus, for n ≥ n0,
Hn+1r

n+1 ≤ (1− ε)Kn + 1.

Suppose that (1− ε)Kn + 1 ≤ Kn, for all n ≥ n0. This implies

Hn+1r
n+1 ≤ Kn,

so that Kn+1 = Kn for n ≥ n0. Let K = Kn, n ≥ n0. Then

Hn ≤ K/rn, n ≥ n0,

therefore
∞∑

n=n0

Hnr
n
0 ≤ K

∞∑
n=n0

Hn(r0/r)
n <∞,

for each 0 < r0 < r. As 0 < r < 2 is arbitrary, we conclude that
∞∑

n=n0

‖Dn‖∞rn ≤
∞∑

n=n0

Hnr
n <∞,

as wanted.
Otherwise, if there is a strictly increasing sequence of natural numbers {nl}∞l=1

such that (1 − ε)Knl + 1 > Knl , for all l ≥ 1, we arrive at Knl < 1/ε, l ≥ 1.
Since the sequence {Kn}∞n=1 is increasing, we deduce that Kn < 1/ε, for all
n ≥ 1. Let K = 1/ε, so that

Hn ≤ K/rn, n ≥ 1.

The same reasoning as in the previous paragraph applies in this case, and we
are done.

�

Theorem 8.2 Let 1 ≤ p ≤ ∞ and t0 ∈ I, where I is either (−1, 1) or (1, 3).

Given two initial conditions X(t0) = Y0 and Ẋ(t0) = Y1 that belong to Lp(Ω)
and if A ∈ L∞(Ω), then there exists a unique response process X(t) in the
Lp(Ω) sense to (8.1) on I. This solution process X(t) has the form

X(t) = A1X1(t) +A2X2(t), (8.7)

where

A1 =
Y0Ẋ2(t0)− Y1X2(t0)

W (X1, X2)(t0)
, A2 =

Y1X1(t0)− Y0Ẋ1(t0)

W (X1, X2)(t0)
, (8.8)

and W (X1, X2)(t0) is the Wronskian of the pair {X1(t0), X2(t0)}, where

W (X1, X2)(t0) = X1(t0)Ẋ2(t0)−X2(t0)Ẋ1(t0)

=

{
−2
|1−t20|

, t0 ∈ (−1, 1),
2

|1−t20|
, t0 ∈ (1, 3).

(8.9)
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Proof. At each outcome ω ∈ Ω, the pair {X1(t)(ω), X2(t)(ω)} is a funda-
mental set in the sample-path sense (because X1(t) and X2(t) are linearly
independent L∞(Ω) solutions), so we can compute the Wronskian pointwise
on ω by using the deterministic Liouville’s formula [41, Prop. 2.15]: if t ∈ I,
then

W (X1, X2)(t)(ω) = CI(ω)e
∫

2t
1−t2

dt
=

CI(ω)

|1− t2|
,

for a certain random variable CI(ω) that depends on I. To obtain CI at each
ω ∈ Ω, notice that

CI = |1− t2|W (X1, X2)(t)

= |1− t2|

{
X1(t)

(
Ẋ1(t) log |t− 1|+ X1(t)

t− 1
+

∞∑
n=1

nDn(t− 1)n−1

)
−X2(t)Ẋ1(t)

}

→

{
−2, if t→ 1−,

2, if t→ 1+.

This proves (8.9).
Note also that the random variables A1 and A2 defined by (8.8) belong to

Lp(Ω), because X1(t0), Ẋ1(t0), X2(t0), Ẋ2(t0) ∈ L∞(Ω) and Y0, Y1 ∈ Lp(Ω).
Since X1(t) and X2(t) are L∞ solutions on (−1, 1) ∪ (1, 3) by Proposition 8.1,
and A1, A2 ∈ Lp(Ω), from (8.7) we derive that X(t) is an Lp solution to (8.1)
on I.
To demonstrate the uniqueness, we use [160, Th. 5.1.2]. Rewrite (8.1) as a
first-order linear differential equation

Ż(t) = B(t)Z(t),

where

Z(t) =

(
X(t)

Ẋ(t)

)
, B(t) =

(
0 1

A(A+1)

1−t2
−2t
1−t2

)
.

We say that Z = (Z1, Z2) belongs to Lp2(Ω) if

‖Z‖p := max{‖Z1‖p, ‖Z2‖p} <∞.

Consider the random matrix norm

|||B||| := max
i

∑
j

‖bij‖∞.

If Z,Z ′ ∈ Lp2(Ω), then

‖B(t)Z −B(t)Z ′‖p ≤ |||B(t)||| · ‖Z − Z ′‖p,
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where ∫ b

a

|||B(t)|||dt =

∫ b

a

‖A‖∞(‖A‖∞ + 1) + 2|t|
1− t2

dt <∞

for each a < b that belong to I. Then the assumptions of [160, Th. 5.1.2] hold.
�

To finish this section, we would like to comment that the hypothesis A ∈
L∞(Ω) is not restrictive in practice, as any unbounded random variable can
be truncated in a support as large as we want [125].

8.3 Approximation of the moments of the response:
expectation and variance

Apart from determining the solution stochastic process X(t) to the Legendre
random differential equation (8.1), a main goal is also to construct reliable
approximations regarding its statistical behavior. This latter information is
mainly summarized by the mean and the variance functions. The mean or
expectation function, E[X(t)], provides a measure of the average behavior of
the process at each time instant t, while the variance, V[X(t)], quantifies the
dispersion or variability of the process around the mean E[X(t)].

As the solution stochastic process X(t) has been constructed via an infinite se-
ries, it is natural to approximate both its mean and its variance by considering
truncations of that series to keep the computational burden affordable.

Now, we will show how under the conditions of Theorem 8.2, the moments of
X(t) can be approximated up to order p. We consider the truncation

XN(t) = AN1 X
N
1 (t) +AN2 X

N
2 (t), (8.10)

for N ≥ 1, where

XN
1 (t) =

N∑
n=0

Cn(t− 1)n, XN
2 (t) = XN

1 (t) log |t− 1|+
N∑
n=1

Dn(t− 1)n, (8.11)

and

AN1 =
Y0Ẋ

N
2 (t0)− Y1X

N
2 (t0)

W (X1, X2)(t0)
, AN2 =

Y1X
N
1 (t0)− Y0Ẋ

N
1 (t0)

W (X1, X2)(t0)
, (8.12)

being W (X1, X2)(t0) the Wronskian computed in expression (8.9). As a con-
sequence of Proposition 8.1, XN

1 (t) → X1(t) and XN
2 (t) → X2(t) in L∞(Ω)
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as N → ∞. Since Y0, Y1 ∈ Lp(Ω), one has that AN1 → A1 and AN2 → A2 in
Lp(Ω) as N →∞. This implies that XN(t)→ X(t) in Lp(Ω) as N →∞ too.
In particular, the statistical moments up to order p of XN(t) tend to those of
X(t).

For p ≥ 2 arbitrary but fixed, then we can approximate the average of X(t),
E[X(t)], and the variance of X(t), V[X(t)], by using

E[X(t)] = lim
N→∞

E[XN(t)], V[X(t)] = lim
N→∞

V[XN(t)],

see [160, Th. 4.2.1, Th. 4.3.1].

8.4 Numerical experiments

In this section we illustrate our theoretical findings by means of several nu-
merical examples performed in the software MathematicaR©. We will choose
specific probability distributions for the input random variables A, Y0 and Y1

and then we will approximate the expectation and the variance of the response
stochastic process X(t) by using different orders of truncation N in expres-
sions (8.10)–(8.12). The reliability of the obtained results will be shown by
comparing them with the results provided by the following two techniques for
uncertainty quantification:

• Monte Carlo simulation [70], which consists in obtaining a number m of
realizations for the random input parameters, say

A(1), . . . , A(m),

Y
(1)

0 , . . . , Y
(m)

0 ,

Y
(1)

1 , . . . , Y
(m)

1 ,

and then solving each one of the corresponding deterministic Legendre
differential equations,

(1− t2)Ẍ(i)(t)− 2tẊ(i)(t) +A(i)(A(i) + 1)X(i)(t) = 0,

X(i)(t0) = Y
(i)

0 ,

Ẋ(i)(t0) = Y
(i)

1 ,

which gives a realization X(i)(t) (a sample path) of X(t), for 1 ≤ i ≤ m.
The expectation and variance of X(t) can be approximated as follows:

E[X(t)] ≈ µm(t) =
1

m

m∑
i=1

X(i)(t)
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and

V[X(t)] ≈ 1

m− 1

m∑
i=1

(
X(i)(t)− µm(t)

)2

.

Monte Carlo simulation requires many realizations or simulations of X(t)
to get accurately its statistics (the error convergence rate is inversely
proportional to the square root of the numberm of realizations), therefore
the computational cost of the Monte Carlo simulation is higher than our
method based on random series.

• A variation of generalized Polynomial Chaos (gPC) expansions for con-
tinuous stochastic systems with dependent and jointly absolutely contin-
uous random inputs, which is a method described in [49] and applied in
[26]. We consider the canonical bases

Cm1 = {1, A,A2, . . . , Am},

Cm2 = {1, Y0, Y
2

0 , . . . , Y
m

0 },
Cm3 = {1, Y1, Y

2
1 , . . . , Y

m
1 },

and the vector of random input coefficients, ζ = (A, Y0, Y1). We consider
a simple tensor product to construct a basis of monomials of degree less
than or equal to m:

Ξp = {φ0(ζ), φ1(ζ), . . . , φp(ζ)},

where

φ0 = 1, p =

(
m+ 3

3

)
, φi(ζ) = Ai1Y i2

0 Y i3
1 ,

where i1 + i2 + i3 ≤ m and i↔ (i1, i2, i3) in a bijective manner.

We impose a solution to the random initial value problem (8.1) of the
form

Xp(t) =
p∑
i=0

X̃p
i (t)φi(ζ),

where X̃p
i (t), 0 ≤ i ≤ p, are deterministic functions to be found. The

deterministic differential equation satisfied by the coefficients is the fol-
lowing:

R
d2

dt2
X̃p(t)− 2t

1− t2
R

d

dt
X̃p(t) +NX̃p(t) = 0,

with initial conditions
RX̃p(t0) = v,
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R
d

dt
X̃p(t0) = w,

where

X̃p(t) =
(
X̃p

0 (t), . . . , X̃p
p (t)

)T

,

v = (E[Y0φ0(ζ)], . . . ,E[Y0φp(ζ)])
T

and
w = (E[Y1φ0(ζ)], . . . ,E[Y1φp(ζ)])

T
,

and R and N are the following matrices of size (p+ 1)× (p+ 1):

R =

 E[(φ0(ζ))2] · · · E[φ0(ζ)φp(ζ)]
...

. . .
...

E[φp(ζ)φ0(ζ)] · · · E[(φp(ζ))2]


and

N =
1

1− t2

 E[A(A+ 1)(φ0(ζ))2] · · · E[A(A+ 1)φ0(ζ)φp(ζ)]
...

. . .
...

E[A(A+ 1)φp(ζ)φ0(ζ)] · · · E[A(A+ 1)(φp(ζ))2]

 ,

respectively.

This system of differential equations can be solved via standard numerical
techniques, such as the Runge-Kutta algorithm. This method provides
mean square approximations to X(t) with spectral convergence rate in
general, although numerical errors may arise for large orders m of bases,
due to ill-conditioning of the matrix R for large p.

It can be shown that the expectation and the variance of solution stochas-
tic process X(t) can be approximated using the following finite sums:

E[X(t)] ≈ E[Xp(t)] =
p∑
i=0

X̃p
i (t)ei,

V[X(t)] ≈ V[Xp(t)] =
p∑

i,j=0

X̃p
i (t)X̃p

j (t)(Rij − eiej),

where ei = E[φi(ζ)].

201



Chapter 8.

Now, we show two examples. We want to highlight that in the first example we
assume that the input random data of the Legendre differential equation are
assumed to be statistically dependent (with a joint probability distribution),
while in the second example the corresponding random data are independent.
In this manner we show that our theoretical results are able to consider both
situations in practice.

Example 8.3 We assume the following joint probability distribution for the
random input data:

(A, Y0, Y1) ∼ Dirichlet(5, 1, 2, 3),

with initial conditions at t0 = 0. Since A, Y0 and Y1 are bounded random
variables, Theorem 8.2 ensures that X(t) is an L∞(Ω) solution to random
initial value problem (8.1) on the interval (−1, 1).

In Table 8.1 and Table 8.2, approximations of E[X(t)] and V[X(t)], respec-
tively, are performed with order of truncations N = 25 and N = 26. The
results are compared with Monte Carlo simulation and gPC expansions. Ob-
serve that there is stabilization of the results for t ≥ 0, while for t < 0, specially
for t near −1, larger truncation orders may be required. This is because the
initial conditions are located at 0 and the power series are centered around
1, so better approximations are expected around those points. The results
obtained agree with Monte Carlo simulation and gPC expansions. Notice that
more simulations are required in the Monte Carlo method due to its slowness
of convergence. On the other hand, gPC expansions converge quickly due to
spectral convergence.

t E[X25(t)] E[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
−0.9 −0.174008 −0.174833 −0.184978 −0.184818 −0.184818
−0.5 −0.0140125 −0.0140143 −0.0140897 −0.0140191 −0.0140191

0 0.0909091 0.0909091 0.090896 0.0909091 0.0909091
0.5 0.180172 0.180172 0.180222 0.180172 0.180172
0.9 0.281694 0.281694 0.281855 0.281694 0.281694

Table 8.1: Approximation of the expectation of the solution stochastic process. Exam-
ple 8.3.

Example 8.4 In this example, we assume that A, Y0 and Y1 are independent
random variables with the following probability distributions:

A ∼ Beta(2, 1), Y0 ∼ Normal(1, 1), Y1 ∼ Exponential(2).
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t V[X25(t)] V[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
−0.9 0.0241268 0.0242201 0.0253679 0.0253799 0.0253799
−0.5 0.0107702 0.0107703 0.0107672 0.0107704 0.0107704

0 0.00688705 0.00688705 0.00689240 0.00688705 0.00688705
0.5 0.00844482 0.00844482 0.00845436 0.00844483 0.00844483
0.9 0.0262702 0.0262702 0.0262890 0.0262703 0.0262703

Table 8.2: Approximation of the variance of the solution stochastic process. Example 8.3.

The initial conditions are set at the time instant t0 = 1.2. Since Y0 and Y1

have absolute moments of any order 1 ≤ p < ∞ and A is a bounded random
variable, Theorem 8.2 tells us that X(t) is an Lp solution to (8.1) for each
1 ≤ p <∞ on (1, 3).

Table 8.3 and Table 8.4 show approximations for the mean and variance of
X(t) at orders of truncation N = 25 and N = 26. The results obtained are
compared with Monte Carlo simulation and gPC expansions. We observe that
stabilization of the approximations occur for t ≤ 2.5. For t = 2.9, a larger
order of truncation N is needed, because the initial time t0 = 1.2 and the
center point 1 are far from t = 2.9. The approximations for the expectation
and variance agree with Monte Carlo simulation and gPC expansions. The
estimates performed by the gPC method are accurate due to spectral conver-
gence, whereas more realizations for the Monte Carlo method are needed to
achieve higher accuracy.

t E[X25(t)] E[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
1.2 1 1 0.996418 1 1
1.5 1.14660 1.14660 1.14286 1.14660 1.14660
2 1.37833 1.37833 1.37402 1.37833 1.37833

2.5 1.59841 1.59841 1.59347 1.59841 1.59841
2.9 1.76891 1.76723 1.76260 1.76803 1.76803

Table 8.3: Approximation of the expectation of the solution stochastic process. Exam-
ple 8.4.
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t V[X25(t)] V[X26(t)] MC 500, 000 gPC m = 4 gPC m = 5
1.2 1 1 1.00313 1 1
1.5 1.12843 1.12843 1.13185 1.12843 1.12843
2 1.53899 1.53899 1.54307 1.53899 1.53899

2.5 2.06676 2.06676 2.07152 2.06676 2.06676
2.9 2.55896 2.55733 2.56339 2.55810 2.55810

Table 8.4: Approximation of the variance of the solution stochastic process. Example 8.4.

8.5 Conclusions

In this chapter, we have constructed a fundamental set {X1(t), X2(t)} of Lp(Ω)
solutions (1 ≤ p ≤ ∞) to the Legendre differential equation with uncertain-
ties on the domain (−1, 1) ∪ (1, 3) via random power series centered at the
regular-singular point t = 1. It has been assumed that the initial conditions
at the point t0 ∈ (−1, 1)∪ (1, 3), Y0 and Y1, belong to Lp(Ω), and that the ran-
dom input A is a bounded random variable (which is equivalent to A having
absolute moments that grow at most exponentially). Under these hypotheses,
a theorem on existence and uniqueness of Lp(Ω) solution X(t) to the random
Legendre differential equation on (−1, 1) and (1, 3) has been proved. This
result is an extension of Chapter 2, which constructed an Lp(Ω) power series
solution to the random Legendre differential equation on (−1, 1) around the
regular point 0. In order to perform uncertainty quantification for X(t), we
have proposed a truncation method to approximate X(t) by simpler processes
XN(t) in the Lp(Ω) sense, so that the moments of X(t) up to order p can be
approximated by those of XN(t). In particular, if p ≥ 2, the expectation and
variance of X(t) can be approximated.

The numerical experiments have shown examples in which we have approxi-
mated both statistics of X(t). These examples have been devised to consider
two important situations from a practical standpoint, namely, when the input
random data are assumed to be dependent and independent random variables.
The results obtained have been compared with Monte Carlo simulation and
gPC expansions, showing full agreement.

Finally, we would like to point out that our method could be extended to other
important second-order random differential equations with a regular-singular
point.
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Chapter 9

Density function of random
differential equations via

finite difference schemes: a
theoretical analysis of a

random diffusion-reaction
Poisson-type problem

A computational approach to approximate the probability density func-
tion of random differential equations is based on transformation of ran-
dom variables and finite difference schemes. The theoretical analysis
of this computational method has not been performed in the extant lit-
erature. In this chapter, we deal with a particular random differential
equation: a random diffusion-reaction Poisson-type problem of the form
−u′′(x) + αu(x) = φ(x), x ∈ [0, 1], with boundary conditions u(0) = A,
u(1) = B. Here, α, A and B are random variables and φ(x) is a stochas-
tic process. The term u(x) is a stochastic process that solves the random
problem in the sample-path sense. Via a finite difference scheme, we ap-
proximate u(x) with a sequence of stochastic processes in both the almost
sure and Lp senses. This allows us to find mild conditions under which
the probability density function of u(x) can be approximated. Illustrative
examples are included.
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9.1 Introduction

Random differential equations are differential equations where the input coef-
ficients and initial/boundary conditions are random variables/stochastic pro-
cesses. The solution is a stochastic process. To completely understand the
random behavior of the solution, one needs to find its joint finite-dimensional
distributions, however, in general, this is an impracticable task. A more feasi-
ble target consists in finding, or at least approximating, its probability density
function (first finite-dimensional distributions) [160, Ch. 3]. Some recent con-
tributions dealing with the computation of the probability density function
of the solution of random differential equations can be found in [57, 87]. A
computational method to approximate the density function is based on finite
difference schemes [62]. The theoretical analysis of this computational ap-
proach has not been done in the extant literature. In this chapter, we want to
perform a comprehensive theoretical analysis for a particular random differ-
ential equation: a randomized diffusion-reaction Poisson-type problem [137,
p. 433], {

−u′′(x) + αu(x) = φ(x), x ∈ [0, 1],

u(0) = A, u(1) = B.
(9.1)

The term −u′′ models diffusion, the term αu models reaction and φ represents
an external source [137, p. 432]. We assume an underlying complete probabil-
ity space (Ω,F ,P), where Ω is the sample space, which consists of outcomes
that will be generically denoted by ω; F is the σ-algebra of events; and P is the
probability measure. The term α ≥ 0 and the boundary values A and B are
random variables in our probability space. The source term φ(x) is a stochas-
tic process. We will omit the evaluation at the outcome ω, however, when
necessary, we will write α(ω), A(ω), B(ω) and φ(x, ω). The term u(x) is a
stochastic process that solves (9.1) in the sample-path sense. When evaluating
at the outcome ω, we will write u(x, ω).

Notation 9.1 Given a measure space (S,F , µ), where F is the σ-algebra and
µ is the measure, we will use the notation Lp(S) for the p-integrable mea-
surable mappings in the Lebesgue sense: f : S → R such that ‖f‖Lp(S) :=
(
∫
S
|f |p dµ)1/p < ∞ for 1 ≤ p < ∞ and ‖f‖L∞(S) = inf{sup{|f(x)| : x ∈

S\N} : µ(N) = 0} < ∞ for p = ∞. The shorten notation a.e. and a.s.
will stand for “almost every” or “almost everywhere” and “almost surely”,
respectively.

Given an interval I ⊆ R, the notation Cp(I), p ∈ N ∪ {∞}, means p times
continuously differentiable on I. When p = 0, it means continuous on I, and
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we will write C(I). For 0 < β ≤ 1, the notation Cβ(I) stands for the Hölder
class: f ∈ Cβ(I) if there exists a constant k > 0 such that |f(x) − f(y)| ≤
k|x− y|β, for all x, y ∈ I. Do not confound C1(I) (continuously differentiable)
with C1(I) (Lipschitz continuous). For p ∈ N and 0 < β ≤ 1, the notation
Cp,β(I) means being Cp(I), with the p-th derivative being in Cβ(I).

Given a matrix A, we will denote its p-norm as ‖A‖p, 1 ≤ p ≤ ∞. The
j-th column of the matrix will be denoted by A(:, j), and its transpose will be
written as AT . The identity matrix of size M will be denoted by IM .

Finally, given an absolutely continuous random variable X, its density function
will be denoted by fX .

For the sake of completeness, below we give sufficient conditions on the exter-
nal source φ in order to guarantee that the random problem (9.1) has a unique
solution in different stochastic senses, commonly used in the extant literature.

Proposition 9.2 The following holds:

(i) If φ has sample paths in L2([0, 1]), then there is a unique process u with
sample paths in the Sobolev space H2(0, 1) [12, Ch. 8] that solve (9.1).

(ii) If φ has sample paths in C([0, 1]), then there is a unique process u with
sample paths in C2([0, 1]) that solve (9.1).

(iii) If φ has sample paths in Cβ([0, 1]), for some 0 < β ≤ 1, then there exists
a unique process u with sample paths in C2,β([0, 1]) that solve (9.1).

Proof. The three statements are direct consequence of the deterministic the-
ory for differential equations. Part (i) is a consequence of [137, Prop. 8.1] [12,
Prop. 8.16]. Part (ii) is a consequence of part (i) and [12, Remark 6, p. 204].
Part (iii) is a consequence of [95, Th. 11.3.2].

�

The main goal of this chapter is to analyze when u(x) is an absolutely contin-
uous random variable, for each x, and then to compute its probability density
function. For this purpose, we will use a finite difference scheme to approxi-
mate the solution stochastic process u(x).
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9.2 Random finite difference scheme

Divide [0, 1] into M equidistant interior points x1, . . . , xM : 0 = x0 < x1 <
. . . < xM < xM+1 = 1, xi = xMi = i/(M + 1). Denote h = 1/(M + 1).
The numerical scheme, based on discretizations of the second derivative, is
− 1
h2u

M
i+1 + ( 2

h2 + α)uMi − 1
h2u

M
i−1 = φ(xi), for 1 ≤ i ≤ M , uM0 = A and

uMM+1 = B. One expects uMi ≈ u(xi). In matrix form, AuM = c, where

uM =

u
M
1
...
uMM

 , c =


φ(x1) +A/h2

φ(x2)
...

φ(xM−1)
φ(xM) +B/h2

 ,

A = αIM +
1

h2
L, L =


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

 .

Although not explicitly written, A, L, c, xi and h depend on M . Since α ≥ 0,
then A is invertible. Thus, uM = A−1c.

Lemma 9.3 The matrix A satisfies ‖A−1‖∞ ≤ 1/8.

Proof. The matrix A is an M-matrix, in the sense of [123, p. 10]: A has
its offdiagonal entries nonpositive and, for r = (ri)

M
i=1 with ri = 1/4 − (xi −

1/2)2 > 0, one has (Ar)i = 2 + αri ≥ 2, 1 ≤ i ≤ M . By [123, Lemma 5.3],

‖A−1‖∞ ≤ ‖r‖∞/mini(Ar)i ≤ 1/4

2
= 1/8.

�

Proposition 9.4 Suppose φ has sample paths in Cβ([0, 1]), for certain 0 <
β ≤ 1. Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈ {1, . . . ,M},
such that limM→∞ iM/(M + 1) = x0. Then limM→∞ u

M
iM

= u(x0) a.s. More-
over, the following rate of convergence holds: |u(xiM , ω)− uMiM (ω)| ≤ C(ω)/8 ·
hβ, where C(ω) is the Hölder constant of u′′(·, ω) on [0, 1].

Proof. By Proposition 9.2 (iii), the sample paths of u belong to C2,β([0, 1]):
|u′′(x, ω)−u′′(y, ω)| ≤ C(ω)|x− y|β, for all x, y ∈ [0, 1]. Using Taylor’s expan-
sions,

u(x+h) = u(x)+u′(x)h+u′′(ξx,h)h2/2, u(x−h) = u(x)−u′(x)h+u′′(ηx,h)h2/2,
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where ξx,h ∈ (x, x+ h) and ηx,h ∈ (x− h, x). The local error of the numerical
scheme is given by

EL(x, h) =
−u(x− h) + 2u(x)− u(x+ h)

h2
+ αu(x)− φ(x)

= − 1

2
(u′′(ξx,h) + u′′(ηx,h)) + u′′(x)

=
u′′(x)− u′′(ξx,h)

2
+
u′′(x)− u′′(ηx,h)

2
.

Using the triangular inequality and Hölder’s condition,

|EL(x, h)| ≤ C(ω)

2
|x− ξx,h|β +

C(ω)

2
|x− ηx,h|β ≤ C(ω)hβ.

Let us = (u(xi))
M
i=1, fh = (EL(xi, h))Mi=1 and the error eh = us − uM . From

AuM = c and Aus − c = fh, we derive that Aeh = fh. If we denote by ‖ · ‖∞
the infinity norm for matrices, ‖eh‖∞ ≤ ‖A−1‖∞‖fh‖∞ ≤ ‖A−1‖∞C(ω)hβ.
By Lemma 9.3, ‖A−1‖∞ ≤ 1/8, therefore ‖eh‖∞ ≤ C(ω)/8 · hβ. This implies

|u(xiM , ω)− uMiM (ω)| ≤ C(ω)

8
hβ. By continuity of the sample paths of u,

lim
M→∞

u(xiM , ω) = lim
M→∞

u(iM/(M + 1), ω) = u(x0, ω),

so we conclude that limM→∞ u
M
iM

(ω) = u(x0, ω), as wanted.
�

Proposition 9.5 Suppose that φ has sample paths in Cβ([0, 1]), for certain
0 < β ≤ 1. Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈
{1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0. Let 1 ≤ p <∞. If

S := max{‖A‖Lp+ε(Ω), ‖B‖Lp+ε(Ω), sup
x∈[0,1]

‖φ(x)‖Lp+ε(Ω)} <∞

for some ε > 0, then u(x0) ∈ Lp(Ω) and limM→∞ u
M
iM

= u(x0) in Lp(Ω).

Proof. By Proposition 9.4, limM→∞ u
M
iM

= u(x0) a.s. Then, by [167, Th. 2.4],
it suffices to check that

sup
M≥1
‖uMiM‖Lp+ε(Ω) <∞. (9.2)

Write A = (α+ 2/h2)IM −H, where

H =
1

h2


0 1
1 0 1

. . .
. . .

. . .
1 0 1

1 0

 .
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Let T = 1/(α+2/h2)H. Then A = (α+2/h2)(IM −T ). The eigenvalues of A,
µk, are well-known [155, p. 59]: µk = α+ 2/h2 · (1− cos(kπh)), k = 1, . . . ,M .
From this, the eigenvalues of T are easily computable:

ηk =
2
h2 cos(kπh)

α+ 2
h2

, k = 1, . . . ,M.

Since | cos(kπh)| < 1, we deduce that

‖T‖2 = max{|ηk| : k = 1, . . . ,M} < 2/h2

α+ 2/h2
≤ 1.

The inequality ‖T‖2 < 1 implies that the matrix IM − T is invertible, with
(IM − T )−1 =

∑∞
k=0 T

k. As a consequence,

A−1 =
1

α+ 2
h2

(IM − T )−1 =
1

α+ 2
h2

∞∑
k=0

T k =
1

α+ 2
h2

∞∑
k=0

Hk(
α+ 2

h2

)k .
We derive that each entry (A−1)ij =

∑∞
k=0(Hk)ij/(α+2/h2)k+1 increases when

α decreases, therefore (A−1)ij takes its maximum value at α = 0. On the other
hand,

uMiM = (A−1c)iM =
M∑
j=1

(A−1)iM jcj

=
A

h2
(A−1)iM1︸ ︷︷ ︸
V1

+
B

h2
(A−1)iMM︸ ︷︷ ︸

V2

+
M∑
j=1

(A−1)iM jφ(xj)︸ ︷︷ ︸
V3

.

Taking into account (9.2), we bound V1, V2 and V3 in Lp+ε(Ω). First, we bound
the third term:

‖V3‖Lp+ε(Ω) ≤
M∑
j=1

‖(A−1)iM jφ(xj)‖Lp+ε(Ω) ≤
M∑
j=1

(A−1)iM j|α=0‖φ(xj)‖Lp+ε(Ω)

≤ S
M∑
j=1

(A−1)iM j|α=0 ≤ S‖A−1|α=0‖∞ ≤
S

8
,

by Lemma 9.3. We bound ‖V1‖Lp+ε(Ω), ‖V2‖Lp+ε(Ω). Let xM = (xM1 , . . . , x
M
M)T ,

xMi = i/(M + 1). Let xM = (xMM , . . . , x
M
1 )T be the vector xM reversed. Notice

that LxM = (1, 0, . . . , 0)T and LxM = (0, . . . , 0, 1)T , therefore L−1(:, 1) = xM
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and L−1(:,M) = xM . Since A|α=0 = (1/h2)L, we derive that A−1|α=0(:, 1) =

h2xM and A−1|α=0(:,M) = h2xM . Thus,

‖V1‖Lp+ε(Ω) =
1

h2
‖A(A−1)iM1‖Lp+ε(Ω) ≤

(A−1)iM1|α=0

h2
‖A‖Lp+ε(Ω)

≤
h2xMM+1−iM

h2
S =

(
1− iM

M + 1

)
S ≤ C <∞, (9.3)

for some C > 0, since the sequence {iM/(M+1)}∞M=1 is bounded. Analogously,
‖V2‖Lp+ε(Ω) <∞. This proves (9.2).

�

Proposition 9.6 Suppose that φ has sample paths in Cβ([0, 1]), for certain
0 < β ≤ 1. Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈
{1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0. Let 1 ≤ p < ∞. If A,B ∈
Lp(Ω) and supx∈[0,1] |φ(x)| ≤ Y a.s. for some random variable Y ∈ Lp(Ω),

then u(x0) ∈ Lp(Ω) and limM→∞ u
M
iM

= u(x0) in Lp(Ω).

Proof. As in (9.3), |V1| ≤ |A|(1 − iM/(M + 1)) ≤ C1|A|, for some constant
C1 > 0. Similarly, |V2| ≤ |B|(iM/(M + 1)) ≤ C2|B|, for some constant C2 > 0.
On the other hand,

|V3| ≤
M∑
j=1

(A−1)iM j|φ(xj)| ≤ Y
M∑
j=1

(A−1)iM j ≤ Y ‖A−1‖∞ ≤
Y

8
,

by Lemma 9.3. Thus, |uMiM | ≤ |V1|+ |V2|+ |V3| ≤ C1|A|+C2|B|+Y/8 ∈ Lp(Ω).
By the Dominated Convergence Theorem [135, p. 321], u(x0) ∈ Lp(Ω) and
limM→∞ u

M
iM

= u(x0) in Lp(Ω), as wanted.
�

9.3 Probability density function of the solution stochastic
process

Write c = Ad + g, where g = (φ(x1), . . . , φ(xM−1), φ(xM) + B/h2)T and d =
(1/h2, 0, . . . , 0)T . Then uMi = (A−1c)i = (A−1d)iA + (A−1g)i. Our next task
is to compute the probability density function of uMi .

Lemma 9.7 Let A be an absolutely continuous random variable, independent
of the random vector (Z1, Z2), where Z1 6= 0 a.s. Then Z1A+Z2 is absolutely
continuous, with density function fZ1A+Z2

(z) = E[fA((z − Z2)/Z1)/|Z1|].
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Suppose that A is absolutely continuous, and that A and (α,B, φ) are indepen-
dent (i.e., for all 0 ≤ y1, . . . , ym ≤ 1, m ∈ N, A and (α,B, φ(y1), . . . , φ(ym)) are
independent). By [123, Th. 5.2], A−1 has nonnegative entries, so (A−1d)i ≥ 0.
In fact, A is an irreducible matrix, because its entries on the superdiagonal
and on the subdiagonal are nonzero. By [7, Th. 2.7, p. 141], the entries of A−1

are positive, so (A−1d)i > 0. By Lemma 9.7,

fuMi (u) = E
[
fA

(
1

(A−1d)i

{
u− (A−1g)i

}) 1

(A−1d)i

]
.

In practice, we can use an explicit expression for fuMi (u) that does not require

the computation of A−1. The set of eigenvalues, µk, and eigenvectors, sk, of A
are known [155, p. 59]: µk = α+2/h2 ·(1−cos(kπh)), sk = (sin(kπjh))Mj=1, k =

1, . . . ,M . Let D = diag(µ1, . . . , µM) and P = [s1 . . . sM ]. Since s1, . . . , sM are
pairwise orthogonal and ‖si‖2 =

√
(M + 1)/2, the matrix R =

√
2/(M + 1)P

is orthogonal. We have the decomposition A = RDRT . Its inverse is given by
A−1 = RD−1RT . In the end, fuMi can be expressed as follows:

fuMi (u) = E

[
fA

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)

α+2/h2(1−cos(kπh))

·

·
{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φ(xj)

− 2

M + 1

B

h2

M∑
k=1

sin(kπih) sin(kπMh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)

α+2/h2(1−cos(kπh))

]
.

(9.4)

Theorem 9.8 Suppose that φ has sample paths in Cβ([0, 1]) (certain 0 < β ≤
1), A is absolutely continuous, A and (B,α, φ) are independent, fA is contin-
uous and bounded on R and ‖α‖L∞(Ω) < ∞. Let x0 ∈ (0, 1). Let {iM}∞M=1 be
a sequence of indexes, iM ∈ {1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0.
Then the sequence {fuMiM (u)}∞M=1, defined in (9.4), converges to a density

fu(x0)(u) of u(x0), for all u ∈ R.

Proof. By Proposition 9.2, let v and w be two stochastic processes with
sample paths in C2,β([0, 1]) that solve{
−v′′(x) + αv(x) = 0, x ∈ [0, 1],

v(0) = 1, v(1) = 0,

{
−w′′(x) + αw(x) = φ(x), x ∈ [0, 1],

w(0) = 0, w(1) = B.
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By Proposition 9.4, (A−1d)iM → v(x0) and (A−1g)iM → w(x0) a.s. as M →∞.
Since fA is continuous,

lim
M→∞

fA

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

(A−1d)iM

= fA

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)
a.s. (9.5)

Note that it makes sense to divide by v(x0), since by the Strong maximum
principle for elliptic PDEs [67, Th. 4, p. 333], 0 < v(x) < 1 for all x ∈ (0, 1),
a.s.

Claim: there exists M0 (independent of ω) such that, for all M ≥M0,

(A−1d)iM ≥ v(x0)/2 a.s.

We prove the claim. The random boundary value problem satisfied by v can
be solved analytically. Indeed, fixed ω ∈ Ω, we distinguish two cases according
to α(ω) > 0 or α(ω) = 0:
α(ω) > 0: The solution is v(x) = sinh(

√
α(1 − x))/ sinh(

√
α). Then v′′(x) =

αv(x) = α sinh(
√
α(1 − x))/ sinh(

√
α). By the Mean Value Theorem,

|v′′(x)− v′′(y)| = α2

sinh(
√
α)

cosh(ξx,y,ω)|x− y|, where ξx,y,ω ≤ max{
√
α(1−

x),
√
α(1− y)} ≤

√
α. Hence,

|v′′(x)−v′′(y)| ≤ α2 cosh(
√
α)

sinh(
√
α)
|x−y| ≤

‖α‖2L∞(Ω) cosh(
√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

|x−y|.

α(ω) = 0: The solution is v(x) = 1− x, so |v′′(x)− v′′(y)| = 0 · |x− y|.
Let

K =


‖α‖2L∞(Ω) cosh(

√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

, ‖α‖L∞(Ω) > 0,

0, ‖α‖L∞(Ω) = 0.

Thus, |v′′(x) − v′′(y)| ≤ K|x − y|. Therefore, the Hölder constant C(ω) of
v′′(·, ω) can be taken independently of ω: C(ω) = K. By Proposition 9.4,
|v(xiM , ω)−vMiM (ω)| ≤ K/8 ·h a.s., where vMiM = (A−1d)iM . On the other hand,
using the Mean Value Theorem to estimate |v(x0)− v(xiM )| as we did before,
we obtain |v(x0, ω)− v(xiM , ω)| ≤ L|x0 − xiM | a.s., where

L =


‖α‖L∞(Ω) cosh(

√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

, ‖α‖L∞(Ω) > 0,

1, ‖α‖L∞(Ω) = 0.
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By the triangular inequality,

|v(x0, ω)− vMiM (ω)| ≤ |v(x0, ω)− v(xiM , ω)|+ |v(xiM , ω)− vMiM (ω)|
≤ K/8 · h+ L|x0 − xiM | a.s.

Now, if α(ω) > 0, we know that v(x0) = sinh(
√
α(1 − x0))/ sinh(

√
α). As

a function of α, it has a lower bound m > 0. Then, v(x0, ω) ≥ m a.s. To
conclude, take M0 such that, for all M ≥ M0, K/8 · h + L|x0 − xiM | ≤ m/2.
This implies that |v(x0, ω)− vMiM (ω)| ≤ m/2 ≤ v(x0, ω)/2, therefore vMiM (ω) ≥
v(x0, ω)/2 a.s. This concludes the proof of the claim.
Hence, for M ≥M0,

fA

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

(A−1d)iM
≤ ‖fA‖L∞(R)

2

v(x0)
≤ ‖fA‖L∞(R)

2

m
.

Since ‖fA‖L∞(R)2/m is constant, it belongs to L1(Ω). By the Dominated Con-
vergence Theorem [135, p. 321],

lim
M→∞

fuMiM
(u) = E

[
fA

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)

]
=: f̄(u).

Finally, we prove that f̄ is a density of u(x0). Let G be a random variable with
density function given by f̄ . By Scheffé’s Lemma [170, p. 55], uMiM → G in
law as M →∞. On the other hand, by Proposition 9.4, uMiM → u(x0) a.s., so
uMiM → u(x0) in law, as M →∞. Then u(x0) and G are equal in distribution,

so fu(x0)(u) = f̄(u), as wanted.
�

The continuity of fA on R is satisfied, for instance, by the density function
of the distributions Normal(µ, σ2), µ ∈ R and σ2 > 0; Beta(a, b), a > 1 and
b > 1; Gamma(a, b), a > 1 and b > 0; etc. However, it would be desirable
to require only a.e. continuity for fA, since the class of applicable density
functions would be larger: Beta(a, b), a ≥ 1 and b ≥ 1; Uniform(a, b), a < b;
Gamma(a, b), a ≥ 1 and b > 0 (in particular, Exponential(b)); truncated
normal distribution; etc. This is the purpose of the following theorem.

Theorem 9.9 Suppose that φ has sample paths in Cβ([0, 1]) (certain 0 < β ≤
1), A, B and α are absolutely continuous, A, B and (α, φ) are independent,
‖α‖L∞(Ω) < ∞, fA is a.e. continuous and essentially bounded on R. Let
x0 ∈ (0, 1). Let {iM}∞M=1 be a sequence of indexes, iM ∈ {1, . . . ,M}, such that
limM→∞ iM/(M +1) = x0. Then the sequence {fuMiM (u)}∞M=1, defined in (9.4),

converges to a density fu(x0)(u) of u(x0), for all u ∈ R.
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9.3 Probability density function of the solution stochastic process

Proof. The proof is analogous to Theorem 9.8. Since α(ω) > 0 a.s. (because
P(α = 0) = 0), we have v(x0) = sinh(

√
α(1 − x0))/ sinh(

√
α) a.s. By the

Random Variable Transformation (RVT) technique [47, Th. 1] (briefly, it is
a method that consists in computing the probability density function of a
transformation of an absolutely continuous random variable/vector), v(x0) is
absolutely continuous. On the other hand, w can also be explicitly found
using the theory of linear differential equations, and one obtains that w(x0)
can be written as Z1B+Z2, where B and (Z1, Z2) are independent and Z1 6= 0
a.s. By Lemma 9.7, w(x0) is absolutely continuous. By the RVT technique,
1/v(x0) · {u − w(x0)} is absolutely continuous. Then, the probability that
1/v(x0) · {u − w(x0)} belongs to the discontinuity set of fA is 0. By the
Continuous Mapping Theorem [165, p. 7, Th. 2.3], (9.5) holds. The rest of the
proof is as in Theorem 9.8.

�

In the following proposition, we study whether the finite difference scheme
preserves the pointwise convergence of the derivatives.

Proposition 9.10 Assume the conditions of Theorem 9.8. If the n-th deriva-

tive f
(n)
A exists on R and f

(j)
A is bounded on R for each 1 ≤ j ≤ n, then fuMiM

and fu(x0) have bounded n-th derivatives on R. Moreover, if f
(n)
A is continuous

on R, then the sequence {f (n)

uMiM
(u)}∞M=1 converges to f

(n)
u(x0)(u), for all u ∈ R.

Proof. Both fuMiM
and fu(x0) possess n-th derivatives on R because of the

differentiability of fA and the Dominated Convergence Theorem. Indeed, fix
u ∈ R. We have

fA
(
u+h−w(x0)

v(x0)

)
1

v(x0)
− fA

(
u−w(x0)

v(x0)

)
1

v(x0)

h
h→0−→ f ′A

(
u− w(x0)

v(x0)

)
1

v(x0)2
, (9.6)

by definition of derivative. Now, by the deterministic Mean Value Theorem,∣∣∣∣∣∣
fA
(
u+h−w(x0)

v(x0)

)
1

v(x0)
− fA

(
u−w(x0)

v(x0)

)
1

v(x0)

h

∣∣∣∣∣∣ =

∣∣∣∣f ′A (u+ ξh − w(x0)

v(x0)

)∣∣∣∣ 1

v(x0)2

≤ ‖f ′A‖L∞(R)

1

m2
, (9.7)

where ξh depends on ω and |ξh| < |h|. Notice that the inequality v(x0) ≥ m a.s.
from the proof of Theorem 9.8 has been utilized. The Dominated Convergence
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Theorem thus applies to ensure the existence of

f ′u(x0)(u) = E
[
f ′A

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)2

]
. (9.8)

Analogously one justifies that

f ′uMiM
(u) = E

[
f ′A

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

((A−1d)iM )
2

]
(9.9)

exists, by using the fact that (A−1d)iM ≥ v(x0)/2 ≥ m/2 a.s. For higher
derivatives, the procedure works analogously and one proves

f
(n)
u(x0)(u) = E

[
f

(n)
A

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)n

]
, (9.10)

f
(n)

uMiM
(u) = E

[
f

(n)
A

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

((A−1d)iM )
n

]
. (9.11)

When f
(n)
A is continuous on R, the proof of Theorem 9.8 works with f

(n)
A instead

of fA, so that one concludes that {f (n)

uMiM
(u)}∞M=1 converges to f

(n)
u(x0)(u), for all

u ∈ R.
�

Remark 9.11 The same analysis can be performed if B is absolutely contin-
uous and B and (A,α, φ) are independent. In such a case,

fuMi (u) = E

[
fB

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπMh)

α+2/h2(1−cos(kπh))

·

·
{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φ(xj)

− 2

M + 1

A

h2

M∑
k=1

sin(kπih) sin(kπh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπMh)

α+2/h2(1−cos(kπh))

]
.

One could think of performing the same analysis by isolating φ(x1), instead of
A or B. In such a case, one would assume that φ(x1) is absolutely continuous,
and that (α,A,B, φ(x2), . . . , φ(xM)) and φ(x1) are independent. To achieve
this independence, one may require φ(y1), . . . φ(ym) to be independent, for ev-
ery y1, . . . , ym ∈ [0, 1], m ≥ 1. A process φ of this type exists by Kolmogorov’s
Extension Theorem [9, Th. 36.2, p. 486]. However, by [96, Example 1.2.5,
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p. 10], this process φ is not jointly measurable on [0, 1]×Ω. This implies that
its sample paths cannot be right-continuous nor left-continuous, so φ does not
have enough regularity to apply our results.

Remark 9.12 The theoretical expression of fuMi (u) is

fuMi (u) =

∫
RM+2

fA

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)

α+2/h2(1−cos(kπh))

·

·
{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φj

− 2

M + 1

b

h2

M∑
k=1

sin(kπih) sin(kπMh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)

α+2/h2(1−cos(kπh))

·P(α,B,φ(x1),...,φ(xM ))(dα,db,dφ1, . . . ,dφM).

However, in practice, we use Monte Carlo simulation to compute the expecta-
tion (9.4), by sampling from α, B and φ.

9.4 Examples and Conclusions

Example 9.13 Consider (9.1) with A ∼ Gamma(2, 1), B ∼ Poisson(3), α ∼
Uniform(1, 2) and φ(x) = arctan(ecos(Dx) + 1), where D ∼ Binomial(20, 0.2).
The random variables are assumed to be independent. Notice that φ has
sample paths in C∞([0, 1]), therefore in Cβ([0, 1]). Then there is a solution
process u in C2,β([0, 1]) (in fact, in C∞([0, 1])). On the other hand, fA is
continuous and bounded on R. Then Theorem 9.8 allows us to approximate the
density function of u(x), x ∈ (0, 1). Also, since A and B have moments of all
orders and |φ(x)| ≤ π/2 a.s., both Proposition 9.5 and Proposition 9.6 ensure
that u(x) has moments of all orders and, moreover, they can be approximated.
In particular, the expectation and variance of u(x), E[u(x)] and V[u(x)], can
be approximated.

We will do so for x = 0.5. Let iM = (M+1)/2, forM odd. Then {fuMiM (u)}Modd,

defined in (9.4), tends to fu(0.5)(u), u ∈ R. In Figure 9.1, we show the graph
of fuMiM

(u) for M = 9, 11, 13. In Table 9.1, we compute

E[uMiM ] =

∫
R
ufuMiM

(u) du, V[uMiM ] =

∫
R
u2fuMiM

(u) du−
(
E[uMiM ]

)2
,
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for M = 9, 11, 13. We observe that there is convergence, which agrees with
our theoretical findings, and moreover it is rapid. The expectation in (9.4)
has been computed via Monte Carlo simulation, as explained in Remark 9.12,
with 100, 000 samples of the involved random variables for each M .

2 4 6
u

0.1

0.2

0.3

0.4

f

M=9

M=11

M=13

Figure 9.1: Graph of fuMiM
(u) for M = 9 (green), M = 11 (thick dashed red) and M = 13

(tiny dashed blue). Example 9.13.

M 9 11 13
E[uMiM ] 2.22 2.21 2.21
V[uMiM ] 0.89 0.88 0.88

Table 9.1: Expectation and variance of uMiM , for M = 9, 11, 13. Example 9.13.

Example 9.14 We deal with (9.1) having as inputs A ∼ Uniform(−1, 1),
B ∼ Gamma(4, 1), α ∼ Uniform(1, 2) and φ(x) a standard Brownian motion
on [0, 1] (φ(x) ∼ Normal(0, x)) [119, Ch. 5]. The random variables/process are
assumed to be independent. Brownian motion has Cβ([0, 1]) sample paths,
for 0 < β < 1/2. By Proposition 9.2, there exists a solution process u in
C2,β([0, 1]). On the other hand, fA is a.e. continuous (two points of dis-
continuity, −1 and 1) and bounded on R, and A, B and α are absolutely
continuous. Then Theorem 9.9 allows us to approximate the density function
of u(x), x ∈ (0, 1). In addition, since A and B have moments of all orders and
supx∈[0,1] ‖φ(x)‖Lp(Ω) = supx∈[0,1](

1√
π

(2x)p/2Γ(p+1
2

))1/p ≤ ( 1√
π

2p/2Γ(p+1
2

))1/p <

∞ for each p ≥ 1, Proposition 9.5 entails that u(x) has moments of all orders
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and, moreover, they can be approximated. In particular, the expectation and
variance of u(x), E[u(x)] and V[u(x)], can be approximated.

We work at the point x = 0.5 again. Let iM = (M + 1)/2, for M odd. Then
{fuMiM (u)}M odd, defined in (9.4), tends to fu(0.5)(u), u ∈ R. In Figure 9.2, we

depict the graph of fuMiM
(u) for M = 9, 11, 13. In Table 9.2, we calculate the

expectation and variance for M = 9, 11, 13. We observe convergence, which
agrees with our theoretical findings, and furthermore this convergence is fast.
The expectation in (9.4) has been determined via Monte Carlo simulation,
see Remark 9.12, with 100, 000 realizations of the involved random variables
for each M . To sample from a Brownian motion, we use its Karhunen-Loève
expansion on [0, 1] with a sufficiently large order of truncation.

-1 1 2 3 4 5 6
u

0.1

0.2

0.3

0.4

0.5

f

M=9

M=11

M=13

Figure 9.2: Graph of fuMiM
(u) for M = 9 (green), M = 11 (thick dashed red) and M = 13

(tiny dashed blue). Example 9.14.

M 9 11 13
E[uMiM ] 1.68 1.68 1.68
V[uMiM ] 0.77 0.77 0.77

Table 9.2: Expectation and variance of uMiM , for M = 9, 11, 13. Example 9.14.

Finally, we want to point out that this study seeks to contribute to the field
of random differential equations, where a main goal is to compute the mean
and variance of the solution stochastic process. In this chapter we have shown
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a novel method to go beyond the computation of these statistical moments.
Indeed, we have rigorously addressed the computation of the probability den-
sity function of an important random diffusion-reaction problem with ran-
dom boundary conditions, by using a finite difference numerical scheme. The
proposed approach can be very useful to deal with other significant random
differential equations.

Research on the rate of convergence of the approximating density functions to
the target density function could be conducted in the future. An issue that
should be resolved in such a case is the fact that our reasoning is entirely
based on existing results of convergence in Probability and Analysis (Dom-
inated Convergence Theorem, Continuous Mapping Theorem, [20, Th. 2.4],
etc.), which, at least to our knowledge, do not usually provide rates of con-
vergence. Thus, in order to obtain optimal or at least sub-optimal bounds,
we should proceed with step-by-step inequalities. We believe that this might
be achievable by assuming fA to be Lipschitz continuous on R and by finding
the constants involved in the proof of Theorem 9.8. See our recent contribu-
tion [19], in which some theoretical rates of convergence for the approximating
density functions were found in the setting of a random parabolic partial dif-
ferential equation. These ideas raise new research lines for the future.
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Chapter 10

Lp-calculus approach to the
random autonomous linear

differential equation with
discrete delay

In this chapter, we provide a full probabilistic study of the random
autonomous linear differential equation with discrete delay τ > 0: x′(t) =
ax(t)+bx(t−τ), t ≥ 0, with initial condition x(t) = g(t), −τ ≤ t ≤ 0. The
coefficients a and b are assumed to be random variables, while the initial
condition g(t) is taken as a stochastic process. By using Lp-calculus, we
prove that, under certain conditions, the deterministic solution constructed
with the method of steps that involves the delayed exponential function is
an Lp-solution too. An analysis of Lp-convergence when the delay τ tends
to 0 is also performed in detail.

10.1 Introduction

Delay differential equations can be viewed as generalizations of classical dif-
ferential equations. The study of delay differential equations requires a dis-
tinctive treatment with respect to their classical counterpart [156]. This fact
can be checked starting from introducing a delay in the basic linear ordinary
differential equation that leads to richer qualitative and quantitative behav-
iors [60]. Regarding applications, the delays or lags into the formulation of

223



Chapter 10.

classical differential equations expand the variety and complexity of possibles
behavior regimes often allowing a better description of the real phenomenon
[107]. In particular, delays play a key role in Biomathematics (population dy-
namics, infectious diseases, physiology, biotic population, immunology, neural
networks and cell kinetics) [10, 37, 91], but also in other realms like Chemistry
[65, Ch. 4], Engineering [108], Economics and Finance [82, 122].

As it has been previously indicated, delay differential equations allow describ-
ing more complex dynamics than their classical counterpart. This fact is
particularly convenient in dealing with modeling using real data where, in
addition, it is necessary to perform a rigorous treatment of uncertainty (un-
certainty quantification). This randomness usually comes from sampling or
simply because of the inherent complexity of the phenomena under study. In
this setting, stochastic and random delay differential equations are formulated
instead.

On the one hand, stochastic delay differential equations are those in which
uncertainty in driven by stochastic processes whose sample path behavior is
irregular (typically Brownian motion, or more generally Wiener process, and
Poisson process). Their mathematical study requires Itô or Malliavin calculus
[129]. Under this approach, uncertainty is limited to specific probabilistic
patterns. In the case of considering the Wiener process, then the underlying
noise is of Gaussian type. An excellent overview of this approach can be
found in [147]. While some recent theoretical and numerical advances using
Gaussian and Poisson distributions are reported in the book [83, Ch. 1 and
Ch. 10] and in the articles [6, 71, 126, 148, 149], for example. Stochastic
delay differential equations have also been successfully applied to model real
problems in different settings. For example, mathematical models to describe
the dynamics of obesity and alcohol consumption have been proposed in [141]
and [142], respectively. The stochastic Navier-Stokes with infinite delay has
been recently addressed in [117]. A predator prey stochastic model with delay
has been proposed in [32].

On the other hand, random delay differential equations are those in which
the random effects are directly manifested in their inputs (coefficients, ini-
tial/boundary conditions and/or source term). The sample path behavior of
these inputs is regular (e.g. sample path continuous) with respect to time
and space [157, p. 97]. The rigorous analysis of this type of differential equa-
tions can be conducted mainly by using two approaches, sample path calcu-
lus or mean square random calculus [160]. The former approach is strongly
based upon the well-behavior (regularity) of the trajectories of the inputs
involved in the random differential equations in order to take advantage of
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the power of deterministic calculus. In the latter case, results are formulated
in the setting of the Hilbert space (L2, 〈·, ·〉) of real random variables on Ω
having second-order moment (thus having mean and variance too) endowed
with the inner product 〈U, V 〉 = E[UV ], where E[·] denotes the expectation
operator and Ω is the sample space of an underlying complete probability
space (Ω,F ,P) [160]. Mean square random calculus has been successfully
applied to study random differential equations, see for example [127, 160].
However, to the best of our knowledge, in the context of random delay dif-
ferential equations only a few theoretical results have been established. Some
recently and very interesting contributions focusing on numerical methods
instead are [150, 175]. In [175], a sparse grid stochastic Legendre spectral
collocation method is proposed to numerically solve linear systems of random
differential equations with constant and pantograph delays. While in [150],
the authors extend the generalized polynomial chaos method to study nonlin-
ear random delay differential equations by taking advantage of orthogonality
properties in the Hilbert space L2. Nevertheless, there is lack of theoreti-
cal results for random delay differential equations, starting from the random
autonomous linear differential equation with delay, in the general context of
random Lebesgue spaces (Lp, ‖·‖p), where ‖U‖p = (E[|U |p])1/p, for 1 ≤ p <∞,

and ‖U‖∞ = inf{C ≥ 0 : |U(ω)| ≤ C for almost every ω}, for U : Ω → R
being a random variable. And this is precisely the aim of this contribution.

Apart from stochastic and random delay differential equations, it must also be
mentioned a complementary approach usually referred to as fuzzy delay differ-
ential equations, whose uncertainty is driven by particular stochastic processes
like the fuzzy Liu process [120].

Finally, it must be pointed out that randomness is directly introduced in the
delay instead of coefficients and/or forcing term in order to account for uncer-
tainties associated to the time instant in which relevant factors determining
the output of the mathematical model under study take place. Examples in
this regard can be found in [72, 105, 118], for example.

The autonomous linear differential equation with discrete time delay τ > 0 is
given by {

x′(t) = ax(t) + bx(t− τ), t ≥ 0,
x(t) = g(t), −τ ≤ t ≤ 0,

(10.1)

where a is the coefficient of the non-delay component, b is the parameter of
the delay term, and the function g(t) defined on [−τ, 0] is the initial condition.
If g ∈ C1([−τ, 0]), then the unique solution to (10.1) is obtained with the
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method of steps and is given by [102, Th. 1],

x(t) = ea(t+τ)eb1,tτ g(−τ) +

∫ 0

−τ
ea(t−s)eb1,t−τ−sτ (g′(s)− ag(s)) ds, (10.2)

where b1 = e−aτb,

ec,tτ =



0, −∞ < t < −τ,
1, −τ ≤ t < 0,

1 + c
t

1!
, 0 ≤ t < τ,

1 + c
t

1!
+ c2

(t− τ)2

2!
, τ ≤ t < 2τ,

...
...

n∑
k=0

ck
(t− (k − 1)τ)k

k!
, (n− 1)τ ≤ t < nτ,

is the delayed exponential function [102, Def. 1], c, t ∈ R, τ > 0 and n =
bt/τc + 1 (here b·c denotes the integer part defined by the so-called floor
function).

The randomization of (10.1) consists in assuming that the system depends on
an outcome ω of an experiment:{

x′(t, ω) = a(ω)x(t, ω) + b(ω)x(t− τ, ω), t ≥ 0,
x(t, ω) = g(t, ω), −τ ≤ t ≤ 0.

(10.3)

Here, the coefficients a = a(ω) and b = b(ω) are random variables, while
g(t) = g(t, ω) is a stochastic process, all of them defined in an underlying
complete probability space (Ω,F ,P).

The formal solution to (10.3) is obtained after randomization of (10.2):

x(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+

∫ 0

−τ
ea(ω)(t−s)eb1(ω),t−τ−s

τ (g′(s, ω)− a(ω)g(s, ω)) ds, (10.4)

where b1(ω) = e−a(ω)τb(ω). The stochastic process (10.4) is a solution to (10.3)
in the sample path sense, under the assumption that the sample paths of g
belong to C1([−τ, 0]).

In this chapter, we study conditions under which (10.4) is an Lp-solution to
(10.3). This kind of delay differential equations appear in Engineering and
Control problems [5, 108], for example. When they are applied to real data,
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its coefficients a and b and its preshape function g(t) need to be calibrated.
Since data often involve uncertainty coming from errors measurements, it is
more realistic to treat a and b as random variables and g(t) as a stochastic
process, as it will be assumed throughout this chapter.

This chapter is organized as follows. In Section 10.2, we state preliminary
results on Lp-calculus that are required for the exposition. In Section 10.3, we
prove that (10.4) is the unique Lp-solution to (10.3) under certain assumptions.
In Section 10.4, we demonstrate that (10.4) tends as τ → 0 to the solution to
(10.3) with τ = 0, in the space Lp.

10.2 Preliminary results on Lp-calculus

In this section, we state some preliminary results on Lp-calculus that will be
required in the coming sections.

Proposition 10.1 (Chain Rule Theorem) Let {X(t) : t ∈ [a, b]} be any
stochastic process. Let f be a deterministic C1 function on an open set that
contains X([a, b]). Fix 1 ≤ p <∞. Let t ∈ [a, b] such that:

(i) X is L2p-differentiable at t,

(ii) X is path continuous on [a, b],

(iii) there exist r > 2p and δ > 0 such that sups∈[−δ,δ] E[|f ′(X(t+ s))|r] <∞.

Then f ◦X is Lp-differentiable at t and (f ◦X)′(t) = f ′(X(t))X ′(t).

The proof of Proposition 10.1 is analogous to [167, Th. 3.19], but not restricted
to mean square and mean fourth calculus. In the proof, instead of applying
Hölder’s inequality as ‖UV ‖2 ≤ ‖U‖4‖V ‖4, one uses the more general version
‖UV ‖p ≤ ‖U‖2p‖V ‖2p (here U and V represent random variables).

Lemma 10.2 Let Y1(t, s), Y2(t, s) and Y3(t, s) be three stochastic processes
and fix 1 ≤ p < ∞. If Y1 and Y2 are Lq-continuous for all 1 ≤ q < ∞, and
Y3 is Lp+η-continuous for certain η > 0, then the product process Y1Y2Y3 is
Lp-continuous.

On the other hand, if Y1 and Y2 are L∞-continuous, and Y3 is Lp-continuous,
then the product process Y1Y2Y3 is Lp-continuous.
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Proof. Suppose that Y1 and Y2 are Lq-continuous for all 1 ≤ q < ∞, and
Y3 is Lp+η-continuous. Notice that Y1Y2 is Lq-continuous for all 1 ≤ q < ∞.
Indeed, if tn → t and sn → s as n→∞, then, by the triangular and Hölder’s
inequalities,

‖Y1(tn, sn)Y2(tn, sn)− Y1(t, s)Y2(t, s)‖q
≤ ‖(Y1(tn, sn)− Y1(t, s))Y2(tn, sn)‖q + ‖Y1(t, s)(Y2(t, s)− Y2(tn, sn))‖q
≤ ‖Y1(tn, sn)− Y1(t, s)‖2q‖Y2(tn, sn)‖2q

+‖Y1(t, s)‖2q‖Y2(t, s)− Y2(tn, sn)‖2q
n→∞
−→ 0 . (10.5)

Now,

‖Y1(tn, sn)Y2(tn, sn)Y3(tn, sn)− Y1(t, s)Y2(t, s)Y3(t, s)‖p
≤ ‖Y1(tn, sn)Y2(tn, sn)(Y3(tn, sn)− Y3(t, s))‖p
+‖(Y1(tn, sn)Y2(tn, sn)− Y1(t, s)Y2(t, s))Y3(t, s)‖p
≤ ‖Y1(tn, sn)Y2(tn, sn)‖q‖Y3(tn, sn)− Y3(t, s)‖p+η

+‖Y1(tn, sn)Y2(tn, sn)− Y1(t, s)Y2(t, s)‖q‖Y3(t, s)‖p+η
n→∞
−→ 0, (10.6)

where q = p(p+η)

η
has been chosen to apply Hölder’s inequality (note that

1
p

= 1
p+η

+ 1
q
). This proves the Lp-continuity of Y1Y2Y3.

Suppose that Y1 and Y2 are L∞-continuous, and Y3 is Lp-continuous. Then
Y1Y2 is L∞-continuous, by (10.5) with q = ∞. Statement (10.6) holds with
q =∞ and p in lieu of p+ η. This demonstrates the Lp-continuity of Y1Y2Y3.

�

Lemma 10.3 Let Y1(t), Y2(t) and Y3(t) be three stochastic processes, and
1 ≤ p < ∞. If Y1 and Y2 are Lq-differentiable for all 1 ≤ q < ∞, and Y3

is Lp+η-differentiable for certain η > 0, then the product process Y1Y2Y3 is
Lp-differentiable and d

dt
(Y1(t)Y2(t)Y3(t)) = Y ′1(t)Y2(t)Y3(t) + Y1(t)Y ′2(t)Y3(t) +

Y1(t)Y2(t)Y ′3(t).

Additionally, if Y1 and Y2 are assumed to be L∞-differentiable, and Y3 is
Lp-differentiable, then Y1Y2Y3 is Lp-differentiable, with d

dt
(Y1(t)Y2(t)Y3(t)) =

Y ′1(t)Y2(t)Y3(t) + Y1(t)Y ′2(t)Y3(t) + Y1(t)Y2(t)Y ′3(t).

The proof of this lemma follows the same reasoning as Lemma 10.2, but work-
ing with incremental quotients instead. Similar reasonings are also given in
[160, p. 96 (4)], [167, Lemma 3.14]. We omit the details.
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Proposition 10.4 (Lp-differentiation under Lp-Riemann integral sign)
Let F (t, s) be a stochastic process on [a, b] × [c, d]. Fix 1 ≤ p < ∞. Suppose
that F (t, ·) is Lp-continuous on [c, d], for each t ∈ [a, b], and that there ex-
ists the Lp-partial derivative ∂F

∂t
(t, s) for all (t, s) ∈ [a, b] × [c, d], which is

Lp-continuous on [a, b]× [c, d]. Let G(t) =
∫ d
c
F (t, s) ds (the integral is under-

stood as an Lp-Riemann integral). Then G is Lp-differentiable on [a, b] and

G′(t) =
∫ d
c
∂F
∂t

(t, s) ds.

Proof. We have, for h 6= 0,∥∥∥∥∥G(t+ h)−G(t)

h
−
∫ d

c

∂F

∂t
(t, s) ds

∥∥∥∥∥
p

=

∥∥∥∥∥
∫ d

c

(
F (t+ h, s)− F (t, s)

h
− ∂F

∂t
(t, s)

)
ds

∥∥∥∥∥
p

≤
∫ d

c

∥∥∥∥F (t+ h, s)− F (t, s)

h
− ∂F

∂t
(t, s)

∥∥∥∥
p

ds, (10.7)

where the last inequality comes from [160, p. 102] in the general setting of
Lp-calculus. We know that

lim
h→0

∥∥∥∥F (t+ h, s)− F (t, s)

h
− ∂F

∂t
(t, s)

∥∥∥∥
p

= 0,

by definition of Lp-partial derivative. We bound ‖F (t+h,s)−F (t,s)

h
− ∂F

∂t
(t, s)‖p in

order to apply the Dominated Convergence Theorem in (10.7).
On the one hand, ∥∥∥∥∂F∂t (t, s)

∥∥∥∥
p

≤M, (10.8)

for all (t, s) ∈ [a, b] × [c, d], by Lp-continuity of ∂F
∂t

(t, s). On the other hand,
by Barrow’s rule [160, p. 104], an inequality from [160, p. 102], and (10.8),∥∥∥∥F (t+ h, s)− F (t, s)

h

∥∥∥∥
p

=
1

|h|

∥∥∥∥∥
∫ t+h

t

∂F

∂t
(t′, s) dt′

∥∥∥∥∥
p

≤ 1

|h|

∣∣∣∣∣
∫ t+h

t

∥∥∥∥∂F∂t (t′, s)

∥∥∥∥
p

dt′

∣∣∣∣∣ ≤M. (10.9)
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By the triangular inequality, (10.8) and (10.9),∥∥∥∥F (t+ h, s)− F (t, s)

h
− ∂F

∂t
(t, s)

∥∥∥∥
p

≤
∥∥∥∥F (t+ h, s)− F (t, s)

h

∥∥∥∥
p

+

∥∥∥∥∂F∂t (t, s)

∥∥∥∥
p

≤ 2M,

so the use of the Dominated Convergence Theorem to conclude that (10.7)
tends to 0 as h→ 0 is justified.

�

10.3 Lp-solution to the random autonomous linear
differential equation with discrete delay

In this section, we solve (10.3) in the Lp-sense. We will establish its uniqueness
of solution, and we will prove that (10.4) is an Lp-solution under certain condi-
tions (the integral from (10.4) will be understood as an Lp-Riemann integral).

Theorem 10.5 (Uniqueness) The stochastic system (10.3) has at most one
Lp-solution, for 1 ≤ p <∞.

Proof. Suppose that x(t) and y(t) are two Lp-solutions to (10.3). Let z(t) =
x(t)−y(t), which satisfies the random differential equation problem with delay{

z′(t, ω) = a(ω)z(t, ω) + b(ω)z(t− τ, ω), t ≥ 0,

z(t, ω) = 0, −τ ≤ t ≤ 0.

If t ∈ [0, τ ], then t− τ ∈ [−τ, 0], therefore z(t− τ) = 0. Thus, z(t) satisfies a
random differential equation problem with no delay:{

z′(t, ω) = a(ω)z(t, ω), t ∈ [0, τ ],

z(0, ω) = 0.
(10.10)

In [161], it was proved that any Lp-solution to a random initial value problem
has a product measurable representative which is an absolutely continuous
solution in the sample path sense. Since the sample path solution to (10.10)
must be 0 (from the deterministic theory), we conclude that z(t) = 0, as
wanted.

�
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Proposition 10.6 (Lp-derivative of the delayed exponential function)

Consider the stochastic system with discrete delay{
x′(t, ω) = c(ω)x(t− τ, ω), t ≥ 0,

x(t, ω) = 1, −τ ≤ t ≤ 0,
(10.11)

where c(ω) is a random variable.

If c has centered absolute moments of any order, then ec,tτ is the unique Lp-
solution to (10.11), for all 1 ≤ p <∞.

On the other hand, if c is bounded, then ec,tτ is the unique L∞-solution to
(10.11).

Proof. Suppose that c has centered absolute moments of any order, and let
x(t) = ec,tτ . Fix t0 ≥ 0. We want to prove that x is Lp-differentiable at t0, for
all 1 ≤ p <∞, with x′(t0) = cx(t0 − τ).
For n = bt0/τc + 1, t0 belongs to [(n − 1)τ, nτ). We distinguish two cases:
(n− 1)τ < t0 < nτ and t0 = (n− 1)τ .

In the former case, ec,tτ =
∑n

k=0 c
k (t−(k−1)τ)k

k!
for all t ∈ ((n − 1)τ, nτ), which

is a neighborhood of t0. Each addend ck (t−(k−1)τ)k

k!
is Lp-differentiable, with

derivative d
dt
{ck (t−(k−1)τ)k

k!
} = ck (t−(k−1)τ)k−1

(k−1)!
:∥∥∥∥∥ck

(t+h−(k−1)τ)k

k!
− (t−(k−1)τ)k

k!

h
− ck (t− (k − 1)τ)k−1

(k − 1)!

∥∥∥∥∥
p

= ‖ck‖p

∣∣∣∣∣
(t+h−(k−1)τ)k

k!
− (t−(k−1)τ)k

k!

h
− (t− (k − 1)τ)k−1

(k − 1)!

∣∣∣∣∣ h→0−→ 0,

since c has centered absolute moments of any order and by the classical deriva-

tive of (t−(k−1)τ)k

k!
. Then x(t) = ec,tτ is Lp-differentiable on ((n − 1)τ, nτ) and

x′(t) =
∑n

k=1 c
k (t−(k−1)τ)k−1

(k−1)!
= c

∑n−1
k=0 c

k (t−kτ)k

k!
= cx(t − τ). Notice that if c

were bounded, the limit computed as h → 0 holds with p = ∞, so x(t) is
L∞-differentiable on ((n− 1)τ, nτ).
In the latter case t0 = (n− 1)τ , we need to compute the left and right deriva-
tives of x(t) = ec,tτ at t0, and check that both are equal to cx(t0 − τ) =
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c
∑n−1

k=0 c
k (t0−kτ)k

k!
=
∑n

k=1 c
k (t0−(k−1)τ)k−1

(k−1)!
. On the one hand, for h > 0,∥∥∥∥∥x(t0 + h)− x(t0)

h
−

n∑
k=1

ck
(t0 − (k − 1)τ)k−1

(k − 1)!

∥∥∥∥∥
p

≤
n∑
k=1

∥∥∥∥∥ck
(t0+h−(k−1)τ)k

k!
− (t0−(k−1)τ)k

k!

h
− ck (t0 − (k − 1)τ)k−1

(k − 1)!

∥∥∥∥∥
p

=
n∑
k=1

‖ck‖p

∣∣∣∣∣
(t0+h−(k−1)τ)k

k!
− (t0−(k−1)τ)k

k!

h
− (t0 − (k − 1)τ)k−1

(k − 1)!

∣∣∣∣∣ h→0+

−→ 0,

by the classical derivative of (t−(k−1)τ)k

k!
and the boundedness of the absolute

moments of c. On the other hand, for h < 0,∥∥∥∥∥x(t0 + h)− x(t0)

h
−

n∑
k=1

ck
(t0 − (k − 1)τ)k−1

(k − 1)!

∥∥∥∥∥
p

=

∥∥∥∥∥
n−1∑
k=1

ck
(t0+h−(k−1)τ)k

k!
− (t0−(k−1)τ)k

k!

h
−

n−1∑
k=1

ck
(t0 − (k − 1)τ)k−1

(k − 1)!

∥∥∥∥∥
p

≤
n−1∑
k=1

‖ck‖p

∣∣∣∣∣
(t0+h−(k−1)τ)k

k!
− (t0−(k−1)τ)k

k!

h
− (t0 − (k − 1)τ)k−1

(k − 1)!

∣∣∣∣∣ h→0−−→ 0.

This proves that x(t) = ec,tτ is Lp-differentiable at t0, with x′(t0) = cx(t− t0).
Again, note that if c were bounded, the limits computed as h → 0 hold with
p =∞, so x(t) is L∞-differentiable at t0.

�

In what follows, we denote the moment-generating function of a random vari-
able a as φa(ζ) = E[eaζ ], ζ ∈ R.

Theorem 10.7 (Existence and uniqueness) Fix 1 ≤ p < ∞. Suppose
that φa(ζ) < ∞ for all ζ ∈ R, b has centered absolute moments of any order,
and g belongs to C1([−τ, 0]) in the Lp+η-sense, for certain η > 0. Then the
stochastic process x(t) defined by (10.4) is the unique Lp-solution to (10.3).

Proof. Let us see that b1 = e−aτb has centered absolute moments of any
order. For m ≥ 0 and by Cauchy-Schwarz inequality,

E[|b1|m] = E[e−maτ |b|m] ≤
(
E[e−2maτ ]

) 1
2
(
E[b2m]

) 1
2

= (φa(−2mτ))
1
2
(
E[b2m]

) 1
2 <∞.
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By Proposition 10.6, eb1,tτ is Lq-differentiable, for each 1 ≤ q <∞, and d
dt

eb1,tτ =
b1eb1,t−ττ .
Consider the stochastic process eat. Let us check the conditions of Proposi-
tion 10.1 (Chain Rule Theorem) with f(x) = ex, X(t) = at and any 1 ≤ q <
∞. Notice that, from φa(ζ) < ∞ for all ζ ∈ R, we know that a has cen-
tered absolute moments of any order and that φa is an analytic real function
with φa(ζ) =

∑∞
n=0

ζn

n!
E[an]. These facts give conditions (i), (ii) and (iii) from

Proposition 10.1. Indeed, (i) holds because a has centered absolute moments
of any order, so in particular a ∈ L2q, which gives the L2q-differentiability of
at; (ii) is clear since at is path-continuous; and (iii) requires, for each t ≥ 0, an
r > 2q and a δ > 0 such that sups∈[−δ,δ] φa(r(t+ s)) <∞, but this is clear by
continuity of φa on R and its boundedness on any compact set. The conclusion
is that eat is Lq-differentiable, for each 1 ≤ q <∞, and d

dt
eat = aeat.

We apply Lemma 10.3 with Y1(t) = ea(t+τ), Y2(t) = eb1,tτ and Y3(t) = g(−τ).
We saw that Y1 and Y2 are Lq-differentiable for all 1 ≤ q <∞, and Y3(t) ∈ Lp+η

by hypothesis, therefore the product process Y1(t)Y2(t)Y3(t) = ea(t+τ)eb1,tτ g(−τ)
is Lp-differentiable and

d

dt

{
ea(t+τ)eb1,tτ g(−τ)

}
=
{
aea(t+τ)eb1,tτ + ea(t+τ)b1eb1,t−ττ

}
g(−τ). (10.12)

Let Y1(t, s) = ea(t−s), Y2(t, s) = eb1,t−τ−sτ and Y3(t, s) = g′(s) − ag(s). Set
F (t, s) = Y1(t, s)Y2(t, s)Y3(t, s). On the one hand, since eat and eb1,tτ are
Lq-continuous processes, for each 1 ≤ q < ∞, Y1(t, s) and Y2(t, s) are Lq-
continuous at (t, s). On the other hand, from g ∈ C1([−τ, 0]) in the Lp+η-
sense, a having absolute moments of any order, and Hölder’s inequality, we
derive that Y3(t, s) is Lp+µ-continuous, for 0 < µ < η. By Lemma 10.2, F (t, s)
is Lp-continuous at (t, s).
Fixed s, let Y1(t) = ea(t−s), Y2(t) = eb1,t−τ−sτ and Y3(t) = g′(s) − ag(s). We
know that Y1(t) and Y2(t) are Lq-differentiable, for each 1 ≤ q < ∞. Also,
from g ∈ C1([−τ, 0]) in the Lp+η-sense, a having absolute moments of any
order, and Hölder’s inequality, the random variable Y3(t) belongs to Lp+µ, for
all 0 < µ < η. By Lemma 10.3, F (·, s) is Lp-differentiable at t, with

∂F

∂t
(t, s) =

{
aea(t−s)eb1,t−τ−sτ + ea(t−s)b1eb1,t−2τ−s

τ

}
(g′(s)− ag(s)) . (10.13)

Let us see that ∂F
∂t

(t, s) is Lp-continuous at (t, s). Since a has centered absolute

moments of any order and ea(t−s) is Lq-continuous at (t, s), for each 1 ≤ q <∞,
we derive that aea(t−s) is Lq-continuous at (t, s), for each 1 ≤ q < ∞, by
Hölder’s inequality. We have that Y1(t, s) = aea(t−s) and Y2(t, s) = eb1,t−τ−sτ

are Lq-continuous at (t, s), for each 1 ≤ q < ∞, while Y3(t, s) = g′(s)− ag(s)
is Lp+µ-continuous, for 0 < µ < η. By Lemma 10.2, aea(t−s)eb1,t−τ−sτ (g′(s) −
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ag(s)) is Lp-continuous at each (t, s). Analogously, ea(t−s)b1eb1,t−2τ−s
τ (g′(s) −

ag(s)) is Lp-continuous at (t, s). Therefore, ∂F
∂t

(t, s) is Lp-continuous at (t, s).

Set G(t) =
∫ 0

−τ F (t, s) ds. By Proposition 10.4 and (10.13), the process G is
Lp-differentiable and

G′(t) =

∫ 0

−τ

∂F

∂t
(t, s) ds

=

∫ 0

−τ

{
aea(t−s)eb1,t−τ−sτ + ea(t−s)b1eb1,t−2τ−s

τ

}
(g′(s)− ag(s)) ds. (10.14)

By combining (10.12) and (10.14) and taking into account expression (10.4)
for x(t), we derive that x(t) is Lp-differentiable and x′(t) = ax(t) + bx(t− τ),
after simple operations.
Finally, for the initial condition, we put t ∈ [−τ, 0] into (10.4). For the first
addend, note that eb1,tτ = 1 by definition of exponential delay function. For
the second addend, we need to work more. Let s ∈ [−τ, 0]. If −τ ≤ t < s ≤ 0,
then t − τ ≤ t − τ − s < −τ , so eb1,t−τ−sτ = 0. If −τ ≤ s ≤ t ≤ 0, then
−τ ≤ t − τ − s ≤ t, therefore eb1,t−τ−sτ = 1. Thus, x(t) = ea(t+τ)g(−τ) +∫ t
−τ ea(t−s)(g′(s)−ag(s)) ds. Fixed t, let Y1(s) = 1, Y2(s) = ea(t−s) and Y3(s) =

g(s). By Lemma 10.3, the product process Y1(s)Y2(s)Y3(s) = ea(t−s)g(s) is
Lp-differentiable, with d

ds
(ea(t−s)g(s)) = ea(t−s)(g′(s) − ag(s)), which is Lp-

continuous. By Barrow’s rule for Lp-calculus, see [160, p. 104] (in the setting
of mean square calculus),

x(t) = ea(t+τ)g(−τ) +

∫ t

−τ
ea(t−s)(g′(s)− ag(s)) ds

= ea(t+τ)g(−τ) +

∫ t

−τ

d

dt
(ea(t−s)g(s)) ds = g(t).

�

Example 10.8 Consider the delay τ = 2. Set a ∼ Normal(2, 1) and b ∼
Gamma(2, 2). Let g(t) = sin(dt2), where d ∼ Beta(10, 9). We know that
φa(ζ) < ∞ for all ζ ∈ R, and that b has centered absolute moments of any
order. On the other hand, g(t) is Lp-differentiable on R, for each 1 ≤ p <∞,
as a consequence of Proposition 10.1. Indeed, in the notation of Proposi-
tion 10.1, take f(x) = sinx and X(t) = dt2. Condition (i) holds because d is
bounded, so it has absolute moments of any order. Condition (ii) is obvious.
Finally, condition (iii) follows since |f ′(x)| = | cosx| ≤ 1. Therefore g(t) is
Lp-differentiable, for each 1 ≤ p < ∞, and g′(t) = 2dt cos(dt2). In fact, with
the same reasoning by applying Proposition 10.1 and the product rule differ-
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entiation, g is C∞(R). The assumptions of Theorem 10.7 are satisfied, so x(t)
defined by (10.4) is the unique Lp-solution to (10.3), for each 1 ≤ p <∞.

To understand the main probabilistic features of x(t) (uncertainty quantifica-
tion), one may approximate the statistical moments of x(t) (since x(t) ∈ Lp

for 1 ≤ p < ∞). The main statistics of x(t) are its expectation, E[x(t)],
and its variance, V[x(t)]. Table 10.1 shows the approximation of these two
statistics for different times t ≥ 0, EMC[x(t)] and VMC[x(t)], by using Monte
Carlo simulation with 2, 000, 000 realizations. We have executed the Monte
Carlo simulation twice. Observe that the approximations agree, although they
deteriorate for large t and the second-order moment.

t 0.1 0.2 0.4 1 1.5
EMC[x(t)] 0.366665 0.852564 2.25884 14.3022 64.3984
EMC[x(t)] 0.366769 0.852833 2.25973 14.3123 64.4420
VMC[x(t)] 0.0784624 0.411983 3.06961 318.432 25090.4
VMC[x(t)] 0.0784137 0.412158 3.07703 321.213 25008.9

Table 10.1: Approximations of E[x(t)] and V[x(t)] with Monte Carlo simulation (2, 000, 000
realizations).

Theorem 10.9 (Existence and uniqueness) Fix 1 ≤ p < ∞. Suppose
that a and b are bounded random variables, and g belongs to C1([−τ, 0]) in
the Lp-sense. Then the stochastic process x(t) defined by (10.4) is the unique
Lp-solution to (10.3).

Proof. First, note that b1 = e−aτb is bounded, from the assumed boundedness
of both a and b. By Proposition 10.6, eb1,tτ is L∞-differentiable and d

dt
eb1,tτ =

b1eb1,t−ττ .
On the other hand, eat is L∞-differentiable and d

dt
eat = aeat. Indeed, given

h 6= 0, by the deterministic Mean Value Theorem and the boundedness of a,∥∥∥∥ea(t+h) − eat

h
− aeat

∥∥∥∥
∞

=

∥∥∥∥eat (eah − 1

h
− a

)∥∥∥∥
∞

≤ e‖a‖∞t
∥∥∥∥eah − 1

h
− a

∥∥∥∥
∞

= e‖a‖∞t
∥∥a(eaξh − 1)

∥∥
∞

≤ ‖a‖∞e‖a‖∞t‖eaξh − 1‖∞ = ‖a‖∞e‖a‖∞t‖aeaδhξh‖∞
≤ ‖a‖2∞e‖a‖∞te‖a‖∞|h||h| h→0−→ 0,
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where ξh and δh are random variables, that arise from applying twice the
deterministic Mean Value Theorem, which depend on h and |δh| < |ξh| < |h|.
The rest of the proof is completely analogous to Theorem 10.7, by applying
the second part of both Lemma 10.2 and Lemma 10.3.

�

Remark 10.10 The condition of boundedness for a and b in Theorem 10.9
is necessary if we only assume that g ∈ C1([−τ, 0]) in the Lp-sense. See
[161, Example p. 541], where it is proved that, in order for a random au-
tonomous and homogeneous linear differential equation of first-order to have
an Lp-solution for every initial condition in Lp, one needs the random coeffi-
cient to be bounded.

10.4 Lp-convergence to a random autonomous linear
differential equation when the delay tends to 0

Given a discrete delay τ > 0, we denote the Lp-solution to (10.3) as xτ (t),
which is given by (10.4) (we make the dependence on τ explicitly). If we put
τ = 0 into (10.3), we obtain a random differential equation problem:{

x′0(t, ω) = (a(ω) + b(ω))x0(t, ω), t ≥ 0,

x0(0, ω) = g(0).
(10.15)

Under certain conditions that imitate those from Theorem 10.7 and Theo-
rem 10.9, there exists a unique solution to (10.15), see the forthcoming Propo-
sition 10.11 and subsequent Corollary 10.12. Our objective in this section will
be to demonstrate that limτ→0 xτ (t) = x0(t) in Lp.

Proposition 10.11 Consider the random differential equation problem{
x′0(t, ω) = a(ω)x0(t, ω), t ≥ 0,

x0(0, ω) = y0(ω),
(10.16)

where a(ω) and y0(ω) are random variables. Fix 1 ≤ p <∞.

If φa(ζ) <∞ for all ζ ∈ R, and y0 ∈ Lp+η for certain η > 0, then the stochastic
process x0(t) = y0eat is the unique Lp-solution to (10.16).

On the other hand, if a is a bounded random variable and y0 ∈ Lp, then the
stochastic process x0(t) = y0eat is the unique Lp-solution to (10.16).
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Proof. From φa(ζ) <∞ for all ζ ∈ R, we know that a has centered absolute
moments of any order and that φa is an analytic real function. From these
facts, the conditions of Proposition 10.1 with f(x) = ex and X(t) = at are
easy to check. Hence, eat is an Lq-differentiable stochastic process, for each
1 ≤ q < ∞, with d

dt
eat = aeat. On the other hand, since y0 ∈ Lp+η, we can

turn to Lemma 10.3 with Y1(t) = 1, Y2(t) = eat and Y3(t) = y0 to derive that
x0(t) = y0eat is Lp-differentiable and x′0(t) = ax0(t).
Finally, if a is bounded, then eat is L∞-differentiable, check the proof of The-
orem 10.9. As y0 ∈ Lp, we can turn to the second part of Lemma 10.3 with
Y1(t) = 1, Y2(t) = eat and Y3(t) = y0 to conclude that x0(t) = y0eat is Lp-
differentiable and x′0(t) = ax0(t).

�

Corollary 10.12 Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all
ζ ∈ R, and g(0) ∈ Lp+η for certain η > 0, then the stochastic process x0(t) =
g(0)e(a+b)t is the unique Lp-solution to (10.15).

On the other hand, if a and b are bounded random variables and g(0) ∈ Lp,
then the stochastic process x0(t) = g(0)e(a+b)t is the unique Lp-solution to
(10.15).

From now on, we try to demonstrate that limτ→0 xτ (t) = x0(t) in Lp. First, we
prove that the delayed exponential function tends to the classical exponential
function in a random setting (Lemma 10.14 and Lemma 10.15), from a well-
known deterministic inequality (Lemma 10.13).

Lemma 10.13 [103, Th. A.3] Let c ∈ R, T > 0, τ0 > 0 and α = 1 + |c|eτ0|c|.
Then, for all τ ∈ (0, τ0], |ec,t−ττ − ect| ≤ τeαT |c|, for all t ∈ [0, T ].

Lemma 10.14 Let c be a bounded random variable, T > 0 and τ0 > 0. Set
k ≥ ‖c‖∞. Then, |ec(ω),t−τ

τ − ec(ω)t| ≤ CT,τ0,k · τ , for almost every ω, for all
t ∈ [0, T ] and τ ∈ (0, τ0], for some real constant CT,τ0,k > 0 that only depends
on T , τ0 and k.

Proof. By Lemma 10.13, for all τ ∈ (0, τ0], |ec(ω),t−τ
τ − ec(ω)t| ≤ τeα(ω)T |c(ω)|,

for all ω and t ∈ [0, T ]. Note that α(ω) = 1 + |c(ω)|eτ0|c(ω)| ≤ 1 + keτ0k. Then

|ec(ω),t−τ
τ − ec(ω)t| ≤ τe(1+keτ0k)Tk. Now simply set CT,τ0,k = e(1+keτ0k)Tk, and we

are done.
�
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Lemma 10.15 Let c be a bounded random variable, T > 0 and τ0 > 0. Set
k ≥ ‖c‖∞. Then, |ec(ω),t

τ − ec(ω)t| ≤ CT,τ0,k · τ , for almost every ω, for all
t ∈ [−τ, T ] and τ ∈ (0, τ0], for some real constant CT,τ0,k > 0 that only depends
on T , τ0 and k.

Proof. By Lemma 10.14, |ec(ω),t
τ − ec(ω)(t+τ)| ≤ C ′T,τ0,k · τ , for almost every ω,

for all t ∈ [−τ, T ] and τ ∈ (0, τ0]. By the triangular inequality, |ec(ω),t
τ −ec(ω)t| ≤

|ec(ω),t
τ −ec(ω)(t+τ)|+|ec(ω)(t+τ)−ec(ω)t|. The former addend is bounded by C ′T,τ0,k·

τ , as previously justified. The latter addend is bounded via the deterministic
Mean Value Theorem: |ec(ω)(t+τ) − ec(ω)t| = eξω,t,τ |c(ω)|τ ≤ ek(T+τ0)kτ , where
ξω,t,τ is between ct and c(t + τ). Let CT,τ0,k = C ′T,τ0,k + ek(T+τ0)k, and we are
done.

�

Theorem 10.16 Fix 1 ≤ p < ∞. Let a and b be bounded random variables
and let g be a stochastic process that belongs to C1([−τ, 0]) in the Lp-sense.
Then, limτ→0 xτ (t) = x0(t) in Lp, uniformly on [0, T ], for each T > 0.

Proof. Fix [0, T ]. Let τ0 = 1, and k ≥ ‖b1‖∞ = ‖e−aτb‖∞ for all τ ∈ (0, 1].
Recall that eat is L∞-continuous (check the proof of Theorem 10.9), therefore
limτ→0 ea(t+τ) = eat in L∞, uniformly on [0, T ]. We also have limτ→0 g(−τ) =
g(0) in Lp, by hypothesis. By Lemma 10.15, |eb1(ω),t

τ − eb1(ω)t| ≤ CT,k · τ , so
‖eb1,tτ − eb1t‖∞ ≤ CT,k · τ . Since limτ→0 eb1t = ebt in L∞ uniformly on [0, T ], we
derive that limτ→0 eb1,tτ = ebt in L∞ uniformly on [0, T ]. We conclude that

lim
τ→0

ea(t+τ)eb1,tτ g(−τ) = g(0)e(a+b)t = x0(t) (10.17)

in Lp, with uniform convergence on [0, T ].
Now, for τ ∈ (0, 1] and t ∈ [0, T ],∥∥∥∥∫ 0

−τ
ea(t−s)eb1,t−τ−sτ (g′(s)− ag(s)) ds

∥∥∥∥
p

≤
∫ 0

−τ

∥∥∥ea(t−s)eb1,t−τ−sτ (g′(s)− ag(s))
∥∥∥
p

ds

≤
∫ 0

−τ

∥∥∥ea(t−s)
∥∥∥
∞

∥∥eb1,t−τ−sτ

∥∥
∞ ‖g

′(s)− ag(s)‖p ds. (10.18)

We bound the three terms inside the integral from (10.18). First, ‖ea(t−s)‖p ≤
e‖a‖∞(T+1). Secondly, ‖g′(s)− ag(s)‖p ≤ ‖g′(s)‖p + ‖a‖∞‖g(s)‖p ≤ C‖a‖∞,g,

where C‖a‖∞,g > 0 is a constant. Finally, we bound ‖eb1,t−τ−sτ ‖∞. We have
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t ≥ 0 and s ∈ [−τ, 0]. Then t − s ∈ [−τ,∞). If t − s ∈ [−τ, 0], then t − s −
τ ∈ [−2τ,−τ ], so eb1,t−τ−sτ = 0 by definition of delayed exponential function.
Otherwise, if t − s ≥ 0, then Lemma 10.14 applies: ‖eb1,t−τ−sτ − eb1(t−s)‖∞ ≤
CT,k · τ , for t ∈ [0, T ], s ∈ [−τ, 0] and τ ∈ (0, 1]. Since ‖eb1(t−s)‖∞ ≤ ek(T+1),
we conclude that ‖eb1,t−τ−sτ ‖∞ ≤ CT,k ·τ+ek(T+1), by the triangular inequality.
Thus, all terms inside the integral from (10.18) are bounded for t ∈ [0, T ] and
s ∈ [−τ, 0], therefore

lim
τ→0

∫ 0

−τ
ea(t−s)eb1,t−τ−sτ (g′(s)− ag(s)) ds = 0 (10.19)

in Lp, uniformly on [0, T ].
By combining both (10.17) and (10.19), we conclude that limτ→0 xτ (t) = x0(t)
in Lp, uniformly on [0, T ].

�

10.5 Conclusions

In this chapter, we have addressed the analysis of the random autonomous
linear differential equation with discrete delay. The coefficients have been as-
sumed to be random variables, while the initial condition has been taken as
a stochastic process. Although the sample-path approach is the easiest ex-
tension of the deterministic results to a random framework, an Lp-random
calculus approach is usually the most appropriate method. Uncertainty quan-
tification for stochastic systems requires the computation or approximation
of the statistical moments of the solution stochastic process (for instance, via
Monte Carlo simulation). Only if we know that the solution process belongs to
Lp, we guarantee that the computation or approximation of its statistical mo-
ments makes sense. This chapter establishes general conditions under which
the random autonomous linear differential equation with discrete delay has a
unique Lp-solution. An analysis of Lp-convergence when the delay tends to
0 has also been performed in detail. Our methodology could be extended to
other random differential equations with some sort of delay. This will be done
in future contributions.
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Chapter 11

Extending the study on the
linear advection equation

subject to stochastic velocity
field and initial condition

In this chapter we extend the study on the linear advection equa-
tion with independent stochastic velocity and initial condition performed in
[F.A. Dorini and M.C.C. Cunha. “On the linear advection equation sub-
ject to random velocity fields”. In: Math. Comput. Simulat. 82 (2011),
pp. 679–690]. By using both existing and novel results on the stochastic
chain rule, we solve the random linear advection equation in the mean
square sense. We provide a new expression for the probability density
function of the solution stochastic process, which can be computed as accu-
rate as wanted via Monte Carlo simulation, and which does not require the
specific probability distribution of the integral of the velocity. This allows
us to solve the non-Gaussian velocity case, which was not treated in the
aforementioned contribution. Several numerical results illustrate the com-
putations of the probability density function by using our approach. On
the other hand, we derive a theoretical partial differential equation for the
probability density function of the solution stochastic process. Finally, a
shorter and easier derivation of the joint probability density function of the
response process at two spatial points is obtained by applying conditional
expectations appropriately.
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11.1 Introduction

Advection equations arise in the modeling of a wide variety of physical pro-
cesses that involve advective transport of substances or wave motions [54, 174].
An important model to describe the concentration of a chemical substance
transported by a one-dimensional fluid that flows with a known velocity is
formulated via the advection problem{

∂
∂t
Q(x, t) + V (t) ∂

∂x
Q(x, t) = 0, t > 0, x ∈ R,

Q(x, 0) = Q0(x), x ∈ R,
(11.1)

where V (t) is the velocity and Q0(x) is the initial concentration of the sub-
stance at the spatial point. This partial differential equation has also been
used to model the flux of a two-phase equal viscosity miscible fluid in a porous
media.

When a real physical phenomenon is modeled via a differential equation, ex-
periments are demanded to measure data and then to set the parameters of
the differential equation. As a consequence, these parameters involve the un-
certainty from error measurements. For example, in model (11.1) the total
velocity, V (t), is obtained from Darcy’s law and it depends on the geology of
the porous media. Therefore, the external velocity is defined by a given statis-
tic. Moreover, the prediction of the initial state of the process is obtained
by data acquired from a few number of exploratory wells by using geological
methods [132]. This means that the interpretation of the data as random is
notoriously more realistic. These facts motivate that the velocity V (t) and
the initial condition, Q0(x), in model (11.1) are better described via stochas-
tic processes in lieu of deterministic functions. In this chapter, we will assume
that these stochastic processes are defined in a complete probability space
(Ω,F ,P) and that they are independent.

Several authors have studied problems related to model (11.1). Most of the
approaches include methods by which one seeks the statistical moments (mo-
ment equations methods or average methods [54, 93, 152, 174]) and/or the
probability density function (PDF methods [153, 166]) of the solution process.
The main effort is usually concentrated on the derivation of appropriate dif-
ferential equations for average quantities (moments) or the probability density
function by using, in general, small perturbations with some closure approxi-
mation method [132]. Another approach is to solve appropriate equations for
sets of realizations of random fields and to average computed functions, the
so-called Monte Carlo approach, which has the advantage of applying to a very
broad range of problems. The large volume of involved calculations, the slow
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11.2 Mean square chain rule and application to solving the random linear advection equation

rate of convergence and the difficulty for generalizing the results may limit the
importance of this method. To complete a fair overview of the state of the art
with respect to the general goal of computing the probability density function
of the solution process to random partial differential equations, it must be
said that a powerful technique that has been extensively used is the Random
Variable Transformation technique [130, 160]. Some relevant contributions in
this regard include [64, 88, 89, 154], for example.

In this chapter we extend the study on the linear advection equation (11.1)
performed in [58]. By using both extant and novel results on the stochastic
chain rule, in the first part of Section 11.2 we solve the stochastic model (11.1)
in the mean square sense. The second part of Section 11.2 is addressed to prove
the uniqueness of the solution in the mean square sense. In Section 11.3, we
provide a new expression for the probability density function of the solution
process, which can be computed as accurate as wanted via Monte Carlo simu-
lation, and which does not require the specific probability distribution of the
integral of the velocity. This allows us to solve the non-Gaussian velocity case,
which was not treated in [58]. Several numerical results illustrate the compu-
tations. A theoretical partial differential equation for the density function of
the solution process is presented in Section 11.4. In Section 11.5, a shorter
and easier derivation of the joint probability density function of the response
process at two spatial points is obtained by applying conditional expectations
appropriately. This section is completed by establishing a partial differential
equation for the joint probability density function of the solution stochastic
process to model (11.1). Finally, our conclusions are drawn in Section 11.6.

11.2 Mean square chain rule and application to solving the
random linear advection equation

By using deterministic theory on partial differential equations [113], the sample-
path solution to (11.1) is given by Q(x, t, ω) = Q0(x−A(t, ω)), where A(t, ω) =∫ t

0
V (τ, ω) dτ is a sample-path integral and ω is an outcome from our sample

space Ω. This fact was already established in [58]. In this section, our purpose
is to prove that Q(x, t) = Q0(x − A(t)) is a mean square solution to (11.1)

under certain conditions, where A(t) =
∫ t

0
V (τ) dτ is understood now as a

mean square Riemann integral [160, 167]. Since Q0(x−A(t)) is a composition
of two stochastic processes, we need appropriate versions of the chain rule for
mean square differentiation.
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In the literature, the mean square differentiation of the composition of two
stochastic processes has been studied when one of the two involved stochastic
processes is a deterministic function:

Theorem 11.1 (Chain Rule Theorem, version 1) [167, Th. 3.19] Let f
be a deterministic C1 function. Let {X(t) : t ∈ [a, b]} be a stochastic process
and t ∈ [a, b] such that:

(i) X is mean fourth differentiable at t.

(ii) X is path continuous on [a, b].

(iii) There exist r > 4 and δ > 0 such that sups∈[−δ,δ] E[|f ′(X(t+ s))|r] <∞.

Then f(X(t)) is mean square differentiable at t and d
dt
f(X(t)) = f ′(X(t))X ′(t).

Theorem 11.2 (Chain Rule Theorem, version 2) [53, Th. 2.1] Let g be
a deterministic differentiable function. Let {Y (t) : t ∈ [a, b]} be a stochastic
process such that [a, b] contains the range of g. Suppose that Y is mean square
C1. Then Y (g(t)) is mean square differentiable on the whole domain of g and
d
dt
Y (g(t)) = Y ′(g(t))g′(t) for each t.

In this chapter, we extend the chain rule theorem to the composition of two
stochastic processes:

Theorem 11.3 (Chain Rule Theorem, general version) Let {Y (t) : t ∈
[c, d]} be a mean square differentiable stochastic process on [c, d] with C1 sam-

ple paths. Denote by Y ′ the mean square derivative of Y , and by Ẏ the classical
derivative of Y . Suppose that Y ′ and Ẏ are indistinguishable stochastic process
(i.e., P[Y ′(t) = Ẏ (t), ∀t] = 1). Let {X(t) : t ∈ [a, b]} be a stochastic process
with range in [c, d], and t ∈ [a, b] such that:

(i) X is mean fourth differentiable at t.

(ii) X is path continuous on [a, b].

(iii) There exist r > 4 and δ > 0 such that sups∈[−δ,δ] E[|Y ′(X(t+ s))|r] <∞.

Then Y (X(t)) is mean square differentiable at t and d
dt
Y (X(t)) = Y ′(X(t))X ′(t).
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Proof. The proof from [167, Th. 3.19] (i.e., Theorem 11.1) is applicable

with f = Y . Then (Y ◦ X)′(t) = Ẏ (X(t))X ′(t). But since Y ′ and Ẏ are

indistinguishable, Ẏ (X(t)) = Y ′(X(t)) almost surely. Thus, (Y ◦ X)′(t) =
Y ′(X(t))X ′(t), as wanted.

�

Remark 11.4 In Theorem 11.3, if Y is a deterministic function f , then we
obtain Theorem 11.1 again. Thus, Theorem 11.3 is an extension of Theo-
rem 11.1.

Remark 11.5 The proof from [53, Th. 2.1] cannot be adapted to the com-
position of two stochastic processes. For example, formulas (2.7) and (2.9)
therein cannot be generalized for a stochastic g.

From the chain rule theorems for mean square differentiation, we can rigor-
ously solve (11.1) in the mean square sense. We will state and prove two
theorems. In the first one, we will consider a deterministic velocity field, so
that Theorem 11.2 will be applicable. In the second theorem, both the velocity
and the initial condition will be stochastic processes, and Theorem 11.3 will
be applicable.

Theorem 11.6 Let V (t) = v(t) be a deterministic velocity function and Q0(x)
be a stochastic initial condition. Assume that:

(i) v(t) is continuous on [0,∞).

(ii) Q0(x) is mean square C1(R).

Then Q(x, t) = Q0(x−A(t)), with A(t) =
∫ t

0
v(τ)dτ , is a mean square solution

to (11.1).

Proof. Since V (t) = v(t) is a deterministic function, the mean square Rie-

mann integral A(t) =
∫ t

0
v(τ) dτ becomes an ordinary Riemann integral. By

the classical Fundamental Theorem of Calculus, A(t) is a C1([0,∞)) deter-
ministic function and A′(t) = v(t). Then, fixed x ∈ R, x−A(t) is a C1([0,∞))
deterministic function. By Theorem 11.2, ∂

∂t
Q(x, t) = −Q′0(x − A(t))A′(t) =

−Q′0(x − A(t))V (t). On the other hand, it is clear that ∂
∂x
Q(x, t) = Q′0(x −

A(t)). Hence, (11.1) is satisfied in the mean square setting.
�

245



Chapter 11.

Theorem 11.7 Let V (t) be a stochastic velocity and Q0(x) be a stochastic
initial condition. Suppose that:

(i) Q0(x) is mean square differentiable on R, with sample paths in C1(R),
and with mean square derivative and classical derivative being indistin-
guishable stochastic processes.

(ii) V (t) is mean fourth continuous on [0,∞).

(iii) We have

sup
s∈[−δ,δ]

E[|Q′0(x−A(t+ s))|r] <∞, for some r > 4 and δ > 0

and

sup
h∈[−η,η]

E[|Q′0(x+ h−A(t))|q] <∞, for some q > 4 and η > 0,

for each x ∈ R and t > 0.

Then Q(x, t) = Q0(x−A(t)), with A(t) =
∫ t

0
V (τ)dτ , is a mean square solution

to (11.1).

Proof. Let us see that ∂
∂x
Q(x, t) = Q′0(x− A(t)). Fix t > 0. Let the process

X(x) = x−A(t). Clearly, X(x) is mean fourth differentiable with continuous
sample paths, so conditions (i) and (ii) from Theorem 11.3 hold. On the other
hand,

sup
h∈[−η,η]

E[|Q′0(X(x+ h))|q] <∞, for some q > 4 and η > 0,

for each x ∈ R, so condition (iii) from Theorem 11.3 holds. Then, by Theo-
rem 11.3, there exists ∂

∂x
Q(x, t) = ∂

∂x
(Q0(X(x))) = Q′0(X(x))X ′(x) = Q′0(x−

A(t)), as wanted.
Since V (t) is mean fourth continuous, by [167, Prop. 3.18] we derive that
A(t) is mean fourth C1 with A′(t) = V (t) (Fundamental Theorem of mean
fourth calculus). Let us see that ∂

∂t
Q(x, t) = −Q′0(x − A(t))V (t). Fix x ∈ R.

Let X(t) = x − A(t). We have that X(t) is mean fourth C1 on (0,∞), with
X ′(t) = −A′(t) = −V (t). By [45, Lemma 4], X(t) has continuous sample
paths on [0,∞). Thus, conditions (i) and (ii) from Theorem 11.3 are satisfied.
Finally,

sup
s∈[−δ,δ]

E[|Q′0(X(t+ s))|r] <∞, for some r > 4 and δ > 0,
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11.2 Mean square chain rule and application to solving the random linear advection equation

for each t > 0, which is condition (iii) from Theorem 11.3. Hence, by Theo-
rem 11.3, ∂

∂t
Q(x, t) = ∂

∂t
Q0(X(t)) = Q′0(X(t))X ′(t) = −Q′0(x−A(t))V (t).

In conclusion, equation (11.1) holds.
�

Example 11.8 Let V (t) be a standard Brownian motion on [0,∞) (then
V (t) ∼ Normal(0, t)) [160, Section 3.3.4], Q0(x) be the deterministic smooth

function g(x) = αe−βx
2

, for certain α, β > 0. These random inputs have been
already used in [58, Example 3.2]. By [167, Lemma 3.11], V (t) is mean fourth
continuous on [0,∞) if and only if E[V (t1)V (t2)V (t3)V (t4)] is continuous at
each (t, t, t, t) ∈ [0,∞)4. This is clear by property [160, p. 28, formula (2.101)]
and the covariance function of Brownian motion, given by E[V (ti)V (tj)] =
min{ti, tj}. Thus, conditions (i) and (ii) from Theorem 11.7 hold. Finally, for

condition (iii) from Theorem 11.7, we compute g′(x) = −2αβxe−βx
2

, which is
bounded in absolute value by a number Mα,β > 0 uniformly on x ∈ R. By
Theorem 11.7, Q(x, t) = Q0(x − A(t)) is a rigorous mean square solution to
(11.1).

Example 11.9 Consider V (t) = arctan(eBt−1), where B ∼ Binomial(3, 0.1),
and Q0(x) = sin(Cx), where C ∼ Poisson(3). The random variables B and C
are assumed to be independent. The initial condition Q0 has C1(R) sample
paths, because the sine function is smooth. On the other hand, the mean
square differentiability property of Q0 follows from Theorem 11.1, with f = sin
and X(x) = Cx. Moreover, the mean square and the classical derivatives
of Q0 coincide, because of the chain rule formula. This shows condition (i)
from Theorem 11.7. For condition (ii) from Theorem 11.7, we use the facts
that V (t + h, ω) − V (t, ω) → 0 as h → 0 almost surely and that |V (t +
h, ω)−V (t, ω)| ≤ |V (t+h, ω)|+ |V (t, ω)| ≤ π almost surely, so the Dominated
Convergence Theorem implies that ‖V (t+h, ω)−V (t, ω)‖L4(Ω) → 0 as h→ 0,
as wanted. Another possible approach to check that condition (ii) holds true
could consist in using [45, Lemma 5], with f(y) = arctan(ey−1) and Y (t) = Bt
in the notation therein. Finally, for condition (iii), E[|Q′0(x)|p] ≤ E[Cp] < ∞.
Thus, Theorem 11.7 implies that Q(x, t) = Q0(x − A(t)) is a rigorous mean
square solution to (11.1).

Example 11.10 Let V (t) be a standard Brownian motion on [0,∞) (then
V (t) ∼ Normal(0, t)) [160, Section 3.3.4], Q0(x) = Bex, B ∼ Exponential(2).
Condition (i) is clear. Condition (ii) also holds, see Example 11.8. Finally,

condition (iii) holds: indeed, it is well known that A(t) ∼ Normal(0, t
3

3
) (see

247



Chapter 11.

[160, Example 4.12] taking diffusion constant 2D ≡ 1), then by using the
finiteness of the moment generating function of a normal distribution, and by
Cauchy-Schwarz inequality, we deduce that

E[|Q′0(x−A(t+ s))|r] = E[Brer(x−A(t+s))] ≤ E[B2r]
1
2E[e2r(x−A(t+s))]

1
2 <∞,

E[|Q′0(x+ h−A(t))|q] = E[Bqeq(x+h−A(t))] ≤ E[B2q]
1
2E[e2q(x+h−A(t))]

1
2 <∞.

A similar reasoning has been used in [167, Example 3.20]. By Theorem 11.7,
the process Q(x, t) = Q0(x−A(t)) is a rigorous mean square solution to (11.1).

To finish this section, we deal with uniqueness, in the mean square sense, of
the solution stochastic process to system (11.1). Suppose that Q1(x, t) and
Q2(x, t) are two mean square solutions to (11.1) that belong to C1(R× [0,∞))
in the mean square sense. Let Q̄(x, t) = Q1(x, t)−Q2(x, t). Then{

∂
∂t
Q̄(x, t) + V (t) ∂

∂x
Q̄(x, t) = 0, t > 0, x ∈ R,

Q̄(x, 0) = 0, x ∈ R.
(11.2)

The goal is to demonstrate that Q̄(x, t) = 0 almost surely, for each x ∈ R and
t ≥ 0 (that is, Q̄ is an equivalent stochastic process to 0).

If we prove that

∂

∂t

(
Q̄(x+A(t), t)

)
=
∂Q̄

∂t
(x+A(t), t) + V (t)

∂Q̄

∂x
(x+A(t), t), (11.3)

then by (11.2),
∂

∂t

(
Q̄(x+A(t), t)

)
= 0.

If we multiply by Q̄(x + A(t), t) and use the product rule for mean square
differentiation (variation of [167, Lemma 3.14]), we derive that

∂

∂t

(
Q̄(x+A(t), t)2

)
= 2Q̄(x+A(t), t)

∂

∂t

(
Q̄(x+A(t), t)

)
= 0,

where the first derivative is understood in the L1(Ω) sense. By [160, p. 97],

∂

∂t
E
[
Q̄(x+A(t), t)2

]
= E

[
∂

∂t

(
Q̄(x+A(t), t)2

)]
= 0.

This implies that t 7→ E
[
Q̄(x+A(t), t)2

]
is constant. From the initial con-

dition in (11.2), E
[
Q̄(x+A(t), t)2

]
= E

[
Q̄(x, 0)2

]
= 0, which entails Q̄(x +
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11.2 Mean square chain rule and application to solving the random linear advection equation

A(t), t) = 0 almost surely. As x and t are arbitrary, we conclude that Q̄(x, t) =
0 almost surely, for each x ∈ R and t ≥ 0, as desired.

Thus, the key result to be proved is (11.3). It corresponds to a mean square
chain rule but with 2 variables involved. By definition of mean square differ-
entiation, (11.3) is equivalent to

lim
h→0

∥∥∥∥ Q̄(x + A(t + h), t + h)− Q̄(x + A(t), t)

h
−

∂Q̄

∂t
(x + A(t), t)− V (t)

∂Q̄

∂x
(x + A(t), t)

∥∥∥∥
L2(Ω)

= 0,

(11.4)

for each x ∈ R and t ≥ 0. Fix x and t. We start by bounding∥∥∥∥ Q̄(x+A(t+ h), t+ h)− Q̄(x+A(t), t)

h
− ∂Q̄

∂t
(x+A(t), t)− V (t)

∂Q̄

∂x
(x+A(t), t)

∥∥∥∥
L2(Ω)

≤
∥∥∥∥ Q̄(x+A(t+ h), t+ h)− Q̄(x+A(t+ h), t)

h
− ∂Q̄

∂t
(x+A(t), t)

∥∥∥∥
L2(Ω)

+

∥∥∥∥ Q̄(x+A(t+ h), t)− Q̄(x+A(t), t)

h
− V (t)

∂Q̄

∂x
(x+A(t), t)

∥∥∥∥
L2(Ω)

,

whence (11.4) is deduced from

lim
h→0

∥∥∥∥ Q̄(x+A(t+ h), t+ h)− Q̄(x+A(t+ h), t)

h
− ∂Q̄

∂t
(x+A(t), t)

∥∥∥∥
L2(Ω)

= 0. (11.5)

lim
h→0

∥∥∥∥ Q̄(x+A(t+ h), t)− Q̄(x+A(t), t)

h
− V (t)

∂Q̄

∂x
(x+A(t), t)

∥∥∥∥
L2(Ω)

= 0. (11.6)

To deal with (11.5), we use the fundamental theorem of mean square calculus
[160, p. 104(6)]:

Q̄(x+A(t+ h), t+ h)− Q̄(x+A(t+ h), t)

h
=

1

h

∫ t+h

t

∂Q̄

∂t
(x+A(t+ h), s) ds

=
1

h

∫ t+h

t

(
∂Q̄

∂t
(x+A(t+ h), s)− ∂Q̄

∂t
(x+A(t), s)

)
ds

+
1

h

∫ t+h

t

∂Q̄

∂t
(x+A(t), s) ds

(here we are using mean square Riemann integrals). Since the map

s 7→ ∂Q̄

∂t
(x+A(t), s)

is mean square continuous, by [160, p. 103(5)]

lim
h→0

1

h

∫ t+h

t

∂Q̄

∂t
(x+A(t), s) ds =

∂Q̄

∂t
(x+A(t), t) (11.7)
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in L2(Ω). On the other hand, we need

lim
h→0

1

h

∫ t+h

t

(
∂Q̄

∂t
(x+A(t+ h), s)− ∂Q̄

∂t
(x+A(t), s)

)
ds = 0 (11.8)

in L2(Ω). This would be deduced if we are able to prove that

(s1, s2) 7→ ∂Q̄

∂t
(x+A(s2), s1) is mean square continuous. (11.9)

Indeed, from (11.9), one has that (s1, s2) 7→ ∂Q̄
∂t

(x+ A(s2), s1) is mean square
uniformly continuous on [t − 1, t + 1]2 ∩ [0,∞)2: given any ε > 0, there is a
0 < µ < 1 such that, if |s3 − s1| < µ and |s4 − s2| < µ with s1, s2, s3, s4 ∈
[t− 1, t+ 1]2 ∩ [0,∞)2, then∥∥∥∥∂Q̄∂t (x+A(s2), s1)− ∂Q̄

∂t
(x+A(s4), s3)

∥∥∥∥
L2(Ω)

< ε. (11.10)

If |h| < µ, then from [167, Prop. 3.17] in the setting of mean square calculus
(or [160, p. 102(3)]) and (11.10),

1

h

∥∥∥∥∥
∫ t+h

t

(
∂Q̄

∂t
(x+A(t+ h), s)− ∂Q̄

∂t
(x+A(t), s)

)
ds

∥∥∥∥∥
L2(Ω)

≤ 1

h

∫ t+h

t

∥∥∥∥∂Q̄∂t (x+A(t+ h), s)− ∂Q̄

∂t
(x+A(t), s)

∥∥∥∥
L2(Ω)

ds < ε,

which shows (11.8). This together with the previous expression (11.7) gives
(11.5).

Therefore, only (11.9) and (11.6) remain to be proved. We do so in the fol-
lowing two theorems by assuming certain hypotheses.

Theorem 11.11 Let V (t) = v(t) be a deterministic velocity function and
Q0(x) be any stochastic initial condition. Suppose that v(t) is continuous on
[0,∞). Then there is at most one stochastic process Q(x, t) (up to equivalence)
that is mean square C1(R× [0,∞)) and solves (11.1) in the mean square sense.

Proof. Suppose that Q1(x, t) and Q2(x, t) are two mean square solutions to
(11.1) that belong to C1(R × [0,∞)) in the mean square sense, and consider
Q̄(x, t) = Q1(x, t)−Q2(x, t). We need to prove both (11.9) and (11.6).
Since V (t) = v(t) is a deterministic function, the mean square Riemann inte-

gral A(t) =
∫ t

0
v(τ) dτ becomes an ordinary Riemann integral. By the classical
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11.2 Mean square chain rule and application to solving the random linear advection equation

Fundamental Theorem of Calculus, A(t) is a C1([0,∞)) deterministic function
and A′(t) = v(t).
To demonstrate (11.9), notice that if s1,n → s1 and s2,m → s2 as n,m → ∞,
then A(s2,m)→ A(s2) by deterministic continuity, therefore

∂Q̄

∂t
(x+A(s2,m), s1,n)

n,m→∞−→ ∂Q̄

∂t
(x+A(s2), s1)

in L2(Ω), by mean square continuity of ∂Q̄
∂t

on R× [0,∞).

To prove (11.6), let Y (y) = Q̄(y, t) and g(s) = x+A(t+ s) (recall that x and
t are fixed). Notice that (11.6) is equivalent to (Y ◦ g)′(0) = Y ′(g(0))g′(0),
therefore the conditions of Theorem 11.2 must be met. Since A is differen-
tiable, g is also differentiable. As Q̄(x, t) is mean square C1(R × [0,∞), the
process Y is mean square C1(R). Theorem 11.2 applies to justify (Y ◦g)′(0) =
Y ′(g(0))g′(0), as wanted.

�

Theorem 11.12 Let V (t) be a mean fourth continuous process on [0,∞) and
Q0(x) be any stochastic initial condition. Consider the following three proper-
ties:

1. Q(x, t) has mean square partial derivatives, it has sample paths in C1(R×
[0,∞)), and its mean square partial derivatives and classical partial deriva-
tives are indistinguishable stochastic processes on R× [0,∞).

2. It holds

sup
s∈[−δ,δ]

E
[∣∣∣∣∂Q∂x (x+A(t+ s), t)

∣∣∣∣r] <∞, for some r > 4 and δ > 0,

for each x ∈ R and t ≥ 0.

3. It holds

sup
r1,r2∈[−η,η]

E
[∣∣∣∣∂Q∂t (x+A(s2 + r2), s1 + r1)

∣∣∣∣q]<∞, for some q > 2, η > 0,

for each x ∈ R and s1, s2 ≥ 0.

Then there is at most one stochastic process Q(x, t) (up to equivalence) that
satisfies these three properties and solves (11.1) in the mean square sense.

Proof. Suppose that Q1(x, t) and Q2(x, t) are two mean square solutions
to (11.1) that satisfy the three properties, and consider Q̄(x, t) = Q1(x, t) −
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Q2(x, t). By [167, Prop. 2.3] (the so-called cs-inequality), Q̄(x, t) also satisfies
the three properties. We need to prove both (11.9) and (11.6).
Since V (t) is mean fourth continuous, by [167, Prop. 3.18] we derive that A(t)
is mean fourth C1 with A′(t) = V (t) (Fundamental Theorem of mean fourth
calculus). By [45, Lemma 4], A(t) has continuous sample paths on [0,∞).
Since Q̄(x, t) possesses sample paths in C1(R× [0,∞)), the map

(s1, s2) 7→ ∂Q̄

∂t
(x+A(s2), s1)

from (11.9) is almost surely continuous. Consider two sequences s1,n → s1 and
s2,m → s2 as n,m→∞. We have

∂Q̄

∂t
(x+A(s2,m), s1,n)

n,m→∞−→ ∂Q̄

∂t
(x+A(s2), s1) (11.11)

almost surely, therefore in probability. By the third property and [167, Th. 2.4],
(11.11) holds in L2(Ω), and we are done with (11.9).
To demonstrate (11.6), let Y (y) = Q̄(y, t) and X(z) = x + A(t + z) (recall
that x and t are fixed). Notice that (11.6) is equivalent to (Y ◦ X)′(0) =
Y ′(X(0))X ′(0), therefore the conditions of Theorem 11.3 must be met. We
know that A(t) is mean fourth differentiable with continuous sample paths,
then so is X(t), and conditions (i) and (ii) from Theorem 11.3 hold. Finally,
condition (iii) therein is a direct consequence of our second hypothesis. The-
orem 11.3 applies and (Y ◦X)′(0) = Y ′(X(0))X ′(0) holds, as wanted.

�

We state and prove a last uniqueness theorem with different techniques than
those previously used. It is based on an energy method somewhat. We apply
it for processes solving (11.1) that are periodic on x. For example, if Q(x, t) =
Dt sin(2πx) + E, where D and E are random variables, then Q(x, t) is 1-
periodic on x, since Q(x + 1, t) = Q(x, t) almost surely for each x ∈ R and
t ≥ 0. Notice that if Q0(x) is p-periodic, then Q(x, t) = Q0(x − A(t)) is
p-periodic on x too.

Theorem 11.13 Let V (t) be any bounded stochastic velocity (V (t) ∈ L∞(Ω),
for each t ≥ 0) and let Q0(x) be any initial condition process. Let p > 0. Then
there is at most one mean square solution to (11.1) (up to equivalence) that is
mean square C1(R× [0,∞)) and p-periodic on x.

Proof. Suppose that Q1(x, t) and Q2(x, t) are two mean square solutions to
(11.1) being mean square C1(R × [0,∞)) and p-periodic on x, and consider
the p-periodic solution Q̄(x, t) = Q1(x, t)−Q2(x, t) to (11.2).
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11.2 Mean square chain rule and application to solving the random linear advection equation

From (11.2) and by using the product rule for mean square differentiation
(variation of [167, Lemma 3.14]), we obtain the random partial differential
equation

∂

∂t

(
Q̄(x, t)2

)
+ V (t)

∂

∂x

(
Q̄(x, t)2

)
= 0,

where the partial derivatives are understood in the L1(Ω) sense. Now we apply
Riemann integrals in the L1(Ω) sense. We use∫ x1+p

x1

V (t)
∂

∂x

(
Q̄(x, t)2

)
dx = V (t)

∫ x1+p

x1

∂

∂x

(
Q̄(x, t)2

)
dx,

as a consequence of the boundedness of V (t), and∫ x1+p

x1

∂

∂x

(
Q̄(x, t)2

)
dx = Q̄(x1 + p, t)2 − Q̄(x1, t)

2 = 0

(Barrow’s rule in L1(Ω) is justified by L1(Ω)-continuity of ∂
∂x

(
Q̄(x, t)2

)
, see

[160, p. 104(6)]), therefore∫ x1+p

x1

V (t)
∂

∂x

(
Q̄(x, t)2

)
dx = 0.

We also use ∫ x1+p

x1

∂

∂t

(
Q̄(x, t)2

)
dx =

∂

∂t

∫ x1+p

x1

Q̄(x, t)2 dx,

see [45, Prop. 6]. Hence,

∂

∂t

∫ x1+p

x1

Q̄(x, t)2 dx = 0.

By applying expectations,

∂

∂t

∫ x1+p

x1

E
[
Q̄(x, t)2

]
dx = 0.

Then the real map t 7→
∫ x1+p

x1
E
[
Q̄(x, t)2

]
dx is constant, therefore∫ x1+p

x1

E
[
Q̄(x, t)2

]
dx =

∫ x1+p

x1

E
[
Q̄(x, 0)2

]
dx = 0.

This implies E
[
Q̄(x, t)2

]
= 0, for x ∈ R and t ≥ 0. Thereby, Q̄(x, t) = 0

almost surely, for each x ∈ R and t ≥ 0, as wanted.
�
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11.3 Density function of the solution process

In this section, the goal is to compute or approximate the probability density
function fQ(q;x, t) of the solution process Q(x, t) = Q0(x−A(t)), where A(t) =∫ t

0
V (τ) dτ can be understood as a sample-path integral or as a mean square

Riemann integral. The knowledge of the probability density function of Q(x, t)
is important to perform uncertainty quantification. From it, the main statistics
of Q(x, t) can be determined, say the expectation and variance:

E[Q(x, t)] =

∫
R
qfQ(q;x, t) dq, V[Q(x, t)] =

∫
R
q2fQ(q;x, t) dq − (E[Q(x, t)])

2
.

(11.12)
In [58, Prop. 2.1], the authors justify fQ(q;x, t) =

∫
R fA(t)(x−x0)fQ0

(q;x0) dx0,
by using the law of total probability. As the authors commented in [58, Re-
mark 2.1], this expression requires the knowledge of the probability density
function of A(t), but the density function of the integral of a stochastic process
V (t) is generally not known, unless V (t) is Gaussian [160, Th. 4.6.4]. Thus,
all the examples presented in [58] were restricted to Gaussian velocities.

We will show an alternative application of the law of total probability so
that we will be able to compute fQ(q;x, t) as long as exact realizations of
A(t) can be generated, independent of V (t) being Gaussian or not. Instead of
conditioning to X0(x, t) = x−A(t), we condition directly to A(t). If we denote
by PA(t) = P ◦ (A(t))−1 the probability law of A(t) (which may be absolutely
continuous, discrete or singular), then

FQ(q;x, t) = P(Q(x, t) ≤ q) = P(Q0(x−A(t)) ≤ q)

=

∫
R
P(Q0(x−A(t)) ≤ q|A(t) = a)PA(t)(da)

=

∫
R
P(Q0(x− a) ≤ q|A(t) = a)PA(t)(da)

=

∫
R
P(Q0(x− a) ≤ q)PA(t)(da)

=

∫
R
FQ0

(q;x− a)PA(t)(da)

= E[FQ0
(q;x−A(t))], (11.13)

where the independence between the velocity and the initial condition pro-
cesses, V and Q0, has been used. Hence,

fQ(q;x, t) =

∫
R
fQ0

(q;x− a)PA(t)(da) = E[fQ0
(q;x−A(t))]. (11.14)
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11.3 Density function of the solution process

In the case that A(t) is absolutely continuous, that is, PA(t)(da) = fA(t)(a) da,
and by using the commutativity property of the convolution, we obtain again
the formula from [58, Prop. 2.1]. Therefore, the previous development gener-
alizes the one exhibited in [58].

If we can compute exact realizations of A(t), say A(1)(t), . . . , A(M)(t), then the
law of large numbers implies that

fQ(q;x, t) = E[fQ0
(q;x−A(t))] ≈ 1

M

M∑
i=1

fQ0
(q;x−A(i)(t)). (11.15)

Notice that the realizations from A(t) can be computed from realizations of

V (t), as A(t, ω) =
∫ t

0
V (τ, ω) dτ .

Example 11.14 Consider as initial condition process Q0(x) = Gx2, where
G ∼ Gamma(3, 1). We take the following non-Gaussian velocity field: V (t) =
cos(UeBt + E), where U ∼ Uniform(0, 1), B ∼ Binomial(3, 0.3) and E ∼
Exponential(3). All the involved random variables are assumed to be inde-
pendent. The integral defining A(t) cannot be explicitly computed, and its
probability distribution is not exactly known. We use (11.15) to approximate
fQ(q;x, t). To illustrate our approach, we work at the points x = −1, 0, 1, 3
and t = 0.4. In Figure 11.1, we plot the graph of fQ(q;−1, 0.4), fQ(q; 0, 0.4),
fQ(q; 1, 0.4) and fQ(q; 3, 0.4), respectively. From the probability density func-
tion, one can easily compute the main statistics of Q(x, t) by utilizing (11.12).

Example 11.15 We take Q0(x) = Gx2, where G ∼ Gamma(3, 1) as in the
previous example. Consider V (t) = cos(eBt + 1), where B ∼ Binomial(3, 0.3).
In this case, the velocity is a discrete random variable at each time instant.
By using (11.15), we approximate fQ(q;x, t) at x = −1, 0, 1, 3 and t = 0.4.
Figure 11.2 shows the graph of fQ(q;−1, 0.4), fQ(q; 0, 0.4), fQ(q; 1, 0.4) and
fQ(q; 3, 0.4), respectively. By using (11.12), one can easily calculate the main
statistics of Q(x, t).

It may be possible that one cannot compute exact realizations of A(t). For
example, if V (t) = sin(Bt), where Bt is a standard Brownian motion on [0,∞),
then we cannot compute exact realizations of V (t), because the sample paths
of Bt cannot be exactly computed. In such a case, a computational method
to approximate the realizations of V (t) as accurate as wanted is by truncating
Karhunen-Loève expansions [119, Ch. 5], for example.
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Figure 11.1: Graph of fQ(q;−1, 0.4), fQ(q; 0, 0.4), fQ(q; 1, 0.4) and fQ(q; 3, 0.4) in Exam-
ple 11.14.
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Figure 11.2: Graph of fQ(q;−1, 0.4), fQ(q; 0, 0.4), fQ(q; 1, 0.4) and fQ(q; 3, 0.4) in Exam-
ple 11.15.
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Example 11.16 We consider Q0(x) = Gx2, where G ∼ Gamma(3, 1) as in
the previous two examples. We pick V (t) = sin(Bt), where Bt is a stan-
dard Brownian motion on [0,∞). This velocity is given by a non-Gaussian
stochastic process. Our goal is to approximate fQ(q; 0, 0.4), fQ(q; 0.5, 0.4) and
fQ(q; 1, 0.4) with (11.15). From the Karhunen-Loève expansion of Brownian
motion on [0, 1], see [119, Exercise 5.12], we approximate

V (t) ≈ sin

(
J∑
j=1

√
2

(j − 1/2)π
sin((j − 1/2)πt)ξj

)
, t ∈ [0, 1],

where ξ1, . . . , ξJ are independent Normal(0, 1) random variables. We use this
expression to compute approximate realizations of V (t), and therefore of A(t).
Figure 11.3 depicts the graph of fQ(q; 0, 0.4), fQ(q; 0.5, 0.4) and fQ(q; 1, 0.4).
From the density function, one may compute the expectation and variance of
Q(x, t) by using (11.12).
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Figure 11.3: Graph of fQ(q; 0, 0.4), fQ(q; 0.5, 0.4) and fQ(q; 1, 0.4) in Example 11.16.

In the case that Q0(x) is not stochastic but deterministic, say a function
g(x), in [58, Remark 2.3] the authors justified that, if g(x) is smooth and the
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equation g(x)− q = 0 has n isolated zeros, xj,q (j = 1, . . . , n), and g′(x) does
not vanish at each of those zeros, then

fQ(q;x, t) =
n∑
j=1

fA(t)(x− xj,q)
|g′(xj,q)|

.

Instead of using this equality to obtain the probability distribution of Q(x, t),
we can proceed by utilizing (11.13) and the law of large numbers:

FQ(q;x, t) = E[FQ0
(q;x−A(t))] ≈ 1

M

M∑
i=1

FQ0
(q;x−A(i)(t)). (11.16)

If Q0(x) is a deterministic function, g(x), we may write FQ0
(q;x − A(i)(t))

above as H(q − g(x−A(i)(t))), where H is the Heaviside function.

The distribution function can also be used for uncertainty quantification for
Q(x, t). Indeed, any (absolute and standard) statistical moment of Q(x, t)
may be calculated by using the following formulas:

E[|Q(x, t)|n] = n

∫ ∞
0

(1− FQ(q;x, t))qn−1 dq + n

∫ 0

−∞
FQ(q;x, t)|q|n−1 dq,

(11.17)

E[Q(x, t)n] = n

∫ ∞
0

(1−FQ(q;x, t))qn−1 dq−n
∫ 0

−∞
FQ(q;x, t)qn−1 dq. (11.18)

Example 11.17 Let us solve [58, Example 2.1] with (11.16). Consider

Q0(x) =

{
1, x ≤ 0,

0, x > 0.

According to [58, Example 2.1], Q(x, t) has a Bernoulli distribution, with
P(Q(x, t) = 1) = 1 − FA(t)(x). Let us check this result again with V (t) =
V ∼ Binomial(3, 0.7). Figure 11.4 plots FQ(q; 1, 0.4). We observe the distri-
bution function of a Bernoulli distribution, as predicted in [58, Example 2.1].
Moreover, the first jump discontinuity takes on the value P(Q(1, 0.4) = 0) =
FA(0.4)(1) = 0.657.

Example 11.18 Consider Q0(x) = Bx and V (t) = V , B ∼ Binomial(20, 0.5)
and V ∼ Binomial(2, 0.7) are independent. In Figure 11.5, we plot FQ(q; 1, 0.4),
FQ(q; 2, 0.4), FQ(q; 10, 0.4) and FQ(q; 20, 0.4) via (11.16). We observe that
these distribution functions have a shape more complicated than in the pre-
vious example. Formulas (11.17) and (11.18) may be used for uncertainty
quantification for Q(x, t).
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Figure 11.4: Graph of FQ(q; 1, 0.4) in Example 11.17.

5 10 15
q

0.2

0.4

0.6

0.8

1.0

F(q;1,0.4)

5 10 15 20 25 30 35
q

0.2

0.4

0.6

0.8

1.0

F(q;2,0.4)

50 100 150 200
q

0.2

0.4

0.6

0.8

1.0

F(q;10,0.4)

100 200 300 400 500
q

0.2

0.4

0.6

0.8

1.0

F(q;20,0.4)

Figure 11.5: Graph of FQ(q; 1, 0.4), FQ(q; 2, 0.4), FQ(q; 10, 0.4) and FQ(q; 20, 0.4) in Ex-
ample 11.18.
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11.4 Partial differential equation for the density function

In this section, we derive a theoretical partial differential equation for fQ(q;x, t)
in a general setting. In [58, Prop. 3.1], the authors deduced a partial differ-
ential equation in the case that V (t) is a Gaussian stochastic process. Thus,
this section is a complement of [58, Prop. 3.1].

Theorem 11.19 Suppose that Q0(x) is a stochastic process with absolutely
continuous law for each x ∈ R. Let V (t) be any stochastic process, t ∈ [0, T ].
Assume that Q0 and V are independent processes. Then the probability den-
sity function of Q(x, t), fQ(q;x, t), satisfies the following partial differential
equation for x ∈ R and t ∈ [0, T ]:

∂

∂t
fQ(q;x, t) +

∂

∂x
{E[V (t)|Q(x, t) = q]fQ(q;x, t)} = 0.

Proof. By (11.14), Q(x, t) is absolutely continuous with density function
given by fQ(q;x, t) = E[fQ0

(q;x−A(t))], where A′(t) = V (t). We differentiate
with respect to t:

∂

∂t
fQ(q;x, t) = − E[V (t) ∂2fQ0

(q;x−A(t))]

= −
∫
R2

v ∂2fQ0
(q;x− a)P(V (t),A(t))(dv,da). (11.19)

On the other hand, we write

∂

∂x
{E[V (t)|Q(x, t) = q]fQ(q;x, t)}

=
∂

∂x

{
fQ(q;x, t)

∫
R2

v P(V (t),A(t))|Q(x,t)=q(dv,da)

}
. (11.20)

Let us see that

P(V (t),A(t))|Q(x,t)=q(dv,da) =
fQ0

(q;x− a)

fQ(q;x, t)
P(V (t),A(t))(dv,da) (11.21)

(we can divide by fQ(q;x, t), since the conditional law P(V (t),A(t))|Q(x,t)=q is
defined for every q except in a set of probability 0 with respect to PQ(x,t), and
PQ(x,t)({q ∈ R : fQ(q;x, t) = 0}) =

∫
{q: fQ(q;x,t)=0} fQ(q;x, t) dq = 0). By the

Radon-Nikodym Theorem, (11.21) is equivalent to

P(V (t) ∈ C1, A(t) ∈ C2|Q(x, t) = q) =

∫
C1×C2

fQ0
(q;x− a)

fQ(q;x, t)
P(V (t),A(t))(dv,da),

(11.22)
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for any Borel sets C1, C2 ⊆ R. The conditional probability P(V (t),A(t))|Q(x,t)=q

is fully determined by the law of total probability

P(V (t) ∈ C1, A(t) ∈ C2, Q(x, t) ∈ B)

=

∫
B

P(V (t) ∈ C1, A(t) ∈ C2|Q(x, t) = q)PQ(x,t)(dq)

(B Borel set in R), therefore (11.22) is equivalent to proving that

P(V (t) ∈ C1, A(t) ∈ C2, Q(x, t) ∈ B)

=

∫
B

∫
C1×C2

fQ0
(q;x− a)

fQ(q;x, t)
P(V (t),A(t))(dv,da)PQ(x,t)(dq). (11.23)

Expression (11.23) is clear, as a consequence of Fubini’s Theorem (justified by
the non-negativity of the integrand), the independence between Q0 and (V,A),
and the law of total probability:∫

B

∫
C1×C2

fQ0
(q;x− a)

fQ(q;x, t)
P(V (t),A(t))(dv,da)PQ(x,t)(dq)

=

∫
B

∫
C1×C2

fQ0
(q;x− a)

fQ(q;x, t)
P(V (t),A(t))(dv,da)fQ(q;x, t) dq

=

∫
C1×C2

∫
B

fQ0
(q;x− a) dq P(V (t),A(t))(dv,da)

=

∫
C1×C2

P(Q0(x− a) ∈ B)P(V (t),A(t))(dv,da)

=

∫
C1×C2

P(Q(x, t) ∈ B|V (t) = v,A(t) = a)P(V (t),A(t))(dv,da)

= P(V (t) ∈ C1, A(t) ∈ C2, Q(x, t) ∈ B).

Therefore, (11.21) holds. By substituting (11.21) into (11.20),

∂

∂x
{E[V (t)|Q(x, t) = q]fQ(q;x, t)}

=
∂

∂x

{∫
R2

vfQ0
(q;x− a)P(V (t),A(t))(dv,da)

}
=

∫
R2

v ∂2fQ0
(q;x− a)P(V (t),A(t))(dv,da). (11.24)

Finally, by combining (11.19) and (11.24), we derive the partial differential
equation for fQ(q;x, t).

�
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11.5 Joint density function of the solution process

In this section, we want to derive the joint density function of the random
vector (Q(x1, t), Q(x2, t)), denoted as fQ(q1, q2;x1, x2, t). In [58, Prop. 4.1],
the authors derived the formula

fQ(q1, q2;x1, x2, t) =

∫
R
fQ0

(q1, q2;x1 − a, x2 − a, t)fA(t)(a) da. (11.25)

For the proof, they used the law of total probability by conditioning the distri-
bution function of (Q(x1, t), Q(x2, t)), FQ(q1, q2;x1, x2, t), with respect to the
random vector (X0, Y0) = (x1−A(t), x2−A(t)), to obtain FQ(q1, q2;x1, x2, t) =∫
R2 FQ0

(q1, q2;x0, y0)fX0,Y0
(x0, y0) dx0 dy0. By differentiating with respect to q1

and q2, the authors expressed the joint density function of (Q(x1, t), Q(x2, t))
as fQ(q1, q2;x1, x2, t) =

∫
R2 fQ0

(q1, q2;x0, y0)fX0,Y0
(x0, y0) dx0 dy0. By utilizing

properties of the Heaviside function and the Dirac delta function, the authors
expressed the joint density function of (X0, Y0), fX0,Y0

, in terms of the Dirac
delta function: fX0,Y0

(x0, y0) = fA(t)(x1 − x0)δ(x1 − x0 − (x2 − y0)). Finally,
from the properties of the delta function, (11.25) was deduced.

The goal of this section is to derive (11.25) with a much simpler and shorter
proof than in [58]. The idea is to use the law of total probability in an ap-
propriate way to straightforwardly obtain (11.25), without making use of the
Heaviside and Dirac delta functions. Instead of conditioning with respect to
(X0, Y0) = (x1 − A(t), x2 − A(t)), we condition with respect to A(t). If we
denote by PA(t) = P ◦ (A(t))−1 the probability law of A(t) (which may be
absolutely continuous, discrete or singular), then

FQ(q1, q2;x1, x2, t) = P(Q(x1, t) ≤ q1, Q(x2, t) ≤ q2)

= P(Q0(x1 −A(t)) ≤ q1, Q0(x2 −A(t)) ≤ q2)

=

∫
R
P(Q0(x1 −A(t)) ≤ q1, Q0(x2 −A(t)) ≤ q2|A(t) = a)PA(t)(da)

=

∫
R
P(Q0(x1 − a) ≤ q1, Q0(x2 − a) ≤ q2|A(t) = a)PA(t)(da)

=

∫
R
P(Q0(x1 − a) ≤ q1, Q0(x2 − a) ≤ q2)PA(t)(da)

=

∫
R
FQ0(q1, q2;x1 − a, x2 − a)PA(t)(da)

= E[FQ0(q1, q2;x1 −A(t), x2 −A(t))],
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where the independence between the velocity and the initial condition pro-
cesses, V and Q0, has been used. As a consequence,

fQ(q1, q2;x1, x2, t) =

∫
R
fQ0

(q1, q2;x1 − a, x2 − a)PA(t)(da)

= E[fQ0
(q1, q2;x1 −A(t), x2 −A(t))].

IfA(t) is an absolutely continuous random variable, then PA(t)(da)=fA(t)(a)da,
so (11.25) has been deduced again.

We finish this section by stating a partial differential equation for the joint
probability density function fQ(q1, q2;x1, x2, t). We omit the details of the
proof, since it is completely analogous to that of Theorem 11.19.

Theorem 11.20 Suppose that Q0(x) is a stochastic process such that each
random vector (Q0(x1), Q0(x2)) is absolutely continuous for each distinct points
x1, x2 ∈ R. Let V (t) be any stochastic process, t ∈ [0, T ]. Assume that Q0

and V are independent processes. Then the probability density function of
(Q(x1, t), Q(x2, t)), fQ(q1, q2;x1, x2, t), satisfies the following partial differen-
tial equation for x1 6= x2 ∈ R and t ∈ [0, T ]:

∂

∂t
fQ(q1, q2;x1, x2, t)

+

(
∂

∂x1

+
∂

∂x2

)
{E[V (t)|Q(x1, t) = q1, Q(x2, t) = q2]fQ(q1, q2;x1, x2, t)} = 0.

11.6 Conclusions

In this chapter, we extended the study on the one-dimensional linear advec-
tion equation subject to independent stochastic velocity and initial condition
performed in [58]. We proved a general version of the random chain rule for
the composition of two stochastic processes. This allowed us to find sufficient
conditions under which the sample-path solution is a mean square solution as
well. By using the law of total probability and the law of large numbers, we
showed how to approximate the probability density function or the cumulative
distribution function (in the case that the initial condition is not absolutely
continuous). Furthermore, we have established the uniqueness of the solution
stochastic process, in the mean square sense, to the random one-dimensional
linear advection equation under different hypotheses. Our approach does not
require the probability distribution of the integral of the stochastic velocity,
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but exact or even approximate realizations of it. Thus, non-Gaussian velocity
cases can be tackled. This is one of the main results of this contribution, since
our approach allows us to treat the non-Gaussian scenario, which is more real-
istic from a practical standpoint and, to the best of our knowledge, there are
not available results in this respect. Several numerical experiments illustrated
the theoretical ideas. On the other hand, we deduced a theoretical partial dif-
ferential equation for the density function of the solution process in a general
setting. Our approach could be useful for other random partial differential
equations different to the linear advection equation. Finally, a shorter and
easier derivation of the joint probability density function of the response pro-
cess at two spatial points was obtained by applying the law of total probability
in a suitable manner.
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[31] G. Calbo, J.-C. Cortés, L. Jódar, and L. Villafuerte. “Solving the random
Legendre differential equation: Mean square power series solution and its
statistical functions”. In: Comput. Math. Appl. 61.9 (2011), pp. 2782–2792.
DOI: 10.1016/j.camwa.2011.03.045. (Cited on pages 8, 9, 10, 15, 22, 192,
and 193.)

[32] T. Caraballo, R. Colucci, and L. Guerrini. “On a predator prey model
with nonlinear harvesting and distributed delay”. In: Commun. Pur. Appl.
Anal. 17.6 (2018), pp. 2703–2727. DOI: 10.3934/cpaa.2018128. (Cited on
page 224.)

[33] C.M. Carracedo and M.A.S. Alix. Introducción a las Ecuaciones Diferen-
ciales Ordinarias. Barcelona: Reverté, 1991. ISBN: 9788429150438. (writ-
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Roselló, and R.-J. Villanueva. “Computing probabilistic solutions of the
Bernoulli random differential equation”. In: J. Comput. Appl. Math. 309
(2017), pp. 396–407. DOI: 10.1016/j.cam.2016.02.034. (Cited on pages 53
and 54.)

[40] B.M. Chen-Charpentier and D. Stanescu. “Epidemic models with ran-
dom coefficients”. In: Math. Comput. Model. 52.7–8 (2010), pp. 1004–1010.
DOI: 10.1016/j.mcm.2010.01.014. (Cited on page 76.)

[41] C. Chicone. Ordinary Differential Equations with Applications. Vol 34.
Texts in Applied Mathematics. New York: Springer-Verlag, 2006. ISBN:
9780387307695. (Cited on pages 142 and 197.)

[42] A. Cliffe, M.B. Giles, R. Scheichl, and A. Teckentrup. “Multilevel Monte
Carlo Methods and applications to elliptic PDEs with random coefficients”.
In: Computing and Visualization in Science 14.1 (2011), pp. 3–15. DOI:
10.1007/s00791-011-0160-x. (Cited on page 139.)

[43] J.-C. Cortés, L. Jódar, J. Camacho, and L. Villafuerte. “Random
Airy type differential equations: Mean square exact and numerical so-
lutions”. In: Comput. Math. Appl. 60.5 (2010), pp. 1237–1244. DOI:
10.1016/j.camwa.2010.05.046. (Cited on pages 4, 8, 9, 22, 32, 37, 41, 42,
62, 63, 66, 86, 87, and 89.)
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