UNIVERSITAT POLITECNICA DE VALENCIA
ESCOLA POLITECNICA SUPERIOR DE GANDIA

GRADO EN ING. SIST. DE TELECOM., SONIDO E IMAGEN

UNIVERSITAT

A
vy
POLITECNICA .ﬁ

DE VALENCIA ESCOLA POLITECNICA
SUPERIOR DE GANDIA

“Systematic testing of digital hardware systems by
means of test automaton and Test Description

Language.”

TRABAJO FINAL DE GRADO

Autor/a:
Sergio Santos Casal

Tutor/a:

Carl Georg Hartung

Tobias Krawutschke

Trinidad Maria Sansaloni Balaguer

GANDIA, 2018

Systematic testing of digital hardware systems by means of test automaton

Declaration

I, Sergio Santos Casal, resident at Graf-Adolf-Str. 77,51065 Cologne, declare that this bachelor
thesis, apart from the support of the Laboratory for Telecommunications Engineering and the
supervising professor Prof. Dr. -Ing Georg Hartung, was completed completely independently and
only with the given sources and aids. Furthermore, I declare that this thesis has not been published
elsewhere or presented in another subject as an examination.

Signature:

Date:

Systematic testing of digital hardware systems by means of test automaton

Acknowledgements

In first place, I would like to thank my parents for their love and support; without them I would not
have been able to get here.

I would like to express my gratitude to my tutor, Professor Georg Hartung and to Professor Tobias
Krawutschke, for giving me the excellent opportunity to do this project, and for their support in
finishing it successfully.

I would like to thank Professor Trinidad Maria Sansaloni for being willing to be my co-tutor in this
thesis and for her help when I needed it.

Finally, I would like to thank Professor Jiirgen Schneider for his cordial treatment and his
willingness to help me during my study here.

Systematic testing of digital hardware systems by means of test automaton

Abstract

When an obsolete electronic system needs to be replaced or upgraded and there is no
documentation explaining how the system works, reverse engineering is needed to model system
behavior. Often, FPGAs are used to replace these systems due to their flexibility.

To test the reverse engineered device, it is advisable to use a test description language (TDL). TDL
has the following advantages: superior quality testing through better design, easier to verify by
non-testing experts, faster and better test development and perfect integration of methodology and
tools.

A TDL is being developed by the Technische Hochschule Kéln in a research project. From a TDL
file, the associated compiler generates test files that are usable within a VHDL toolchain: a
testbench file, a stimulus file, an assertion file and a waveform generator file.

To verify that the TDL generator generates testbench files according to the test description, a model
has been created in VHDL. With this model, two test cases have been created: in the first case, the
model is working correctly, and in the second case, a malfunction has been introduced. With these
two test cases, it is possible to verify if the testbench generated by the TDL generator is capable of
detecting malfunctions or not.

Systematic testing of digital hardware systems by means of test automaton

Index of contents

ACKNOWIBAGEIMENLS.ccuvieiieiiieeieeieeete ettt et et e st e et e st e st e e satessbe e seesabeessaesssbaeesnseeesssaeesnsneeas 1
AADSITACE ..ttt ettt ettt ettt a et e e bt ettt b et e a e bt et et e e bt e b et sbe e bt saaesb e e beetesreeeneeeas 2
1 IIEFOAUCTION. ¢ttt ettt ettt et e at e s bt e bt e st e e bt e et e e bt e eabeebeessasbeeesssaeesaaseeesnseas 9
T0 PUIPOSE. ..ttt ettt et s ettt e e e e e s e s b bt aeeeeeesasssssastaaaeessessssssbaaaaasessanssssssnanes 9
1.2 Structure of this WOTK.......ooiiriiiieieeeeee ettt st 10
1.3 Planned WOTKEIOW........cocuiriiiiiiiieieeee ettt sttt et st e e 11

2 FUNAAMIENTALS.eoutieeiieiitee ettt ettt e et e et e sa e s b e e s bt e e bt e saeesabeennteenseesaeesseeeennne 13
2.1 Concept Of the tESt SYSTEIMS. ..cccuverieerierireerieeieertesiteeseesteesseesseesseesseessseesssesssessssessseesssesssnes 13
2.1.1 General structure of the teSt SYStEIM.......cccveerreerieriiierieeireereeereeseeesteesereesereessaeeeeesseeens 13
2.1.1.1 Requirements for the test eNVIrONMENL...........c.ceceerierrierrienrieenieerieeseessreeseessseennns 13

2.1.1.2 Concrete concept of the test eNVIrONMENL..........cceecverrueeriieereerieersieenireeesereeenseneens 13

2.1.1.3 File Interfaces and Interface Definition.........ccccoceeeevieriienienenieenieneneneeeceeene 14

2.1.1.4 Evaluation of the DUT Signals.........ccocerriiriiiniieniiiiienieeteeieeiee e e 15

2.1.1.5 Concept of the WOTKEIOW......cccueiiiiiiiiiiiee e 16

2.1.2 Description of the Value Change Dump File........cccccooviiriiiiiiniiniiiieeeeeeeiee e 17

2. 1.2, 1 HEAET ...ttt ettt ettt ettt ettt e a e et ae e st et e b aes 17

2.1.2.2 TIMESCALE. ...ttt ettt ettt st st e st e e bt e st e e bt e et e e bt e e eneeeas 17

2.1.2.3 Signal definitions.....c.ccciieiieeiieeieecteeie ettt e se e e ae et e s b e e raeebeesaaeeennees 18

2.1.2.4 Initial value of the Signals..........ccccueeiiieiiiriiieiieeeeeeeecre et 18

2.1.2.5 Signal changes and tiMeStAmMPS........cccceerrveeriieeriieeniieeniteesreeesreeesreessereeeessnnens 19

2.1.2.6 ENd Of the file....c..coiiiiiiiee ettt 20

2.2 Test DeSCription LanGUAGE.ccceeuuiteieriiieeeeiiiteeeeiiteeeeerieeeeesireeesessreeesssnneeeesssnseeesssnreeessnnes 20
2.2.1 What is a Test Description Language...........ccceerueerierieeriieenieeniessieeneeesseessesseeesssesssnnens 20

2.2.2 Why use a Test Description Language............cceeeverrieeriersiernieniieeneesieeseesiseesseseesssnneeas 21

2.2.3 Standards fOr TDLS......ccueetereriereiierterterte ettt ettt et st e be e b saeesseeessneesareenas 22

2.2.4 Design CONSIAEIAtiONS......ccc.verriierieeiienieeiiteste et e ste et este e et e satessseessbeeessbeeessbeeesnneeas 23

2.3 Used prototyping DOArd..........c.coviieiiiiiiieiiiieeee ettt ettt et e s 25

Systematic testing of digital hardware systems by means of test automaton

3 Development of the VHDL MOEL.........cccoeiiiiiiiiiiiiieiiecieerteeieest et ete e e ae e ae e ssaeeve e 26
3.1 Specifications of the VHDL mMOdel..........ccccoecuiiriiriieiiieiieieeieeiteseeeieesee e see e sne e 26
3.1.1 HOW TicTaCTO® WOTKS....cceiruiiiiriiriieieeient ettt sttt e e 26

3.1.2 GAIME DOATI.....eeouieieriiiriieieeteeteet ettt ettt et s bt et e st sb e et e st e sbeessbeesnbeeenreeas 28

3.2 Development 0f the MOdel..........cccoviiriiiiiiiniiiieieeee et s 35

4 VETIICATION. ¢..eiteiteteet ettt sttt ettt e b et st e s bt et e et e s bt e sab e e sabeeeabeeeaneesaneens 51
4.1 Simulation of the VHDL COE.........cocteririiiriiiiienteieetectetesteetereete sttt svee e 51
4.1.1 Simulation deSCIIPLION.......ccccviieitieeeieeeeieeeeieeeeteeesteeesteeesereeestaeeesaeeeeessnsaaeeeeessnsseeaaens 51

4.1.2 SIMUIALION TESULLS. ... eeiitieiieiieet ettt ettt et s e e et e saaessbae e e 52

4.2 Testbench using Test Description LangUAaZEe.........ccceevvieeriueeiriieeeniieeenieeesieessreessseessaeessnsnnns 54
4.2.1 TestbenCh deSCIIPLON.ccciiiiiieeeiteeeiee ettt e e e sbe e e sbe e et e e e saaeesaeeeeesnnenaeas 54

4.2.2 TeStDENCH TESULLS.eoeiiiiietee ettt ettt sbe e et e e abee e s 61
4.2.2.1 Model WOrKing TIGht......ccooviiiiiiiiieeiecreeeeeee e s re e e 61

4.2.2.2 Model modified to introduce a malfunction............ccceevueevieerieriieiniiencieeeeeiee e 63

4.3 Verification in RardWare............ccovueriiiiriiinieeeeeeeeeeee ettt ettt 65
4.3.1 Testbench deSCIIPLON.iccviiriieieerieeie ettt ettt e et este e bt e ssaeebeesatessseessssneesnns 65

4.3.2 TeStDENCH TESULLS.eoueieuieieeieetetereet ettt sttt et st e s e s e s e s 67

4.3.3 Verification of the aSSertions............ceerieriieirieriieinieeitesee ettt ettt eessaee e 69
4.3.3.1 Original aSSertS.VCa......cccueerierruiirieeiierieeiteete ettt et e et este et e e s s aeeessabaeeseanees 69

4.3.3.2 Altered @SSEITS.VOA.cc.eeruiiiiieiiiite ettt ettt et ettt s e et e st e sse e s e e e e 70

5 CONCIUSIONS. ...ttt ettt ettt st e st e et e st e s bt e s at e e bt e sabeebee s abteesssteesanseeesnneas 72
B ADPPEIIAICES.ccuteeeiieeeiieeeiieeeete e et e e steeesaeeesaeeessbee e steeeseeeesaeaassteeassaeeasaeaensseeenssaaensaeeesaeenraaennes 75
6.1 Appendix A: TicTacToe game board deSi@n.........cccccueereuieiriieriiieeiiieeeiieeerieeerire e e e esereeeeeeas 75
6.2 Appendix B: VHDL moOdel COe.......cccuuiiriiiiiiiiiieeieeeeecseeeeiee et et ssre e ssine e e 77
6.2.1 VHDL code sketch of the model for one player...........ccccceeeveeviienieiiiieeeiie e, 77

6.2.2 VHDL code of the model for tWo players..........ccccueeeeerieriieniieeiienieeeeeeeeeesvee e 85
6.2.2.1 ClOCK GENETALOT........eeitieriieeiieeiieeieesieeiteesteesteesseesseesseessseesssessseessssseessssseesasssessnns 85

6.2.2.2 GaITIL. ...c.uteutenteeiteeitesteet ettt et sttt et e e st et e b e s bt et e eabe s bt e bt e b e s st e be et e s st e be et e saeebeeaten 86

6.2.2.3 TICTACTOR.....coiiiiiiiiiiieetet ettt e s e e s rne s 92

6.3 Appendix C: SIMulation COE.........ccctiriiriiiiniieiieieeteeteee ettt ettt e e e e e 93

Systematic testing of digital hardware systems by means of test automaton

6.4 Appendix D: Test Description Language COde..........ccceevvuverrivieiniieerniieesniieeeessiireeeesessenneeeeenns 95
6.5 Appendix E: Errors reported by the TDL testbench with malfunctions in the model........... 114
6.6 Appendix F: Terrasic DEO-NaN0 board............cccceeeuiiriiriiienieniierieeieesee e e evee e 121
6.6.1 FRAIUIES. ..ottt ettt ettt e e e e s s anaa e e e e 122

6.6.2 DEO-Nano Board ATChIteCUTE........cccueriiririirierieeterteeeeteetteeete et 123

6.7 Appendix G: 74LS595 dataSheet.........ccceevuiiriiiiiiiieiiteieetete ettt 125
6.8 Appendix H: Content 0f the CD........cccciiriiiiiiniieiieieceeteetete sttt e e 135
RETEIEICES. ...ttt et ettt e st e st e b e st e e st e e s s aateessabteessabeeeeans 136

Systematic testing of digital hardware systems by means of test automaton

List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

Software and hardware architecture of the test automaton............ceceveeveevienieniieennieennnen. 10
Workflow planned for this WOTK.........ccceeriiriiiniieiieeeeceeeeee e 12
Concept of the test ENVIFONMENL..........ccccuiriierieeiiinieeieeste et esreeseesreesreeeesreeeessaeeesssseees 14
Processing the files into test vectors and generating the test response...........ccccceecvveernenen. 15
Test with modelsim vs. signal evaluation with blackbox model.............ccccceeciinviinniennnnn. 16
VCD file: HEAUET.....c.eeeieiieieiteieeteceeeteeteei ettt ettt ae s st semneeenneeas 17
VD file: TImMESCALE.....c..eeoiiriiriiiiietereeeeete ettt ettt 17
VCD file: signal definition........cccovueriiiiriienieereteeeteeeeeere et 18
VCD file: INitial VAlUe......c.cecuirieiieieriieeeteseeie ettt ettt se e et et eesaeesaesaeeens 18
: VCD file: Signal changes and timesStamps...........c.cccueerieerieenieeiieeneeeireeseeesreesneesseesnvens 19
VCD file: end of the file........ccoeiiriiniiiee et 20
DEO-NANO0 DOAI.cueeiiieeiieiieeieetee ettt ettt ettt e st s b e st e e e e e b e e e eaneeeean 25
Example of how to play TicTacToe in which X WinS.......cccccceerviiriiieniiieiierieeccieeeeieean 26
Optimal strateg@y for PLAYET X.......ccveecieeriiriieriieerieeieerreeieeste et eseeseeeessreeeseneesssseesnnns 27
Optimal strategy for PlayYer O.......ccccccieeriierieriiienieeieeree et este et eseeseeesssreeesseseeessseeennns 27
Sketch of the interface to the USer...........coieviiiiiriiririeeteeeeeeeeete et 29
Keyboard CONtrol CITCUIL.....cccueirieiriieeieeiieeieeteeteet ettt abe e e eaeae s 30
KiCad mMain WiNAOW......cccueeiiriiiierieritieeteeeeteetesee ettt ettt s e sbeesbeesnee s 30
€eSChema INLEITACE.coiiiirieiiee ettt st 31
PCDNEW INEETTACE. ..c..eiiiieiiieeeeee ettt st st s 32
Rendering of the TicTacToe game board: Top Side........cccceeevciereerieneeneriereeneeieneeenn 32
Rendering of the TicTacToe game board: Bottom side...........ccccueeereeeieeceenieecieenreennnn. 33
Photo of the game board..........ccceouiieiiiiiicieeeeeceee e e 34
Photo of the game board connected to the prototyping board...........ccccceeevvveeevrierennnennne 35
Finite state machine of the model developed for one player (I)........ccccueeeevieeriireennnnnnnn. 36
Finite state machine of the model developed for one player (I).......c.ccceevvervveerrreeennnnn. 37
Finite state machine of the model developed for one player (III).........cccceevvvervrerrrernnenn. 37

Systematic testing of digital hardware systems by means of test automaton

Figure 28: Finite state machine of the model developed for one player (IV).......cccecvveeeecveeeriiveennns 38
Figure 29: Finite state machine of the model developed for one player (V).......ccccceeeveevverciernveennns 38
Figure 30: Finite state machine of the model developed for one player (VI).......ccceccvevieciveeeniiennnns 39
Figure 31: Finite state machine of the model developed for one player (VIL)........cccecceerrrieernniennnes 39
Figure 32: Finite state machine of the model developed for one player (VIII)........ccccceeeerciernrennnns 40
Figure 33: Finite state machine of the model developed for one player (IX).....c.cccceeeeeveerveernnennne 40
Figure 34: Finite state machine of the model developed for one player (X)......cccccevuereeverrueneennnen. 41
Figure 35: Connections between the VHDL prototyping board and the game board....................... 42
Figure 36: Modul CloCK GENETAtOr........coiuiiiiiieiieiieeieeteei ettt ettt ettt e e st e e st e e 43
Figure 37: MOdUl SaIMe.........uoiiiuiiiiiiecieeeiteeecite ettt e s te e e ste e e be e e saaeestaeessbaeessssaaeasesnnnsnaeesensnnn 49
Figure 38: ModUl TICTACTOE.......ccuieeiieieiieeeieeeetee et e esteeeeteeeeeesteeesbeessabeessssaeesssaesesssssssaesssnsnnns 50
Figure 39: Complete waveform obtain in the VHDL simulation.........c..cccceeveevernieniieneenienniennieene 52
Figure 40: Detail of the waveform obtain in the VHDL simulation............ccecevcerveniieneenensienennneen. 52
Figure 41: Sketch of the game table after the first player Wins..........cocceeeevervieneeiennienicnreneeeeene 53
Figure 42: Result of the VHDL simulation (command CONSO0le)..........ccceecuerrueerieeniirnieriieenieesiieennns 53
Figure 43: Connections between the model and the test automaton.........cc.cecveeviereeeneeeneernienneeenne 56
Figure 44: Sketch of the game table after the TDL testbench.........ccccccceeveeririeniienienneeniienieneeene 58
Figure 45: Error reported by Modelsim. Command console. (TDL testbench)...........cccccceeueenueenee. 61
Figure 46: Waveform result of the simulation, where an error was reported. (TDL testbench)........ 61
Figure 47: Complete waveform result of the simulation. (TDL testbench).........cccccccceeviieeinnennee. 62
Figure 48: Information sent by the serial output when the player 1 wins (TDL testbench).............. 63
Figure 49: Waveform obtain in the simulation with malfunctions in the model (I) (TDL testbench)

Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

Waveform obtain the simulation with malfunctions in the model (II) (TDL testbench). 64

Configuration of the timing simulation (I)........cccccervieeriirieiiiiieeeeeeeeee e 65
Configuration of the timing simulation (I1)........cccceceererriereeneriiereereeieeee e 66
Configuration of the timing simulation (II1)..........cccceeeieeiiieiieiieereeeie e eeree e 66
Delay between CLKgenerator and COIUMN_i........ccecvveeriieiniiieeniieenieeesieeeseeeeeee e 67
Delay between CLKgenerator and ClK...........ccceevuieeniiieiniiienieeeieesieeeeeesvee e s ssveeeee e 68
Delay between CLKgenerator and OULPUL_S.........eeeevuerrruierniueerniieennreesnseessereeessssneeeeeens 68

Systematic testing of digital hardware systems by means of test automaton

Figure 57: Delay between CLKgenerator and parallelize.............ccoccueevvieeniieiniieiniieeeenriiieee e 69
Figure 58: Result of the verification of VCApPIayer..........cccoecuerviiiniiiiienieceeieceeee e 70
Figure 59: Result of the verification of vcdplayer.vhd when an error in asserts.vcd was introduced
... 70
Figure 60: Result of the verification of vcdplayer for 200 ms when an error in asserts.vcd was
INITOAUCEA. ...ttt ettt et e st e e bt e et e e b e e st e e s st e eabe e seesabeesnbeeennbeeennns 71
Figure 61: Workflow carried out in this WoTrK..........ccceeiiriiiiiniieniieeeeeeeeceeee e 73
Figure 62: TicTacToe board SCheMALIC.........ccccueieiiiieiiieeiieeeteeeiee et e e e e sae e e saveeeseae e e aaeeseaaaeeeens 75
Figure 63: TicTacToe game board PCB.........ccciiciiiiiiiieiieeeiteceiteceiee et e e e sveesseteessaaeessaaeessaee s 76
Figure 64: DEO-NAN0 DOATd.......ccccviiiiiiiiiiieeniiecrieecteecte et eeit e see s st essteessaeessaeaaeessesssnnaeesenns 121
Figure 65: The DEO-Nano Board PCB and component diagram (t0p VIeW).......cceevveerrveerrveesnnenn 123
Figure 66: The DEO-Nano Board PCB and component diagram (bottom view)..........ccccceecuvveennn. 124
Figure 67: Block diagram of DEO-Nano Board............ccceecuerviienieniiiiiienieeniecieesee s 124

Systematic testing of digital hardware systems by means of test automaton

1 Introduction

1.1 Purpose

The purpose of this bachelor thesis is to verify the proper functionality of the test automaton tool
and the Test Description Language (TDL), that are being developed by the Technische Hochschule
Koln.

The game TicTacToe has been chosen as the design to be implemented and tested. It is a quite
interesting example, because it is easy to understand. In addition to that, its VHDL model is
straightforward to implement, thus the needed model tests can easily be conducted/performed.
Furthermore, the chosen example is a good one to test the behaviour of the examined tools (test
automaton and TDL). By using the TIcTacToe example it shall be tested whether the tools work as
expected/specified or not. If the tools do not work as specified this thesis tries to point out what
modifications can be made in order to achieve the specified functionality.

The test automaton is a hardware device. It consists of several signal processing modules (SPM) to
perform measurements or generate stimuli under the control of a PC where the files that describe
the test and store the measurements are archived. Each SPM contains an interface for transferring
measurements or stimulus data from/to the PC and a FPGA/MEMORY combination for data
processing. SPMs are synchronized by a common clock and a trigger distribution unit. [1] .

The TDL developed is a concrete syntax of the specific domain language of the European
Telecommunications Standard Institute (ETSI). This TDL allows us to write test cases which are
processed within a TDL processing system using the Eclipse IDE. The TDL syntax is written in
Language Workbench Xtext and the code generator is written in Xtend.

Systematic testing of digital hardware systems by means of test automaton

PCBIn 10 Rack _ | Pattern_Bignai Frocessing odul | Test Definition HW-Development '
1 Generatar | I
— i fomm i | TOL
bl L 1 ! [[0
oos | IIER ! | ot intortace %‘ L
1 JI-.- eg dig out |3 !
1 = [
Y | .
i T i | T
______________ i I —, ry
| i pui | g
]
[FCH in 16 Fack Moasuremant SIgnal Processing Mod | | -
S — Dl Procisdip 1 : -
Tea
e H o | |
: e | al, Infarfeca !
i By g %]
1K @ 1IE| ! .
| = i I
st e pp—— i I
i
I
LPCH in 197 Rack Signal Procossing Madul :
" i

additional devices, ADIDA, power supply
same principle as above

[
1)
Measuremen Comman 1 ouT

s VHOL D Tesibench ns simulation D
mnaty inel, Asparia | —— <yhdi=

PFCB i 19” Rock

"mr, ghobal clock and trigger disbribution Samulatar

% it by Kontroll

1.2

Result of & Resauilt of By
Measurement Simalation a

Figure 1: Software and hardware architecture of the test automaton
Obtained from [1]

Structure of this work

This work has been divided into 6 chapters:

Chapter 1: Introduction. This chapter explains the tasks that are planned to be carried out in
this thesis.

Chapter 2: Fundamentals. This chapter explains the concepts of test systems, what a TDL is,
the characteristics of the TDL that will be used and which prototyping board will be used.

Chapter 3: Development of the VHDL model. This chapter explains how the TicTacToe
game works and how the game board and VHDL model has been developed.

Chapter 4: Verification. This chapter explains the tests cases, the test descriptions and the
simulations that have been carried out and the results obtained.

Chapter 5: Conclusions. This chapter explains what has been done in the course of the
work, what problems have been encountered, what conclusions have been obtained from
the work and what future work could be done.

10

Systematic testing of digital hardware systems by means of test automaton

1.3

Chapter 6: Appendices. This chapter shows the game board design, the VHDL model code
and TDL test description codes, explains the technical characteristics of the prototyping
board and the shift registers used, and the contents of the CD attached to this document, etc.

Planned Workflow

There are some different stages in the development of this work:

Development of a VHDL model. The game TicTactoe was chosen because it is easy to
implement in VHDL, the behavior is predictable and easy to understand, and it is possible
to verify the right behavior just playing the game.

Creation of a testbench to simulate the right behavior of the model designed. A
testbench written in VHDL is made, and simulated using the software Modelsim in this
stage.

Creation of a testbench using the TDL. From a test case description written in TDL, the
toolchain written in the laboratory of digital engineering generates the stimuli file to be
used in the test automaton, the assertions file to be compared with the measurement file
generated by the test automaton and a testbench file used to simulate the model in
Modelsim.

Testing in the test automaton using the stimuli file generated by the TDL generator. A
measurement file will be generated by the test automaton after the test.

Verification of the measurements. The measurements will be verified using the testbench
and the vcdplayer generated by the TDL generator. If no errors are reported, the model
works as expected.

Creation of a PCB to demonstrate the right behavior of the hardware design in a
practical and visual way. This board is used as interface between the FPGA board and the
players. This stage was not part of the work and it is not necessary to test the TDL and the
test automaton, also it is not included in the workflow diagram.

The next figure shows the flow diagram of the planned workflow.

11

Systematic testing of digital hardware systems by means of test automaton

Flow

Result / used files

| Development of the model in VHDL E—

v

WHDL model

Define stimuli and test (VHDL)

—»

VHDL testbench

v

Simulate model with testbench
generated in WVHDL

Works as expected?

_}

Define stimuli and test (TDL)

v

Simulate model with testbench
generated by TDL

VHDL test with
stimuli and assertions
test setup description

Works as expected?

Implementation in FPGA

v

Testing with test automaton

X

v

Verification of the measurements

Works as expected?

Measurement generated
by test automaton

vcdplayer |

TN

WHDL test with
stimuli and assertions
test setup description

Implementation in FPGA |———————3

Prototype

Figure 2: Workflow planned for this work

12

Systematic testing of digital hardware systems by means of test automaton

2 Fundamentals

2.1 Concept of the test systems

2.1.1 General structure of the test system

21.1.1 Requirements for the test environment

To create a good concept, one must first define the requirements for the test environment. The
following focal points were laid during the creation of the concept:

* Ability to write test vectors and evaluate signals from the Device Under Test (DUT).
The test environment should be able to generate test vectors. At the same time, it must be
able to evaluate signals from the DUT.

* Automating the evaluation of the DUT signals.
The evaluation of the DUT signals shall happen automatically.

* Clear Interface Definition.
There must be a clear interface definition that limits the scope of the project to be managed.
This definition must be clearly and intelligibly defined in order to facilitate the work on the
project.

* User interface.
Writing test vectors and running tests should be as simple as possible. For this reason, the
user should only have to deal with a concept that combines test vectors and test description.
Only with a uniform user interface, a simplification of the test process can be made.

* Use of standards.
To create the most efficient and extensible environment, as many standards as possible
should be used to implement this test environment.

* Use of proven tools.
Whenever possible, proven tools should be used to evaluate the signals. This facilitates
implementation and the creation of a coherent workflow.

2.1.1.2 Concrete concept of the test environment

The following concept has been developed based on the requirements defined above, Figure 3
shows an overview of the whole concept. The test principle of the functional test was defined as the
test type, since it is inexpensive and can be carried out with comparatively little periphery. This is
important later in the development of the physical test device. The test environment only perceives
the DUT as a black box defined by its inputs and outputs. The following subchapters describe the
partial concepts shown graphically in Figure 3.

13

Systematic testing of digital hardware systems by means of test automaton

Interface to the physical test device

A
h 4
DUT-signal file
b
Blackmodel
Stimulus-signal file {VHDL-f”E for the

generation of the
DUT-signal file)

!

Modelsim- Analyse

; VHDL-testbench
Code generation f——m with assertions -

\ |
Test description ¢ Fails report
in TDL @

\

Verification {user)

Figure 3: Concept of the test environment
Obtained from [2]

2.1.1.3 File Interfaces and Interface Definition

The previous figure shows that two files interact with the interface to the physical test device. The
stimulus file and the DUT signal file. The stimulus file describes the test vector needed to stimulate
the DUT. A test vector always describes one or more states of signals that change over time. These
can be binary or real signals. Both the time behavior and the signal value are important here.
The other file carries the information of the test vector response and is output from the DUT via the
tester and sent to the test system. The block diagram in the next figure shows how both files act as
an interface to the Automatic Test Equipment (ATE).

14

Systematic testing of digital hardware systems by means of test automaton

5
"g Physical input
b M
Stimulus file > g M} Pattern generator |_SI9nal 3
ATE put
% Physical oputpuf]
DUT-signal file [« <L epy Logic analyser/ .(Sﬂ_
o~ -E measure equipment
2
&
%
L]

Figure 4: Processing the files into test vectors and generating the test response
Obtained from [2]

Since both files provide information about the time course of signals, it is advisable to save them in
a format that supports this. In professional software, waveform viewers are mostly used to store the
waveforms in dedicated file formats. There are a number of proprietary and self-developed formats.
Since standards are preferred in this work, the choice fell on the Value Change Dump (VCD) file.
The VCD standard is described in the Verilog standard (IEEE 1364-2001) and is supported by a
variety of tools. Due to its easy-to-understand syntax and wide distribution, this file format is
particularly suitable as an interface.

2.1.1.4 Evaluation of the DUT signals

Once the test vectors have been generated and the output signals from the DUT have been recorded
and stored, the question arises as on how the signals can be evaluated. It was decided to take
advantage of them in the hardware description workflow tested with testbenches. It uses
testbenches to automatic test the VHDL logic. These testbenches are standardized and can test the
written VHDL code for accuracy with tools such as MentorGraphics ModelSim. Evaluating signals
with ModelSim has the advantage of being able to access the capabilities of the test description
with testbenches without having to think about their own concepts. ModelSim is also scriptable,
and allows the automatic integration into the workflow of the test description. Using the concept of
Modelsim raises the question of how it is feasible to check the DUT signals with the help of a
testbench for correctness. It was considered, in addition to the testbench, to generate a so-called
black box model. This black box model reads out the VCD file with the std.textio.all library in
VHDL and generates the outputs according to this scheme. This allows you to use the same
workflow as traditional VHDL block testing. With this procedure, it is also possible to look at the
waveforms with the SignalViewer available in ModelSim and thus intervene manually in the test
evaluation. A further advantage results from the fact that such an evaluation also allows
conventional testing of VHDL code with the test description language. This then generates
testbenches, if desired, that can be used to verify a VHDL file [2].

15

Systematic testing of digital hardware systems by means of test automaton

2.1.1.5 Concept of the workflow

The workflow for creating test descriptions should be centralized. This means that writing test
vectors and checking for correctness of the outputs should all take place in one user interface. The
concept is to accomplish this from within the Eclipse environment. Since Eclipse can be extended
with plugins, it is conceivable to write a plugin which loads the generated test vector file into the
ATE after the successful description of the test with the intended test description and after
generating the required files with the push of a button on the surface. The ATE then processes this
test vector file and generates the test vectors as described in Figure 5 and records the test response.
The ATE then sends the test response back to the test system, where it then arrives as a readable
VCD file. When the answer arrives, a ModelSim script generates the ModelSim workspace from
the generated testbench, generated blackbox model, and VCD file. The script then tests for
correctness using the testbench information. The result is then sent back to the Eclipse environment
and the test engineer gets the answer whether the test failed or passed. If the test fails, ModelSim's
error log can be evaluated and corrective actions can be taken.

Conventional Testbench workflow
testbench workflow with blackbox model
VHDL-code DUT-signal flie

for input signal

Stimulus generatecw i

Blackbox model

Testbench with Y
asserts

Generated
simulation clock

testbench generated
with asserts

hd h 4

ModelSim simulation
and analysis

Report of results

Figure 5: Test with modelsim vs. signal evaluation with blackbox model
Obtained from [2]

16

Systematic testing of digital hardware systems by means of test automaton

2.1.2 Description of the Value Change Dump File

As described in Chapter 2.1.1.3, VCD was taken as an interface to the ATE. This subchapter
describes the structure of these files and how they should look to be readable by the black box
model.

2.1.2.1 Header

fcomment
Test File No. 1
fend
fdate
Wed Nov 26 16:23:28 2014
fend
fversion
dumpports ModelSim Version 10.1e
fend

fecope module ModelSim $end

Figure 6: VCD file: Header
Obtained from [2]

The VCD file starts with a header which usually begins with a description of the file. So this file is
Test File No. 1. Then follows the date on which the file was created. The version states which
program has created the file. In our example, the dumpports is the Modelsim software. Then the
scope has to be described, which happens here with the module ModelSim. The header is only for
file information and is not necessary for the black box model. The state machine ignores these
lines.

2.1.2.2 Timescale

ftimescale
ins
Send

Figure 7: VCD file: Timescale
Obtained from [2]

17

Systematic testing of digital hardware systems by means of test automaton

Each VCD file requires a time scale, which provides the tool which provides the tool with the unit
in which the signal changes are being made. In this example, the time scale is 1 ns. The state
machine of the black box model also ignores this information because in the file is given this
information by the code generator and is billed in the generics of the black box model.

2.1.2.3 Signal definitions

Bvar wire 1 ! a $end
Bvar wire B b $end

fenddefinitions $end

Figure 8: VCD file: signal definition
Obtained from [2]

The signals are defined according to the time scale. These definitions correspond to the Verilog
standard and declare which signals or bus signals are used. In this example, two signals have been
defined: a 1-bit signal with the flag ! and the description a and an 8-bit signal bus with the flag -
and the description b. The descriptions are not relevant for the evaluation of the signals and are also
ignored by the state machine. However, the flags are important for later reading in the files. The
current status of the state machine responds to the flags: ! - +% & / () =?
These flags are automatically generated by the code generator in the order of the defined signals.
The ports in the black box model are also written in this order. Since the code generator does the
work here too, this information is ignored by the black box model.

2.1.2.4 Initial value of the signals

$dumpvars
o1
BOOCOOO00
Bend

Figure 9: VCD file: Initial value
Obtained from [2]

18

Systematic testing of digital hardware systems by means of test automaton

The keyword $dumpvars describes the initial values of the previously defined signal values. This
keyword is the first thing the state machine responds to. Here, the signals are described before the
state 0.

2.1.2.5 Signal changes and timestamps

#0O

bOOOODOOL
#10

oo
bOOOOCO10
#20

11
bOOOOOD11
#3230

ot
bOOODG 100
#40

11
bOOOOO101
#50

o1

#a0
11
#70
ol
#EOD
11
#40

ot

Figure 10: VCD file: Signal changes and timestamps
Obtained from [2]

This section of a VCD file is the actual waveform. Here, the qualifier # defines timestamps that
indicate when the signals change. The number behind the qualifier is multiplied by the defined time
scale. Thus, in our example at time stamp # 30, ie at time 30 ns, the 1-bit signal a changes to
logical 0 and the 8-bit signal bus b to the integer value 4. Here, the state machine responds to each
time stamp and prepares the Signal changes in order to then write this time accurate to the output.

19

Systematic testing of digital hardware systems by means of test automaton

2.1.2.6 End of the file

fvedclose
ﬂ'_ :'__l :'__l
$end

Figure 11: VCD file: end of the file
Obtained from [2]

The keyword $vcdclose marks the end of the recorded signals with the following timestamp. In this
example, the file is stopped after 100 ns. The black box model state machine responds to this
keyword and terminates both communications with the file and the modelsim simulation.

2.2 Test Description Language

2.2.1 What is a Test Description Language

TDL is a language that supports the design and documentation of formal test descriptions that may
be the basis for the implementation of executable tests in a given test framework, such as TTCN-3.
Application areas of TDL that will benefit from this homogeneous approach to the test design
phase include:

* Manual design of test descriptions from a test purpose specification, user stories in test
driven development or other sources.

* Representation of test descriptions derived from other sources such as MBT test generation
tools, system simulators, or test execution traces from test runs.

TDL supports the design of black-box tests for distributed, concurrent real-time systems. It is
applicable to a wide range of tests including conformance tests, interoperability tests, tests of real-
time properties and security tests based on attack traces.

TDL clearly separates the specification of tests from their implementation by providing an
abstraction level that lets users of TDL focus on the task of describing tests that cover the given test
objectives rather than getting involved in implementing these tests to ensure their fault detection
capabilities onto an execution framework.

TDL is designed to support different abstraction levels of test specification. On the one hand, the
concrete syntax of the TDL meta-model may hide meta-model elements that are not needed for a
declarative (more abstract) style of specifying test descriptions. For example, a declarative test
description could work with the time operations wait and quiescence instead of explicit timers and
operations on timers (see clause 9).

20

Systematic testing of digital hardware systems by means of test automaton

On the other hand, an imperative (less abstract or refined) style of a test description supported by a
dedicated concrete syntax could provide additional means necessary to derive executable test
descriptions from declarative test descriptions. For example, an imperative test description could
include timers and timer operations necessary to implement the reception of System Under Test
(SUT) output at a tester component and further details. It is expected that most details of a refined,
imperative test description can be generated automatically from a declarative test description.
Supporting

different levels of abstraction by a single TDL meta-model offers the possibility of working within
a single language and using the same tools, simplifying the test development process that way.

2.2.2 Why use a Test Description Language

TDL bridges the gap between high-level test purpose specifications and executable test cases. It
provides a generic language for the formal specification of test descriptions which can be used as
the basis for the implementation of concrete tests on a given test execution platform or simply for
the visualization of test scenarios for different stakeholders. TDL is designed to support the black-
box test of distributed, concurrent real-time systems.

TDL supports a scenario-based approach using modeling techniques from model-based testing and
UML Tesing Profile (UTP). Test scenarios are described at a higher abstraction level than what is
possible with scripting languages such as TTCN-3. It is indifferent on the basic communication
mechanism used between tester and SUT being message-based, procedural or communication-
based on shared variables or other types of interfaces. Furthermore, TDL can be used as an
intermediate representation of tests generated from other sources, e.g. simulators, test case
generators, or logs from previous test runs.

TDL is designed around a meta-model approach based on the OMG’s meta-object facility MOF
(OMG MOF, 2013) to describe its abstract syntax. This way, it is able to support different concrete
syntaxes, also with a different feature set according to the needs of different application domains.

While the TDL meta-model is based on a well defined underlying formal semantics, it is possible to
provide supportive tools for correctness analysis of (manually) specified test descriptions, the
construction of test cases according to a chosen fault model, the visualization of test run results, or
the exchange of test descriptions between different tools. The formal semantics prevents
misinterpretation of the artifact specifications between different tools. The approach is driven by
industry to foster the benefits of model-based software engineering in the test process. ETSI has set
up Special Task Force (STF) to standardize TDL.

The trend towards a higher degree of system integration such as in case of cyber-physical systems
or service-oriented architectures leads to a growing importance of integration testing of such
distributed, concurrent, and real-time systems. Integration testing, which is a black-box testing
approach, encompasses also conformance testing of a system against a standard and
interoperability testing of two or more systems of different vendors.

Test automation is required for many phases of the quality assurance process such as regression
tests, smoke tests, or acceptance tests. Automating tests is a software development activity that

21

Systematic testing of digital hardware systems by means of test automaton

involves the production of test code/scripts. Moving towards a model-based approach in testing,
there are some obstacles to overcome for the wide-scale introduction of model-based testing. One
of these obstacles is the existing divergence between manually created testing artifacts (which must
be understood and managed by humans) and the need for defining them formally to allow
automation. As a consequence, there has been a methodology gap between the simple expression of
a test purpose described frequently in prose and the complex coding of executable tests scripts.
TDL (ETSI ES 203 119, 2013) covers that gap.

Dedicated test descriptions will have a positive impact on the quality of the tests through better
design and by making them easier to review by non-testing experts. This will improve the general
productivity of test development. Moreover, it is also important to provide a fault-free transfer of
specifications between tools participating in the development of tool-chains where manual
interaction by a test engineer is often needed.

The language design of TDL centers on the meta-modeling approach for the abstract syntax. A
number of concrete syntaxes can be defined that all map to the same meta-model to provide
dedicated support for different application domains. Given that the elements of the meta-model are
formally defined, TDL specifications can be analysed beforehand for consistency and internal
correctness to ensure a high quality of the test descriptions. Being an abstract test specification
language, different test implementations can be derived to reflect the particularities of concrete test
environments, e.g. a distributed tester could be derived supporting asynchronous message-passing
communication between tester and system under test (SUT) or a sequential tester that puts
emphasis on validating real-time constraints between tester/SUT interactions.

2.2.3 Standards for TDLs

ETSI ES 203 119-1: Abstract Syntax and Associated Semantics

“This document specifies the abstract syntax of the Test Description Language (TDL) in the form of
a meta-model based on the OMG ® Meta Object FacilityTM (MOF). It also specifies the semantics
of the individual elements of the TDL meta-model. The intended use of the present document is to
serve as the basis for the development of TDL concrete syntaxes aimed at TDL users and to enable
TDL tools such as documentation generators, specification analyzers and code generators.

The specification of concrete syntaxes for TDL is outside the scope of the present document.
However, for illustrative purposes, an example of a possible textual syntax together with its
application on some existing ETSI test descriptions are provided.” [3]

ETSI ES 203 119-2: Graphical Syntax

“This document specifies the concrete graphical syntax of the Test Description Language (TDL).
The intended use of the present document is to serve as the basis for the development of graphical

22

Systematic testing of digital hardware systems by means of test automaton

TDL tools and TDL specifications. The meta-model of TDL and the meanings of the meta-classes
are described in ETSI ES 203 119-1.” [4]

ETSI ES 203 119-3: Exchange Format

“This document specifies the exchange format of the Test Description Language (TDL) in the form
of an XML Schema derived from the TDL meta-model [1]. The intended use of the present
document is to serve as the specification of the format used for exchange of model instances and
tool interoperability between TDL-compliant tools.” [5]

ETSI ES 203 119-4: Structured Test Objective Specification

“This document specifies an extension of the Test Description Language (TDL) enabling the
specification of structured test objectives. The extension covers the necessary additional constructs
in the abstract syntax, their semantics, as well as the concrete graphical syntactic notation for the
added constructs. In addition, textual syntax examples of the TDL Structured Test Objectives
extensions as well as BNF rules for a textual syntax for TDL with the Structured Test Objectives
extensions are provided. The intended use of the present document is to serve both as a foundation
for TDL tools implementing support for the specification of structured test objectives, as well as a
reference for end users applying the standardized syntax for the specification of structured test
objectives with TDL.” [6]

2.2.4 Design Considerations

TDL makes a clear distinction between concrete syntax that is adjustable to different application
domains and a common abstract syntax, which a concrete syntax is mapped to.

The definition of the abstract syntax for a TDL specification plays the key role in offering
interchangeability and unambiguous semantics of test descriptions. It is defined in the present
document in terms of a MOF meta-model.

A TDL specification consists of the following major parts that are also reflected in the meta-model:

* A test configuration consisting of at least one tester and at least one SUT component and
connections among them reflecting the test environment.

* A set of test descriptions, each of them describing one test scenario based on interactions
between the components of a given test configuration and actions of components or actors.
The control flow of a test description is expressed in terms of sequential, alternative,
parallel, iterative, etc. behavior.

* A set of data definitions that are used in interactions and as parameters of test description
invocations.

* Behavioral elements used in test descriptions that operate on time.

23

Systematic testing of digital hardware systems by means of test automaton

Using these major ingredients, a TDL specification is abstract in the following sense:

Interactions between tester and SUT components of a test configuration are considered to
be atomic and not detailed further. For example, an interaction can represent a message
exchange, a remote function/procedure call, or a shared variable access.

All behavioral elements within a test description are totally ordered, unless it is specified
otherwise. That is, there is an implicit synchronization mechanism assumed to exist
between the components of a test configuration.

The behavior of a test description represents the expected, foreseen behavior of a test
scenario assuming an implicit test verdict mechanism, if it is not specified otherwise. If the
specified behavior of a test description is executed, the 'pass' test verdict is assumed. Any
deviation from this expected behavior is considered to be a failure of the SUT, therefore the
'fail' verdict is assumed.

An explicit verdict assignment may be used if in a certain case there is a need to override
the implicit verdict setting mechanism (e.g. to assign 'inconclusive' or any user-defined
verdict values).

The data exchanged via interactions and used in parameters of test descriptions are
represented as values of an abstract data type without further details of their underlying
semantics, which is implementation-specific.

There is no assumption about verdict arbitration, which is implementation-specific. If a
deviation from the specified expected behavior is detected, the subsequent behavior
becomes undefined. In this case, an implementation might stop executing the TDL
specification.

A TDL specification represents a closed system of tester and SUT components. That is, each
interaction of a test description refers to one source component and at least one target component
that are part of the underlying test configuration a test description runs on. The actions of the actors
(entities of the environment of the given test configuration) may be indicated in an informal way.

Time in TDL is considered to be global and progresses in discrete quantities of arbitrary
granularity. Progress in time is expressed as a monotonically increasing function. Time starts with
the execution of the first ('base") test description being invoked.

The elements in a TDL specification may be extended with tool, application, or framework specific
information by means of annotations.

24

Systematic testing of digital hardware systems by means of test automaton

2.3 Used prototyping board

The Terrasic DEO-Nano board has been used because it is a low-cost prototyping board, easy to
program and has enough power for the model to be implemented.

Figure 12: DEO-Nano board
Obtained from [7]

The technical characteristics of the board are explained in appendix E.

25

Systematic testing of digital hardware systems by means of test automaton

3 Development of the VHDL model

3.1 Specifications of the VHDL model

A simple model in which fail detection is easy was decided to be implemented because the main
point of the thesis is not the model, but to ensure that the TDL and the test automaton are working
as specified. The TicTacToe game was chosen because it is easy to understand and to test. In
addition a simple board can be developed in order to to test the correct behavior of the model in an
interactive way.

3.1.1 How TicTacToe works

Tick-tock is a pen and paper game for two players, X and O. Players take turns marking spaces on a
3x3 grid. The player who places three of his marks in a horizontal, vertical or diagonal row wins
the game.

The following example shows a game that is won by the first player, X [8] :

T SO

Figure 13: Example of how to play TicTacToe in which X wins.
Obtained from [8]

Strategy

Optimal strategy for player X: In each grid, the shaded red X shows the optimal move, and the
location of O's next move gives the next subgrid to evaluate. It is important to notice that only two
sequences of moves by O (both starting with center, top-right, left-mid) lead to a draw, with the
remaining sequences leading to wins from X [8] .

26

Systematic testing of digital hardware systems by means of test automaton

IR oo

%Zzg;ﬁg

(4

-]
HOHE

oo 0 O o0

Figure 14: Optimal strategy for player X
Obtained from [8]

Optimal strategy for player O: Player O can always force a win or draw by taking the central space.
If it is taken by X, then O must take a corner. [8]

Figure 15: Optimal strategy for player O
Obtained from [8]

A player can play a perfect game of tic-tac-toe (to win or, at least, draw) if they choose the first
available move from the following list:

1. Win: If the player has two in a row, they can place a third to get three in a row.

2. Block: If the opponent has two in a row, the player must play the third to block the
opponent.

3. Fork: Create an opportunity where the player has two ways to win (two non-blocked lines
of 2).

4. Blocking an opponent's fork:

27

Systematic testing of digital hardware systems by means of test automaton

e Option 1: The player should create two in a row to force the opponent into
defending, as long as it doesn't result in them creating a fork. For example, if "X"
has two opposite corners and "O" has the center, "O" must not take a corner in order
to win. (Taking a corner in this situation creates a fork for "X" to win.)

e Option 2: If there is a situation where the opponent can fork, the player should
block that fork.

5. Center: A player took the center. (If it is the first move of the game, taking a corner gives
the second player more opportunities to make a mistake and may therefore be the better
choice; however, it makes no difference between perfect players.)

6. Opposite corner: If the opponent is in the corner, the player plays the opposite corner.

7. Empty corner: The player plays in a corner square.

8. Empty side: The player plays in a middle square on any of the 4 sides.

The first player, X, has 3 possible positions to mark during the first turn. Apparently, it might
appear that there are 9 possible positions, corresponding to the 9 squares of the grid. However, by
turning the board, we will find that in the first turn, each corner mark is equivalent to any other
corner mark. The same is true for each border mark (middle side). Therefore, for strategy purposes,
there are only three possible first marks: corner, edge or center. Player X may win or force a draw
from any of these starting marks; however, taking the corner gives the opponent the smallest choice
of squares that must be played to avoid losing. This makes the corner the best opening move for X,
when the opponent is not a perfect player.

The second player, O, must respond to X's opening in such a way as to avoid the forced win. Player
O must always respond to a corner opening with a center , and to a center opening with a corner.
An edge opening must be answered either with a center, a corner mark next to the X, or an edge
mark opposite the X. Any other responses will allow X to force the win. Once the opening is
completed, O's task is to follow the above list of priorities in order to force the draw, or else to gain
a win if X makes a weak play [8] .

3.1.2 Game board

A printed circuit board (PCB) has been designed and built to prove the behavior of the model in a
practical way.

The plan was to develop a cheap, easy to design and intuitive board that represents the TicTacToe
game board.

The board includes:

A 3x3 matrix of bi-color LEDs (green and red) that represents the game board. Colours are
assigned to players: player 1 is red (R) and player 2 is green (G).

A 3x3 matrix of push buttons create a keyboard in which the position of the push button
corresponds to the position on the game board.

28

Systematic testing of digital hardware systems by means of test automaton

Additionally there are another three LEDs indicating the game's result.. They indicate who is the
winner or if there is a draw.

The board also includes a push button to reinitialize the game.

The next figure shows the sketch of the interface to the user where the yellow circles represent
LEDs, and the gray squares are push buttons. P1 shows that the player 1 has won, P2 shows that
the player 2 has won and DR shows that the game has finished with a draw.

The button ST is used to start a new game.

N N\ N
_/ _/ _/
() () ()
_/ _/ _/
() () ()
_/ _/ _/

5
\=/

\/U) {
3

(0
N

Figure 16: Sketch of the interface to the user

Shift registers with serial input and parallel output have been used to minimize the number of
output lines dedicated to controlling the LEDs. The integrated circuit used is the 74L.S595N whose
datasheet is included in Appendix D. With this design it is possible to control 21 signals with only
three lines.

To minimize the number of lines dedicated to controlling the keyboard, the keyboard has been
treated like a matrix where the outputs are the columns and the inputs are the rows. In this manner
it only takes six lines to control all nine push buttons.

The next figure shows the electrical schematic of the developed game board.

29

Systematic testing of digital hardware systems by means of test automaton

+3.3V

1 start GND
2 output kb[2
3 output kb[1
4 output kb[O
5 intput_kb[0] +3.3v _1swi SWh SW7
6 input_kb[1 ’ A e _ o o—t
7 _input_kb[2 | t 2 3
Keyboard :z
o33 _L5wW2 SW5 L
vi i o, % —o o
BE

33 SW3 SW6 SW9
- o—-I o—- o—
= 7 8 9

Figure 17: Keyboard control circuit

KiCAD (A cross-platform and open source electronics design automation suite) has been used to
develop the board. The main window is shown in the next figure.

\ﬁ KiCad 4.0.7 D:\Apuntes de TH-Koeln'\Proyecta VHDL\Proyecto\Board'TicTacToe.pro
File Browse Preferences Tools Help

1289

L{-;j_z TicTacToe.pro : - -
P e A

|| TicTacToekicad_peb | [Praject name:
L Di\Apuntes de TH-Koeln!\Proyecto VHDL\Proyecto\Board\TicTacToe pro

J L

EJ?;J TicTacToenet
S# TicTacToesch
« list of components.adt]
- AL list of components.pd
A peBpd
A schematic paf
FI] Switches.lib
-] TicTacToe-cachelib
| @ TicTacToe-old.kicad_p

Figure 18: KiCad main window

30

Systematic testing of digital hardware systems by means of test automaton

Eeschema is the software used to develop the electrical schematic. The next figure shows the
interface of Eeschema and the electrical schematic of the game board.

% [TicTacToe /] (D:\Apuntes de TH-Koeln'\Proyecto VHDL\Proyecto\Eoard) - pe
File Edit View Place Preferences Tools Help
) n | [15 A | A e (G A N
BE) ¢ @“Q‘ @\@\oﬁ)\ E m[‘\‘ﬁm %ui’ﬂiﬂﬂjiﬁm "‘ACK
n =
-
mm
05 ‘ B
N :,
= SR Hede Jb
[E =
> /
]
lj I /
: % l
% L q
2 +
A
ADH
H =
%
o o
TicTacTor Boad * JA
oo Tems P
= i) .
T -
"‘
Daone Loading <D:/Apuntes de TH-Koeln/Proyecto VHDL/Proyecto/Board/TicTacToe.sch> Z0.78 X100.33 Y 88.90 dx 100.33 dy 88.90 dist 134.05 mm

Figure 19: eeschema interface

Pcbnew is the software used to develop the PCD board. The next figure shows the interface of
Pcbnew and the conducted board layout of the game board.

31

Systematic testing of digital hardware systems by means of test automaton

Pcbnew 4.0.7 D:\Apuntes de TH-Koeln\ Proyecto VHDL\Proyecta\Board\TicTacToe kicad_pcb

File Edit View Place Route Preferences Dimensions Toeols Design Rules Help

o @ = & acR (€@ HF e BT &

Track: 0.600 mm (23.62 mils) * | Via: 1.50 mm (5.1 mils)/ 0.80 mm (31.5 mils) * ~ % Grid: 0.2540 mm (1000 mils) || ZoomAuto

0o BUE (G (=]

&
&

Vias Track Segments MNedes Mets Links Connections Unconnected
208 4 609 168 49 120 100

Z135 X 26.416000 Y 46.930000 dx 26.416000 dy 46.990000 dist 53.906 mm

Figure 20: Pcbnew interface

The rendering of the designed board is shown in the two following figures.

1)

t
3
I

{

1
f
i

Figure 21: Rendering of the TicTacToe game board: Top side

(= ‘$Iz '-]:/Q\n EEIE ‘VQHE

Visibles

Lzyer | Rencer

¥ m|[Arcu
W[

W ([Fadhes

¥
~

| [e.cnya

O/ eran
[

32

Systematic testing of digital hardware systems by means of test automaton

Figure 22: Rendering of the TicTacToe game board: Bottom side

The schematic and PCB designs are included in Appendix A.

Next pictures show the first prototype, in which the start button was not included on the board
itself, due to a unforeseen design error. Therefore the start button has been attached to the DEOO
nano via jumping wires, as can bee seen in figure 24.

33

Systematic testing of digital hardware systems by means of test automaton

Figure 23: Photo of the game board

34

Systematic testing of digital hardware systems by means of test automaton

Figure 24: Photo of the game board connected to the prototyping board

3.2 Development of the model

Different models have been made along the project depending on the objectives, improvements or
found problems.

The first model "Game against the machine" is based on this situation. In this case, the machine
always starts the game in the central position and in consequence, it is not possible to win the
game.

In this model, a keyboard with 8 keys (the central position is always used by the machine, so does
not need a key), one normal LED (in the central position) and eight bi-color LEDs would be used.

This model was developed by using a Finite State Machine (FSM), as it is described in the
following flow diagrams, where P1[x] represents the vector of positions used by the machine,
P2[x] represents the vector of positions used by the player and in[x] represents the vector of the
inputs in the shown flow diagram. The states are represented by circles.

35

Systematic testing of digital hardware systems by means of test automaton

P2[0]=1 P2[7]=1 P2[2]=1 P2[5]=1

6 o O O

P2[3]=1 P2[4]=1

B 5 &
S O

P2[0]=1 P2[2]=1 P2[5]=1 P2[6]=1 P2[7]=1 P2[4]=1

5 O O O O O

Figure 25: Finite state machine of the model developed for one player (I)

36

Systematic testing of digital hardware systems by means of test automaton

Q 9

P1[4]=1 P1[2]=1

v

P2[0]=1 P2[1]=1 P2[6]=1 P2[7]=1 P2[5]1=1

5 O o o O

Figure 26: Finite state machine of the model developed for one player (II)

Q9 ¢

P1[5]=1 P1[6]=1 P1[1]=1

v v

P2[0]=1 P2[7]=1 P2[1]=1

O O

Figure 27: Finite state machine of the model developed for one player (I111)

37

Systematic testing of digital hardware systems by means of test automaton

Q

Draw=1

P2[0]=1 P2[1]=1

Figure 28: Finite state machine of the model developed for one player (IV)

P1[0]=1
P2[2]=1 P2[3]=1 P2[4]=1 P2[5]=1 P2[7]=1

Figure 29: Finite state machine of the model developed for one player (V)

38

Systematic testing of digital hardware systems by means of test automaton

Q 9

P1[71=1 PL[4]=1 @

Machine=1

P2[2]=1 P2[5]=1 P2[3]=1

O O

Figure 30: Finite state machine of the model developed for one player (VI)

P1[7]=1
P2[1]=1 P2[2]=1 P2[3]=1

© O O

P2[0]=1

Figure 31: Finite state machine of the model developed for one player (VII)

39

Systematic testing of digital hardware systems by means of test automaton

®

P1[0]=1 P1[2]=1

v

e e

P2[1]=1 P2[3]=1 P2[4]=1 P2[6]=1 P2[5]=1

5 & o6 o O

Figure 32: Finite state machine of the model developed for one player (VIII)

D

P1[2]=1

P2[0]=1 P2[1]=1 P2[3]=1 P2[4]=1 P2[6]=1

G O 0 O O O

P2[5]=1

Figure 33: Finite state machine of the model developed for one player (IX)

40

Systematic testing of digital hardware systems by means of test automaton

P1[0]=1

S e e O

P2[1]=1 P2[3]=1 P2[4]=1 P2[6]=1 P2[7]=1

O 0 O O O

Figure 34: Finite state machine of the model developed for one player (X)

This model was not finished because meanwhile it was decided that a game in which can play two
players is more intuitive and the testbench and simulation have more possibilities. Then, the model
was changed and the development of a new model allowing two players play was started. The
development of the game board was started in parallel.

A new design of inputs and outputs was made in order to reduce the number of lines necessary to
connect the VHDL prototyping board and the game board. This point has been explained in the
previous chapter during the presentation of the game board design.

The connections between both boards are shown in the next figure.

41

Systematic testing of digital hardware systems by means of test automaton

D3 5V
C3 3,3V
AZ A3 GND
B3 B4
Ad BS Qutput s
5V GMND Clock_o
D5 Show
AB
Game board
GFIO_O
(DEO-Mano) h— Start
Qutput kb[2]
Output_kb[1]
Output_kb[0]

3,3V

Input kb[0]
Input_kb[1]
Input_kb[2]

Figure 35: Connections between the VHDL prototyping board and the game board

The prototyping board works with a 50 MHz clock and the model works with a 100 Hz clock, so it
was necessary to create a clock divider.

A process with a counter from 0 to 250.000 was created. When the counter reaches 250.000 it
inverts the value of the output and starts again.

ARCHITECTURE synth OF clock generator IS
CONSTANT max_count : INTEGER := 250000;
SIGNAL clock : std logic := '0';
SIGNAL count : INTEGER range 0 to max count;
BEGIN

PROCESS (clock i) --period of 10 ms

BEGIN
IF clock i'event and clock i='1"' THEN

IF count < max_count THEN
count <= count+l;

ELSE
clock <= not clock;
count <= 0;

END IF;

42

Systematic testing of digital hardware systems by means of test automaton

END IF;
END PROCESS;
clock o <= clock;

END synth;

clock i clock o
- Clock _generator -

Figure 36: Modul clock generator

The complete code of the frequency divider is in chapter 6.2.2.1 Clock generator.

The next step was the development of a process which describes the behavior of the game.

It is important to initialize the signals and outputs at the system startup or when the user restart the
game. This is the code written to do so:

IF start = '0' or beginning = '1"' THEN

count2 <= 0;

count3 <= 1;

count6b <= 0;

launch <= '0';

show i <= '0';

input reg <="000000000";

reg <="000000000";

reg 2 <="000000000000000000000";
reg 3 <="000000000000000000000";
input reg <= "000000000";

reg <= "000000000";

player <= '1';

serialize <= '1"';

beginning <= '0';

A process has been implemented to control the keyboard. All the columns have a value of 1 but one
of then, that will have a value of 0. This 0 will be shifting cyclically. For example:

Column 1 |Column 2 | Column 3

Instant 1 1 1 0

Instant 2 1 0 1

43

Systematic testing of digital hardware systems by means of test automaton

Instant 3 0 1 1
Instant 4 1 1 0
Instant 5 1 0 1
Instant 6 0 1 1

All the inputs of the keyboard have a value of 1 by default. When a keystroke is produced, the
input of that row will have a value of 0 when the value of the column in which this push button is
placed is O too. In this way is possible to know which push button has been pressed. A variable
called input_i will take a value determined depending on the row and column of the push button
pressed.

There are two counters; one of them, controlled by the variable count4, counts from 0 to 9 to
produce a frequency of 100 Hz. The other counter, controlled by the variable count5, counts from 0
to 2 to choose the column depending on the value of this variable.

output kb i <= "110" WHEN count5 = 0 ELSE
"101" WHEN count5 1 ELSE
"011" WHEN count5 2 ELSE
"111";

This is the implemented process that controls the keyboard:
keyboard: PROCESS (clock i) --period of 100 ms
BEGIN

IF clock i'event and clock i='1"' THEN

IF start = '0' or beginning = '1' THEN
countd4 <= 0;
count5 <= 0;

ELSIF count4 < 9 THEN
count4 <= countd+1;

ELSIF pushed = '1' THEN
countd <= 0;

ELSE
IF count5 < 2 THEN
count5 <= count5+1;
ELSE
count5 <= 0;
END IF;
count4 <= 0;
END IF;
END IF;

END PROCESS;

44

Systematic testing of digital hardware systems by means of test automaton

The keystroke is saved in the variable input_i:

input i <= "000000001" WHEN input kb ="110" AND output kb i = "110" else
"000000010" WHEN input kb ="110" AND output kb i = "101" else
"000000100" WHEN input kb ="110" AND output kb i "011" else
"000001000" WHEN input kb ="101" AND output kb i = "110" else
"000010000" WHEN input kb ="101" AND output kb i = "101" else

"000100000" WHEN input kb ="101" AND output kb i = "011l" else
"001000000" WHEN input kb ="011" AND output kb i = "110" else
"010000000" WHEN input kb ="011" AND output kb i = "101" else
"100000000" WHEN input kb ="011" AND output kb i = "011" else

"000000000";

reg_3 contains a vector with the keys pushed by each player. Through the reading of this vector, it
is possible to detect if the game has finished because any of the players has won. The variable play
will take the value 0 when any played has won and the wvalue 1 in the other case.
When a draw happened, although play does not take value 0, no more keyboard inputs will be
processed.

Play<='0' when reg 3(9)='1"' and reg 3(10)='1"' and reg 3(11)='1"' else
'0' when reg 3(9)='1"' and reg 3(12)='1"' and reg 3(15)='1"' else
'0' when reg 3(9)='1' and reg 3(13)='1"' and reg 3(17)="1"' else
'0' when reg 3(10)='1"'" and reg 3(13)='1l' and reg 3(16)='1"' else
'0' when reg 3(11)='1"' and reg 3(14)='1' and reg 3(17)='1"' else
'0' when reg 3(11)='1"' and reg 3(13)='1' and reg 3(15)='1"' else
'0' when reg 3(12)='1"' and reg 3(13)='1l' and reg 3(14)='1"' else
'0' when reg 3(15)='1' and reg 3(16)='1' and g_3(17) '1' else
'0' when reg 3(0)='1"'" and reg 3(1)='1' and reg 3(2)='1"' else
'0' when reg 3(0)='1"' and reg 3(3)='1' and reg 3(6)='1"' else
'0' when reg 3(0)='1"'" and reg 3(4)='1' and reg 3(8)='1"' else
'0' when reg 3(1)='1"'" and reg 3(4)='1' and reg 3(7)='1"' else
'0' when reg 3(2)='1"' and reg 3(5)='1' and reg 3(8)='1"' else
'0' when reg 3(2)='1' and reg 3(4)='1"' and reg 3(6)="'1"' else
'0' when reg 3(3)='1"' and reg 3(4)='1' and reg 3(5)='1"' else
'0' when reg 3(6)='1"' and reg 3(7)='1' and reg 3(8)='1"' else

lll;

In order to better understand this piece of code, the position corresponding to each bit used by the
players is shown below.

45

Systematic testing of digital hardware systems by means of test automaton

Player 1 Player 2
9 | 10 | 11 0 1 2
12 | 13 | 14 3 4 5
15 | 16 | 17 6 7 8

When a keystroke has been detected, it is important to ensure that it is not a false keystroke. In
order to ensure it, a counter controlled by the variable count2 that counts from 0 to 10 has been
implemented. After 10 clock cycles (100 ms) in which the input signal has not changed, it is
possible to ensure that a keystroke was made.

The variable requirement will take the value “000000000” if the current pushed key was not
pushed before, and then the keystroke will be processed.

requirement <= input i and reg;

The variable reg is a register in which all the pressed keys are stored. This variable is used to know
if the current key was pushed before, or if all the keys has been already pushed and a draw
happened.

The logical function ‘or’ is made with input_i and reg to add the current pushed key to reg. After
that, the value of input_i is stored in input_red, the other player selected for the next turn, and the
sending of the information to the LEDs is activated.

IF pushed = ‘1’ THEN
IF count2 < 10 THEN
count2 <= count2+1;
ELSE
IF requirement = "000000000" THEN
reg <= input i or reg;
input reg <= input i;
player <= not player;
serialize <= '1"';

END IF;
count2 <= 0;
END IF;
ELSE
count2 <= 0;
END IF;

46

Systematic testing of digital hardware systems by means of test automaton

A mask has been created for each stored input depending on the player. This mask is used to
change the vector reg_2 in which are stored the keys pushed by each player.

mask<="000000000001000000000" WHEN input reg="000000001" AND player='0"' else
"000000000010000000000" WHEN input reg ="000000010" AND player = '0' else
"000000000100000000000" WHEN input reg ="000000100" AND player ‘0" else
"000000001000000000000" WHEN input reg ="000001000" AND player = '0' else
"000000010000000000000" WHEN input reg ="000010000" AND player = '0' else
"000000100000000000000" WHEN input reg ="000100000" AND player = '0' else
"000001000000000000000" WHEN input reg ="001000000" AND player = '0' else
"000010000000000000000" WHEN input reg ="010000000" AND player = '0' else
"000100000000000000000" WHEN input reg ="100000000" AND player = '0' else
"000000000000000000001" WHEN input reg ="000000001" AND player = 'l' else
"000000000000000000010" WHEN input reg ="000000010" AND player = 'l' else
"000000000000000000100" WHEN input reg ="000000100" AND player = 'l' else
"000000000000000001000" WHEN input reg ="000001000" AND player = 'l' else
"000000000000000010000" WHEN input reg ="000010000" AND player = 'l' else
"000000000000000100000" WHEN input reg ="000100000" AND player = 'l' else
"000000000000001000000" WHEN input reg ="001000000" AND player = 'l' else
"000000000000010000000" WHEN input reg ="010000000" AND player = 'l' else
"000000000000100000000" WHEN input reg ="100000000" AND player = 'l' else
"000000000000000000000" WHEN start = '1' ELSE
"000000000000000000000"

~=

reg 2 <= reg 2 or mask;

reg_3 is used, as was previously seen, to indicate through the signal play that the game is finished.

reg 3 <= reg 2;

Output_i contains the information to send to the LEDs. Depending on if player 1 or player 2 has
won, or a draw happened, the corresponding bit is activated. The third bit indicates that player 1
has won, the first bit indicates that player 2 has won and the second bit indicates that a draw
happened. In the next 9 bits are saved the keys pushed by player 1 and the least 9 bits are saved the
keys pushed by player 2.

P2 DR| P1 Player 1 Player 2

output i <= reg 2 or "001000000000000000000" when reg 2(9)='1"' and
reg 2(10)='1" and reg 2(11)="'1"' else
reg 2 or "001000000000000000000" when reg 2(9)='1' and reg 2(12)='1"' and

47

Systematic testing of digital hardware systems by means of test automaton

reg_2(15)="'1"' else

reg_2 or "001000000000000000000"

reg 2(17)='1"' else

reg 2 or "001000000000000000000"

reg 2(16)="'1"' else

reg 2 or "001000000000000000000"

reg 2(17)='1"' else

reg_2 or "00L0O0000000000000000"

reg_2(15)="'1"' else

reg_2 or "001000000000000000000"

reg 2(14)="'1"' else

reg 2 or "001000000000000000000"

reg 2(17)="'1"' else

reg 2 or "100000000000000000000"

reg 2(2)='1"' else

reg_2 or "100000000000000000000"

reg 2(6)="'1"' else

reg_2 or "100000000000000000000"

reg 2(8)="'1"' else

reg 2 or "100000000000000000000"

reg 2(7)="'1"' else

reg 2 or "100000000000000000000"

reg 2(8)='1"' else

reg_2 or "100000000000000000000"

reg 2(6)="'1"' else

reg_2 or "100000000000000000000"

reg 2(5)='1"' else

reg 2 or "100000000000000000000"

reg 2(8)="'1"' else

reg 2 or "0f0000000000000000000"

reg 2;

when

when

when

when

when

when

when

when

when

when

when

when

when

when

when

reg 2(9)

reg 2(10)="1"
reg 2(11)="1"
reg 2(11)="1"
reg 2(12)="1"
reg 2(15)="1"
reg 2(0)="1"
reg 2(0)="1"
reg 2(0)="1"
reg 2(1)="1"
reg 2(2)='1"
reg 2(2)='1"
reg 2(3)="1"
reg 2(6)="1"

='1l' and reg 2(13)='1"' and

and

and

and

and

and

reg 2(13)="1"
reg 2(14)="1"
reg 2(13)="'1
reg 2(13)="1
reg 2(16)="1"

and

and

' and

' and

and reg 2(1)='1"' and

and

and

and

and

and

and

and

reg 2(3)='1"
reg 2(4)="1"
reg 2(4)="'1"
reg 2(5)="1"
reg 2(4)='1"
reg 2(4)="1"
reg 2(7)="1"

reg="111111111" else

and

and

and

and

and

and

and

and

To send the information to the LEDs, the system waits for 3 clock cycles in order to ensure that
output_i is updated. After that, the bits contained in output_i are sent to the shift registers in serial,

bit to bit from the most

significant

bit

to

the

least

significant

bit.

When all the bits have been sent, the signal show_i is activated to send the LEDs the bits stored in

the shift registers in parallel.

IF serialize='1' THEN

IF count6 < 2 THEN

countb <=
ELSE

count3 <=

serialize

countb <=
END IF;

count6+1;

21;
<=IOI;

0;

48

Systematic testing of digital hardware systems by means of test automaton

ELSIF count3 > 0 THEN
count3 <= count3-1;
output s <= output i(count3-1);
launch <= '1";
ELSIF launch = '1' THEN
launch <= '0"';
show i <= '1"';
ELSE
show i <='0"';
END IF;

At the same time, the signal clock_o is sent to control the shift registers.

clock 0 <= not clock i WHEN launch = '1' else
IOI;

clock | output kb

3
output i

sta Game chow
_}..

input_kb clcck_s
:3

Figure 37: Modul game

When the development of the TDL code was started, it has been discovered that it is not possible to
generate so many clock signals. Testing the behavior of the model for 14 seconds was necessary
and, because the system clock signal has a frequency of 50 MHz, was necessary generating of 1.4
billion of signals.

The solution found to this problem was splitting the design. The design was split in a component
called clock_generator and a component called game. The component clock_generator describes
the frequency divider, and the component game describes the behavior of the game. In this case,
only testing the component game was necessary to test the behavior of the model, which needs only
1,400 clock cycles.

49

Systematic testing of digital hardware systems by means of test automaton

clock i

clock_ i

TicTacToe

clock o clock i

——3| clock_generator
start Stal't
input_kb mput_/kb
7>

Game

output kb
Put_ output_ﬁa
73
output_s output_i
show show
>
C|0Ck_0 clock o
=

Figure 38: Modul TicTacToe

50

Systematic testing of digital hardware systems by means of test automaton

4 \Verification

4.1 Simulation of the VHDL code

4.1.1 Simulation description

A functional simulation has been made in order to ensure the right working of the model. To carry
out this simulation the software Modelsim, which is part of the suite provided by intel, has been
used.

The simulation used the follwing files: TicTacToe.vhd, game.vhd, clock_generator.vhd and
TicTacToe_tb.vhd.

The file TicTacToe_tb.vhd contains the testbench.

The simulation of three different game scenarios was carried out: player 1 wins, player 2 wins,
nobody wins - draw. A simulation in which all the possibilities are simulated would take too much
time to develop, to simulate and to verify. The simulation takes 83,025 ms

The testbench was developed trying to represent a real situation, so there are big waiting periods
between input signals. This was made in order to use this test in the test automaton with the
possibility of connecting the game board in parallel in order to see the outputs while the test is
running.

In the following lines, some instructions used in the testbench are explained in order to make the
code more comprehensible.

input i <= "111"; Start i <= '1°';
wait for 1020 ms;

wait until output kb i = "110";
input i <= "110"; wait for 300 ms;
input i <= "111"; wait for 2020 ms;

The signals input_i and start are assigned with the value that they should have by default.

The program waits until output_kb_i has the value 110 to take the value 110 in the input_i because
is desired to simulate the effect of pressing the key 1. When is pressed the key 1, input_kb (input_i
in the testbench code) will changes only when the value of output_kb (output_kb_1 in the testbench
code) is 110, and the value of input_kb will be 110 because of the structure of the circuit and the
possible values of output_kb. After that, input_i takes again the value by default (111) to simulate
the releasing of this key.

input i <= "011"; wait for 175 ms; --player 1 wins
assert output s i='1"' report "Expected 1" severity failure;
report "Player 1 wins. The model works as expected";

51

Systematic testing of digital hardware systems by means of test automaton

With the input_i =011, player 1 has won. To verify the right working of the model, it is tested if has
been activated the bit that shows that player 1 won. The activation of this bit means that the model
works as expected, and is reported a message saying that player 1 wins and the model works as
expected. If this bit is not activated, an error will be reported saying that value 1 was expected.

4.1.2 Simulation results

The model works as expected. There are not many conclusions to obtain here because the objective
of this simulation is to ensure the right working of the model.

| Wave - Default i H) x|

| [I
o, o, T, S R, S, T, L, R R, R, T, T, i R
O T W o I o W W W W W

Jgame ijshm\ i Mo Data-

Cursor 1 | 3940459904.031 ns

Figure 39: Complete waveform obtain in the VHDL simulation

The next figure shows all the signals generated in the simulation.

In the next figure, the last sent vector of the signal output_s when player 1 wins is represented.

£&| Wave - Default — 4 & x|

faame_tb/dk_i
Jaame_th/Start_i

1 KD 011
fgame_thfinput_i 011
fgame_thfoutput_s_i
fogame_th/dodk_o_i
fogame_thfshow_i

Cursor 1 0000 ns
[« []ls 3

-
0000 A e I

Figure 40: Detail of the waveform obtain in the VHDL simulation

Systematic testing of digital hardware systems by means of test automaton

In the previous picture it is possible to see that the information sent through output_s_1 is:

P2 DR| P1 Player 1 Player 2

o o0 /1441 0090941 |0 O O 1 (O O 2 O |0 |2 O (O O

This information correspond with the game table shown below where the red color is player 1 and
the green color is player 2. The LED which shows that player 1 has won has been turned on.

Figure 41: Sketch of the game table dfter the first player wins

These are the messages launched by Modelsim.

g

¥ Note: Player 1 wins. The model works as expected
Time: 13880 ma Iteration: 0 Instance: fgame th
£ ¥ Note: Flayer 2 wins. The model works as expected
Time: 30370 ma Iteration: 0 Instance: /fgame th
*% Note: Draw. The model works as expected

Time: 53850 ma Iteration: 0 Instance: /fgame th

Figure 42: Result of the VHDL simulation (command console)

It is verified that the model works as expected.

53

Systematic testing of digital hardware systems by means of test automaton

4.2 Testbench using Test Description Language

4.2.1 Testbench description

Because the right working of the model has already been verified through the simulation and the
board developed, the next step is verifying the code generated by the TDL generator. To carry out
that, it is enough to simulate one game, so the same simulation used in the functional simulation
when the player 1 wins has been implemented here. As it was said before, it was not possible to
simulate all the model because of the amount of necessary clock signals. Therefore it was only
possible to simulate the component game.

Defining the components used in the testbench and the types of inputs and outputs that they have is
the first step. This testbench has the following two components:

* Type hardware. This component corresponds to the model to test.

* Type TB. This component corresponds to the test automaton.

The types of inputs used are std logic and std logic vector.

Data Set logic {
instance std logic;
instance std logic vector;

}

Gate Type input accepts logic;
Gate Type output accepts logic;

Component Type hardware {
gate types: input,output;
}

Component Type TB {
gate types: input,output;
}

Now, the time unit is defined:

Time Unit milliseconds;

54

Systematic testing of digital hardware systems by means of test automaton

The next step is defining the configuration of the test:

Instantiation of the components

instantiate game as DUT of type hardware having {
gate Start of type input with length of 1;

gate clock i of type input with length of 1;

gate input kb of type input with length of 3;
gate output kb of type output with length of 3;
gate output s of type output with length of 1;
gate show of type output with length of 1;

gate clock o of type output with length of 1;
}

instantiate TB a as Tester of type TB having {
gate Starter of type output with length of 1;
gate CLKgenerator of type output with length of
gate row o of type output with length of 3;
gate column i of type input with length of 3;
gate parallelize of type input with length of 1;
gate clk of type input with length of 1;
gate input s of type input with length of 1;

Description of the connection between the components:

connect gate Starter to gate Start;
connect gate CLKgenerator to gate clock i;
connect gate row o to gate input kb;

connect gate column i to gate output kb;
connect gate parallelize to gate show;
connect gate clk to gate clock o;
connect gate input s to gate output s;

The maximum assert deviation:

Assert deviation is (1 milliseconds);

55

Systematic testing of digital hardware systems by means of test automaton

The schematic of the connections between the DUT (game) and the test automaton (TB_a) is
shown below.

output_kb column_i
start starter
show paralelize
clock i CLKgenerator
Game TBE a
clock o clk
input_kb row_o
output s input_s

Figure 43: Connections between the model and the test automaton

After that, the physical characteristics of the components are defined:

SignalAdapter Configuration de@ nano output {

signaladapter output adapterl of type output having{
attach Start 0 downto 0 to position 0 downto O;
attach clock i 0 downto O to position 1 downto 1;
attach input kb 2 downto O to position 4 downto 2;
logiclevel LVTTL;
type deO nano pappkisteOut;
hardware revision "0.1";
software revision "0.1";
serial number "001";
connection JTAG;
address "USB-Blaster [1-6.1]";

signaladapter input adapterl of type input having{

attach output kb 2 downto O to position 2 downto 0;

attach show 0 downto 0 to position 3 downto 3;
attach clock o 0 downto O to position 4 downto 4;
attach output s 0 downto 0 to position 5 downto 5
logiclevel LVTTL;

type deO nano pappkisteln;

hardware revision "0.1";

software revision "0.1";

serial number "001";

’

56

Systematic testing of digital hardware systems by means of test automaton

connection JTAG;
address "USB-Blaster [1-6.3]";

The last step is the description of the test. All the signals are outputs in this language. The outputs
of the model are described as outputs of game, and the outputs of the test automaton are described
as outputs of TB_a.

Test Description test_the_game{

use Test c?nfiguration: game_tdl_cf{
run
repeat 2000 times {
TB_a sends bit value of bO® to gate clock_i;
gate clock_i waits for (5 milliseconds);
TB_a sends bit value of bl to gate clock_i;
gate clock_i waits for (5 milliseconds);

}

}

in parallel to {
TB_a sends bus value of 7 to gate input_kb;
gate input_kb waits for (1205 milliseconds);
TB_a sends bus value of 6 to gate input_kb;
gate input_kb waits for (300 milliseconds);

terminate;

}

The complete code is in appendix D. Here, only some commands will be explained in order to
make the code understandable. The test has been made trying to emulate a real game, so there are
waiting periods between the keystrokes.

The clock is the first signal generated. The period is 10 ms, so there are 5 ms in which the signal
has a value of 0 and 5 ms in which the value is 1. In order to simulate 20 seconds, it is necessary to

generate 2000 clock cycles.

run {
repeat 2000 times {
TB_a sends bit value of b0 to gate clock_i;
gate clock_i waits for (5 milliseconds);
TB_a sends bit value of bl to gate clock_i;
gate clock_i waits for (5 milliseconds);
}
}

57

Systematic testing of digital hardware systems by means of test automaton

The signals input_kb and Start are initialized with the value by default (the value that should have
if the push buttons are not pushed).

TB a sends bus value of 7 to gate input kb;
TB a sends bit value of bl to gate Start;

In order to emulate the keystrokes of the keyboard, it is necessary to wait until the column of this
key is active and then active the input of this row. It is important to remember that both inputs and
outputs are low level active. The key is pushed for 300 ms and released again. A waiting of 2020
ms separates the keystrokes. In the piece of code shown below, the keys 1 and 4 are pushed.

TB a sends bus value of 7 to gate input kb;
gate input kb waits for (1205 milliseconds);
TB a sends bus value of 6 to gate input kb;
gate input kb waits for (300 milliseconds);
TB a sends bus value of 7 to gate input kb;
gate input kb waits for (2100 milliseconds);
TB a sends bus value of 5 to gate input kb;
gate input kb waits for (300 milliseconds);
TB a sends bus value of 7 to gate input kb;

The sequence of the key pushed in this test is: 1, 4, 5, 7, 5 and 9. It is important to notice that the
key 5 is pushed twice, but the second time is not considered by the system because was previously
pushed. The player 1 has pushed the keys 1, 5 and 9, and the player 2 has pushed the keys 4 and 7.
This is the result in the matrix of the game where the red color is player 1 and the green color is
player 2:

Figure 44: Sketch of the game table after the TDL testbench

58

Systematic testing of digital hardware systems by means of test automaton

Each time that a key is pushed, the information to the LEDs is sent through the serial output. As
was explained in the previous chapter, the order of the bits is player 2 wins, draw, player 1 wins,
positions used by player 2 and positions used by player 1. The code to send the information to the
LEDs when player 1 has won is shown below.

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

sends bit value of bO
input s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of bl
input s waits for (10
sends bit value of bl
input s waits for (10
sends bit value of bO
input s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input s waits for (10
sends bit value of bl
input s waits for (10
sends bit value of bO
input s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input s waits for (10
sends bit value of bl
input s waits for (10
sends bit value of bO
input s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of bl
input s waits for (10
sends bit value of b0
input s waits for (10
sends bit value of bO
input s waits for (10
sends bit value of bl
input_s waits for (10
sends bit value of b0
input s waits for (10
sends bit value of b0
input s waits for (10
sends bit value of bO
input s waits for (10
sends bit value of b0

to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input_s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input_s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input_s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input_s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;
milliseconds);
to gate input_s;
milliseconds);
to gate input s;
milliseconds);
to gate input s;

59

Systematic testing of digital hardware systems by means of test automaton

This is the information that has been sent:

P2 |DR| P1

Player 1

Player 2

0 |1

0 |0

The clock to control the shift register has a delay of 5 ms from the bit sent. With this delay, it is
ensured that the bit has arrived at the input of the register and the level is stable. One clock cycle is
sent with each information bit.

game
gate
game
gate

sends bit value of bl to gate clk;

clk waits for (5 milliseconds);

sends bit value of b0 to gate clk;

clk waits for (5 milliseconds);

After that, one bit to release the information to the LEDs is sent.

game sends bit value of bl to gate parallelize;
gate parallelize waits for (10 milliseconds);
game sends bit value of b0@ to gate parallelize;

The TDL generator has generated a file called testbench.vhd. This file contains the same test
description in VHDL and can be used to verify the right working of the model through a simulation
using Modelsim like it has been done in the previous testbench..

When it was verified that the testbench was correctly written and the files generated are ready to
test the DUT (it was necessary correcting some mistakes in this file), some changes were made in
the model in order to simulate that the cable connected to the input_kb[1] is broken. The objective
is to verify that the testbench generated by the TDL generator is able to detect that the DUT does
not work right.

These are the changes made in the model:

input i <=

"000000010"
"000000100"
"000001000"
"000010000"
"000100000"
"001000000"
"010000000"
"100000000"

"000000000";

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

input kb
input kb
input kb
input kb
input kb
input kb
input kb
input kb

="110"
="110"
="101"
="101"
="101"
="011"
="011"
="011"

AND
AND
AND
AND
AND
AND
AND
AND

output kb i
output kb i
output kb i
output kb i
output kb i
output kb i

"000000001" WHEN input kb ="110" AND output kb i

output kb i =

output kb i

“101"
"011"
“110"
“101"
"011"
"110"
“101"
"011"

n 110"

else
else
else
else
else
else
else
else

else

60

Systematic testing of digital hardware systems by means of test automaton

The values in input_kb[1] are not considered with these changes. It is the same effect that when the
cable connected to this input is broken.

4.2.2 Testbench results

4.2.2.1 Model working right
Some mistakes were found in the file testbench.vhd.

When the simulation was executed, Modelsim reported an error. The next figure shows the error
reported by Modelsim:

2

2

¥Y Warning: Assert failed at 104 ms

Time: 2104 ms Iteration: 0 Instance: fgame_tdl th
J |VsIM 223 |

Figure 45: Error reported by Modelsim. Command console. (TDL testbench)

The first expected value of the signal column_i was wrong because the code expected “011” and
the right value was “110”. The value generated in the simulation is right, but the value expected is
wrong. In the next figure is shown the generated waveform for that instant of time:

M Wave - Default S ﬂ ﬂ X

J_I_I_I_I_I_I_I_I_I_I_I_I_I_]_I_I_I_I_I_I_I_I_I_I_I_I_I_I_
110 {101

111
|

I

-
m I

Cursor 1 |7T8923 ms

I | HE Hs >

Figure 46: Waveform result of the simulation, where an error was reported. (TDL testbench)

61

Systematic testing of digital hardware systems by means of test automaton

It is also possible to see that the message sent by some reports does not meet with the current

instant of time. For the instant of time 104 ms, the message says “assert failed at 106 ms” for the
signals clk and input_s.

--#104
assert clk = '1'
report "Assert failed at 106 ms" severity warning;
assert input s = '0'
report "Assert failed at 106 ms" severity warning;
assert column i = "O11"

report "Assert failed at 104 ms" severity warning;
wait for 2 ms;

The next figure shows the complete waveform of the simulation.

8| Wave - Default G H 2 x|

T w0,
SRS &5 S M (£ 5 W i 5 W 0 50 R S5 R

Cursnr 1 [1091ns

) [r]le r

Figure 47: Complete waveform result of the simulation. (TDL testbench)

This following figure shows the last sent output_s vector.

62

Systematic testing of digital hardware systems by means of test automaton

M Wave - Default

||]

011
011

iE Cursor 1 |0000ns

| Jal 1)l »

Figure 48: Information sent by the serial output when the player 1 wins (TDL testbench)

It is verified that all the generated signals are right. The signals are the same than the signals
obtained in the previous simulation, and the only errors are the errors commented previously.

4.2.2.2 Model modified to introduce a malfunction

Many errors appear because the timing of the output column_i depends on the input row_o. Due to
some values in row_o are ignored, the values of the output column_i are different than expected in
each instant of time. Because of the key detected depends on column_i and row_o, a different value
in column_i originates a different key detected for a same row_o. Besides, because of some inputs
are ignored, some outputs in input_s, clk and parallelize are not originated.

| Wave - Default o + @ x|

fazme_td]_th/CLKg... —]

faame_td|_tbStarter e

fgame_td_tbcolum... LTI) 1) S D0) o R o s Bk o R

fgame_td|_tbfrow_o VIS 55 W i 55 U & (FS VAN | 5 VU 5 R 55 S
_tdl_th/input_s

faame _td_th{dk

faame_td_tb/paral...

L] | o la] T b

-
iE! Cursor 1 | 0000 ns 0000 ns I

Figure 49: Waveform obtain in the simulation with malfunctions in the model (I) (TDL testbench)

63

Systematic testing of digital hardware systems by means of test automaton

In the figure shown below, it is possible to see that the signals generated are very different from the
signals generated in previous simulations.

| Wave - Default s + | %]

g B B B B B B B B e B B B -

011
011 I D R N R N N N A R A
SRR NN N O I N N oy T NN Y
[S [I s) O A |

-
Cursor 1 5.875ns 5880060545.1

I |]l]l »

Figure 50: Waveform obtain the simulation with malfunctions in the model (II) (TDL testbench)

Some of the errors reported by Modelsim are shown here:
** Warning: Assert failed at 3761 ms
Time: 5761 ms Iteration: 0 Instance: /game tdl tb
** Warning: Assert failed at 3766 ms
Time: 5764 ms Iteration: 0 Instance: /game tdl tb
** Warning: Assert failed at 3771 ms

Time: 5771 ms Iteration: 0 Instance: /game tdl tb

All the reported errors are shown in Appendix E.

With this test is verified that the testbench generated by the TDL compiler is able to detect
malfunctions in the model, so after correction of the errors found in the simulation of the right
model, the file can be used to test the models’ reliably.

64

Systematic testing of digital hardware systems by means of test automaton

4.3 Verification in hardware

4.3.1 Testbench description

Due to the test automaton was not ready yet, the only possibility to simulate the model in a more
realistic way and to verify that the delays created inside the FPGA do not exceed the maximum
delay allowed by the testbench was conducting a timing simulation. This simulation is called
timing simulation and requires the file testbench.vhd which contains the testbench profile, the file
game_6_1200mv_85c_slow.vho which contains the netlist of the circuit to be implemented inside
the FPGA and the file game_6_1200mv_85c_vhd_slow.sdo which contains the delays in the circuit
to be implemented inside the FPGA.

To carry out this simulation it is necessary to do some configurations in the simulation profile. To
carry it out, it is necessary to go to Simulate in the menu and choose Start Simulation. This
windows will be opened:

M Start Simulation *
Design 1 WHDL] Verilog] Libraries] SDF] Others] ﬂ_;.|
T|Name |T\,r|:ue |Path i‘
1;—_{']1_ work Library work
#HlL 220model Library EMODEL_TECH/. . /altera,vhdl/220madel
i?‘ﬂ]l 220model_ver Library SMODEL_TECHY/. . faltera verilog/220model
1;—_{']1 altera Library SMODEL_TECH/. . faltera/vhd faltera
1;—ﬂ]l altera_Insim Library SMODEL_TECHY/. . faltera vhdl altera_Insim
1;—_{']1 altera_Insim_wver Library SMODEL_TECH/.. faltera/verilog/faltera_lnsir
1;—ﬂ]l altera_mf Library SMODEL_TECH/. . faltera/vhdl/altera_mf
1;—_{'1 altera_mf_ver Library SMODEL_TECH/.. falterafveriloafaltera_mf
1;—ﬂ]l altera_ver Library SMODEL_TECH/. . faltera /verilog/altera
+HliL arriai Library SMODEL_TECHY/. . faltera/vhd farriaii j
<]
Design Unit(s) Resolution

default !I
Cancel

Figure 51: Configuration of the timing simulation (I)

In the tab SDF the file game_6_1200mv_85c_vhd_slow.sdo is added and the region applied. The
region corresponds to the component instantiate in the file testbench.vhd. In this case, the
component instantiate is called UUT.

UUT: game
port map(
clock o => clk,

show => parallelize,

65

Systematic testing of digital hardware systems by means of test automaton

output kb => column i,
input kb => row o,
clock i => CLKgenerator,
Start => Starter,
output s => input s);

M Add SDF Entry X

SDF File
D:/intelFEGL lite/17.1/projects/ Browse...

Apply to Region Delay
JUUT Lyp !I

Ok, | Eann:el|

Figure 52: Configuration of the timing simulation (II)

Now, in the tap design, the testbench profile is chosen.

M Start Simulation >
Design] WHDL] Verilog] Libraries] SOF] Others] ﬂﬁ
TlName |Ty|:ue |Path i‘
- wark Library wark
+I-|-£| game Entity D:/fintelFPGA_lite/17. 1/projects/aame,simul;
+I-|-£| game_th Entity D:fintelFPGA_lite/17. 1/projects/aame faame
- %game_b:ll_ﬂ: Entity D:fintelFPGA_lite /17, 1/projects/game testh
| testbench Architecture
+HE] hard_block Entity D:/fintelFPGA_lite/17. 1/projects/aame fsimul;
#lf, 220model Library SMODEL_TECH/.. faltera/fvhdl/220madel
ﬂ—ﬂl 220model_wver Library SMODEL_TECH/.. falterafverilog/220model
ﬂ—m altera Library SMODEL_TECH/.. faltera/fvhdl/faltera
+14liL altera_lnsim Library SMODEL_TECH/. . faltera/vhdl/faltera_Insim j
< | +
Design Unit(s) Resolution
work.game_tdl_tb(testbench) default j
Cancel

Figure 53: Configuration of the timing simulation (1II)

Systematic testing of digital hardware systems by means of test automaton

The simulation configuration is already finished and it is ready to make the simulation in the
normal way.

The last step is the verification of the signals defined in the file asserts.vhd and the right working of
the file vcdplayer.vhd. This verification is carried out doing a simulation with the testbench
generated by the TDL generator where the entity to simulate is the entity described in the file
vcdplayer.vhd and the outputs are the signals contained the file asserts.vcd.

In order to ensure that the testbench is able to detects wrong values in the measurements, a wrong
value was introduced in the file asserts.vcd. The value of the signal clk was changed from 1 to 0 for
200 ms.

Original Changed
value value
#200 — #200
bl % b0 %

4.3.2 Testbench results

The delay between CLKgenerator (clock signal) and column_i (output_kb in the model) is shown
here:

1

| Wave - Default W H 2 x|

-
t‘l.. m 1]] 1 1 1 1 1 1 1 1
i [
0 Cursor 110000 ns 5405000000 —
@© Cursor2 pesans | 54050

Now
K] Tl >

Figure 54: Delay between CLKgenerator and column_i

This delay has a value of 6.62 ns.

67

Systematic testing of digital hardware systems by means of test automaton

The delay between CLKgenerator (clock signal) and clk (clock_o in the model) is shown here:

| Wave - Default s H | x|

U] Cursor 1 |7.227ns

ﬁl"ems:rz
TEREEO ARG 5

Figure 55: Delay between CLKgenerator and clk

This delay has a value of 7.227 ns.

The delay between CLKgenerator (clock signal) and input_s (output_s in the model) is shown here:

| Wave - Default L +H | x|

-
rme hoooons | ' i ']]]] | -]] T : -
@ ® Cursor 1 B.774ns — S 774ms 59 s
1 Cursor 2 0000 s 5 0ns
J 1 | |

Mow
1
I o]][»

Figure 56: Delay between CLKgenerator and output_s

This delay has a value of 5.774 ns.

The delay between CLKgenerator (clock signal) and parallelize (show in the model) is shown here:

68

Systematic testing of digital hardware systems by means of test automaton

| Wave - Default i H | x|

) o]][»

-
cme — ; ; ; ; ; ; ; ; ; ; ; ; ; ;
/e cusor 1 E e ———— P ——

&o"e cUrsorz 5.719 s 59 05.719 ns

Figure 57: Delay between CLKgenerator and parallelize

This delay has a value of 5.719 ns.

The maximum delay in the circuit detected in the simulation is 7.227 ns. This value is very small
compared to the maximum delay allowed by the testbench, which is 1 ms. No errors were reported.

Malfunctions in the behavior of the designed model are not expected.

4.3.3 Verification of the assertions

4.3.3.1 Original asserts.vced

A mistake has been found in the file asserts.vcd. There is no definition of the signals described in
the file. So when the file is used directly in Modelsim, an error is launched. The file vcdplayer.vhd
does not need this definitions because this file contains the necessary information to be able to
recognize the signals and gives them names when they are represented in the wave window.

This mistake is created by the TDL generator, and will be solved in the future.
Code generated:

$scope module TDLGenerator $end
$upscope $end
$enddefinitions $end

The right generated code to be opened directly in Modelsim should be:

$scope module TDLGenerator $end

69

Systematic testing of digital hardware systems by means of test automaton

$var wire 3 ! column i $end
$var wire 1 % clk $end
$var wire 1 - input s $end

$var wire 1 + parallelize $end
$upscope $end
$enddefinitions $end

The simulation was right and no errors were reported.

The following figure shows the output signals generated for 200 ms.

| Wave - Default i +H | x|

=
Cursor 1 2194.99 ms - I
L] | HIE]l 1 O] |

Figure 58: Result of the verification of vcdplayer

4.3.3.2 Altered asserts.ved

Some errors were reported:

#

¥ Warning: Assert failed at 201 ms

Time: 2201 ms Iteration: 0 Instance: fgame tdl th
¥ Warning: Assert failed at 206 ms

Time: 2204 ms Iteration: 0 Instance: fgame tdl th
WSIM 45

Figure 59: Result of the verification of vedplayer.vhd when an error in
asserts.vced was introduced

70

Systematic testing of digital hardware systems by means of test automaton

In the following figure is shown the output signal generated when the wrong value was introduced

£E| Wave - Default

EJES

jqame._td_thdk
Jgame._tdl_tb/paral...

ig Cursor 1 21‘34 99 ms

1
| DG [l [|

Figure 60: Result of the verification of vcdplayer for 200 ms when an error in asserts.ved
was introduced.

It is verified that the file testbench.vhd is able to detects wrong values in the measurements file

71

Systematic testing of digital hardware systems by means of test automaton

5 Conclusions

As initially planned, the TicTacToe game was developed as a VHDL model. In a next step a
testbench to check the models specified behavior has been developed.

In this testbench three test descriptions have been described: player 1 wins, player 2 wins and there
is a draw. When it was verified that the model works right, the test description in which player 1
wins was described using TDL.

A simulation using the testbench generated by TDL was carried out and it was seen that an assert
generated an error that did not exist. The testbench file was examined and it was found that one
signal described in an assert was wrong. After manually correcting this error and verifying that the
testbench does not report any error, a new test case was made in which a malfunction was
introduced to the model to check wether the testbench was capable of detecting this malfunction. It
has been verified that the testbench was well generated and detected errors.

The next step was checking the correct operation of the test automaton and the other files generated
by the TDL, but the test automaton was not ready yet. This made it necessary to think of another
way to continue checking the files. A timing simulation (post fitting simulation) was then decided
to do in order to test if the testbench was able to detects if any timing deviation bigger than
expected occurs. It was found that the timing deviations were much smaller than the maximum
allowed deviation and that the testbench did not report errors.

vcdplayer.vhd, which is used to verify the file assert.vcd, was tested for proper functioning and it
was found to be working correctly. It was discovered that was not possible to open the file
asserts.ved directly in Modelsim. Examining the assert.vcd file, it was seen that the signals used
were not declared in the header, and after declaring them Modelsim was able to open the file and
represent the waveforms.

The last step was the implementation of the model in the prototyping board and the testing of the
game board. The behavior of the system was right and it was possible to play TicTacToe.

The next flow diagram shows the work process followed along this thesis.

72

Systematic testing of digital hardware systems by means of test automaton

Flow

>

Development of the model in VHDL

™

¥

Result / used files

WHDL model

VHDL testbench

Define stimuli and test (VHDL)

v

Simulate model with testbench
generated in VHDL

—» Define stimuli and test (TDL)

Works as expected?

Y

Assertions |

VHDL test with

¥

Simulate model with testbench
generated by TDL

Works as expected?

post fitting simulation

Works as expected?

Verification of the assertions

" |stimuli and assertions
test setup description

Files .sdo and .vho generated
by post fitting syntesis

Assertions |

Works as expected

e
@I
.

Implementation in FPGA |—————3»] Prototype

VHDL test with
stimuli and assertions

test setup description

Figure 61: Workflow carried out in this work

73

Systematic testing of digital hardware systems by means of test automaton

This test description language is a powerful tool because only by describing the inputs, outputs and
how the test automaton is connected to the device under test, a VHDL testbench file, a stimulus file
for the test automaton, and an asserts file to verify the result obtain in the test performed with the
test automaton are automatically generated as the connection, stimuli and assertions are described.
It is easy to make changes to the test descriptions because it only requires modifying one file to
modify all the test files generated.

The syntax is very simple, intuitive and quick to learn. Commands such as " <device> sends bit
value of <value> to gate <input>" or “gate <input> waits for (<delay>)” clearly show what they
do even for people who do not know this TDL.

Waits between value changes are described by delays, which makes them easy to describe and
follow. In addition, all the value changes of a signal are grouped in a block, so the signal are
separated from each other making it easy to do modifications.

This TDL is a reliable way to test digital systems because there is no human intervention in the
measures that may put the results into question. The electrical stimulus signals are automatically
generated by the test automaton and the measurements are also performed by it and saved in a file.

This TDL is being developed for testing reverse engineered systems based on FPGA, but it is
equally usable for testing other digital systems even if they are not based on FPGAs.

Now, the most important work is to fix the errors found in the files generated by the TDL. When
the TDL generator works correctly, the next step is to finish the development of the test automaton.

For future work, it would be advisable to create a faster model to find the speed limitations of the
test automaton, and after that, it is important to certify the test automaton.

In order to automate the entire testing process, a software tool might be created. This software
would only require the stimuli file, the testbench file and the vcdplayer file created by the TDL
generator. This software would send the stimuli file to the test automaton, receive the
measurements obtained by the test automaton and carry out the verification of the measurements.
Then the software would report to the user if any error was found or if the DUT works as
expected/specified.

74

Systematic testing of digital hardware systems by means of test automaton

6 Appendices

6.1 Appendix A: TicTacToe game board design

” = @ T =

=)]
=
S|
3
ols
|2
ko hol
Dz Dz Dz
2 2 EE o s
s aird ; =y ; z ;
< <
I g bt B
< P s L™
/070 /170 ¥za1l 8 Bl
- P
= -
2 2o) o §D373
= PE . Sl a o=
< e N 2] 8 5
IAVaN <= L/ &= I 4 ek £ <
(‘/' < (‘/‘ < < e =
[1\t 1Ry 1\ o -
2 ¢/ “/6q g k]
G|& L | |5|S

©

swo
e

Swi
SW5

SW6

_Lsw _Lsw
r ‘ r : ’7%

Wi
— 4 it
rx rz ’—GB

oy

A

W3

[

+3.3
o

s
100[F 100pF 100hF

Figure 62: TicTacToe board schematic

75

I g I] I 3 A
/1P| L0 PRI Y003 PRI
ThaE | e | Y TS

pieoq aweb aajae]3]] layll

qad pEaaaLae 3| @4
FEETITS

1BSE 50305 Ojbias

lnb_d.!l u m!._

ﬂ, -
_

,._q\.r
,L

1

@ uﬁ.ﬂ- .h. " "

Systematic testing of digital hardware systems by means of test automaton

76

Figure 63: TiclacToe game board PCB

Systematic testing of digital hardware systems by means of test automaton

6.2 Appendix B: VHDL model code

6.2.1 VHDL code sketch of the model for one player

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;

ENTITY TicTacToe IS
PORT (Start, clk : IN std logic;
input : IN std logic vector (7 downto 0);
PC, human, draw : OUT std logic;
pstate o : OUT std logic vector(4 downto 0));

END TicTacToe;

ARCHITECTURE synth OF TicTacToe IS
SIGNAL pstate, n state : std logic vector(4 downto 0)

= "00001";

CONSTANT max_count : INTEGER := 125; --must be 500000 for 100 hz

SIGNAL count : INTEGER range 0 to max count;
SIGNAL count2 : integer range 0 to 10;

SIGNAL clock : std logic := '0';
SIGNAL input old, input reg : std logic vector (7 downto 0) :=
"00000000";
BEGIN

gen clock: PROCESS (clk, count)
BEGIN
IF clk'event and clk='1"' THEN
IF count < max_count THEN
count <= count+l;
ELSE
clock <= not clock;
count <= 0;
END IF;
END IF;
END PROCESS;

read input: PROCESS (clock, input)
BEGIN
IF clock'event and clock='1"' THEN
IF input /= input _reg THEN
IF count2 < 10 THEN
count2 <= count2+1;
ELSE
input reg <= input;

Systematic testing of digital hardware systems by means of test automaton

END IF;

END PROCESS;

count2 <= 0;

END IF;
END IF;

state machine: PROCESS (clock, start, input, input old)

BEGIN

IF clock'event and clock='1l"' THEN
IF start =

n state <= "00001";

input old <="00000000";

ELSIF input reg /= input old THEN

input old <= input reg;

‘1" THEN

IF pstate = "00001" THEN
--PLACE A CROSS IN THE CENTRE
IF input reg="00000001" THEN

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

--PLACE 0 IN the SPACE 0
n _state <= "00010";
input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7
n_state <= "00010";
input reg="00000100" THEN
--PLACE 0 IN the SPACE 2
n state <="01001";
input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n _state <="01001";
input reg="00000010" THEN
--PLACE 0 IN the SPACE 1
n state <="01110";
input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6
n state <="01110";
input reg="00001000" THEN
--PLACE 0 IN the SPACE 3
n _state <="10001";
input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <="10001";

END IF;

pstate = "00010" THEN
--PLACE A CROSS IN THE SPACE 3
IF input reg="00000001" THEN

-- STATE 1

--STATE 2

Systematic testing of digital hardware systems by means of test automaton

ELSIF

ELSIF

ELSIF

--PLACE 0 IN THE SPACE ©
n state <= "00011";

ELSIF input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n state <= "00011";

ELSIF input reg="00000100" THEN
--PLACE 0 IN THE SPACE 2
n_state <= "00011";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n_state <= "00011";

ELSIF input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6
n state <= "00011";

ELSIF input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7
n_state <= "00011";

ELSIF input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <= "00100";

END IF;

pstate = "00011" THEN
--PLACE A CROSS IN THE SPACE 4
--ACTIVATE SIGNAL 'MACHINE'

pstate = "00100" THEN

--PLACE A CROSS IN THE SPACE 2

IF input reg="00000001" THEN
--PLACE 0 IN the SPACE 0
n state <= "00101";

ELSIF input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n state <= "00101";

ELSIF input reg="01000000" THEN
--PLACE 0 IN the SPACE 6
n state <= "00101";

ELSIF input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7
n state <= "00101";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n state <= "00110";

END IF;

pstate = "00101" THEN
--PLACE A CROSS IN THE SPACE 5
--ACTIVATE SIGNAL 'MACHINE'

--STATE 3

--STATE 4

--STATE 5

79

Systematic testing of digital hardware systems by means of test automaton

ELSIF pstate = "00110" THEN
--PLACE A CROSS IN THE SPACE 6
IF input reg="00000001" THEN

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

--PLACE 0 IN the SPACE 0

n state <= "00111";

input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7

n_state <= "00111";

input reg="00000010" THEN
--PLACE 0 IN the SPACE 1

n state <= "01000";

END IF;

pstate = "00111" THEN
--PLACE A CROSS IN THE SPACE 1
--ACTIVATE SIGNAL 'MACHINE'

pstate = "01000" THEN
--ACTIVATE SIGNAL 'DRAW'

pstate = "01001" THEN
--PLACE A CROSS IN THE SPACE 6

IF input reg="00000001" THEN

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

ELSIF

--PLACE 0 IN THE SPACE 0
n state <= "00111";

input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n state <= "01010";

input reg="00000100" THEN
--PLACE 0 IN THE SPACE 2
n_state <= "00111";

input reg="00001000" THEN
--PLACE 0 IN THE SPACE 3
n state <= "00111";

input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <= "00111";

input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n state <= "00111";

input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7
n state <= "00111",;

END IF;

ELSIF pstate = "01010" THEN

--STATE 6

--STATE 7

--STATE 8

--STATE 9

--STATE 10

80

Systematic testing of digital hardware systems by means of test automaton

--PLACE A CROSS IN THE SPACE 0

IF input reg="00000100" THEN
--PLACE 0 IN THE SPACE 2
n state <= "01011";

ELSIF input reg="00001000" THEN
--PLACE 0 IN THE SPACE 3
n state <= "01011";

ELSIF input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <= "01011";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n state <= "01011";

ELSIF input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7
n state <= "01100";

END IF;

ELSIF pstate = "01011" THEN --STATE 11
--PLACE A CROSS IN THE SPACE 7
--ACTIVATE SIGNAL 'MACHINE'

ELSIF pstate = "01100" THEN --STATE 12
--PLACE A CROSS IN THE SPACE 4
IF input reg="00000100" THEN
--PLACE 0 IN THE SPACE 2
n _state <= "01101";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n state <= "01101";

ELSIF input reg="00001000" THEN
--PLACE 0 IN THE SPACE 3
n state <= "01000";

END IF;

ELSIF pstate = "01101" THEN --STATE 13
--PLACE A CROSS IN THE SPACE 3
--ACTIVATE SIGNAL 'MACHINE'

ELSIF pstate = "01110" THEN --STATE 14
--PLACE A CROSS IN THE SPACE 7
IF input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n state <= "01111";
ELSIF input reg="00000100" THEN
--PLACE 0 IN THE SPACE 2
n state <= "01111";
ELSIF input reg="00001000" THEN

Systematic testing of digital hardware systems by means of test automaton

ELSIF

ELSIF

ELSIF

--PLACE 0 IN THE SPACE 3
n state <= "01111";

ELSIF input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <= "01111";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n _state <= "01111";

ELSIF input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6
n state <= "01111";

ELSIF input reg="00000001" THEN
--PLACE 0 IN THE SPACE 0O
n _state <= "10000";

END IF;

pstate = "01111" THEN --STATE 15
--PLACE A CROSS IN THE SPACE 0

--ACTIVATE SIGNAL 'MACHINE'

pstate = "10000" THEN --STATE 16

--PLACE A CROSS IN THE SPACE 2

IF input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n_state <= "00101";

ELSIF input reg="00001000" THEN
--PLACE 0 IN THE SPACE 3
n state <= "00101";

ELSIF input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4
n state <= "00101";

ELSIF input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6
n state <= "00101";

ELSIF input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5
n state <= "00011";

END IF;

pstate = "10001" THEN --STATE 17
--PLACE A CROSS IN THE SPACE 2
IF input reg="00000001" THEN
--PLACE 0 IN THE SPACE 0O
n state <= "00101";
ELSIF input reg="00000010" THEN
--PLACE 0 IN THE SPACE 1
n state <= "00101";
ELSIF input reg="00001000" THEN

82

Systematic testing of digital hardware systems by means of test automaton

END

END IF;
END PROCESS;

pstate o <= pstate;

pstate <= n_state;

pc <=

1
oy
1
1
oy
1
9"

ELSIF

IF;

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

ELSIF

ELSIF

ELSIF

ELSIF

--PLACE 0 IN THE SPACE 3

n state <= "00101";

input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4

n state <= "00101";

input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6

n_state <= "00101";

input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7

n _state <= "00101";

input reg="00100000" THEN
--PLACE 0 IN THE SPACE 5

n state <= "10010";

END IF;

pstate = "10010" THEN

--PLACE A CROSS IN THE SPACE 0
IF input reg="00000010" THEN

ELSIF

ELSIF

ELSIF

ELSIF

--PLACE 0 IN THE SPACE 1

n state <= "01011";

input reg="00001000" THEN
--PLACE 0 IN THE SPACE 3

n_state <= "01011";

input reg="00010000" THEN
--PLACE 0 IN THE SPACE 4

n _state <= "01011";

input reg="01000000" THEN
--PLACE 0 IN THE SPACE 6

n state <= "01011";

input reg="10000000" THEN
--PLACE 0 IN THE SPACE 7

n_state <= "00111";

END IF;
END IF;

(
(
(
(
(
(

pstate =
pstate =
pstate =
pstate =
pstate =
pstate =

"00011") ELSE
"00101") ELSE
"00111") ELSE
"01011") ELSE
"01101") ELSE
"01111") ELSE

--STATE 18

83

Systematic testing of digital hardware systems by means of test automaton

draw <= '1' WHEN (PSTATE = "01000") ELSE
IOI;
END synth;

84

Systematic testing of digital hardware systems by means of test automaton

6.2.2 VHDL code of the model for two players

6.2.2.1 Clock generator

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;

ENTITY clock generator IS
PORT (clock i : IN std logic;
clock o : OUT std logic);
END clock generator;

ARCHITECTURE synth OF clock generator IS
CONSTANT max_count : INTEGER := 250000; --must be 250000 for 100 Hz
SIGNAL clock : std logic := '0';
SIGNAL count : INTEGER range 0 to max count;
BEGIN
PROCESS (clock i) --period of 10 ms

BEGIN
IF clock i'event and clock i='1"' THEN
IF count < max_count THEN
count <= count+l;
ELSE
clock <= not clock;
count <= 0;
END IF;
END IF;
END PROCESS;
clock o <= clock;

END synth;

85

Systematic testing of digital hardware systems by means of test automaton

6.2.2.2

Game

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;

ENTITY game IS

PORT (start, clock i : IN std logic;
input kb : IN std logic vector (2 downto 0);
output kb : OUT std logic vector (2 downto 0);
output s, show, clock o : OUT std logic);

END game;

ARCHITECTURE synth OF game IS

SIGNAL count2 : integer range 0 to 10 :
ensure the keystroke
SIGNAL count3 : integer range 0 to 21 :

0; --delay of 100ms to

1; --selector of bit in

the output vector

SIGNAL count4 : integer range 0 to 9; --counter to selec the column
of the keyboard

SIGNAL count5 : integer range 0 to 2; --selector of column

SIGNAL count6 : integer range 0 to 2; --delay before starting the
output

SIGNAL play, launch, show i : std logic := '0';

SIGNAL player, serialize : std logic := 'l‘';

SIGNAL output kb i : std logic vector (2 downto 0) := "111";
SIGNAL input i : std logic vector (8 downto 0) := "000000000";
--vector with the pushed key

SIGNAL input reg : : std logic vector (8 downto 0) := "000000000";
--registered pushed key

SIGNAL reg : std logic_vector (8 downto 0) := "000000000";

--register of the pushed keys during the game

SIGNAL requirement : std logic vector (8 downto 0) := "000000000";
--has been already pushed this key?
SIGNAL output i : std logic vector (20 downto Q) :=

"111111111111111111111"; --oputput vector

SIGNAL mask : std logic vector (20 downto 0) :=

"000000000000000000000"; --mask to update reg 2 with the current
pushed key

SIGNAL reg 2 : std logic vector (20 downto 0) :=

"000000000000000000000"; --output register without the state flags

SIGNAL reg 3 : std logic vector (20 downto 0) :=

"000000000000000000000"; --reg 2 delayed one clock cycle. Used to

control 'play'

SIGNAL beginning : std logic := 'l1‘';

BEGIN

keyboard: PROCESS (clock i) --period of 100 ms

BEGIN

86

Systematic testing of digital hardware systems by means of test automaton

IF clock i'event and clock i='1l"' THEN
IF start = '0' or beginning = '1' THEN
countd4 <= 0;
count5 <= 0;
count4 < 9 THEN
count4 <= count4+1;
input i /= “000000000” THEN
countd4 <= 0;

ELSIF

ELSIF

ELSE

END IF;
END PROCESS;

IF count5 < 2 THEN

ELSE

count5 <= count5+1;

count5 <= 0;

END IF;
count4 <= 0;
END IF;

read input: PROCESS (clock i)

BEGIN

IF clock i'event and clock i='1"' THEN

IF start ="'

ELSIF

count2
count3
count6
launch
show i

0' or beginning = '1' THEN
<= 0;

<= 1;

<= 0;

<= '0"';

<= '0"';

input reg <="000000000";

reg <=
reg 2

reg 3

input
reg <=
player
serial
beginn
play =

IF inp

"000000000";
<="000000000000000000000" ;
<="000000000000000000000" ;
reg <= "000000000"; --registered input
"000000000";

<= '1l";
ize <= '1"';
ing <= '0';

'1' THEN

ut i /= “000000000” THEN
IF count2 < 10 THEN
count2 <= count2+1;
ELSE
IF requirement = "000000000" THEN
reg <= input i or reg;

87

Systematic testing of digital hardware systems by means of test automaton

END

input reg <= input i;
player <= not player;

serialize <= '1"';
IF;

count2 <= 0;

END IF;
ELSE

count2 <=
END IF;

0;

reg 2 <= reg_2 or mask;

reg_3 <= reg_2;
END IF;

IF serialize='1' THEN

IF count6 < 2 THEN

count6 <=
ELSE

count3 <=

serialize

countb <=
END IF;

ELSIF count3 > 0 THEN

count6+1;

21;

<=|0|;

0;

count3 <= count3-1;
output s <= output i(count3-1);

launch <= '1"';

ELSIF launch = '1' THEN

launch <= '0"';
show i <= '1"';

ELSE
show i <='0";
END IF;

END IF;
END PROCESS;

output 1 <= reg 2 or "001000000000000000000" when reg 2(9)='1"' and

reg 2(10)='1"' and reg 2(11)

'l' else

reg_2 or "001000000000000000000" when reg 2(9)='1"
reg 2(12)='1"' and reg 2(15)='1"' else

reg 2 or "001000000000000000000" when reg 2(9)='1"' and

reg 2(13)="'1' and reg 2(17)

reg 2 or "001000000000000000000" when reg 2(10)='1"' and

reg 2(13)='1"' and reg 2(16)

reg_ 2 or "001000000000000000000" when reg 2(11)='1"' and

reg 2(14)='1"' and reg 2(17)

= ']l' else

'l' else

'l' else

88

Systematic testing of digital hardware systems by means of test automaton

reg 2 or "001000000000000000000" when reg 2(11)='1' and
reg 2(13)='1"' and reg 2(15)="'1"' else

reg 2 or "001000000000000000000" when reg 2(12)='1"' and
reg 2(13)="'1"' and reg 2(14)='1"' else

reg 2 or "001000000000000000000" when reg 2(15)='1"' and
reg 2(16)='1"'" and reg 2(17)='1"' else

reg 2 or "100000000000000000000" when reg 2(0)='1"' and
reg 2(1)='1" and reg 2(2)='1"' else

reg 2 or "100000000000000000000" when reg 2(0)='1' and
reg 2(3)='1" and reg 2(6)='1"' else

reg 2 or "100000000000000000000" when reg 2(0)='1"' and
reg 2(4)="'1"'" and reg 2(8)="'1"' else

reg 2 or "100000000000000000000" when reg 2(1)='1"' and
reg 2(4)='1" and reg 2(7)='1"' else

reg 2 or "100000000000000000000" when reg 2(2)='1"' and
reg 2(5)='1" and reg 2(8)='1"' else

reg 2 or "100000000000000000000" when reg 2(2)='1' and
reg 2(4)='1" and reg 2(6)='1"' else

reg 2 or "100000000000000000000" when reg 2(3)='1"' and
reg 2(4)="'1"' and reg 2(5)="'1"' else

reg 2 or "100000000000000000000" when reg 2(6)='1"' and
reg 2(7)='1" and reg 2(8)='1"' else

reg 2 or "010000000000000000000" when reg="111111111" else
reg 2;

play<='0' when reg 3(9)='1"' and reg 3(10)='1' and reg 3(11)='1"

else
'0' when reg 3(9)='1' and reg 3(12)='1' and reg 3(15)='1"
else
'0' when reg 3(9)='1"' and reg 3(13)='1' and reg 3(17)='1"
else
'0' when reg 3(10)='1' and reg 3(13)='1' and reg 3(16)='1"
else
'0' when reg 3(11)='1"' and reg 3(14)='1' and reg 3(17)='1"
else
'0' when reg 3(11)='1"' and reg 3(13)='1' and reg 3(15)='1"
else
'0' when reg 3(12)='1' and reg 3(13)='1l' and reg 3(14)='1"
else
'0' when reg 3(15)='1' and reg 3(16)='1' and reg 3(17)='1"
else

'0' when reg 3(0)='1"'" and reg 3(1)='1' and reg 3(2)='1"' else
'0' when reg 3(0)='1"'" and reg 3(3)='1' and reg 3(6)='1"' else
'0' when reg 3(0)='1' and reg 3(4)='1"' and reg 3(8)="'1' else
'0' when reg 3(1)='1' and reg 3(4)='1"' and reg 3(7)="'1' else
'0' when reg 3(2)='1"' and reg 3(5)='1' and reg 3(8)='1"' else
'0' when reg 3(2)='1"'" and reg 3(4)='1' and reg 3(6)='1"' else

(3) (4) (5)

'0' when reg 3(3)='1"' and reg 3(4)='1' and reg 3(5)='1"' else

89

Systematic testing of digital hardware systems by means of test automaton

'0' when reg 3(6)='1"' and reg 3(7)='1' and reg 3(8)='1"' else
Ill;

mask <= "000000000001000000000" WHEN input reg="000000001" AND
player='0"' else
"000000000010000000000" WHEN input reg="000000010" AND
player='0"' else
"000000000100000000000" WHEN input reg="000000100" AND
player='0' else
"000000001000000000000" WHEN input reg="000001000" AND
player='0' else
"000000010000000000000" WHEN input reg="000010000" AND
player='0"' else
"000000100000000000000" WHEN input reg="000100000" AND
player='0"' else
"000001000000000000000" WHEN input reg="001000000" AND
player='0' else
"000010000000000000000" WHEN input reg="010000000" AND
player='0' else
"000100000000000000000" WHEN input reg="100000000" AND
player='0"' else
"000000000000000000001" WHEN input reg="000000001" AND
player='1"' else
"000000000000000000010" WHEN input reg="000000010" AND
player='1"' else
"000000000000000000100" WHEN input reg="000000100" AND
player='1"' else
"000000000000000001000" WHEN input reg="000001000" AND
player='1"' else
"000000000000000010000" WHEN input reg="000010000" AND
player='1"' else
"000000000000000100000" WHEN input reg="000100000" AND
player='1"' else
"000000000000001000000" WHEN input reg="001000000" AND
player='1"' else
"000000000000010000000" WHEN input reg="010000000" AND
player='1"' else
"000000000000100000000" WHEN input reg="100000000" AND
player='1"' else
"000000000000000000000" WHEN start='1' ELSE
"000000000000000000000";

input i <= "000000001" WHEN input kb="110" AND output kb i="110"
else
"000000010" WHEN input kb="110" AND output kb i="101" else
"000000100" WHEN input kb="110" AND output kb i="011" else
"000001000" WHEN input kb="101" AND output kb i="110" else
"000010000" WHEN input kb="101" AND output kb i="101" else

90

Systematic testing of digital hardware systems by means of test automaton

"000100000" WHEN
"001000000" WHEN
"010000000" WHEN
"100000000" WHEN
"000000000";

input kb="101"
input kb="011"
input kb="011"
input kb="011"

AND
AND
AND
AND

output kb i <= "110" WHEN count5=0 ELSE

"101" WHEN count5=1 ELSE
"011" WHEN count5=2 ELSE

||111|| ;

output kb i="011"
output kb i="110"
output kb i="101"
output kb i="011"

clock 0o <= not clock i WHEN launch='1l"' else

IGI;

requirement <= input i and reg;
output kb <= output kb i;
show <= show 1i;

END synth;

else
else
else
else

91

Systematic testing of digital hardware systems by means of test automaton

6.2.2.3 TicTacToe

LIBRARY IEEE,
USE TEEE.STD_LOGIC_1164.ALL,

ENTITY TicTacToe IS
PORT (Start, clk : IN std_logic;
input_kb : IN std_logic_vector (2 downto 0);
output_kb : OUT std_logic_vector (2 downto
output_s, show, clock_o : OUT std_logic);

END TicTacToe;
ARCHITECTURE synth OF TicTacToe IS

COMPONENT clock_generator IS
PORT (clock_i : IN std_logic;
clock_o : OUT std_logic);
END COMPONENT;

COMPONENT game IS
PORT (start, clock_i : IN std_logic;
input_kb : IN std_logic_vector (2 downto 0);
output_kb : OUT std_logic_vector (2 downto 0);
output_s, show, clock_o : OUT std_logic);
END COMPONENT;

SIGNAL clk_ii, output_si, show_i, clock_oi : std_logic;
SIGNAL output_kbi : std_logic_vector (2 downto 0);

BEGIN
mod_clock: clock_generator PORT MAP (clk, clk_ii);

mod_game: game PORT MAP (start, clk_ii,input_kb,
output_kbi, output_si, show_i, clock_oi);

output_kb <= output_kbi;
output_s <= output_si;
show <= show_1i;

clock_o <= clock_oi;

END synth;

0);

92

Systematic testing of digital hardware systems by means of test automaton

6.3 Appendix C: Simulation code

LIBRARY ieee

4

USE jeee.std_logic_1164.all ;

ENTITY TicTacToe_tb IS
END TicTacToe_tb ;

ARCHITECTURE DUT OF TicTacToe_tb IS

COMPONENT TicTacToe IS
PORT (Start, clk

input_kb :
output_kb
output_s,

END component ;

signal Start_i, clk_i

signal input_i
signal output_kb_i
signal output_s_1i,

BEGIN

TicTacToe_i: TicTacToe port map (Start_i, clk_i, input_i,

output_s_i, show_1i, clock_o_1i);

show,

show_1i,

IN std_logic;
IN std_logic_vector (2 downto 0);
OUT std_logic_vector (2 downto 0);
OUT std_logic);

std_logic

clock_o

:: IOI.

std_logic_vector (2 downto 0);
std_logic_vector(2 downto 0);
clock_o_

i : std_logic;

clk_i <= NOT clk_i after 10 ns;
process

begin

input_i <= "111"; Start_i <= '1';
wait for 1020 ms;

wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=

output_kb_1i
"110"; wait
"111"; wait
output_kb_1i
"101"; wait
"111"; wait
output_kb_1i
"101"; wait
"111"; wait
output_kb_1i
"@11"; wait
"111"; wait
output_kb_1i
"101"; wait
"111"; wait
output_kb_1i
"@11"; wait

assert output_s_i="1"

wait for 125 ms;

= "110";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "101";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "011";
for 175 ms;

<= "111"; wait for 2000 ms;

'0'; wait for 310 ms;
'1'; wait for 1000 ms;

input_i

--start again

Start_1i <=

Start_1i <=

wait until output_kb_i
input_i <= "110"; wait
input_i <= "111"; wait
wait until output_kb_i
input_i <= "101"; wait
input_i <= "111"; wait
wait until output_kb_i
input_i <= "101"; wait

= "110";
for 300 ms;
for 2020 ms;
= "101";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;

--player 1 wins

output_kb_1i,

report "Expected 1" severity failure;
report "Player 1 wins. The model works as expected";

93

Systematic testing of digital hardware systems by means of test automaton

input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=

"111"; wait
output_kb_i
"@11"; wait
"111"; wait
output_kb_1i
"@11"; wait
"111"; wait
output_kb_i
"110"; wait

assert output_s_i="1"

wait for 145 ms;
input_i <= "111"; wait for 2000 ms;

--start again
Start_i <= '0'; wait for 310 ms;
Start_i <= '1'; wait for 1000 ms;

wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=
input_i <=
wait until
input_i <=

output_kb_1i
"101"; wait
"111"; wait
output_kb_i
"110"; wait
"111"; wait
output_kb_i
"101"; wait
"111"; wait
output_kb_1i
"101"; wait
"111"; wait
output_kb_1i
"110"; wait
"111"; wait
output_kb_i
"@11"; wait
"111"; wait
output_kb_1i
"@11"; wait
"111"; wait
output_kb_1i
"110"; wait
"111"; wait
output_kb_1i
"@11"; wait

assert output_s_i="1"
report "Draw. The model works as expected";
wait for 135 ms;
input_i <= "111"; wait for 1000 ms;
report "End of the test. The model works right";

for 2020 ms;
= "101";
for 300 ms;
for 2020 ms;
= "011";
for 300 ms;
for 2020 ms;
= "101";
for 155 ms;

= "101";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "011";
for 300 ms;
for 2020 ms;
= "011";
for 300 ms;
for 2020 ms;
= "110";
for 300 ms;
for 2020 ms;
= "101";
for 300 ms;
for 2020 ms;
= "101";
for 300 ms;
for 2020 ms;
= "011";
for 165 ms;

-- player 2 wins
_ report "Expected 1" severity failure;
report "Player 2 wins. The model works as expected";

-- Nobody win

report "Expected 1" severity failure;

assert f_i='0' report "Expected 0" severity failure;
-- report "The model works as expected";
wait;
end process;
END DUT ;

94

Systematic testing of digital hardware systems by means of test automaton

6.4 Appendix D: Test Description Language code

TDLan Specification game_tdl {

Data Set logic {
instance std_logic;

instance std_logic_vector;

}

Gate Type input accepts logic;
Gate Type output accepts logic;

Component Type hardware {
gate types: input,output;

Component Type simulation {
gate types: input,output;

Component Type TB {

gate types: 1nput,output;

Time Unit milliseconds;

Test Configuration game_tdl_cf {

instantiate game as DUT of type hardware having {
Start of type input with length of 1;
clock_i of type input with length of 1,
input_kb of type input with length of 3;
output_kb of type output with length of 3;
output_s of type output with length of 1;
show of type output with length of 1;
clock_o of type output with length of 1;

gate
gate
gate
gate
gate
gate
gate

}

instantiate TB_a as Tester of type TB having {

Starter of type output with length of 1;
CLKgenerator of type output with length of 1
row_o of type output with length of 3;
column_i of type input with length of 3;
parallelize of type input with length of 1;
clk of type input with length of 1;

input_s of type input with length of 1;

gate
gate
gate
gate
gate
gate
gate

}

connect
connect
connect

connect
connect
connect
connect

gate
gate
gate

gate
gate
gate
gate

Starter to gate Start;
CLKgenerator to gate clock_i;
row_o to gate input_kb;

column_i to gate output_kb;
parallelize to gate show;
clk to gate clock_o;
input_s to gate output_s;

Assert deviation is (1 milliseconds);

}

SignalAdapter Configuration de®_nano_output {

signaladapter output_adapterl of type output having{
attach Start 0 downto O to position © downto O;
attach clock_i 0 downto @ to position 1 downto 1;

4

attach input_kb 2 downto O to position 4 downto 2;
logiclevel LVTTL;

type de@_nano_pappkisteOut;
hardware_revision "0.1";

95

Systematic testing of digital hardware systems by means of test automaton

software_revision "0.1";
serial number "001";

connection

address "USB-Blaster [1-6.1]";

3

JTAG;

signaladapter input_adapterl of type input having{

attach output_kb 2 downto 0 to position 2 downto O;

attach show 0 downto @ to position 3 downto 3;
attach clock_o 0 downto O to position 4 downto 4;

attach output_s 0 downto @ to position 5 downto 5 ;

logiclevel

LVTTL;

type deO_nano_pappkistelIn;
hardware_revision "0.1";
software_revision "0.1";
serial number "001";

connection

address "USB-Blaster [1-6.3]";

3

JTAG;

Test Description test_the_game{

use Test configuration: game_tdl_cf{

run {

repeat 2000 times {
TB_a sends bit value of b0® to gate clock_i;
gate clock_1i waits for (5 milliseconds);
TB_a sends bit value of bl to gate clock_i;
gate clock_i waits for (5 milliseconds);

}
in parallel to {

TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate

sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for

7 to gate input_kb;

(1205 milliseconds);

6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2100 milliseconds);

5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2200 milliseconds);

5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2300 milliseconds);

3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2100 milliseconds);

5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2300 milliseconds);

3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(1540 milliseconds);

6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2200 milliseconds);

5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

(2300 milliseconds);

5 to gate input_kb;
(300 milliseconds);

96

Systematic testing of digital hardware systems by means of test automaton

TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a

sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of
input_kb waits for
sends bus value of

}
in parallel to {

TB_a
gate
TB_a
gate
TB_a
gate
TB_a
gate
TB_a

sends bit value of

7 to gate input_kb;
(2200 milliseconds);
3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2200 milliseconds);
3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2300 milliseconds);
6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(15500 milliseconds);
5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2300 milliseconds);
6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2100 milliseconds);
5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2300 milliseconds);
5 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2100 milliseconds);
6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2100 milliseconds);
3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2200 milliseconds);
3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2100 milliseconds);
6 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;
(2200 milliseconds);
3 to gate input_kb;
(300 milliseconds);
7 to gate input_kb;

bl to gate Start;

Start
sends
Start
sends
Start
sends
Start
sends

}
in parallel to {

game
gate
game
gate
game
gate
game

sends

waits for
bit value
waits for
bit value
waits for
bit value
waits for
bit value

(16105 milliseconds);
of b® to gate Start;
(310 milliseconds);

of bl to gate Start;
(15690 milliseconds);
of b® to gate Start;
(310 milliseconds);

of bl to gate Start;

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

bit value of b@® to gate clk;

for (40 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;

97

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits

for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);

98

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits

value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

for (1115 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);

// 21 bits

99

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits

value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

for (2195 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);

// 21 bits

100

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits

value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

for (2295 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);

// 21 bits

101

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate

sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits

value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

for (2395 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);

// 21 bits

102

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

103

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

clk waits
sends bit
clk waits
sends bit

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

for (4795 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;
for (5 milliseconds);
value of bl to gate clk;
for (5 milliseconds);
value of b0 to gate clk;

// 21 bits

104

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

3

clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit
clk waits
sends bit

value of b1l
value of boO
value of b1l
value of boO
value of b1l
value of boO
value of b1l
value of bO
value of b1l
value of bo

in parallel to {

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

sends bit value of b0
input_s waits for (40
sends bit value of b0

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

for (5 milliseconds);

to gate clk;

to gate input_s;
milliseconds);
to gate input_s;

input_s waits for (5 milliseconds);

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

// 21 bits

// 21 bits

105

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

input_s waits for (1110 milliseconds);

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

input_s waits for (2190 milliseconds);

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

// 21 bits

106

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate

input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

input_s waits for (2290 milliseconds);

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

input_s waits for (2390 milliseconds);

sends bit value of b0
input_s waits for (10

to gate input_s;
milliseconds);

// 21 bits

// 21 bits

107

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

input_s waits for (4790 milliseconds);

sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1
input_s waits for (10
sends bit value of b0
input_s waits for (10

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);

// 21 bits

108

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

3

sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b1l
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0
input_s waits for (10
sends bit value of b0

in parallel to{

game
gate
game
gate
game

gate
game
gate
game

gate
game
gate
game

gate
game
gate
game

gate
game
gate
game

gate
game
gate
game

3

sends bit value of b0
parallelize waits for
sends bit value of b1l
parallelize waits for
sends bit value of b0

parallelize waits for
sends bit value of bl
parallelize waits for
sends bit value of b0

parallelize waits for
sends bit value of bl
parallelize waits for
sends bit value of b0

parallelize waits for
sends bit value of bl
parallelize waits for
sends bit value of b0

parallelize waits for
sends bit value of bl
parallelize waits for
sends bit value of b0

parallelize waits for
sends bit value of bl
parallelize waits for
sends bit value of b0

in parallel to {
sends bus value of 6 to gate column_i;

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

column_i waits for

to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;
milliseconds);
to gate input_s;

to gate parallelize;
(245 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(1310 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(2390 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(2490 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(2590 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(4990 milliseconds);
to gate parallelize;
(160 milliseconds);

to gate parallelize;

(165 milliseconds);

sends bus value of 5 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 3 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 6 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 5 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 3 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 6 to gate column_1i;

column_i waits for

(160 milliseconds);

sends bus value of 5 to gate column_1i;

column_i waits for

(160 milliseconds);

// 21 bits

109

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(400

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(400

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;

110

Systematic testing of digital hardware systems by means of test automaton

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (400
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100
sends bus value of 3 to
column_i waits for (100
sends bus value of 6 to
column_i waits for (100
sends bus value of 5 to
column_i waits for (100

milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);

111

Systematic testing of digital hardware systems by means of test automaton

game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game

sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of

3

to

(100

6

to

(400

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(400

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

(100

5

to

(100

3

to

(100

6

to

gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;

112

Systematic testing of digital hardware systems by means of test automaton

3

terminate;

3

gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate
game
gate

column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for
sends bus value of
column_i waits for

(100
5 to
(100
3 to
(100
6 to
(100
5 to
(100
3 to
(100
6 to
(100
5 to
(100
3 to
(100
6 to
(100
5 to
(100
3 to
(400

milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);
gate column_i;
milliseconds);

113

Systematic testing of digital hardware systems by means of test automaton

6.5 Appendix E: Errors reported by the TDL testbench with

malfunctions in the model

HOH O H O H O H OH OH OH O OH O OHF O OH O OH O O OB W OB OB OH OB K OH OH OH OH OH K R

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Warning: Assert failed at
Time: 5761 ms Iteration:
Warning: Assert failed at
Time: 5764 ms Iteration:
Warning: Assert failed at
Time: 5771 ms Iteration:
Warning: Assert failed at
Time: 5774 ms Iteration:
Warning: Assert failed at
Time: 5781 ms Iteration:
Warning: Assert failed at
Time: 5784 ms Iteration:
Warning: Assert failed at
Time: 5791 ms Iteration:
Warning: Assert failed at
Time: 5794 ms Iteration:
Warning: Assert failed at
Time: 5801 ms Iteration:
Warning: Assert failed at
Time: 5804 ms Iteration:
Warning: Assert failed at
Time: 5811 ms Iteration:
Warning: Assert failed at
Time: 5814 ms Iteration:
Warning: Assert failed at
Time: 5821 ms Iteration:
Warning: Assert failed at

Time: 5824 ms Iteration:

3761 ms

0 Instance:

3766 ms

0 Instance:

3771 ms

0 Instance:

3776 ms

0 Instance:

3781 ms

0 Instance:

3786 ms

0 Instance:

3791 ms

0 Instance:

3796 ms

0 Instance:

3801 ms

0 Instance:

3806 ms

0 Instance:

3811 ms

0 Instance:

3816 ms

0 Instance:

3821 ms

0 Instance:

3826 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

114

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H OH O H H H OH O OH OH OH O OH O OH O OH OB OB O OWH OB OB OH OH OB OH OH OH OH OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 5831 ms Iteration:
Warning: Assert failed at
Time: 5834 ms Iteration:
Warning: Assert failed at
Time: 5841 ms Iteration:
Warning: Assert failed at
Time: 5844 ms Iteration:
Warning: Assert failed at
Time: 5851 ms Iteration:
Warning: Assert failed at
Time: 5854 ms Iteration:
Warning: Assert failed at
Time: 5861 ms Iteration:
Warning: Assert failed at
Time: 5864 ms Iteration:
Warning: Assert failed at
Time: 5866 ms Iteration:
Warning: Assert failed at
Time: 5871 ms Iteration:
Warning: Assert failed at
Time: 5874 ms Iteration:
Warning: Assert failed at
Time: 5874 ms Iteration:
Warning: Assert failed at
Time: 5881 ms Iteration:
Warning: Assert failed at
Time: 5884 ms Iteration:
Warning: Assert failed at
Time: 5891 ms Iteration:
Warning: Assert failed at

Time: 5894 ms Iteration:

3831 ms

0 Instance:

3836 ms

0 Instance:

3841 ms

0 Instance:

3846 ms

0 Instance:

3851 ms

0 Instance:

3856 ms

0 Instance:

3861 ms

0 Instance:

3866 ms

0 Instance:

3866 ms

0 Instance:

3871 ms

0 Instance:

3876 ms

0 Instance:

3876 ms

0 Instance:

3881 ms

0 Instance:

3886 ms

0 Instance:

3891 ms

0 Instance:

3896 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

115

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H OH O H H H OH O OH OH OH O OH O OH O OH OB OB O OWH OB OB OH OH OB OH OH OH OH OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 5901 ms Iteration:
Warning: Assert failed at
Time: 5904 ms Iteration:
Warning: Assert failed at
Time: 5911 ms Iteration:
Warning: Assert failed at
Time: 5914 ms Iteration:
Warning: Assert failed at
Time: 5921 ms Iteration:
Warning: Assert failed at
Time: 5924 ms Iteration:
Warning: Assert failed at
Time: 5926 ms Iteration:
Warning: Assert failed at
Time: 5931 ms Iteration:
Warning: Assert failed at
Time: 5934 ms Iteration:
Warning: Assert failed at
Time: 5934 ms Iteration:
Warning: Assert failed at
Time: 5941 ms Iteration:
Warning: Assert failed at
Time: 5944 ms Iteration:
Warning: Assert failed at
Time: 5951 ms Iteration:
Warning: Assert failed at
Time: 5954 ms Iteration:
Warning: Assert failed at
Time: 5961 ms Iteration:
Warning: Assert failed at

Time: 5964 ms Iteration:

3901 ms

0 Instance:

3906 ms

0 Instance:

3911 ms

0 Instance:

3916 ms

0 Instance:

3921 ms

0 Instance:

3926 ms

0 Instance:

3926 ms

0 Instance:

3931 ms

0 Instance:

3936 ms

0 Instance:

3936 ms

0 Instance:

3941 ms

0 Instance:

3946 ms

0 Instance:

3951 ms

0 Instance:

3956 ms

0 Instance:

3961 ms

0 Instance:

3966 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

116

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H OH O H H H OH O OH OH OH O OH O OH O OH OB OB O OWH OB OB OH OH OB OH OH OH OH OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 5966 ms Iteration:
Warning: Assert failed at
Time: 5974 ms Iteration:
Warning: Assert failed at
Time: 8261 ms Iteration:
Warning: Assert failed at
Time: 8264 ms Iteration:
Warning: Assert failed at
Time: 8271 ms Iteration:
Warning: Assert failed at
Time: 8274 ms Iteration:
Warning: Assert failed at
Time: 8281 ms Iteration:
Warning: Assert failed at
Time: 8284 ms Iteration:
Warning: Assert failed at
Time: 8291 ms Iteration:
Warning: Assert failed at
Time: 8294 ms Iteration:
Warning: Assert failed at
Time: 8301 ms Iteration:
Warning: Assert failed at
Time: 8304 ms Iteration:
Warning: Assert failed at
Time: 8311 ms Iteration:
Warning: Assert failed at
Time: 8314 ms Iteration:
Warning: Assert failed at
Time: 8321 ms Iteration:
Warning: Assert failed at

Time: 8324 ms Iteration:

3966 ms

0 Instance:

3976 ms

0 Instance:

6261 ms

0 Instance:

6266 ms

0 Instance:

6271 ms

0 Instance:

6276 ms

0 Instance:

6281 ms

0 Instance:

6286 ms

0 Instance:

6291 ms

0 Instance:

6296 ms

0 Instance:

6301 ms

0 Instance:

6306 ms

0 Instance:

6311 ms

0 Instance:

6316 ms

0 Instance:

6321 ms

0 Instance:

6326 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

117

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H OH O H H H OH O OH OH OH O OH O OH O OH OB OB O OWH OB OB OH OH OB OH OH OH OH OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 8326 ms Iteration:
Warning: Assert failed at
Time: 8331 ms Iteration:
Warning: Assert failed at
Time: 8334 ms Iteration:
Warning: Assert failed at
Time: 8334 ms Iteration:
Warning: Assert failed at
Time: 8341 ms Iteration:
Warning: Assert failed at
Time: 8344 ms Iteration:
Warning: Assert failed at
Time: 8351 ms Iteration:
Warning: Assert failed at
Time: 8354 ms Iteration:
Warning: Assert failed at
Time: 8361 ms Iteration:
Warning: Assert failed at
Time: 8364 ms Iteration:
Warning: Assert failed at
Time: 8366 ms Iteration:
Warning: Assert failed at
Time: 8371 ms Iteration:
Warning: Assert failed at
Time: 8374 ms Iteration:
Warning: Assert failed at
Time: 8374 ms Iteration:
Warning: Assert failed at
Time: 8381 ms Iteration:
Warning: Assert failed at

Time: 8384 ms Iteration:

6326 ms

0 Instance:

6331 ms

0 Instance:

6336 ms

0 Instance:

6336 ms

0 Instance:

6341 ms

0 Instance:

6346 ms

0 Instance:

6351 ms

0 Instance:

6356 ms

0 Instance:

6361 ms

0 Instance:

6366 ms

0 Instance:

6366 ms

0 Instance:

6371 ms

0 Instance:

6376 ms

0 Instance:

6376 ms

0 Instance:

6381 ms

0 Instance:

6386 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

118

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H OH O H H H OH O OH OH OH O OH O OH O OH OB OB O OWH OB OB OH OH OB OH OH OH OH OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 8391 ms Iteration:
Warning: Assert failed at
Time: 8394 ms Iteration:
Warning: Assert failed at
Time: 8401 ms Iteration:
Warning: Assert failed at
Time: 8404 ms Iteration:
Warning: Assert failed at
Time: 8411 ms Iteration:
Warning: Assert failed at
Time: 8414 ms Iteration:
Warning: Assert failed at
Time: 8421 ms Iteration:
Warning: Assert failed at
Time: 8424 ms Iteration:
Warning: Assert failed at
Time: 8426 ms Iteration:
Warning: Assert failed at
Time: 8431 ms Iteration:
Warning: Assert failed at
Time: 8434 ms Iteration:
Warning: Assert failed at
Time: 8434 ms Iteration:
Warning: Assert failed at
Time: 8441 ms Iteration:
Warning: Assert failed at
Time: 8444 ms Iteration:
Warning: Assert failed at
Time: 8451 ms Iteration:
Warning: Assert failed at

Time: 8454 ms Iteration:

6391 ms

0 Instance:

6396 ms

0 Instance:

6401 ms

0 Instance:

6406 ms

0 Instance:

6411 ms

0 Instance:

6416 ms

0 Instance:

6421 ms

0 Instance:

6426 ms

0 Instance:

6426 ms

0 Instance:

6431 ms

0 Instance:

6436 ms

0 Instance:

6436 ms

0 Instance:

6441 ms

0 Instance:

6446 ms

0 Instance:

6451 ms

0 Instance:

6456 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

119

Systematic testing of digital hardware systems by means of test automaton

** Warning: Assert failed at

H# O O H H O H OH O OH OH O OH O OHF O OH O O O OB OB OH OH OH OB OH O OH OH OH K K OB

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

k%

Time: 8461 ms
Warning: Assert
Time: 8464 ms
Warning: Assert
Time: 8466 ms
Warning: Assert
Time: 8474 ms
Warning: Assert
Time: 10926 ms
Warning: Assert
Time: 10934 ms
Warning: Assert
Time: 11026 ms
Warning: Assert
Time: 11034 ms
Warning: Assert
Time: 15876 ms
Warning: Assert
Time: 15884 ms
Warning: Assert
Time: 15926 ms
Warning: Assert
Time: 15934 ms
Warning: Assert
Time: 16026 ms
Warning: Assert

Time: 16034 ms

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

failed at

Iteration:

6461 ms
0 Instance:
6466 ms
0 Instance:
6466 ms
0 Instance:
6476 ms
0 Instance:

8926 ms

0 Instance:

8936 ms

0 Instance:

9026 ms

0 Instance:

9036 ms

0 Instance:

13876 ms

0 Instance:

13886 ms

0 Instance:

13926 ms

0 Instance:

13936 ms

0 Instance:

14026 ms

0 Instance:

14036 ms

0 Instance:

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

/game_tdl tb

120

Systematic testing of digital hardware systems by means of test automaton

6.6 Appendix F: Terrasic DEO-Nano board

The DEO-Nano board is a compact-sized FPGA development platform suitable for portable design
projects, robots and mobile projects.

DEO-Nano is ideal for use with embedded processors—it includes an Altera Cyclone IV FPGA
(with 22,320 logic elements), 32 MB of SDRAM, 2 Kb EEPROM, and a 64 Mb serial
configuration memory device. DEO-Nano includes a National Semiconductor 8-channel 12-bit A/D
converter for connecting to real-world sensors , and it also includes an Analog Devices 13-bit, 3-
axis accelerometer device.

The DEO-Nano board includes a built-in USB Blaster for FPGA programming, and the board can
be powered either from this USB port or by an external power source. The board includes
expansion headers that can be used to attach various Terasic daughter cards or other devices, such
as motors and actuators, 2 pushbuttons, 8 user LEDs and a set of 4 dip-switches [7].

Figure 64: DEO-Nano board
Obtained from [7]

121

Systematic testing of digital hardware systems by means of test automaton

6.6.1 Features

The key features of the board are listed below:
* Featured device
o Altera Cyclone® IV EP4CE22F17C6N FPGA
© 153 maximum FPGA I/O pins

* Configuration status and set-up elements
© On-board USB-Blaster circuit for programming

© Spansion EPCS64

* Expansion header

o Two 40-pin Headers (GPIOs) provide 72 I/O pins, 5V power pins, two 3.3V power pins
and four ground pins

* Memory devices
°© 32MB SDRAM
o 2Kb I2C EEPROM

* General user input/output
© 8 green LEDs
o 2 debounced pushbuttons

© 4-position DIP switch

¢ G-Sensor

o ADI ADXL345, 3-axis accelerometer with high resolution (13-bit)
* A/D Converter

o NS ADC128S022, 8-Channel, 12-bit A/D Converter
© 50 Ksps to 200 Ksps

122

Systematic testing of digital hardware systems by means of test automaton

* Clock system
o On-board 50MHz clock oscillator

* Power Supply
o USB Type mini-AB port (5V)
o DC 5V pin for each GPIO header (2 DC 5V pins)
o 2-pin external power header (3.6-5.7V)

6.6.2 DEO-Nano Board Architecture

In this chapter, the architecture on the DEO-Nano board is described, including components and

block diagram[7].

Lavout and components

Figure 64 and Figure 65 show the DEO-Nano board. They represent the layout of the board and

indicates the locations of the most relevant components and the connectors [7].

FPGA Serial
Configuration Device (EPCS)

32 MB
8 Green LEDs SDRAM 40-pin GPIO Header

2 Push-buttons

USB Type
mini-AB Port
Altera Cyclone IV
EP4CE22F17C6N
FPGA
2Kb 12C 26-pin Header
EEPROM
4 Dip Switches
A/D Converter
40-pin GPIO
Header
2-pin External Digital 50MHz Clock
Power Header Accelerometer Oscillator

Figure 65: The DEO-Nano Board PCB and component diagram (top view)
Obtained from [7]

123

Systematic testing of digital hardware systems by means of test automaton

32MB SDRAM

-
:
:
-
:._'75
a_

2X13 Pin
Header

=
=
=
=
=
=
.

&

oQ

Figure 66: The DEO-Nano Board PCB and component diagram (bottom view)
Obtained from [7]

Block diagram of the DEO-Nano board

Figure 66 shows the block diagram of the DEO-Nano board. All connections are made through the
Cyclone IV FPGA device in order to provide maximum flexibility for the user. In this way, the user
can configure the FPGA to implement any system design [7].

N e— Bi
G-Sensor EEPROM o .'tph
Ll eon)| S

X2 X2 X4

g 40-pin GPIO

. Header
SDRAM X39 | X72
(32MB)
= 40-pin GPIO
AITER/A —

Header

EPCS64 " [Cyclone=1V

(64Mb) X16 2X13
+— 5 "
Pin Header

fro
AP S 3 IR 5

&

50 MHz

Figure 67: Block diagram of DEO-Nano Board
Obtained from [7]

124

Systematic testing of digital hardware systems by means of test automaton

6.7 Appendix G: 74LS595 datasheet

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCLS041G - DECEMEER 1982 - REVISED FEBRUARY 2004

8-Bit Serial-In, Parallel-Out Shift
Wide Operating Voltage Range of 2V to 6 V

High-Current 3-State Outputs Can Drive Up
To 15 LSTTL Loads

Low Power Consumption, 80-uA Max Igc
Typical tpg =13 ns

+6-mA Output Drive at 5V

Low Input Current of 1 1A Max

Shift Register Has Direct Clear

description/ordering information

The 'HC595 devices contain an 8-bit serial-in,
parallel-out shift register that feeds an 8-bit D-type
storage register. The storage register has parallel
3-state outputs. Separate clocks are provided for
both the shift and storage register. The shift
register has a direct overriding clear (SRCLR)
input, serial (SER) input, and serial outputs for
cascading. When the output-enable (OE) input is
high, the outputs are in the high-impedance state.

Both the shift register clock (SRCLK) and storage
register clock (RCLK) are positive-edge triggered.
If both clocks are connected together, the shift
register always is one clock pulse ahead of the
storage register.

SNS4HC595 . .. J OR W PACKAGE
SN74HCE95 . .. D, DB, DW, N, OR NS PACKAGE

(TOP VIEW)
Qp [1 U 16] Vee
Qcll2 15(] Qa
Qp (]2 14(] SER
Qe [l 3] OE
Qe s 12]] RCLK
Qe [l6 1] SRCLK
on 7 10]] SRCLR

chD [8 o] Qi

SNE4AHES95 . . . FK PACKAGE
(TOP VIEW)

Vo0 O <
o0 == O

3 21 2018
1B

SER
OE
NC
RCLK
SRCLK

MC - Mo intemal connection

ORDERING INFORMATION

™ PACKAGET PARTNUMBER | MARKING
FOIP - N Tube of 25 SNTAHCES5N SMT74HCESEN
Tube of 40 SNTAHC595D
s0c -0 Reel of 2500 SNT74HCS5S5DR HCESE
Reel of 250 SNTAHCSS5DT
~A0°C o B5°C Tube of 40 SNTAHCE950W
SoIC - bw Reel of 2000 SNTAHCES5DWR HCS85
SOP - NS Reel of 2000 SNTAHCS5SENER HC585
SS0P - DB Reel of 2000 SNTAHCS5S5DER HC585
CDIP -1 Tube of 25 SNIS4HCES5] SMJB4HCES5]
-55°Cto 125°C |CFP-'W Tube of 150 SNIBAHCESEW SMISAHCES W
LCCC - FK Tube of 55 SMNIB4HCESEFK SMIS4HCESEFK

T Package drawings, standard packing guantities, thermal data, symbolization, and PCB design
guidelines are available at wawaw.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instuments semiconductor products and disclaimers thereto appears at the end of this data sheet.

IDUCTION DATA informafion is curmenl as o awon

PRO)
Produds

standasd wamanty. Production peo cessing does nol necessaily indude

teyting of

date.
conform lo spediicalion s per e ferms of Texas lnslruments
all parameters.

¢ TEXAS

‘Copynght & 2004, Texas Instruments Incoporated
On produd (s compliant to MIL -PRF-1365. 2l dane hesbed
unléss oferwise noled On all ofwr produds, produdion
procesting does nol necessaily ndudelesfing of all parameters.

INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS

WITH 3-STATE OUTPUT REGISTERS

SCL3041G - DECEMBER 14982 - REVISED FEERUARY 2004

FUNCTION TABLE
INPUTS
— — FUNCTION
SER SRCLK SRCLR RCLK E
X X X X H Outputs Q -0y are disabled.
X x X x L Outputs Q4 Qy are enabled.
A X L X X Shift register is cleared.
L T H " " First stage of the shift register goes low.
Other stages store the data of previous stage, respectively.
H 1 H ¥ ¥ First stage of the shift register goes high.
Other stages store the data of previous stage, respectively.
X X X T X Shift-register data is stored in the storage register.
INSTRUMENTS
2 POST OFFICE BOX 655301 ® DALLAS, TEXAS 75265

126

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCLSMMLG - DECEMBER 1952 - REVISED FEERUARY 2004

logic diagram (positive logic)

— 13
OE D

RCLK 12 >0
— 10
SRCLR f{>o
SRCLK 117>07
14 '
SER 1D 3R 15
= cl —=C3 Qa
+—R as
I: 25 y
2R o IR 1
= C2 —(f=C3 QB
e R as
I: 25 y
2R o 3R 2
d=c2 —Cf=C3 Q¢
R as
I: 25 y
2R 3R 3
= c2 —>c3 Qp
R as
I: 25 ’
2R o IR 4
J=c2 —f=cC3 Qe
——1R 3s
I: 25 y
2R o IR 5
= C2 —-C3 Qp
——R as
I: 25 y
2R " IR P
=2 —_=>C3 QG
—1R as
I: 25
2R o 3R 7
= c2 L f=c3 QH
L—dRr as
4> 9 oy
Pin numbers shown are for the Oy, DB, DW, J, N, NS, and W packages.
3 Texas
INSTRUMENTS
POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 3

127

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCLS041G - DECEMEER 19E2 - REVISED FEERUARY 2004

timing diagram

L
Lo

ee____] [] [RBS
o ___] [] [%

1

MNOTE: E implies that the output is in 3-State mode.

{if TEXAS
INSTRUMENTS

A POST OFFICE BOX 655301 ® DALLAS, TEXAS 75265

128

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCL5041G - DECEMBER 1882 - REVISED FEBRUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)’

Supply voltage range, WEE - oo e i -05Vio7V
Inputclamp current, Iy (Vi <0or V>Vl (seeNote 1) ... o ool 20 mA
Output clamp current, lopg (Wo<0or Vg =>Vee) (seeMNote 1) ... ool 20 mA
Continuous output current, lo (Vo =0to Vee) oo +35 mA
Continuous current through Ve or GND oo 70 mA
Package thermal impedance, 63 (see Note 2 Dpackage, T3CW
DB package i g2 Chw
DWopackagel 57°CIW
Mpackage i 67 CMW
NS packagel B4°CIW
Storage temperature range, Tgygoooiii i —-65°C to 150°C

1 Stresses beyond those listed under “absolute maximum ratings™ may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyvond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

MOTES: 1. The input and cutput voltage ratings may be exceeded if the input and output cument ratings are cbhsenved.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

SMN54HC595 SNT4HCH95
MIN NOM MAX MIN NOM MAX UNIT
Ve Supply voltage 2 5 & 2 5 & W
Veg=2V 15 15
ViK High-level input voltage Veg =45V 3.15 3.15 v
Voo =6V 4.2 4.2
Voo =2V 05 0.5
VL Low-level input voltage Vg =45V 135 135 W
Voo =6V 18 1.8
W) Input voltage 0 Vee 0 Voo W
Vo Output voltage 0 Vee 0 Voo W
Veg=2V 1000 1000
At Input transition rise/fall time Voo =45V 500 500 | ns
Vee=6W 400 400
Ta, Operating free-air temperature -h5 125 -40 B5 “C

NOTE3: All unused inputs of the device must be held at Ve or GND to ensure proper device operation. Refer to the Tl application report,
Implications of Slow or Hoating CMOS inputs, literature number SCBAGDS.
% |f this device is used in the threshold region (from V| max = 0.5 V to Vjymin = 1.5 V), there is a potential to go into the wrong state from induced
grounding, causing double clocking. Operating with the inputs at t; = 1000 ns and Vo = 2 V does not damage the device; however, functionally,
the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

{’P TeEXxAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 5

129

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCLS041G - DECEMBER 1982 - REVISED FEERUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless

otherwise noted)

POST OFFICE BOX 655301 ® DALLAS, TEXAS 75265

Ta =25°C SNS4HCE95 | SNT4HC595
PARAMETER TEST CONDITIONS Ve MIN VP MAX MIN _ MAX MIN _ MAX UNIT
2V 19 1.998 19 19
IoH = 20 pA 45v [a4 4499 a4 4.4
BV 59 5.999 5.9 5.9
VOH Vi=vigorviL | QW lon =-4 mA a5y 3.98 4.3 3.7 3.84 W
Qa-On, loH = -6 mA 388 4.3 3.7 3.84
QW loH =-5.2 mA 548 58 5.2 5.34
Qp-OH, loH = -T.BmA 8V Tsa8 ss 5.2 5.34
2V 0.002 0.1 0.1 0.1
loL = 20 pA 4.5V 0001 0.1 0.1 0.1
BV 0.001 0.1 0.1 01
VoL Vi=Vigorvip | Qu loL =4 mA a5y 017 026 0.4 0.33 W
QA-COH, loL = 6 mA 017 0.26 0.4 0.33
O oL = 5.2 mA 015 026 0.4 0.33
Qa0 loL = 7B mA v 015 026 0.4 0.33
I V| = Ve ord BV 01 100 +1000 1000 | nA
oz Vo=Veooord, Qa-0OH LAY =001 0.6 10 k- uA
lec W = Ve or0, lo=0 B B 160 BO I
Cj 102;\." 3 10 10 10 pF
i
{? TEXAS
INSTRUMENTS

130

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCLS041G - DECEMBER 1082 - REVISED FEBRUARY 2004

timing requirements over recommended operating free-air temperature range (unless otherwise

noted)
Ty =25°C | SN54HC595 | SN74HC595
Vee T max | min max | min max | UNT
2V 6 4.2 5
faock Clock frequency 4.5V 31 21 25| MHz
BV 36 25 29
v 80 120 100
SRCLK or RCLK high or low 45V 16 24 20
] 6V 14 20 17
by Pulse duration PYv, B0 o0 00 ns
SRCLR low 45 16 24 20
BV 14 20 17
2V 100 150 125
SER before SRCLK T 45V 20 30 25
BV 17 25 21
2V 75 113 94
SRCLKT before RCLKTT 45V 15 23 19
) 6V 13 19 16
tsu Setup time 2V 5D 75 85 ns
SRCLR low before RCLKT 45 10 15 13
BV 9 13 1
2V 50 75 60
SRCLR high (inactive) before SRCLKT | 45 W 10 15 12
BV 9 13 1
2V 0 0 0
1 Hold time, SER after SRCLKT 45V 0 0 0 ns
BV 0 0 0

t This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift
register is one clock pulse ahead of the storage register.

*ﬁ‘ TEXxAS
INSTRUMENTS

POST OFFICE BOX 655103 ® DALLAS, TEXAS 75265

131

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

S5CLS041G - DECEMBER 1982 - REVISED FEBRUARY 2004

switching characteristics over recommended operating free-air temperature range, Cp = 50 pF
(unless otherwise noted) (see Figure 1)

FROM TO Tp =25°C SNS4HC595 | SN74HCS595
PARAMETER (INPUT) {ouTPUT) VCC Tin Tvp max| min max| mn max | ONT
2V 6 26 4.2 5
frnax as5v | 31 a3 21 25 MHz
6V ® 42 25 29
2V 50 160 240 200
SRCLK Qn 45V 17 az 48 40
6V “ 27 41 34
tpd ZV 50 150 225 wr| ™
RCLK Qa-OH 45V 17 30 45 a7
6V 14 26 38 32
2V 51 175 261 219
tpHL SRCLR Qn 45V 18 a5 52 44| ns
BV 15 30 a4 a7
2V 40 150 225 187
tan TE Qa-0QH 45V 15 30 45 37| ns
6V 13 26 ag a2
2V a2 200 300 250
tdig CE QA—QH 45V 23 40 &0 50| ns
6V 20 34 51 43
2V 28 60 20 75
Qa-QH 45V 8 12 18 15
6V 6 10 15 13
% 2V 22 75 110 os| ™
QO 45V 8 15 22 19
6V 6 13 19 16

switching characteristics over recommended operating free-air temperature range, C|_ = 150 pF
(unless otherwise noted) (see Figure 1)

EROM TO Ty =25°C SN54HC595 | SN74HC595
PARAMETER (INPUT) {ouTPUT) Ve [Tuin tvp mAx| min max | min max| UNT
2V &0 200 300 250
tpd RCLE Qa—-0OH 45V 22 40 60 50 ns
BV 19 a4 51 43
2V 70 200 208 250
ten OE OA-OH 45y 23 40 &0 50| ns
BV 19 a4 51 43
2y 45 210 a15 265
i Qa-QH 45y 17 42 63 53| ns
BV 13 a6 53 45
operating characteristics, Ty = 25°C
PARAMETER TEST CONDITIONS | TYP | UNIT
de Power dissipation capacitance No load 400 pF
I}
{f TEXAS
INSTRUMENTS
B POST QFFICE BOX 655300 ® DALLAS TEXAS 75265

132

Systematic testing of digital hardware systems by means of test automaton

SN54HC595, SN74HC595
8-BIT SHIFT REGISTERS
WITH 3-STATE OUTPUT REGISTERS

SCL5041G - DECEMBER 1982 - REVISED FEERUARY 2004

PARAMETER MEASUREMENT INFORMATION

Ve
PARAMETER | R cL 51 s2
s1 tpzH S50pF | Open | Closed
Te.s.t tan 1 ki or
From Output ~ Foint R tpz 150 pF | Closed | Open
Under Test
Qpen Closed
L tdis PHZ |4 10 50 pF L
(see Note A) I 52 tpLz Closed Open
= 50 pF
— Ipd OF f - ar Open Open
150 pF
LOAD CIRCUIT
—_— Input
High-Level Vee | av
Pulse | | 50% ov I'l- tgy w— th —»
le— —le Data P st ———Vec
| v nput, 50 A T
Lm-LeveIU cc ! | | | oV
509 50%
Pulse %oy >t —»
VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

PULSE DURATIONS
_______ Vee Qutput v
Input 5004 5004 Control 50% 50% ce
| | (Low-Level
et —! le- —»| o Enabling) | — o taa oV
|4 tPLH | ¢ PHL tpzs | oz
In-Phase | 90% f 90% & VoH Output F=Vee | N
Output | 50% | | [50% Waveform 1
pu 10% 10%
| | | VoL [See Note B)
| — [t —> fe—ir
[tpuL ¥ [tpry tpzH _H_HI > tpyz
| VoH Output
Out-of- 0% |5+;_5n% m% 0% \Aisarafortn2
10% 10%
Phase [T——VoL (SeeNoteB)
Qutput — 1 —» [—1
VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS

PROPAGATION DELAY AND OUTPUT TRANSITION TIMES ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C| includes probe and test-ficture capacitance.

B. Wawveform 1 is for an output with intemal conditions such that the output is low, except when disabled by the output control,
‘Waveform 2 is for an output with intemal conditions such that the output is high, except when disabled by the output contral.
Phase relationships between waveforms were chosen arbitrarnily. All input pulses are supplied by generators having the following
characteristics: PRR < 1 MHz, 2o =504}, ;=6 ns, tf =6 ns.

For clock inputs, fipgy is measured when the input duty cycle is 50%.

The cutputs are measured cne at a time, with cne input transition per measure ment.
tpLz and tppz are the same as igjs.

tpz and tpzp are the same as ta).

. tp|H and tpHL are the same as tpg.

o

IoHmmD

Figure 1. Load Circuit and Voltage Waveforms

ﬂ’ TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DwLLAS, TEXAS T5265 9

133

Systematic testing of digital hardware systems by means of test automaton

J {R—GDF—T**J CERAMIC DUAL IN—LINE PACKAGE
14 LEADS SHOWN
- FINS w1y 16 1B 20
° > oo | G2 | G2 | G2
14 8 BSC BSC BSC B5C
0785 | 840 | noeo | 1.060
AN ANnn T BOMAX | (19,94 | (21,39) | (24.38) | (26.92)
) ¢ B MN — | — | — | —
i TACEIEE

U UL
1 7

0.065 (1,65) ¢ NN 0245 | 0245 | 0220 | 0.245
‘J WEWT (6.22) | (6.22) | (559) | (8.22)

0.060 (1,52
—»| |4— 0.005 (0.13) MIN o.ms{[u.aﬁ%
|
l)
?

0.200 {5,08) MAX
¢ Seating Plone

0130 (3,30) WIN

-t
b‘ L 0.026 gn.s»a); L/ s

0.014 (0,36

0100 (2,54 0.014 (0,36)
0.008 (0,20}

4040083/F D3/03

NOTES: A. Al linear dimensions are in inches {millimeters).

B. This drowing is subject to change without notice.

C. This pockage is hermeticolly seoled with o ceramic [id using glaas frit

D, Index point is provided on cop for terminal identification enly an press ceromic gloss frit seal only.
E

Falla within MIL STD: 1835 GDIP1-T14, GDIP1-T16, GRIP1-TIB and GDIF1-T20.

134

Systematic testing of digital hardware systems by means of test automaton

6.8 Appendix H: Content of the CD

* Document of the Bachelor thesis.

* Source code of the TDL testbench

* Source code of the VHDL model

* Source code of the VHDL testbench
* ETSI-TDL standard

* Terasic DEO-Nano user manual

* Design of the game board

135

Systematic testing of digital hardware systems by means of test automaton

References

[1] T. Krawutschke, G. Hartung, N. Kopshoff, M. Schulze, G. B. Faluwoye, and C. Hoffmann. Test
automation for reengineering modules using test description language and FPGA. To be published
in www.embedded-world.eu

[2] David Lauber. Konzept und Entwicklung einer Testbeschreibungssprache und eines Systems zur
Generierung von Testbenches und Testvektoren fiir einen Testautomaten. Master thesis. 18 June
2015.

[3] ETSI standard 203 119-1. Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 1: Abstract Syntax and Associated Semantics.

http://www.etsi.org/technologies-clusters/technologies/test-description-language
[4] ETSI standard 203 119-2. Methods for Testing and Specification (MTS); The Test Description

Language (TDL); Part 2: Graphical Syntax. http://www.etsi.org/technologies-
clusters/technologies/test-description-language

[5] ETSI standard 203 119-3. Methods for Testing and Specification(MTS); The Test Description
Language (TDL); Part 3: Exchange Format. http://www.etsi.org/technologies-
clusters/technologies/test-description-language

[6] ETSI standard 203 119-4. Methods for Testing and Specification (MTS); The Test Description
Language (TDL); Part 4: Structured Test Objective Specification (Extension).

http://www.etsi.org/technologies-clusters/technologies/test-description-language
[7] Terasic DEO-Nano board user manual. http://www.terasic.com.tw/cgi-

bin/page/archive download.pl?
Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46{3

[8] TicTacToe. https://en.wikipedia.org/wiki/Tic-tac-toe

136

https://en.wikipedia.org/wiki/Tic-tac-toe
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46f3
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46f3
http://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46f3
http://www.etsi.org/technologies-clusters/technologies/test-description-language
http://www.etsi.org/technologies-clusters/technologies/test-description-language
http://www.etsi.org/technologies-clusters/technologies/test-description-language
http://www.etsi.org/technologies-clusters/technologies/test-description-language
http://www.etsi.org/technologies-clusters/technologies/test-description-language
http://www.etsi.org/technologies-clusters/technologies/test-description-language

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Purpose
	1.2 Structure of this work
	1.3 Planned Workflow

	2 Fundamentals
	2.1 Concept of the test systems
	2.1.1 General structure of the test system
	2.1.1.1 Requirements for the test environment
	2.1.1.2 Concrete concept of the test environment
	2.1.1.3 File Interfaces and Interface Definition
	2.1.1.4 Evaluation of the DUT signals
	2.1.1.5 Concept of the workflow

	2.1.2 Description of the Value Change Dump File
	2.1.2.1 Header
	2.1.2.2 Timescale
	2.1.2.3 Signal definitions
	2.1.2.4 Initial value of the signals
	2.1.2.5 Signal changes and timestamps
	2.1.2.6 End of the file

	2.2 Test Description Language
	2.2.1 What is a Test Description Language
	2.2.2 Why use a Test Description Language
	2.2.3 Standards for TDLs
	2.2.4 Design Considerations

	2.3 Used prototyping board

	3 Development of the VHDL model
	3.1 Specifications of the VHDL model
	3.1.1 How TicTacToe works
	3.1.2 Game board

	3.2 Development of the model

	4 Verification
	4.1 Simulation of the VHDL code
	4.1.1 Simulation description
	4.1.2 Simulation results

	4.2 Testbench using Test Description Language
	4.2.1 Testbench description
	4.2.2 Testbench results
	4.2.2.1 Model working right
	4.2.2.2 Model modified to introduce a malfunction

	4.3 Verification in hardware
	4.3.1 Testbench description
	4.3.2 Testbench results
	4.3.3 Verification of the assertions
	4.3.3.1 Original asserts.vcd
	4.3.3.2 Altered asserts.vcd

	5 Conclusions
	6 Appendices
	6.1 Appendix A: TicTacToe game board design
	6.2 Appendix B: VHDL model code
	6.2.1 VHDL code sketch of the model for one player
	6.2.2 VHDL code of the model for two players
	6.2.2.1 Clock generator
	6.2.2.2 Game
	6.2.2.3 TicTacToe

	6.3 Appendix C: Simulation code
	6.4 Appendix D: Test Description Language code
	6.5 Appendix E: Errors reported by the TDL testbench with malfunctions in the model
	6.6 Appendix F: Terrasic DE0-Nano board
	6.6.1 Features
	6.6.2 DE0-Nano Board Architecture

	6.7 Appendix G: 74LS595 datasheet
	6.8 Appendix H: Content of the CD

	References

