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Abstract 
Urban mobility efficiency is of utmost importance in big cities. Taxi vehicles are key elements in daily 

traffic activity. The advance of ICT and geo-positioning systems has given rise to new opportunities for 
improving the efficiency of taxi fleets in terms of waiting times of passengers, cost and time for drivers, 
traffic density, CO2 emissions, etc., by using more informed, intelligent dispatching. Still, the explicit 
spatial and temporal components, as well as the scale and, in particular, the dynamicity of the problem of 
pairing passengers and taxis in big towns, render traditional approaches for solving standard assignment 
problem useless for this purpose, and call for intelligent approximation strategies based on domain-specific 
heuristics. Furthermore, taxi drivers are often autonomous actors and may not agree to participate in 
assignments that, though globally efficient, may not be sufficently beneficial for them individually. 

This paper presents a new heuristic algorithm for taxi assignment to customers that considers taxi 
reassignments if this may lead to globally better solutions. In addition, as such new assignments may reduce 
the expected revenues of individual drivers, we propose an economic compensation scheme to make 
individually rational drivers agree to proposed modifications in their assigned clients. We carried out a set 
of experiments, where several commonly used assignment strategies are compared to three different 
instantiations of our heuristic algorithm. The results indicate that our proposal has the potential to reduce 
customer waiting times in fleets of autonomous taxis, while being also beneficial from an economic point 
of view. 
 
Keywords: Coordination, dynamic fleet management, dynamic optimization, multi-agent systems, open systems, taxi 
assignment.  

1. Introduction 
Urban mobility is one of the main concerns that public managers face in big cities nowadays. Traffic 
congestions generate a high quantity of CO2 emissions and cause extra time spent by travelers. One of the 
main actors involved in the daily traffic activity in urban areas are taxi fleets. They consist of several 
thousands of vehicles in big cities (e.g. about 15,000 taxis in Madrid, Spain). They are usually affiliated to 
mediator services, which coordinate service calls and taxi dispatching. Lately, new mobility systems that 
benefit from the advances in information and communication technologies have emerged, such as Uber1, 
Lyft2 or Liftago3 among others. 

Two of the main goals of a taxi fleet are (i) to reduce the response time (e.g., the time between a customer 
call and the moment a taxi arrives at the customer’s location) and (ii) reduce costs of empty movements 
(e.g., movements taxis have to make in order to get to the location of customers). The provision of efficient 
methods for taxi assignment to customers is a challenge that can contribute to reducing distances of empty 
trips with the resulting decrease of traffic flow, pollution, time and so on. Typically, taxi fleet coordination 
companies apply the first-come first-serve strategy to assign taxis to customers. Once the taxi accepts the 
passenger, the dispatching is irreversible. This method is known to be inefficient (Egbelu & Tanchoco, 
1984). 
                                                

1 http://www.uber.com 
2 http://www.lyft.com 
3 http://www.liftago.com 
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The aforementioned case falls into a specific class of assignment problems which is characterized by a 
dynamic demand in time and space. To efficiently solve such problems, dynamic algorithms are required 
instead of classical assignment optimization methods. For this purpose, techniques from the field of 
intelligent systems are promising, because they allow for developing heuristics-based algorithms that 
intelligently prune the search space, so as to reduce the computational complexity and to support a sufficient 
degree of scalability. Furthermore, taxi drivers are usually autonomous actors, i.e. they can freely choose 
whether to accept or to reject a recommendation proposed by the mediator service, which puts additional 
constraints on the set of feasible solutions to the assignment problem. As Ossowski and Omicini (2002) 
argue, dynamic coordination problems with self-interested actors can be effectively modelled as multiagent 
systems. Agreement Technologies (Ossowski et al. 2013) refer to a sandbox of methods within the field of 
multiagent systems enabling knowledge-based software agents to interact with each other so as to forge 
agreements on behalf of their users. Multiagent interaction protocols based on the algorithm first proposed 
by Bertsekas (1984), for instance, coordinate software agents by iteratively simulating auctions among 
them, and have been successfully applied to a dynamic assignment problem in the domain of emergency 
management (Billhardt et al., 2018). 

In this article, we deal with the problem of dynamic taxi assignment to customers with the goal of 
minimizing the global waiting time of passengers. Our heuristic assignment algorithm considers taxi 
reassignments if this may lead to globally better solutions. That is, taxis that have been dispatched to pick 
up a customer but are still on their way may be reassigned to another customer. For this purpose, we adapt 
the method put forward by Billhardt et al. (2014) for ambulance management to the taxi assignment 
problem. In addition, we go beyond that approach by taking into account the taxi drivers’ autonomy: in 
case of an assignment change that improves the efficiency of the taxi fleet at global level but may be 
disadvantageous for some individual taxi driver (e.g., she may be assigned a customer located further away 
compared to the initially assigned one), that driver will receive a compensation to make the assignment 
agreeable to her as well. To the best of our knowledge, there are no other approaches that consider 
reassignment until pick-up time and taxi autonomy to propose a new scheduling when new customers show 
up or taxis become available.   

The main contribution of this paper is twofold. Firstly, we introduce an algorithm for taxi dispatching, 
which exploits dynamic taxi reassignment and is coupled with an economic compensation schema which 
assures that (rational) taxi drivers will freely accept reassignments of “worse” customers if this can improve 
the overall performance of the system. Secondly, we perform an evaluation of three instances of the 
proposed algorithm, minimizing or maximizing different parameters (distance, revenues, and a combination 
of both). 

The rest of the paper is organized as follows. Section 2 analyzes existing works related to taxi assignment. 
In section 3, we describe the problem we are dealing with and some common dispatching strategies. In 
section 4 the proposed taxi reassignment algorithm and compensation schema is described. Section 5 details 
the experiments carried out to evaluate our approach. Finally, we conclude the paper with section 6. 

2. Related Work 
The development of ICT, especially GPS and wireless connectivity, has driven the proposal of many taxi 

assignment systems during the last decade. 
Many works are centered analyzing new assignment strategies in order to reduce the waiting times of 

customers. The classical approach is the first-come/first-served (FCFS) strategy, where each new customer 
is assigned to the nearest available taxi. Lee, Wang, Cheu, and Teo (2004) present a system that takes 
advantage of real-time information (on taxis and traffic conditions) to assign taxis with the shortest time 
path to customers, instead on the closest taxis. Maciejewski, Salanova, Bischoff, and Estrada (2016) 
compare the classical FCFS strategy with a demand-supply balancing strategy that assigns taxis to the 
closest customers in high demand scenarios (instead of customers to taxis) in microscopic simulations of 
taxi services in Berlin and Barcelona. In (Maciejewski, Bischoff, & Nagel, 2016), they present a real-time 
dispatching strategy based on solving the taxi assignment problem. In this approach, the assignment 
problem is considered from a more global perspective. They propose to calculate the optimal assignment 
among idle taxis and pending requests at certain intervals or whenever new events (new customer/available 
taxi) take place. Zhu and Prabhakar (2017) analyze how suboptimal individual decisions lead to global 
inefficiencies and propose an assignment model based on network flow. 

While most existing approaches try to minimize the average waiting time of customers, other works have 
a different focus (Dai, Huang, Wambura, & Sun, 2017; Gao, Xiao, & Zhao, 2016; Meghjani, & Marczuk, 
2016; and Ngo, Seow, & Wong, 2004). BAMOTR (Dai et al., 2017) provides a mechanism for fair 
assignment of drivers, where fair assignment is intended to minimize the differences in income among the 
taxi drivers. For that, they minimize a combination of taxi income and extra waiting time. Gao et al. (2016) 
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propose an optimal multi-taxi dispatching method with a utility function that combines the total net profits 
of taxis and waiting time of passengers. They also consider different classes of taxis. Meghjani and Marczuk 
(2016) propose a hybrid path search for fast, efficient and reliable assignment to minimize the total travel 
cost with a limited knowledge of the network. In (Ngo et al., 2004), a fuzzy approach is proposed for 
defining the cost function to be minimized, which encompass a fuzzy aggregation of multiple vague criteria 
defined by human experts. 

There are other works that focus on taxi demand prediction with the goal of helping taxis to quickly find 
closer passengers or of balancing supply and demand of taxis in an area of interest. Grajciar (2015) proposes 
a method for recommending areas where idle taxis are more likely to find a new customer. The price of 
each journey is not fixed and is proposed to the customer by a broker. Then, taxis bid for the customer. 
Moreira-Matias et al. propose methods for predicting taxi-passenger demand (Moreira-Matias, Gama, 
Ferreira, Mendes-Moreira, & Damas, 2013) and profitability (Moreira-Matias, Mendes-Moreira, Ferreira, 
Gama, & Damas, 2014) at taxi stands. Zhang et al. (2015) model the taxi driver’s service strategies from 
three perspectives: passenger-searching, passenger-delivery, and service-area preference. Miao et al. (2016) 
and Miao et al. (2017) treat the problem of dispatching vacant taxis towards current and future demands 
while minimizing total idle mileage. Their approach is based on forecasting the uncertain spatial-temporal 
taxi demands in a region. 

There are also an increasing number of works on taxi ridesharing (e.g., Ma, Zheng, & Wolfson, 2013; 
d’Orey, Fernandes, & Ferreira, 2010; Li, Horng, Chen, & Cheng, 2016; Tian, Huang, Liu, Bastani, & Jin, 
2013; and Mareček, Shorten, & Yu, 2016), although in this paper we do not focus on that problem. 

In our work we concentrate on the problem of dispatching (assigning) taxis to (current) customers. In 
contrast to other works in this field, the main characteristic of our approach is that we treat the problem 
from a global and dynamic perspective. In particular, we try to find assignments from taxis to pending 
customers that globally minimize the expected waiting times of customers. Furthermore, we consider the 
possibility of modifying an existing assignment when a taxi has been dispatched but has not yet picked up 
the corresponding customer. We already successfully followed a similar approach in our previous work on 
taxi assignments (Billhardt et al., 2017), and in (Billhardt et al., 2014) to assign ambulances to patients in 
emergency medical services. One of the few other works in this line is (Glaschenko, Ivaschenko, Rzevski, 
& Skobelev, 2009), which presented an adaptive scheduling in which reassignment is possible during a 
time interval until pick-up order is sent to the taxi and customer. During this process, vehicle agents 
negotiate with each other. In our case, we do not restrict reassignment to a specific interval. Furthermore, 
since modifications of existing assignments may imply changes in the expected incomes of a taxis, we 
propose a method that economically compensates taxis such that modifications in their current assignments 
will not result in a loss of income.  

3. Problem Definition and standard Dispatching strategies 
In this section we describe in more detail the problem we are tackling in this article. Table 1  contains a 

list of symbols used in the rest of the paper. 
 

Table 1. List of symbols used in equations. 

Symbol Meaning 

T Set of taxis and iÎT denotes a taxi 
TD Set of assigned (i.e. dispatched) taxis 
TO Set of occupied taxis 
TA Set of available taxis 
C Set of customers and kÎC denotes a customer 
CA Set of customers assigned to a taxi 
CU Set of customers waiting to be assigned to a taxi 
CS Set of customers in service (in a taxi) 
Dk Destination of customer k 
dik Distance from taxi i to the location of customer k 
tik Time it takes taxi i to reach customer k 
dkd Distance from pick up location of customer k to his destination d 
dikd Total distance to serve customer k with taxi i (dik + dkd)  

 
 
We consider taxi systems in which there exist some mediator service in charge of coordinating the 
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assignment of customers to taxis.  Customers contact the mediator via phone calls or any other telematic 
means available nowadays. The mediator dispatches taxis to serve customers. We do not explicitly deal 
with group of customers. If several people travel together they are considered as one customer (e.g. the one 
that made the contact). 

Customer k, requests a taxi at time t. The mediator assigns taxi i to serve customer k. Then, taxi i moves 
to location of k, with driving distance dik, which takes tik time to reach k. After picking up k the taxi drives 
to the customer’s destination Dk, located at distance dkd. We denote by dikd = dik + dkd the total distance for 
serving customer k with taxi i. 

Let T be the set of all taxis. Each taxi iÎT can be either available (neither assigned nor occupied), 
assigned (dispatched, on the way to pick up a customer) or occupied (carrying customers), denoted by TA, 
TD and TO, respectively, and such that: 

T = TA È TD È TO  and TA Ç TD Ç TO º Æ 
Let C be the set of customers in the system at a given time. Each customer kÎC can be either in service 

(inside a taxi), assigned to a taxi (a taxi has been dispatched to pick up the customer) or unassigned (waiting 
to be assigned to a taxi), denoted by CS, CA and CU, respectively, and such that: 

C = CS È CA È CU and CS È CA È CU º Æ 
The taxi assignment problem consists in dispatching customers, that is, assigning customers in CU to 

available taxis in TA. The general goal of a dispatching mechanism is to optimize the existing resources and 
to reduce the waiting time of customers, that is, the time or distance it takes taxis to reach their customers 
(independently of their destination). In this paper, we assume time is proportional to distance, so we 
concentrate on reducing distances.  

 
Definition (Taxi Assignment). Given a set of taxis T and a set of customers C, a taxi assignment A is a 

set of pairs <i,k> where iÎT and kÎC, and typically such that all customers are assigned to a taxi (if the 
number of customers is lower than the number of taxis) or all taxis are assigned to a customer (in the other 
case). In addition, a customer cannot be assigned to more than one taxi and a taxi cannot be assigned to 
more than one customer. 

 
The most common dispatching strategy is first-come/first-served (FCFS), in which any customer in CU 

who is waiting the longest is assigned to the nearest available taxi from TA. The assignment process is 
repeated whenever a new customer requests a taxi or whenever a taxi becomes available after a previous 
trip. 

The FCFS strategy always dispatches to each unassigned customer the nearest taxi. However, in very 
high demand scenarios, e.g., when the number of taxis is lower than the number of customers (|TA| < |CU|), 
this strategy turns out to perform quite badly (Maciejewski et al., 2016). An alternative that solves this 
problem is the nearest-taxi/nearest-request (NTNR) strategy. In NTNR customers are assigned in the same 
way as in FCFS if the number of unassigned customers (|CU|) is lower or equal to the number of available 
taxis (|TA|). However, if |TA|<|CU|, the assignment is processed on the side of the taxis, assigning each 
available taxi to the closest customer in CU. The rationale behind this approach is that in high demand 
scenarios, the overall waiting times of customers can be reduced if the closest customers are served first.  

Dispatching strategies like FCFS and NTNR, do not optimize the assignments globally and do not take 
into account possible improvements of a global assignment at a given point in time that might exist because 
of the dynamic nature of taxi services. These methods do not allow for a reassignment of already dispatched 
taxis which could in certain occasions achieve better results. This can be seen in the example shown in 
Figure 1. Here, a scenario with two taxis is presented (t1 and t2). The first customer in appearing is c1, and 
t1 is dispatched to pick it up since it is located closer (1.8 km) than t2 (2 km). A few minutes later a new 
customer c2 appears. At this moment FCFS and NTNR would assign t2 to c2. The overall travel distance 
towards the customers (at this moment) would be 4km. However, there is a better global assignment 
A’={<t1,c2>,<t2,c1>} with a total of 3.5km.  
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Figure 1. Example of scenario where a new customer appears. Numbers indicate distance in km. The solid line indicates 
the distance driven by T1 when C2 appears. 

 
 

A way to reduce overall travel distances of taxis at a given point of time, consists in allowing 
reassignment of customers to taxis and finding the globally best assignment of all available or already 
dispatched taxis (TAÈTD) to all unassigned or assigned customers (CAÈCU). This can be done by solving 
the assignment problem (Bertsekas, 1988). In our previous work (Billhardt et al., 2017), we applied this 
idea using Bertsekas’ auction algorithm to find optimal assignments. The optimization process is applied 
whenever the situation changes and a new optimal solution may exist, that is, whenever a new customer 
appears or a previously occupied taxi becomes available again (or starts working).  

In this way it is assured that the assignment of taxis to customers is optimal at each moment (with respect 
to the global distances of taxis to customer’ locations). We call this dispatching strategy Full auction4 (FA) 
(for details the interested reader is referred to (Billhardt et al., 2017)). 

4. Taxi Reassignments with Compensation  
The reassignment strategy FA will be appropriate in scenarios of taxi fleets operated by taxi companies 

and where the taxi drivers have a fixed salary that does not depend on the trips they are doing. However, 
the strategy will not work for fleets of autonomous taxi drivers for which their revenues depend on the 
customers they serve during the day. This is basically due to the fact that autonomous taxi drivers will not 
accept a reassignment of customers if this would imply a reduction in their income.   

The idea of the proposal we present in this section is to define a dispatching strategy that involves the 
reassignment of taxis, but would always be accepted by autonomous taxi drivers (who rationally decide 
based on maximizing their profit).  

4.1. Taxi revenues and the effect of a taxi reassignment 
 To analyze the revenue of a taxi for a trip we assume the following payment and cost scheme. Customers 

pay a fixed cost fcost per trip plus a fare per kilometer for the distance from their pickup location to their 
destination. Furthermore, a taxi has a cost per kilometer for car usage (including petrol and other expenses, 
e.g. maintenance, taxes, etc.). With this structure, the monetary revenue of a taxi i for serving customer k 
is: 

Revenue(i,k) = fcost + fare × dkd – cost × dikd, 
 

where dikd and dkd are the total distance and the distance from k to its destination Dk, respectively. 
When a taxi i, previously assigned to a customer k in assignment Ao is reassigned to customer j in a new 

assignment Anew, as presented in Figure 2, its revenue would change by: 
 

D Revenue(i,k,j) = Revenue(i,j) – Revenue(i,k) = fare×(djd – dkd) + cost×(dikd – dijd) 
 

The economic effect of the new assignment on i (reassigned from <i,k>ÎAo to <i,j>ÎAnew) can be zero, 
positive or negative.  
 

                                                
4 The algorithm is based on an auction process 

T1	 C1	 T2	

C2	

0.8	 1	 2	

3	1.5	
Loca/on	T1	when		
C2	appears	
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Figure 2. Example of reassignment of taxi i from customer k in Ao to j in Anew. 

 

4.2. Reassignment compensations 
We assume taxi drivers to be economically rational, that is, they want to maximize their income and 

minimize the time spent on their trips. In particular, we make the following assumptions:  
a) A taxi driver that is available will always accept a new customer.  
b) A taxi driver would always prefer earning the same amount of money in less time. 
c) A taxi driver would always accept any extra movement (with a distance d) if this implies an extra 

income of d × (fare – cost). In fact, this is actually the current rate for which a taxi driver is 
working. 

Based on these assumptions we define a compensation c that is applied if a taxi i accepts a reassignment 
from customer k to j. Taking into account this compensation, the effective revenue of taxi i when accepting 
customer j would be Revenue´(i,j)= Revenue(i,j)+c. We consider the following two situations:  

a) If dikd < dijd:  
c= Revenue(i,k) – Revenue(i,j)+( dijd – dikd)×(fare – cost) and thus 
Revenue´(i,j)= Revenue(i,k)+ (dijd – dikd)×(fare – cost) 

Here, the taxi would be compensated for the extra distance with the standard fare.  
b) If dikd ≥ dijd:  

c= Revenue(i,k) – Revenue(i,j) and thus  
Revenue´(i,j)= Revenue(i,k) 

In this case, the taxi would earn the same as before, but for a service with the same or a shorter 
distance than the previous one.  

It is clear that, with the assumptions on economic rationality of taxi drivers, a taxi would accept any 
reassignment with the defined compensations. 

It should be noted that compensations may be positive or negative, i.e., a taxi may receive a payment 
from the mediator in addition to the fare that it collects from the client, but it may also have to pay to the 
mediator part of the fare that it charges to client. For instance, if the customers’ destinations are unknown, 
the distances d-d may need to be estimated by some constant which is the same for all customers. Then, in 
the above case (b), the compensation would be: 

c= Revenue(i,k) – Revenue(i,j)= cost × (dij – dik)  
Since in this case, dik> dij, the taxi would have to pay to the mediator the cost of the difference in distances 

towards the new customer wrt. the previous customer.  
Taxi compensations can be managed by the mediator entity, which is in charge of proposing new 

assignments as well as collecting and paying compensations to affected taxis. In this sense, a change from 
one global assignment Ao to a new assignment Anew implies revenues/cost for the mediator.  

 
Definition (Mediator Revenues): Given a current assignment Ao and a new assignment Anew, the 

economic effect on the mediator when applying Anew with compensations, denoted as R(Ao, Anew), is defined 
as the sum of payments received from taxis minus compensations given. 

 

4.3. Proposed algorithm 
Algorithm 1 shows our proposal for a dispatching strategy based on reassignments with compensations. 

Similar to the FA strategy, the algorithm is executed whenever at least a new customer appears or a taxi 

i	 k	
dik	 dkd	

Ao	

j	

Dk	

Dj	

dij	

djd	

Anew	
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becomes available.  
The algorithm is in several ways influenced by the fact that we want to assure the mediator revenues to 

be positive over time, that is, we want a mediator that has no extra cost or even obtains some profit. 
The first step (line 3) is to assign possible unassigned customers (CU) to available taxis (TA) using the 

NTNR strategy. The result (Ao) is a valid assignment that could be applied. However, we try to find a better 
assignment A’ (line 4) considering all pending (if any) and assigned customers (CAÈCU) and only assigned 
taxis (TD). This implies, that when finding assignment A’, we only consider the reassignment of customers 
among taxis that already have a customer assigned; in other words, no taxi would lose a customer. This 
step assures that the necessary compensation the mediator would have to pay to taxis are rather small. If 
we would allow de-assignments of customers (e.g., leaving previously assigned taxis unassigned in A’), the 
compensation costs for the mediator would be generally to high leading to the case that the mediator would 
imply extra cost.  

 
 
 

Algorithm 1. Taxi Assignment 

1: Input: current assignment Acurrent , accumulated mediatorRevenue 
2: Output: assignment Anew 
3: Ao = Acurrent È NTNR(TA, CU) 
4: A’ = Calculate optimal assignment from (CAÈCU) to TD 
5: for all <i,j>Î A’ \ Ao do 
6:     if dikd ≥ dijd | <i,k> Î Ao then 
7:         c = Revenue(i,k) – Revenue(i,j) 
8:     else 
9:         c= Revenue(i,k) – Revenue(i,j)+(dikd – dijd)×(fare – cost) 
10:     end if 
11:     mediatorRevenue – = c 
12: end for 
13: if mediatorRevenue ≥ 0 then 
14:     Anew = A’  
15: else 
16:     Anew = Ao 
17: end if 
18: return Anew 

 
Each modification of taxi i is analyzed in lines 5-12. We calculate the required compensation c for each 

taxi and add -c to the accumulated mediator revenue. The new assignment is only accepted (proposed to 
the taxis) if the mediator keeps a positive accumulated revenue (lines 13-18). 

We have implemented three different optimization functions (line 4): 
• Minimizing distances to customers (MinDist): The optimization consists in finding the assignment 

that maximizes the reduction in the sum of distances of all dispatched taxis towards customers, with 
respect to the current assignment. 

• Maximizing mediator revenue (MaxRev): The optimization consists in finding the assignment that 
maximizes the outcome of the mediator. The current assignment would have an outcome of 0 and, 
thus, acts as a lower limit.  

• Minimizing distances /Maximizing mediator revenue (MinDist/MaxRev):  a linear combination of 
the previous methods. Let A be the current assignment and let D(A) be the sum of the distances of 
taxis towards the customers in A. This assignment approach computes an assignment A’ that 
minimizes: D(A’) – g×R(A,A’), where g is a ratio of scaling monetary income into distance values 
(meters) (e.g. the net benefit a taxi receives per meter when transporting a passenger). Therefore, 
this method optimizes two characteristics: it minimizes the distance to the assigned customers and 
it maximizes the revenue of the mediator. 

5. Evaluation  
In order to evaluate the effectiveness of our proposal we tested it in different experiments simulating the 

operation of a taxi fleet in an area of about 9´9 km, an area that roughly corresponds to the city center of 
Madrid, Spain. In the simulations we randomly generate customers (with different distributions of origins 
and destination location), they are assigned to available taxis, and we simulate the movement of taxis to 
pick up a customer, to drive her to her destination and then waiting for the assignment of a new customer. 
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The simulations are not aimed to be realistic in terms of reflecting the real world operation of a taxi fleet. 
Instead, we want to analyze and compare the different assignment strategies proposed in this paper. Thus, 
we simplified the movements of taxis to straight-line movements with a constant velocity of 17 km/h. This 
velocity is within the range of the average velocity in the city center of Madrid. That is, we do not take into 
account neither the real road network, nor the possibility of different traffic conditions.  

The general parameters used in the simulation are as follows. We use 1000 taxis (initially distributed 
randomly in the area with a uniform distribution) and simulate their operation during 5 hours. The taxis do 
not cruise, that is they only move if they are assigned to a customer. With respect to the customers, we 
randomly generate a fixed number of customers per each 15 minute interval. In order to analyze different 
supply/demand ratios, we accomplish different simulation runs with different numbers of customers from 
250 to 1000 per 15 minutes, in steps of 125. During the simulation, customers appear at their generated 
positions and time. 

We analyze two different methods to generate the origin (point of appearance) and destination location 
of customers: 
• Uniform: both, destinations and origins are generated using a uniform probability distribution over 

the area of interest 
• Center: each trip goes either from the outside of the area to the center, or vice versa. The points 

themselves are generated using a normal distribution (either in the center or in the outside of the 
area) 

The second method corresponds more closely to the actual distributions of taxi trips in urban areas.   
We also tested a third distribution, where we defined two density areas that are about 5 km away from 

each other. Then, each trip is composed of one point (either origin or destination) in one of those areas and 
the other point is generated with a uniform distribution in the whole region. However, we omit the results 
for this distribution since they are not significantly different from the Center distribution.  

In the experiments, we compare the 3 different assignment strategies described in section 3 (without 
compensations) FCFS, NTNR and FA, with the three compensation methods MinDist, MaxRev and 
MinDist/MaxRev. In the latter cases, algorithm 1 is applied with the described compensation schema. In the 
MinDist/MaxRev approach we apply a scaling factor for monetary incomes of g= 1/0.00085, which 
corresponds to the net benefit a taxi receives per meter when transporting a customer in the used payment 
scheme. 

During the simulation, the assignment of taxis to (waiting) customers is accomplished every 5 seconds 
using the corresponding assignment strategy. Once a taxi is assigned to a customer, it moves towards the 
customers location. After a taxi has reached the location of the assigned customer, it picks up the customer 
and drives her to her destination. Then, the taxi waits at this point for a new assignment. We simulate fixed 
pick-up and drop-off times of customers of 30 and 90 seconds, respectively.  

 The payment scheme we used in the experiments is the one that has been used in the city of Madrid in 
the last years. A taxi trip has a fixed cost of 2.4 euros and each kilometer a customer moves with the taxi is 
paid by 1.05 euros. In addition, we assume a cost of operation of a taxi of 0.2 euros per kilometer. This 
includes petrol, vehicle maintenance cost, as well as other fixed costs. 

In the experiments we analyze the average waiting time of customers (the time between the appearance 
of a customer and of taxis) and revenue of the mediator service. 

Each experiment is repeated 10 times with a different random seed, in order to avoid biased results due 
to a particular distribution of clients. The presented results are averages over those 10 runs.  

5.1. Unknown customer destinations 
In the first set of experiments, we assume that during the assignment phase, the destination of the 

customers is not known. Thus, from the perspective of a taxi driver, the expected travel time for the ride 
can be assumed to be some average value for all customers. In our experiments the chosen value has been 
4750 meters, roughly the average of all generated taxi trips. This implies that, the only parameter that makes 
a driver prefer one customer over another is the distance to those customers. 

Table 2 and Table 3 show the average customer waiting times for the two different trip distributions 
(Uniform and Center), respectively. In each case we present the average waiting time of the NTNR method 
as a baseline result and the absolute and relative variation of waiting times with the other methods.    
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Table 2. Average Waiting times for customers for NTNR and variation over NTNR (Absolut in minutes / relative in 
%) with the Uniform distribution. 

Method #Customers per hour 
 1000 1500 2000 2500 3000 3500 4000 

NTNR  0.84 1.02 1.29 2.19 6.78 22.98 43.66 
FCFS 0 /  

0 
0 /  
0 

0 /  
0 

0 /  
0 

77.03 / 
1136.14 

102.33 / 
445.3 

121.91 / 
279.23 

FA -0.01 / 
-1.19 

-0.03 /  
-2.94 

-0.09 /  
-6.98 

-0.56 /  
-25.57 

-1.48 /  
-21.83 

-0.97 / 
-4.22 

-0.84 /  
-1.92 

MinDist 0 /  
0 

-0.01 /  
-0.98 

-0.03 /  
-2.33 

-0.21 /  
-9.59 

-1.05 /  
-15.49 

-0.82 /  
-3.57 

-0.62 / 
-1.42 

MaxRev 0 /  
0 

-0.01 /  
-0.98 

-0.04 /  
-3.1 

-0.38 /  
-17.35 

-1.26 / 
-18.58 

-0.84 /  
-3.66 

-0.68 /  
-1.56 

MinDist/MaxRev 0 /  
0 

-0.02 /  
-1.96 

-0.05 /  
-3.88 

-0.43 /  
-19.63 

-1.4 /  
-20.65 

-0.89 /  
-3.87 

-0.68 /  
-1.56 

 

Table 3. Average Waiting times for customers for NTNR and variation over NTNR (Absolut in minutes / relative in 
%) with the Center distribution. 

Method #Customers per hour 
 1000 1500 2000 2500 3000 3500 4000 

NTNR  1.2 1.56 1.92 3.83 8.29 27.38 49.01 
FCFS 0 /  

0 
0 /  
0 

0 /  
0 

35.19 / 
918.8 

67 / 
808.2 

84.63 / 
309.09 99 / 202 

FA -0.08 / 
-6.67 

-0.21 /  
-13.46 

-0.36 /  
-18.75 

-1.95 / 
-50.91 

-1.88 /  
-22.68 

-2.42 /  
-8.84 

-2.67 /  
-5.45 

MinDist -0.04 / 
-3.33 

-0.1 /  
-6.41 

-0.15 / 
-7.81 

-1.36 /  
-35.51 

-1.19 /  
-14.35 

-2.08 /  
-7.6 

-2.58 /  
-5.26 

MaxRev -0.04 / 
-3.33 

-0.16 /  
-10.26 

-0.29 / 
-15.1 

-1.81 /  
-47.26 

-1.75 /  
-21.11 

-2.45 /  
-8.95 

-2.74 /  
-5.59 

MinDist/MaxRev -0.05 / 
-4.17 

-0.17 /  
-10.9 

-0.31 /  
-16.15 

-1.85 /  
-48.3 

-1.86 /  
-22.44 

-2.48 /  
-9.06 

-2.8 /  
-5.71 

 
 
In both cases, it can be clearly observed that the standard FCFS approach performs considerably worse 

than the nearest taxi/nearest request method, when the demand increases and the system gets saturated. The 
saturation point, that is, the number of clients per hour from which the taxis are not able to serve all clients 
anymore, is between 2000 and 2500 customers per hour in the case of the FCFS method (depending on the 
spatial distribution of customers). Basically, in a saturation scenario, a good heuristic is to assign taxis in a 
way that the customers which are closest are served first. In this way, taxis can serve more customers in the 
same time. This is exactly the basis of the NTNR approach.  

The saturation point of all other methods is around 2500-3000 customers per hour. The full auction 
approach (FA) performs best in almost all cases. This is reasonable since the optimal assignments are 
calculated among all possible taxis and all possible customers. The obtained improvement with the FA 
method shows that reducing the overall travel times of all taxis to the nearest customers in each moment 
produces reductions in the global waiting times of customers. The method, however, is not always the 
optimal solution when we consider the dynamics of the system over time, e.g., the appearance of future 
customers. On the long run, it would be better to serve customers first that are within a short distance and 
also have a destination in an area with a high probability of appearance of new customers. However, in this 
paper we did not take into account such considerations.  

As argued before, the FA method is not applicable in the case of autonomous taxi drivers. In such a case 
the three different compensation approaches, MinDist, MaxRev, and MinDist/MaxRev can be employed. 
The three methods outperform the NTNR approach in both customer distributions. The improvements are 
rather small for low demand scenarios and are very considerably closed to the saturation point (between 
2000 and 3000 customers per hour). Above this point, the improvements remain rather stable.  Out of the 
three compensation methods, the approach of maximizing the outcome of the mediator performs better that 
minimizing the distances to the customers. This is basically due to the fact that some optimal solutions 
found with the MinDist approach imply high negative revenues for the mediator and, thus, they will not be 
applied. On the other hand, the MaxRev approach finds the solution with the highest (positive) outcome 
for the mediator. Since in our settings a positive outcome is only achievable if the sum of the distances of 
the taxis towards the assigned customers is reduced, a high positive outcome also implies a better solution 
in terms of reduced distances to customers. This means, in situations where the optimal solution in terms 
of distances would have a negative outcome for the mediator, MaxRev is able to find good solutions with 
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a positive outcome. In the experiments, the combination of both methods, MinDist/MaxRev, obtains 
slightly better results in general in comparison to MaxRev.  

With regard to the different distributions of customer origin and destination points, the methods show a 
different behavior with the Uniform distribution in comparison to the Center distribution. Basically, the 
improvements that can be obtained with smarter assignment solutions than NTNR are lower in the case of 
the uniform distribution. Our explanation of this fact is that in such a case, also the taxis will always be 
distributed in an almost uniform way in the region, since they move the customers to their destination 
locations (which are uniformly distributed). Thus, if both, taxis and customers are distributed in a uniform 
manner, also the distances between unassigned customers and available taxis will be more homogeneous 
at all times than in other distributions. This implies that there is not so much space for obtaining 
improvements when reassigning customers. In general, however, the results in the case of the uniform 
distribution are similar to the center distribution, even though the obtained improvements are smaller. The 
FCFS has a clearly worse performance, FA provides the best results and the three compensation approaches 
obtain improvements with respect to the NTNR approach.   

In Figure 3 we analyze the overall revenue of the system, composed of the revenues of the taxis plus the 
accumulated revenue of the mediator service. 

 

 
 

 
 

Figure 3. Overall revenue of the system in euros for the Uniform distribution and the Center distribution and for 
different numbers of customers per hour. The outcome is normalized to 1000 customers and is composed of the benefit 
of the (1000) taxis plus the benefit of the mediator service. 

 
 As it can be observed, the highest overall benefit of the system is obtained in all cases with 

MinDist/MaxRev. It is slightly higher than the other two compensation approaches. And they all 
outperform the baseline method NTNR. The FCFS approach performs considerably worse than the baseline 
for higher demand scenarios.  

The main difference among the three compensation approaches is the distribution of the benefit among 
taxis and the mediator service. Taxis have the highest benefit with the MinDist methods. On the other hand, 
the benefit of the mediator is highest with the MaxRev approach. For instance, in the case of the Center 
distribution, the mediator benefit for each 1000 customers is between about 2 euros with 1000 customers 
per hour and around 34 euros with 3000 customers per hour. The combination approach, MinDist/MaxRev 
provides an intermediate solution, ranging the mediator benefit between 1 and 20 euros in the case of the 
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Center distribution. 
An interesting issue is that the average benefit of taxis is higher than in the baseline method for very high 

and rather low demands. But it might be lower in the case of the MaxRev approach for demands closed to 
the saturation point. Still, the assignments and reassignments with this method are always done such that a 
taxi driver does never loose benefit when he is reassigned to another customer. In the case of the MinDist 
approach, the outcome for taxis is always higher than with the NTNR method. And in the combination 
method MinDist/MaxRev, taxi benefit is generally higher, except closed to the saturation point, where it is 
similar or slightly lower. However, it should be noted that, in general, the globally best solution seems to 
be the MinDist/MaxRev approach. It provides the best customer waiting times, and assures the highest 
global benefit. Moreover, if the aim of the system is to maximize the revenues of the taxi drivers, the 
mediator revenues could be simply redistributed among all involved taxis. On the other hand, if the aim of 
the system is to obtain the highest possible benefit of the mediator service, then the MaxRev approach 
would be the most appropriate. 

5.2. Known customer destinations 
In the second set of experiments we assume that the customer destinations are known to the taxi drivers 

when customers are assigned. In this case, the necessary compensation does not only depend on the distance 
to the customer, but also on the distance required to transport the customer to her destination point. Here, 
a customer that is closer to the current position of a taxi might not always be a “better” customer, since the 
paid part of the trip might be much shorter. In Table 4, we present the results of average waiting times with 
the different methods if the destinations of customers are known when they request a service. We only 
present the results for the center distribution of customer locations. For the uniform distribution the 
behavior is very similar. 

 
Table 4. Average Waiting times for customers for NTNR and variation over NTNR (Absolut in minutes / relative in 
%) with the Center distribution if customer destinations are known. 

Method #Customers per hour 
 1000 1500 2000 2500 3000 3500 4000 

NTNR  1.2 1.56 1.92 3.83 8.29 27.38 49.01 
FCFS 0 /  

0 
0 /  
0 

0 /  
0 

35.19 / 
918.8 

67 / 
808.2 

84.63 / 
309.09 

99 /  
202 

FA -0.08 / 
-6.67 

-0.21 /  
-13.46 

-0.36 /  
-18.75 

-1.95 /  
-50.91 

-1.88 /  
-22.68 

-2.42 /  
-8.84 

-2.67 /  
-5.45 

MinDist 
0 / 0 0 / 0 0 / 0 

-0.2 /  
-5.22 

-0.42 /  
-5.07 

-1.6 /  
-5.84 

-2.24 /  
-4.57 

MaxRev -0.01 / 
-0.83 

-0.07 /  
-4.49 

-0.16 /  
-8.33 

-1.6 /  
-41.78 

-1.33 /  
-16.04 

-1.79 /  
-6.54 

-1.98 /  
-4.04 

MinDist/MaxRev -0.01 / 
-0.83 

-0.08 /  
-5.13 

-0.19 /  
-9.9 

-1.72 /  
-44.91 

-1.46 / 
 -17.61 

-2.14 /  
-7.82 

-2.39 /  
-4.88 

 
 
 As it can be observed in Table 4, the NTNR, FCFS and FA methods do not change if customer 

destinations are known, since this additional information is not taken into consideration. With regard to the 
compensation methods, MinDist does not improve the waiting times up to 2500 customers per hour. This 
is due to the fact that compensations that would have to be paid to taxi drivers in a global reassignment are 
much higher if customer destinations are known. In our compensation method, taxis never lose money 
when they are reassigned to a new customer and are compensated if the new customer is “worse”. If the 
customer distance is known, now a taxi would need to be compensated not only for extra distance towards 
a new customer, but also for the possible loss in the trip with the customer. This implies that most of the 
time, the mediator would not earn any money with a reassignment. Instead it would have to pay a high 
compensation to taxis and, thus, would incur in a negative benefit. Since we assume that the mediator 
should not have a negative overall outcome, in such cases the reassignment would simply not be applied. 
In the MinDist approach, reassignments with positive outcome for the mediator can only be found for high 
demand scenarios.  

The MaxRev and MinDist/MaxRev methods behave better in this case than MinDist. However, in 
comparison to the case where customer destinations are not known (and, thus, treated as equal), the results 
are slightly lower. Again, this is due to the difficulties for finding global reassignment solutions with a 
positive gain for the mediator. 

Figure 4 presents the benefit of the global system in this set of experiments. The MinDist approach 
behaves very similar to the NTNR method, albeit it assures that taxis always have a slightly higher benefit. 
The benefit of the mediator is almost zero. MaxRev and MinDist/MaxRev provide the highest overall 
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revenue for the system, being the combination method slightly better in all cases.  The mediator benefit is 
similar as for the case where customer distances are unknown (and estimated through an average value). 
MaxRev again assures the highest benefit for the mediator, ranging from about 1 euro and 54 euros for each 
1000 customers at a generation rate of 1000 and 3000 customers per hour, respectively. 

 
 

 
 

Figure 4. Overall revenue of the system in euros for the Center distribution and for different numbers of customers per 
hour if customer destinations are known. The outcome is normalized to 1000 customers and is composed of the benefit 
of the (1000) taxis plus the benefit of the mediator service. 

 

6. Conclusion 
In this paper, we have presented a new algorithm for dynamic taxi dispatching. Our proposal 

characterizes and differentiates from other approaches in the possibility of proposing taxi reassignments 
that improve a current global assignment when new customers or available taxis appear. In order to create 
a realistic dispatching proposal that is accepted by rational autonomous taxi drivers, we devised a 
compensation system in which taxis that get a “worse” customer receive an extra monetary compensation 
while those who get “better” customers pay part of the reduced costs to a mediator service. The mediator 
service (e.g. a taxi company), manages all those payments and only proposes a better assignment if its 
accumulated revenue is positive and thus, it does not incur in extra costs. We evaluated three different 
versions of our proposal, namely (i) minimizing distances, (ii) maximizing mediator revenue, and (iii) a 
combination of both. We compared them to the standard FCFS dispatching strategy and its modified NTNR 
approach, as well as to a “complete” dynamic reassignment approach without compensations (FA). The 
results showed that our methods outperform the standard strategies, especially when the demand increases. 
It obtains very similar results as the FA approach. 

A key lesson learnt from our experiments is that, especially in high load situations, a dynamic 
reassignment approach can produce noticeable benefits for system performance. This is true for all 
stakeholders: our proposal contributes to reduce average waiting time of customers and also helps to 
increase drivers’ revenues. In some configurations, the new assignments even allow obtaining some 
economic benefit for the mediator as well, resulting from exceeding incomes of compensations. Such extra 
money could be shared, for instance, to the taxis. Notice that the performance of the dispatching strategy 
could be improved even further if the compensation system allowed a negative balance. This would not be 
necessarily unrealistic if the mediator was a public entity. For example, a municipality might be willing to 
invest some money if a more efficient service is provided, thus reducing CO2 emissions (probably reducing 
city fines for high emissions imposed by superior authorities). 

Still, while we have obtained promising results, it should be noticed that our approach does rely on some 
simplifications. Obviously, assuming that travel time is proportional to distance is one of them. 
Furthermore, we assumed that all taxi drivers are (economically) rational utility maximisers, and that even 
a very small additional monetary benefit can make them accept changing their plans, which may not always 
be true. Finally, we do not consider the possibility of taxi drivers to “opt out” of our mechanism, e.g. by 
not accepting its indications (for whatever reason). This may introduce additional “noise” in our 
assignments with a potentially negative impact on their performance. 

The taxi dispatching model presented in this article opens up several avenues for subsequent research in 
the field of knowledge-based and expert systems. Our future work will unfold among several lines. Firstly, 
we intend to relax some of the simplifying assumptions that our current approach relies on. In particular, 
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we will base the different cost functions used in our mechanism on a more accurate estimation of travel 
times and distances. For this purpose, we will set out from a realistic road network topology and real-world 
load data. This information is already available to us for the town of Madrid. We will then be able to 
perform our simulations with a fully-fledged microscopic traffic simulator such as SUMO5. In this context, 
we plan to reach an agreement with a taxi fleet operator so as to use real-world data on customer origin and 
destinations for the experiments. 

Secondly, similar to the problems addressed by the works of Laha and Putatunda (2018) or Ocalir et al. 
(2010), we plan to apply methods to estimate probabilities of new taxi customers appearing in different 
areas of the network. In a previous paper related to the dynamic positioning of ambulances, we used 
Voronoi Tessellation to dynamically determine the default positions for service vehicles (Billhardt et al., 
2014) based on historical data. Such information can be complemented with domain knowledge of a 
particular destination (soccer matches, concerts, etc.). The corresponding information would then be used 
to make the taxi dispatch decisions more predictive. 

Thirdly, in line with the work by Massowa y Canbolat (2010), we intend to look into more complex 
models of the taxi drivers’ reactions to our dispatch strategy, so as to better adjust compensations and 
provide the designer of a taxi dispatching model with guidelines to choose among alternative strategies for 
revenue distribution (MinDist, MaxRev, etc.). To this respect, we plan to analyze how the ratio of taxi 
drivers that decide to refrain from using our dispatching service affects to the global performance of the 
system.  

Fourthly, in this context, we also plan to look into coalition formation techniques from Cooperative 
Game Theory. In general, algorithms to compute solutions to coalitional games are known to suffer 
complexity problems, but we have applied an approximation scheme (the bilateral Shapely Value) in the 
context of a Smart Grid application (Mihailescu et al., 2017), and would like to explore as to how far a fair 
and efficient split of the savings implied by taxi reassignment can be implemented in this manner. 

Finally, it should be noted that the mechanism proposed in this article does not only apply to taxi fleets 
but could also be adapted to other types of open fleets (Billhardt et al., 2017), where autonomous drivers 
with individual objectives provide some transportation service (e.g., messenger or parcel delivery services). 
In particular, to this respect, we will investigate the use of heterogeneous fleets or “CyberFleets”, as 
proposed in (Billhardt et al. 2014b).  The proposal from this article could even provide a suitable basis for 
managing other sorts of large-scale Demand Responsive Transport systems that provide shared 
transportation services with flexible routes (Satunin and Babkin, 2014). 
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