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JORGE DURÁN ZAFRILLA

THE DEVELOPMENT AND GENERATION OF GNSS RF
SCENARIOS FOR THE ANALYSIS AND OPTIMISATION

OF DRONE PERFORMANCE IN A GEO-FENCED
ENVIRONMENT.

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING

Autonomous Vehicles Dynamics & Control

MSc
Academic Year: 2017–2018

Supervisor: Dr Ivan Petrunin & Prof. Rafal Zbikowski
August 2018





CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING

Autonomous Vehicles Dynamics & Control

MSc

Academic Year: 2017–2018

JORGE DURÁN ZAFRILLA
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Abstract

The aims of this Individual Research Project are the development of a Geo-Fencing

software able to generate GNSS Geo-Fences with different shapes and conditions and the

study of the UAV performance inside Geo-Fenced environments. In order to accomplish

these two objectives, three different software modules have been developed, the main

module is the Geo-Fencing tool and two support modules used to do the performance

analysis.

Geo-Fencing is a key field that will help the development of Unmanned Traffic Man-

agement in the following years. The software developed in this project generates circular

and polygonal Geo-Fences and adds to each GF an initial and final time, which is the

main novelty and the reason why this project is interesting for the development of UTM.

This software also receives a positioning of a UAV and displays in real time a message if

the vehicle is inside the GF or not.

To study the drone performance in this type of environments, a motion planner and

Scheduler able to deal with the UTM have been also developed within this project. The

motion planner is a simple trajectory generator that can be used in the loop and also can

follow a path plan. This path plan is generated by the Scheduler mentioned above. This

software generates a path inside a chosen GF with a given mission (Boundary and interior

surveillance mission). With this path plan two different performance analysis are done in

this project.

The purpose of the first analysis is to study the minimum offset required with the

boundary of a given GF in order to guarantee that the UAV is inside the GF at any moment
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taking into account the GNSS accuracy. This offset is calculated for different speeds. And

from the analysis, it is proved that the offset required increases with the speed and the

interior surveillance mission requires more offset because it performs more turns than the

boundary surveillance mission.

In the second study, it is shown the influence of Multi-path in the GNSS accuracy

within Geo-Fenced urban environments, concluding that only GNSS is not enough accu-

rate to perform missions inside urban environments.

Keywords
Geo-Fencing; GNSS; GPS; Path Planning; UAV; UAS; Autonomous; UTM; Drone

Performance; Sureillance Mission; Simulator; Path Following; GNSS simulator; Multi-
path.
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Chapter 1

Introduction

During the last decade, the evolution of technology has improved the industry of un-

manned vehicles. Moreover, the use of autonomous technologies is increasing consider-

ably due to the large number of applications that it has. Autonomous vehicles include

any type of platform such as UAVs, UGVs, etc. It is not difficult to imagine a future

where every repetitive, boring or risky task is done by an autonomous system. Examples

of this kind of applications are search and rescue, delivery process of packages, explosive

deactivation, etc.

However, having hundreds or thousands of UAVs flying around autonomously needs

the development and improvement of safety in order to guarantee the integrity of people

and the success of the mission developed by each vehicle. In order to deal with this

amount of traffic, the Unmanned Traffic Management (UTM) is being developed.

One of the most useful tools in UTM is Geo-Fencing. A Geo-Fence is a boundary

region of interest in a geographical region and is used to increase the safety of UAS oper-

ations and the security of any particular ground area (Airfields, areas with a big number

of people, Military areas). But Geo-Fencing cannot work with an accurate positioning.

To guarantee this accuracy, GNSS can be used together with its different constellations,

signals and augmentation systems.

1



2 CHAPTER 1. INTRODUCTION

Taking into account this background the aims of the project are:

• To develop a library of Geo-Fencing compatible with Spirent Simulator

• To develop a UAV Scheduler able to deal with UTM in a Geo-Fenced environment

• To study the performance of UAVs during missions inside a Geo-Fence

The scope of this project is to study the performance of UAVs in Geo-Fenced environ-

ments using GNSS positioning. To do so, the simulator of GNSS GSS 7000 provided by

Spirent has been used to simulate the GNSS RF. All the test performed during this project

have been done using only software and simulations. UAVs and Geo-Fences were simu-

lated using different programs and Graphic User Interfaced developed for this project.

After the development of this software, several tests are will be performed to test the

performance inside Geo-Fences. The first analysis is a study of the minimum offset with

the boundary of the Geo-Fence required to guarantee that the UAVs are always inside the

chosen area while performing a mission. The second analysis is the study of the influence

of Multi-Path during UAV missions inside Geo-Fences and it was done using the software

Sim3D provided by Spirent.

Figure 1.1: Flow diagram of the whole project
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The main structure of the project is shown in 1.1. A motion planner deals with the

generation of the trajectories of the UAVs, and send its motion commands to the GNSS

simulator. The simulator generates the RF signal which is read by a GNSS receiver that

computes the real position of the vehicle and sends this positioning to the GF library.

In the GF library the GFs are created and then, once the positioning is being received,

computes if the vehicle is inside or outside the GFs created.

Finally, the scheduler deals with the UTM, it knows the location of the GFs, and

generates the UAVs, with a given mission inside a GF. Then computes the path planning

of the selected mission in the chosen area and runs the motion planner to do the path

following of the path created.
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Chapter 2

Literature Review

2.1 Unmanned Aerial Systems (UAS) and Unmanned Traf-

fic Management (UTM)

UAS of any type, (fixed-wing, multi-copters, etc), with different degrees of autonomy,

are one of the most innovative industries these days (van Blyenburgh, 1999). The evo-

lution of UAS in addition to the increase of the quality and the reduction of the cost of

sensors of any type give to the UAS industry hundreds of possible applications for both

civil and military areas.

Examples of this kind of operations are mapping (Samad et al., 2013), surveillance,

aerial photography or filming, dull, dirty and dangerous missions, etc. However, new

technologies need new regulations. Every aerial vehicle must follow some standard and

requirements given by governments and agencies (ICAO, 2011). Furthermore, because of

the increasing number of UAS, it is necessary to manage its traffic independently if they

are using the same airspace of manned aircraft or not.

The idea of UTM comes from the well-known Air Traffic Management system that

we have since the air collision over the Grand Canyon in 1956. Kopardekar (2014b) and

Kopardekar (2014a) explain the current situation of UTM and its perspective for the short

5
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and long term. The objectives of UTM are: reduce the risk of accidents, avoid severe

weather areas, increase the safety of missions and avoid unauthorized use of airspace.

The goal of UTM is to get UAS operations with safety and efficiency in a low-altitude

airspace. The development of UTM is necessary to increase the number of operations of

UAS and it is based on the rules of ATM. In the short-term (1-5 years) the goal of UTM is

to manage with several UAVs in a low-altitude airspace and the steps to follow are clearly

defined in [10]. The long-term goal is to increase the autonomy of UTM for a larger

number of operations in a very dense air-space. The main goal of UTM is to achieve a

completely unmanned management system.

One of the first steps of the UTM is to delimitate the airspace to guarantee safety

operations of UAVs. Geo-fencing is the application that enables this delimitation.

2.2 Geo-Fencing

Geo-Fencing is defined as the boundaries of a region in a geographical area (Pratyusha,

2015). Geo-Fencing helps Control Stations to increase the safety of operations managed

by UTM. When a vehicle enters or leaves a defined region, the user receives an alert. For

example, in a completely autonomous UTM, the Control Station would take the control

of the vehicle if it enters an unauthorized region until the vehicle is outside the region.

Regarding the shape of the regions, there exist two different types of Geo-Fencing.

Polynomial Geo-Fencing is obtained from different selected points and is formed by the

region inside these points. In order to determine whether a vehicle is inside a polynomial

region or not, an algorithm is explained in (Pratyusha, 2015). Circular Geo-Fencing is

given by a point and a radius. With this shape determining if a point is inside the circle is

trivial.

Using different coordinate systems is possible to increase the accuracy of Geo-Fencing.

For example, for small areas, the NED coordinate system can be more useful than ECEF
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or LLA. Therefore, conversions between systems are important taking into account that

GNSS technology usually works with ECEF coordinates.

The use of GNSS is necessary to obtain accurate positioning for both UAVs and Geo-

Fences (Stevens et al., 2015). Furthermore, GNSS technology does not only provide

accurate positioning, but also a highly precise time which will help the development of

4D Geo-Fencing.

The papers of Cai et al. (2011) and Koks (n.d.) explain the different conversions

between systems of references that are used in this project. The main systems used are

NED (Local, North, East, Down) for defining the Geo-Fencing, ECEF (Global, Earth

Centred Earth Fixed) and LLA (Global, Longitude, Latitude and Altitude) used by GNSS.

2.3 Positioning, Navigation and timing techniques (PNT)

- GNSS, ADS-B

Satellite navigation has been used for aerial navigation for the last 50 years. However,

in the last ten years, the development of differential satellite navigation has increased

the accuracy of this technology. Despite this, aviation still uses ground-based navigation

systems due to the slow and careful process that any innovation in air navigation must

follow in order to guarantee enough safety in operations. The main four challenges of

GNSS navigation for aircraft guidance are accuracy, integrity, continuity and availability

(Blanch et al., 2012).

Global Navigation Satellite Systems existing currently are: NAVSTAR-GPS (USA,

Military), GLONASS (Russia, Military), Galileo (Europe, Civil), Beidou (China), QZSS(Japan)

and IRNSS (India).

As it was mentioned before, GNSS technology can increase its accuracy using aug-

mentation systems or differential GNSS. Grewal et al. (n.d.) explains the different types of



8 CHAPTER 2. LITERATURE REVIEW

DGNSS such as Local-Area DGNSS, Wide-Area DGNSS and Space-Based Augmenta-

tion Systems (SBAS). Typically, the LADGNSS uses GBAS (Ground-Base Augmentation

Systems) and is used to increase vertical accuracy during approaches and landings.

SBAS uses Geostationary satellites to send GNSS corrections wide areas. Depending

on agencies and territories, there are different SBAS systems working currently. Wide-

Area Augmentation System (WAAS) gives corrections of the GPS area in the USA. Eu-

rope uses the European Global Navigation Overlay System (EGNOS). GAGAN(India),

SNAS (China), MSAS (Japan) and CWAAS (Canada) are the other SBAS systems used

in the world.

Different RF frequencies are used in each satellite positioning system as a carrier

frequency to decrease errors. The errors from GNSS come from different sources: prop-

agation errors (ionospheric and tropospheric), receiver errors (clock, noise, resolution),

Ephemeris prediction errors, satellite dependant errors (clock offset and delays) and user

dynamics errors (dynamics of the antenna, etc). From all of these errors can be obtained

the accuracy of the navigation obtaining then the factors called DOP (Dilution of Preci-

sion)(Sabatini et al., 2017).

GNSS is not the only solution for positioning, navigation and timing (PNT). Despite

GNSS is considered the first choice because of its high accuracy, wide coverage and low

cost it has some disadvantages such as interferences (due to attacks or natural events) be-

cause of its large propagation distance (Han et al., 2016). There exist some other solutions

for the PNT services.

One of these new technologies is called ADS-B (Automatic Dependent Surveillance

Broadcast). The ADS-B was created as a system developed by the FAA that provided

weather and traffic information in-flight (Podradchik, 2015). ADS-B messages were sent

from ground stations.

Nowadays, this technology provides Air Traffic Control with more accurate position
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of aircraft in the enroute, terminal, approach and surface environments for surveillance.

Aircraft broadcasts its information (ID, position, etc) and ground stations receive this

signal to broadcast them (Corporations, 2016). The main benefits of ADS-B are: the

reduction of cost of surveillance (secondary surveillance radar is limited by LoS and has

a high maintenance cost), the improvement of the safety of operations and can reduce

delays and fuel consumption (more efficient separation between aircraft).

In addition, space-based ADS-B is being developed in order to reach worldwide cov-

erage for the ADS-B surveillance System using the IRIDIUM satellite constellation (voice

and data coverage to satellite phones). This technology is expected to work by the end of

2018 (Aireon, 2018).

2.4 GNSS simulators and GNSS issues

Taking into account the objectives of the thesis to generate GNSS scenarios to eval-

uate the performance of UAS in Geo-Fenced environments is necessary to use a GNSS

simulator. There exists different simulators available in the market. A comparative of

most of the simulators available is shown in Staff (2018). These are some of them:

• CAST-5000 GPS WAVEFRONT GENERATOR (CAST NAVIGATION)

• CLAW 18-CHANNEL REAL-TIME GPS SIMULATOR and RSR TRANSCODER

GPS SIMULATOR ( JACKSON LABS TECHNOLOGIES INC)

• GSS9000, CRPA TEST SYSTEM, GSS6450, GSS200D, GSS7000 (SPIRENT FED-

ERAL SYSTEMS)

• NCS TITAN and NAVX-NCS ESSENTIAL SIMULATORS (IFEN GMBH)

• LABSAT 3 WIDEBAND (RACELOGIC)

• SDX: SOFTWARE-DEFINED GNSS SIMULATOR (SKYDEL)
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• CONSTELLATOR, ECHO (SYNTONY GNSS)

• BROADSIM and PANACEA (TALEN-X)

• ALL CONSTELLATIONS, ALL FREQUENCIES (OROLIA/SPECTRACOM)

The choice of using the Spirent GSS7000 simulator for this project was made accord-

ing to two main reasons: The systems provided by the University and the sponsor of this

project (Spirent).

The advantages of the Spirent simulator with respect to the other solutions available

are several: Multi-Frequency, Multi-Constellations and their signals(L1, L2, L5, etc) and

the update rate of 1 ms which provides more accuracy and fidelity to the simulations.

In addition, these simulators can test the resilience of GNSS scenarios letting the user

change any desired parameter of the simulation (orbits, antenna patterns, the power level

of each frequency, etc).

Another advantages of the Spirent solution is the possibility of simulating Multi-path.

The influence of Multi-Path in GNSS positioning accuracy is great, and it can produce a

high loss of accuracy in presence of urban environments, where signals can be reflected

in a large number of surfaces. A study of this influence is done in this project.

To understand the influence of multi-path and obtain proper conclusions after the post-

process of the data obtained from the tests done using Spirent software Sim3D, the fol-

lowing references were used: WANG (n.d.) and Peng Xie and Petovello (2015).

2.5 Path Planning and Path Following

In order to generate the desired scenarios with both different missions (Interior and

Boundary surveillance), different methods of path planning have been studied. Taking

into account the complexity of the desired paths inside Geo-Fences with different shapes,

several steps have been followed.
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Firstly, for both missions is necessary to obtain an interior polygon or circumference

with an offset of the chosen Geo-Fence. in (Cacciola, n.d.) and (Palfrader and Held,

2015) different methods of offsetting polygons are explained. However, for the scope of

this project, only non-convex polygons are considered and therefore a simpler algorithm

was developed with this offsetting objective.

The new interior polygon is now the path plan of the boundary surveillance mission.

To calculate the list of way-points of the path plan for the interior surveillance mission

an algorithm was developed following (Aslund et al., 2011) and (Kariuki et al., 2014). In

these two papers are explained different approaches of algorithms able to produce a path

that covers the interior of any surface.

Different approaches of path planning were considered and discarded such as the one

explained in (Pala et al., 2013), and others with no polygonal approach like Dubbins path

planning or Pythagorean-Hodograph path planning in (Lazarus et al., 2010), (Farouki,

n.d.) and (Shanmugavel et al., 2007).

Finally, the algorithm chosen to perform the path following is a Carrot-Chasing algo-

rithm explained in (Seo, n.d.).

The most common positioning system is GNSS, therefore, this technology would be

the one chosen in order to succeed with the aims of the project. In addition, Geo-Fencing

is a field of knowledge that will become more important in the near future to develop UTM

tasks. Therefore, the development of a Geo-Fencing software would be a very useful tool

for the future of UTM.

After studying the current state of the art, the expected contributions to knowledge of

this thesis are:

• The addition of GPS time to the Geo-Fences. (GFs managed by UTM can have

initial and final time)



12 CHAPTER 2. LITERATURE REVIEW

• Development of a Scheduler able to deal with several UAVs and Geo-Fences present

in an airspace

• The study of the minimum offset required

• The influence of Multi-Path in Geo-Fencing

Therefore, taking into account the current State of the Art, the objectives of the project

are defined as:

• To construct a motion planner in C++ to simulate UAV trajectories.

• To construct a GUI to set different types of Geo-Fences.

• To build an algorithm which compares relative position of UAV with Geo-Fences

with the addition of GPS time.

• To develop a minimum required offset analysis for different scenarios

• To develop a study of the influence of Multi-Path for different scenarios
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Methodology

Now that the objectives and the scope of the project have been presented and the lit-

erature review has been explained, the development of the whole project is shown during

this chapter. First of all, the hardware and software used will be explained, then the chap-

ter will focus on the flow diagram of the project, to finish explaining all the developed

software mentioned in the introduction.

Figure 3.1: Diagram of the hardware and software used and connections between them

All the software involved during this project and the connections between them are

13
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shown in Figure 3.1. Then, every single part is explained individually, being more accu-

rate and precise when explaining the software developed by me for this project.

Once all the software and hardware involved and all the developed software is ex-

plained, the experiments done to test all this software and the performance of the UAVs

using this GF software will be explained and analyzed in the following chapter.

3.1 Hardware setup and software environment

3.1.1 GNSS simulator - GSS7000 (Spirent)

The GSS7000 series is a Multi-GNSS Constellation Simulator with multi-frequency

(L2/B2, L5/E5) capability for R&D, verification testing. The simulator was provided

by Spirent to Cranfield University with R&D purposes and is located in the Aerospace

autonomy Laboratory in the AIRC building.

’

Figure 3.2: External aspect of the GSS 7000

In Figure 3.2 is shown the external aspect of the simulator. The remote commands are

sent to the simulator with an Ethernet connection from the computer where the Motion

Planner is being executed to the simulator port that is located in the rear part of the box.
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Once the simulator generates the whole GNSS RF signal it is sent through the RF out port

in the front side of the box to the GNSS receiver.

The simulator generates an RF GNSS signal of any scenario. The software environ-

ment used by the simulator is called SimGEN - PosApp and it is sown in Figure 3.3. As

it is seen in the image, the amount of parameters that can be changed in the simulator is

huge: Constellations and frequencies used, type of vehicle (car, ship, space shuttle, air-

craft or remote vehicle), antenna pattern and antenna parameters in the vehicle, date of

the simulation, power of the signal and a lot of the parameters each satellite (orbits, etc.).

The vehicle type used for this project is a remote vehicle. This means that the motion

commands of the vehicle we are testing are generated outside this software and sent to

them by standard UDP messages explained in the SimREMOTE Manual provided with

the simulator.

’

Figure 3.3: Screen-shot of SimGEN - PosApp

Most of the tools and parameters that can be selected and modify in SimGEN are

explained in Chapter 5 where the parameters of the scenarios of the simulations are shown.
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3.1.2 GNSS receiver - U-blox EVK-M8N

A GNSS receiver is an electronic device that receives RF signals from the constella-

tions (in our case signals are generated by the simulator) and digitally process them to

calculate position, velocity and time (time is the receiver time, so its accuracy depends on

the accuracy of its clock).

U-blox EVK-M8N is an evaluation kit of the M8N GNSS receiver. It is used together

with a PC to evaluate the performance of real vehicles or in laboratories using GNSS

simulators. It is used with the software U-Center, which receives the NMEA messages

calculated by the receiver and displays the desired parameters to test the performance of

the simulations. The receiver is shown in Figure 3.4.

The connection between the receiver and the PC is done by a USB cable and a serial

port as it is shown in Figure 3.1.

’

Figure 3.4: Receiver U-Blox EVK-M8N. (EVK-8/EVK-M8, 2018)



Chapter 4

Design of the Geo-Fencing software

All the software explained in this section has been developed in Managed C++ using

Visual Studio 2017 and Matlab R2017b. C++ was chosen because the GNSS simulator

and most of the Spirent software is developed in C++ and using it here makes this project

more compatible with it. Matlab is used only for reading the GNSS receiver because

it had some errors with C++ and to do the post process of all the data taken during the

performance analysis.

The developed software for this project was explained in Figure 3.1. The main pro-

gram is used to create GFs and give feedback to the user if a Vehicle invades a GF. The

rest of the software was created to support the GF program in order to do the performance

analyis.

In this section is presented the most important part of this project. The development of

this Geo-Fencing library is one of the objectives of the thesis and was required by Spirent.

The requirements for this software are:

• Generation of Geo-Fences

• Compatible with different shapes of GF:

Polygonal

Circular

17
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• Possibility of adding initial and/or final time to the GFs (Geo-Fencing 4D)

• Compute if a vehicle is inside or outside the GF

• Develop a GUI to create GF and possibility of reading them from .txt and .kml

Once again the detailed explanation of the developed software will be based on the

possible actions that the user can take in the Graphic User Interface (Buttons, text-boxes,

etc). The design of the GUI is shown in Figure 4.1. The full GUI can be divided into two

clearly separate parts: the GF creator and the GF comparator.

’

Figure 4.1: Graphic Using Interface of the Geo-Fencing software

4.1 GF creator

This part corresponds to the left-hand side of the GUI. The first action that the user

has to take is the selection of the shape/input format of the Geo-Fence checking one of
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the four check boxes available. Depending on the checkbox that is checked, the text

boxes available change according to the parameters that each shape needs as it is shown

in Figure 4.2.

’

Figure 4.2: Parameters required for the different shapes/input formats

As mentioned before, the user can create manually the GFs selecting the shape polyg-

onal or circular, or can select directly the input file with the GFs from a .txt or a .kml:

1. Polygonal shape. Manual creation.

When this check box is selected, the user can create a polygonal Geo-Fence from a

list of points. The inputs that are introduced only once are: ID of the Geo-Fence,

Maximum Altitude, Initial and Final time and the number of points. Then in the

lat: and lon: text boxes is written the Latitude and Longitude of the first point and
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the button Add Point is pressed. Then you add the rest of the points following the

same steps.

Every time that a point is added, the label next to the number of points text box

displays the number of points added out of the total points. Once all the points are

added, the button Create GF creates a string with a standard format that stores all

the GFs created. The standard format for the polygonal GF is:

ID;shape;N of Points;Latitude 1; Longitude 1;...;...;Latitude N; Longitude N;

Maximum Altitude; Initial Time; Final Time;end

For example, the standard format of the Geo-Fence shown in Figure 4.3 is:

’

Figure 4.3: Example of Polygonal Geo-Fence

SanJose;poly;7;37.333241666666666;-121.8942472222222;37.334566666666667;-

121.8914361111111;37.333597222222224;-121.8906944444444;37.33214166666

6665;-121.8900888888889;37.331113888888886;-121.8920777777778;37.331052

777777778;-121.8923611111111;37.331091666666666;-121.8926166666667;0;03

/08/2018 18:05:00;03/08/2018 18:45:00;end

2. Circular shape. Manual creation.

When this check box is selected, the user can create a circular Geo-Fence from a

centre and a radius. All the inputs are introduced only once: ID of the Geo-Fence,
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Latitude of the centre, Longitude of the centre, radius, Maximum Altitude, Initial

and Final time and the number of points.

Then the button Create GF creates a string with a standard format that stores all the

GFs created. The standard format for the circular GF is:

ID;shape;Latitude centre; Longitude centre;Radius; Maximum Altitude; Initial

Time; Final Time;end

Once again, the standard format of the circular Geo-Fence shown in Figure 4.3 is:

SanJoseCirc;circ;7;37.332847222222220;-121.8921416666667;100;500;03/08/20

18 18:05:00;03/08/2018 18:45:00;end

3. Input from .txt.

When this check box is activated, all the GFs are loaded from a .txt file. The name

of the file has to be introduced in the ID text box without the extension .txt. The

standard format of this file starts with a line containing the number of GFs. Every

GF then is written in a new line with the same format explained before taking into

account the shape of it. An example of a .txt file containing the 2 GFs shown before

is:

2 \n

SanJose;poly;7;37.333241666666666;-121.8942472222222;37.334566666666667;-

121.8914361111111;37.333597222222224;-121.8906944444444;37.33214166666

6665;-121.8900888888889;37.331113888888886;-121.8920777777778;37.331052

777777778;-121.8923611111111;37.331091666666666;-121.8926166666667;0;03

/08/2018 18:05:00;03/08/2018 18:45:00;end\n

SanJoseCirc;circ;7;37.332847222222220;-121.8921416666667;100;500;03/08/20

18 18:05:00;03/08/2018 18:45:00;end\n
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4. Input from .kml.

The .kml checkbox let the user create GFs from kml. files. The first input that

the user introduces is the name of the file. The file has to contain a Google Earth

polygon. Then the software extracts the list of points from the .kml and generates

a string with the same format as the .txt file explained before. To build this string,

the program reads from the interface the values introduced by the user in the text

boxes: Maximum Altitude, Initial and Final time.

Once the standard string has been created, it can be sent to the Scheduler using the

button Send GF to UTM. When the button is pressed, the software uses opens a socket

and sends the information using the TCP/IP protocol.

In the bottom part of the GUI is shown a list with the current GFs. Typing any ID and

pressing the button Delete GF the user can delete GFs that have been manually created

(Using checkboxes Polygonal and Circular).

4.2 GF comparator

This part of the software corresponds to the right-hand side of the GUI. The program

deals with two tasks: read the positioning from the receiver and compute the relative

position between vehicle and GFs.

The receiver produces different NMEA sentences that the program reads. NMEA

(National Marine Electronics Association) developed a standard list of messages. This

standard lets marine electronics to send information to other equipment. GPS receiver

communications use this specification. The idea of this standard is to send a line of data

self-contained and independent from others. Each sentence begins with a $ and ends

with a carriage return. The sentences cannot be longer than 80 characters and the data is

separated by commas.
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Depending on the constellation used, the 2 first characters of the sentence change

being GP for GPS, Gl for GLONASS and GA for GALILEO. The information contained

in the sentence depends on the following three characters. The standard NMEA messages

used in GNSS can be found in Table 4.1.

Message Content

DTM Datum Reference
GBS GNSS Satellite Fault Detection
GGA Global positioning system fix data
GLL Latitude and longitude, with time of position fix and status
GPQ Poll message
GRS GNSS Range Residuals
GSA GNSS DOP and Active Satellites
GST GNSS Pseudo Range Error Statistics
GSV GNSS Satellites in View
RMC Recommended Minimum data
THS True Heading and Status
TXT Text Transmission
VTG Course over ground and Ground speed
ZDA Time and Date

Table 4.1: List of Standard NMEA messages

From Table 4.1, the only messages we need to know the positioning are GGA, GLL

and RMC and ZDA to know GNSS date and time. The information contained in these

four messages is:

• GGA - Global positioning system fix data. See Table 4.2

• GLL - Latitude and longitude, with time of position fix and status. See Table 4.3

• RMC - Recommended Minimum data. Table 4.4

• ZDA - Global positioning system fix data. See Table 4.5

These NMEA messages are generated by the receiver explained in 3.1.2 and are sent

using a USB cable as a serial COM port. Using managed C++ gives some problems when

using serial COM ports. In order to solve these problems, a Matlab interface was created
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Field No. Example Format Unit Description

0 $GPGGA string - Message ID, GGA protocol header
1 92725 hhmmss.sss - UTC Time, Current time

2 4717.11399 ddmm.mmmm -
Latitude, Degrees + minutes, see Format

description
3 N character - N/S Indicator, N=north or S=south

4 833.9159 dddmm.mmmm -
Longitude, Degrees + minutes, see Format

description
5 E character - E/W indicator, E=east or W=west

6 1 digit -
Position Fix Status Indicator, See Table

below and Position Fix Flags description
7 8 numeric - Satellites Used, Range 0 to 12
8 1.01 numeric - HDOP, Horizontal Dilution of Precision
9 499.6 numeric m MSL Altitude

10 M character - Units, Meters (fixed field)
11 48 numeric m Geoid Separation
12 M character - Units, Meters (fixed field)

13 - numeric s
Age of Differential Corrections, Blank
(Null) fields when DGPS is not used

14 0 numeric - Diff. Reference Station ID
15 *5B hexadecimal - Checksum
16 - character - Carriage Return and Line Feed

Table 4.2: Content of GGA nmea sentence

Field No. Example Format Unit Description

0 $GPGLL string - Message ID, GLL protocol header

1 4717.11364 ddmm.mmmm -
Latitude, Degrees + minutes, see Format

description

2 N character -
N/S Indicator, hemisphere N=north or

S=south

3 833.91565 dddmm.mmmm -
Longitude, Degrees + minutes, see Format

description
4 E character - E/W indicator, E=east or W=west
5 92321 hhmmss.sss - UTC Time, Current time

6 A character -
V = Data invalid or receiver warning,

A = Data valid.See Position Fix
Flags description

7 A character -
Positioning Mode, see Position Fix Flags

description. Optional block
7 *60 hexadecimal - Checksum
8 - character - Carriage Return and Line Feed

Table 4.3: Content of GLL nmea sentence
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Field No. Example Format Unit Description

0 $GPRMC string - Message ID, RMC protocol header
1 083559.00 hhmmss.sss - UTC Time, Time of position fix

2 A character -
Status, V = Navigation receiver

warning, A = Data valid, see Position
Fix Flags description

3 4717.11437 ddmm.mmmm -
Latitude, Degrees + minutes, see Format

description

4 N character -
N/S Indicator, hemisphere N=north or

S=south

5 00833.91522 dddmm.mmmm -
Longitude, Degrees + minutes, see

Format description
6 E character - E/W indicator, E=east or W=west
7 0.004 numeric knots Speed over ground
8 77.52 numeric degrees Course over ground
9 091202 ddmmyy - Date in day, month, year format

10 - numeric degrees
Magnetic variation value, not being

output byreceiver

11 - character -
Magnetic variation E/W indicator,

not being output by receiver

12 - character -
Mode Indicator, see Position Fix

Flags description
13 *57 hexadecimal - Checksum
14 - character - Carriage Return and Line Feed

Table 4.4: Content of RMC nmea sentence

Field No. Example Format Unit Description

0 $GPZDA string - Message ID, ZDA protocol header
1 082710.00 hhmmss.sss - UTC Time
2 16 dd day UTC time: day, 01..31
3 09 mm month UTC time: month, 01..12
4 2002 yyyy year UTC time: 4 digit year

5 00 -xx -
Local zone hours, not supported

(fixed to 00)

6 00 zz -
Local zone minutes, not supported

(fixed to 00)
7 *64 hexadecimal - Checksum
8 - character - Carriage Return and Line Feed

Table 4.5: Content of ZDA nmea sentence
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to guarantee the communication between the receiver and the Geo-Fencing comparator.

This Matlab file is called receive reader.m and can be found in Appendix 7.2.

Messages are read by the Matlab interface as fast as the receiver sends them, all the

useful information is obtained and stored in a string with the format:

”Latitude;Longitude;Altitude;Speed;Heading;Day UTC;Month UTC;Year UT-

C;Hour UTC”

Then the program creates an opens a UDP socket and sends this string to the C++

Geo-Fencing comparator. The update rate of the messages is 1 s. Once the program has

the positioning and time of the UAV, it compares them with the GFs created. For each GF

this comparison follows three criteria in the next order:

1. Time

The first thing to do is to compare the current time with the initial and final time of

all the GFs. If the simulation time is not between them, the program return that the

vehicle is outside.

2. Maximum altitude

Then the program compares if the vehicle is above the maximum altitude of the GF.

If so, the program returns that the vehicle is outside.

3. Position

Finally, if the previous two conditions are satisfied, the software computes if the ve-

hicle is inside the boundary of the GF. The algorithms used to do that are explained

below.

Depending on the shape of the region, the comparison is done using different algo-

rithms. For circular GFs the way to compare is quite simple:
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1. Calculate distance between UAV and centre of GF

2. If the distance is lower or equal than the radius of the GF, the vehicle is inside.

Otherwise, the vehicle is outside.

However, computing the relative position between a point and a polygon is much

more difficult. In order to know if a point is inside a polygon convex or non-convex the

following algorithm is used:

1. The polygon is given by a list of points

2. Draw a horizontal line at the y-value of UAV as shown in Figure 4.4

3. Count the number of crosses between the horizontal line and the polygon only at

one side of the UAV

4. If the number of crosses is even, the UAV is outside the Geo-Fence. Otherwise, the

vehicle is inside.

’

Figure 4.4: Example of point inside non-convex polygon
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As mentioned before, the receiver sends its positioning once per second and the pro-

gram computes the relative position at the same rate time. The relative position is dis-

played in the orange box shown in Figure 4.1. When the UAV is outside the GF, the box

shows UAV outside and the orange box changes to green. When the vehicle goes inside a

GF, the message displayed is UAV inside and the background colour is red.

The main limitations of the Geo-Fencing software are:

• The program works properly when using small GFs, but for large GF is observed

an error due to the use of the NED coordinate system (explained above).

• The GF comparator works with a rate of 1 s, which is the rate of the receiver sending

NMEA messages. 1 s is a lot of time taking into account the speeds and distances

of the tests done in this project, therefore, for a high precision performance inside

GFs would be necessary a receiver with a lower update rate of the positioning

4.3 Supporting modules of the project

4.3.1 Motion Planner

As explained in Figures 1.1 and 3.1, the Motion Planner was developed in order to

simulate the trajectories of the UAV to test the Geo-Fencing library. To test the Geo-

Fences, we had two options: test them in a real environment with a real UAV which is the

most complex and expensive option, and create virtual UAVs simulating their trajectories

in the most simple way, which is much more simple, cheap and fast than using real drones.

Once the decision was made, we had two new options: use one of the complex and

realistic software available in the market to simulate trajectories of vehicles such as Air-

Sim or create a very simple generator less realistic, but faster and simpler, and enough

accurate for our mission. Again this second option was the one we chose.

The motion command that the simulator needs uses the parameters shown in Table

4.6. In order to generate these parameters, two different versions of the motion planner
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have been developed. One version is used to use generate trajectories in real time with

the user changing, speed, altitude and other parameters in the loop. The second version

was developed to follow a path plan with a path following algorithm. The paths of this

second version are created by the Scheduler taking into account the mission selected for

the UAV. This will be explained in 4.3.2.

Symbol Parameter Unit

x position ECEF, x-axis [m]
y position ECEF, y-axis [m]
z position ECEF, z-axis [m]

velx velocity ECEF, x-axis [m/s]
vely velocity ECEF, y-axis [m/s]
velz velocity ECEF, z-axis [m/s]
accx acceleration ECEF, x-axis [m/s2]
accy acceleration ECEF, y-axis [m/s2]
accz acceleration ECEF, z-axis [m/s2]
jerkx jerk ECEF, x-axis [m/s3]
jerky jerk ECEF, y-axis [m/s3]
jerkz jerk ECEF, z-axis [m/s3]

h heading - radians, range +/- [Rad]
e elevation - radians, range +/- /2 [Rad]
b bank , radians - range +/- [Rad]

x, y, z angular velocity about x,y,z body axes [Rad/s]
ω̇x, ω̇y, ω̇z angular acceleration about x,y,z body axes [Rad/s2]
ω̈x, ω̈y, ω̈z angular jerk about X,Y,Z body axes [Rad/s3]

Table 4.6: Parameters required by the motion commando MOT of the GSS 7000

Motion planner - Driver in the loop

As explained before, the purpose of this software is to let the user change the pa-

rameters of the flight as if it was the pilot of the UAV. It was developed in order to test

the Geo-Fencing software, to be sure that it works computing if the vehicle is inside or

outside the Geo-Fences.

The explanation of how it works is going to be based on the aspect of the Graphic

User Interface, with its text boxes, buttons etc. The aspect of the GUI is shown in Figure
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4.5. In the interface are found three different types of user controls: text boxes, check

boxes and buttons, divided into three containers: Initial conditions, flight parameters and

outputs.

’

Figure 4.5: Graphic User Interface of the motion planner

Only when the buttons are pressed the data introduced in the text boxed is read by

the software. In the Set Initial Conditions frame, the initial conditions of the UAV are

selected. These conditions are:

• Initial Latitude [deg]

• Initial Longitude [deg]

• Initial Altitude [m]

• Initial Speed [m/s]

• Initial Heading [deg]

This frame is also used to select if the program is used in the same PC than the Simu-

lator (Local IP check box - IP: 127.0.0.1) or remotely using Ethernet connection (Lan IP

check box - Typical IP of the simulator: 192.1.1.1).
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In the Set Flight Parameters frame, the flight conditions of the UAV are selected.

These conditions are:

• Desired Speed [m/s]

• Desired Altitude [m]

• Desired Heading [deg]

This frame is used to select a very simple air-frame of the vehicle. This airframe is

given by three different parameters:

• Acceleration [m/s2]

• Heading Rate [deg/s]

• Climbing/Descending rate [m/s]

When the button Set Values is pressed, the selected values of both, flight conditions

and airframe are stored in the program. If the button Reset Values is used, all the parame-

ters of this frame are fixed with the default values shown in Figure 4.5.

Once all the conditions have been chosen, the button Connect and Start initializes the

simulation of the UAV. To do that, the steps followed by the software when the button is

pressed are:

1. A local frame is created using the initial latitude and longitude. This local frame

is used to convert all the coordinates into a NED (North-East-Down) coordinate

system with origin in this local frame.

2. An instance of the class UAV is created with the initial conditions from the GUI

and the local frame.

3. A TCP/IP socket is created to send a command to the simulator that runs the sce-

nario. This message RUNOWAIT is sent to the GSS 7000.



32 CHAPTER 4. DESIGN OF THE GEO-FENCING SOFTWARE

4. A UDP socket is created to send the motion command MOT to the simulator. And

a Background Worker starts taking control of the UAV created

The Background Worker generates the parameters that the simulator needs which are

shown in Table 4.6 and sends them using the UDP socket created before. A new message

is sent every 0.1 seconds. To calculate the position, velocity, etc at each time step, very

simple equations of motion are used divided into 8 different cases. The equations for each

case are:

1. The current flight conditions are equal to the desired ones.

The simplest case. The vehicle is moving with constant speed maintaining heading

and altitude constant. The equations are:

xt = xt−1 + ẋ · t ,

where x is a vector with the position in NED coordinates, ẋ is the desired speed of

the UAV and t is the time step. The velocity in the z-axis is 0 (Altitude constant).

2. The current speed is different of the desired speed.

ẋt = ẋt−1 + ẍ · t ,

xt = xt−1 + ẋt · t +
1
2
· ẍ · t2

where ẍ is a vector with the acceleration from the GUI in NED coordinates. Again

the velocity and acceleration in the z-axis is 0.

3. The current altitude is different from the desired altitude.

The equation of motion of this case is the same than before but changing the speed

in the z-axis with the Climb rate from the GUI.
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4. The current heading is different from the desired heading.

The equations for this case are the same as the first case, but the heading is changing,

so the conversion to NED takes into account the change in heading following the

equation:

θt = θt−1 + θ̇t · t ,

where θ is the heading and θ̇ is the heading rate from the GUI.

The other 4 cases are combinations of cases 2, 3 and 3 in groups of 2 and 3.

Once position and speed are calculated, these are transformed into LLA and ECEF

coordinates to be displayed in the GUI and to be sent to the simulator. In order to simplify,

only the position, speed and heading are sent, the rest of the parameters expected in the

motion command shown in Table 4.6 are sent as 0. With these three parameters, the

simulator has enough inputs to generate the RF signal.

To increase the accuracy of the software, it calculates the execution time of each iter-

ation in order to send a message exactly every 100 milliseconds.

Motion planner - Path Following algorithm

The purpose of this motion planner is to test the drone performance during missions

inside Geo-Fences. This motion planner does not use a User Interface, it is used when the

button Run Simulation of the GUI of the Scheduler is pressed (It is shown in Figure 4.7).

The path following algorithm starts from a path planning given by a list of points. The

Carrot Chasing algorithm is the one selected for this purpose. This algorithm introduces

a virtual target point (VTP) and makes the UAV chase the VTP. The VTP is called the

carrot. The heading of the UAV is updated toward the VTP while it is moving as time

progress.
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The algorithm is divided in two different cases: straight-line following and loiter (arc

of circumference following). The pseudo-code for the Straight-Line following case is:

1. Initialize parameters: Wi = (xi,yi), Wi+1 = (xi+1,yi+1), p = (x,y), ψ , δ , va, κ

2. Calculate distance from current position to initial point of the straight segment and

the angle between straight line and the current position:

Ru = ||Wi− p||

θ = tan−1 yi+1− yi

xi+1− xi

3. Compute angle between the current position and the x axis, and difference between

both angles:

θu = tan−1 y− yi

x− xi

∆θu = θ −θu

4. Evaluate distance between initial point of the straight line and the projection of the

current position in this line:

R =
√

R2
u− (Ru sin∆θ)2

5. Compute VTP

s = (xt ,yt) = (R+δ )(cosθ ,sinθ)

6. Calculate desired heading:

ψd = tan−1 yt− y
xt− x

7. Extract lateral acceleration required:

u = max lim(κ(ψd−ψ)va)
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where all the variables are shown in Figure 4.6 and max lim is:

max lim(z) =


z i f |z|< |u|max

sign(z)|u|max i f |z| ≥ |u|max

’

Figure 4.6: Carrot-Chasing straight and loiter algorithms

The value of δ indicates the distance between the closest point to the desired line and

the VTP and it is fixed to 30 m. The line to follow changes when the vehicle is less than

5 m far from the final point of the straight line to follow.

The pseudo-code for the loiter algorithm is:

1. Initialize parameters: O = (xi,yi), r, p = (x,y), ψ , λ , va, κ

2. Compute minimum distance to the circumference:

d = ||O− p||− r
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3. Evaluate angle between current position and the center of the circumference:

θ = tan−1 y− yi

x− xi

4. Calculate VTP:

s = (xt ,yt) = (xi,yi)+ r(cosθ +λ ,sinθ +λ )

5. Calculate desired heading:

ψd = tan−1 yt− y
xt− x

6. Extract lateral acceleration required:

u = max lim(κ(ψd−ψ)va)

The value of λ indicates the angle between the closest point of the circumference to

the UAV and the VTP as can be seen in Figure 4.6 and it is fixed to 0.1 rad.

During the development of this software, several limitations were found:

• Using the NED coordinate system makes calculations easier, and is accurate for

trajectories that are not too large. However, if a very large Scenario is used, the

NED coordinate system produces an error in altitude that increases with the distance

from between the vehicle and the origin of the coordinate system.

• When using the Driver-in-the-Loop approach of the motion planner, the air-frame of

the vehicle is very simple and is defined by the user, which can produce unrealistic

trajectories. In addition, accelerations and jerks are not taken into account for the

generation of trajectories because a very simple trajectory generator is enough for

the scope of this project.



4.3. SUPPORTING MODULES OF THE PROJECT 37

• The path following approach with the Carrot-chasing algorithm uses a very simple

version of this algorithm which is designed to follow only straight and circular

trajectories.

• The efficiency of the code is not high, therefore, it is only able to work with a

rate of 100 ms, with a more efficient development of the software and/or more

computational power, the software would be able to run with a shorter time step.

4.3.2 Scheduler

The last part of the software developed within this project is the Scheduler. The pur-

pose of this software is to deal with the UTM. The tasks that the UTM designed in this

project is supposed to deal with are several. First of all, it needs to know all the GFs in

the scenario (The UTM is supposed to know where the restricted areas are, and for how

long are they unavailable). Then it generates UAVs and selects a mission inside one of the

GFs. It also creates the path planning of the vehicle depending on the mission selected.

The aspect of the GUI of the Scheduler is shown in Figure 4.7.

’

Figure 4.7: Example of point inside non-convex polygon
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When the user presses the button Receive GFs, the list of GFs is sent by the Geo-

Fencing creator with the format explained in 4.1. The list is displayed in the area of the

GUI. Then, the user has to create the UAVs with a given mission and different parameters.

The two different missions available are boundary surveillance and interior surveil-

lance and are shown in Figure 4.8. The other parameters to choose are altitude, speed,

GF, offset and separation. GF means that each vehicle is assigned to a GF selected by its

ID. The offset is the minimum between the path plan and the boundary of the GF. Finally,

the separation is only used in the interior surveillance mission and gives us the distance

between each long parallel line. These parameters are also shown in Figure 4.8.

(a) Boundary surveillance mission (b) Interior surveillance mission

Figure 4.8: Missions available in the Scheduler

Both missions are possible for circular and polygonal GFs. When the user presses the

button Create UAV, an instance of UAV is created and the Path Planning for the chosen

mission is computed. Below are explained the different algorithms used to do the path

planning for each mission with each shape:

• Boundary surveillance inside Circular GF

This is the only case where the path plan is not given by a list of points. Therefore, is

the only mission that uses the circular carrot-chasing algorithm explained in 4.3.1.
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The path plan is given by the position of the centre and the radius. This radius is

calculated by subtracting the chosen offset to the radius of the GF.

• Boundary surveillance inside a Polygonal GF

The path plan is given by a list of points. These points are the vertices of the interior

polygon offset the chosen distance. The program generates a parallel line to each of

the lines that form the boundary of the GF and computes the intersections between

them.

After trying to use different algorithms such as Straight-Skeleton and some others

(Cacciola, n.d.; Palfrader and Held, 2015), it was decided to implement a simple

algorithm using the bisectors of the interior angles of the polygon given by its ver-

tices in clockwise order. This algorithm is very simple and has some limitations.

For instance, it only works when the offset y lower than the length of every side of

the polygon.

• Interior surveillance inside a Circular GF

To calculate the list of points that form the path plan for this mission the steps

explained below are shown:

1. The offset interior circle is calculated like in the boundary surveillance mis-

sion.

2. Calculate the square box that encloses the circumference.

3. Calculate the number of parallel lines needed:

N = f loor
(

2 ·Radius
Separation

)
(4.1)

4. Divide the big square in parallel lines as shown in Figure 4.9.
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’

Figure 4.9: Bounding box and parallel lines for Interior surveillance mission inside circu-
lar GF

5. Compute the intersections between the lines and the circle in the right order

to obtain the final path plan.

• Interior surveillance inside a Polygonal GF

To calculate the list of points that form the path plan for this mission the steps

explained below are shown:

1. Calculate the offset interior polygon like in the boundary surveillance mission.

2. Calculate the longest side of the polygon in order to build the long lines par-

allel to it minimizing the number of turns.

3. Rotate the polygon to have the longest side as a base

4. Calculate the rectangular box that encloses the polygon.

5. Calculate the height of the new rotated polygon:

h = max(DistPointToLine(Pointi,Base)) (4.2)
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6. Calculate the number of parallel lines needed:

N = f loor
(

h
Separation

)
(4.3)

7. Divide the big square in parallel lines as shown in Figure 4.10.

’

Figure 4.10: Bounding box and parallel lines for Interior surveillance mission inside
Polygonal GF

8. Compute the intersections between the lines and the polygon in the right order.

9. Undo the rotation of the points done in 3 to obtain the final path plan.

Once the Path Planning is finished, it can be used by the motion planner explained in

4.3.1 when the button Run simulation is pressed.

The main limitation found in this software module is that, despite the GF software is

able to generate and compute relative positioning using non-convex polygons, the path

planning algorithms for both missions (Boundary and interior surveillance missions) are

only able to work with convex polygons. That is the main reason why all the tests have

been done with this type of polygon.
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Chapter 5

Performance Analysis

The purpose of this chapter is to explain the two different performance analysis done

in order to test the UAV performance inside Geo-fenced environments created using the

Geo-Fencing software developed in this project. One is used to study the influence of

Multi-Path in the GNSS positioning when a UAV is performing missions in Geo-Fenced

environments. The second study is an analysis of the required distance margin needed to

guarantee the safety of the missions done by UAVs within Geo-Fences.

For all these tests is used the configuration of the software where the Scheduler creates

the UAVs with chosen parameters and mission and the motion planner uses the Carrot-

Chasing path following approach explained in 4.3.1 instead of the Driver-in-the-Loop

one.

Finally an extra experiment has been developed in order to test the boundary that

any GF has to have, not only due to GNSS accuracy, but also taking into account the

the reaction time and the manoeuvre time due to the air-frame of a given aircraft using

Driver-in-the-Loop integrating the flight simulator Xplane with the GF software and the

GNSS simulator.

43
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5.1 Speed - Offset study

In these tests has been developed a parametric study to demonstrate the minimum off-

set required with the boundary off a GF to be completely sure that the vehicle is perform-

ing its mission always inside the GF. The test has been done several times for different

missions, speeds and offsets.

The factors that can make the UAV be outside the GF when it is supposed to be inside

are:

• Path following algorithm. Carrot-Chasing

Due to the algorithm parameters, such as minimum turn ratio or maximum lateral

acceleration, the trajectory of the vehicle does not follow the straight lines given by

the path planning, so in the transition between 2 straight lines, the real trajectory

followed by the UAV could cross the boundary of the GF.

• Receiver error

The receiver used for the simulations has a Standard GNSS Precision, not a High

GNSS Precision

• GNSS accuracy

The GNSS accuracy depends on the number of constellations used and the signals.

Which will be explained below.

The different test done are shown in Table 5.1. In order to have some accuracy in the

results, every test shown in the table has been done 3 times for the same scenario and

averages of the results have been taken and will be explained in 6.

The scenario chosen for this test can be separated into three different parts:

• Location of the Scenario The location of this test is shown in Figure 5.1. It is a

polygonal GF with six irregular sides surrounding the airfield of Cranfield Univer-
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Mission
Interior Surveillance Interior Surveillance

Speed Offset Offset
[m/s] [m] [m]

5
1 1
3 3
5 5

10

1 1
3 3
5 5

7.5 7.5

Table 5.1: List of tests done for the Speed-Offset analysis

sity. And the points are given in Table 5.2. The GF does not have initial time, final

time and maximum altitude.

Point Latitude Longitude

1 52 ◦ 4 ’ 2.930 ” N 0 ◦ 37 ’ 44.760 ” W
2 52 ◦ 4 ’ 53.580 ” N 0 ◦ 36 ’ 51.190 ” W
3 52 ◦ 4 ’ 42.510 ” N 0 ◦ 36 ’ 21.550 ” W
4 52 ◦ 4 ’ 8.440 ” N 0 ◦ 36 ’ 43.390 ” W
5 52 ◦ 3 ’ 52.560 ” N 0 ◦ 37 ’ 11.180 ” W
6 52 ◦ 3 ’ 53.680 ” N 0 ◦ 37 ’ 23.200 ” W

Table 5.2: List of points of the GF

• Time of the Scenario

The date and time of the beginning of the simulation for each of the tests shown

in Table 5.1 are always the same. However, the duration of the simulation and

consequently the final time depends on the speed, the offset and the mission. From

around 5 minutes for the boundary surveillance mission at 10 m/s up to almost 1

hour for the interior surveillance mission at 5 m/s.

Therefore, and without taking into account the lost time due to simulations with

errors and the time to load each test, the time used to do all the test for this perfor-

mance analysis is around 20 hours.

Then, the initial date and time of the Scenario used for these tests are:
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’

Figure 5.1: GF of the scenario selected for the Speed-Offset analysis

4th July 2017 at 05:00:00 UTC

• GNSS conditions of the Scenario

This is the most complex part of the Scenario due to the large number of different

parameters which can be modified within the Spirent Simulator. The Configuration

of the GSS7000 for in this for these simulations is shown in the list below:

– GNSS constellations - GPS

Only GPS constellation is Used in order to simplify simulations. All the avail-

able constellations are shown in Figure 5.2. GPS is theUnited States’ Global

Positioning System and consists of up to 32 medium Earth orbit satellites in

six different orbital planes.
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– Signal - L1

GPS has 3 different bands: L1, L2 and L5. The L1 frequency contains a coarse

acquisition (C/A) code and a navigation data message. This means that the L1

is a positioning and timing service that transmits Standard Positioning Service

(SPS). L2 and L5 are used to get a highly accurate military positioning called

Precise Positioning Service (PPS). All the signals of each constellation are

shown again in Figure 5.2.

’

Figure 5.2: Constellations ans signals available

– Power of the signal of the satellites - between 10 and 12 dB (Default values of

the simulator)

– Tropospheric model - STANAG

The tropospheric delay is caused by two different causes. The hydrostatic

component delay is caused by the dry gases present at this layer of the atmo-

sphere and is very predictable. The wet component delay which is caused by
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the water vapour and condensed water and depends on weather conditions and

is very difficult to predict.

The tropospheric corrections currently used neglect the contribution due to

the ’wet’ component. There are different models available in the simulator

such as BD2, RTCA (with different versions) and STANAG. The STANAG

model is recommended in recently established standards for GPS time receiver

software

– Ionospheric model - Klobuchar

The ionospheric corrections are broadcast by the satellites. Each constella-

tion uses a different model. The model used by GPS is the Klobuchar model.

Galileo uses Nequick model. The Klobuchar model is estimated to reduce

about 50% of the ionospheric error. It assumes that the electrons are concen-

trated in a thin layer of the atmosphere at 350 km altitude. Then the delay is

computed taking into account the vertical delay corrected with an obliquity

factor.

– Scintillation - Disabled

Ionospheric scintillation is caused by rapid fluctuations in amplitude and phase

of trans-ionospheric GNSS signals caused by the irregularities in the distribu-

tion of electrons during the propagation path. It is very complex to model,

because it depends on the location and the time of the day and does not have a

high impact in the final positioning, therefore for this simulations it is assumed

negligible.

– Antenna of the Vehicle - Isotropic (Ideal)

An isotropic antenna is an ideal antenna that radiates its power uniformly in

all directions.

Those are the most relevant parameters that can be defined in the simulator, how-

ever, there exist many other variables that can be controlled and the scenario is
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available together with all the developed software attached to this report.

• UAV parameters of the Scenario

Finally, the UAV uses the airframe given by the Carrot-Chasing algorithm explained

in 4.3.1. And all the missions are done at an altitude of 50 m above the Geoid.

5.2 Multi-Path influence study

The purpose of this test is to study the influence of Multi-path in the GNSS RF in

urban environments while a UAV is performing a mission in Geo-Fenced areas. In order

to succeed with this analysis, it was necessary to use some of the equipment developed

by Spirent and located in Paignton.

The software used to generate the Multi-path is called Sim3D. It uses a 3D model

of the buildings of an urban environment, takes the GNSS RF signals and computes the

different Multi-path signals, which are sent back to the GNSS simulator as it is shown in

Figure 5.3.

’

Figure 5.3: Sim3D computing Multi-path in San Jose( USA)

It is only developed for the city of San Jos (CA, US), therefore, the location of the

tests was placed there. The different tests done are shown in Table 5.3. The first test is

used as a reference and then some parameters are changed to see Multi-path influence

when changing different parameters.
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Nominal Test 1 2

Scenario Size S S S
PDOP <4 <4 >4

Altitude 120 m 300 m 120 m
Mision Interior S. Interior S. Interior S.
Offset 5 m 5 m 5 m

Separation 15 m 15 m 15 m
Speed 5 m/s 5 m/s 5 m/s

Initial date 4th July 2017 4th July 2017 4th July 2017
Initial time 05:00:00 05:00:00 00:00:00

Table 5.3: Selected parameters for each test

These tests have been done only once each due to the lack of time during the visit

to Spirent. The two different GFs used for this test are shown in Figure 5.4. The area

labelled with the S is the most critical part for the Multi-path influence because it takes

the reflections of the signals on the surfaces of all the buildings that are inside the L area.

The tests with Multi-path were done using a different version of the GNSS simulator,

the GSS 9000. However, the tests done whiteout Multi-path to study its influence were

done back in Cranfield with the GSS 7000. The parameters chosen in the scenario for the

simulation are the same than those of the previous section:

• GNSS constellations - GPS

• Signal - L1

• Power of the signal of the satellites - between 10 and 12 dB (Default values of the

simulator)

• Tropospheric model - STANAG

• Ionospheric model - Klobuchar

• Scintillation - Disabled

• Antenna of the Vehicle - Isotropic (Ideal)
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’

Figure 5.4: GFs of the scenario selected for the Multi-path analysis

In the following chapter will be explained the results obtained after the post-process

done with all the data from the simulations.
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Chapter 6

Results and Discussion

Once the detailed explanation of the development of this project and the methodology

of the performance analysis has been done, this chapter is used to provide details of all the

results obtained from the tests mentioned before. Firstly, the results of the Speed-Offset

study are fully explained.

6.1 Speed - Offset study

The purpose of this test is to study the minimum offset that a GF has to have to

guarantee that the vehicles working inside remain there at any moment of their mission.

As it can be deduced intuitively and was explained in the previous chapter, this offset

depends on the speed of the vehicle, being larger when the speed increases.

From each of the tests in Table 5.1, the programs store different parameters in .csv

files. These variables are written at a rate of 1 second which is the rate of time used

by the receiver to provide positioning information. The information of each simulation is

stored in two different files, one containing the motion command generated by the Motion

Planner which is the input of the simulator (real position of the vehicle) and a second file

containing the positioning obtained from the GNSS receiver (where the vehicle thinks it

is located). The information stored in each file is:

53
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• Motion command:

Time of simulation

Positioning (ECEF and LLA)

Velocity, acceleration and jerk in ECEF

Heading, bank and elevation angles

Angular velocities and accelerations

• GNSS positioning:

UTC time

Positioning LLA

Satellites used

PDOP

From all these values, in this test are only used the positioning in LLA and the time.

In order to do this analysis, Matlab was used to post-process the large amount of data.

The method that has been followed calculates the time that the vehicle is outside the GF

of the scenario.

For each of the time steps from the files, the program compares its positioning with the

GF of the scenario using the algorithm explained in 4.2. The total number of points where

the vehicle is outside gives us the time that the boundary of the GF has been crossed.

All the numerical results of this analysis in Tables 6.1, 6.2, 6.3 and 6.4 are given in

terms of percentage of the time that the UAV is outside with respect the total mission

time of one full cycle of the mission, which corresponds with the point when the vehicle

reaches again the first point of its path.

In addition, the tables containing the results show the numeric value for each of the

individual tests and also the average for each offset at a given speed. The time outside

the GF is computed for both the path following algorithm and the GNSS positioning.
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This means, for a single test, the motion command created by the Scheduler and sent to

the simulator (Path Following) and the GNSS positioning obtained from the receiver are

compared separately with the boundary of the GF.

6.1.1 Boundary surveillance mission

Table 6.1 shows the numerical results for the boundary surveillance mission at 5 m/s.

At that speed can be observed that 1 meter of offset is enough to guarantee that the mo-

tion command due to path following is always inside the GF. The results in percentage

represent the time that the UAV is outside the GF with respect the total mission time of

one full cycle of the mission

Offset

(m)

Path Following
PF Average

GPS accuracy
GPS average

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 0.00% 0.00% 0.00% 0.00% 1.97% 19.84% 0.00% 7.27%

3 0.00% 0.00% 0.00% 0.00% 2.99% 0.00% 2.15% 1.71%

5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 6.1: Results for boundary surveillance mission at speed 5 m/s

Regarding the GNSS accuracy, from the table it is possible to deduce that increasing

the offset, the possibilities of crossing the GF decrease, however, the variation between

tests with the same conditions is very large as can bee seen in Table 6.1, the difference in

percentage of time between tests 2 and 3 for 1 m offset due to GPS accuracy is almost 20

%. Therefore, more tests would be needed in order to verify these results.

In the Figure 6.1 can be appreciated the locations where the GF is crossed. It is

observer again how the number of crosses decreases when the offset increases and how

the most of them occur after the turns in the Gf vertices.
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(a) Offset 1 m (b) Offset 3 m

(c) Offset 5 m

Figure 6.1: Boundary surveillance at 5 m/s

The same test has been done increasing the speed to 10 m/s. The results of is are

shown in Table 6.2. One plot for each of the offsets are shown in Figure 6.2.

Offset

(m)

Path Following
PF Average

GPS accuracy
GPS average

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 0.00% 0.00% 0.00% 0.00% 62.50% 44.57% 44.06% 50.38%

3 0.00% 0.00% 0.00% 0.00% 16.14% 21.01% 20.08% 19.08%

5 0.00% 0.00% 0.00% 0.00% 1.20% 7.22% 0.00% 2.81%

7.5 0.00% 0.00% 0.00% 0.00% 1.09% 0.00% 3.01% 1.36%

Table 6.2: Results for boundary surveillance mission at speed 10 m/s
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(a) Offset 1 m (b) Offset 3 m

(c) Offset 5 m (d) Offset 7.5 m

Figure 6.2: Boundary surveillance at 10 m/s

From the table and the figures can be stated that the path following algorithm with

the current parameters does not produce enough deviation to the expected route to cross

the boundary of the GF. However, due to GPS accuracy, it can be seen that increasing

the offset, the probability of being outside the region decreases gradually as it is shown

in Figures 6.3. But in order to be sure that the vehicle is always inside, a greater offset

distance would be needed.

The reason why the path following algorithm has no effect in the boundary surveil-

lance mission for both speeds is that the turns required to perform this type of mission are

not very critical, as it will be shown when studying the interior surveillance mission.
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Figure 6.3: Time outside the GF with respect to the Offset due to GPS accuracy in Bound-
ary surveillance mission

6.1.2 Interior surveillance mission

For this mission, the same tests have been done, for two different speeds (5 and 10

m/s) increasing progressively the offset in order to prove which is the minimum offset for

this mission as a function of the velocity of the UAV.

The distance between each parallel line of the path followed by the vehicles is fixed

at 50 m. This type of mission increases a lot the number of turns needed to perform it,

therefore, the possibilities of crossing the boundary increase.
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Offset

(m)

Path Following
PF Average

GPS accuracy
GPS average

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 0.09% 0.13% 0.06% 0.09% 1.36% 0.90% 1.97% 1.41%

3 0.00% 0.00% 0.00% 0.00% 0.30% 0.43% 0.27% 0.33%

5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.02%

Table 6.3: Results for interior surveillance mission at speed 5 m/s

In Table 6.3 are shown the results for the interior surveillance mission at speed 5 m/s.

Images of a significant case for each of the offsets tested are shown in Figure 6.4.

(a) Offset 1 m (b) Offset 3 m

(c) Offset 5 m

Figure 6.4: Interior surveillance at 5 m/s
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In the images can be seen that for this type of mission the angles of turn can reach

angles of almost 180 degrees, which are very aggressive turns, but for this low speed, the

turn can be performed using less space than the given by the offset. As it was explained

in 4.3.1, the minimum turn radius depends on the maximum lateral acceleration, which

depends on the speed, therefore, for low speeds, the vehicle is able to perform turns with

a very low radius.

However, for an offset of 1 m, it can be observed that in some of the closest turns the

trajectory of the vehicle crosses the GF.

Once again, it is proven that taking into account GPS accuracy, the probabilities of

being outside the GF decrease when the length of the offset with the boundary increases

as shown in Figure 6.5. However, more tests for this speed should be done to have an

offset that gives more reliability.

Figure 6.5: Time outside the GF with respect to the Offset due to GPS accuracy in Interior
surveillance mission

The same test has been done increasing the speed to 10 m/s. The results of is are
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shown in Table 6.4. One plot for each of the offsets are shown in Figure 6.6.

(a) Offset 1 m (b) Offset 3 m

(c) Offset 5 m (d) Offset 7.5 m

Figure 6.6: Interior surveillance at 10 m/s

Offset

(m)

Path Following
PF Average

GPS accuracy
GPS average

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

1 0.302% 0.303% 0.303% 0.303% 2.299% 2.486% 2.667% 2.484%

3 0.061% 0.061% 0.000% 0.041% 2.310% 2.614% 2.125% 2.350%

5 0.000% 0.000% 0.000% 0.000% 1.219% 0.999% 0.489% 0.902%

7.5 0.000% 0.000% 0.000% 0.000% 0.398% 0.060% 0.555% 0.338%

Table 6.4: Results for interior surveillance mission at speed 10 m/s
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For this speed, it can be seen again a crossing with the GF due to Path Following.

It is observed for low offset values (1 and 3 m). The influence of the offset in the time

that the vehicle is outside due to Path Following algorithm is shown in Figure 6.7. This

is due to the minimum turn radius explained before. Applying a zoom to Figure 6.6, we

can see how the minimum turn radius is higher than the offset and adding to this the large

turns typical of this type of mission, we get a real trajectory of the vehicle crossing the

boundary of the region. See Figure 6.8.

Figure 6.7: Time outside the GF with respect to the Offset due to Path Following in
Interior surveillance mission

According to GPS accuracy, for 10 m/s the possibilities of being outside increase a

lot. Being greater than 50 % on average for an offset of 1 m. Increasing the size of the

offset, the probabilities decrease gradually.

From both boundary and interior surveillance missions can be observed how the points

where the vehicle goes outside the GF are always during or after performing any turn. For

small offsets, almost in every turn, the vehicle crosses the line. The interior surveillance
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Figure 6.8: Zoom to show the cross with boundary due to Path Following

mission needs more offset distances in order to guarantee the safety and reliability of the

mission due to the large number of turns that vehicles perform with this mission.

Finally, with this amount of tests it was possible to extract some conclusions and to

observe several trends (Figures 6.3, 6.5 and 6.7) that have been explained in this chapter.

However, it would be necessary to repeat several more times every test in order to have

a larger and more significant sample, and also to add more offset distances and speeds to

have an accurate view of the problem and extract reliable conclusions.

6.2 Multi-Path influence study

The purpose of this test is to study the influence of Multi-path in the GNSS RF in

urban environments. To see the influence of Multi-path, the three tests explained in Table

5.3 have been done using the Multi-path software and without it.

The results for the nominal case are shown in Figure 6.9. In Figure 6.9(a) is shown
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the trajectory of a UAV flying in the conditions described above for both cases, with and

without Multi-path. Its influence is very large, being greater near the turns. This can be

explained because of the presence of high buildings.

(a) Trajectory

(b) Error

Figure 6.9: Trajectory and Positioning error in m with and without Multi-path for nominal
case

In Figure 6.9 (b) is shown the positioning error calculated in meters with respect to the

time of the mission. Here can be also observed how the greatest errors occur cyclically,

corresponding with the turns after each straight parallel line. For this nominal case, the
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maximum positioning error is below 80 m, which is very high but is the lowest of all the

tests done with Multi-path. The mean error is around 20 m.

(a) Trajectory

(b) Error

Figure 6.10: Trajectory and Positioning error in m with and without Multi-path for altitude
300 m

Increasing the altitude to 300 m, the results are quite similar but the error is bigger than

before. This is causes because 300 m is not enough to have a decrease in the power level

that makes the receiver refusing the signal. For higher altitudes, the loss of power would

be enough and the receiver would refuse the signals, having then smaller positioning error.
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Therefore, there exists an altitude with the highest Multi-path influence.

Results for the altitude set at 300 m are shown in Figure 6.10. Here the maximum

positioning error reaches almost 140 m, which is quite large taking into account that the

longest side of the GF is 300 m length. The mean error during the missions is 37 m.

(a) Trajectory

(b) Error

Figure 6.11: Trajectory and Positioning error in m with and without Multi-path for PDOP
over 4

The influence of Multi-path in these two test is large taking into account that both are
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done at the same UTC time, which means that the PDOP caused by the relative position

between satellites is low. The PDOP of both tests is lower than 4, which is Good or

Excellent according to the standard that gives the confidence level. However, for the third

test, with a PDOP always above 4, the confidence level is moderate. Therefore, the error

comes not only from Multi-path but also due to the PDOP.

Results of this test are shown in Figure 6.11. It is shown in Figure 6.11(a) that the

trajectory of the vehicle when it is influenced by Multi-path is impossible to follow and

has a lot of points crossing the boundary of the GF. The error is extremely large, and not

only is possible to see how it is larger than in the two previous tests when Multi-path is

applied, but it is also greater for the simulation without it. Therefore this can be explained

because of the increase in the PDOP.

In Table 6.5 is shown the mean error and the maximum error for each of the tests

performed with and without the Multi-path influence. From the table is observed how

both altitude and PDOP over 4 have influence, being the second one the highest having

an average of the error of 63 m which is more than the 20% of the longest side of the GF.

Multi-path No Multi-path

Max. Error Mean Error Max. Error Mean Error

(m) (m) (m) (m)

Nominal 78.90 27.00 19.02 3.17

Altitude 300 133.12 37.60 10.88 3.26

PDOP > 4 151.62 63.17 12.75 5.90

Table 6.5: Mean and maximum errors of Multi-path tests

From these three tests is possible to see the influence of Multi-path when performing

missions in Urban Environments. And can be stated that the biggest errors occur during

the turns of the mission. However, the tests are not enough to extract accurate conclusions.
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In order to have accurate and reliable results, it would be necessary to repeat each of the

tests done several times and obtain the averages of these tests. However, this was not

possible during the thesis due to the location of the Multi-path software and the time

duration of each test.
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Conclusions and Future Work

7.1 Conclusions

This Individual Research Project is focused on the analysis of UAV performance in-

side Geo-Fenced environments. To do so, three different software modules were devel-

oped in order to obtain results from two different performance analysis. Firstly, a literature

review was performed in order to understand the current state of the topic and to study

the different points of view to choose the best scope for the project. After this, and taking

into account the requirements of the sponsor company, the structure and the design of the

project is presented. Then, two different performance analysis are developed to test the

designed software and algorithms and to study the UAV performance within Geo-Fences.

Finally, in the last chapter, the results of these two experiments are explained. The main

contributions to knowledge of this project are the development of a 4D Geo-Fencing soft-

ware, the study of the minimum offset required to guarantee the safety of operations and

a qualitative study of the influence of Multi-path in urban environments.

The first aim of the project was the development of a GF library compatible with the

GNSS simulator of Spirent. This software was successfully developed with the following

features:

• The software is able to generate circular and polygonal (convex and non-convex)

69
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Geo-Fences. It can generate them manually, and from .txt and .kml files. This

option is very useful in order to use the software together with Google Earth or any

other generator of .kml files

• The algorithm to compare relative position between a GF and a vehicle works prop-

erly for both circular and polygonal GFs. In addition, it also calculates the relative

position taking into account the maximum altitude of the GF.

• Furthermore, a time comparator was added to compare the current time of simula-

tion with the start and end time of each GF using UTC time, and it works properly.

This extra feature is one of the novelties of this project.

The motion planner developed to simulate UAV trajectories has some limitations but

it provides enough information for the purpose of the tests performed in this project. In

order to use it for more complex simulations (accurate airframe of the vehicle or higher

update rate) further development or the use of a commercial flight simulator would be

needed.

The last part of the software developed is the Scheduler. This software has been

developed to manage the UAVs flying inside each GF giving them missions. This software

is one of the novelties of the IRP.

The developed software of this project has limited number of features. Because of

this, it can be used only in scenarios with some characteristics: non-convex polygonal

GFs, a low update rate and some other limited characteristics explained in Chapter 4.

In order to use this software in a wider set of scenarios, further development would be

needed. Some of this upgrades are explained in Future Work.

Related to the Speed-Offset analysis, it can be stated that the minimum offset required

increases with the speed of the vehicle. This is due to two main reasons, the accuracy of

GNSS and the update time of the positioning explained before. For a speed of 5 m/s and in

a clear scenario, 5 meters of offset is enough to guarantee that the vehicle is always inside
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the region with the number of tests done. However, in order to have more reliable results,

a larger number of test with different scenarios and different speeds should be done to

ensure these results. For a speed of 10 m/s 7.5 m of offset are not enough to guarantee the

security of the of any of the two mission.

It can also be stated that the maximum errors are always observed in the areas where

the vehicle is performing turns, therefore, the interior surveillance mission has larger

positioning errors than the boundary surveillance mission.

Finally, from the Multi-path analysis, only qualitative conclusions can be extracted.

In order to obtain some quantitative conclusions, a larger number of tests should be per-

formed. However, some findings can be extracted from this analysis:

• The influence of Multi-path in usban environments is huge (Maximum positioning

errors greater than 150 m.

• The time to first fix (TTFF) is of the receiver very large with Multi-path due to the

number of unexpected signals processed. The receiver needs to receive the Almanac

(12.5 min) to get the positioning.

• The influence of Multi-path increases with the altitude if the receiver is not able to

refuse the signal due to the loss of power. From the tests of this project, the average

error increases 10 meters when increasing the altitude 150 m.

It can be observed the enormous influence of Multi-path in GNSS accuracy within

urban environments.In addition, it was observed the time that the receiver need to get a

fix when Multi-path is present is very large, needing to wait more than 10 minutes to

get the Almanac from the satellites. It is also observed that the influence of Multi-path

increases with the altitude if the receiver is not able to refuse the signal due to the loss of

power.

Therefore, using only GNSS positioning while developing missions inside urban en-

vironments is not enough, and some extra positioning technology (Inertial, image-based,
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etc.) should be used together with GNSS to guarantee an accurate positioning.

7.2 Future Work

Taking into account the number of topics of this project, there are several fields where

a future work could be developed:

• Firstly, to guarantee the reliability of the results of both performance analysis, a

larger number of tests, with different scenarios and speeds should be done.

• Related to the software developed, a more efficient and accurate motion planner

could be developed which have a time step lower than the one of this project. Also

using accurate Air-Frames depending on the parameters of the UAVs.

• The Geo-Fencing library could be improved in different ways. One of the most

interesting improvements of this software would be to have GFs able to change

their shape with the time. There is not too much information in the literature re-

ferred to this topic and it would be a very useful tool for the industry and the UTM

technologies.

• The Multi-path analysis of this project shows a general scope of its influence, but

positioning in urban environments accurately is an issue very relevant for the indus-

try and a deeper research in this area is needed.
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Appendices

Appendix A - C++ code

In this appendix are shown some examples of the managed C++ code used during the

development of the software of this project. The software of the three different part is

developed in three different projects of Windows forms. Therefore, each project is com-

pletely developed in only one file. On the following sections is shown the most significant

parts of the code of each program.

Motion Planner Code - C++

The UAV class is defined as:

1 public ref class UAV {
2 public:
3 UAV(double speed , double heading , double altitude ,

double time_iteration , double lat_ref , double
lon_ref);

4 ~UAV() {}
5 void UpdateInitPos ();
6 void UpdateInitVel ();
7 void TrajGen ();
8 void disp_params ();
9 void Ned2Ecef(double pos_nedX , double pos_nedY , double

pos_nedZ , double lat_ref , double lon_ref);
10 void Ned2EcefVel(double vel_nedX , double vel_nedY ,

double vel_nedZ , double lat_ref , double lon_ref);
11 double* GetVelNed(double speed , double climb_rate ,

double heading);
12 void Ecef2Lla(double pos_ecef_X , double pos_ecef_Y ,

double pos_ecef_Z);
13 double pos_init_nedX;
14 double pos_init_nedY;
15 double pos_init_nedZ;
16

17 double vel_init_nedX;
18 double vel_init_nedY;

77
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19 double vel_init_nedZ;
20

21 double pos_final_nedX;
22 double pos_final_nedY;
23 double pos_final_nedZ;
24

25 double vel_final_nedX;
26 double vel_final_nedY;
27 double vel_final_nedZ;
28

29 double pos_ecefX;
30 double pos_ecefY;
31 double pos_ecefZ;
32

33 double vel_ecefX;
34 double vel_ecefY;
35 double vel_ecefZ;
36

37 double pos_llaY;
38 double pos_llaZ;
39 double pos_llaX;
40

41 double timestep;
42

43 // parametres given by the user
44 double desired_speed; // m/s
45 double desired_heading; // deg
46 double desired_altitude; // m
47 double max_acceleration; // m/s2
48 double max_heading_rate; // deg/s
49 double max_climb_rate; // m/s
50

51 // calculated and displayed parameters
52 double current_speed;
53 double current_heading;
54 double current_altitude;
55 };

The motion equations when all the parameters (Speed, heading and altitude) have been

modified:
1 // If there is a desired change in speed , heading and

altitude
2 else if (abs(current_altitude - desired_altitude) > 0.001

&& abs(current_speed - desired_speed) > 0.001
3 && abs(current_heading - desired_heading) > 0.001) {
4

5 double max_acc = max_acceleration;
6

7 if (current_speed > desired_speed) {
8 max_acc = -max_acceleration;
9 }

10

11 if (abs(current_speed - desired_speed) < 0.2) {
12 max_acc = 0.1 * max_acc;
13 }
14

15 double max_acceleration_x = max_acc * cos(
current_heading*PI / 180);

16 double max_acceleration_y = max_acc * sin(
current_heading*PI / 180);
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17

18 double climb_rate = max_climb_rate;
19

20 if (current_altitude < desired_altitude) {
21 climb_rate = -max_climb_rate;
22 }
23

24 if (abs(current_altitude - desired_altitude) < 0.1) {
25 climb_rate = 0.1 * climb_rate;
26 }
27

28 double head_rate = max_heading_rate;
29

30 if (current_heading < desired_heading) {
31 head_rate = max_heading_rate;
32 if ((- current_heading + desired_heading) > 180) {
33 head_rate = -max_heading_rate;
34 }
35 }
36

37 if (current_heading > desired_heading) {
38 head_rate = -max_heading_rate;
39 if (( current_heading - desired_heading) > 180) {
40 head_rate = max_heading_rate;
41 }
42 }
43

44

45 if (abs(current_heading - desired_heading) < 0.1) {
46 head_rate = 0.1 * head_rate;
47 }
48 double* vel = GetVelNed(current_speed , climb_rate ,

current_heading);
49

50 vel_init_nedX = *vel;
51 vel_init_nedY = *(vel + 1);
52 vel_init_nedZ = *(vel + 2);
53

54 current_heading = current_heading + head_rate *
timestep;

55 current_heading = fmod(current_heading , 360);
56 if (current_heading > 180) {
57 current_heading = current_heading - 360;
58 }
59

60 pos_final_nedX = pos_init_nedX + vel_init_nedX *
timestep + 0.5 * max_acceleration_x * pow(timestep ,
2);

61 pos_final_nedY = pos_init_nedY + vel_init_nedY *
timestep + 0.5 * max_acceleration_y * pow(timestep ,
2);

62 pos_final_nedZ = pos_init_nedZ + vel_init_nedZ *
timestep;

63

64 vel_final_nedX = vel_init_nedX + max_acceleration_x *
timestep;

65 vel_final_nedY = vel_init_nedY + max_acceleration_y *
timestep;

66 vel_final_nedZ = vel_init_nedZ;
67

68

69 current_altitude = -pos_final_nedZ;
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70

71 current_speed = sqrt(pow(vel_final_nedX , 2) + pow(
vel_final_nedY , 2));

72

73 if (abs(current_speed - desired_speed) <= 0.01) {
74 current_speed = desired_speed;
75 }
76

77 if (abs(current_altitude - desired_altitude) <= 0.01) {
78 current_altitude = desired_altitude;
79 }
80

81

82 if (abs(current_heading - desired_heading) <= 0.01) {
83 current_heading = desired_heading;
84 }
85 }

Conversions between coordinate systems are calculated as follow:
1 void UAV:: Ned2Ecef(double pos_nedX , double pos_nedY ,

double pos_nedZ , double lat_ref , double lon_ref) {
2

3 double lat = lat_ref * PI / 180;
4 double lon = lon_ref * PI / 180;
5 double h = 0;
6

7

8 double ned [3];
9 ned [0] = pos_nedX;

10 ned [1] = pos_nedY;
11 ned [2] = pos_nedZ;
12

13

14 //// reference_point in ECEF
15 double e = 8.1819190842622e-2;; // eccentricity
16 double Rea = 6378137; // Radius of Earth [m]
17 double Ne = Rea / sqrt(1 - pow(e, 2) * pow(sin(lat), 2)

);
18

19 double x_ref_ecef = (Ne + h)*cos(lat)*cos(lon);
20 double y_ref_ecef = (Ne + h)*cos(lat)*sin(lon);
21 double z_ref_ecef = (Ne*(1 - pow(e, 2)) + h)*sin(lat);
22

23

24 // refLat y refLon e s t n dadas en radianes
25 pos_ecefX = -ned[0] * sin(lat)*cos(lon) - ned [1] * sin(

lon) -
26 ned [2] * cos(lat)*cos(lon) + x_ref_ecef;
27 pos_ecefY = -ned[0] * sin(lat)*sin(lon) + ned [1] * cos(

lon) -
28 ned [2] * cos(lat)*sin(lon) + y_ref_ecef;
29 pos_ecefZ = ned[0] * cos(lat) - ned [2] * sin(lat) +

z_ref_ecef;
30

31 }
32

33 void UAV:: Ned2EcefVel(double vel_nedX , double vel_nedY ,
double vel_nedZ , double lat_ref , double lon_ref) {

34

35 double lat = lat_ref * PI / 180;
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36 double lon = lon_ref * PI / 180;
37 double h = 0;
38 double uEast = vel_nedY;
39 double vNorth = vel_nedX;
40 double wUp = -vel_nedZ;
41

42 double cosPhi = cos(lat);
43 double sinPhi = sin(lat);
44 double cosLambda = cos(lon);
45 double sinLambda = sin(lon);
46

47 double t = cosPhi*wUp - sinPhi*vNorth;
48 vel_ecefZ = sinPhi*wUp + cosPhi*vNorth;
49

50 vel_ecefX = cosLambda*t - sinLambda*uEast;
51 vel_ecefY = sinLambda*t + cosLambda*uEast;
52

53 }
54

55 void UAV:: Ecef2Lla(double pos_ecef_X , double pos_ecef_Y ,
double pos_ecef_Z) {

56 double x = pos_ecef_X;
57 double y = pos_ecef_Y;
58 double z = pos_ecef_Z;
59 const double a = 6378137.0; // Equatorial

Radius
60 const double e = 8.1819190842622e-2; // Eccentricity
61

62 double Lat , N, NplusH , delta , esLat;
63 uint16_t iter;
64

65 pos_llaY = atan2(y, x) * 180 / PI;
66 N = a;
67 NplusH = N;
68 delta = 1;
69 Lat = 1;
70 iter = 0;
71

72 while ((( delta > 1.0e-14) || (delta < -1.0e-14)) && (
iter < 100))

73 {
74 delta = Lat - atan(z / (sqrt(x*x + y * y)*(1 - (N*e*e

/ NplusH))));
75 Lat = Lat - delta;
76 esLat = e * sin(Lat);
77 N = a / sqrt(1 - esLat * esLat);
78 NplusH = sqrt(x*x + y * y) / cos(Lat);
79 iter += 1;
80 }
81

82 pos_llaZ = NplusH - N;
83 double lat = Lat * 180 / PI;
84 pos_llaX = lat;
85

86 }

Creation of UDP and UTC sockets to send the motion command to the simulator and

first step of the infinite loop
1 // Creates a TCPClient using a local end point.
2
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3 ipAddress = IPAddress ::Parse(this ->IPserver ->Text);
4 ipAddress2 = IPAddress ::Parse("192.168.1.1");
5

6

7 if (local == true) {
8

9 ipLocalEndPoint = gcnew IPEndPoint(ipAddress , 56000);
10 ipEndPoint = gcnew IPEndPoint(ipAddress , 15650);
11 serverTCP = gcnew TcpClient(ipLocalEndPoint);
12 serverTCP ->Connect(ipAddress , 15650);
13 }
14

15 if (lan == true) {
16

17 ipLocalEndPoint = gcnew IPEndPoint(ipAddress , 56000);
18 ipEndPoint = gcnew IPEndPoint(ipAddress2 , 15650);
19 serverTCP = gcnew TcpClient(ipLocalEndPoint);
20 serverTCP ->Connect(ipAddress2 , 15650);
21 }
22

23 // ipLocalEndPoint = gcnew IPEndPoint(ipAddress , 56000);
24 // ipEndPoint = gcnew IPEndPoint(ipAddress , 15650);
25 // serverTCP = gcnew TcpClient(ipLocalEndPoint);
26 //serverTCP ->Connect(ipAddress , 15650);
27

28

29 //Send message to start simulation in SimGen.
30 message = "RU_NOWAIT";
31 data = System ::Text:: Encoding ::ASCII ->GetBytes(message);
32 NetworkStream^ stream = serverTCP ->GetStream ();
33 if (stream ->CanWrite) {
34 stream ->Write(data , 0, data ->Length);
35 }
36

37 // Create UDP socket
38 serverUDP = gcnew UdpClient ();
39 //serverUDP ->Connect(ipAddress , 15650);
40

41 // UDP Message
42 memset (&simgen , 0, sizeof(simgen)); // Poner ceros en

todo el "vector"
43 simgen.mot_command_.time_action_ = UDP_rx_command ::

Command :: action_immediately;
44 simgen.mot_command_.time_of_validity_ms_ = 0;
45 simgen.mot_command_.type_ = UDP_rx_command :: Command ::mot;
46 simgen.mot_command_.vehicle_id_ = 1;
47 start_s = clock();
48

49 UAV1 ->TrajGen ();
50 UAV1 ->UpdateInitPos ();
51 UAV1 ->UpdateInitVel ();
52

53 UAV1 ->Ned2Ecef(UAV1 ->pos_final_nedX , UAV1 ->pos_final_nedY
, UAV1 ->pos_final_nedZ , LocalFrame1 ->latitude ,
LocalFrame1 ->longitude);

54

55

56 UAV1 ->Ecef2Lla(UAV1 ->pos_ecefX , UAV1 ->pos_ecefY , UAV1 ->
pos_ecefZ);

57

58
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59 simgen.mot_command_.data.mot_.position_ecef_xyz_ [0] =
UAV1 ->pos_ecefX;

60 simgen.mot_command_.data.mot_.position_ecef_xyz_ [1] =
UAV1 ->pos_ecefY;

61 simgen.mot_command_.data.mot_.position_ecef_xyz_ [2] =
UAV1 ->pos_ecefZ;

62 size_t message_size = sizeof(UDP_rx_command :: Command) +
32;

63

64 //Send message UDP to Simgen
65 buf = gcnew IntPtr (& simgen.mot_command_);

// Creater a pointer to the initial position of the
mot command

66 sendBytes = gcnew array <byte >( message_size);
// Initialises the array <byte > with the

lenght of the message
67 System :: Runtime :: InteropServices :: Marshal ::Copy(( IntPtr)

buf , sendBytes , 0, message_size); //Copy the memory
block of the mot command into the array of bytes

68 serverUDP ->Send(sendBytes , sendBytes ->Length , ipEndPoint)
; //send the block of memory to simgen

69

70 ...
71

72

73 stop_s = clock();
74 time_used = stop_s - start_s;
75 if (time_iteration_ms - time_used -time_archived < 0) {
76 time_archived = abs(time_iteration_ms - time_used -

time_archived);
77 }
78 else {
79 Sleep(time_iteration_ms - time_used - time_archived);
80 time_archived = 0;
81 }
82 start_s = stop_s;
83 backgroundWorker1 ->RunWorkerAsync (1); // starting

background worker
84 Sleep(time_iteration_ms);

Geo-Fencing Code - C++

The GeoFence class is given by:

1 public ref class GeoFence {
2 public:
3 GeoFence(String^ ID_s , String^ type_s , int

num_of_points , array <double >^ X_points , array <double
>^ Y_points , double max_altitude , DateTime^ time_in
, DateTime^ time_en);

4 GeoFence(String^ ID_s , String^ type_s , double X_centre ,
double Y_centre , double radius , double max_altitude

, DateTime^ time_in , DateTime^ time_en);
5 ~GeoFence () {}
6 bool UAVinside(Vehicle^ uav);
7

8

9 String^ type;
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10 String^ ID;
11 int npoints;
12 array <double >^ X_values;
13 array <double >^ Y_values;
14 double max_alt;
15 int count;
16 double X_cent;
17 double Y_cent;
18 double rad;
19 double distance;
20 DateTime^ time_ini;
21 DateTime^ time_end;
22

23 };

The UAV class of the Geo-Fencing software has the following parameters:
1 public ref class Vehicle {
2 public:
3 Vehicle () {};
4 ~Vehicle () {}
5 void lla2ned ();
6 void Update_time ();
7 /*void Ecef2Lla ();
8 void Ecef2Ned ();*/
9

10 // double pos_ecefX;
11 // double pos_ecefY;
12 // double pos_ecefZ;
13

14 double Latitude = 0;
15 double Longitud = 0;
16 double Altitud = 0;
17

18 double Speed = 0;
19 double Heading = 0;
20

21 String^ DiaUTC = "0";
22 String^ MesUTC = "0";
23 String^ AnnoUTC = "0";
24 String^ HoraUTC = "0";
25

26 DateTime^ current_time;
27 double pos_nedX = 0;
28 double pos_nedY = 0;
29 double pos_nedZ = 0;
30

31 double ref_lat;
32 double ref_lon;
33 double ref_alt = 0;
34

35 };

The GF comparator containing the two algorithms explained for circular and polygo-

nal shapes and taking into account the GF times and the maximum altitude is:
1 bool GeoFence :: UAVinside(Vehicle^ uav) {
2 double X_UAV = uav ->pos_nedX;
3 double Y_UAV = uav ->pos_nedX;
4 double Z_UAV = uav ->pos_nedX;
5 DateTime^ Current_Time = uav ->current_time;
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6 int compareValueIni = Current_Time ->CompareTo(time_ini)
;

7 int compareValueEnd = Current_Time ->CompareTo(time_end)
;

8

9 if (compareValueIni <0 || compareValueEnd >0) {
10 return false;
11 }
12 else {
13

14 if (max_alt != 0 && Z_UAV > max_alt) {
15 return false;
16 }
17 else {
18 if (type == "poly") {
19 int i, j = npoints - 1;
20 //bool oddNodes = false;
21 int croses = 0;
22

23 for (i = 0; i < npoints; i++) {
24 if (( Y_values[i] < Y_UAV && Y_values[j] >=

Y_UAV
25 || Y_values[j] < Y_UAV && Y_values[i] >=

Y_UAV)
26 && (X_values[i] <= X_UAV || X_values[j] <=

X_UAV)) {
27 // oddNodes ^= (X_values[i] + (Y_UAV -

Y_values[i]) / (Y_values[j] - Y_values[i])
*( X_values[j] - X_values[i]) < X_UAV);

28

29 if (( X_values[i] + (Y_UAV - Y_values[i]) / (
Y_values[j] - Y_values[i])*( X_values[j] -
X_values[i]) < X_UAV)) {

30 croses ++;
31 }
32 }
33 j = i;
34 }
35 if (croses % 2 == 1) { return true; }
36 if (croses % 2 == 0) { return false; }
37

38 printf("%d \n", croses);
39 // return oddNodes;
40

41 }
42

43 if (type == "circ") {
44 distance = sqrt(pow(X_UAV - X_cent , 2) + pow(

Y_UAV - Y_cent , 2));
45

46 if (distance > rad) {
47 return false; //uav is outside
48 }
49 if (distance < rad) {
50 return true; //uav is inside
51 }
52

53 }
54 }
55 }
56
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57 }

Scheduler Code - C++

The part of the code used to create the path plan for the boundary surveillance mission

is:

1 UAV::UAV(GeoFence^ GF, String^ mission , double speed ,
double altitude , double offset , double separation) {

2

3 current_speed = speed;
4 current_altitude = altitude;
5 mis = mission;
6 offs = offset;
7 // polygonal and boundary
8 if (mission == "bound" && GF->type == "poly") {
9 // firstly a NED local frame is calculated as he

bottom left corner of a rectangle that includes
all the points

10 straight = true;
11 LocalFrameLat = GF->X_values [0];
12 LocalFrameLon = GF->Y_values [0];
13 for (int i = 1; i < GF->npoints; i++) {
14 if (GF->X_values[i] < LocalFrameLat) {
15 LocalFrameLat = GF->X_values[i];
16 }
17 if (GF->Y_values[i] < LocalFrameLon) {
18 LocalFrameLon = GF->Y_values[i];
19 }
20 }
21

22 // Convert GF to NED coordinates
23 array <double >^ point_NED = gcnew array <double >(3);
24 GF_X_NED = gcnew array <double >(GF ->npoints);
25 GF_Y_NED = gcnew array <double >(GF ->npoints);
26 GF_Z_NED = gcnew array <double >(GF ->npoints);
27 for (int i = 0; i < GF->npoints; i++) {
28 point_NED = lla2ned(GF->X_values[i], GF->Y_values[i

], GF->max_alt , LocalFrameLat , LocalFrameLon , 0)
;

29 GF_X_NED[i] = point_NED [0];
30 GF_Y_NED[i] = point_NED [1];
31 GF_Z_NED[i] = point_NED [2];
32 }
33

34

35 // calculate internal points of the boundary
36 path_nedX = gcnew array <double >(GF->npoints);
37 path_nedY = gcnew array <double >(GF->npoints);
38

39

40 //first point
41 double angF , angB , angint;
42 double difX , difY , diag_offset;
43 double X_offset , Y_offset;
44
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45 //first point
46 angF = atan2(GF_X_NED [1] - GF_X_NED [0], GF_Y_NED [1] -

GF_Y_NED [0]);
47 angB = atan2(GF_X_NED[GF->npoints - 1] - GF_X_NED [0],

GF_Y_NED[GF->npoints - 1] - GF_Y_NED [0]);
48

49 if (angF >= 0) {
50 angint = angB + (angF - angB) / 2;
51 }
52 if (angF <= 0) {
53 if (angB >= 0) {
54 angint = angB + (2 * PI - angB + angF) / 2;
55 }
56 if (angB <= 0) {
57 angint = angF + (angB - angF) / 2;
58 }
59 }
60

61 diag_offset = offset / abs((sin(angF - angint)));
62

63 difX = diag_offset * sin(angint);
64 difY = diag_offset * cos(angint);
65

66 path_nedX [0] = GF_X_NED [0] + difX;
67 path_nedY [0] = GF_Y_NED [0] + difY;
68

69 for (int i = 1; i < (GF->npoints - 1); i++) {
70 angF = atan2(GF_X_NED[i + 1] - GF_X_NED[i],

GF_Y_NED[i + 1] - GF_Y_NED[i]);
71 angB = atan2(GF_X_NED[i - 1] - GF_X_NED[i],

GF_Y_NED[i - 1] - GF_Y_NED[i]);
72

73 if (angF >= 0) {
74 angint = angB + (angF - angB) / 2;
75 }
76 if (angF <= 0) {
77 if (angB >= 0) {
78 angint = angB + (2 * PI - angB + angF) / 2;
79 }
80 if (angB <= 0) {
81 angint = angF + (angB - angF) / 2;
82 }
83 }
84

85 diag_offset = offset / abs((sin(angF - angint)));
86

87 difX = diag_offset * sin(angint);
88 difY = diag_offset * cos(angint);
89

90 path_nedX[i] = GF_X_NED[i] + difX;
91 path_nedY[i] = GF_Y_NED[i] + difY;
92

93 }
94

95 // last point
96 angF = atan2(GF_X_NED [0] - GF_X_NED[GF->npoints - 1],

GF_Y_NED [0] - GF_Y_NED[GF ->npoints - 1]);
97 angB = atan2(GF_X_NED[GF->npoints - 2] - GF_X_NED[GF

->npoints - 1], GF_Y_NED[GF->npoints - 2] -
GF_Y_NED[GF->npoints - 1]);
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98

99 if (angF >= 0) {
100 angint = angB + (angF - angB) / 2;
101 }
102 if (angF <= 0) {
103 if (angB >= 0) {
104 angint = angB + (2 * PI - angB + angF) / 2;
105 }
106 if (angB <= 0) {
107 angint = angF + (angB - angF) / 2;
108 }
109 }
110

111 diag_offset = offset / abs((sin(angF - angint)));
112

113 difX = diag_offset * sin(angint);
114 difY = diag_offset * cos(angint);
115

116 path_nedX[GF ->npoints - 1] = GF_X_NED[GF->npoints -
1] + difX;

117 path_nedY[GF ->npoints - 1] = GF_Y_NED[GF->npoints -
1] + difY;

118 }
119

120 // circular and boundary
121 else if (mission == "bound" && GF->type == "circ") {
122 straight = false;
123 LocalFrameLat = GF->X_cent;
124 LocalFrameLon = GF->Y_cent;
125

126 array <double >^ point_NED = gcnew array <double >(3);
127 GF_X_NED = gcnew array <double >(1);
128 GF_Y_NED = gcnew array <double >(1);
129 GF_Z_NED = gcnew array <double >(1);
130 path_nedX = gcnew array <double >(1);
131 path_nedY = gcnew array <double >(1);
132

133 point_NED = lla2ned(GF->X_cent , GF->Y_cent , GF->
max_alt , LocalFrameLat , LocalFrameLon , 0);

134 GF_X_NED [0] = point_NED [0];
135 GF_Y_NED [0] = point_NED [1];
136 GF_Z_NED [0] = point_NED [2];
137 radius = GF->rad - offset;
138 path_nedX [0] = GF_X_NED [0] - radius;
139 path_nedY [0] = GF_Y_NED [0];
140 }

The part of the code used to create the path plan for the interior surveillance mission

is:
1 // polygonal and interior
2 else if (mission == "interior" && GF ->type == "poly") {
3 // firstly a NED local frame is calculated as he bottom

left corner of a rectangle that includes all the
points

4 straight = true;
5 LocalFrameLat = GF->X_values [0];
6 LocalFrameLon = GF->Y_values [0];
7 for (int i = 1; i < GF->npoints; i++) {
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8 if (GF->X_values[i] < LocalFrameLat) {
9 LocalFrameLat = GF->X_values[i];

10 }
11 if (GF->Y_values[i] < LocalFrameLon) {
12 LocalFrameLon = GF->Y_values[i];
13 }
14 }
15

16 // Convert GF to NED coordinates
17 array <double >^ point_NED = gcnew array <double >(3);
18 GF_X_NED = gcnew array <double >(GF ->npoints);
19 GF_Y_NED = gcnew array <double >(GF ->npoints);
20 GF_Z_NED = gcnew array <double >(GF ->npoints);
21 for (int i = 0; i < GF->npoints; i++) {
22 point_NED = lla2ned(GF->X_values[i], GF->Y_values[i],

GF ->max_alt , LocalFrameLat , LocalFrameLon , 0);
23 GF_X_NED[i] = point_NED [0];
24 GF_Y_NED[i] = point_NED [1];
25 GF_Z_NED[i] = point_NED [2];
26 }
27

28

29 // calculate internal points of the boundary
30 array <double >^ int_nedX = gcnew array <double >(GF ->

npoints);
31 array <double >^ int_nedY = gcnew array <double >(GF ->

npoints);
32

33

34 //first point
35 double angF , angB , angint;
36 double difX , difY , diag_offset;
37 double X_offset , Y_offset;
38

39 //first point
40 angF = atan2(GF_X_NED [1] - GF_X_NED [0], GF_Y_NED [1] -

GF_Y_NED [0]);
41 angB = atan2(GF_X_NED[GF->npoints - 1] - GF_X_NED [0],

GF_Y_NED[GF->npoints - 1] - GF_Y_NED [0]);
42

43 if (angF >= 0) {
44 angint = angB + (angF - angB) / 2;
45 }
46 if (angF <= 0) {
47 if (angB >= 0) {
48 angint = angB + (2 * PI - angB + angF) / 2;
49 }
50 if (angB <= 0) {
51 angint = angF + (angB - angF) / 2;
52 }
53 }
54

55 diag_offset = offset / abs((sin(angF - angint)));
56

57 difX = diag_offset * sin(angint);
58 difY = diag_offset * cos(angint);
59

60 int_nedX [0] = GF_X_NED [0] + difX;
61 int_nedY [0] = GF_Y_NED [0] + difY;
62
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63 for (int i = 1; i < (GF->npoints - 1); i++) {
64 angF = atan2(GF_X_NED[i + 1] - GF_X_NED[i], GF_Y_NED[

i + 1] - GF_Y_NED[i]);
65 angB = atan2(GF_X_NED[i - 1] - GF_X_NED[i], GF_Y_NED[

i - 1] - GF_Y_NED[i]);
66

67 if (angF >= 0) {
68 angint = angB + (angF - angB) / 2;
69 }
70 if (angF <= 0) {
71 if (angB >= 0) {
72 angint = angB + (2 * PI - angB + angF) / 2;
73 }
74 if (angB <= 0) {
75 angint = angF + (angB - angF) / 2;
76 }
77 }
78

79 diag_offset = offset / abs((sin(angF - angint)));
80

81 difX = diag_offset * sin(angint);
82 difY = diag_offset * cos(angint);
83

84 int_nedX[i] = GF_X_NED[i] + difX;
85 int_nedY[i] = GF_Y_NED[i] + difY;
86

87 }
88

89 // last point
90 angF = atan2(GF_X_NED [0] - GF_X_NED[GF->npoints - 1],

GF_Y_NED [0] - GF_Y_NED[GF ->npoints - 1]);
91 angB = atan2(GF_X_NED[GF->npoints - 2] - GF_X_NED[GF ->

npoints - 1], GF_Y_NED[GF ->npoints - 2] - GF_Y_NED[
GF ->npoints - 1]);

92

93 if (angF >= 0) {
94 angint = angB + (angF - angB) / 2;
95 }
96 if (angF <= 0) {
97 if (angB >= 0) {
98 angint = angB + (2 * PI - angB + angF) / 2;
99 }

100 if (angB <= 0) {
101 angint = angF + (angB - angF) / 2;
102 }
103 }
104

105 diag_offset = offset / abs((sin(angF - angint)));
106

107 difX = diag_offset * sin(angint);
108 difY = diag_offset * cos(angint);
109

110 int_nedX[GF->npoints - 1] = GF_X_NED[GF ->npoints - 1] +
difX;

111 int_nedY[GF->npoints - 1] = GF_Y_NED[GF ->npoints - 1] +
difY;

112

113 // now we have interior polygon , calculate rest of
points

114 // obtain longest side
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115 double top_distance , dist , heading1;
116 int pos;
117 top_distance = sqrt(pow(( int_nedX[int_nedX ->Length - 1]

- int_nedX [0]), 2) + pow(( int_nedY[int_nedX ->Length
- 1] - int_nedY [0]), 2));

118 pos = int_nedX ->Length - 1;
119

120 for (int i = 0; i <= int_nedX ->Length - 2; i++) {
121 dist = sqrt(pow(( int_nedX[i + 1] - int_nedX[i]), 2) +

pow(( int_nedY[i + 1] - int_nedY[i]), 2));
122 if (dist > top_distance) {
123 top_distance = dist;
124 pos = i;
125 }
126 }
127

128 //re - order points
129 array <double >^ int_nedX2 = gcnew array <double >(GF ->

npoints);
130 array <double >^ int_nedY2 = gcnew array <double >(GF ->

npoints);
131 int_nedX2 [0] = int_nedX[pos];
132 int_nedY2 [0] = int_nedY[pos];
133

134 for (int i = 1; i <= int_nedX ->Length - 1; i++) {
135 pos = pos + 1;
136 if (pos == int_nedX ->Length) {
137 pos = 0;
138 }
139 int_nedX2[i] = int_nedX[pos];
140 int_nedY2[i] = int_nedY[pos];
141 }
142 heading1 = atan2(int_nedX2 [1] - int_nedX2 [0], int_nedY2

[1] - int_nedY2 [0]);
143

144 // rotate points to straight with the longest point as
base

145 if (int_nedX2 [0] > int_nedX2 [2] || int_nedX2 [1] >
int_nedX2 [2]) {

146 heading1 = heading1 + PI;
147 }
148 double Rot11 , Rot12 , Rot21 , Rot22;
149 Rot11 = cos(heading1);
150 Rot12 = sin(heading1);
151 Rot21 = -sin(heading1);
152 Rot22 = cos(heading1);
153

154 double Rotr11 , Rotr12 , Rotr21 , Rotr22;
155 Rotr11 = cos(-heading1);
156 Rotr12 = sin(-heading1);
157 Rotr21 = -sin(-heading1);
158 Rotr22 = cos(-heading1);
159

160 array <double >^ int_nedX3 = gcnew array <double >(GF ->
npoints);

161 array <double >^ int_nedY3 = gcnew array <double >(GF ->
npoints);

162 for (int i = 0; i <= int_nedX2 ->Length - 1; i++) {
163 int_nedX3[i] = int_nedX2[i] * Rot11 + int_nedY2[i] *

Rot21;
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164 int_nedY3[i] = int_nedX2[i] * Rot12 + int_nedY2[i] *
Rot22;

165 }
166

167 // calculate bounding box
168 double minX , minY , maxX , maxY;
169 minX = int_nedX3 [0];
170 maxX = int_nedX3 [0];
171 minY = int_nedY3 [0];
172 maxY = int_nedY3 [0];
173 for (int i = 1; i < int_nedX3 ->Length - 1; i++) {
174 if (int_nedX3[i] < minX) {
175 minX = int_nedX3[i];
176 }
177 else if (int_nedX3[i] < maxX) {
178 maxX = int_nedX3[i];
179 }
180 else if (int_nedY3[i] < minY) {
181 minY = int_nedY3[i];
182 }
183 else if (int_nedY3[i] < maxY) {
184 maxY = int_nedY3[i];
185 }
186

187 }
188

189 array <double >^ boundingX = gcnew array <double >{ minX ,
minX , maxX , maxX };

190 array <double >^ boundingY = gcnew array <double >{ minY ,
maxY , maxY , minY };

191

192 // number of lines
193 array <double >^ d = gcnew array <double >(int_nedX ->Length

);
194 array <double >^ v1 = gcnew array <double >{ int_nedX2 [0],

int_nedY2 [0]};
195 array <double >^ v2 = gcnew array <double >{ int_nedX2 [1],

int_nedY2 [1]};
196 array <double >^ pt = gcnew array <double >(2);
197 for (int i = 0; i <= int_nedX2 ->Length - 1; i++) {
198 pt[0] = int_nedX2[i];
199 pt[1] = int_nedY2[i];
200 d[i] = point_to_line(pt, v1, v2);
201 }
202 double max_dist;
203 int index_max = 0;
204 max_dist = d[0];
205 for (int i = 0; i <= int_nedX ->Length - 1; i++) {
206 if (d[i] > max_dist) {
207 max_dist = d[i];
208 index_max = i;
209 }
210 }
211

212 double n_of_lines;
213 n_of_lines = floor(max_dist / separation);
214

215

216 array <double >^ exterior_pointsX = gcnew array <double >(2
* n_of_lines);
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217 array <double >^ exterior_pointsY = gcnew array <double >(2
* n_of_lines);

218

219 exterior_pointsX [0] = boundingX [0];
220 exterior_pointsX [1] = boundingX [1];
221 exterior_pointsY [0] = boundingY [0];
222 exterior_pointsY [1] = boundingY [1];
223 int count = 2;
224 for (int i = 2; i <= n_of_lines; i = i + 2) {
225 if (count < exterior_pointsX ->Length) {
226 exterior_pointsX[count] = boundingX [0] + (i - 1)*

separation;
227 exterior_pointsY[count] = boundingY [1];
228 count ++;
229 }
230 if (count < exterior_pointsX ->Length) {
231 exterior_pointsX[count] = boundingX [0] + (i - 1)*

separation;
232 exterior_pointsY[count] = boundingY [0];
233 count ++;
234 }
235 if (count < exterior_pointsX ->Length) {
236 exterior_pointsX[count] = boundingX [0] + (i)*

separation;
237 exterior_pointsY[count] = boundingY [0];
238 count ++;
239 }
240 if (count < exterior_pointsX ->Length) {
241 exterior_pointsX[count] = boundingX [0] + (i)*

separation;
242 exterior_pointsY[count] = boundingY [1];
243 count ++;
244 }
245 }
246

247

248 // crossing points with polygon
249 int lines = 0;
250 array <linea^>^ line_left = gcnew array <linea^>(

index_max - 1);
251

252 for (int i = 2; i <= index_max; i++) {
253 // lines at left of max point
254

255 line_left[lines] = gcnew linea;
256 line_left[lines]->pointsX [0] = int_nedX3[i - 1];
257 line_left[lines]->pointsX [1] = int_nedX3[i];
258 line_left[lines]->pointsY [0] = int_nedY3[i - 1];
259 line_left[lines]->pointsY [1] = int_nedY3[i];
260 line_left[lines]->angle = atan2(line_left[lines]->

pointsX [1] - line_left[lines]->pointsX [0],
line_left[lines]->pointsY [1] - line_left[lines]->
pointsY [0]);

261

262

263 lines = lines + 1;
264 }
265 lines = 0;
266

267

268 array <linea^>^ line_right = gcnew array <linea^>(



94 CHAPTER 7. APPENDICES

int_nedX ->Length - index_max);
269

270 for (int i = int_nedX ->Length - 1; i >= index_max; i--)
{

271 // lines at left of max point
272 if ((i + 1) >= int_nedX ->Length) {
273

274 line_right[lines] = gcnew linea;
275 line_right[lines]->pointsX [0] = int_nedX3 [0];
276 line_right[lines]->pointsX [1] = int_nedX3[i];
277 line_right[lines]->pointsY [0] = int_nedY3 [0];
278 line_right[lines]->pointsY [1] = int_nedY3[i];
279 line_right[lines]->angle = atan2(line_right[lines

]->pointsX [1] - line_right[lines]->pointsX [0],
line_right[lines]->pointsY [1] - line_right[lines
]->pointsY [0]);

280

281 }
282 else {
283 line_right[lines] = gcnew linea;
284 line_right[lines]->pointsX [0] = int_nedX3[i + 1];
285 line_right[lines]->pointsX [1] = int_nedX3[i];
286 line_right[lines]->pointsY [0] = int_nedY3[i + 1];
287 line_right[lines]->pointsY [1] = int_nedY3[i];
288 line_right[lines]->angle = atan2(line_right[lines

]->pointsX [1] - line_right[lines]->pointsX [0],
line_right[lines]->pointsY [1] - line_right[lines
]->pointsY [0]);

289

290

291 }
292 lines = lines + 1;
293

294

295 }
296

297 int points = 1;
298 array <double >^ pathX = gcnew array <double >(2 *

n_of_lines + 1);
299 array <double >^ pathY = gcnew array <double >(2 *

n_of_lines + 1);
300 double x_value , y_value;
301 int line = 0;
302

303 for (int j = 0; j < exterior_pointsX ->Length; j = j +
4) {

304 // 1st point left
305 if (points == 1 && j < exterior_pointsX ->Length) {
306 x_value = exterior_pointsX[j];
307

308 for (int i = 0; i < line_left ->Length; i++) {
309 if (( line_left[i]->pointsX [0] <= x_value +

0.0001) && (x_value - 0.0001 <= line_left[i]->
pointsX [1])) {

310 line = i;
311 }
312 }
313 pathX[j + points - 1] = x_value;
314 if (line_left[line]->angle <= PI) {
315 pathY[j + points - 1] = line_left[line]->pointsY
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[0] + (x_value - line_left[line]->pointsX [0])
/ tan(line_left[line]->angle);

316 }
317 else if (line_left[line]->angle > PI) {
318 pathY[j + points - 1] = line_left[line]->pointsY

[0] - (x_value - line_left[line]->pointsX [0])
/ tan(PI - line_left[line]->angle);

319 }
320 points = points + 1;
321 }
322 if (points == 2 && j + 1 < exterior_pointsX ->Length)

{
323 x_value = exterior_pointsX[j + 1];
324

325 for (int i = 0; i < line_right ->Length; i++) {
326 if (( line_right[i]->pointsX [0] <= x_value +

0.0001) && (x_value - 0.0001 <= line_right[i
]->pointsX [1])) {

327 line = i;
328 }
329 }
330 pathX[j + points - 1] = x_value;
331 if (line_right[line]->angle <= PI) {
332 pathY[j + points - 1] = line_right[line]->pointsY

[0] + (x_value - line_right[line]->pointsX [0])
/ tan(line_right[line]->angle);

333 }
334 else if (line_right[line]->angle > PI) {
335 pathY[j + points - 1] = line_right[line]->pointsY

[0] - (x_value - line_right[line]->pointsX [0])
/ tan(PI - line_right[line]->angle);

336 }
337 points = points + 1;
338 }
339 if (points == 3 && j + 2 < exterior_pointsX ->Length)

{
340 x_value = exterior_pointsX[j + 2];
341

342 for (int i = 0; i < line_right ->Length; i++) {
343 if (( line_right[i]->pointsX [0] <= x_value +

0.0001) && (x_value - 0.0001 <= line_right[i
]->pointsX [1])) {

344 line = i;
345 }
346 }
347 pathX[j + points - 1] = x_value;
348 if (line_right[line]->angle <= PI) {
349 pathY[j + points - 1] = line_right[line]->pointsY

[0] + (x_value - line_right[line]->pointsX [0])
/ tan(line_right[line]->angle);

350 }
351 else if (line_right[line]->angle > PI) {
352 pathY[j + points - 1] = line_right[line]->pointsY

[0] - (x_value - line_right[line]->pointsX [0])
/ tan(PI - line_right[line]->angle);

353 }
354 points = points + 1;
355 }
356 if (points == 4 && j + 3 < exterior_pointsX ->Length)
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{
357 x_value = exterior_pointsX[j + 3];
358

359 for (int i = 0; i < line_left ->Length; i++) {
360 if (( line_left[i]->pointsX [0] <= x_value +

0.0001) && (x_value - 0.0001 <= line_left[i]->
pointsX [1])) {

361 line = i;
362 }
363 }
364 pathX[j + points - 1] = x_value;
365 if (line_left[line]->angle <= PI) {
366 pathY[j + points - 1] = line_left[line]->pointsY

[0] + (x_value - line_left[line]->pointsX [0])
/ tan(line_left[line]->angle);

367 }
368 else if (line_left[line]->angle > PI) {
369 pathY[j + points - 1] = line_left[line]->pointsY

[0] - (x_value - line_left[line]->pointsX [0])
/ tan(PI - line_left[line]->angle);

370 }
371 points = 1;
372 }
373 }
374 pathX[pathX ->Length - 1] = int_nedX3[index_max ];
375 pathY[pathY ->Length - 1] = int_nedY3[index_max ];
376

377 // reconversion to original ned
378 path_nedX = gcnew array <double >(pathX ->Length);
379 path_nedY = gcnew array <double >(pathX ->Length);
380 for (int i = 0; i < pathX ->Length; i++) {
381 path_nedX[i] = pathX[i] * Rotr11 + pathY[i] * Rotr21;
382 path_nedY[i] = pathX[i] * Rotr12 + pathY[i] * Rotr22;
383 }
384

385

386 }
387 // circular and interior
388 else if (mission == "interior" && GF->type == "circ") {
389 straight = true;
390 LocalFrameLat = GF->X_cent;
391 LocalFrameLon = GF->Y_cent;
392

393 array <double >^ point_NED = gcnew array <double >(3);
394 GF_X_NED = gcnew array <double >(1);
395 GF_Y_NED = gcnew array <double >(1);
396 GF_Z_NED = gcnew array <double >(1);
397 point_NED = lla2ned(GF->X_cent , GF->Y_cent , GF ->max_alt

, LocalFrameLat , LocalFrameLon , 0);
398 GF_X_NED [0] = point_NED [0];
399 GF_Y_NED [0] = point_NED [1];
400 GF_Z_NED [0] = point_NED [2];
401 radius = GF->rad - offset;
402

403

404 // interior surveillance
405 // calculate bounding box
406 double minX , minY , maxX , maxY;
407 minX = GF_X_NED [0] - radius;
408 maxX = GF_X_NED [0] + radius;
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409 minY = GF_Y_NED [0] - radius;
410 maxY = GF_Y_NED [0] + radius;
411 array <double >^ boundingX = gcnew array <double >{ minX ,

minX , maxX , maxX };
412 array <double >^ boundingY = gcnew array <double >{ minY ,

maxY , maxY , minY };
413

414 //num of lines
415 int n_of_lines;
416 n_of_lines = floor (2 * radius / separation);
417

418 array <double >^ exterior_pointsX = gcnew array <double >(2
* n_of_lines);

419 array <double >^ exterior_pointsY = gcnew array <double >(2
* n_of_lines);

420

421 exterior_pointsX [0] = boundingX [0];
422 exterior_pointsX [1] = boundingX [1];
423 exterior_pointsY [0] = boundingY [0];
424 exterior_pointsY [1] = boundingY [1];
425 int count = 2;
426 for (int i = 2; i <= n_of_lines; i = i + 2) {
427 if (count < exterior_pointsX ->Length) {
428 exterior_pointsX[count] = boundingX [0] + (i - 1)*

separation;
429 exterior_pointsY[count] = boundingY [1];
430 count ++;
431 }
432 if (count < exterior_pointsX ->Length) {
433 exterior_pointsX[count] = boundingX [0] + (i - 1)*

separation;
434 exterior_pointsY[count] = boundingY [0];
435 count ++;
436 }
437 if (count < exterior_pointsX ->Length) {
438 exterior_pointsX[count] = boundingX [0] + (i)*

separation;
439 exterior_pointsY[count] = boundingY [0];
440 count ++;
441 }
442 if (count < exterior_pointsX ->Length) {
443 exterior_pointsX[count] = boundingX [0] + (i)*

separation;
444 exterior_pointsY[count] = boundingY [1];
445 count ++;
446 }
447 }
448

449 int points = 1;
450 path_nedX = gcnew array <double >(2 * n_of_lines);
451 path_nedY = gcnew array <double >(2 * n_of_lines);
452 double x_value , y_value;
453 int line = 0;
454

455 path_nedX [0] = GF_X_NED [0] - radius;
456 path_nedY [0] = GF_Y_NED [0];
457 for (int j = 2; j < exterior_pointsX ->Length; j = j +

4) {
458 // 1st point left
459 if (points == 1 && j < exterior_pointsX ->Length) {
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460 x_value = exterior_pointsX[j];
461 path_nedX[j + points - 2] = x_value;
462 path_nedY[j + points - 2] = GF_Y_NED [0] + sqrt(pow(

radius , 2) - pow(abs(x_value), 2));
463 points = points + 1;
464 }
465 if (points == 2 && j + 1 < exterior_pointsX ->Length)

{
466 x_value = exterior_pointsX[j + 1];
467 path_nedX[j + points - 2] = x_value;
468 path_nedY[j + points - 2] = GF_Y_NED [0] - sqrt(pow(

radius , 2) - pow(abs(x_value), 2));
469 points = points + 1;
470 }
471 if (points == 3 && j + 2 < exterior_pointsX ->Length)

{
472 x_value = exterior_pointsX[j + 2];
473 path_nedX[j + points - 2] = x_value;
474 path_nedY[j + points - 2] = GF_Y_NED [0] - sqrt(pow(

radius , 2) - pow(abs(x_value), 2));
475 points = points + 1;
476 }
477 if (points == 4 && j + 3 < exterior_pointsX ->Length)

{
478 x_value = exterior_pointsX[j + 3];
479 path_nedX[j + points - 2] = x_value;
480 path_nedY[j + points - 2] = GF_Y_NED [0] + sqrt(pow(

radius , 2) - pow(abs(x_value), 2));
481 points = 1;
482 }
483 }
484 path_nedX[path_nedX ->Length - 1] = GF_X_NED [0] + radius

;
485 path_nedY[path_nedX ->Length - 1] = GF_Y_NED [0];
486

487 }

The part of the code containing the path following algorithm is:

1 void UAV:: TrajGen () {
2 time_total = time_total + timestep;
3

4 double Ru, theta , theta_u , delt_theta , R, s1 , s2 , u_max
, delt_heading , u, heading_rate , d;

5 if (straight == true) {
6

7 // chasing carrot algorithm
8 Ru = sqrt(pow((w1[0] - pos_init_nedX), 2) + pow((w1

[1] - pos_init_nedY), 2));
9 theta = atan2(w2[1] - w1[1], w2[0] - w1[0]);

10 theta_u = atan2(pos_init_nedY - w1[1], pos_init_nedX
- w1[0]);

11 delt_theta = theta - theta_u;
12

13 R = sqrt(pow(Ru , 2) - pow((Ru * sin(delt_theta)), 2))
;

14 s1 = w1[0] + (R + delta)*cos(theta);
15 s2 = w1[1] + (R + delta)*sin(theta);
16 desired_heading = atan2(s2 - pos_init_nedY , s1 -

pos_init_nedX);
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17 }
18

19 if (straight == false) {
20 d = sqrt(pow(( pos_init_nedX), 2) + pow(( pos_init_nedY

), 2)) - radius;
21

22 theta = atan2(pos_init_nedY , pos_init_nedX);
23

24 s1 = GF_X_NED [0] + radius * cos(theta + lambda);
25 s2 = GF_Y_NED [0] + radius * sin(theta + lambda);
26 desired_heading = atan2(s2 - pos_init_nedY , s1 -

pos_init_nedX);
27

28

29 }
30 u_max = abs(pow(current_speed , 2) / Rmin);
31 delt_heading = desired_heading - current_heading;
32 if (abs(delt_heading) > PI) {
33 delt_heading = -Math::Sign(delt_heading)*(2 * PI -

abs(delt_heading));
34 }
35 if (abs(kappa*( delt_heading)*current_speed) < u_max) {
36 u = (kappa*( delt_heading)*current_speed);
37 }
38 else if (abs(kappa *( delt_heading)*current_speed) >=

u_max) {
39 u = Math::Sign(kappa*( delt_heading)*current_speed) *

u_max;
40 }
41

42 heading_rate = u / current_speed;
43 current_heading = current_heading + heading_rate *

timestep;
44 vel_final_nedX = current_speed * cos(current_heading);
45 vel_final_nedY = current_speed * sin(current_heading);
46 vel_final_nedZ = 0;
47

48 pos_final_nedX = pos_init_nedX + vel_final_nedX *
timestep;

49 pos_final_nedY = pos_init_nedY + vel_final_nedY *
timestep;

50 pos_final_nedZ = current_altitude;
51 if (straight == true) {
52 dist_to_change = sqrt(pow(( pos_final_nedX - w2[0]),

2) + pow(( pos_final_nedY - w2[1]), 2));
53

54 }
55 if (current_heading >= PI) {
56 current_heading = current_heading - 2 * PI;
57 }
58 if (current_heading <= -PI) {
59 current_heading = current_heading + 2 * PI;
60 }
61 }
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Appendix B - Performance Analysis - Matlab Files

For each test done in in the Speed-Offset analysis, a block of code like the one show

below is used to provide result in form of tables and figures:

1 % import GF data
2 % addpath(’Z:\ ProfileData\s278765\Desktop ’)
3 addpath(’C:\ Users\ Jorge\ Desktop\ tesis\ performance

analysis\ Scenarios ’);
4 GF = textread(’cranfield.txt’,’%s’,’delimiter ’,’;’);
5

6 GeoFence.ID = GF(2);
7 GeoFence.shape = GF(3);
8 GeoFence.NP = str2double(GF(4));
9 j=1;

10 for i = 5:2: length(GF)-4
11 GeoFence.X(j) = str2double(GF(i));
12 GeoFence.Y(j) = str2double(GF(i+1));
13 j=j+1;
14 end
15

16 %% speed 5 offset 1m 1st test
17 [~, ~, raw0_0] = xlsread(’C:\ Users\ Jorge\ Desktop\

tesis\ performance analysis\ offset -speed_analysis\
boundary_offset_analysis.xlsx’,’SP5_Off1 ’,’E2:F509’);

18 [~, ~, raw0_1] = xlsread(’C:\ Users\ Jorge\ Desktop\
tesis\ performance analysis\ offset -speed_analysis\
boundary_offset_analysis.xlsx’,’SP5_Off1 ’,’I2:J509’);

19 % [~, ~, raw0_0] = xlsread(’Z:\ ProfileData\s278765\
Desktop\boundary_offset_analysis.xlsx ’,’SP5_Off1 ’,’E2:
F509 ’);

20 % [~, ~, raw0_1] = xlsread(’Z:\ ProfileData\s278765\
Desktop\boundary_offset_analysis.xlsx ’,’SP5_Off1 ’,’I2:
J509 ’);

21

22

23 sp5off1.mot_comand = reshape ([ raw0_0 {:}], size(raw0_0));
24 sp5off1.real_pos = reshape ([ raw0_1 {:}], size(raw0_1));
25 clearvars raw0_0 raw0_1;
26

27 % test offset 1m
28 sp5off1.time_out_path = 0;
29 sp5off1.time_out_GPS = 0;
30 bool1 = true;
31 bool2 = true;
32

33 figure (1)
34 plot ([ GeoFence.Y GeoFence.Y(1)], [GeoFence.X GeoFence.X

(1)],’color’ ,[0,0,1])
35 hold on
36 for i = 1: length(sp5off1.mot_comand (:,1))
37 bool1 = UAV_inside(sp5off1.mot_comand(i,1),sp5off1.

mot_comand(i,2) ,0,GeoFence);
38 bool2 = UAV_inside(sp5off1.real_pos(i,1),sp5off1.

real_pos(i,2) ,0,GeoFence);
39 if bool1 == false
40 sp5off1.time_out_path = sp5off1.time_out_path +

1;
41 h1 = plot(sp5off1.mot_comand(i,2),sp5off1.
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mot_comand(i,1),’x’,’color ’ ,[0,1,0]);
42 end
43

44 if bool2 == false
45 sp5off1.time_out_GPS = sp5off1.time_out_GPS +

1;
46 h2 = plot(sp5off1.real_pos(i,2),sp5off1.real_pos(

i,1),’x’,’color’ ,[1,0,0]);
47 end
48 bool1 = true;
49 bool2 = true;
50 end
51

52 sp5off1.per_out_path = (sp5off1.time_out_path / length(
sp5off1.mot_comand (:,1))) * 100;

53 sp5off1.per_out_GPS = (sp5off1.time_out_GPS / length(
sp5off1.real_pos (:,1))) * 100;

54

55

56 plot(sp5off1.mot_comand (:,2),sp5off1.mot_comand (:,1),’
color’ ,[0,1,0])

57 plot(sp5off1.real_pos (:,2),sp5off1.real_pos (:,1),’color’
,[1,0,0])

58 title(’Points Outside the Geo -Fence - Speed 5 m/s -
Offset 1 m’)

59 xlabel(’Lon [deg]’)
60 ylabel(’Lat [deg]’)
61 if exist(’h1’,’var’) == 1
62 legend ([h1], {’Points outside - Path Following ’}, ’

Location ’, ’Southeast ’)
63 end
64 if exist(’h2’,’var’) == 1
65 legend ([h2], {’Points outside - GPS accuracy ’ }, ’

Location ’, ’Southeast ’)
66 end
67 if exist(’h2’,’var’) == 1 && exist(’h1’,’var’) == 1
68 legend ([h1,h2], {’Points outside - Path Following ’,’

Points outside - GPS accuracy ’ }, ’Location ’, ’
Southeast ’)

69 end

For each of the tests done in the Multi-path analysis, the code used to calculate errors

and plots is given by:

1 % Date: 4th July 2018
2 % Authors: Duran Zafrilla , Jorge (Cranfield University) &

Verdeguer Moreno , Ricardo (Spirent Communications)
3 % Description: Nominal Test with Sim3D (4 multipath) and

the GSS9000 @ 100 Hz + Ublox M8T receiver
4 % ------
5 %
6 % Conditions:
7 %
8 % - Scenario Type: S
9 % - PDOP: <4

10 % - Altitude: 120 m
11 % - Separation: 15 m
12 % - Mission: Interior Surveillance
13 % - Geo -fence offset: 5 m
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14 % - Speed: 5 m/s
15 %
16 % Scenario Start Date & Time: 4th July 2017 05:00:00 (

Default SimGEN orbits)
17

18 clc;clear;
19

20 %%import data
21 [~, ~, raw0_0] = xlsread(’C:\ Users\Jorge\Desktop\tesis\

performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’B2:B572’);

22 [~, ~, raw0_1] = xlsread(’C:\ Users\Jorge\Desktop\tesis\
performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’E2:E572’);

23 [~, ~, raw0_2] = xlsread(’C:\ Users\Jorge\Desktop\tesis\
performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’H2:H572’);

24 raw = [raw0_0 ,raw0_1 ,raw0_2 ];
25 pos_ideal_nav3d = reshape ([raw{:}], size(raw));
26 clearvars raw raw0_0 raw0_1 raw0_2;
27

28 [~, ~, raw0_0] = xlsread(’C:\ Users\Jorge\Desktop\tesis\
performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’K2:K572’);

29 [~, ~, raw0_1] = xlsread(’C:\ Users\Jorge\Desktop\tesis\
performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’M2:M572’);

30 [~, ~, raw0_2] = xlsread(’C:\ Users\Jorge\Desktop\tesis\
performance analysis\Multipath - Nav3D\Nominal Test\
nominal_motion.xlsx’,’Hoja4’,’P2:P572’);

31 raw = [raw0_0 ,raw0_1 ,raw0_2 ];
32 pos_real_nav3d = reshape ([raw{:}], size(raw));
33 clearvars raw raw0_0 raw0_1 raw0_2;
34

35 [~, ~, raw] = xlsread(’C:\Users\Jorge\Desktop\tesis\
performance analysis\No Multipath\Nominal Test\
nominal_motion2.xlsx’,’Hoja2’,’E2:F569’);

36 pos_ideal_sinm = reshape ([raw{:}], size(raw));
37 clearvars raw;
38

39 [~, ~, raw] = xlsread(’C:\Users\Jorge\Desktop\tesis\
performance analysis\No Multipath\Nominal Test\
nominal_motion2.xlsx’,’Hoja2’,’I2:J569’);

40 R = cellfun(@(x) (~ isnumeric(x) && ~islogical(x)) ||
isnan(x),raw); % Find non -numeric cells

41 raw(R) = {0.0}; % Replace non -numeric cells
42 pos_real_sinm = reshape ([raw{:}], size(raw));
43 clearvars raw R;
44

45 %% distance between points
46 R = 6371*10^3; % metres
47

48

49 error_distance_nav3d = zeros(length(pos_real_nav3d (:,1))
,1);

50 error_distance_sinm = zeros(length(pos_real_sinm (:,1)) ,1)
;

51 for i = 1: length(pos_real_nav3d (:,1))
52 lat1 = pos_ideal_nav3d(i,1)*pi /180;
53 lat2 = pos_real_nav3d(i,1)*pi/180;
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54 lon1 = pos_ideal_nav3d(i,2)*pi /180;
55 lon2 = pos_real_nav3d(i,2)*pi/180;
56 delt_lat = (lat2 -lat1);
57 delt_lon = (lon2 -lon1);
58

59 a = sin(delt_lat /2) * sin(delt_lat /2) + cos(lat1) *
cos(lat2) * sin(delt_lon /2) * sin(delt_lon /2);

60 c = 2 * atan2(sqrt(a), sqrt(1-a));
61

62 error_distance_nav3d(i) = R * c;
63 % [error_distance_nav3d(i) , az] = distance (

pos_ideal_nav3d(i,1),pos_ideal_nav3d(i,2),
pos_real_nav3d(i,1),pos_real_nav3d(i,2));

64 end
65 for i = 1: length(pos_real_sinm (:,1))
66 lat1 = pos_ideal_sinm(i,1)*pi/180;
67 lat2 = pos_real_sinm(i,1)*pi/180;
68 lon1 = pos_ideal_sinm(i,2)*pi/180;
69 lon2 = pos_real_sinm(i,2)*pi/180;
70 delt_lat = (lat2 -lat1);
71 delt_lon = (lon2 -lon1);
72

73 a = sin(delt_lat /2) * sin(delt_lat /2) + cos(lat1) *
cos(lat2) * sin(delt_lon /2) * sin(delt_lon /2);

74 c = 2 * atan2(sqrt(a), sqrt(1-a));
75

76 error_distance_sinm(i) = R * c;
77

78 % [error_distance_sinm(i) , az] = distance (
pos_ideal_sinm(i,1),pos_ideal_sinm(i,2),pos_real_sinm(
i,1),pos_real_sinm(i,2));

79 end
80

81

82

83 %% process data
84 f=figure (1);
85 subplot (6,1 ,1:5)
86 plot(pos_ideal_nav3d (:,2),pos_ideal_nav3d (:,1),’color’ ,[1

0 0])
87 hold on
88 plot(pos_real_nav3d (:,2),pos_real_nav3d (:,1),’color’ ,[0 1

0])
89 hold on
90 ax = f.CurrentAxes;
91 title(’Nominal Case’)
92 plot(pos_real_sinm (:,2),pos_real_sinm (:,1),’color ’ ,[0 0

1])
93 title(’Nominal test - multipath influence ’)
94 legend(’Theorical Trajectory ’,’Trajectory with Multipath ’

,’Trajectory without Multipath ’,’Location ’,’
SouthOutside ’)

95 xlabel(’Lon [deg]’)
96 ylabel(’Lat [deg]’)
97 grid on
98 subplot (6,1,6)
99 plot (1:1: length(error_distance_nav3d),

error_distance_nav3d ,’color ’ ,[0 1 0])
100 hold on
101 plot (1:1: length(error_distance_sinm),error_distance_sinm ,
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’color’ ,[0 0 1])
102 xlabel(’Time [s]’)
103 ylabel(’Pos. Error [m]’)
104 grid on
105 % %% dynamic plot
106

107 figure (3)
108 plot3(pos_ideal_nav3d (:,2),pos_ideal_nav3d (:,1),

error_distance_nav3d ,’color ’ ,[0 1 0])
109 hold on
110 plot(pos_ideal_nav3d (:,2),pos_ideal_nav3d (:,1),’color’ ,[1

0 0])
111 plot3(pos_ideal_sinm (:,2),pos_ideal_sinm (:,1),

error_distance_sinm ,’color’ ,[0 0 1])

Appendix C - Performance Analysis - xlsx and csv Files

As explained during the development of this document, a .csv file was obtained from

the GNSS simulator containing the motion command and another .csv file is stored from

U-Center containing the positioning from the NMEA sentences of the receiver. In order

to process this files, the relevant data for this project is stored in the same .xlsx file which

is used by the Matlab files of the previous Appendix to calculate results for each of the

tests done. Therefore, for each of the tests of both analysis performed the Excel files used

are shown in Figures 7.1, 7.2 and 7.3.
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Figure 7.1: .csv file stored from U-Center with GNSS positioning data
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Figure 7.2: .csv file stored from GNSS simulator with motion data
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Figure 7.3: .xlsx file used in the Matlab files to calculate results
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