

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

E S C O L A P O L I T E C N I C A S U P E R I O R D E G A N D I A

G r a d o e n I n g . S i s t . d e T e l e c o m . , S o n i d o e I m a g e n

“Machine Learning for Solar Energy
Prediction”

TRABAJO FINAL DE GRADO

Autor/a:
Claudia Ferrer Martínez

Tutor/a:
José Chilo
Vicenç Almenar Terré

GANDIA, 2018

FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT
Department of Electronics, Mathematics and Natural Sciences

Claudia Ferrer Martínez
May 2018

Student thesis, Basic level (Bachelor degree), 15 hp
Bachelor’s Degree in Electronics

Supervisor: José Chilo
Examiner: Edvard Nordlander

Machine Learning for Solar Energy Prediction

i

Preface

I would like to thank my supervisors José Chilo, professor at the University of
Gävle (HiG), and Vicenç Almenar, professor at the Polytechnical University of
Valencia (UPV), for giving me the opportunity to carry out this bachelor thesis.
I would also like to thank my fellow students for all the help, support and shared
moments during our university years. Thanks to the friends I met during my
exchange semester in Gävle, for their support during the time spent working
on this project and for making of the last semester of my bachelor a wonderful
experience. Finally, I would like to thank specially my family and friends for
their constant support during all the time.

ii

Abstract

This thesis consists of the study of different Machine Learning models used to
predict solar power data in photovoltaic plants.

The process of implement a model of Machine Learning will be reviewed step
by step: to collect the data, to pre-process the data in order to make it able to
use as input for the model, to divide the data into training data and testing data,
to train the Machine Learning algorithm with the training data, to evaluate the
algorithm with the testing data, and to make the necessary changes to achieve
the best results.

The thesis will start with a brief introduction to solar energy in one part, and
an introduction to Machine Learning in another part. The theory of different
models and algorithms of supervised learning will be reviewed, such as Decision
Trees, Naïve Bayer Classification, Support Vector Machines (SVM), K-Nearest
Neighbor (KNN), Linear Regression, Logistic Regression, Artificial Neural
Network (ANN).

Then, the methods Linear Regression, SVM Regression and Artificial Neural
Network will be implemented using MATLAB in order to predict solar energy
from historical data of photovoltaic plants. The data used to train and test the
models is extracted from the National Renewable Energy Laboratory (NREL),
that provides a dataset called “Solar Power Data for Integration Studies”
intended for use by Project developers and university researchers. The dataset
consist of 1 year of hourly power data for approximately 6000 simulated PV
plants throughout the United States.

Finally, once the different models have been implemented, the results show that
the technique which provide the best prediction is Linear Regression.

Key Words:

Machine Learning, Solar Energy, Forecasting, MATLAB, Supervised Learning,
Regression Model

iii

Resumen

El proyecto consistirá en el estudio de diferentes técnicas de Machine Learning
aplicadas a la predicción de energía solar en plantas fotovoltaicas.

Se revisará el proceso de implementar un modelo de Machine Learning paso a
paso: recoger el dataset, procesarlo para poder utilizarlo como entrada para el
modelo, dvívidir los datos en datos para entrenar el modelo, y datos para
evaluarlo, entrenar y evaluar el algoritmo, y hacer los cambios necesarios para
conseguir los mejores resultados.

El proyecto comenzará con una breve introducción a la energía solar por una
parte, y una introducción a Machine Learning por otra parte. Se hará una
revisión de los diferentes modelos o algoritmos, en concreto de aprendizaje
supervisado, tal como Árboles de Decisión, Clasificación Naïve Bayer,
Máquinas de Vector de Soporte (SVM), K-Vecino más cercano (KNN),
Regresión Lineal, Regresión Logística, Redes Neuronales Artificiales (ANN).

A continuación, los métodos Regresión Lineal, SVM y ANN serán
implementados en MATLAB, con el fin de predecir energía solar partiendo de
datos históricos de plantas fotovoltaicas. Los datos utilizados serán extraídos del
Laboratorio Nacional de Energías Renovables (National Renewable Energy
Laboratory (NREL)), de EEUU, que provee un dataset llamado "Solar Power
Data for Integration Studies" destinado a desarrolladores de proyectos e
investigadores universitarios que necesitan estimar la producción de energía
para hipotéticas plantas solares. Este dataset consiste en datos de energía solar
por hora durante un año, para aproximadamente 6000 plantas fotovoltaicas
simuladas en EEUU.

Por último, una vez los diferentes modelos han sido implementados, los
resultados muestran que la técnica que consigue mejores predicciones es
Regresión Lineal.

Palabras Clave:

Machine Learning, Energía Solar, Predicción, MATLAB, Aprendizaje
Supervisado, Modelo de Regresión

iv

Table of contents

	
1 Introduction ... 1

1.1 Aim of the project .. 1
1.2 Work plan ... 1

2 Theory ... 2
2.1 Solar Energy... 2
2.2 Machine Learning .. 3

2.2.1 Introduction to Machine Learning ... 3
2.2.2 Supervised learning algorithms ... 5

3 Process and results ... 12
3.1 Dataset ... 12
3.2 Software ... 14
3.3 Experiments... 15

3.3.1 Linear Regression (LR) .. 15
3.3.2 Support Vector Machines Regression (SVMR) 21
3.3.3 Artificial Neural Network (ANN) 23
3.3.4 Changes in the dataset ... 34

4 Discussion ... 36
5 Conclusions ... 38
References ... 39
Appendix A .. A1
Appendix B .. B1
Appendix C.. C1

v

List of figures

Figure 1: Global installed capacity of solar power, from 2006 to 2025 [2] 2
Figure 2: Machine Learning techniques classification [6] ... 3
Figure 3: Clustering finds new patterns in data [6] .. 3
Figure 4: Decision Tree of playing tennis [7] ... 5
Figure 5: Logistic Function [9] .. 7
Figure 6: low regularization parameter .. 8
Figure 7: High regularization parameter .. 9
Figure 8: High values of gamma ... 9
Figure 9: Low values of gamma ... 9
Figure 10: Artificial Neural Netework.. 10
Figure 11: Dataset .. 13
Figure 12: Dataset of fig.11 normalized from 0 to 1... 13
Figure 13: Making predictions with a Machine Learning model 15
Figure 14: Validation options in MATLAB .. 17
Figure 15: RMSE of different trained configurations (first LR model: prediction using data
from nearest locations) ... 18
Figure 16: Predicted vs. actual response (first LR model: prediction using data from nearest
locations) .. 18
Figure 17: Predicted data vs. Real data, extract of 100 hours (first LR model: prediction
using data from nearest locations) ... 19
Figure 18: Predicted data vs. Real data, extract of 1 month (first LR model: prediction using
data from nearest locations) ... 19
Figure 19: RMSE of different trained configurations (second LR model: prediction using
data from every location) .. 20
Figure 20: Predicted data vs. real data, extract of 100 hours (Second LR model: prediction
using data from every location) .. 20
Figure 21: Predicted data vs. real data, extract of 1 month (Second LR model: prediction
using data from every location) .. 21
Figure 22: RMSE of trained model with different kernels (First SVMR model: predictions
using data from nearest locations) ... 22
Figure 23: RMSE of trained model with different kernels (Second SVMR model: predictions
using data from every location) .. 22
Figure 24: Nonlinear Autoregressive with External Input (NARX) 23
Figure 25: Nonlinear Autoregressive (NAR) .. 23
Figure 26: Nonlinear Input Output ... 23
Figure 27: Dividing the dataset into training, validation and testing 24
Figure 28: Choosing number of hidden neurons and number of delays 24
Figure 29: Choosing training algorithm .. 25
Figure 30: Training tool ... 26
Figure 31: Autocorrelation of error ... 26
Figure 32: First model, first configuration: NARX Neural Network open loop 27
Figure 33: Predicted data vs. real data for first model, first configuration: NARX neural
network open loop .. 27
Figure 34: First model, second configuration: NARX Neural Network closed loop 28

vi

Figure 35: Predicted data vs. real data for first model, second configuration: NARX Neural
Network closed loop ... 28
Figure 36: First model, third configuration: NARX predict one steap ahead 29
Figure 37: Predicted data vs real data for first model, third configuration: NARX predict one
step ahead ... 29
Figure 38: Second model, first configuration: NAR Neural Network open loop 30
Figure 39: Predicted data vs. real data for second model, first configuration: NAR neural
network open loop .. 31
Figure 40: Second model, second configuration: NAR neural network closed loop 31
Figure 41: Predicted data vs. real data for second model, second configuration: NAR neural
network closed loop .. 32
Figure 42: Second model, third configuration: NAR predict one steap ahead 32
Figure 43: Predicted data vs real data for second model, third configuration: NARX predict
one step ahead ... 33

List of tables
Table 1: Predictors and Response ... 16
Table 2: Comparison of results of Linear Regression models 21
Table 3 : Comparison of Results of both SVMR model ... 22
Table 4: RMSE model performance, ANN-NARX .. 29
Table 5: RMSE predicted vs real data, ann NARX ... 30
Table 6: RMSE model performance, ANN-NAR .. 33
Table 7: RMSE predicted vs real data, ANN - NAR ... 33
Table 8: RMSE, SVMR model, with date and without date as a predictor(values with
asterisk) ... 34
Table 9: RMSE model performance, ANN-NARX, with date and without date as a
predictor(values with asterisk) ... 34
Table 10: RMSE predicted vs real data, ANN-NARX with date and without date as a
predictor(values with asterisk) ... 35

List of equations
Equation 1: Euclidean function .. 6
Equation 2: Manhattan function ... 6
Equation 3: Minkowski function .. 6
Equation 4: Logistic function [9] .. 7
Equation 5: Posterior probability equation [7] ... 8
Equation 6: Standard Deviation Reduction .. 11
Equation 7: RMSE .. 14

1

1 Introduction

1.1 Aim of the project

Nowadays, renewable energies collected from renewable resources as sunlight or
wind, are becoming more and more important, due to its minimum impact for the
environment, as they produce a lower pollution and reduce CO2 emissions.
However, renewable energies, such as photovoltaic energy, which is studied in this
thesis, are not completely effective because the sun radiation varies constantly and
electricity supply is needed in case there is no the expected solar energy to meet the
demand for the electricity grid. That is a reason why solar energy is not commonly
used in industries that need a continue power supply, due to the elevate costs of power
bought at the last moment. Therefore, a good prediction system would be a great
improvement in photovoltaic plants.

Machine Learning is a wide field of computer science that provides suitable techniques
for making predictions. The main objective of this thesis is to study different
techniques and algorithms of machine learning, and more specifically, supervised
learning models, in order to see which one provides the best estimation of power
produced by photovoltaic plants.

Thanks to new technologies such as Machine Learning, small improvements can be
achieved in solar cells, which can lead into great improvements in a photovoltaic plant
and make the photovoltaic energy systems more efficient.

1.2 Work plan

The work plan followed to complete this thesis is the following:

Total time: approximately 350 hours.

• 70 hours: search for information and research on the main fields of the project
(machine learning, solar energy, software).

• 90 hours: theoretical analysis of machine learning techniques and writing of that
section.

• 140 hours: Search for a suitable dataset, testing in MATLAB, implement the models
and evaluate them.

• 50 hours: Writing the final project report.

2

2 Theory

2.1 Solar Energy

Nowadays, solar energy is the third most important renewable energy source, after
hydro and wind power, and the second most deployed renewable technology in terms
of global installed capacity [1]. The global capacity of photovoltaic plants installed
around the world is expected to grow to over 900 GW by 2025, as shown in the
graphic in the Figure 1 [2].

There is a continuous scientific development of technologies to improve the
renewable energy systems in order to replace fossil fuels. Renewable energies
produce minimum pollution and they have a better impact for the climatic change [3],
which is one of the most important issues of this century. [4]

With regard to photovoltaic power evolution, the manufacturing of solar cells started
with the aim of use them in space applications around 1950 [5], and nowadays, thanks
to the researches and improvement of the photovoltaic technologies, as well as the
reduction and more competitive building costs, solar cells are commonly used in
industry and household.

FIGURE 1: GLOBAL INSTALLED CAPACITY OF SOLAR POWER, FROM 2006 TO 2025 [2]

3

2.2 Machine Learning

2.2.1 Introduction to Machine Learning

Machine Learning is a field of Artificial Intelligence. It can be used in a wide variety
of applications such as the following: classification of texts, speech recognition,
computer vision tasks such as image recognition and face detection, self-driving
vehicles, medical diagnosis.

Machine Learning is divided into two main techniques: unsupervised learning and
supervised learning, shown in the Figure 2.

FIGURE 2: MACHINE LEARNI NG TECHNIQUES CLASSIFICATION [6] 	

On one hand, unsupervised learning uses only input data, not known output data, and
try to find unknown patterns or structures in the input data to predict output data.

Unsupervised learning uses clustering, a technique that explores the data to find
hiding natural patterns or groups. As it is shown in Figure 3, clustering consists on
dividing the input data points into different groups. The data points contained in a
group have similarities between them.

FIGURE 3: CLUSTERING FINDS NEW PATTERNS IN DATA [6]

4

Some applications of unsupervised learning algorithms are: object recognition or
market analysis. Some algorithms used in clustering techniques are: K-Means,
Gaussian Mixture, Neural Networks.

On the other hand, supervised learning consists on training a model where both input
and output data are known and are used to predict new data. The process is to use an
algorithm to learn the mapping function from the input to the output in order to use
it with new input data to predict future output data.

Supervised learning uses two types of techniques to develop predictive models:
classification and regression. These techniques will be explained in detail in the
Section 2.2.2: Supervised Learning Algorithms.

There are some important steps in the process of building a machine learning model:

1. Collect the data: find a good dataset that allow us to use a prediction model and
get the data we are looking for.

2. Preprocess the data: the data must have the correct format for the algorithm

3. Explore the data: see if there are insignificant values, errors, etc

4. Divide the data into training data and testing data

5. Train the algorithm with training data until a correct model with minimum errors
is obtained.

6. Test the model with the testing data

7. Analyse results

In this thesis, the aim is to predict future data from historical data, i.e. is a type of
time series prediction problem. Hence, it is a supervised learning problem.
Supervised learning algorithms will be explained in the next section.

5

2.2.2 Supervised learning algorithms

2.2.2.1 Classification

The first technique used in supervised learning to develop predictive models is
classification. Classification is used in cases when the data is discrete. The data is
classified into concrete categories. Some applications of this technique are voice
recognition, facial recognition, tumour patterns detection, etc.

The algorithms used to implement classification models are the following: Decision
Trees, K-Nearest Neighbour, Logistic Regression, Naive Bayesian, Support Vector
Machines, Artificial Neural Networks. [6] [7]

Decision Trees (DT)

Decision tree is one of the most used algorithms in classification problems. It is
suitable for models whose output values are discrete, it is robust to noisy data, and
capable of learning disjunctive expressions [7]. This mechanism consists on classifying
instances by sorting them down the tree from the root to some leaf node, finally a
tree having decision nodes and leaf nodes is obtained. The leaf node provides the
classification of the instance. In Figure 4 it is shown an example of a Decision Tree,
which classificates samples of weather conditions into two categories: “yes” if is
posible to play tennis, and “no” if is not posible to play tennis.

FIGURE 4: DECISION TREE OF PLAYING TENNIS [7]

In the case of classification, the algorithm used to built the decision tree uses entropy
and information gain. In this context, entropy is used to calculate the homogeneity of
a sample of data, it can be a value from 0 to 1, being 0 a completely homogeneous
data and if the data can be equally divided, it has an entropy of 1. Information gain is
the decreasement of entropy after the dataset is splitted. The steps of the algorithm
are the following [8]:

6

1- Calculate entropy of the target.

2- Split the dataset based on different attributes and then calculate the entropy
of each branch. Add it proportionally to obtain the total entropy after the split.
Subtract total entropy after the split from the total entropy before the split to
obtain information gain.

3- Attribute with largest information gain is the decision node.

4- A branch with entropy 0 is a leaf node.

5- A branch with entropy greater than 0 needs further splitting.

K-Nearest Neighbors (KNN)

K-NN is an algorithm used for many applications due to its simplicity and effectivity.
It is a non-parametric technique, i.e., it does not make any assumptions on the data.
A positive integer k is specified. For a new sample, the algorithm selects the k points
on the dataset that have a similar pattern to the new sample (k-nearest neighbors).
This task is done by calculating the distance between the new sample and all the
existing samples on the dataset. For calculating the distance, it can be used the
Euclidean (1), Manhattan (2) or Minkowski function (3) [8]:

Euclidean function: !∑ (𝑥% − 𝑦%))
%*+ (1)

EQUATION 1: EUCLIDEAN FUNCTION

Manhattan function: ∑ |𝑥% − 𝑦%|)

%*+ (2)
EQUATION 2: MANHATTAN FUNCTION

Minkowski function: (∑ (|𝑥% − 𝑦%|-)))

%*+
+/- (3)

EQUATION 3: MINKOWSKI FUNCTION

Once the k-nearest points are found, the most common class among these points will
be the classification for the new sample.

Logistic Regression

7

This algorithm is used to solve binary classification problems, as the output can be 0
or 1.

The principle of this technique is the Logistic Function (4), where L is equal to the
curve’s maximum value, k is the steepness of the curve and x0 is the x-value of the
sigmoid’s middle point. In Figure 5, an example of a logistic function is shown, where
L=1, k=1 and x0=0. [9]

This function is also called Sigmoid function due to its S-shaped curve. The logistic
function take any real-valued number and transform them into values between the
range of 0 and 1, but never exactly 0 or 1.

𝑓(𝑥) = 	 2
+3456(7578)

 (4)

EQUATION 4: LOGISTIC FUNCTION [9]

FIGURE 5: LOGISTIC FUNCTION [9]

The logistic regression classification method consists on calculating the probability of
the input belonging to a concrete category. For example, obtaining an ouput of 0.7
in the logistic function would mean that there is 70% of probability of a datapoint
belonging to a determined category. If the threshold is 0.5, the datapoint would be
classified in that category.

Naïve Bayesian

8

The Naive Bayesian classifier is among the most effective algorithms known. It is based
on the Bayes theorem, that consists on calculate the posterior probability P(H/E),
from the prior probability P(h), together with P(E) and P(E/H), as it is shown in the
Equation 5.

P(H) is the probability of hypothesis being true. It is known as the prior probability.

P(E) is the probability of the evidence, given no knowledge about the hypothesis.

P(E/H) is the probability of the evidence given that hypothesis is true.

P(H/E) is the probability of the hypothesis given that the evidence is there. It is known
as the posterior probability.

𝑃(𝐻|𝐸) = <=𝐸>𝐻?∗<(A)
<(B)

 (5)

EQUATION 5: POSTERIOR PROBABILITY EQUATION [7]

Support Vector Machines

In this algorithm, the given training data is labeled in different classes, and the
algorithm build an hyperplane or set of hyperplanes separating the classes with the
maximum margin possible, which categorize new samples of data.
There are some defining parameters in this technique [10]:

• Regularization parameter: for small values, the algorithm will look for a
larger-margin separating hyperplane, even if that hyperplane misclassifies
more points, see in Fig.6. For large values of this parameter, the algorithm
will choose a smaller-margin hyperplane, see in Fig.7.

FIGURE 6: LOW REGULARIZATION PARAMETER

9

FIGURE 7: HIGH REGULARIZATION PARAMETER

• Gamma: High values of gamma, means only the closest points to plausible line

are considered in calculation for the hyperplane, see in Fig.8. Low values of
gamma, points far away from plausible separation line are considered in
calculation for separation line, see in Fig.9.

FIGURE 8: HIGH VALUES OF GAMMA

FIGURE 9: LOW VALUES OF GAMMA

• Kernel: The task of kernel is to take input data and transform it into the

required form. To build the hyperplane, the algorithm can use different
kernels, depending on the aim of the model, for example polynomial kernel
for image processing or linear kernel for data classification.

• Margin: SVM has to find a good margin, i.e., when a separation line is
equidistant and as far as possible from both classes.

Artificial Neural Networks

10

Neural networks are based on the performance of human neurons. Each neuron
receives signals (input) and in function of these signals, it sends another signal or result
to the network (output). In Fig.10 is shown the structure of an artificial neural
network.

The neural network is distributed in layers, the first layer is the input, where it
receives the signal, and the last layer is the output, it provides the results of the
classification. The intermediate layers adjust the weights by comparing the output
with the desired result, through back-propagation error.

FIGURE 10: ARTIFICIAL NEURAL NETEWORK

2.2.2.2 Regression

The second technique used in supervised learning to develop predictive models is
regression. In contrast with classification, regression algorithms work with real data,
not discrete. Among some of their applications, they are used to predict continue re-
sponses, as energy demand or temperature changes.

The idea of regression is to describe the output data as a lineal combination of the
input data. Some algorithms used to implement regression models are: Linear
Regression, Decision Trees, Support Vector Machines Regression and Artificial
Neural Networks.

Linear Regression

Linear regression is one of the main algorithm used in supervised learning. The aim
of linear regression is, using the least squares method, to find the coefficients of a
linear combination that fit better to a group of disperse known points. The least-
squares method minimizes the summed square of residuals.

Decision Trees

11

The mechanism is the same than Decision Trees use for classification, in Section 3.2.1.
The difference is that when this method is used for regression techniques, the
algorithm used to build the decision tree uses Standard Deviation Reduction (SDR).
The steps are the following [7]:

1- First, the standard deviation of the target is calculated

2- Then, the datasets are divided on the different attributes, and the standard deviation
of each branch is substracted from the standard deviation before the split. This is
known as Standard Deviation Reduction (6):

𝑆𝐷𝑅(𝑇, 𝑋) = 𝑆(𝑇) − 𝑆(𝑇, 𝑋) (6)

EQUATION 6: STANDARD DEVIATION REDUCTION

3- The attribute with the largest SDR will be the decision node.

4- The datasets are divided based on the values of selected attributes. If the standard
deviation of a branch is more than 0, is divided again.

5- Keep the process until all the data is processed.

Support Vector Machines Regression

Support Vector Machine can also be used as a regression method, maintaining all the
main features that characterize the algorithm. The difference between SVM and
SVMR is that SVMR works by doing a regression from the classifier.

To do that, it performs a non-linear mapping of the training data to a higher dimension
space over a kernel, where it is possible to do a linear regression. The selection of the
kernel will define a more or less efficient model.

Artificial Neural Network

It can be also used for regression techniques, to predict continuous values.

There are several types of neural networks, the models studied in this thesis are: non
linear autoregressive with external input and nonlinear autoregressive, explained in
the Section 3.3.3.

12

3 Process and results

In this thesis the aim is to predict future solar energy data from historical data, hence
the model will be implemented with regression techniques from supervised learning.
These techniques are implemented in MATLAB, the full code of the different tests is
found in the Appendix.

3.1 Dataset

The dataset used in this thesis is provided by the NREL (National Renewable Energy
Laboratory). In the website of NREL, it is provided data from every state of USA [11].
For this thesis the dataset of Texas will be used, as this state has the largest solar
potential in the country.

The dataset consists on hourly solar power data values during one year in 52
different locations in the state of Texas. As it is said in its official website, it
is hypothetical data, intended for use by energy professionals, project
developers and university researchers who perform solar integration studies
and need to estimate power production from hypothetical solar plants [11].

However, in this thesis the dataset will be used as historical data in order to
predict the future solar energy that will be produced by a determined
photovoltaic system. The data from the different locations will be put
together in the same dataset, as all the locations are from the same state and
they have similar range of power values, data of different locations will be
helpful for the machine learning models.

The total dataset consists on a matrix of 8760 rows and 54 columns, the first column
is the month, the second one the day of the month, and the rest of the columns are
the different locations. The rows are the hourly data, as it is one year, there are
365x24= 8760 points of solar energy data. The solar energy data is in MW.

In addition, as the maximum values in each location are different, the data has been
normalized to values from 0 to 1, in order to improve the efficiency on the different
models. The data before and after normalization is shown in the plots in Figures 11
and 12.

13

FIGURE 11: DATASET

FIGURE 12: DATASET OF FIG.11 NORMALIZED FROM 0 TO 1

14

For the machine learning algorithms, it is needed two types of data: training data and
testing data. In this case, the dataset has been divided into 75% training data and 25%
testing data. The algorithms will be first trained with the training data, i.e., it is
provided a series of predictors (input) and the known results (output), and the model
will work with this data to find a relation between the predictors and the results. As
this is a time-series problem, the predictors are past data values, and additionally, the
month and day of the month of each data value.

Once the relation is obtained, if it is not enough accurate, the model can be retrained
until the correct results are obtained. After that, the algorithms are tested with the
testing data. In this step, it is only provided to the algorithm the input data, to test if
the model can correctly make predictions. Once the predictions are done, as the real
output data of the test data is on the data set, the predicted data and real data is
compared in order to see which model is better.

The results of every model will be discussed comparing the Root Mean Square Error
(RMSE) (7) of the model performance in the training phase, as well as the RMSE of
the predicted data vs. real data in the testing phase.

𝑅𝑀𝑆𝐸 = J(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)V (7)

EQUATION 7: RMSE

3.2 Software

In this thesis, the software MATLAB will be used to implement the different models
of Machine Learning, as it has been used in many different subjects during the
bachelor. MATLAB provides a series of tools and apps for Super- vised Learning
Machine Learning methods:

• Statistics and Machine Learning Toolbox: It provides functions and apps to
describe, analyse and model data. More specifically, it provides supervised
and unsupervised machine learning algorithms, including support vector
machines (SVMs), decision trees, k-nearest neighbour and k-means among
others [12]. Regression and classification algorithms that allow you to build
predictive models. Among the applications provided by this toolbox, the app
Regression Learner will be used, to train regression models to predict data,
as Linear Regression, Decision Trees and Support Vector Machines.

15

• Neural Network Toolbox: It provides algorithms, pretrained models, and
apps to create, train, visualize, and simulate both shallow and deep neural
networks. You can perform classification, regression, clustering,
dimensionally reduction, time-series forecasting, and dynamic system
modelling and control [13]. The app Neural Net Time Series will be used in
this thesis. This app allows you to solve nonlinear time series problems by
training dynamics neural networks, selecting the training data. After training
the network, evaluate its performance using mean squared error and
regression analysis.
After training the models, the algorithm can be extracted in MATLAB script
format, so it can be tested with new data.

3.3 Experiments

This section is divided into three main parts: Linear Regression, Support
Vector Machines Regression and Artificial Neural Networks. These are the
three algorithms or techniques that have been tested in MATLAB. In the end
of this section, there is an additional fourth part performing some possible
changes in the dataset in order to improve the results.

As the Figure 13 shows, the process to follow in building every Machine
Learning model is the same. The first step is training the model with known
data and known responses, and the second step is to test the model with new
data to obtain predicted responses.

FIGURE 13: MAKING PREDICTIONS WITH A MACHINE LEARNING MODEL

3.3.1 Linear Regression (LR)

The first experiment performed in MATLAB is a linear regression model.
The Statistics and Machine Learning Toolbox in MATLAB, provides an app

16

called “Regression Learner”. This app is useful to train regression models in
order to predict data using supervised machine learning.

Two different models will be implemented in this section. First, the model
will be trained to predict future data in one location, using historical data
from the nearest locations to that one, and secondly, data from every location
will be used to predict data in one location.

First LR model: prediction using data from nearest locations

The model will be trained to predict data in one location using historical data
from various locations around that one. The coordinates of each location used
in this model are shown in the Table 1. The location whose data is predicted
will be the one in column 52 of the dataset.

TABLE 1: PREDICTORS AND RESPONSE

 Predictor data Response
Nº column of

the dataset
50 51 53 54

52

Coordinates (35.45, -
101.85)

(35.75, -
102.95)

(36.05, -
102.95)

(36.25, -
102.95)

(35.85, -
102.85)

To start building the model, it is necessary to upload the training dataset, and
select what variables are the predictors, and what variables are the desired
result. It is necessary also to choose a validation scheme to examine the
predictive accuracy of the models and protect against overfitting. Overfitting
means when the model trains too much the data, that even the noise or
undesired variations in data are learned as features by the model.

It is important to choose the same validation scheme in every model to
correctly compare them in the end. There are three different options for
validation: Cross-Validation, Holdout Validation and No Validation, see in
Fig.14. The last option is not recommended as it does not protect against
overfitting. Holdout Validation is appropriate for large data sets, thus, the
validation scheme used in every test of this thesis, will be Cross-Validation.

17

FIGURE 14: VALIDATION OPTIONS IN MATLAB

In the case of Cross-Validation, it is necessary to determine the number of
folds (k) in which the dataset is divided. For each fold, the model is trained
using the out-of-fold observations, and the model assessed its performance
using in-fold data. Finally the average test error is calculated over all folds.
The default option will be used for this thesis, 5-fold cross-validation (k=5),
which protects agains overfitting.

Next, when the data and the configuration of the model is determined, in the
app it is selected the option that allows to try different architectures of the
model at the same time: Linear Regression, Fine Tree, Medium Tree and
Coarse Tree. Once the results of RMSE of every architecture are obtained,
the model with the smallest error is selected, and it is generated the MATLAB
code in order to test it with new data and make predictions.
In this case, the model with better performance is the Medium Tree with
RMSE=0.078038, as the Figure 15 shows.

18

FIGURE 15: RMSE OF DIFFERENT TRAINED CONFIGURATIONS (FIRST LR MODEL: PREDICTION USI NG DATA FROM

NEAREST LOCATIONS)

To obtain more information about the performance of the model, In Figure 16 it is
shown the Predicted vs. Actual Response plot. The diagonal black line shows how
would be the perfect prediction, in which the predicted and true response are the
same. The closest to the diagonal line are the observations (blue points), the better is
the model. In this case, most of the points are located near the diagonal line, although
there are some observations with error.

FIGURE 16: PREDICTED VS. ACTUAL RESPONSE (FIRST LR MODEL: PREDICTION USING DATA FROM NEAREST

LOCATIONS)

19

The next step is to generate the MATLAB code for the Tree model in order to test it
with new data and make predictions. The code of every model can be found in the
appendix. After testing the model, a plot is generated to compare the predictions with
the real data to evaluate its performance. The Figure 17 shows the graphic of 100
hours, to see more in detail the curve, and the Figure 18 shows predicted data for 1
month (720 hours). The error between the predicted data and real data is calculated:
RMSE=0.0081.

FIGURE 17: PREDICTED DATA VS. REAL DATA, EXTRACT OF 100 HOURS (FIRST LR MODEL: PREDICTION USING

DATA FROM NEAREST LOCATIONS)

FIGURE 18: PREDICTED DATA VS. REAL DATA, EXTRACT OF 1 MONTH (FIRST LR MODEL: PREDICTION USING

DATA FROM NEAREST LOCATIONS)

20

Second LR model: prediction using data from every location

In this case, the model will predict the data in one location, using historical data from
every other location. The location whose data is predicted is the same than the
previous one (column 52, coordinates: (35.85, -102.85)) in order to compare
properly both models.

The architecture with better performance in this case is Linear Regression, with
RMSE=0.06131, see in Fig. 19.

FIGURE 19: RMSE OF DIFFERENT TRAINED CONFIGURATIONS (SECOND LR MODEL: PREDICTION USI NG DATA

FROM EVERY LOCATION)

The Figure 20 shows the graphic of 100 hours, to see more in detail, and the Figure
21, 1 month (720 hours). The error between the predicted data and real data is
calculated: RMSE=0.0016.

FIGURE 20: PREDICTED DATA VS. REAL DATA, EXTRACT OF 100 HOURS (SECOND LR MODEL: PREDICTION USING

DATA FROM EVERY LOCATION)

21

FIGURE 21: PREDICTED DATA VS. REAL DATA, EXTRACT OF 1 MONTH (SECOND LR MODEL: PREDICTION USING

DATA FROM EVERY LOCATION)

The Table 2 shows the comparison of both tested models of Linear Regression, with
the results expressed in RMSE of the model in the training step, and RMSE of
predicted/real data in the testing step.

TABLE 2: COMPARISON OF RESULTS OF LINEAR REGRESSION MODELS

 Prediction using
data from nearest
locations

Prediction using
data from every
location

RMSE model 0.0791 0.0610
RMSE
predicted/real data

0.0081 0.0016

3.3.2 Support Vector Machines Regression (SVMR)

The second experiment in MATLAB consists on trying the technique
Support Vector Machines Regression in the app Regression Learner.

First SVMR model: predictions using data from nearest locations

The process for this section is the same, to select the training data, the
predictors and the desired response and build the model. In this case, it has
been compared three different SVM models, the first one, using a linear
kernel, the second one, using a quadratic kernel, and the third one, using a
cubic kernel.

22

As shown in the Figure 22, the SVM model with linear kernel has a better
performance than the quadratic and cubic kernel. The model is exported to
be tested with the testing data. The graphics comparing predicted vs. real data
are on the appendix.

FIGURE 22: RMSE OF TRAINED MODEL WITH DIFFERENT KERNELS (FIRST SVMR MODEL: PREDICTIONS USING

DATA FROM NEAREST LOCATIONS)

Second	SVMR	model:	predictions	using	data	from	every	location		

As in the previous model, the model with the smaller error is Linear SVM,
see in Fig.23.

FIGURE 23: RMSE OF TRAINED MODEL WITH DIFFERENT KERNELS (SECOND SVMR MODEL: PREDICTIONS USING

DATA FROM EVERY LOCATION)

The results of both SVMR models, expressed in RMSE, are shown in Table 3.

TABLE 3 : COMPARISON OF RESULTS OF BOTH SVMR MODEL

 SVM linear kernel,
with data from

nearest locations

SVM linear kernel,
with data from
every location.

RMSE Model 0.2370 0.0664
RMSE

Predicted/real data
0.0792 0.0026

23

3.3.3 Artificial Neural Network (ANN)

In this section, it is tested the Machine Learning technique Artificial Neural Networks.
The app Neural Network Time Series in the toolbox Neural Network is used. This
app allows you to solve time series problems, which is the case, as the predictors are
historical data.

There are three different type of ANN problems. The first one, Nonlinear
Autoregressive with External Input (NARX) predict series y(t) given d past values of
y(t) and another series x(t), see in Fig.24. The second one, Nonlinear Autoregressive
(NAR) predict series y(t) given d past values of y(t), see in Fig.25, and the third one,
Nonlinear Input-Output predict series y(t) given past values of series x(t), see in
Fig.26, but is not performed in this thesis due to is not as accurate as the other ones,
and if the past data is known, is not necessary to use this model.

Thus, this section is divided in two parts: the first part, using the NARX model, and
the second done, using the NAR model.

FIGURE 24: NONLINEAR AUTOREGRESSIVE WITH EXTERNAL INPUT (NARX)

FIGURE 25: NONLINEAR AUTOREGRESSIVE (NAR)

FIGURE 26: NONLINEAR INP UT OUTPUT

First ANN model: prediction using data from every location

The first model of Artificial Neural Network is the model NARX (Nonlinear
Autoregressive with External Input). The model will predict data in one location,
using historical data from every location.

24

In this model, the procedure is to provide the training dataset and the app Neural
Network Time series divides the dataset into training (70 %), validation (15 %) and
testing (15 %) in order to build and train the model, this process is shown in Figure
27.

FIGURE 27: DIVIDING THE DATASET INTO TRAINING, VALIDATION AND TESTING

The next step is to determine the number of hidden neurons of the network, and the
number of delays. For this first example, the neural network is configured with 10
hidden neurons and a delay of 2 time-steps, see in Figure 28.

FIGURE 28: CHOOSI NG NUMBER OF HIDDEN NEURONS AND NUMBER OF DELAYS

25

Then, it is possible to choose the training algorithm. There are different training
algorithms:

• Levenberg-Marquardt: tipically recquires more memory but is usually fastest.

• Bayesian Regularization: takes longer but may be better for challenging problems.

• Scaled Conjugated Gradient: uses less memory. Suitable in low memory situations.

For this example, the Levenberg-Marquardt algorithm is selected, this step is shown
in Figure 29.

FIGURE 29: CHOOSI NG TRAINING ALGORITHM

26

In addition, the tool in Figure 30 provides different plots about the results. One
interesting plot is the “Error autocorrelation”, shown in Figure 31, which is used to
validate the network performance. With a perfect performance, the plot would show
only one non-zero value of the autocorrelation, in the 0-Lag position.

FIGURE 30: TRAINING TOOL

FIGURE 31: AUTOCORRELATION OF ERROR

27

Once the model is trained, the next step is to generate the MATLAB code to test the
model with new data and make predictions. There are three possible configurations
to obtain data with this model.

The first one, the standard open loop Neural Network (NN), shown in Figure 32. In
this configuration the predicted output data is not connected to the input.

FIGURE 32: FIRST MODEL, FIRST CONFIGURATION: NARX NEURAL NETWORK OPEN LOOP

In Figure 33 the results comparing predicted vs real data for 200 hours using open
loop Neural Network configuration are shown.

FIGURE 33: PREDICTED DATA VS. REAL DATA FOR FIRST MODEL, FIRST CONFIGURATION: NARX NEURAL

NETWORK OPEN LOOP

28

 The second one, Closed Loop Neural Network (CL), shown in Figure 34. In this
configuration the predicted output data is connected to the input.

FIGURE 34: FIRST MODEL, SECOND CONFIGURATION: NARX NEURAL NETWORK CLOSED LOOP

In Figure 35 the results of predited vs real data for 200 hours using closed
loop Neural Network configuration are shown.

FIGURE 35: PREDICTED DATA VS. REAL DATA FOR FIRST MODEL, SECOND CONFIGURATION: NARX NEURAL

NETWORK CLOSED LOOP

The third configuration, Step Ahead Prediction Network (SA), is shown in Figure 36.
In this configuration the model predicts data one step ahead using data from the last
step, as it only have one step of delay.

29

FIGURE 36: FIRST MODEL, THIRD CONFIGURATION: NARX PREDICT ONE STEAP AHEAD

In Fig.37 the results of One Step Ahead configuration are shown.

FIGURE 37: PREDICTED DATA VS REAL DATA FOR FIRST MODEL, THIRD CONFIGURATION: NARX PREDICT ONE

STEP AHEAD

The models have been tested with different training algorithms and different number
of delays. The final results of the RMSE of the models performance are shown in Table
4, and the RMSE of the predicted vs. real data are shown in Table 5.

TABLE 4: RMSE MODEL PERFORMANCE, ANN-NARX

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0082 0.0108 0.0082 0.0062 0.0120 0.0062 0.0110 0.0131 0.0110
d=15 0.0278 0.0428 0.0278 _____

_____ _____ 0.0077 0.0088 0.0077

30

TABLE 5: RMSE PREDICTED VS REAL DATA, ANN NARX

The results will be compared to the results in Linear Regression and Support Vector
Machines Regression in Section 4: Discussion.

Second ANN model: prediction using historical data from the same
location

The second model of Artificial Neural Network is the model NAR (Nonlinear
Autoregressive). In this case, the model will predict data in one location, using only
historical data from that location. The procedure is the same than in NARX model.
The NAR model is built and trained with training data and then is tested in the
MATLAB code with the testing data.

There are three possible configurations as in the previous section. The first
configuration is open loop Neural Network, shown in Figure 38. The difference
between NAR and NARX is that NAR only have one input, and NARX had two
inputs.

FIGURE 38: SECOND MODEL, FIRST CONFIGURATION: NAR NEURAL NETWORK OPEN LOOP

The graphic in Figure 39 shows the results of predicted vs real data using this
configuration.

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0171

0.0187 0.0171 0.0210 0.0245 0.0210 0.0157 0.0186 0.0157

d=15 0.0264 0.0440 0.0264 _____

_____ 0.0187 0.0218 0.0187

31

FIGURE 39: PREDICTED DATA VS. REAL DATA FOR SECOND MODEL, FIRST CONFIGURATION: NAR NEURAL

NETWORK OPEN LOOP

The second configuration is closed loop Neural Network, see in Fig. 40.

FIGURE 40: SECOND MODEL, SECOND CONFIGURATION: NAR NEURAL NETWORK CLOSED LOOP

And the Figure 41 shows the results of predicted vs real data using closed
loop configuration.

32

FIGURE 41: PREDICTED DATA VS. REAL DATA FOR SECOND MODEL, SECOND CONFIGURATION: NAR NEURAL

NETWORK CLOSED LOOP

The third configuration is Predict One Step Ahead Neural Network, shown in Figure
42.

FIGURE 42: SECOND MODEL, THIRD CONFIGURATION: NAR PREDICT ONE STEAP AHEAD

The graphic in Figure 43 shows the results of predicted vs real data using this
configuration.

33

FIGURE 43: PREDICTED DATA VS REAL DATA FOR SECOND MODEL, THI RD CONFIGURATION: NARX PREDICT ONE

STEP AHEAD

The models have been tested with the different training algorithms: Levenberg-
Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugated Gradient
(SCG), and different number of delays, d=2 and d=15. The final results of the RMSE
of the models performance are shown in Table 6, and the RMSE of the predicted vs.
real data are shown in Table 7. For each algorithm it is shown the results of every
configuration, Open Loop Neural Network (NN), Closed Loop Neural Network
(CL), and One Step Ahead Prediction (SA).

TABLE 6: RMSE MODEL PERFORMANCE, ANN-NAR

TABLE 7: RMSE PREDICTED VS REAL DATA, ANN - NAR

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0161 0.1277 0.0161 0.0161 14.1298 0.0161 0.0198 0.1304 0.0198
d=15 0.0107 0.9252 0.0107 0.0105 0.1966 0.0105 0.0136 0.1856 0.0136

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0100 0.1254 0.0100 0.0093 0.2187 0.0094 0.0056 0.1303 0.0056
d=15 0.0160 0.7347 0.0160 0.0155 0.1948 0.0155 0.0122 0.1827 0.0122

34

3.3.4 Changes in the dataset

As the results were not as accurate as it was expected, a change in the dataset
is done. For the next tests, the month and day of the month will not be used
as predictors, as this type of data can be affecting to the predictions. The
results are the following:

In the case of Linear Regression using data from nearest locations, there is
no change, as the date was not used as a predictor. In the case of Linear
Regression using data from every location, there is no change in the results
neither.

In the case of Support Vector Machines, using data from nearest locations,
there is no change as the date was not used initially as a predictor, and using
data from every location, the results did not significantly changed. The results
are shown in Table 8, the values with an asterisk are the values obtained
changing the dataset without the date as a predictor.

TABLE 8: RMSE, SVMR MODEL, WITH DATE AND WITHOUT DATE AS A PREDICTOR(VALUES WITH ASTERISK)

 SVM linear kernel,
with data from
nearest locations

SVM linear kernel,
with data from
every location.

Model 0.2370 0.0664
*0.0778

Predicted/real data 0.0792 0.0026
*0.0025

In the case of Artificial Neural Network - NARX model, the results without date as a
predictor, are slightly better in every algorithm. The greatest improvement is in the
algorithm LM with a delay of d=15, for the model performance. These results are
shown in the Tables 9 and 10.

In the case of Artifical Neural Network- NAR model, there are no changes in the
results, as the date was not used as a predictor, only historical data from the location
to predict.

TABLE 9: RMSE MODEL PERFORMANCE, ANN-NARX, WITH DATE AND WITHOUT DATE AS A PREDICTOR(VALUES

WITH ASTERISK)

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0082 0.0108 0.0082 0.0062 0.0120 0.0062 0.0110 0.0131 0.0110

35

TABLE 10: RMSE PREDICTED VS REAL DATA, ANN-NARX WITH DATE AND WITHOUT DATE AS A

PREDICTOR(VALUES WITH ASTERISK)

*0.0091 *0.0147 *0.0091 *0.0063 *0.0091 *0.0063 *0.0100 *0.0130 *0.0100
d=15 0.0278

*0.0087
0.0428

*0.0129
0.0278

*0.0087
_____ _____ _____ 0.0077

*0.0076
0.0088

*0.0093
0.0077
*0.0076

 Algorithm 1 (LM) Algorithm 2 (BR) Algorithm 3(SCG)
 NN CL SA NN CL SA NN CL SA

d=2 0.0171
*0.0161

0.0187
*0.0254

0.0171
*0.0161

0.0210
*0.0201

0.0245
*0.0221

0.0210
*0.0202

0.0157
*0.0149

0.0186
*0.0180

0.0157
*0.0150

d=15 0.0264
*0.0167

0.0440
*0.0207

0.0264
*0.0167

_____ _____ _____ 0.0187
*0.0192

0.0218
*0.0235

0.0187
*0.0192

36

4 Discussion

This chapter is focused on discuss the results of the experiments carried out in the
previous chapter.

On the first place, the results of the first Machine Learning technique tested in this
thesis, Linear Regression, show that there is a better prediction of data in one location,
if historical data from every location is used as a predictor, instead of the case of using
only data from nearest locations. This can be due to the fact of using a not large enough
dataset, with historical data from only one year.

The best results provide by Linear Regression are: RMSE model=0.0610 and RMSE
predicted/real=0.0016.

On the second place, in the case of Support Vector Machines Regression, the smaller
RMSE is also obtained in the case of prediction using data from every location, using
the model with a linear kernel. Using quadratic and cubic kernel did not provide good
results. Regarding to the model, the best RMSE obtained was RMSE model=0.0664
and regarding to the comparison of predicted vs. real data in the testing stage, the best
result was RMSE predicted/real=0.0026. However, this error is not smaller than the
one ob- tained in the Linear Regression model.

By contrast, in the third technique, Artificial Neural Networks, the configuration that
provides the smaller RMSE comparing predicted vs real data is the NAR model, which
predicts data using historical data from the same location, using the algorithm Scaled
Conjugated Gradient (SCG), and a delay d=2. The error obtained was RMSE
predicted/real= 0.0056. Regarding to the model performance, the NARX model
with the algorithm Bayesian Regularization (BR) and a delay of d=2, provides the best
results in this technique, with an error of RMSE model=0.0062. Some results in ANN
could be improved trying different number of hidden neurons or different number of
delays.

In addition, it is noteworthy that in the case of ANN, the configuration Closed Loop
Neural Network, did not work correctly making predictions, and for a delay d=15 in
the NARX model, the algorithm BR was not able to be trained, due to it required an
excessive amount of time.

With regarding to the results using the dataset without the columns of the month and
day of the month, in the Section 4.3.4, there was not the expected improvement in
the results, only in the case of the NARX model of ANN the results slightly improved.

37

The errors in the predictions can also be due to the dataset was divided into training
and testing data with a ratio of 75/25, i.e, the training data has values from January
to October, and the testing data has values from October to December, which may
affect to the accuracy of the results.

Comparing these results to the results obained in [14], which is a study of predicting
daily mean solar power using machine learning techniques, the results in [14] were
more accurate than the results obtained in this thesis, since not only historical data
but more parameters are used as a predictors, such as solar irradiance and solar angles
azimuth and zenith, and the technique that provided the best results was Artificial
Neural Network, in contrast to this thesis where the best technique is Linear
Regression.

Moreover, in another related article, [15], where some machine learning techniques
are implemented to predict wind power, the predictive models are obtained using
different software, in that case using the tools and libraries provided by Python. In
contrast to this thesis, in [15] the best results were provided by the algorithm Support
Vector Machines.

To sum up, the Machine Learning algorithm with the best performance in making
prediction of solar power data is Linear Regression, using historical data from every
location of the dataset.

38

5 Conclusions

In this project, some Machine Learning techniques have been tested with the aim to
make predictions of solar energy data. The results show that, despite the wide variety
of techniques and complex algorithms, which could be improved using a different
dataset or adding weather features in order to make more accurate predictions, one
of the most simple techniques, Linear Regression, have provided the best results in
making predictions from historical data.

That means that, it could be possible and not a hard task to implement Machine
Learning techniques in photovoltaic plants, in order to forecast the generated power
in a solar cell, helping to reduce the waste of electrical energy, meeting the demand
of the electric grid in an optimized way, and making renewables energy systems more
efficient.

Conclusiones

En este proyecto, se han implementado algunas técnicas de Machine Learning con el
objetivo de hacer predicciones de datos de energía solar. Los resultados muestran que,
a pesar de la amplia variedad de técnicas y algoritmos más complejos, se podrían
mejorar utilizando un dataset diferente o añadiendo diferentes características para
hacer predicciones más precisas, una de las técnicas más simples, Regresión Lineal, ha
proporcionado los mejores resultados haciendo predicciones con datos históricos.

Esto significa que, podría ser possible y una tarea no muy compleja, implementar
técnicas de Machine Learning en plantas fotovoltaicas, para predecir la energía
generada en un panel solar, ayudando a reducir el malgasto de energía eléctrica, y
cumpliendo la demanda de la red eléctrica de una forma optimizada, haciendo los
sistemas de energías renovables más eficientes.

39

References

[1] Photovoltaics, https://en.wikipedia.org/wiki/Photovoltaics

[2] Global Data, https://energy.globaldata.com/

[3] V. Masson, M. Bonhomme, J.L. Salagnac, X. Briottet and A. Lemonsu, “Solar
panels reduce both global warming and urban heat island”, 2014, Front. Environ.
Sci. 2:14. doi: 10.3389/fenvs.2014.00014

[4] United Nations, “Climate Change”, http://www.un.org/en/sections/issues-
depth/climate-change/

[5] A History of Solar Cells, https://www.solarpowerauthority.com/a- history-of-
solar-cells/

[6] Mathworks, “What is Machine Learning?”
https://se.mathworks.com/discovery/machine-learning.html

[7] T.M. Mitchell, Machine Learning. McGraw-Hill International Editions, 1997.

[8] K. Hemant and C. Rishabh, “Comprehensive Review On Supervised Machine
Learning Algorithms”. IEEE, International Conference on Machine Learning and
Data Science, 2017.

[9] Logistic Function, https://en.wikipedia.org/wiki/Logistic_function

[10] SVM Theory, https://medium.com/machine-learning-101/chapter- 2-svm-
support-vector-machine-theory-f0812effc72

[11] National Renewable Energy Laboratory (NREL), “Solar Power Data for
Integration Studies”,	https://www.nrel.gov/grid/solar-power-data.html

[12] Mathworks, “Statistics and Machine Learning Toolbox,
https://se.mathworks.com/products/statistics.html

[13] Mathworks, “Neural Network Toolbox”,
https://se.mathworks.com/products/neural-network.html

[14] F. Jawaid and K. Nazirjunejo, “Predicting Daily Mean Solar Power Using
Machine Learning Regression Techniques”. IEEE, The Sixth International
Conference on Innovative Computing Technology (INTECH 2016)

40

[15] J. Lässig, K. Kersting, and K. Morik, Computational Sustainability, Springer

Intenrational Publishing Switzerland, 2016. Chapter 2: “Wind Power Prediction
with Machine Learning”, N.A. Treiber, J. Heinermann and O. Kramer.

A1

Appendix A

Here is the MATLAB code and functions used in the first tested algorithm: Linear
Regression.

A.1 LR First Model
%FIRST MODEL LINEAR REGRESSION
%this model calculate predictions for location 52, using info from
%locations 50 51 53 and 54 (nearest locations)

clear all
close all

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end
data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

t2=[test_data(:,50), test_data(:,51), test_data(:,53),
test_data(:,54)];

%train the model
[trainedModel_tree, validationRMSE_tree] =
trainRegressionModel_tree(training_data)
%make predictions with test data
yfit = trainedModel_tree.predictFcn(t2);

%creating plots to compare predicted data vs real data
figure
plot(test_data(1:100,52)) %100 hours of real data of column 52
title('Linear Regression- first model')

hold on

plot(yfit(1:100)) %100 hours of predicted data in column 52
xlabel('first 100 hours ')
ylabel('Solar Energy')
legend('real data','predicted data')

A2

%plot 1 month
figure
plot(test_data(1:720,52))
title('Linear Regression - first model')

hold on

plot(yfit(1:720))
xlabel('1 month ')
ylabel('Solar Energy')
legend('real data','predicted data')

%calculate Root Mean Squared Error between predicted and real data
err_LR=immse(test_data(:,52),yfit)

A3

A.1 LR First Model - function training model

function [trainedModel_tree, validationRMSE_tree] =
trainRegressionModel_tree(trainingData)
% [trainedModel, validationRMSE] =
trainRegressionModel(trainingData)
% returns a trained regression model and its RMSE. This code
recreates the
% model trained in Regression Learner app. Use the generated code
to
% automate training the same model with new data, or to learn how
to
% programmatically train models.
%
% Input:
% trainingData: a matrix with the same number of columns and
data type
% as imported into the app.
%
% Output:
% trainedModel: a struct containing the trained regression
model. The
% struct contains various fields with information about the
trained
% model.
%
% trainedModel.predictFcn: a function to make predictions on
new data.
%
% validationRMSE: a double containing the RMSE. In the app,
the
% History list displays the RMSE for each model.
%
% Use the code to train the model with new data. To retrain your
model,
% call the function from the command line with your original data
or new
% data as the input argument trainingData.
%
% For example, to retrain a regression model trained with the
original data
% set T, enter:
% [trainedModel, validationRMSE] = trainRegressionModel(T)
%
% To make predictions with the returned 'trainedModel' on new data
T2, use
% yfit = trainedModel.predictFcn(T2)
%
% T2 must be a matrix containing only the predictor columns used
for
% training. For details, enter:
% trainedModel.HowToPredict

% Auto-generated by MATLAB on 16-May-2018 23:56:43

% Extract predictors and response
% This code processes the data into the right shape for training
the
% model.
% Convert input to table

A4

inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_50', 'column_51', 'column_53',
'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false];

% Train a regression model
% This code specifies all the model options and trains the model.
regressionTree = fitrtree(...
 predictors, ...
 response, ...
 'MinLeafSize', 12, ...
 'Surrogate', 'off');

% Create the result struct with predict function
predictorExtractionFcn = @(x) array2table(x, 'VariableNames',
predictorNames);
treePredictFcn = @(x) predict(regressionTree, x);
trainedModel_tree.predictFcn = @(x)
treePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct
trainedModel_tree.RegressionTree = regressionTree;
trainedModel_tree.About = 'This struct is a trained model exported
from Regression Learner R2017b.';
trainedModel_tree.HowToPredict = sprintf('To make predictions on a
new predictor column matrix, X, use: \n yfit = c.predictFcn(X)
\nreplacing ''c'' with the name of the variable that is this
struct, e.g. ''trainedModel''. \n \nX must contain exactly 4
columns because this model was trained using 4 predictors. \nX
must contain only predictor columns in exactly the same order and
format as your training \ndata. Do not include the response column
or any columns you did not import into the app. \n \nFor more
information, see <a href="matlab:helpview(fullfile(docroot,
''stats'', ''stats.map''),
''appregression_exportmodeltoworkspace'')">How to predict using an
exported model.');

% Extract predictors and response
% This code processes the data into the right shape for training
the
% model.
% Convert input to table
inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',

A5

'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_50', 'column_51', 'column_53',
'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false];

% Perform cross-validation
partitionedModel = crossval(trainedModel_tree.RegressionTree,
'KFold', 5);

% Compute validation predictions
validationPredictions = kfoldPredict(partitionedModel);

% Compute validation RMSE
validationRMSE_tree = sqrt(kfoldLoss(partitionedModel, 'LossFun',
'mse'));

A6

A.2 LR Second Model

%SECOND MODEL LINEAR REGRESSION

%this model calculate predictions for location 52, using info from
%every location of the dataset

clear all
close all

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end

data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

t2=[test_data(:,1:51), test_data(:,53:54)];

%train the model
[trainedModel_LR, validationRMSE_LR] =
trainRegressionModel_LR(training_data)

%make predictions with test data
yfit_LR= trainedModel_LR.predictFcn(t2);

%creating plots to compare predicted data vs real data
figure
plot(test_data(1:100,52))
title('Linear Regression - second model')

hold on

plot(yfit_LR(1:100)) %100 hours of real data of column 52
xlabel('first 100 hours ')
ylabel('Solar Energy')
legend('real data','predicted data')

A7

%plot 1 month
figure
plot(test_data(1:720,52))
title('Linear Regression - second model')

hold on

plot(yfit_LR(1:720))
xlabel('1 month ')
ylabel('Solar Energy')
legend('real data','predicted data')

%calculate Root Mean Squared Error between predicted and real data
err_LR=immse(test_data(:,52),yfit_LR)

A8

A.2 LR Second Model- function training model

 function [trainedModel_LR, validationRMSE_LR] =
trainRegressionModel_LR(trainingData)

inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4',
'column_5', 'column_6', 'column_7', 'column_8', 'column_9',
'column_10', 'column_11', 'column_12', 'column_13', 'column_14',
'column_15', 'column_16', 'column_17', 'column_18', 'column_19',
'column_20', 'column_21', 'column_22', 'column_23', 'column_24',
'column_25', 'column_26', 'column_27', 'column_28', 'column_29',
'column_30', 'column_31', 'column_32', 'column_33', 'column_34',
'column_35', 'column_36', 'column_37', 'column_38', 'column_39',
'column_40', 'column_41', 'column_42', 'column_43', 'column_44',
'column_45', 'column_46', 'column_47', 'column_48', 'column_49',
'column_50', 'column_51', 'column_53', 'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false];

% Train a regression model
% This code specifies all the model options and trains the model.
concatenatedPredictorsAndResponse = predictors;
concatenatedPredictorsAndResponse.column_52 = response;
linearModel = fitlm(...
 concatenatedPredictorsAndResponse, ...
 'linear', ...
 'RobustOpts', 'off');

% Create the result struct with predict function
predictorExtractionFcn = @(x) array2table(x, 'VariableNames',
predictorNames);
linearModelPredictFcn = @(x) predict(linearModel, x);
trainedModel_LR.predictFcn = @(x)
linearModelPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct
trainedModel_LR.LinearModel = linearModel;
trainedModel_LR.About = 'This struct is a trained model exported
from Regression Learner R2017b.';

A9

trainedModel_LR.HowToPredict = sprintf('To make predictions on a
new predictor column matrix, X, use: \n yfit = c.predictFcn(X)
\nreplacing ''c'' with the name of the variable that is this
struct, e.g. ''trainedModel''. \n \nX must contain exactly 53
columns because this model was trained using 53 predictors. \nX
must contain only predictor columns in exactly the same order and
format as your training \ndata. Do not include the response column
or any columns you did not import into the app. \n \nFor more
information, see <a href="matlab:helpview(fullfile(docroot,
''stats'', ''stats.map''),
''appregression_exportmodeltoworkspace'')">How to predict using an
exported model.');

% Extract predictors and response
% This code processes the data into the right shape for training
the
% model.
% Convert input to table
inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4',
'column_5', 'column_6', 'column_7', 'column_8', 'column_9',
'column_10', 'column_11', 'column_12', 'column_13', 'column_14',
'column_15', 'column_16', 'column_17', 'column_18', 'column_19',
'column_20', 'column_21', 'column_22', 'column_23', 'column_24',
'column_25', 'column_26', 'column_27', 'column_28', 'column_29',
'column_30', 'column_31', 'column_32', 'column_33', 'column_34',
'column_35', 'column_36', 'column_37', 'column_38', 'column_39',
'column_40', 'column_41', 'column_42', 'column_43', 'column_44',
'column_45', 'column_46', 'column_47', 'column_48', 'column_49',
'column_50', 'column_51', 'column_53', 'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false];

% Perform cross-validation
KFolds = 5;
cvp = cvpartition(size(response, 1), 'KFold', KFolds);
% Initialize the predictions to the proper sizes
validationPredictions = response;
for fold = 1:KFolds
 trainingPredictors = predictors(cvp.training(fold), :);
 trainingResponse = response(cvp.training(fold), :);
 foldIsCategoricalPredictor = isCategoricalPredictor;

A10

 % Train a regression model
 % This code specifies all the model options and trains the
model.
 concatenatedPredictorsAndResponse = trainingPredictors;
 concatenatedPredictorsAndResponse.column_52 =
trainingResponse;
 linearModel = fitlm(...
 concatenatedPredictorsAndResponse, ...
 'linear', ...
 'RobustOpts', 'off');

 % Create the result struct with predict function
 linearModelPredictFcn = @(x) predict(linearModel, x);
 validationPredictFcn = @(x) linearModelPredictFcn(x);

 % Add additional fields to the result struct

 % Compute validation predictions
 validationPredictors = predictors(cvp.test(fold), :);
 foldPredictions = validationPredictFcn(validationPredictors);

 % Store predictions in the original order
 validationPredictions(cvp.test(fold), :) = foldPredictions;
end

% Compute validation RMSE
isNotMissing = ~isnan(validationPredictions) & ~isnan(response);
validationRMSE_LR = sqrt(nansum((validationPredictions - response
).^2) / numel(response(isNotMissing)));

B1

Appendix B

Here is the MATLAB code and functions used in the second tested algorithm:
Support Vector Machines Regression

B.1 SVMR First Model

%first model SVMR
%this model calculate predictions for location 52, using info from
%locations 50 51 53 and 54 (nearest locations)

clear all
close all

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end

data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

t2=[test_data(:,50), test_data(:,51), test_data(:,53),
test_data(:,54)];

%train the model
 [trainedModel, validationRMSE] =
trainRegressionModel_SVMR1(training_data)
 %make predictions with test data
 yfit = trainedModel.predictFcn(t2);

%creating plots to compare predicted data vs real data
figure
plot(test_data(1:100,52))%100 hours of real data of column 52
title('SVMR Model')

hold on

B2

plot(yfit(1:100)) %100 hours of predicted data in column 52
xlabel('first 100 hours ')
ylabel('Solar Energy')
legend('real data','predicted data')

%plot 1 month
figure
plot(test_data(1:720,52))
title('SVMR Model')

hold on

plot(yfit(1:720))
xlabel('1 month ')
ylabel('Solar Energy')
legend('real data','predicted data')

%calculate Root Mean Squared Error between predicted and real data
err_SVM=immse(test_data(:,52),yfit)

B3

B.1 SVMR First Model - function training model

function [trainedModel, validationRMSE] =
trainRegressionModel_SVMR1(trainingData)

inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_50', 'column_51', 'column_53',
'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false];

% Train a regression model
% This code specifies all the model options and trains the model.
responseScale = iqr(response);
if ~isfinite(responseScale) || responseScale == 0.0
 responseScale = 1.0;
end
boxConstraint = responseScale/1.349;
epsilon = responseScale/13.49;
regressionSVM = fitrsvm(...
 predictors, ...
 response, ...
 'KernelFunction', 'linear', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', boxConstraint, ...
 'Epsilon', epsilon, ...
 'Standardize', true);

% Create the result struct with predict function
predictorExtractionFcn = @(x) array2table(x, 'VariableNames',
predictorNames);
svmPredictFcn = @(x) predict(regressionSVM, x);
trainedModel.predictFcn = @(x)
svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct
trainedModel.RegressionSVM = regressionSVM;
trainedModel.About = 'This struct is a trained model exported from
Regression Learner R2017b.';
trainedModel.HowToPredict = sprintf('To make predictions on a new
predictor column matrix, X, use: \n yfit = c.predictFcn(X)
\nreplacing ''c'' with the name of the variable that is this
struct, e.g. ''trainedModel''. \n \nX must contain exactly 4
columns because this model was trained using 4 predictors. \nX
must contain only predictor columns in exactly the same order and
format as your training \ndata. Do not include the response column

B4

or any columns you did not import into the app. \n \nFor more
information, see <a href="matlab:helpview(fullfile(docroot,
''stats'', ''stats.map''),
''appregression_exportmodeltoworkspace'')">How to predict using an
exported model.');

% Extract predictors and response
% This code processes the data into the right shape for training
the
% model.
% Convert input to table
inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_50', 'column_51', 'column_53',
'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false];

% Perform cross-validation
KFolds = 5;
cvp = cvpartition(size(response, 1), 'KFold', KFolds);
% Initialize the predictions to the proper sizes
validationPredictions = response;
for fold = 1:KFolds
 trainingPredictors = predictors(cvp.training(fold), :);
 trainingResponse = response(cvp.training(fold), :);
 foldIsCategoricalPredictor = isCategoricalPredictor;

 % Train a regression model
 % This code specifies all the model options and trains the
model.
 responseScale = iqr(trainingResponse);
 if ~isfinite(responseScale) || responseScale == 0.0
 responseScale = 1.0;
 end
 boxConstraint = responseScale/1.349;
 epsilon = responseScale/13.49;
 regressionSVM = fitrsvm(...
 trainingPredictors, ...
 trainingResponse, ...
 'KernelFunction', 'linear', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', boxConstraint, ...
 'Epsilon', epsilon, ...
 'Standardize', true);

 % Create the result struct with predict function
 svmPredictFcn = @(x) predict(regressionSVM, x);
 validationPredictFcn = @(x) svmPredictFcn(x);

B5

 % Add additional fields to the result struct

 % Compute validation predictions
 validationPredictors = predictors(cvp.test(fold), :);
 foldPredictions = validationPredictFcn(validationPredictors);

 % Store predictions in the original order
 validationPredictions(cvp.test(fold), :) = foldPredictions;
end

% Compute validation RMSE
isNotMissing = ~isnan(validationPredictions) & ~isnan(response);
validationRMSE = sqrt(nansum((validationPredictions - response
).^2) / numel(response(isNotMissing)));

B6

B.1 SVMR First Model - plots

*this plot corresponds to SVMR first model

*this plot corresponds to SVMR first model

0 10 20 30 40 50 60 70 80 90 100
first 100 hours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

So
la

r E
ne

rg
y

Linear Regression Model

real data
predicted data

0 100 200 300 400 500 600 700 800
1 month

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

So
la

r E
ne

rg
y

Linear Regression Model

real data
predicted data

B7

B.2 SVMR Second Model
% SVM REGRESSION second model

%this model calculate predictions for location 52, using info from
%every location of the dataset

clear all
close all

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end

data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

t2=[test_data(:,1:51), test_data(:,53:54)];

%train the model
[trainedModel, validationRMSE] =
trainRegressionModel_SVMR2(training_data)

%make predictions with test data
yfit= trainedModel.predictFcn(t2);

%creating plots to compare predicted data vs real data
figure
plot(test_data(1:100,50)) %100 hours of real data of column 52
title('SVMR Model')

hold on

plot(yfit(1:100)) %100 hours of predicted data in column 52
xlabel('first 100 hours ')
ylabel('Solar Energy')
legend('real data','predicted data')

%plot 1 month

B8

figure
plot(test_data(1:720,50))
title('SVMR Model')

hold on

plot(yfit(1:720))
xlabel('1 month ')
ylabel('Solar Energy')
legend('real data','predicted data')

%calculate Root Mean Squared Error between predicted and real data
err_SVMR=immse(test_data(:,50),yfit)

B9

B.2 SVMR Second Model - function training model

function [trainedModel, validationRMSE] =
trainRegressionModel_SVMR2(trainingData)

inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4',
'column_5', 'column_6', 'column_7', 'column_8', 'column_9',
'column_10', 'column_11', 'column_12', 'column_13', 'column_14',
'column_15', 'column_16', 'column_17', 'column_18', 'column_19',
'column_20', 'column_21', 'column_22', 'column_23', 'column_24',
'column_25', 'column_26', 'column_27', 'column_28', 'column_29',
'column_30', 'column_31', 'column_32', 'column_33', 'column_34',
'column_35', 'column_36', 'column_37', 'column_38', 'column_39',
'column_40', 'column_41', 'column_42', 'column_43', 'column_44',
'column_45', 'column_46', 'column_47', 'column_48', 'column_49',
'column_50', 'column_51', 'column_53', 'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false];

% Train a regression model
% This code specifies all the model options and trains the model.
responseScale = iqr(response);
if ~isfinite(responseScale) || responseScale == 0.0
 responseScale = 1.0;
end
boxConstraint = responseScale/1.349;
epsilon = responseScale/13.49;
regressionSVM = fitrsvm(...
 predictors, ...
 response, ...
 'KernelFunction', 'linear', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', boxConstraint, ...
 'Epsilon', epsilon, ...
 'Standardize', true);

% Create the result struct with predict function
predictorExtractionFcn = @(x) array2table(x, 'VariableNames',
predictorNames);

B10

svmPredictFcn = @(x) predict(regressionSVM, x);
trainedModel.predictFcn = @(x)
svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct
trainedModel.RegressionSVM = regressionSVM;
trainedModel.About = 'This struct is a trained model exported from
Regression Learner R2017b.';
trainedModel.HowToPredict = sprintf('To make predictions on a new
predictor column matrix, X, use: \n yfit = c.predictFcn(X)
\nreplacing ''c'' with the name of the variable that is this
struct, e.g. ''trainedModel''. \n \nX must contain exactly 53
columns because this model was trained using 53 predictors. \nX
must contain only predictor columns in exactly the same order and
format as your training \ndata. Do not include the response column
or any columns you did not import into the app. \n \nFor more
information, see <a href="matlab:helpview(fullfile(docroot,
''stats'', ''stats.map''),
''appregression_exportmodeltoworkspace'')">How to predict using an
exported model.');

% Extract predictors and response
% This code processes the data into the right shape for training
the
% model.
% Convert input to table
inputTable = array2table(trainingData, 'VariableNames',
{'column_1', 'column_2', 'column_3', 'column_4', 'column_5',
'column_6', 'column_7', 'column_8', 'column_9', 'column_10',
'column_11', 'column_12', 'column_13', 'column_14', 'column_15',
'column_16', 'column_17', 'column_18', 'column_19', 'column_20',
'column_21', 'column_22', 'column_23', 'column_24', 'column_25',
'column_26', 'column_27', 'column_28', 'column_29', 'column_30',
'column_31', 'column_32', 'column_33', 'column_34', 'column_35',
'column_36', 'column_37', 'column_38', 'column_39', 'column_40',
'column_41', 'column_42', 'column_43', 'column_44', 'column_45',
'column_46', 'column_47', 'column_48', 'column_49', 'column_50',
'column_51', 'column_52', 'column_53', 'column_54'});

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4',
'column_5', 'column_6', 'column_7', 'column_8', 'column_9',
'column_10', 'column_11', 'column_12', 'column_13', 'column_14',
'column_15', 'column_16', 'column_17', 'column_18', 'column_19',
'column_20', 'column_21', 'column_22', 'column_23', 'column_24',
'column_25', 'column_26', 'column_27', 'column_28', 'column_29',
'column_30', 'column_31', 'column_32', 'column_33', 'column_34',
'column_35', 'column_36', 'column_37', 'column_38', 'column_39',
'column_40', 'column_41', 'column_42', 'column_43', 'column_44',
'column_45', 'column_46', 'column_47', 'column_48', 'column_49',
'column_50', 'column_51', 'column_53', 'column_54'};
predictors = inputTable(:, predictorNames);
response = inputTable.column_52;
isCategoricalPredictor = [false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false, false,
false, false, false];

% Perform cross-validation
KFolds = 5;

B11

cvp = cvpartition(size(response, 1), 'KFold', KFolds);
% Initialize the predictions to the proper sizes
validationPredictions = response;
for fold = 1:KFolds
 trainingPredictors = predictors(cvp.training(fold), :);
 trainingResponse = response(cvp.training(fold), :);
 foldIsCategoricalPredictor = isCategoricalPredictor;

 % Train a regression model
 % This code specifies all the model options and trains the
model.
 responseScale = iqr(trainingResponse);
 if ~isfinite(responseScale) || responseScale == 0.0
 responseScale = 1.0;
 end
 boxConstraint = responseScale/1.349;
 epsilon = responseScale/13.49;
 regressionSVM = fitrsvm(...
 trainingPredictors, ...
 trainingResponse, ...
 'KernelFunction', 'linear', ...
 'PolynomialOrder', [], ...
 'KernelScale', 'auto', ...
 'BoxConstraint', boxConstraint, ...
 'Epsilon', epsilon, ...
 'Standardize', true);

 % Create the result struct with predict function
 svmPredictFcn = @(x) predict(regressionSVM, x);
 validationPredictFcn = @(x) svmPredictFcn(x);

 % Add additional fields to the result struct

 % Compute validation predictions
 validationPredictors = predictors(cvp.test(fold), :);
 foldPredictions = validationPredictFcn(validationPredictors);

 % Store predictions in the original order
 validationPredictions(cvp.test(fold), :) = foldPredictions;
end

% Compute validation RMSE
isNotMissing = ~isnan(validationPredictions) & ~isnan(response);
validationRMSE = sqrt(nansum((validationPredictions - response
).^2) / numel(response(isNotMissing)));

B12

B.2 SVMR Second Model - plots

0 10 20 30 40 50 60 70 80 90 100
first 100 hours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
So

la
r E

ne
rg

y
SVMR Model

real data
predicted data

0 100 200 300 400 500 600 700 800
1 month

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

So
la

r E
ne

rg
y

SVMR Model

real data
predicted data

C1

Appendix C

Here is the MATLAB code and functions used in the third tested algorithm: Artificial
Neural Networks. It is included only the first example of each model, with a delay of
d=2 and algorithm Bayesian Regularization, since the other examples are exactly the
same, changing the algorithm and the number of delays.

C.1 ANN First Model

%ANN first model
clear all
close all

%making predictions in column 52, using info from every location.
% (NARX)
%d=2 time steps
%algorithm BR

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end

data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

x_data_input=[training_data(:,1:51),training_data(:,53:end)];
%xdata input is all the columns except the one we want to predict
y_data_target=training_data(:,52);
%ydata target is the column we want to predict

%%%% ANN CODE %%%%

% Solve an Autoregression Problem with External Input with a NARX
Neural Network
% Script generated by Neural Time Series app

C2

% Created 17-May-2018 11:54:54
%
% This script assumes these variables are defined:
%
% x_data_input - input time series.
% y_data_target - feedback time series.

X = tonndata(x_data_input,false,false);
T = tonndata(y_data_target,false,false);

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging
problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; % Levenberg-Marquardt backpropagation.

% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:2;
feedbackDelays = 1:2;
hiddenLayerSize = 10;
net =
narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn
);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular
network,
% shifting time by the minimum amount to fill input states and
layer
% states. Using PREPARETS allows you to keep your original time
series data
% unchanged, while easily customizing it for networks with
differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,X,{},T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);

% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)

C3

%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Closed Loop Network
% Use this network to do multi-step prediction.
% The function CLOSELOOP replaces the feedback input with a direct
% connection from the outout layer.
netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,X,{},T);
yc = netc(xc,xic,aic);
closedLoopPerformance = perform(net,tc,yc)

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep
early.
% The original network returns predicted y(t+1) at the same time
it is
% given y(t+1). For some applications such as decision making, it
would
% help to have predicted y(t+1) once y(t) is available, but before
the
% actual y(t+1) occurs. The network can be made to return its
output a
% timestep early by removing one delay so that its minimal tap
delay is now
% 0 instead of 1. The new network returns the same outputs as the
original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,X,{},T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys)

outputfinalNN= cell2mat(y');
for R=1:length(outputfinalNN)
 if outputfinalNN(R)<0;
 outputfinalNN(R)=0;
 end
end

outputfinalCL= cell2mat(yc');
for R=1:length(outputfinalCL)
 if outputfinalCL(R)<0;
 outputfinalCL(R)=0;
 end
end

outputfinalAP= cell2mat(ys');
for R=1:length(outputfinalAP)
 if outputfinalAP(R)<0;
 outputfinalAP(R)=0;
 end
end

% comparing plots

C4

figure
plot(y_data_target(feedbackDelays(end):(200+feedbackDelays(end))))

hold on
plot(outputfinalNN(1:200))
legend ('real data',' predicted data')
title('neural network')

%plot neutal network closed loop

figure
plot(y_data_target(feedbackDelays(end):(200+feedbackDelays(end))))

hold on
plot(outputfinalCL(1:200))
legend ('real data',' predicted data')
title('closed loop neural network')

%plot neural network one step ahead prediction

figure
plot(y_data_target(feedbackDelays(end):(200+feedbackDelays(end))))

hold on
plot(outputfinalAP(1:200))
legend ('real data',' predicted data')
title('neural network one step ahead prediction')

%calculate RMSE

err_NN=immse(y_data_target(feedbackDelays(end):end-
1),outputfinalNN)
err_CL=immse(y_data_target(feedbackDelays(end):end-
1),outputfinalCL)
err_AP=immse(y_data_target(feedbackDelays(end):end),outputfinalAP)

C5

C.1 ANN Second Model

%ANN second model

%making predictions in location 52, using historical data
%from the same location (NAR)

%d=2
%algorithm BR

clear all
close all

load finaldataset.csv
data=finaldataset;
%first column=month
%second column = day of the month
%rest of columns = solar energy in different locations (52)

%normalization of the values from 0 to 1
data_norm=zeros(8760,54);
for i=3:54
data_norm(:,i)=(data(:,i)-min(data(:,i)))/(max(data(:,i))-
min(data(:,i)));
end

data_norm(:,1:2)=data(:,1:2);

% dividing data into training and testing data
% ratio 75/25

training_data=data_norm(1:0.75*length(data_norm),:);

test_data=data_norm(0.75*length(data_norm):length(data_norm),:);

desired_output=training_data(:,52);

%%%% ANN code%%%%

% Solve an Autoregression Time-Series Problem with a NAR Neural
Network
% Script generated by Neural Time Series app
% Created 17-May-2018 14:52:10
%
% This script assumes this variable is defined:
%
% desired_output - feedback time series.

T = tonndata(desired_output,false,false);

C6

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging
problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainbr'; % Levenberg-Marquardt backpropagation.

% Create a Nonlinear Autoregressive Network
feedbackDelays = 1:2;
hiddenLayerSize = 10;
net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares timeseries data for a particular
network,
% shifting time by the minimum amount to fill input states and
layer
% states. Using PREPARETS allows you to keep your original time
series data
% unchanged, while easily customizing it for networks with
differing
% numbers of delays, with open loop or closed loop feedback modes.
[x,xi,ai,t] = preparets(net,{},{},T);

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,x,t,xi,ai);

% Test the Network
y = net(x,xi,ai);
e = gsubtract(t,y);
performance = perform(net,t,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotresponse(t,y)
%figure, ploterrcorr(e)
%figure, plotinerrcorr(x,e)

% Closed Loop Network
% Use this network to do multi-step prediction.
% The function CLOSELOOP replaces the feedback input with a direct
% connection from the outout layer.
netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,{},{},T);
yc = netc(xc,xic,aic);
closedLoopPerformance = perform(net,tc,yc)

C7

% Step-Ahead Prediction Network
% For some applications it helps to get the prediction a timestep
early.
% The original network returns predicted y(t+1) at the same time
it is
% given y(t+1). For some applications such as decision making, it
would
% help to have predicted y(t+1) once y(t) is available, but before
the
% actual y(t+1) occurs. The network can be made to return its
output a
% timestep early by removing one delay so that its minimal tap
delay is now
% 0 instead of 1. The new network returns the same outputs as the
original
% network, but outputs are shifted left one timestep.
nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,{},{},T);
ys = nets(xs,xis,ais);
stepAheadPerformance = perform(nets,ts,ys)

%comparing plots

outputfinalNN= cell2mat(y');
for R=1:length(outputfinalNN)
 if outputfinalNN(R)<0;
 outputfinalNN(R)=0;
 end
end

outputfinalCL= cell2mat(yc');
for R=1:length(outputfinalCL)
 if outputfinalCL(R)<0;
 outputfinalCL(R)=0;
 end
end

outputfinalAP= cell2mat(ys');
for R=1:length(outputfinalAP)
 if outputfinalAP(R)<0;
 outputfinalAP(R)=0;
 end
end

%plot neural network

figure
plot(desired_output(feedbackDelays(end):(200+feedbackDelays(end)))
)

hold on
plot(outputfinalNN(1:200))
legend ('real data',' predicted data')
title('neural network')

%plot neutal network closed loop

C8

figure
plot(desired_output(feedbackDelays(end):(200+feedbackDelays(end)))
)

hold on
plot(outputfinalCL(1:200))
legend ('real data',' predicted data')
title('closed loop neural network')

%plot neural network one step ahead prediction

figure
plot(desired_output(feedbackDelays(end):(200+feedbackDelays(end)))
)

hold on
plot(outputfinalAP(1:200))
legend ('real data',' predicted data')
title('neural network one step ahead prediction')

%RMSE
err_NN=immse(desired_output(feedbackDelays(end):end-
1),outputfinalNN)
err_CL=immse(desired_output(feedbackDelays(end):end-
1),outputfinalCL)
err_AP=immse(desired_output(feedbackDelays(end):end),outputfinalAP
)

D1

