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Chapter 1

Introduction and problem formulation

Nowadays increasing the e�ciency of technical processes is center of investigation in many

�elds of engineering as is this way the use of raw materials and costs can be dropped.

Here control engineering play an important role to achieve these objectives by stabilizing,

speeding up the desired processes and making them more precise.

Also the Instituto de Automática e Informática Industrial (AI2) (Institute of Automatiza-

tion and industrial computer sciences), where the thesis was made and written, is mainly

working in the �eld of control engineering, mainly with industrial robotics, autonomous

vehicles and image processing. It is part of the Department of Systems Engineering and

Control (DISA) at the Technical University of Valencia (Universidad Politécnica de Valen-

cia).

As it is also in charge of several teaching actions, there is a constant need of laboratory

experiments that can be used for practicals. The following thesis will describe the devel-

opment and theory of an experiment for trajectory control of a small LEGO vehicle. It

will also show that even a cheap solution, as the LEGO R©-MindstormsTMinvention system,

can be used to teach more complex control engineering tasks, where especially the system

uncertainties require robust and fault-tolerant control solutions.

9



10 1 Introduction and problem formulation

1.1 LEGO-Mindstorms in control engineering education

By performing a small search in the internet, it soon becomes obvious that LEGO-Mindstorms

is widely used in education, mostly in schools and undergraduate courses. However they are

mostly applied to give the students a basic idea of what sensor-feedback means, and how it

can be used to perform simple control tasks, as line-tracking and autonomous steering by

collision detection.[25],[26] The course of studies Cybernetic Engineering of the University

of Stuttgart, for example, organizes every year a competition between groups of �rst-year

students and pupils from local schools. The tasks for the LEGO R©-Robots change every

year, so the groups have to come up with new ideas and construction solutions every time.

But there can also be found several attempts to use LEGO-Mindstorms for more theory

based and serious control tasks.

Figure 1.1:

LEGO Pendu-

lum controller;

Source [32]

In an experiment is described, where the position of a pendulum

attached on a non-steerable LEGO-vehicle (�g. 1.1) is stabilized and

controlled by a linear controller. The motor dynamics are linearized

by adding a second short-circuited motor as brake in addition to

a self-made high-precision angular sensor for measurement of the

pendulum amplitude.

Furthermore in [11] a tracked vehicle similar to the one used in this

thesis and a simple mathematical simulation model were developed

to provide a Simulink framework for controller-design. This was also

meant be used in practicals to develop trajectory- or point-to-point

controller for the robot model.

In engineering education, especially in control engineering, practicals are of high impor-

tance to understand the complex coherences between system-structure, controller types

and technical realization problems as �ltering, discretization and delays. There are a lot

of companies selling complete laboratory experiments of all thinkable types and many uni-

versities build them themselves. However this experiments mostly cost several thousand



1.2 Objectives 11

Euros, what means that only few can be bought. As a consequence the student groups

grow very big.

Here LEGO-Mindstorms forms a cheap alternative with approximately 200 Euros for one

invention set. It is also very �exible with more than 700 di�erent parts and o�ers a great

variety of possible experiments. It includes a microprocessor, called RCX, with 3 analog

inputs and outputs, which can be easily programmed by the delivered graphical software

ROBOLAB or one of the many cross-compilers which allow to write programs in common

languages like C/C++, BASIC and JAVA. Furthermore it provides motors (actuators) and

di�erent types of sensors: light sensors, contact sensors, rotation sensors and temperature

sensors.

The drawback is that almost no technical data is available for mathematic modelling and

has to be obtained by measurements. Furthermore there are extensive inexactness in the

mechanical parts which lead to notable non-linear friction phenomenons, which have to be

handled. Also the sensors, especially the rotations sensors, are very imprecise. This will be

discussed more closely in chapters 2 and 4, which treat the technical details of the sensors

and the development of a PID velocity controller for a LEGO R©vehicle.

The objective of this thesis is to develop such a laboratory experiment.

1.2 Objectives of the thesis

The most common application for LEGO-Mindstorms are small vehicles to perform dif-

ferent tasks. A possible way to use such a vehicle for educational purposes in control

engineering is to combine it with position detection which allows better control actions like

position control, path tracking or trajectory control.

To provide such a experiment, especially for practicals with several groups at the same

time, a small framework for communication and controller design has to be developed,

building on the following previous works done at the AI2.
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Previous works and starting position

Alberto Encinas, also student at the UPV, constructed a Bluetooth-to-infrared adaptor,

based on the Initium Promi-ESD Bluetooth chip.[31] Using the �Serial Port Pro�leït can

easily be accessed via an emulated serial port. The serial data then is translated into a

infrared signal for the RCX using a infrared transmitter and receiver. With this device the

RCX becomes independent from the LEGO USB tower and can operate with bigger range

and without the need for visual contact. It will be discussed more detailed in Chapter 2.

Furthermore Carlos Garcia implemented for his �nal project a simple C-based communica-

tion with a Visual Basic frontend to send commands and data to the RCX.[36] He realized

a simple PC side feedfoward control by sending commands for moving and turning to the

vehicle, but without knowledge about the result of this action. On the vehicle the com-

mand was realized by moving until encoders on the axes reach a certain value, proportional

to the way to drive or the angle to rotate. This only encoder-based control is also very

imprecise because of the integral error of encoders. Especially in respect of rotation there

are large uncertainties caused by friction and slip.

A di�erent approach and task was realized in the 'LEGOMaze Path�nder' project citeLego-

Maze, where a vision-based path-�nding algorithm for a LEGO-Vehicle was developed.

This was also realized by encoder-based point-to-point movements, supplemented by position-

feedback and path recognition with a webcam and image-processing. Image-processing and

communication (here with the USB tower) were implemented in JAVA, using the open-

source JAVA-�rmware leJOS. JAVA turns out to be a good solution, especially for the

communication, but problematic for practicals because of the diverse fundamentals and

knowledge of this programming language among students.

previous works and starting position

As a better solution the complete experimental setup has to be developed for use out of

MATLAB/Simulink as this is the standard tool for control development. So the student

groups only have to work with MATLAB/Simulink and don't need any further knowledge
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of other programming languages and the communications setup.

Therefor the following requirements build the objectives of the thesis, complemented by a

example vehicle and controller setup.

• Bluetooth communications with the RCX

A possible way has to be investigated, to send and receive data from the RCX via the

Bluetooth interface out of MATLAB, with a sample time of approximately 100ms.

If possible, the used protocol should be robust to transmission errors and assure the

reception of transmitted data.

In addition to this, it is aimed at connecting with several robots at a time for further,

possibly interacting experiments.[Chapter 2,3]

• Vehicle with velocity controller

For demonstration purposes a example vehicle should be created. As there are several

possibilities, it was decided to construct a tracked vehicle, since this means additional

requirements to the controller because of the slip of the chains.

A velocity-controller is to be implemented on the vehicle to control the two tracks

independently.[Chapter 2,4]

• Image processing

An obligatory demand for trajectory control is the measurement or estimation of the

vehicles position.

A standard webcam shall be used for this purpose, detecting the coordinates from a

top-view position.

Therefor the vehicle has to be equipped with an adequate marker to guarantee robust

and precise tracking within the bounds of accuracy needed for such an experiment.

Moreover example algorithms for image-�ltering, segmentation and object-detection

have to be implemented for the controller demonstration.

In addition a possibility for calibrating the camera is required to obtain the real-world

coordinates of the vehicle from the image data.
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As a possible supplement, also the detection of (possibly marked) obstacles should

be available to o�er the possibility of a path-searching trajectory control.[Chapter 3]

• Applications

For demonstration and a possible example practical, two or three di�erent trajectory

controllers shall be realized.

Therefore �rstly all parts of the communication system and the robot's velocity

controller have to be completed to close the control loop.[Chapter 5,7,8]

Figure 1.2: Schematic buildup of the �nal control system

Furthermore for providing example curves, algorithms to generate time-dependent

trajectories have to be researched and implemented. Here a possible extension could

be a path-search algorithm to generate a trajectory by avoiding obstacles.[Chapter 6]



Chapter 2

Basics and problem-setup

Before discussing details of experiment and controller design, the used technologies and

tools the work is based on will be introduced.

One task of the project was to use only LEGO parts for the Robot, despite the Bluetooth-

infrared-device and the markings. Later we will see that this demand couldn't be held up

and an additional part had to be inserted to allow su�ciently short sample times.

However only LEGO sensors and actuators were used XXX whose technical details will be

discussed in the following.

Furthermore the used hardware and software will be presented, as well as the LEGO-vehicle

used for the experiments.

2.1 The LEGO-Mindstorms-System

LEGO R©-MindstormsTMwere �rst introduced in 1998 with the Robotics Invention Set 1.0

(RIS), which was developed for children of 12 and older. Additional to the common LEGO

pieces this set included a programmable brick called RCX (Robotics Command Explorer),

4 di�erent sensors and motors.

Soon after launch enthusiasts began to extend the hard- and software and Mindstorms

turned out to be not only interesting for children, but also for professionals (as hobby) and

15



16 2 Basics and problem-setup

education.

Today various self-made sensors can be found in internet (e.g. at [13],[8] and [30]) which

allow far more applications.

To programm the RCX the RIS is delivered with a graphical software that should be intu-

itive especially for children. However many users, as experienced programmers for instance,

felt the drag-and-drop environment too limiting.

As LEGO didn't publish technical information about the RCX and its �rmware, a group

of enthusiasts began to work out all details on their own by reverse engineering. They

created the following alternative programming languages and �rmwares for the RCX,

• NQC (Not-quite-C) was developed by Dave Baum in 1999. It has a C-like syntax

and works on the standard LEGO �rmware, but still is very limited.

• LegOS by Markus L. Noga is the �rst alternative �rmware and realtime system. RCX

programs are compiled by a real C-compiler (now BrickOS).

• Ralph Hempel wrote a Forth interpreter called pbForth

• leJOS, a �rmware and software environment that allows programming the RCX in

JAVA was �rst published in April 2002 by a group of open-source programmers

In addition LEGO began to enhance the hardware and to release further sets as the RIS

1.5 (1999) and 2.0 (2000), Robotics Discovery System (RDS, 1999) and Droid Developer

Kit (DDK, 1999). RDS and DDK use simpler versions of programmable bricks with less

or internal sensors and motors.[12],[30]

The next step will be the NXT which is planned for summer of 2006 with extended com-

munications as USB and Bluetooth, 4 Sensors and enhanced sensors and motors.

In the following the most important parts of these Mindstorms sets will be presented.
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2.1.1 RCX - The Robotics Command Explorer

The RCX, as core of the Mindstorms system, was initially developed as educational tool

in collaboration with Massachusetts Institute of Technology (MIT) [30]. The �rst version

allowed six inputs and outputs which were reduced to three in the commercial version for

reasons of energy saving.

Microcontroller

The central part of the RCX is a Hitachi H8/300 high-speed processor which is ideally

suited for realtime control applications. The on-chip supporting modules implement pe-

ripheral functions needed in system con�gurations, as ROM, RAM, eight 16-bit registers,

three types of timers (a 16-bit free-running timer, 8-bit timers, and a watchdog timer), a

serial communication interface (SCI), an A/D converter, and I/O ports.[7]

Memory

The CPU is equipped with a 16kB ROM containing low-level software that guarantees

basic functionality as data-upload via infrared after a reset. Additionally the RCX is pro-

vided with 32KByte of external RAM to store LEGO or alternative �rmware as well as

user programs and data.

Software architecture

All di�erent levels of software on the RCX lead to the architecture showed in 2.1, with

LegOS as example for alternativ �rmware .

The di�erent �rmware types mainly use the basic system on the ROM to control the hard-

ware. For generating programs for the RCX on a PC, an individual cross-compiler has to

be used for each �rmware. It generates byte code which then can be transferred to the RCX.

IR

For communication with the PC or other devices, an infrared device is connected to the
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Figure 2.1: Software architecture for programming the RCX. A basic �rmware in the

ROM provides for hardware control. Using this interface a more complex �rmware can be

uploaded and run user programs.

serial port of the CPU. Using the IrDA (Infrared Data Association) standard with a car-

rier frequency of 38 kHz a serial connection with 2400bps (4800bps for RCX 2.0) can be

established with any IrDA device.

Inputs and outputs

For control applications the RCX provides three analog inputs and three motor outputs.

The outputs support 3 modes, 'on', 'o�' and '�oating'. In �oating-mode the motor isn't

powered but free-running whereas in 'o�'-mode the motor is stopped by using energy.

The inputs are connected with the 10-bit A/D converters of the microprocessor and oper-

ate in the range of 0V to 7V.

Other features

Additional to this basic functions the RCX provides some more features as buttons for

interactions and handling, and an internal beeper for sound applications.

A very useful feature is provided by the liquid crystal display (LCD), which can be used

for displaying important information and program debugging.
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Figure 2.2: left: Output voltage for di�erent motor-speeds using PWM; right: LEGO

motor 43362

The RCX normally is powered by 6 AA batteries with a total voltage of 9V. The RCX

1.0 version additionally provides a charging bush which also can be used as external power

supply.

2.1.2 Motors

LEGO provides about 6 very diverse DC motor types, mostly part of LEGO Technics

but also compatible with Mindstorms. They are described in detail in [8]. The RIS only

includes one of them, the 43362.

This motor is very e�cient for its low weight of 28g. Its maximum speed is about 340 upm

and the stalled torque is about 5.5 Ncm, both measured at 9V.

It can move in both directions, depending on the output polarization of the RCX which

can be switched. As the motor output is digital and can only have the values 0V or ±9V

the motor speed is controlled by pulse width modulation (PWM). As shown in 2.2 this

method uses a periodic digital signal to generate di�erent power levels, which is done by

varying the ration between the durations of 0 and 1. At low power levels only brief pulses

with 9V are generated whereas at full power the pulse never ends. By using PWM the

LegOS �rmware allows 256 di�erent speed levels.

As LEGO parts are developed as toys, the precision mostly is not very high. Hence also the

motor shows variation of velocity up to 11% within di�erent exemplars. Also the velocity

of a single motor is �uctuating and oscillating, supposably caused by the internal motor
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Figure 2.3: Gear, rotor and stator of the LEGO DC motor 43362.

gear, showed in 2.1.2 with other motor components.[26]

2.1.3 Sensors

There are four di�erent types of standard LEGO sensors; touch sensor, light sensor, ro-

tational sensor and temperature sensor. The following section describes the properties of

these sensors.

For the vehicle design and control experiment only the rotational sensor was used. The

basic idea behind the sensors is that the voltage on the input is converted to an internal

RAW value in the range of 0(0V) to 1024 (5V). This value is processed further what results

in 3 values for each sensor, whereas every sensor type is connected with one of theses types

by default.

The three available values are:

raw value

Voltage level between 0(0V) and 1024 (5V)

boolean value

The raw value is converted into 0 ( raw < 460) and 1 ( raw > 562). In the range

between 460 and 562 the previous value is kept to avoid clattering e�ects.
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sensor type code sensor class processed

empty 0 passive read

contact 1 passive Boolean

temperature 2 active Celsius

light 3 active percent

rotation 4 active steps

Table 2.1: Available LEGO standard sensors and classi�cation.

processed

Every sensor can have a more complexly processed value with a speci�c unit, e.g. per-

centage of the maximum value (light sensor), temperature or an encoder value(rotational

sensor)

Furthermore every sensor can be passive or active. Active means that the sensor has

to be powered to work properly. For example the rotational sensor internally uses a light

barrier that needs power supply. Passive sensors normally are resistances and switches,

that don't need to be powered.

Table 2.1 gives a brief overview about the 4 standard sensors in respect of sensor class and

type of processed value.

Touch/contact sensor
A LEGO touch sensor is a simple sensor with a sliding part at the

front to determine when a contact is made. It returns 1 in basic state

and 0 when pressed.

Light sensor
LEGO light sensor is a complex and an ine�cient sensor type. The

sensor has a small red LED in the front, which �ashes during opera-

tion. The light sensitive unit next to it reads the ambient light value.

It can be used as active sensor measuring mainly the re�ected light of the LED, e.g. for

line-tracking if it's �xated near to the ground. So it can di�erentiate between dark and

bright zones. It also can be used a passive sensor for measuring the ambient light. In this
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case the LED is not powered.[27]

Rotational sensor

The rotational sensor works as an angular encoder and allows to detect

the rotation angle of an axis in steps of 22.5◦ (16 pulses per revolution).

The pulses are summed up to an integral value which can be initialized

to an arbitrary value at any time. The sensor can di�erentiate between

clockwise and counter-clockwise rotation. The technical details of this sensor will be treated

more closely in 3.1.1.

Temperature sensor

The temperature is the less known sensor as it's not very useful in

most applications. It can read the ambient temperature in a range of

- 20 to 70 ◦Celsius. The value also is available in ◦Fahrenheit.

2.1.4 USB-Tower

For infrared communication with the RCX LEGO delivers two di�erent devices, the older

serial IR-tower and the newer USB version, which is used in this case. It's working on

a frequency of 76 kHz and supports a transmission rate up to 4800 baud, the standard

of the recent RCX 2.0. The integrated �lter also has a bandpass at 38 kHz to provide

compatibility to the RCX 1.0.[14]

2.2 The LEGO-Vehicle

After introducing the most signi�cant LEGO pieces in the following section the construc-

tion of the vehicle used in the experiments will be described more detailed.

For the design initially a few demands were made considering drive and geometry. It was

decided to use a tracked vehicle with a design as small as possible. It should be powered

by two LEGO motors, each for one track. Furthermore, corresponding geometry, the cen-
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ter of gravity should be close to the geometric center for decreasing the modelling errors.

Additionally a holding for the Bluetooth adaptor and a color marker have to be attached.

2.2.1 Construction

Therefore the chassis was built by perforated girders on left and right side each. A double

perforated girder in the center supplemented by the outer girders are used to �xate the

four half axes. This basic construction is stabilized by LEGO plates attached above and

underneath on all areas not blocked by the gear. This basic construction is shown in �gures

2.4 and 2.5. There also additional perforated girders at the front axes are visible. They

are used to shorten the length between the two bearings for play reduction.

Figure 2.4: Bottom view: The chassis is sta-

bilized by several LEGO plates. Also the

construction of front and rear axis can be

seen.

Figure 2.5: Top view on chassis without RCX

showing motor attachment and holding for

RCX and BT adaptor.

As already mentioned, for each wheel an independent half axis was used. Therefore the

wholes in the girders were used as bearings. The position of the axes was �xated by LEGO

sleeves.

The motors were attached directly on top of the front axes as can be seen in �gures 2.5

and 2.6. The gears (Fig. 2.7) are consisting of the motor and drive axes, connected by one
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additional axis for decreasing the ratio. Thus the complete gear ratio is 1:9, composed by

the two sequential ratios 8:24 (motor:middle axis) and 8:24 (middle axis:drive axis).

The drive consists of two LEGO rubber tracks, lead by originally 4 wheels, as the standard

Mindstorms kit only contains 4 such pieces. During the experiments it became obvious

that this construction is complicated in respect of varying slip. As the tracks aren't very

Figure 2.6: Front view of motor and gears. Figure 2.7: Zoom on gear and rotational sen-

sor. The sensor is directly attached on the

motor axis.

Figure 2.8: Zoom on RCX holding. Due to

the motors the RCX has to be positioned

very high.

Figure 2.9: Holding for the BT adaptor. Also

the tube connecting the adaptor's IR emitter

with the RCX IR receiver is visible.
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tense they arch in the middle of the vehicle and so there mostly is no contact between tracks

and ground. Therefore two additional wheels were added in the vehicles center to equally

distribute the weight on the track area. Using the 6-wheel con�guration a much more

uniform slip behaviour was observed.

To level weight distribution and counteract the motors weight a holding for the RCX was

constructed in the rear section of the vehicle (Figures 2.8 and 2.5). There also the holding

for the Bluetooth adaptor, shown in �gure 2.9, is attached, which �xates BT card and bat-

tery. The resulting vehicle can be seen in �gure 2.10 and possesses the following parameters:

Figure 2.10: Complete LEGO vehicle with

red marker for position detection.

Technical data:

max speed: ≈4.5cm/s

length: 19.5 cm

width: 15.5 cm

height: 14 cm

weight: ≈640 g

2.2.2 Sensor positioning

Another important part of the vehicle's design is the rotational sensors' position. As will

be discussed in chapter 3.1, because of the low angular resolution and long duration be-

tween two pulses (for low speeds 50ms and more), the rotational speed in this application

is in a critical region and very important for the quality of the velocity measurement. For

low speeds, long delays to the next update of the velocity value occur. So a higher ratio

between axis and sensor will result in higher rotational speed and consequently a better

quality of the velocity measurements.



26 2 Basics and problem-setup

Besides limited space and number of pieces, the most signi�cant constraint for increasing

the ratio is given by the friction added to the gear with every additional cogwheel or ratio.

Furthermore it has to be considered that mechanical gears are inert, so every ratio will

slow down the system response time. In this respect it is also important that the sensor

is placed as far as possible from the system input at a place were the desired output can

be measured (best positions here: rear axis or directly on front axis). There the physically

relevant value, the rotation that is directly transformed into track movement, can be mea-

sured including all delays of the gear.

This demand here is put into perspective by the bad quality of the velocity measurement

for low speeds. Every decrease of rotational speed, caused by additional ratios between

motor and sensor, severely decreases the signal quality. So a compromise for the sensor

position has to be found.

For the previously described vehicle several possible sensor positions were tested and com-

pared in the following con�gurations:

1. Sensor connected to motor axis by additional cogwheel

2. Sensor directly on motor axis (Fig. 2.11 left)

3. Sensor on (non-motorized) rear axis, connected by a 90◦ redirection and an additional

ratio (Fig. 2.11 middle)

4. Sensor on front axis with additional cogwheel to increase rotational speed (Fig. 2.11

right)

Finally, it was decided to use option 2 because it contains least friction at a acceptable

ratio of 0.53 mm/step. Options 1 and 3 introduce a high level of friction that results

in velocity oscillations and a wide deadzone ( the range of input values to the motor

where no movement occurs because of friction). As option 4 also increases friction without

augmenting the ratio it also was discarded.

As shown in �gure 2.12 the delay induced by the gear can be neglected in comparison to

the delay induced by the sensor. It shows the velocity value measured on the front axis
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Figure 2.11: Encoder on positions 2) 3) and 4).

and directly at the motor axis. As the ratio di�ers by a factor of three (ratio 8:24), most

of the additional delay of the velocity of the front axis is generated by the slower sensor

dynamics.

Figure 2.12: Comparison of encoder signal at di�erent positions. The sensor on the front

axis is about 100ms slower. A major part of this di�erence is caused by the lower ratio

and resulting longer pulse duration.
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2.3 Cameras

For image processing and position detection of the vehicle two di�erent cameras were tested,

the Logitech Qickcam Pro 3000 and the LEGO camera, which is available as a add-on for

LEGO R©-MindstormsTM.

Logitech Webcam

The Logitech QuickCam R© Pro 3000 is equipped with a

built-in microphone and a CCD chip with a real reso-

lution of up to 640x480 pixels and a 24-bit color depth

(16.7 million colors). Possible frame rates are 15 or 30

Hz. The lens aperture is F/2.0 and the drivers guar-

antee an optimal lighting. It has to be connected to a

standard USB port.

LEGO Webcam

The LEGO Studios camera/Mindstorms Camera in-

ternally corresponds to a Logitech Quickcam Web.

The CMOS chip also allows a maximum resolution of

640x480 and 30 fps (framse per second), but it has to

be very well lit to perform at any satisfactory level. Here

also a microphone is integrated and the camera is deliv-

ered with a extra long 5m USB cable.[2]

Comparison and choice

After beginning to work with the Logitec camera, it turned out to be di�cult to adjust it

in a position exactly parallel to the ground because of its unstable holder and the spherical

form.

Here the LEGO camera has advantages because of its box form and the possibilities to
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build a stable holder of LEGO pieces. Attached on a board which can be levelled, a very

exact positioning can be achieved.

The drawback of the LEGO camera is the bad image quality. The picture noise is much

higher, compared to the Logitech camera. As a consequence there is a drastic quality re-

duction of the image processing result because of variations in the segmentation algorithm.

Furthermore above an altitude of 1.50m the ground is no longer focusable, which results

in a loss of contrast what additionally deteriorates the outcome.

To get better image processing data it was decided to work with the Logitec camera be-

cause of its better quality . A �xation was constructed as can be seen in 3.10. Furthermore

a satisfying result for the levelling could be achieved by the method described in 3.11.

2.4 Communications

2.4.1 Bluetooth speci�cations

The Bluetooth wireless technology is a short-range communications technology intended

to replace the cables connecting portable or �xed devices. Main features of Bluetooth

technology are robustness, low power drain and low cost.

The Bluetooth speci�cation de�nes a uniform structure for a wide range of devices to

connect and communicate with each other, up to eight devices simultaneously, mostly

within a 10m radius (class 2). Such an ad-hoc network is called piconet and one device

can belong to several piconets simultaneously.

The operating range depends on the device class:

• Class 3 radios : range of up to 1 meter

• Class 2 radios : range of 10 meters, most commonly found in mobile devices

• Class 1 radios : range of 100 meters, used primarily in industrial use cases

The Bluetooth 1.0 standard allows 1 megabit per second (Mbps) which is increased in the

recent version 2.0 to 3 Mbps. Therefore it uses a very weak, frequency hopping and full-
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duplex signal between 0.5 - 1 mW within the unlicensed industrial, scienti�c and medical

(ISM) band at 2.4 to 2.485 GHz.

To avoid interference a technique called spread-spectrum adaptive frequency hopping (AFH)

is used which makes it rare for more than one device to be transmitting on the same fre-

quency at the same time. AFH works within the spectrum to take advantage of the

available frequency. This is done by detecting other devices in the spectrum and avoiding

the frequencies they are using. This adaptive hopping allows for more e�cient transmis-

sion within the spectrum, providing users with greater performance even if using other

technologies along with Bluetooth technology. 1,600 times every second the signal hops

randomly among 79 frequencies at 1 MHz intervals to give a high degree of interference

immunity.

Bluetooth o�ers several security modes as e.g. 'trusted devices', which can be de�ned

and can exchange data without asking permission. Every other data-transfer has zu be

con�rmed by the user. It's also possible to make the device 'non-discoverable' and avoid

connecting with other Bluetooth devices entirely. Security methods include authorization

and identi�cation procedures.

2.4.2 The Bluetooth-Infrared-Device

In order to overcome IR limitations of the RCX, a Bluetooth wireless solution has been

developed at the AI2[31].

Bluetooth has be chosen because of its easy handling, already integrated protocols and the

'serial port' pro�le which makes it compatible with the IrDA signal. It consists of a small

electronic circuit on a 4.5 x 4.5 cm card that has to be posed in front of the RCXs' IR

port. The overall scheme is shown in �gure 2.13. The core of the system is commercial

Bluetooth chip (UART standard with TTL-CMOS compatible logical levels), the Initium

PromiSD, with a range of 30m and a maximum data rate of 115200 baud. This device was

chosen because of its low cost and small dimensions.

The output of the Bluetooth chip is connected to a switch inverter (MAX3233 by Dallas-
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Figure 2.13: Scheme of the Bluetooth-IR-adapter.

Maxim) and an oscillator (TLC555CDR by Texas Instruments). If the chip receives (from

the PC) a zero bit, the oscillator generates a pulse signal of 38 KHz, for a logical one the

oscillator is switched o�. The oscillator output is connected to an IR emitter.

The reception stage is simpler as the TSOP-34838 (by Vishay) IR receiver already delivers

a processed logical signal and is connected directly to the Bluetooth chip. This receiver

was selected because of its robustness with the noise and ambient light interferences.

For power supply at TTL tension level (3.3volts) the linear voltage regulator MAX884 (by

Dallas-Maxim) was integrated.

The serial communication protocol used by LEGO, works at 2400 bauds, odd parity and

one stop bit. The bit encoding is 470µs where a IR '0' bit is encoded as a 470µs pulse train

of 38 KHz, and a '1' bit as 470µs of nothing (0V).

In this way, after an adaptation of IR serial signal to logical levels for the Bluetooth chip,

the communication between RCXs and PC or among RCXs can be performed.

In [13] it is mentioned that in some cases it is even possible to run the RCX 1.0 with a

USB tower at 4800 baud, which can be de�ned in the �rmware. But tryouts for decreasing

the transmission time with the used RCXs weren't successful, so this statement couldn't

be veri�ed.

On PC side the Conceptronics CBT100U and CBT200U2 USB Bluetooth USB adapter

were used in combination with the software Blue-Soleil. Both adapters are class 3 devices

and support all common Bluetooth pro�les. CBT100U has a range of 100m and maximum

data rate of 1 Mbps (Bluetooth 1.0), while the range of the CBT200U2 is 200m at a

maximum rate of 3 Mbps (Bluetooth 2.0).
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2.4.3 LNP - The LEGO-Network-Protocol

Particularly with regard to bit errors in the communication, the IR-connection between

the RCX and the Bluetooth-module is the most critical part. Hence many application

use the 38kHz carrier frequency, interferences with other IR-signals are possible, as well

as re�ections or ambient light can in�uence the signal quality [30]. Therefore with the

introduction of the legOS (now BrickOS) the LEGO Network Protocol was developed [30].

It guarantees a received data-packet to be correct, otherwise the packet is discarded. The

correctness is veri�ed by a running checksum over all bytes of the message (with initial

value 0x�). The drawback of the LNP is that, indeed errors can be detected by the receiver

if the packet arrives, but no information for the sender is available if the packet was received.

The LNP was also developed to communicate with various RCX units at the same

time. Therefor the LNP can be used in two di�erent ways, each with an own protocol

implementation:

Broadcast Transmission

Messages sent by this protocol layer can be received by any unit in the system. The

packet length can variate, but with a rising number of data bytes, the percentage

of undetectable errors rises. Because of that the LNP packet length of the JAVA

implementation in leJOS is limited to two bytes.

A LNP-packet shows the following structure

H (0xF0) LEN D CHK

H : Header (0xF0)

LEN : Number of data-bytes ( 1..255)

D : Data

CHK : Checksum

Figure 2.14: Structure of a LNP broadcast transmission packet.
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Addressing Transmission

For sending messages to a speci�ed target the LNP addressing layer is used. Therefor

the packet-structure is expanded by four bytes, two for the address of the destination

and two more for the source address.

With this modi�cations a client will reject a message with a destination other than

his address and receives in addition the address of the sending client (source).

The packet structure changes as follows:

H (0xF1) LEN DEST SRC D CHK

H : Header (0xF0)

LEN : Number of data-bytes ( 1..255)

DEST : Address of destination ( 2 bytes)

SRC : Address of source ( 2 bytes)

D : Data

CHK : Checksum

Figure 2.15: Structure of a LNP addressing transmission packet.

On the �rmware side receiving data is handled via interrupts, while the transmission is

running as a background process.

An incoming packet will trigger an interrupt routine, wherefor an interrupt handler has to

be de�ned �rst as followed

#include lnp.h
...

void my_integrity_handler(const unsigned char data, unsigned char len)

{ ... }

or

void my_addr_handler(const unsigned char data, unsigned char len, unsigned char

src)
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{ ... }

where data is a byte-array �lled with the content of the packet, len the number of bytes

received and src, in case of addressing transmission, the address of the sending RCX.

For using this interrupt handler it �rst has to be declared in the main method

lnp_integrity_set_handler (my_integrity_handler);

or

lnp_addressing_set_handler (my_port , my_integrity_handler);

Once a packet was completely received, the �rmware calls the handler function to process

the incoming data. As this function is an interrupt routine, it should be as short as possible

to loose no other interrupts. Also methods dealing with memory operations and thread

priorities (as for example the timing-methods sleep and msleep) don't work within this

method and will lead to unpredictable behaviour of the RCX program. The best way to

initialize processing of longer subroutines is to create a static command bu�er and only in-

sert the command byte and the parameters in the bu�er. Processing the command should

be done by a regular thread.[15]

Sending a packet can be achieved by using the functions

result = lnp_integrity_write(data, length);

or

result = lnp_addressing_write(data, length, DEST_ADDR, MY_PORT);

which generate the package structure including the checksum and add the data to a trans-

mission bu�er, which holds the next bytes to be transmitted.

The legOS-�rmware is processing incoming data byte-wise with a state machine. While

no packet is processed it is waiting for a speci�c header byte to initiate further processing.

For each type of packet, speci�ed by a unique header, an independent path of states if

followed until processing is �nished, either by a error-caused reset or completion of the

package.

Some very powerful complements to the LNP-implementation in the legOS-�rmware
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were developed for Linux (LibLNP) and Windows (winLNP) operating systems. They

allow to access a serial- or USB-tower to send and receive LNP-messages. Furthermore

there exists a Linux LNP Daemon that is running as a service in background to constantly

receive packages and prevent the tower from being shut down. It can be easily contacted

by other programs to communicate with the RCX.[30]

This structure is also included in the pcrcxcomm JAVA package, a PC-side implementa-

tion of communications that comes with the leJOS �rmware but can easily be used with

BrickOS. Here the developers even went one step further and developed a proxy that routes

the LNP messages into the local network. The RCX has to send the requested IP address or

host name to connect with when initializing the connection and thereby can easily establish

a socket connection to a TCP server running on any PC in the LAN.

By using the Bluetooth-IR interface, the addressing layer is irrelevant because every

vehicle is equipped with it's own Bluetooth card and is therefore addressable by a unique

emulated serial port. Sending a message to a speci�c serial port corresponds to addressing

transmission, for a broadcast the same message has to be send to all serial ports.

However �rst tests of the message speed showed that transmitting data with the LNP is

very slow because of the huge amount of additional data. For a data packet of 2 bytes,

which is the intended packet-size, 5 bytes must be sent over the IR-interface. In the

�rmware transmitting one byte is supposed to take 30ms ( 5 ms transmission + 20/15 ms

waiting before/after the transmission), which means a total time of at least 150ms for 2

bytes, which is not acceptable for a continuous control of the LEGO-vehicle.

Therefor changes in the �rmware have been made, as well as a new transmission protocol

has been introduced, which is described in the following section.

2.4.4 LCP - The LEGO-Control-Protocol

Using the LNP for the intended control application has two mayor drawbacks: low speed

and no information about if the transmission was received. Therefore a new protocol had

to be integrated in the �rmware.
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To overcome the drawback of no reception information it was tried to use acknowledges

that are sent after a packet arrived. But very soon it was clear that the thereby generated

time delay was not acceptable for control applications, and especially the problem of wait-

ing timeouts appeared to be critical.

On the other hand reliability test of the communication showed that installing the Blue-

tooth card directly in front of the IR port of the RCX reduces the package loss to a negligi-

ble level. It only gets problematic when the power level of the Bluetooth-adapters battery

drops signi�cantly. Furthermore some randomly occurring extremely long delays during

the transmission were observed, which lead to the assumption that packet-losses/timeouts

on the controller-side have to be handled anyway.

So the matter of possibly lost packages was no longer pursued and the new protocol was

developed for shorter transmission times.

The new protocol was designed in respect to a minimum package length with acceptable

error detection capabilities. To further guarantee compatibility to other protocol types,

the header byte system was adopted.

The intended use was to send the signal of the rotational sensors from RCX to PC and

the reference speed for left and right side from PC to RCX. So a dataword length of two

bytes seemed to be appropriate. The changes in the rotational sensors are small enough to

�lter out the over�ows of the byte value-range, which is done in the receiving MATLAB-

function. An over�ow can be detected when the absolute change of the value xt − xt−1 is

greater than a pre-de�ned threshold (here: 150). The sign of the change depends on if the

over�ow passed the upper or lower bound of the value range.

Corresponding the reference speed a byte is more than su�cient. The speed is measured

by �rmware in steps per second (integer-valued), which usually has values between 20 and

80 in this application. Only interpretation as signed byte must be assured, so positiv and

negativ speed can be sent directly. In case of larger values would be required, the value

can be scaled on both sides of the channel.

To shorten the packet length as much as possible, error detection and compatibility to the
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protocol system were reduced to one byte. The �rst 4 bits represent the header (0xaX),

the last four bits the checksum.

As result, the packet structure of the LCP (LEGO-Control-Protocol) looks as follows

H (0xA0) ∨ 0x0CHK D

H : Header (0xA0)

CHK : Checksum (4 bit)

D : Data

Figure 2.16: Structure of a LCP packet.

The remaining question of how to get a 4-bit checksum of a 2-byte dataword will be

described in the next section.

Error detection

Whenever digital data has to be send through a communication channel or stored on a

memory device, the risk of random bit changes occur, in case of communications by spo-

radic interferences, in case of memories by physical defects (hard errors) or disturbances

(soft errors) caused for example by α-radiation.[40]

For detecting such errors exists a variety of detection mechanisms, each with di�erent

detection abilities in respect to single/double-bit errors, systematic errors. In general a

message or stored amount of data has to be split into datawords of length d. Every data-

word is embedded in a codeword of length c > d, such that a checkword of length s = c−d

can be generated by a certain algorithm.

CW = DW PW

The most common techniques are:

Repetition schemes

A message is sent a �xed number of times. This is not very e�cient and problematic
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for systematic errors, where the error occurs always on the same position.

Bit Parity

Only one bit is used as checkword (s=1); It is generated by a bit-wise XOR of the

dataword and complements the total count of ones to a even number (even parity).

The drawback is that double-, quadruple-, sextuple-,...errors can not be detected.

This can be achieved by inversion, which results in a complement to an odd number

of ones (odd-parity). Parity-checks are not very strong and are only used for small

datawords of mostly 8 bits, such as in serial connections for instance.

Running Checksum

One of the easiest, but also very basic error-detection mechanisms is to use a checksum

of arbitrary length s as realized in LNP. Initialized with a �xed value, the dataword is

added in parts of s bits. Over�ows are ignored, so the checksum always stays within

the range of s bits. The algorithm is very rudimentary because only one or two bits

of the checkword are in�uenced by a bit-position in the dataword, so that some types

of errors stay undetected even for very long checkwords. An example in the following

section will demonstrate that.

CRC - cyclic redundancy checks

CRC's are one of the most popular error-detection techniques. Although they are

computational extensive they can easily be realized in hardware, which is the reason

they are mostly used directly on devices like Ethernet, CAN, USB and Bluetooth.

CRC's can be used for any dataword length and mostly use a s, which is a multiple

of 8, as e.g. the CRC8, CRC16, CRC24, CRC32 and CRC64. An exception is the

CRC4 and CRC5 which is used for very short datawords.

Di�erent from a checksum, the CRC algorithm uses division instead of addition,

which makes the algorithm more complex. The theory CRC's will be treated more

closely in the following section.

Hash functions
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Better known from search- and encryption algorithms, hash functions can also be

used for error detection.

A hash function H(x) is an algorithm that generates a �xed-size string h (hash value)

from any input x. It's major attributes are:

• The input can be of any length

• The output has a �xed length

• H(x) is relatively easy to compute

• H(x) is one-way

• H(x) is collision-free

Instead of using the hash value for searching in a list, it also can be used as checkword

with very high complexity. H(x) being (almost) collision-free guarantees that almost

no pair of di�erent messages can have the same hash value.[18]

The most known hash functions are algorithms of the families MD (md = message

digest, as MD2, MD4, MD5, ...), SHA ( SHA0, SHA1, SHA256, ...) and TIGER (

TIGER, TIGER2, TIGER128, ...). MD and SHA are often used to generate so-called

�ngerprints of documents and �les for faster search and comparison.

Mostly hash functions are computationally more expensive than CRC's in case of

long messages.

Although CRC and hash functions are no sum but complex functions, in the context of

error correction methods mostly the term checksum is used. This is a remaining habit from

the times, where only parity-checks were used, which are general spoken a bit-wise sum of

the dataword.[41]

The checksum used in LNP is a real checksum. The bytes of the message are summed and

the resulting byte added to the message as checkword. The problem of this algorithm is

its simplicity. If, for example, two random corruptions occur, there is a 1 in 256 chance

that they will not be detected.
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Message : 6 23 4

Message with checksum : 6 23 4 33

Message after transmission : 8 20 5 33

Even a longer checkword wouldn't help to detect this error. Using a 16-bit register instead

of a 8-bit register (e.g. sum the bytes mod 65536 instead of mod 256) would fail because in

this case the formula used is not su�ciently 'random'. Each byte in�uences roughly only

one byte of the summing register. Therefore an algorithm that in�uences wide parts of the

register is needed and can be found e.g. in the CRC algorithm.

So two main properties characterize an error detection algorithm:

• Length of the code word

• Complexity of generating algorithm

The desired amount of data included in one LCP packet is 2 bytes. With a possible

length of 4 bits for the check word it was obvious to use the CRC4 algorithm that is widely

used and already proven to work properly and robust in technical applications (e.g. Cisco

router [5]). The functionality and theory of this technique is described in the following

section.

Theory of Cyclic redundancy checks

As summation appears to be too simple for a robust error-detection algorithm another

arithmetic operation is more complex: division.

The basic idea of CRC is to use rest of a polynomial division as checksum. The bit ordered

message is regarded as a dyadic polynomial T(x)(a polynomial XXX whose coe�cients

only can have the values 0 or 1) of degree d-1 (data length) and is divided modulo 2 by a

certain generator polynomial G(x) that has to be used by both sides, sender and receiver.

The remaining rest E(x) represents the CRC value and is attached to the message.

The receiver can verify the data integrity by performing the same operation to the message

including the CRC value (T(x) + E(x)). If no rest remains, either no error occurred, or
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an error that contains G(x) as a factor has happened. It is obligatory that sender and

receiver use the same polynomial and processing technique. A worked out example of the

calculation of such a CRC can be found in A.

Polynomials

The polynomials normally are written as a bit sequence where the most signi�cant bit

represents xn−1 and the least signi�cant bit, which is always 1, represents x0. For example,

the polynomial used in CRC4 can be written as:

1x4 + 1x1 + 1x0 = 1x4 + 0x3 + 0x2 + 1x1 + 1x0 = 10011 (2.1)

It also exists a second representation with reverse order of the polynomial coe�cients, but

it is less intuitive and less used.

In both representations the most signi�cant bit has to be one (to guarantee the polynomial

order) and is omitted for the division.

Not every polynomial is equally useful for error detection, and so there exist a few

building rules to be regarded when choosing a polynomial:

1. For G(x) more than one term, all single bit-error will be detected

2. By guaranteeing that G(x) does not divide xk + 1 for any k up to the frame length,

also all cases with two isolated single-bit errors are detected

3. By making x + 1 a factor of G(x) all errors consisting of an odd number of inverted

bits can be caught

4. r check bits will detect all burst errors (several wrong bits in a row, e.g. by an

interruption) of length ≤ r

Certain polynomials have become international standard as for example the polynomial

0x04C11DB7, known as CRC-32 (IEEE 802) used in Ethernet, FDDI, ZIP and PNG.

The CRC4 polynomial (eq. 2.1) used for LCP also is a standard that is used in technical

applications [5].
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With the coe�cients x5 +x+1 it is able to detect single and double bit errors, errors with

an odd number of wrong bits and burst-errors up to a length of 3.

Technical realization

CRC's mostly are realized by hardware as they only need shift register and XOR logic.

The software implementation mostly is more complex but still within justi�able limits of

calculation time, which particularly is important for the implementation in the RCX. It

can be speeded up by lookup tables ([41]), which only is realized in the PC-side because

of lack of memory on the RCX.

The following pseudo code shall demonstrate the shift register algorithm, a complete C

code sample can be found in [23].

shift register sr := 0000 (initial value)

while ( data-bits left )

{

if ( most significant bit of sr 6= next bit of data)

sr := ( sr shift left ) XOR CRC-Polynomial

else

sr := ( sr shift left )

}

CRC-value := content of sr

Method variations

In some cases (such as CRC32) an initial value di�erent from 0 is chosen for the shift

register, mostly �lled with ones. Equivalently, the �rst n bits of the message may be

inverted before feeding them into the algorithm. This is done because an unmodi�ed CRC

does not distinguish between two messages which di�er only in the number of leading zeros.
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A second very common variation is to bit-wise invert the CRC value before attaching it to

the data frame. A message only consisting of zeros will always have zero as CRC value. If

a total breakdown occurs in the transmission channel, such that only zeros are read, the

CRC will not detect it. This is known as the 'zero-problem' and can be solved by simply

turning the zeros of the CRC value into ones by inverting them.

Both of this modi�cations aren't useful in LCP and though not used for the reason of

computing time. The message data is clearly delimited by the header byte, so no sequences

with varying leading zeros can appear. An inversion also isn't necessary because in case of

a total breakdown the serial protocol guarantees that no data is read.

2.5 Software

After introducing the used hardware and technical details, the following section shall give

a brief overview about the software and software technologies used for the experiments.

BrickOS

BrickOS is an alternative operating system for the LEGO Mindstorms RCX which was

originally developed with the name legOS by Markus L. Noga and �rst published in July

2000. It also provides a C/C++ development environment for RCX programs using gcc

and g++ ( the GNU C and C++ cross compilation tool chain) and the necessary tools to

upload programs to the RCX. Compared to the standard �rmware it provides some clear

advantages as:

• Theoretically unlimited number of variables (only limited by the memory size)

• New data types like matrices and arrays

• Floating point calculations, but these are very time consuming

• Enhanced motor functionality (255 instead of 8 levels)

• Full compatibility to C, what allows reuse of code for other platforms
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• Many additional library functions for directly accessing the hardware

• A (quasi) real-time kernel that allows multiple simultaneous processes and timing

operations

• Control of interrupts and synchronization via semaphores

• Implementation of LNP communication protocol

Considering all the functionality legOS makes available, it gives a level of control that can't

be matched by any other platform. Especially for control purpose the real-time kernel and

multi-threading were needed. Furthermore it is published under open-source license and

thus all code is available. By its modular structure it can be easily altered, adjusted and

extended for speci�c problems as used several times for adding LCP and velocity calcula-

tion. [3],[30],[6]

Bricx Command Center

To programm the RCX the most comfortable solution is given by Bricx Command Center

(BricxCC), which is an open-source Windows based developing environment for the RCX

(all versions). It's graphical user interface is very intuitive and very similar to known

programming environment as Eclipse or Visual Studio, albeit with less functionality and

speci�c on RCX programming. Therefor it supports all common programming languages

as Not Quite C (NQC), MindScriptTM, LASMTM, C, C++, Pascal, Forth, and Java using

the brickOS, pbForth, and lejOS alternate �rmwares.

BricxCC is an enhanced version of Mark Overmar's RCX Command Center, which was

developed only for NQC programming. It is equipped with many additional tools for

�rmware and program upload, LNP con�guration, graphical remote controls and commu-

nication tools which are helpful for programm development and debugging.[4]

JAVATMand Eclipse

For establishing Bluetooth communication, image processing and ethernet data transfer it
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was decided to use JAVA in the Version 1.4.2 to sustain compatibility to MATLAB.

This object-oriented language by Sun Microsystems, �rst available in Version 1.0 in 1996, is

getting more and more common and accepted. Reasons are its platform independence, free

availability of several development environments and application programming interfaces

(APIs) as well as good use in web applications.

The decision for JAVA was taken due to its platform independence and available API's for

network application and communication with the RCX.

Furthermore Eclipse (http://www.eclipse.org/) was used for program development in JAVA.

It provides a very comfortable user interface and a big amount of additional, time saving

help functions. In addition it supports direct use of the code version system CVS which

was used for source code management and synchronization between the several PC's.

MATLAB/Simulink

MathWorks' MATLAB is one of the most successful standard tools for numerical engi-

neering calculations, especially in respect of dynamic modelling and simulations with the

Simulink toolbox. It is widely spread in industry and universities and also available at the

AI2 laboratory in version 7.0.1. In contrary to computer algebra systems it is mainly used

for numerical solutions, even though there exists also the possibility for symbolic calcula-

tions.

Numerous extensions and problem speci�c code packages are available in form of toolboxes

covering bioinformatics, �nancial mathematics, image processing, system modelling, iden-

ti�cation and simulation, etc.

Simulink is an additional toolbox for system modelling. It allows hierarchical modelling

of discrete and continuous systems by using graphical blocks. The data �ow is realized by

lines connecting the blocks, what makes the modelling very intuitive and clear. Further,

more complex blocks are sold by MathWorks and other manufacturers.

For this thesis the following toolboxes were used predominantly.
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• Image Processing Toolbox

Used for development of image processing routines like position and obstacle detection

and camera calibration

• Simulink

Used for system modelling, optimization of Extended Kalman Filter, controller sim-

ulation and realtime control

• Spline Toolbox

Used for trajectory generation

• Control Toolbox

Used for system modelling and parameter identi�cation

The utilized software concludes the technical preliminaries needed for developing the lab-

oratory experiment. So we can now turn on acquisition of sensor information and the

resulting system and communication structure.



Chapter 3

Measurements and communications

setup

In order to be able to control the vehicle it is necessary to obtain data about the system

state. Only so we can apply the required feedback to the system and close the control loop.

As the system state often is not directly measurable we have to obtain outputs containing

enough data for reconstructing the state, by using an observer for example.

In the developed experiment it was decided to use the following system outputs: encoder

values of the vehicle's rotational sensors and vehicle position obtained by the webcam.

Position estimation only based on encoder values is almost impossible in systems with

friction, slip and, as it is the case for the LEGO vehicle, input noise. So using position

data of the camera is is required to enhance the position estimation. For measurement of

the track-speed and better predictions of the movement the encoder values are helpful.

3.1 Encoder signal

Encoders are a widely used method for measurement of velocity and relativ change of

position in mobile robotics. Other than the continuous working mostly electro-magnetic

speed indicators, encoders are discrete counters that measure angular rotation in �xed steps

47
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Figure 3.1: Quadrature optical encoder. The observed phase relationship between channel

A and B pulse trains are used to determine the direction of the rotation. A single slot in

the outer track generates a reference (index) pulse per revolution.

and count them. This can be achieved by magnetic or optical methods. Magnetic encoders

consist of a magnetic cogwheel on the moving axis in combination with a hall sensor. The

gaps between the teeth of the cogwheel produce a sinusoidal �uctuating magnetic �eld

that it measured by the hall sensor.[38] The more common method in mobile robotics are

optical encoders that work either by a re�ection or light-interruption principle. Therefore

a marking with a stripe pattern is attached either radial, on a disc �xed on the axis,

or along a region on the axis (only re�ection method). With a light barrier or LED-

re�ection sensor combination the bright and dark zones can be distinguished and produce

a sinusoidal modulation of the light intensity which is measured by a photo sensor. One

bright-dark-period is counted as one step. Additionally, by using two sensors shifted by

90◦ (of the pulse period) it is possible determine the rotational direction as showed in 3.1.

By multiplicating the angular di�erence by e.g. the wheel radius it can be directly used

to measure distances, assuming a constant wheel radius and no slip. For measuring the

rotational speed the covered angle has to be di�erentiated. Therefore in most cases one of

the following methods is used.

1. Counting the steps in a �xed time-interval. The number of steps counted, divided by

the interval period give a linear approximation for the rotational speed, which again

can be transformed into absolut speed using a geometric factor. This method is used
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in applications with small pulse intervals compared to the sampling time.

2. In applications with less speed, where the pulse width is much longer that the sam-

pling time, the velocity is updated after each pulse. The velocity than can be obtained

by the inverse of the pulse duration.

In case of sampling time and step interval getting closer, a high discretization error will

result. For method one the number of pulses per interval N will alternate between the two

surrounding integer values which gets more severe the less the number of pulses is.

For the second method sampling time and step interval getting closer means high velocities.

Here the measured interval TP between two pulses can vary between TP − TS and TP + TS

with TS being the sample time. As the velocity v is equal to 1/TP this also can cause

signi�cant errors.

The second method additionally is problematic in case of very low velocities (very long

pulse durations) because an update of the velocity value is only possible when a new pulse

is measured. Especially in the case of the velocity dropping to zero, no new pulse will occur

and a timeout has to be implemented that sets the velocity to zero when being reached.

3.1.1 System extensions

In this application LEGO rotational sensor are used as encoders in two di�erent ways.

Firstly they are used to measure the track speeds by the RCX �rmware what is necessary for

the inner control loop (control of the vehicles velocity). Therefore the previously described

method of measuring the time between two pulses is used.

Furthermore the encoder values are sent via Bluetooth to the outer controller running on

a network PC. Here the encoder value is used by an observer to estimate the system state,

what will be discussed in chapter 5. Therefore a su�ciently short sampling time has two

be achieved such that the sum of all transmission delays (checksum calculation, infrared

transmission, Bluetooth transmission and network transmission) stays smaller than the

controllers sampling time to guarantee new measurements.

In both cases the standard legOS �rmware has been modi�ed.
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Velocity measurement

The legOS �rmware already contains a module for velocity calculation which is not ac-

tivated in the standard con�guration. After activating it and recompiling the reason for

that became obvious as the velocity value is severely �uctuating due to systematic errors

(Fig. 3.2).

Figure 3.2: Velocity signal by original �rmware implementation. The systematic error

caused by the di�erent interval lengths leads to �uctuations in the velocity value up to

50%.

For PID control the signal is not usable in this way and had to be �ltered in some way.

Usage of common FIR and IIR �lters turned out to require too much computing time on

the RCX and to be too slow. Thus analysis of the systematic error was made to �nd a

computational less expensive way to enhance the signal quality.

In [8] the errors origin is partly described. The problem originates from the function

principle LEGO used for the rotational sensor. Normally encoders use one bright-dark

period to generate one pulse. The LEGO encoder only possesses four rotor blades and
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uses one period for generating 4 pulses, one when reaching the bright or dark level and one

each at intermediate levels. These voltage levels and the corresponding encoder values are

shown in �gure 3.4. The problem seemes to originate from di�erent pulse widths, as for

example the dark and bright zone cover di�erent angular areas (�g. 3.3).

By analyzing the pulse widths of a constant speed signal the following variations were

found for the four pulses.

1 2 3 4

14.78ms 8.7ms 10.3ms 8.75ms

34.7% 20.4% 24.3% 20.5%

Table 3.1: Interval ratios.

Here the �rst pulse corresponds to the dark zone. The pulse duration of dark and

bright zone almost exactly build the same ratio as the angular regions (5:4). Especially

the intermediate pulses are problematic as they appear to be much shorter.

Figure 3.3: Zoom on the encoders' ro-

tor: A clear di�erence between the an-

gular region of rotor blade and free

space exists. Source [8]

Figure 3.4: Voltage levels of the encoder raw value.

Four di�erent levels are returned per rotor blade

pass. Source [8]

Using the knowledge of these systematic errors it was tried to improve the signal quality

by applying a correction factor meanpulsewidth
pulsewidthi

to each interval. Although the �ltered signal

oscillated with less magnitude the quality still was not acceptable, due to high variations
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in the interval durations.

Thus a new approach using a kind of moving average �lter was tested. Therefore the

velocity value is calculated by

v =
4

tk − tk−4

(3.1)

with tk being the pulses' timestamps. Using this approach the desired signal quality was

reached. Drawback of this �lter is the slow response time that amounts to the time needed

for four pulses. But still it represents the fastest compromise for obtaining a good signal

quality.

The calculation of the velocity was included in the �rmware to guarantee smallest possible

discretization errors. It was added in the �le 'brickos/kernel/dsensor.c' which implements

the sensor evaluation. The evaluation is triggered by interrupt handlers when a new pulse

arrives. Thus the discretization accuracy corresponds to the accuracy of the system clock

(1 ms).

Wireless signal transmission

Further extension to the �rmware had to be done for speeding up the infrared/Bluetooth

transmission of the encoder values.

For ensuring that for every evaluation of the controller a new encoder value is present, a

minimum sample rate of 10 samples/s was assessed.

To estimate the sample time and as a �rst version of the later communication system a

small JAVA application was written which uses the serial port interface provided by the

pcrcxcomm package included in lejOS. Here the class josx.rcxcomm.Tower represents a

simple interface to the hardware functionality which is available to initialize a serial con-

nection via USB tower or one of the emulated serial ports. It also allows to read and write

bytes of data and some basic con�guration and error handling functions.
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Figure 3.5: Bluetooth communication scheme. The two encoder values are sent via Blue-

tooth to a PC running the java server class which relays them to the laboratory PCs.

Firstly a synchronous communications scheme was used in combination with the USB

tower. In this application two threads are running independently on the PC, one each

for reading incoming data and writing. On the RCX an application is running which is

sending the encoder values via the infrared port after receiving a new packet from the PC.

The PC's sender thread sends a packet when either a packet from the RCX was received

or a timeout after 250ms occurred.

Thus it's assured that only one device at a time is sending data.

First tests with this system showed fatal results as almost no packet was received within

the timeout interval. So as a next step it was tries to accelerate the transmission with the

new protocol LCP described in chapter 2.4.4 due to its smaller packet length.
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This measure already reduced the roundtrip time to approximately 250ms.

After searching the �rmware implementation for further possibilities to accelerate the trans-

mission process it became clear that unnecessarily high waiting intervals between the trans-

mission of two bytes were responsible for most of the delays. In the standard con�guration,

whenever a byte is received by the IR interface the transmitter has to wait 4 times the

time needed to send one byte before transmitting and 2 times after each byte transmitted.

By reducing this constants to 1 and 0.5 the roundtrip time could be reduced to 120-170ms.

As further decrease of this values lead to unstable transmission behaviour no further de-

crease was possible. The remaining transmission time consists of checksum coding and

decoding, internal processes regarding the protocol handling and the infrared communica-

tion. Furthermore other system processes on RCX and PC a�ect the transmission time

and lead to wide variations.

The obtained sample time still wasn't close to the objective of less than 100ms. Tests with

the Bluetooth communication even showed that here the roundtrip time still were bigger

than 150ms.

USB synch. USB asynch. BT synch. BT asynch.

120-170 ms 40-70 ms 150-190 ms 50-90 ms

Table 3.2: Final roundtrip times.

So a new communication concept was tested using asynchronous communication. Again

beginning with the USB tower an application was implemented where on each side a process

is running that is constantly sending the corresponding data with small waiting intervals

between. This is done to ensure enough computation time to other processes, which also

reduces the statistical spread of the sample times. Data is received whenever there is a

packet available. In the later control application data is only transmitted from PC to

RCX once per controller sample after calculation of the new input. So the tra�c is further

reduced.

As the infrared connection is half-duplex (only one side can send at a time) this communi-
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cation scheme only is possible because USB-tower and RCX internally handle it by collision

detection and ensuring that the channel is free before sending, which is called hardware

�ow control. So anyhow the channel can be used only oneway but its capacity is used much

better than with the synchronous mode.

However the Bluetooth device has no possibility to avoid collisions (the hardware real-

ization described in 2.4.2 only translates incoming and outgoing signal from Bluetooth to

infrared separate from each other, without regarding the other component's state).

According to this, tests for using the asynchronous communication mode with the Blue-

tooth device failed because of interfering signals from adaptor and RCX.

When using infrared transceivers, the problem of infrared echoes or cross transmissions

always occurs. This can be handled in two ways. The receiver can be deactivated while

the transmitter is sending, so no echoes will be read. If this is not possible due to missing

hardware compatibility (for instance on the RCX), the same number of bytes that was sent

has to be discarded (read echo). It has to be mentioned that this method only is possible

if there surely is read an echo because of a cross transmission, for example. The RCX

�rmware uses this principle.

Because of the missing hardware �ow control on the Bluetooth device the asynchronous

communication leads to a mixture of both signals that can't be separated, otherwise it is

the only possibility to reach the desired sample time.

The only way to allow this communication method in full-duplex is to separate one

transmitter-receiver combination and so introduce a second infrared channel. Considering

the two microprocessors responsible for the serial IR connection on RCX and Bluetooth

adaptor, full-duplex is supported such that both channels can be used simultaneously.

To separate the two channels a nontransparent and completely enclosed tube was con-

structed around the adaptor's ir-emitter and the RCX's ir-receiver as shown in �gure 3.6.

Furthermore the legOS �rmware had to be altered as it is not supposed to allow reading

and writing at the same time. Parts of the �rmware had to be removed or changed inducing

collision handling and prompting the transmitter to wait until incoming data is received.

Another problem occurred when setting the RCX to high intensity IR mode. Here few
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Figure 3.6: Tube constructed to separate the IR channels.

re�ections of the RCX emitters are registered by the RCX receiver despite usage of the

tube. Consequently when using the tube, the RCX has to be run at low infrared intensity

level.

Using the described buildup the sample time could be decreased to the aspired length.

Table 3.2 shows the resulting sample times using the tested communication setups and

concepts. In �gure 3.7 the corresponding sample time distributions can be found.

3.1.2 Communication scheme

Figure 3.5 shows the communication concept used for the encoder data. On the PC

equipped with a Bluetooth device the JAVA class UDPRCXServer is running and con-

tinously listening for data coming via UDP (Ethernet) or Bluetooth. So reference values

for track speeds coming from the controller over network are relayed to the vehicle whereas

the encoder values a relayed to the JAVA class UDPRCXClient(s) running in MATLAB.

This class provides the actual values to the controller running in MATLAB.

3.2 Position detection by webcam

The second system output is the vehicle's position which is needed for controller and

observer. As will be shown in 5 position and state estimation only based on encoder
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Figure 3.7: Distribution of sample times and delays for the encoder signal. The distribution

of sample times (top) shows the intervals between two incoming sensor values while the

distribution of delays (bottom) represents the actual delays at the moment of the controller

action. Both were measured with a PID running simultaneously. The sample times were

recorded for a synchronous and two asynchronous setups with a short pause after sending

a sensor value.
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signals rapidly generates signi�cant errors, depending on the encoder quality and errors

like slip and friction. So in most cases an additional measurement as for example the angle

to a reference beacon or position data are used to enhance the estimate.

Therefore in the underlying experiment the position data is used and obtained by a webcam

and subsequent image processing which will be discussed closer in the following section.

3.2.1 Image processing

Before looking at the concrete algorithms used to detect the vehicles position �rst a few

basics terms in image processing will be introduced.

Image processing basics

Digital image processing is the alternation of images in bitmapped graphics format in

order to enhance or transform them. Furthermore techniques to identify shades, colors

ans relationships are used to attempt to understand the image and extract important

information.

An image normally is represented by the image matrix S

S = (s(x, y)) =


s(0, 0) . . . s(0, n− 1)

...
. . .

...

s(m− 1, 0) . . . s(m− 1, n− 1)

 (3.2)

s(x,y) is the value of one quadratic image point and may be a single value or a vector, in

case of composed images of several color layers. The numerical value can be of any type,

but most common are unsigned integers of di�erent precision (color depth).

Image processing normally is done in two steps. Firstly the raw image is processed to

emphasize or reveal the desired image properties. Afterwards further passes for extracting

the relevant information and reducing the amount of information are performed.

Operators

Mathematical functions working on a pre-de�ned region of the image matrix are called

operators. They are used to alter the picture in some way and normally don't reduce the
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information amount. Operators can be distinguished by the number of points used by the

function into the following categories:

Local pixelwise operators

Local operators apply a function on each pixel value. Typical local operators are histogram

modi�cations, such as contrast enhancement, binarization or histogram equalization.

Global operators

In contrary to local operators, global operators use information of every image pixel to

generate the new value for each point. This kind of operation also is called transform and

normally is found in form of:

s′(x, y) =
1

MN

M−1∑
y=0

N−1∑
x=0

f(s(x, y)) (3.3)

Typical transforms are the 2-dimensional Fourier transform, the cosine transform and the

wavelet transform for converting the image in its frequency domain. Another important

transform is the Hough transform that can be used to �nd lines or other basic geometric

objects.

Regional operators

Regional operators only use a de�ned subset of pixels surrounding the position the function

is evaluated for. This subset is called neighbourhood and normally is a square or disc of

�x dimensions. Regional operators often have the following form:

s′(x̂, ŷ) =
1

ab

ŷ+a
2∑

y=ŷ−a
2

x̂+ b
2∑

x=x̂− b
2

f(s(x, y) (3.4)

A special issue concerning this kind of operators are the boundary regions which have to

be treated di�erent. When using a function in form of equation 3.4 x and y can be outside

the image boundaries. Here several techniques exist, as setting outer values �xed or zero,

or performing a modulo on the index.
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This kind of operators are often called �lters. Well-known �lters are high-,low- and band

passes which work comparable to their 1-dimensional analogons in signal processing. An-

other important �lter is the median �lter that is used for noise reduction without losing

sharpness. Further for detection of gradients di�erentiating �lters are used, which can be

orientation speci�c.

A non-linear class of �lters working on binary images are morphological operations. Here

the following four di�erent types can be distinguished:

Erosion Logical AND of s(x,y) and its neigh-

bours. Also called 'shrink'.

Dilatation Logical OR of s(x,y) and its neigh-

bours. Also called 'blow'.

Open Erosion + dilatation; eliminates dots,

closes white lines and smooths penin-

sulas

Close Dilatation + erosion; eliminates holes,

closes black lines and smooths bays

Table 3.3: Morphological operations.

Post processing passes

After preprocessing the image, further passes can be done to analyze the image and extract

the relevant information, mostly in form of statistical analysis or recognizing objects within

the image.
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Edge extraction

Detection of edges is an important method for object recognition and tracking as edges

separate objects from each other and the background.

Here edge means a steep gradient in gray scale, color , texture or other signi�cant properties.

Thus edges normally can't be extracted directly from a picture but need preprocessing in

form of di�erentiation �ltering. A typically sequence for edge extraction is

1. Filtering (di�erentiation)

2. Edge detection (thresholding)

3. Edge localization / following

4. Edge grouping

By following edges surrounding an object it is possible to determine its boundaries. Addi-

tionally description of the object boundaries can be done independent from its orientation

using direction coding, which is very helpful for tracking objects.

Edges also directly can be the objects of interest, as for example streets, electric wires in

integrated circuits or as indication for pattern orientation.

Segmentation

Dividing an image into di�erent regions as for example 'object' or 'background' is called

segmentation. This is done to �nd the contours of objects so they can be analyzed for their

properties (as size, shape, etc.) and cut from the background.

This can be done as follows:

Edge based

by searching closed edge sequences that surround an object

Area based

by binarizing the image with a �xed or adaptive threshold. Areas of connected 1's

build an object and neighbourhood relations de�ne which pixels are connected and
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if two very close areas of 1's belong to the same object or not. Typically are the

8-neighbourhood


X X X

X o X

X X X

 and the 4-neighbourhood


X

X o X

X


Motion based

is used for processing image sequences. By building a di�erence picture, objects can

be distinguished from the �x background by their movement.

Attribute extraction

Based on the preprocessed or segmented picture, the image can now be analyzed for con-

tour attributes (object related) or content attributes (object or image related).

Contour attributes Contour attributes can be properties belonging to the object-

contour (e.g. size, perimeter or bounding box), properties of the objects position (e.g.

center of gravity, orientation) or properties describing the objects form such as compact-

ness, central moments or the edge direction sequence as result of direction coding.

Content attributes Other than contour attributes, content attributes describe the

content of an image or object in form of stochastic data (e.g. histogram, histogram mo-

ments, correlations or spectra) or texture related values as edge directions and frequencies

or grain size distribution.

As previously mentioned these attributes can belong to single pixels, objects or a com-

plete image. By describing the attribute by a value an attribute map can be de�ned,

written as m(x,y) for pixels (also called attribute image), m(o) for objects or m/m(k) for

images (m(k) in case of image sequences).

Classi�cation

The previously discussed attribute extraction returns an amount {m} of values for the
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corresponding items (pixels, objects or images) for that an frequency distribution p(m)

can be calculated.

By joining multiple attributes m1, ...,mn to a vector attribute m, m de�nes a single point

in an n-dimensional attribute space, whereas {m} provides an n-dimensional frequency

distribution (�g. 3.8).

Building subspaces (e.g. ellipsoids) of this attribute space can be used to distinguish

di�erent classes of objects, as shown in �gure 3.9. Whenever two classes share all at-

tributes (here classes 3 and 4) additional attributes have to be found to separate them.

Figure 3.8: Example for a 1- and 2-

dimensional attribute distribution. The at-

tribute valuemi is evaluated for a large num-

ber of objects which delivers the shown dis-

tribution (left). Performed for a second at-

tribute can be visualized in topographic form

(right). (Source [39])

Figure 3.9: Classi�cation example. Using

multidimensional attribute distributions can

lead to easily separable classes which overlay

when only one attribute is regarded separate.

(Source [39])

Marker detection

After introducing the basic terms of digital image processing we now can turn on the meth-

ods used for detecting the LEGO vehicle's marker.

Sun Mircosystems o�ers a large variety of APIs (Application programming interfaces)

for JAVA. Among other things there also exists an 'advanced imaging library' for image

processing. But as this library doesn't contain any classes for segmentation, object detec-

tion and color �ltering, own algorithms had to be developed.

Since the marker area builds a very clear contrast to the surrounding areas due to its color,
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contour based algorithms were used in this case. For di�erentiating pixels belonging to

the marker from background pixels, the following two �lters were developed to generate an

attribute value from the RGB image.

Color distance �lter

When dealing with unicolored objects, such as the used marker, all points belonging

to this object will have a similar color, varying slightly because of di�erent shadings.

So the euclidian distance (in normalized RGB space) between the color of a point

and a reference color can propose a good property for distinguishing object points

from the background. This can be done as follows:

s′(x, y) =
√

(r(x, y)− rR(x, y))2 + (g(x, y)− gR(x, y))2 + (b(x, y)− bR(x, y))2 (3.5)

with r,g and b being the normalized color values calculated by:

c(x, y) =
C(x, y)

1
3
(R(x, y) +G(x, y) +B(x, y))

(3.6)

Normalization enhances the robustness towards changes in ambient light as it works

with the ratio between component brightness and mean brightness. This value di�ers

less than the absolute values.

When binarizing the image by applying a threshold, all points which posses a color

within a sphere around the reference color will be determined as object points. The

radius of the sphere is de�ned by the threshold.

Dominant color �lter

When using a marker colored in one of the three basic colors red, green or blue, pixels

belonging to the marker will have a much higher value in this component (here red)

than in the remaining ones. So a weighted di�erence in form of

s′(x, y) = R(x, y)− a1G(x, y)− a2B(x, y) (3.7)

is building a good property for identi�cation of the marker.
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Both values have to be scaled to the interval 0...255 for simplifying the binarization. The

color distance �lter for instance returns for each pixel a �oating point value between 0 and
√

18 which can be scaled to 0...255 linear or logarithmic.

The color distance �lter works very robust when adjusted right and can be easily adopted

to a new environment or ambient light conditions by rede�ning the reference color.

The dominant color �lter also works robust and shows low sensitivity to changing illu-

mination. Furthermore it is extremely fast and approximately 2-3 times faster than the

color distance �lter (here ∼30ms for a 240x320 pixel image, including object detection and

property calculation).

As the ambient conditions were constant over the whole period of the thesis it was decided

to use the dominant color �lter due to its better computational e�ciency and its good

results in early experiments.

After generating an attribute image with the �lter, the image is transformed into a bi-

nary image by thresholding. In case of the color distance �lter all pixels smaller than the

threshold are de�ned as true, for the other �lter all pixels with a bigger value belong to

the object.

For reducing the e�ects of image noise that may create single false positive (in background)

or false negative pixels (within the object) a sequence of 'closings' was used.

Object labelling and calculation of properties

After preprocessing and binarizing the image, the next step is to �nd the vehicle's marker

and calculate its contour attributes. As the application also should be able to detect multi-

ple objects all connected areas are analyzed and therefore have to be labelled. Furthermore

image noise and false positive pixels (mostly from the �oor) can produce small areas of

1's (so-called blobs = binary large objects, meaning connected areas of 1's) such that a

detection algorithm has to identify and label all blobs. Afterwards further �ltering can be

done, for instance regarding the object size.
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Connected component labelling

Connected component labelling works on binary images and di�erent measures of connec-

tivity neighbourhoods can be used (see 3.2.1). Here 8-connectivity is used. The connected

components labelling operator scans the image by moving along a row until it comes to a

point p for which s(x,y)=1. There it examines the four neighbours of p which have already

been encountered in the scan (i.e. the neighbours (i) to the left of p, (ii) above it, and (iii

and iv) the two upper diagonal terms). Based on this information, the labelling of p is

done as follows:

1. If all four neighbours are 0, assign a new label to p, else

2. if only one neighbour has V=1, assign its label to p, else

3. if one or more of the neighbours have V=1, assign one of the labels to p and make a

note of the equivalences.

After completing the scan, the equivalent label pairs are sorted into equivalence classes

and a unique label is assigned to each class. Finally a second scan is performed through

the image, where each label is replaced by the label assigned to its equivalence class. This

label corresponds to the objects index.[9]

Contour attributes

Based on the labelled binary image as a next step for each object the following contour

attributes are calculated and saved in a data structure.

Center of gravity

The center of gravity can be obtained by dividing the image moments of �rst order by the

number of object pixels.

xc =
1

N
Mx =

1

N

N∑
i=1

xi, yc =
1

N
My =

1

N

N∑
i=1

yi (3.8)

Bounding box

The bounding box represents the smallest rectangle (with orientation along image axes)
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including the complete object and is described by the upper left and lower right corner.

bb = ((min(xi),min(yi)), (max(xi),max(yi))) (3.9)

Orientation by image moments

By calculating the image moments of second order

Mxx =
1

N

N∑
i=1

x2
i , Myy =

1

N

N∑
i=1

y2
i , Mxy =

1

N

N∑
i=1

xiyi (3.10)

and using the following help variables

a =
Mxx

N
− x2

c , b =
Mxy

N
− xcyc c =

Myy

N
− y2

c (3.11)

we obtain

θ =
arctan(b, (a− c))

2
, L1/2 =

√
6(a+ c±

√
b2 + (a− c)2), (3.12)

where θ is the orientation (0◦ - 180◦) and L/2 are the dimensions of an equivalent rectangle

with the same moments as the object.

As the orientation only is within the range of 0 and π, the absolute orientation of the vehicle

can't be determined. To provide this information, the form of the marker was chosen to be

an isosceles rectangle with signi�cantly larger height than base length. Using this special

form, the pixel with the maximum distance to the center of gravity is determined within

the pixels belonging to the marker, additionally to the previously discussed attributes.

This point is also saved as attribute since the vector between the marker center and this

point directly delivers the vehicles orientation.

3.2.2 Camera calibration

The algorithms described in the previous section only delivers the gravity center of the

vehicle in image coordinates, which is a raw value that has to be processed further. Re-

garding the parallel alignment of the two planes, image plane (CCD-chip) and �oor, we

can characterize the transformation as a orthogonal projection. Thus the resulting a�ne
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transformation is composed of scaling and translation, and can be described by a 3x3 ma-

trix (considering only x and y coordinates).[21] This transformation matrix can be found

by calibration of the camera. But before discussing the calibration algorithms, the camera

buildup shall be treated �rst, as �xation and adjustment of the camera build an important

part to reduce systematic errors in position detection.

Installation and alignment

For simpli�cation and higher precision it was decided to �xate the camera in a position

perpendicular to the ground. For �rst tests and development it was situated at an altitude

of 2 m, for the �nal experiments directly under the ceiling at 2.60 m to provide a larger

operation range for the vehicle. The area observed in this position is 194.0 x 145.5 cm.

Figure 3.10: Fastening of the webcam. It

was attached on a wooden board and hung

up directly below the ceiling.

Figure 3.11: Camera adjustment: The cam-

era position has to be altered until image cen-

ter and perpendicular point match.

The complete setup and the �xation are shown in 3.10 and 3.11. The spherical shape of

the Logitec webcam complicates a precise adjustment. Even in the constructed holding
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attached on a levelled board it has two degrees of freedom that can generate perspective

errors. To guarantee the best possible adjustment, a perpendicular was �xated at the po-

sition of the lens. The point where the perpendicular touches the ground is the vertical

projection of the lens center. If the camera is adjusted right, it has to be exactly in the

center of the image, assuming a symmetric alignment of the CCD chip to the lens center.

The perpendicular's end point on the ground was marked with a cross so the camera could

be turned until the marked point was exactly in the middle of the image.

Calibration theory

After guaranteeing smallest possible perspective errors by correct adjustment it now is

possible to calculate the transformation matrix.

Therefore normally some de�ned markings with known coordinates (x,y) are placed on the

ground. By obtaining the corresponding coordinates in the image (pixel index) the matrix

can be calculated. As one point gives 3 equations (one for each coordinate), but the matrix

delivers 9 unknowns at least 3 points are needed. Considering the special structure of an

a�ne transformation matrix ([33])

[
x y 1

]
=

[
w z 1

]
T =

[
w z 1

] 
t1 t2 0

−t2 t1 0

t3 t4 1

 (3.13)

, or in transposed form

x = Tz T =


t1 t2 t3

−t2 t1 t4

0 0 1

 (3.14)

at least 4 equations would be su�cient for the four unknowns.

To obtain a higher robustness towards e�ects of measurement and systematic errors, the

common method is to use a highly over-determined set of equations and search a set of

parameters that minimize the error in a certain way. A very well-known method which was

used here, is the least-square-approximation. It returns the set of parameters that have
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the smallest error in quadratic sense, meaning

N∑
i=1

(x− xi)
2 = min (3.15)

The least-square-approximation of T can be obtained by
xr,1 . . . xr,n

yr,1 . . . yr,n

1 . . . 1

 = T


xp,1 . . . xp,1

yp,1 . . . yp,1

1 . . . 1

 ⇒ y = Tx (3.16)

T = (xTx)−1xTy (3.17)

where (xr,i, yr,i) are the real-world coordinates and (xp,i, yp,i) the coordinates within the

picture.

The third component of the coordinate vector is set to 1 for simplicity reasons. This value

may be chosen freely but is suggested not to be zero for avoiding numerical problems dur-

ing the matrix inversion.

Transformation matrices T obtained in calibration tests showed exactly the structure de-

scribed in eq. 3.13. This shows that methodic errors by neglecting intrinsic camera para-

meters and numerical errors are su�ciently small.

Calculation of camera altitude

Another important parameter is the camera altitude which is needed for correcting the

perspective errors caused by the vertical marker position.

Therefore the angle of beam spread has to be determined with the buildup shown in �gure

3.14 where a1 and a2 are either vertical or horizontal vision range. For two di�erent camera

altitudes the �eld of vision covered by the camera was measured (tab. 3.4) to determine

the outer boundary beams.

Using the following relation de�ned by the theorem on intersecting lines for the scheme in

�gure 3.14
0.5a1

h1 + x
=

0.5a2

h2 + x
(3.18)



3.2 Position Detection 71

hor. range vert. range

h=11.5cm 10.2cm 7.7cm

h=6.2cm 6.575cm 4.95cm

Table 3.4: Measurements of vision �eld at di�erent camera altitudes h.

the distance x between camera container and virtual intersection of beams can be deter-

mined to

x =
2h1

a1
− 2h2

a2

2
a2
− 2

a1

=
a2h1 − a1h2

a1− a2
(3.19)

and for the angle of beam spread follows:

β = 2 arctan(
0.5a1

h1 + x
) (3.20)

For the Logitech webcam a mean value of β = 37.7◦ and x = 3.4cm was calculated.

Figure 3.12: Correction of position measure-

ment due to perspective error. The trans-

formation resulting from camera calibration

is valid only for ground level. Due to the

marker altitude a perspective correction has

to be performed.

Figure 3.13: Example for a calibration

pattern used in this work.

Position correction
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As the camera calibration is done for points on the �oor but the marker is posed on a

di�erent level (here 14cm above the ground), using the marker position directly produces

an error in position estimate due to the perspective view. This error is zero if the vehicle

is located directly in the center of the image, otherwise it is proportional to the distance

from the center.

A correction can be done using the theorem on intersecting lines as shown in �gure 3.12.

By using the dependency

hcamera

hcamera − hm

=
xcalc

xreal

=
xreal + e

xreal

=
1

k
(3.21)

for each dimension the projected image position can be obtained byx̂p

x̂p

 =

(xp − 160)k

(yp − 120)k

 +

160

120

 (3.22)

This correction could be in included directly into the transformation matrix T by also

using the z coordinate and thus expanding it to a 3-dimensional transform. But this would

require more complex calibration patterns and is less accurate due to numerical problems

during matrix inversion. So for applications where the camera is situated parallel to the

�oor the presented method builds a more stable and easier solution.

Calibration GUI

For simpli�cation of the camera calibration process the MATLAB GUI shown in �gure

3.15 was developed. It can use any 'black circles on bright background'-pattern (e.g. �g.

3.13) to calibrate the camera. It determines the centers of gravity of the black objects and

using them as reference points. Therefore the real-world coordinates have to be provided

in form of a structure shown in 3.16 which includes number, order size and coordinates of

the pattern objects.

For calibrating the camera the following steps have to be taken:

1) Load pattern-data struct ('Load Pattern Data' button)



3.2 Position Detection 73

Figure 3.14: Determination of camera beam spread and altitude. By solving the equa-

tions obtained by the theorem on intersecting lines the distance x from lens to the virtual

intersection point can be determined.

2) Grab image

The JAVA class UDPWebcamClient initializes a TCP/IP connection to UDPWeb-

camServer class running on the PC with webcam. It grabs an actual picture and

transfers it via network.

The image is saved as global variable, converted into a gray scale image and binarized

with the current threshold value.

3) Adjust threshold for best binarization result

By moving the slider the threshold value is changed and the result is visualized

immediately (when the binary visualization is selected). The automatic threshold is

calculated by the IP toolbox function graythresh using Otsu's method.

4) Mark pattern objects in right order

By pressing the mouse over the corresponding object a red cross will be set. Order

and number of the objects has to be the same as in the data structure.
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Figure 3.15: Front end of the Calibration GUI. It provides a simple and fast possibility to

calibrate the webcam. Di�erent patterns can be used.

5) Search pattern objects

By pressing the equally name button, a blob detection algorithm searches for the

pattern discs. If activated, the bounding boxes can be displayed to see if the threshold

has to be adjusted.

6) Mark a reference point if desired

Press the mouse one more time over the desired reference position. A green cross

will appear.

7) Start calibration ('Calibrate' button)

After performing step 7 transformation matrix T and camera altitude will be calculated

and stored as global variable. Furthermore the real-world coordinates of the reference point

will be displayed.
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Figure 3.16: Data structure of calibration pattern data. It includes the number of pattern

circles and for each circle its center position and radius in de�ned order.

3.2.3 Communication scheme

Figure 3.17: Webcam communication scheme. The images are continuously processed and

the reduced data (marker's center of gravity and marker point with maximum distance to

center) is sent via network to the PC(s) running the controller.

Figure 3.17 shows the communication concept used for the webcam data. On the PC

equipped with webcam the JAVA class UDPWebcamServer is running and continuously

processing image data. When a marker is found for each processed picture a de�ned dataset
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is send via UDP (Ethernet) to the JAVA class UPDWebcamClient running in MATLAB.

This class provides the actual values to the MATLAB controller. The dataset includes the

marker's center of gravity and the coordinates of the marker point with maximum distance

from the center. Due to the marker's form this point can be used to calculate the vehicle's

orientation.

Image processing is followed by a short pause to save computing and network resources.

This also has a positiv e�ect on the distribution of processing times. The longer the

sleeping interval the smaller gets the distribution whereas the risk that long samples cross

the timeout barrier rises. Processing time and resulting delay distribution are shown in

�gure 3.18.

Figure 3.18: Distribution of evaluation times and delays for the encoder signal. The

distribution of sample times (top) shows the intervals needed for the image processing

routine while the distribution of delays (bottom) represents the actual delays at the moment

of the controller action. Sample times were measured with two di�erent pause durations.
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3.3 Delay estimation and network synchronization

The measurements discussed in the previous sections only can be obtained with variable

delays which are signi�cant compared to the controller sample time.

They are induced by transmissions over ethernet and/or infrared/Bluetooth networks and

computational delays. Furthermore the broad distribution of sample times showed in 3.7

and 3.18 are caused by using non-realtime systems on both sides. Especially the RCX

�rmware only provides a pseudo-multi-threading system where a process gets calculation

time depending on its priority. If a high priority process has to do time consuming calcula-

tions without pauses between, lower priority threads won't run. For example, if the process

of the PID controller gets the focus it will complete all calculations (about 16-20ms) before

passing the focus to the thread sending the sensor data, who's priority is lower. In addition

background processes as sensor evaluation or incoming transmissions have in�uence on the

processing time.

However the main reason for the broad distribution are the asynchronous processes which

lead to shifting delays even in theoretic case of constant sample times.

For assuring synchronous processes with constant sample times and delays, the sampling

time would have to be chosen extremely large which means a high loss of performance.

In this application the loss of performance would have been to high, so it was decided to

use asynchronous processes. Yet a better knowledge of the delays can help enhancing the

used observer (see chapter 5) and reduce their negative e�ects.

3.3.1 Clock synchronization

To determine the delays between measurement and controller evaluation the easiest way is

to attach a timestamp to each measurement. The di�erence between this timestamp and

the current time of the controller action is equal to the overall delay and includes all kind

of transmission and computational delays.

Using this method on the same PC can be done straight forward. But in case of measure-

ment and controller on di�erent PC's within a computer network requires additional e�ort
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as in general the system time on both PC's is di�erent which leads to the problem of clock

synchronization.

Since computer networks evolved very quickly in the last decades and nowadays connect

billions of computers in the whole world, synchronizing the clocks of two or more comput-

ers became necessary. For actual �nancial applications and distributed databases running

parallel on several PC's it is essential to reconstruct the temporal order of accomplished

actions or perform tasks simultaneously.

In the 1980s Dave Mills of the University of Delaware therefore developed a protocol called

NTP (Network Time Protocol) to synchronize the clocks of two connected PC's. Until to-

day it is a common standard with high precision when dealing with variable transmission

delays.[22]

3.3.2 Synchronization algorithm

NTP's basic functional principle to calculate transmission time and o�set between the two

system clocks was also used in this application, implemented in the JAVA class Time-

SynchrThread. In �xed intervals and alternating order the two computers exchange an

array containing three timestamps, timestamp of the previous sender's last outgoing, and

timestamp of the current senders last incoming and outgoing. The receiving computer

additionally remembers the arrival time of the current incoming packet. The scheme in

in �gure 3.19 shows this communication sequence and the 4 timestamps available for the

computer that got the last transmission.

The timestamps on one line (representing one PC or it's time axis) are represented in the

corresponding system time which is in general di�erent from the second one.

Using these four timestamps and introducing the helper variables

a = tk−2 − tk−3 (3.23)

b = tk−1 − tk (3.24)
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Figure 3.19: NTP scheme. Each horizontal line represents a computer clock running in its

own system time. The four timestamps are needed to calculate o�set θ and roundtrip time

δ. (Source [35])

the o�set θ and transmission time δ can be determined by

θ =
a+ b

2
(3.25)

δ = a− b (3.26)

The advantage of this method is that each PC can calculate the current o�set and trans-

mission time for itself and there is no need for a client-server like system architecture. But

there also exists a major drawback as the method assumes the transmission delays to be

equal in both directions, which may not be the case in some applications, for instance when

using a DSL connection.

However in the used application the network tra�c was low and almost symmetric such

that the assumption holds.

3.3.3 Overall communication scheme

The overall communication scheme for the laboratory setup is shown in �gure 3.20. It

combines the schemes showed in �gures 3.5 and 3.17, supplemented by the clock synchro-

nization. By using this concept the costs can be lowered considerably as only one webcam

and one BT adaptor are needed. Compared to the Bluetooth connection the ethernet in-

duced delays are small. In a 100MBit network with moderate tra�c the roundtrip times

lay between 1 and 5ms. Additionally clock synchronization provides the possibility to work

with timestamps and estimate network delays.
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Figure 3.20: Complete laboratory communication setup. Two PCs are resposilbe for relay-

ing measurements and the vehicle's reference track speeds, one each for the webcam and

the Bluetooth adaptor. For better delays estimation a timestamp is attached to each data

packet which is sent over the ethernet. Therefore additionally a small clock synchronization

system is running in background (class TimeSynchrThread).
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Implementation of the RCX velocity

controller

Using the kinetic model to control a vehicle is a very common method.[24] Thus the control

problem is separated in two levels, a kinematic and a dynamic part. This corresponds to

a cascade control, where the kinematic level represents the outer loop and the dynamic

part the inner loop. Often for the kinematic controller a more complex controller type can

be found whereas the much faster controller of the dynamics is a basic PI or PID con-

troller. The same principle also is used in this application, with the di�erence that inner

and outer controller are connected via network and Bluetooth. Directly on the RCX two

PID controllers are used to control the track speeds using the velocity signal provided by

the �rmware (see chapter 3.1.1).

Due to the little computational power of the RCX the controller only could be realized

with integer values what already takes 16-20ms for evaluation. A further challenge is given

by the bad quality of the velocity signal provided by the LEGO rotational sensors.

Before discussing the details of controller design and parameterization, the dynamic para-

meters and characteristics of the system (the vehicle) will be analyzed.

81
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4.1 Parameter identi�cation and controller design

4.1.1 Stationary behaviour

Firstly the static behaviour of the vehicle shall be analyzed according to [11]. Therefore a

speed/input characteristic has been recorded. For 11 di�erent value of u (motor input) the

resulting mean speed was measured in a test drive. As the motors are bidirectional with

symmetric behaviour, the characteristic only was measure for positive values and mirrored

in the negative half plane. The resulting curve is presented in �gure 4.1. It shows a clear

saturation behaviour for high inputs and a wide dead zone due to static friction.

Figure 4.1: Static speed characteristic.

4.1.2 System dynamics

After analyzing the static input/output behaviour now the system dynamics can be re-

garded closer. A typical method to analyze local system dynamics is to measure the

system's step response. The form of the step response often gives important insight in

system structure and dynamic order and allows to estimate dynamic parameters. For in-

stance if an overshoot occurs, the system order has to be two or higher.

Figure 4.2 shows the evaluated step response of the vehicle velocity. Neglecting the os-

cillations caused by the periodic friction the response shows a typical PT1Tt form (�g.
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4.6). However a major part of the time delay originates from the sensor and decreases for

ascending velocity. The sensor dynamics are also part of the transfer function and so also

have to be attended. In this case we can reduce the time delay slightly to the bene�t of

a slower system dynamic as the normal working point will be at velocities greater zero,

where the delay is smaller.

Assuming a PT1Tt-structure, the following parameters

kp =
ys

us

, T = t2 − t1, Tt = t2 − T (4.1)

can be extracted from �gure 4.2

Figure 4.2: PT1Tt approximation for the LEGO vehicle.

4.1.3 Motor and friction characteristic

To identify the non-linear part leading to the characteristic in 4.1.1 further measurements

had to be done. As the sum of forces must be zero for constant velocity, in such a state

friction force (of the complete system) and motor force are equal. Friction forces are dif-

�cult to measure in contrary to the motor force, which can be obtained by a relatively

simple buildup (�g. 4.5). The resulting characteristic (�g. 4.3) indicates a linear de-

pendency between the motor input and the force provided by the pulse width modulated

motor. Using a linear least-square approximation of the motor force for every point of the
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Figure 4.3: Torque characteristic of the mo-

tor as function of motor input.

Figure 4.4: Friction characteristic as function

of v.

Figure 4.5: Measurement of the motor force characteristic. The motor is �xated on a table

and a big cogwheel is attached to its axis. A light string pinned at a de�ned distance from

the axis holds a weight lying on a balance. The string has to be adjusted such that the

cogwheel position matches the position in the zoomed picture. Thus the lever arm length

is de�ned. For measuring the characteristic the motor input value is increased in steps

and the remaining weight is measured. The di�erence between measured weight and real

weight corresponds to the motor force.
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measured static velocity pro�le 4.1 the friction force can be calculated and related

with the corresponding velocity. Thus the velocity/friction force characteristic showed

in �gure 4.4 can be determined. Based on the previously identi�ed parameters now the

mathematical models and controller design can be discussed closer.

4.2 PID design using Ziegler-Nichols method

Many systems having a deadbeat transfer function can be approximated by the following

PT1Tt-model:

G(s) ≈ Ĝ(s) =
kp

Ts+ 1
e−sTt (4.2)

The three model parameters kp,T and Tt can be obtained by the step response as shown

in �gure 4.6 which shows the same characteristics as the step response of the LEGO vehicle.

Figure 4.6: PT1Tt approximation used for the Ziegler-Nichols method.

k T Tt

0.37 40 ms 45 ms

In case of relatively low performance demands on the control system, parameters for P, PI

or PID controllers can be calculated by empirical rules, using the three previously men-

tioned system parameters.
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Therefore the best known method was developed by Ziegler and Nichols. The calculation

rules for the controller parameters are summarized in table 4.1. They were determined em-

pirical such that the closed control loop will converge fast with a moderate overshoot.[34]

Furthermore Ziegler and Nichols developed a second method by determining the critical

proportional gain and period at the point, the system begins periodic oscillations. As this

method is not applicable to the LEGO system it won't be discussed further.

To apply the Ziegler-Nichols methods the system must exist (or at least a good simulation

model) and be available for the step response experiments.

Due to the non-linear motor characteristic presented in �gure 4.1 parameter estimation

turns out to be di�cult as it will deliver di�erent values for step responses of di�erent

magnitude (step size). The slowest response should result from a step to the maximum in-

put value (u=255) which was slightly reduced (u=200) because of the friction oscillations.

The resulting step response is shown in 4.2.

Therefore the parameters already were determined in 4.1 and the following controller pa-

rameters can be obtained:

kp = 0.37, Ti = 0.09s, Td = 0.022s

For discrete control systems the controller gains ki and kd depend on the sampling time Ts

and can be calculated as follows.

ki = ks
Ts

Ti

(4.3)

kd = ks
Td

Ts

(4.4)

4.3 Parameter tuning by simulation

Results with the parameters appraised by the Ziegler-Nichols method were very promising

but the velocity still showed signi�cant oscillations for low speeds and had to be improved.
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C. type kp Ti Td

P kp = 1
ks

T
Tt

PI kp = 0.9
ks

T
Tt

Ti = 3.33Tt

PID kp = 1.2
ks

T
Tt

Ti = 2Tt Td = 0.5Tt

Table 4.1: Adjustment rules for controller parameters by Ziegler and Nichols. (Source [34])

Here obviously the errors caused by the non-linear friction characteristic, periodic friction

by the gear and especially the bad quality of the velocity sensor are the reason for the

system to be outside the validity area of this rule.

So the parameters had to be adjusted empirical and by hand, using the Ziegler-Nichols

proposal as starting point.

Testing parameter sets in experiments is very time consuming. First the RCX has to be

programmed, then the run is performed and at last the logged data has to be transmitted

via the slow IR connection using the USB tower or Bluetooth adaptor. So the idea came

up to use a simulation to �nd better parameters what works much faster and thus allows

a larger range to be tested. So only promising parameter sets have to be testes on the real

system. In the following section model and experimental results of this approach will be

presented.

4.3.1 Model

Due to the relatively long sample time, the controller was tested with (30-70ms), and a

�rst attempt to use a discrete model, it became obvious that the resulting discretization

was too unprecise for sensor and drive model and often caused numeric instabilities. Thus

it was decided to use a hybrid model, discrete for the PID controller and continuous for

the remaining parts. This modelling approach turned out to be much more stable and

re�ected the measured e�ects.
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Vehicle submodel

The most di�cult modelling part including most of the model error is given by the drives.

Here for simpli�cation, both motors and tracks are reduced to one resulting force in the

vehicles direction such that no steering is possible. This generalization neglects cross e�ects

but should be adequate for identi�cation of controller parameters.

The vehicle's movement is modelled using Newton's laws of motion. Acceleration is deter-

mined by the resulting force on the vehicle and its mass. By integrating the acceleration

the velocity is obtained.

The resulting force represents the di�erence between force emanating from the motors and

the counteracting friction force.

Identi�cation of these forces was treated in 4.1.3. For integration in the model, motor force

was approximated by a linear function whereas the friction characteristic from 4.1.3 was

used as a lookup table with linear interpolation between the points of the characteristic.

Outside the interval the characteristic is de�ned on, no extrapolation is performed.

Furthermore a simple error model is included trying to describe the observer oscillation

of the vehicles speed by periodic friction. The friction appears to result from the gear,

so its period is proportional to the velocity v. Figure 4.7 shows a velocity/frequency dia-

gram for the measured points, including a linear least-square approximation. The resulting

dependency is

f(v) = 0.0632v [
Hz

pulses/s
pulses/s] (4.5)

This corresponds to one error period every 16 pulses (one motor rotation), what lets con-

clude that this error is caused by the inner motor gear.

By using the magnitude of the velocity oscillations, the oscillation of the friction force

can be determined form the friction characteristic for the analyzed points. Although the

oscillations get worse for low speed the magnitude of the friction �uctuation seems to get

smaller, as shown in �gure 4.8 in a quadratic sense. Thus a quadratic least-square approx-

imation was used to describe the velocity dependence of this magnitude.
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Figure 4.7: Linear approximation for error

frequency.

Figure 4.8: Quadratic approximation for er-

ror magnitude.

The value for the friction force returned by the lookup table summed with the periodic

superposition builds the overall friction force. The complete model structure can be seen

in �gure 4.9. The s-function �nally sums up all forced and returns the resulting force to

the vehicle. Moreover it treats the special case of static friction in case of v = 0 such that

the resulting force f can be written as:

fres =

 0

fmotor − ffric

v = 0 ∧
∑
f < fstatic

v 6= 0 ∨
∑
f > fstatic

(4.6)

Finally the speed obtained by the motion equations has to be converted to the desired unit

of pulses/s.

Sensor submodel

The encoder used to determine the rotational velocities only updates this value when a new

pulse is measured. This highly non-linear e�ect gets more severe the smaller the velocity

is and is assumed to be the main reason for the bad controller performance. Therefore it

has to be modelled. Moreover the systematic error described in chapter 3.1.1 deteriorates

this problem and has to be included in the model too.

Both can be done by imitating the function principle of the velocity calculation on the RCX,
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Figure 4.9: Simulink model for the vehicle speed.

meaning to use the same pulses as the �rmware does. As can be seen in the Simulink plan

(�g. 4.10), therefore a periodic signal with input proportional frequency is utilized which

triggers pulses at �x points within the period. This signal can be generated by combining

an integrator who's output is connected with a sinus function. If the integrator input in-

creases the frequency of the sinus will rise proportional as time 'runs faster'. Triggering a

pulse at de�ned angles in the sinus will create the same behaviour as the rotational sensor,

even the unequal ratio of the interval sizes listed in table 3.1.

The pulses are analyzed by a s-function imitating the �rmware. It is used to memorize

the timestamps of the last pulses and calculate the velocity (equ. 3.1) when a new pulse

occurs. Also the timeout is incorporated here.

The complete Simulink plan can be seen in �gure 4.10. It shows the integrator connected

to the sinus function by a gain block to adjust the frequency. The sinus output is con-

nected with four hit crossing detectors, each corresponding to one of the intervals' pulses.

Evaluation is done by the s-function. The feedback loop only is used by the s-function to

determine if the next integrator step is entered as it may be triggered several times within

one interval, depending on the used integrator.

The s-function also has to mind the case of a pulse lasting two intervals because hit crossing
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detection may keep the value true for two consecutive samples if the input takes exactly

the value of the threshold.

It has to be mentioned that the described model is only valid for positiv velocities. How-

ever for the desired objective to �nd better parameters by simulation, negative velocities

are not required and would make the model unnecessary complex.

Figure 4.10: Simulink model for velocity measurement.

Full model

Based on the previously discussed submodels, the complete simulation model combines

them and the control loop is closed by a discrete PID controller as can be seen in �gure 4.12.

The vehicles output (its velocity) is connected to the sensor who generates the measured

velocity. The PID controller is inserted surrounded by a rate transition to imitate the time

discrete implementation with the sample time used for the controller on the RCX.

Normally a discrete PID controller can be written as follows:

u(tk) = kpe(tk) +
kpTs

Ti

k∑
i=0

e(ti) +
kpTi

Td

(e(tk)− e(tk−1)) + u0 (4.7)

By using the equation for the previous controller output

u(tk−1) = kpe(tk−1) +
kpTs

Ti

k−1∑
i=0

e(ti) +
kpTi

Td

[e(tk−1)− e(tk−2)] + u0 (4.8)
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Figure 4.11: Simulink plan for the complete system.

and building the di�erence 4.7-4.8, the following di�erential form (also called velocity form

[1]) can be obtained:

u(tk) = u(tk−1) + kp[e(tk)− e(tk−1)] +
kpTs

Ti

e(tk) +
kpTi

Td

(e(tk)− 2e(tk−1) + e(tk−2)) (4.9)

Both structures are equivalent. As shown in the Simulink plan, the velocity form was used

for the controller.

4.3.2 Results

The model showed in �gure 4.12 was tested with several controller parameter sets to

�nd alternative sets that can handle the bad signal quality. It is shown that for the

parameters proposed by the Ziegler-Nichols method the controller performs relatively well-

tempered but much too slow. During more experiments it became obvious that a faster

reaction only can be reached by higher oscillations for low speeds. Figure 4.12 shows two

alternative parameter sets with much higher integrator and derivative gains which perform

satisfactory. The oscillations observed in this simulations turned out to be much smaller

in the real system and must be a result of the quadratic error magnitude approximation.
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Figure 4.12: Simulation results for di�erent parameter sets. For the parameters proposed

by the Ziegler-Nichols-method the system is converging very slow.
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4.4 Controller implementation and results

Controller timing

Achieving a correct sampling time on the RCX turned out to be problematic when using

the multi-process structure (one thread for the controller, a second for sending sensor

data). Within the controller thread msleep() became unprecise over long intervals and

often returned to late (supposable due to other processes in charge). An empty loop

running until the desired system time is reached needs to much computation time and

slows down or completely interrupts other processes. So it was tested to use a loop only

performing a 1ms sleep which lead to much better results but often awakes 1-2ms to late.

Finally a compromise was made for exact timing: Waiting is performed in 2 steps, one

loop performing a 4ms sleep until tdesired− t ≤ 4ms and afterwards an empty loop. In this

way exact timing was achieved.

Punishment term

Analyzing the velocity pro�les achieved with the PID controller, it stroke that especially in

case of low velocity the downwards deviations are more severe than the upwards deviations.

This can be explained by the friction which is in an intermediate region between static and

dynamic friction for low velocities. Here the reaction of the controller is too slow. Thus an

additional punishment term p was introduced. If the error gets above a certain threshold

(here 8 pulses/s, only if too slow) the punishment term is added to the motor input.

Because of the used di�erential form of the PID it is important not to add p to ut (see eq.

4.9) since it is added to the integral part then. The �nal form of the controller can be seen

in �gure 4.13.

Result on the real system

Supported by the controller parameters obtained in simulation and with the Ziegler-Nichols

method the controller was implemented on the RCX. Some results for two di�erent sam-

pling times TS can be seen in �gure 4.13. Sample times smaller than 50ms turned out to

be critical since in case of low speed the controller may run several times until a veloc-

ity measurement update is available. Interestingly the high derivative gain (compared to
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Figure 4.13: Experimental results on the LEGO vehicle.

Ziegler-Nichols) is not destabilizing the system much here and dampens the oscillations

caused by the integral part of the control input. This gain has to be chosen high for

achieving fast convergence. Here the proposed gain by Ziegler-Nichols turned out to be

too small.

In the upper plot the mean value of the oscillating velocity seems smaller than the reference

value. This is caused by the non-linear behaviour of the motor characteristic in this region.

Therefore the previously discussed punishment term was used in the experiment shown in

the lower plot. Here the deviation of the mean value appears less albeit it is not totally

compensated.

The presented results show that the quality of the velocity control is not very high. But

due to the quality of the sensor signal and the system friction no further enhancement

could be obtained. Therefore the outer control loop has to compensate these errors.



96 4 RCX velocity controller



Chapter 5

Vehicle model and observer design

The previous chapters discussed experiment buildup and the inner control loop. Further-

more in chapter 3 the sensor readings provided for the controller were treated. These

readings include a major part of the system state (position (x,y)) and the encoder values

as independent states. As we will see in chapter 7 this readings are not su�cient and

further states are needed by the controllers. Especially the vehicles orientation (heading),

velocity and angular velocity are important here. Since these values can't be measured

directly, an observer was designed to estimate them.

Several di�erent approaches of observer design for non-linear system can be found in lit-

erature (e.g. [29]). Regarding the noise of the sensors and the relatively simple system

structure, the best choice appear to be an Extended Kalman Filter (EKF) as described in

[29] and [20]. Due to its stochastic part it works as observer and �lter at the same time.

Design, parameterization and validation of this observer will be treated in the following

sections, after introduction of two models used for validation.

5.1 Evaluation models

For validation of the EKF two models with di�erent complexity were used. Furthermore the

di�erent measurement and transmission delays were incorporated to evaluate the observer

performance under conditions that are very close to real.

97
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In chapter 8.1 the following models also will be used for simulations of the closed loop

system.

5.1.1 Ideal model

The more simple model only consists of the kinematic model (as in [11]), complemented

by two additional integrators representing the encoders.

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=



cos(x3)
vR+vL

2

sin(x3)
vR+vL

2

vR−vL

2r

vR

vL


(5.1)

y =

y1

y2

 =

x1

x2

 u =

vR

vL

 (5.2)

This model represents the ideal system without any errors. Velocity changes immediately

when the input changes (no dynamics) and slip e�ects are neglected. These normally

causes a gap between the state of the encoders and the really covered distance which is

less.
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Figure 5.1: Ideal model for a tracked vehicle.

5.1.2 Extended model including errors

To test the EKFs under more realistic conditions a second model has been developed,

containing some of the identi�ed errors as slip, process noise and the periodic velocity

oscillations described in 4.3.1. It has the same basic structure as the previous model but

additionally includes two linear PT1 subsystems for the tracks. For them also periodic

speed oscillations are modelled similar to 4.3.1 with a velocity-dependent frequency and

a quadratic dependency between v and the oscillation magnitude. Furthermore a slight

white noise is added to the output, representing e�ects within gears and motors.

Slip is modelled proportional to the velocity di�erence of the two tracks. It is subtracted

from the track with higher speed and added to the slower one such that a compensation

occurs. Furthermore on both sides a slight white noise representing friction e�ects is added.

The error modelling was meant to describe the e�ects qualitatively to make the simulation

more real, thus all parameters were determined empirical.
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Figure 5.2: Extended vehicle model. Track speeds are modelled as PT1 subsystems. Slip

e�ects and noise represent friction errors.

5.1.3 Transmission modelling

To analyze the e�ects of transmission delays on the observers' performance, two di�erent

models for transmission delays were designed. Both models were included in one Simulink

subsystem (�g. 5.3) where input 3 is used to switch between the two delay types.

Constant delays

Constant delays can be modelled directly by a Simulink block called 'Transport Delay'.

Here a 'Variable Transport Delay' was used to allow adjustment of the delay value via an

input. By adding Rate Transitions (see �g. 5.3) the discrete behaviour of the measurements

can be imitated.

Stochastic random delays

A lot more complex to realize are random delays. Here a s-function was developed, sup-

porting three types of delay time distributions:
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1. rectangular distribution with adjustable mean value and interval width

2. Gaussian distribution with adjustable mean value and variance

3. Gaussian distribution with adjustable mean value and variance, but additionally a

lower boundary such that delays can't get smaller than a minimum value or negative

For each sample the s-function generates a new delay by using the distributions. The

current input value (the value to transmit) is saved and set as output after the delay time

passed.

By identifying the corresponding parameters from delay distributions measured in experi-

ments, a realistic transmission behaviour can be achieved.

Figure 5.3: Simulink transmission delay model. Two types of delays are possible: constant

delays and random delays with various distributions.

5.2 The Extended Kalman Filter

First published in 1960 by R.E. Kalman, the Kalman �lter provides a recursive solution

to discrete-data linear �ltering problems. Due to increasing computational power, in the

following decades the KF became subject of extensive research and a standard technique

used in control engineering and signal processing today. Further extensions on non-linear
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systems, for instance, were following.

The Kalman �lter is a set of mathematical equations that provides an e�cient computa-

tional tool to estimate the state of a process, in a way that minimizes the mean squared

error. By allowing to estimate past,present and even future states also if the precise nature

of the process is unknown, the KF represents a powerful solution in state estimation.

5.2.1 Discrete formulation of the EKF

Process

In the following we assume the system of interest to be formulated in the non-linear dif-

ference and measurement equations

xk = f(xk−1, uk−1, wk−1); zk = h(xk, vk) (5.3)

where x ∈ Rn is the state vector and z ∈ Rm the measurements vector. wk, vk represent

process and measurement noises at time k which have a independent, white, normal prob-

ability distribution with mean zero. The exakt values of wk and vk at time k are normally

unknown.

With wk and vk unknown, state and measurements can be approximated by

x̂−k = f(x̂k−1, uk−1, 0); ẑ−k = h(x̂−k , 0) (5.4)

with x̂k−1 being the a posteriori state estimate from a previous time step k-1.

It is important to note that in contrary to the linear case the random variables v and

w no longer are normal distributed after a non-linear transformation. This is the mayor

drawback of the EKF. Some attempts were done by Julier et al. in developing a variation of

the EKF, using methods that preserve the normal distributions throughout the non-linear

transformation[19].

Computational realization

For using the �lter equations from the linear Kalman �lter formulation we de�ne a new
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system that linearizes 5.3:

xk ≈ x̂−k + A(xk−1 − x̂k−1) +Wwk−1 (5.5)

zk ≈ ẑ−k +H(xk − x̂−k ) + V vk (5.6)

with x̂−k , ẑ
−
k being the estimates from 5.4 and the following system matrices:

Ak =
∂f

∂x
|x̂k−1,uk−1,0 (5.7)

Wk =
∂f

∂w
|x̂k−1,uk−1,0 (5.8)

Hk =
∂h

∂x
|x̂−k ,0 (5.9)

Vk =
∂h

∂v
|x̂−k ,0 (5.10)

The Kalman �lter, like most other observers, uses the so-called innovation or residual

zk− h(x̂−k , 0) which re�ects the discrepancy between measurement and predicted measure-

ment to update the a priori estimated state. Here the gain matrix K is determined by a

probabilistic approach using error and noise covariances.

Therefore we can now de�ne the a priori and a posteriori estimate errors as

e−k = xk − x̂−k and ek = xk − x̂k (5.11)

The a priori and a posteriori estimate of the error covariance are then

P−
k = E[e−k e

−T
k ] and Pk = E[eke

T
k ]. (5.12)

Using this covariances in addition to the measurement noise covariances R, the gain pro-

posed by Kalman is calculated by

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (5.13)

K represents the gain that minimizes the a posteriori error covariance. See [20] for further

explanation of how minimization can be proofed, the probabilistic background and further

literature.

Looking at the properties of equation 5.13 some interesting observations can be made. The
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more the error covariances R approach zero the heavier get the weights of K caused by the

inversion.

lim
Rk→0

Kk = H−1 (5.14)

Otherwise, as P−
k approaches zero, the gain K gets smaller with the limit

lim
Pk→0

Kk = 0 (5.15)

Using these preliminaries and the 'linear' system formulation from equation 5.5 we get

the complete predictor-corrector-algorithm of the EKF. It is performed in two steps by:

1: Time Update (Prediction)

Project the state ahead:

x̂−k = f(x̂k−1, uk−1, 0); ẑ−k = h(x̂−k , vk) (5.16)

Project the error covariance ahead:

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (5.17)

2: Measurement Update (Correction)

Compute the Kalman gain

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (5.18)

Update estimate with measurements

x̂k = x̂−k +Kk(zk − h(x̂−k , 0)) (5.19)

Update error covariance

Pk = (I −KkHk)P
−
k (5.20)

where Q is process noise covariance and P0, x0 have to be chosen properly.

An important feature of the EKF is that in equation 5.18 Hk is used to correctly propagate

only the relevant component of the measurement information to a certain state.

Here R and Q are also indexed by k which means that they may change with time. However

in most applications they are used as constant values.
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5.2.2 Plant models

Model 1: Basic System, encoders only

State

xk+1 = xk + T cos(φk)vk + T cos(phi)w1,k

yk+1 = yk + T sin(φ)vk + T sin(φk)w1,k

φk+1 = φk + Tωk + Tw2,k (5.21)

EncLk+1 = EncLk + T (vk − rωk) + Tw1,k − Trw2,k

EncRk+1 = EncRk + T (vk + rωk) + Tw1,k + Trw2,k

Input Output

u =

vk

ωk

 y =

EncL

EncR


This model only uses kinematics and the encoder states corresponding to equations 5.1

and 5.2. As the measurements contain no information about angle φ the initial error for φ

has to be very small.

It works good for the ideal model, but for the real system or the extended model the errors

sum up and lead to an increasing deviation with ongoing time.

Model 2: Basic model using all measurements

State:

xk+1 = xk + T cos(φk)vk + T cos(φk)w1,k

yk+1 = yk + T sin(φk)vk + T sin(φk)w1,k

φk+1 = φk + Tωk + Tw2,k (5.22)

EncLk+1 = EncLk + T (vk − rωk) + Tw1,k − Trw2,k

EncRk+1 = EncRk + T (vk + rωk) + Tw1,k + Trw2,k



106 5 Vehicle model and observer design

Input Output

u =

vk

ωk

 y =


X

Y

EncL

EncR


Unlike the previous model here two additional outputs are used, the x and y coordinates of

the vehicles position (more precisely the center of gravity of the marker). Thus for v 6= 0

a correction for θ is possible.

However in simulations with the extended model unstable behaviour in form of varying se-

vere static deviations from the correct state were observed. This has two reasons. Firstly

the real system input (vr, vl or v,ω) di�ers from the reference values (inner control loop).

This corresponds to process noise and can be only partly compensated by the EKF as its

distribution normally has a mean di�erent from zero. The second and more severe problem

is that slip generates a gap between the velocity measured by the encoders and the real

ground speed of the tracks. This gap leads to a contradiction between the measurements

of encoders and position and produces oscillations in error covariances and the resulting

correction gain.

This especially leads to severe error in the estimate for θ (see 5.2.3).

Model 3: Basic model with practical approach

State:

xk+1 = xk + T cos(φk)vk + T cos(φk)w1,k

yk+1 = yk + T sin(φk)vk + T sin(φk)w1,k

φk+1 = φk + Tωk + Tw2,k (5.23)

EncLk+1 = EncLk + T (vk − rωk) + Tw1,k − Trw2,k

EncRk+1 = EncRk + T (vk + rωk) + Tw1,k + Trw2,k
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Input OutputvR,k+1 =
EncR,k+1−EncR,k

T

vL,k+1 =
EncL,k+1−EncL,k

T

 ⇒ u =

vk+1

ωk+1

 =

vR,k+1+vL,k+1

2

vR,k+1−vL,k+1

2r

 y =

X
Y


To undergo the drawbacks of the previous model in practice a di�erent approach is used

based on the same model and measurements. The encoder values are used to estimate the

vehicles speed and thus avoid the contradiction and partly considers the input errors.

The EKF based on this model achieved good results.

Model 4: Model with second order dynamics

State:

xk+1 = xk + T cos(φk)vk +
T 2

2
cos(φk)a

yk+1 = yk + T sin(φk)vk +
T 2

2
sin(φk)a

φk+1 = φk + Tωk +
T 2

2
α

vk+1 = vk + Ta (5.24)

ωk+1 = ωk + Tα

EncLk+1 = EncLk − T (vk − rωk)−
T 2

2
(a− rα)

EncRk+1 = EncRk − T (vk + rωk)−
T 2

2
(a+ rα)

Input Output

none
y =

X
Y


Another approach to avoid the input errors and at the same time get an estimate for

v and ω is realized by additional system states. Here v and ω now are states in�uenced by

acceleration a and angular acceleration α. a and α are assumed unknown and thus treated
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as process noise.

This EKF also achieved good results but has a slower performance than model 3 due to

the velocities that �rst have to converge after changes. The encoder values are not used.

Model 5: Basic model with slip estimation

State:

xk+1 = xk +
T

2
(vR,k+1iR,k + vL,k+1iL,k) cos(φk)

yk+1 = yk +
T

2
(vR,k+1iR,k + vL,k+1iL,k) sin(φk)

φk+1 = φk +
T

2r
(vR,kiR,k − vL,k+1iL,k+1) (5.25)

iL,k+1 = iL,k

iR,k+1 = iL,k

(5.26)

with iX = 1− iX and iX = vmeas−vtrack

vmeas
.

Input Output

u =

vR,k+1

vL,k+1

 =

EncR,k+1−EncR,k

T

EncL,k+1−EncL,k

T

 y =

X
Y


The last tested model works comparable to model 4 but estimates the slip instead of

v and ω. Track speeds vX are estimated using the same approach as in model 3. Slip is

assumed to be a factor ix multiplied to the measured track speed to obtain the real track

velocity. ix is static (no di�erential equation) and estimated by the Kalman equations.[10]

Using this approach the estimation errors were more severe compared to the previous two

EKF's. The slip seems to change very quickly and so is di�cult to estimate. By increasing

the corresponding weights of Q it can be smoothed but is leading to much slower observer

dynamics.
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Delay compensation

As described in chapter 3 all sensor readings are transmitted asynchronous and lead to

randomly varying delays. In the standard models above, these delays are part of the

measurement noise. By using the knowledge of the delays it was tried to enhance the EKF

performance.

A priori estimate

For state prediction all discussed models use the di�erential form of Euler integration which

can be written as:

ẋ = f(x) =
dx

dt
=
xk+1 − xk

dt
=
xk+1 − xk

T
(5.27)

⇒ xk+1 = xk + T ẋ (5.28)

Here and in the previous section the sampling time T was assumed to be constant. Due

to varying delay T will be di�erent for every sample and therefore has to calculated from

the timestamps. Thus a new form of the di�erence equation was implemented in the form

xk+1 = f(xk, Tk) with Tk = tk+1 − tk (5.29)

Final prediction

Due to transmission delay τk of the measurements the a posteriori state x̂ always will be a

state in the past at time tk − τk. To get a more accurate estimate a further prediction for

the interval τk is done using the equation

x̃k+1 = f( ˆxk+1, τk) (5.30)

Here it is important to mention that this estimate only is forwarded and used as current

state but not memorized. For the following sample the non-predicted state x̂ is used as

initial value.

Timeout

In few worse samples the transmission delays get higher than the sample time. In this case

no new measurement is available when the EKF is evaluated. This is handled di�erent for
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the two sensor signals.

encoder signal

In case of no new encoder value, the previous track speed values are used

webcam data

If no actual position information is available, only the linear prediction 5.3 is per-

formed. Update of covariances and the state are skipped

5.2.3 Results

After introducing the di�erent EKF versions and the models they are based on, we now

can try to evaluate the di�erent EKFs and analyze the e�ects of delay compensation (DC)

on the error.

All used �lters are listed in table 5.1. Some implementations also contain special features

that are mentioned in the description.

Concurring measurements

As already mentioned in 5.2.2 the usage of encoder and webcam measurements for the cal-

culation of the Kalman gain and state correction destabilizes the observer. This originates

from a gap between distance measured by the encoders and the really covered distance that

leads to �uctuation error covariances and Kalman gains and a severe error in estimation

of θ.

This e�ekt is shown in �gure 5.4 for EKFs 2 and 3. Other than EKF 2, EKF 3 doesn't use

the reference input for prediction but the velocity calculated by encoder values. Obviously

this only brings little improvement since EKF 2 performs almost equal to EKF 3.

Also the estimation error of EKF 1 caused by slip is shown. Due to missing position in-

formation no correction for position and angle is possible.

Thus for the following analysis only models 3 to 5 are used.
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Name Description Delay comp.

EKF 1 Model 1 no

EKF 2 Model 2 no

EKF 3 Model 4; Encoders and webcam used for update no

EKF 4 Model 3 no

EKF 5 Model 5; With alpha → discarded no

EKF 6 Model 5; Additional output v by di�erentiation no

EKF 7 Model 5; Additional output v by states no

EKF 8 Model 5; Delay compensation: only prediction yes

EKF 9 Model 5 yes

EKF 10 Model 4 no

EKF 11 Model 4 yes

EKF 12 Model 3 yes

Table 5.1: List of tested EKFs.

Figure 5.4: Comparison of EKF 1-3. EKF 1 estimates movement of ideal model since

no update measurements are available. EKFs 2 and 3 show almost equal behaviour with

severe static errors in angle and position.
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Figure 5.5: Estimation of θ by EKF 4, 7 and 10. The deviation from the real value (bottom

plot) is signi�cantly smaller for EKF 4.

Estimation of θ

For three selected EKF's �gure 5.5 shows the estimate of the vehicle orientation in an

example simulation.

The result is very promising with an error of less then 10◦ after short initial oscillations.

These oscillations are extremely severe for EKF 7 which is critical as it can destabilize the

controller in the initial phase.

An extremely good and stable estimate with an error of less than 3◦ is achieved by EKF 4,

although it has the most simple model.

Position estimation

For position estimation the results are also satis�ying with an accuracy of less than 1.5cm

for all EKFs.

Here signi�cant high frequency oscillations can be observed which are caused by the direct

measurements of this state and the resulting more intense correction by the Kalman equa-

tions.
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Figure 5.6: Estimate for X component of vehicle positon.

The sinusoidal general form of the error can be explained by the transmission delays that

are responsible for the major part of this error. They cause the observer state to be late

which leads a changing sign of the error depending on the motion direction.

Estimate and error of the three EKFs for the x coordinate are shown in �gure 5.6. Here no

�lter shows clear superiority but again EKF 4 is the most stable without initial osciallations

and a slightly better performance.

Velocity estimation

A further value needed by the controllers is the vehicle velocity v. It is only provided

directly by EKFs working with models 4 and 5. Figure 5.7 shows the result based on the

same experiment as before. Additionally v is determined by discrete di�erentiation and

low-order (order 2-4) mean �ltering.

EKF 10/11 show very slow convergence. This could be accelerated by augmenting the

process noise covariance values, but leads to worse behaviour for the other estimates.

EKF 7 and 9 are much faster but also are oscillating much and with high magnitude.

However EKF 9 would give the best compromise between convergence speed and error.
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Figure 5.7: Estimate for vehicle velocity v. Di�erentiation and EKF 9 show the fastest

convergence, while EKF 10 and 11 are much to slow. The error peaks occurring in EKF 9

a caused by missing measurement samples (timeout).

For the analyzed simulations, di�erentiation of the velocity signal even performed almost

equally fast and with less �uctuations. If this also holds in real experiments has to be

analyzed.

E�ect of delay compensation

Figures 5.8 and 5.9 show the estimation error in x and θ for the three �lters used before

and their pendant with delay compensation.

A real enhancement only is visible for the position estimate and little for the orientation in

case of EKF 10/11 and EKF 7/9. It seems like in all three types, but especially for model

3, the change in θ is caused mainly by the Kalman correction and not by the di�erential

equation.

Since in all cases exists no di�erential equation with known input for v, the prediction

here has no e�ect (as can be seen in �g. 5.7). On the other hand the error in v causes
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Figure 5.8: Comparison of orientation estimation between DC and non-DC realization for

all three �lter types. Only in case of EKFs 7 and 9 a slight enhancement can be observed.

the major part of the controller response as we will see in the following chapters. Thus

only little improvement on the controller stability and performance can be expected. The

assumption that a mayor part of the error is caused by delays can be partly con�rmed here.

Shape and sign of the error are equal to their pendant without DC but the magnitude is

less, however the di�erence is smaller than expected. Corresponding the angle θ most of

the error appears to originate from the observer and observer dynamics respectively.

Concluding the previous results, EKF 4/12 seem to be the best choice for estimation of

position and orientation. Since they don't provide an estimate for v here additionally EKF

9 or a �ltered di�erentiation has to be used. Both has be tested in experiments and will

be discussed in chapter 8.
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Figure 5.9: Comparison of position estimation between DC and non-DC realization for all

three �lter types. In all cases the e�ect is comparable and reduces the error up to 25%.



Chapter 6

Trajectory generation and path

planning

After treating the all technical requisites for the control experiment, in the following section

the generation of the reference trajectory and the feedforward control will be discussed.

Therefore we'll �rst have a look at how to generate a time-dependent trajectory through

a given set of points and then discuss methods for building these sets in combination with

the task to avoid obstacles.

6.1 Trajectory generation

When control theory got accretively important in the beginning of the 20th century, most

applications were restricted to stabilizing the control system around a certain set point.

But with further knowledge and new control techniques, applications like set point changes

or process starts and shut-downs became control objective and required to generate time

dependent set points, so-called reference trajectories. Furthermore applying a smooth tra-

jectory between two set points avoids stress to the actuators.

Depending on the system, trajectory generation was (and still is) a very challenging prob-

lem and required new mathematical and numerical methods and tools. One example are

high-dimensional systems like industrial robots which have to perform precise movements

117
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with a high number of degrees of freedom and include many constraints and the problem

of multiple possible solutions on the other hand.

A more simple problem, restricted to two dimensions, is given in mobile robotics, when a

time dependent trajectory through a map of given points (xi, yi) in the plane is required.

As this is one major aspect of the control problem treated in this thesis, the generation of

reference trajectories will be discussed closer in this chapter.

6.1.1 Common methods

For trajectory generation in the meantime a wide variety of methods have been developed,

where the following section should give a brief overview.

Linear movements

Here the trajectory consists of a straight line between the last way-point (xi, yi)

and the following one (xi+1, yi+1) . The time parameterized representation of the

trajectory can be written as follows:

x = xi + sign(xi+1 − xi)k · (t− ti)

y = yi + k ·m · (t− ti) (6.1)

with m = yi+1−yi

xi+1−xi
and v = k ·

√
1 +m2.

The velocity v can be set by the parameter k, depending on the slope m. Important

properties of this method are constant speed and no rotation between two way-points.

The drawback are jumps in velocity and singularities in acceleration reference values

at the way-points. The possible trajectories with this method are very limited, or a

high number of way-points has to be chosen to approximate more complex curves.

Furthermore, for example parabolic blending can be used to overcome singularities

in the way-points, as described in [17]. It generates a constant acceleration around

the way-points, but is less precise than the following techniques as it may not pass

them.



6.1 Trajectory generation 119

Polynomials

Generation of more smooth curves can be done by using polynomial approximations.

These are performed for a one dimensional problem, meaning the approximation of

a function f(t) described by a set given points (ti, yi). For n de�ned points a unique

polynomial in time t of degree n-1 can be found that includes all points (assuming

all ti being di�erent).

First the time vector t has to be generated which for example can be done by a

cumulative sum of the euclidian distances between the way-points.

For a polynomial in the form p(t) = c1t
n−1 + c2t

n−2 + . . . + cn−1t + cn the following

equation system has to be solved to obtain the polynomial coe�cients ci.
y1

y2

...

yn

 =


1 t1 . . . tn−1

1

1 t2 . . . tn−1
2

...

1 tn . . . tn−1
n




cn
...

c2

c1

 (6.2)

The left side represents the values of one component of the way-point coordinates.

As ti and yi are known values this equation system is linear with a unique solution

for all ti being di�erent. This polynomial approximation has to be done separately

for every dimension in case of higher dimensional systems resulting in n polynomials

pi(t), each representing one element of time parameterized coordinate p(t).

Drawback of this method is the high polynomial orders for trajectories with many

way-points which can lead to unpredictable variations especially on larger intervals.

So it is mostly used for local function approximations.[16]

Splines

The most common method and a special case of polynomial approximations are piece-

wise polynomial functions of low order, which were called splines by their inventor

I.J. Schoenberg.[16]

The interval [a, b] on that the function f is approximated, is divided into su�ciently

small intervals [ξi, ξi+1], such that on each interval a polynomial pj of relatively low
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degree can provide a good approximation to f. This is done in such a way that the

polynomial pieces blend smoothly, i.e., so that the resulting patched or composite

function s(x) that equals pj(x) for x ∈ [ξi, ξi+1],in all j, has several continuous deriv-

atives. The points xi that subdivide the intervals are called via points or breaks.

This method is more adequate for building vehicle trajectories although it doesn't

allow to consider constraints (e.g. in velocity=slope) directly. In case of restrictions

the generation has to be performed iteratively.

Optimal control methods

Optimal control methods, such as model predictive control methods, use a dynamic

model of the system in combination with techniques like linear or non-linear pro-

gramming for calculation and prediction of a trajectory between two states of the

system.

Thereby they return the one trajectory that minimizes a certain performance index

Q. They also allow to include constraints for system inputs or system states, for in-

stance.

This method mostly is used directly as a controller since it returns the optimal sys-

tem input additionally to the system trajectory. In general optimal control methods

are computationally very expensive and little demonstrative for the given problem.

6.1.2 Cubic splines

Within the methods described in the previous section, splines turned out to be the best

choice for generating a simple and smooth vehicle trajectory in a plane. In contrary to

optimal control methods that premise advanced knowledge in programming, systems theory

and optimality concepts, they only require little mathematical knowledge to be understood

by students in practicals.

The piecewise polynomial form (ppform) of a k'th order polynomial spline (for a cubic
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spline k=4) can be written as

pj(x) =
k∑

i=1

(x− ξj)
k−icji, j = 1 : l (6.3)

, where j is the index of the interval de�ned by the breaks ξ1, ..., ξl+1. cji represent the

local polynomial coe�cients of the l pieces.

It should be mentioned that there exists a second spline representation called B-form that

is used mostly during the spline construction. As this representation is less clear but equiv-

alent to the ppform it won't be treated further at this point.

The popularity of splines can be explained by it's convenient properties like smoothness

and continuity in function and derivatives. Especially cubic splines, meaning piecewise

polynomials of order t3, posses the well-tempered properties of being twice continuously

di�erentiable which means a continuous velocity and acceleration pro�le without jumps.

Continuity of the function and it's k-1 derivatives is obtained during the spline construc-

tion by constraints for the values of function and derivatives at the interval borders. These

constraints are needed for uniqueness of the solution. They can be in�uenced by a prop-

erty called knot multiplicity that means how often a knot (here value in the time vector)

appears. For a knot multiplicity greater than one, constraints for derivatives at this knot

are neglected by the rule

knot multiplicity + condition multiplicity = polynomial order (6.4)

where the polynomial order is �xed. In this way it is possible to soften the constraints

regarding continuity of derivatives.

6.1.3 Using MATLAB spline toolbox

For working with splines the MATLAB spline toolbox o�ers a wide variety of generation,

manipulation and utilization functions. It o�ers 4 di�erent methods to generate cubic

splines.
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csapi

generates a spline interpolation f(t) through the given via points

csape

generates a spline interpolation f(t) through the given via points; additionally various

types of end conditions (derivatives at �rst and last point) can be demanded.

cscvn

generates natural or periodic splines. In case of equal �rst and last point, periodic

end conditions are applied (equal �rst and second derivative in end points), otherwise

variational end conditions are used (second derivatives equal to zero in end points).

The time parametrization of the knots is calculated by a cumulative sum of the

euklidic distances between the points (all dimensions). So the parameter value t(j)

for the j'th knot is given by
∑j

i=1

√
xi+1 − xi.

csaps

generates a smoothing spline f(t) that approximates the data values. This is done by

minimizing the the performance index p
n∑

j=1

w(j)|y(:, j)−f(x(j))|2+(1−p)
∫
λ(t)|D2f(t)|2dt

where w is the vector of error weights. λ is called roughness measure and represents a

weighting function for the second derivative of f(t). p is called smoothness factor and

in�uences the ratio between smoothness (derivatives) and approximation precision

inside the performance index.

All methods produce a spline structure containing all information on the polynomial pieces.

With methods for manipulation points can be added or removed easily without the need

of re-creating the complete spline.

Furthermore the user doesn't have to concern about polynomials or intervals since functions

as fnval(spline,t) directly evaluate the spline at the required times t. The spline toolbox also

provides the function fnder(spline) and fnint(spline) that generate the splines derivative

or integral function.
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Especially the derivatives are needed for calculation of the feedforward control by inverse

kinematics which is treated in the following section.

6.1.4 Inverse kinematics

The created splines give us a time-parametrization x(t) and y(t) for the reference trajectory.

Using the described functions we also can obtain the reference velocities and accelerations

ẋ(t), ẏ(t), ẍ(t) and ÿ(t) by di�erentiation.

These can directly be used as reference values for the �atness based controller design

described in 7.3.

However the linear controller developed in 7.1 needs a reference trajectory for angle θ,

velocity v and angular velocity ω of the vehicle.

By inverting the forward kinematics
ẋref

ẏref

θ̇ref

 =


cos(θref ) 0

sin(θref ) 0

0 1


vref

ωref

 (6.5)

the inverse kinematics result as follows:vref

ωref

 =

√
ẋ2

ref + ẏ2
ref

θ̇ref

 (6.6)

As θ results from the two components of the overall velocity v=

vx

vy

 by

θref = arctan
ẏref

ẋref

(6.7)

the angular velocity ω can be obtained by di�erentiating θ by t.

ωref = θ̇ref =
ẋref ÿref − ẏref ẍref

ẋ2
ref + ẏ2

ref

(6.8)

Finally the inverse kinematics can be written asvref

ωref

 =

 √
ẋ2

ref + ẏ2
ref

ẋref ÿref−ẏref ẍref

ẋ2
ref+ẏ2

ref

 (6.9)
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or directly as references for the track speeds (feed-forward control)vR;ref

vL;ref

 =

vref + rωref

vref − rωref

 =

√
ẋ2

ref + ẏ2
ref + r

ẋref ÿref−ẏref ẍref

ẋ2
ref+ẏ2

ref√
ẋ2

ref + ẏ2
ref − r

ẋref ÿref−ẏref ẍref

ẋ2
ref+ẏ2

ref

 (6.10)

Time scaling

As the MATLAB function for constructing natural splines generates the time parametriza-

tion automatically it is necessary to perform a time scaling to slow down or speed up the

trajectory to the desired period time. Also for the other generation functions this is useful

as the spline doesn't have to be re-built when changing the period duration.

Time scaling can be achieved by introducing a new time

tnew =
TSPLINE

TDEMAND

t = kscalet (6.11)

. So the spline f(t) de�ned on t ∈ [0, TSPLINE] can be transformed in the spline f̂(t) =

f(tnew(t)) de�ned on t ∈ [0, TDEMAND]. Furthermore the scaling has to be extended to the

derivatives by

ˆ̇x(t) = kscaleẋ(tnew(t)); ˆ̇y(t) = kscaleẏ(tnew(t)); ˆ̇ω(t) = kscaleω̇(tnew(t))

ˆ̈x(t) = k2
scaleẍ(tnew(t)); ˆ̈y(t) = k2

scaleÿ(tnew(t)) (6.12)

In case of periodic splines shall be used outside the interval [0, TDEMAND] one additionally

has to perform a modulo calculation

tnew = kscalemod(t, TDEMAND) (6.13)

because the spline function f is only periodic within the de�ned interval (meaning same

derivatives in the two boundary points). The property f(t + T) = f(t) of a real periodic

function doesn't hold outside in this case.

6.1.5 Examples

Using the basics treated in the previous sections some simple trajectories were constructed

for the LEGO vehicle. Therefore di�erent construction methods of the spline toolbox were
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Figure 6.1: Periodic example trajectory with speed pro�le. The function cscvn delivers a

periodic spline that is exactly symmetric. The advantage of csape (interpolated) are the

zero velocity end conditions.

used and compared for two types of trajectories, periodic and non-periodic trajectories.

In all cases a knot multiplicity of 1 was chosen to generate the trajectories as smooth as

possible.

Figures 6.1 and 6.2 show two unscaled trajectories with the corresponding speed pro�les.

As can be seen in Fig. 6.1 the natural periodic spline returns a perfectly symmetric

trajectory whereas the interpolation trajectory gets asymmetric in the �rst and last curve

due to the velocity constraints v0 = vend = 0.

The second �gure shows two non-periodic trajectories created by cscvn (natural spline)

and csaps (smooth spline) with a very low smoothness parameter p=1e-5. It shows very

clearly the smoother behaviour of the second spline, only possible by not exactly crossing

the via points.

Recapitulating the results and experiences made within this work natural splines and
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Figure 6.2: Non-periodic example trajectory with speed pro�le. Using natural splines

sometimes generates tight curves. By using smoothed spline this e�ect can be reduced by

allowing the spline to not pass the waypoints exactly.
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interpolating splines turned out to generate the best trajectories, depending on if con-

straints in the form of initial and �nal speeds are needed.

The results show that splines, especially in combination with the MATLAB spline toolbox,

o�er an easy and fast method for vehicle trajectory generation.

6.2 Path search and path generation

Besides trajectories consisting of simple geometric forms a small example application was

created to combine the trajectory generation with path search algorithms in form of nav-

igating between two points and avoiding obstacles. Therefore �rstly a small overview of

common methods will be given, followed by the description of the used method.

6.2.1 Common methods

Road map methods

Road map approaches reduce the robot's free space to a network of 1D curves or lines,

called road maps. Therefore mostly as set of knot points is generated and connected to

neighbour points by certain rules. This is done by straight lines and a local planner that

checks for obstacle collisions.

After construction of this road map it is used for the robot's path planning which is done

by connecting the initial and goal positions of the robot to the road network and then

searching for a series of roads (path) from the starting position to the robot's desired

position.

The challenge is to construct a set of roads that together enable the robot to go anywhere

in its free space, while minimizing the number of total roads.

Examples for this kind of path generation techniques are probabilistic road maps, Voronoi

diagrams, visibility graphs and rapidly-exploring random trees.[37],[28]
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Cell decomposition methods

Cell decompositions methods work by dividing the target area into small connected geo-

metric areas or cells, discriminating if the cells are free or occupied by obstacle objects.

As a next step for all free cells it is determined to what cells they are connected and a

connectivity graph is created.

By searching the cells that include the initial and goal point a path that connects them

is searched in the connectivity graph. From the sequence of cells found with an appropri-

ate searching algorithm, a path within each cell can be computed, for example, passing

through the midpoints of the cell boundaries or by a sequence of wall-following motions

and movements along straight lines.

An important aspect of cell decomposition methods is the placement of the boundaries

between cells. If the boundaries are placed such that the decomposition is lossless, the

method is called exact cell decomposition. If the decomposition results in an approxima-

tion of the actual map, the system is called approximate cell decomposition.

Examples for this kind of methods are �xed decomposition (rasterization), or exact cell

decomposition[37].

Potential �eld methods

Potential �eld methods use an arti�cial potential �eld de�ned on the robot's map to lead

it to it's target. This is achieved by constructing a potential �eld function U(x) such that

obstacles represent local potential peaks whereas the target marks the global minimum.

The robot is treated as a point under in�uence of this potential �eld and is driven in di-

rection of the potential �elds gradient like a ball rolling into a valley. So the target acts

as an attractive force on the robot (the valley) whereas obstacles represent repulsive forces

(hills).

Such an arti�cial potential �eld smoothly guides the robot towards the goal while simul-

taneously avoiding known obstacles. It has to be mentioned that this method not only is

a path planning algorithm but simultaneously can generates a control input for the robot
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when used dynamically. If the robot can detect it's position in the map it can calculate

the reference direction using the potential �eld and react to model or input errors in that

way. It also can react to moving obstacles by updating the potential �eld function with

the obstacle data (positions, dimensions).

6.2.2 Path generation by rasterization

For demonstration of path search algorithms, a small example application was created in

the course of this thesis. Therefore colored markers similar to the marker of the vehicle

were posed on the ground, representing imaginary obstacles.

For path generation it was decided to use a cell decomposition method with a �xed cell

size (rectangular) which also is called rasterization. This method divides the vehicles map

(here the vision range of the camera) into equal cells by a grid of prede�ned size. It is

veri�ed for each cell if it contains or is part of an obstacle using image processing routines.

In case of a detected obstacle the cell is blocked. Though a possible path form initial point

to the target only is possible along the free cells.

Utilizing this method the robots movement will be generated along the grid (or better cell

centers). As rasterization is working with constant cell dimensions these only have to be

chosen once. Here the robot dimensions and dynamics have to be taken into account for

choosing the cell size su�ciently big for no collisions can occur. As the dynamic of the

vehicle used for this experiments is very fast (movement after stop signal at max speed

< 2cm) and turning is possible on the spot the raster length can be chosen slightly more

than the vehicles diagonal (here 25cm).

In the example application image processing is done directly in MATLAB using the

webcam client described in chapter 3.2 to obtain starting position of the vehicle. A current

webcam image also can be receiver via TCP by use of the webcam clients function getPic-

ture(). The binary image is generated similar to the method for detection of the vehicles

marker described in chapter 3.2.1. For each point the expression

g − b− r ≥ threshold
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is evaluated resulting in a boolean array of the pictures dimensions. Figures 6.3 and 6.4

show the result of the segmentation applied to an example picture. After generation of the

Figure 6.3: Raw picture for a path search example. The green objects are virtual obstacles

the vehicle has to avoid.

map containing the obstacles the following algorithm is used to determine the path.

in image coordinates

• determine position of vehicle

• calculate raster where vehicle position is in the center of a cell; neglect uncom-

plete boundary cells

• create reduced array (cell indices) and determine if �eld is free or obstacle



6.2 Path search and path generation 131

• determine indices of initial point and target point

• calculate for each �eld the distance to initial �eld

• apply reverse search from target point to initial point. Create path of cells with

distance decreasing in steps of one

in real world coordinates

• create path by cell centers and transform it into real-world coordinates using

the transformation matrix obtained by the camera calibration in chapter 3.2.2

• generate spline with cell centers as via points

• adapt trajectory time T by T = k·cells to go

The result of the algorithm is a spline that can be directly used as trajectory for the robot.

As this kind of trajectory is non-periodic the interpolating spline with zero-velocity end

conditions turns out be be a suitable generation method. Figure 6.4 shows the result of

the path search algorithm applied on the example of Fig. 6.3 using a smooth spline.

It also shows one of the major drawbacks of this method. Small obstacles can block a

complete cell and thereby prohibit a possible passageway even if there is enough space for

the vehicle. This problem gets more severe the bigger the cell size gets compared to the

obstacles. In the presented example this is clearly the case as the vision �eld of the camera

is very limited. In this case it also depends on the initial position what paths are feasible as

some paths only are possible for a certain o�set range of the grid. So a possible extension

to this method would be to alter the x- and y-o�set of the grid to �nd alternative better

or shorter paths.

Furthermore the presented method and algorithm won't generate an optimal path in the

sense of path length as the vehicle moves along the grid. Since this application only was

developed for demonstration purposes this also would be a possible extension for future

works or student projects. Alternative path search methods could be used or diagonals
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Figure 6.4: Result of the path search algorithm applied to Fig. 6.3

could be introduced in the existing method.



Chapter 7

Trajectory controllers

In the following section, two di�erent trajectory controller types will be developed and

applied on the system. Both are based on the kinematic model de�ned in 5.1.1. Friction

and slip error as well as deviation of the PID controlled track speeds have to be compensated

by this controllers.

For simpli�cation of the model equations, instead of the track speeds vleft and vright, the

overall speed v and the angular velocity ω will be used as system inputs. They can easily

be converted into each other by v
ω

 =

vright+vleft

2

vright−vleft

2r

 (7.1)

and vright

vleft

 =

v + rω

v − rω

 (7.2)

with r being the distance between barycenter and tracks.

7.1 Linear state-feedback control by error linearization

The �rst approach used to control the vehicle along a given trajectory is a linear state-

feedback controller. In the following section the derivation of the feedback law will be
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discussed.

7.1.1 Feedback law

For the reference trajectory the vehicle kinematics are given as
ẋref

ẏref

θ̇ref

 =


cos(θref ) 0

sin(θref ) 0

0 1


vref

ωref

 . (7.3)

We de�ne the error vector

e =


ex

ey

eθ

 =


xref − x

yref − y

θref − θ

 (7.4)

in global coordinates and transform it into the vehicles local coordinates by
e
bx

e
by

e
bθ

 =


cos(θref ) sin(θref ) 0

− sin(θref ) cos(θref ) 0

0 0 1



xref − x

yref − y

θref − θ

 . (7.5)

Di�erentiation of time leads to the following error dynamics:

ė
bx = −ωC(xref − x) sin(θ) + (ẋref − ẋ) cos(θ)

+ ωC(yref − y) cos(θ) + (ẏref − ẏ) sin(θ) (7.6)

ė
by = −ωC(xref − x) cos(θ)− (ẋref − ẋ) sin(θ)

− ωC(yref − y) sin(θ) + (ẏref − ẏ) cos(θ) (7.7)

ė
bθ = ωref − ω (7.8)

By substituting 7.3 into equations 7.6 - 7.8 and using addition theorems we can simplify

the expressions to:

ė
bx = −vC + vref cos(θref − θ) + ωCey = −vC + vref cos(eθ) + ωCey (7.9)

ė
by = −ωCex + vref sin(θref − θ) = −ωCex + vref sin(eθ) (7.10)

ė
bθ = ωref − ωC (7.11)
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As next step we de�ne the input u asu1

u2

 =

vref cos(eθ)− vC

ωref − ωC

 (7.12)

and replace the corresponding terms in equations 7.9-7.11. Thus we obtain the almost

linear error dynamics
ė
bx

ė
by

ė
bθ

 =


0 ω 0

−ω 0 0

0 0 0



e
bx

e
by

e
bθ

 +


0

sin(eθ)

0

 vref +


1 0

0 0

0 1

u. (7.13)

Now the system can be linearized around the working point u1 = 0, u2 = 0, ex = 0, ey =

0, eθ = 0 and by applying the feedback lawu1

u2

 =

 −k1ex

−k2sign(vref )ey − k3eθ

 (7.14)

we obtain the following error dynamics for the closed-loop system:
ė
bx

ė
by

ė
bθ

 =


−k1 ω 0

−ω 0 vref

0 −k2sign(vref ) −k3



e
bx

e
by

e
bθ

 (7.15)

For the �nal control law we obtainvC

ωC

 =

 vrefcos(eθ) + k1ex

ωref + k2sign(vref )ey + k3eθ

 (7.16)

by joining equations 7.12 and 7.14.

7.2 Choosing parameters

Now the error dynamics can be estimated values for the the proportional feedback gains

have to be found.

It can be shown that the closed-loop system is stable for any combination of ki in case of all
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ki > 0. Stability can be proofed with the Hurwitz criterion by building the characteristic

polynomial:

Det(A− λI) = λ3 + (k1 + k3)λ2 + (k1k3 + k2v2 + ω2)λ+ (k1k2v2 + k3ω2) = 0 (7.17)

For all ki > 0 all coe�cients are positive which is necessary but not su�cient. In case of

a third order system additionally the condition a2a1 > a0a3 or a2a1 − a0a3 > 0 must hold

for the polynomial coe�cients ai. Evaluating this expression leads to

a2a1 − a0a3 = k2
1k3 + k2k3v

2 + k1(k
2
3 + w2) (7.18)

which always is positive for all ki > 0.

As the algebraic solutions for λi as function of ki get very complex, empirical studies

about the parameters' in�uence on the error dynamic's eigenvalues were performed. The

parameters were varied around the values proposed before. The following tendencies could

be observed:

• the higher k1 and/or k3 the higher the real-part of all three eigenvalues

• the higher k2 and ω the higher the oscillations and the imaginary part of the pair of

complex eigenvalues

For �nding concrete parameters in [24] a building rule is proposed by

k1 = k3 = 2ζ
√
ω2

ref + βv2
ref (7.19)

k2 = β|vref | (7.20)

with β, ζ > 0. With this parameter set the system behaves like a second order system,

a�ected by the parameters β and ζ.

The proposed parameter values represent a good initial con�guration for the controller. It

has to be pronounced that caused by the high delay times too high proportional feedback

can destabilize the closed-loop system. This will be analyzed more closely in the following

chapter.
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7.3 Feedback linearization by non-linear state feedback

A totally di�erent approach for trajectory control of the given kind of system can be realized

with a �atness based feedback linearization by non-linear state feedback. Before turning

to the explicit controller design �rstly a view basics on �at systems shall be discussed.

7.3.1 Di�erential �atness

Flatness, mostly known as a geometric or organizational property, is associated with a

certain level of simplicity. In analogy to this �at systems also posses a �at structure that

simpli�es the understanding of functional dependencies and control of such kind of systems.

The concept of �atness was introduced in 1992 by Fliess, Lévine, Martin and Rouchon. It

describes a system property that is characterized by the existence of a speci�c virtual or

real system output, called �at output.

By means of this output a �at system can be described like linear systems in linear spaces

by a set of suitable coordinates. It also possesses controllability properties similar to linear

systems. Furthermore it is possible to describe all system states and inputs with these

coordinates. The new coordinates are linked to the original coordinates by a formally

unique invertible non-linear interrelation.

Because of all these properties �at systems turn out to be very good natured in respect of

feedforward and feedback control. In many cases trajectories also can be planed easily.

As already mentioned a �at system is characterized by the existence of a �at output

y = Φ(x, u1, ..., u
(α1)
1 , ..., um, ..., u

(αm)
m ). (7.21)

This output normally is situated 'as far as possible' from the inputs. It has as many

di�erential independent components yi, i = 1, ..,m as the input u (dim y = dim u). All

states and inputs of the system can be described as a function of the yi and a �nite number

of derivatives y(k)
i , k ≥ 1.

x = Ψ1(y1, ..., y
(β1)
1 , ..., ym, ..., y

(βm)
m ) = Ψ1(y, ẏ, ÿ, ...,y

(β)) (7.22)

u = Ψ2(y1, ..., y
(β1+1)
1 , ..., ym, ..., y

(βm+1)
m ) = Ψ2(y, ẏ, ÿ, ...,y

(β+1)) (7.23)



138 7 Trajectory controllers

Using this functions a feedforward control can directly be applied for given trajectories of

the �at output. If the trajectory is given only for the real system output, generation of

the trajectory for the �at output can become very challenging. The complete feedforward

control can be calculated o�ine and applied to the system as a lookup table, for example.

Also feedback control can be applied very easily as �at systems always can be linearized

by a static state feedback. This results in freely selectable linear error dynamics (assuming

unconstrained inputs and outputs).

7.3.2 Controller design

How the previously described concept can be applied on the trajectory control of the LEGO

vehicle will be demonstrated in the following section.

Flatness analysis

Controller design is based on the simpli�ed kinematic model

ẋ =


cos(x3)u1

sin(x3)u1

u2

 (7.24)

with the state and output

x =


x1

x2

x3

 =


x

y

θ

 ; y =

x1

x2

 (7.25)

described in 5.1.1. Here x and y are the coordinates of the vehicles center of gravity

whereas θ is the vehicles orientation angle. y at the same time represents a �at output for

the system what can be shown by building the derivatives ẏ1, ÿ1, ẏ2 and ÿ2 and resolve the

resulting equations for x, u and u̇.
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y1 = x1

y2 = x2

ẏ1 = u1 cosx3

ẏ2 = u1 sin x3

ÿ1 = u̇1 cosx3 − u1u2 sin(x3)

ÿ2 = u̇1 sin x3 + u1u2 cos(x3)

⇔

x1 = y1

x2 = y2

x3 = arctan ẏ2

ẏ1

u1 = ẏ1

cos(arctan
ẏ2
ẏ1

)

u2 = ψ1(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2)

u̇1 = ψ2(y1, y2, ẏ1, ẏ2, ÿ1, ÿ2)

(7.26)

As can be seen this relations are only valid locally (x3 6= 0). Furthermore x3 and the inputs

depend on the term ẏ2

ẏ1
. In case of the vehicles velocity getting 0, singularities appear in

this expressions because the system is no longer observable. But experience tells us that

a vehicle can be stopped at any time, what means that these singularities don't matter in

practice, but have to be eliminated in the implementation of the equations.

Feedforward control

Using the equations in 7.26 the feedforward control of the vehicle can be applied straight

forward. As the spline trajectories directly deliver the functions for y1, ẏ1, ÿ1, y2, ẏ2 and ÿ2

the control inputs u1 and u2 can be calculated using the corresponding equations from 7.26.

Furthermore the resulting control input can be transformed into the track speed references

by using equation 7.2.

Feedback control

The feedforward control for trajectory described in the previous section can be calculated

o�ine and applied easily to the open loop system in form of a lookup table.

If the system is stable, the initial state is known su�ciently precise and only small errors

a�ect the system, open-loop control can achieve good results. If these conditions can't be

guaranteed, a feedback control gets necessary to compensate the deviations. Because the

treated LEGO vehicle control system includes errors like slip, gear friction, model errors
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and random transmission delays such a feedback control in form of a state feedback was

designed. In case of the described system there exist the following two possibilities: a

quasi-static state feedback and dynamic state feedback, which introduces an additional

state to the closed-loop system.

Quasi-static state feedback

In case of a feedback control the pursuit movement has to be stabilized. Therefor the new

inputs

v1 = ẏ1, v2 = ÿ2 (7.27)

are introduced. By inserting them into equations for u1 and u2 in 7.26 the quasi-static

state feedback law

u1 =
v1

cosx3

(cosx3 6= 0) (7.28)

u̇1 = ÿ1 cosx3 + ÿ2 sin x3 = v̇1 cosx3 + v2 sin x3 (7.29)

u2 =
v2 − u̇1 sin x3

u1 cosx3

(cosx3 6= 0) (7.30)

can be obtained. An asymptotic follow-up control for the reference trajectory yR(t) will

be achieved by the control law

v1 = ẏ1,R(t) + p10(y1,R(t)− y1) (7.31)

v̇1 = ÿ1,R(t) + p10(ẏ1,R(t)− v1) (7.32)

v2 = ÿ2,R(t) + p21(ẏ2,R(t)− ẏ2) + p20(y2,R(t)− y2) (7.33)

with y1,R, y2,R ∈ C2.

By choosing p10, p20 and p21 the error dynamics

ė1 + p10e1 = 0, ë2 + p21ė2 + p20e2 = 0 (7.34)

can be adjusted to the desired values.

The number of system states stays unchanged by using this approach.
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Dynamic state feedback

The second possibility to design the feedback is given by a dynamic state feedback. There-

fore a new state x4 and two new inputs ū1 and ū2 are introduced.

x4 = u1, ẋ4 = ū1, ū2 = u2 (7.35)

By choosing

v̄1 = ÿ1, v̄2 = ÿ2 (7.36)

analog to 7.27 the following dynamic state feedback results by solving the equations for ÿ1

and ÿ2 in 7.26.

ẋ4 = ū1 (7.37)

ū1 = v̄1 cosx3 + v̄2 sin x3 (7.38)

ū2 = −sin x3

x2
4

v̄1 +
cosx3

x2
4

v̄2 (x4 6= 0) (7.39)

Asymptotic follow-up control for the reference trajectory yR(t) is guaranteed by the fol-

lowing control law for the new inputs v̄1 and v̄2.

v̄1 = ÿ1,R(t) + p11(ẏ1,R(t)− ẏ1) + p10(y1,R(t)− y1) (7.40)

v̄2 = ÿ2,R(t) + p21(ẏ2,R(t)− ẏ2) + p20(y2,R(t)− y2) (7.41)

Other than the quasi-static state feedback, the dynamic state feedback controller possesses

one state what expands the state of the closed-loop system by one. This leads to the

following error dynamics

ë1 + p11ė1 + p10e1 = 0, ë2 + p21ė2 + p20e2 = 0 (7.42)

which also can be chosen freely. Furthermore the error dynamics can be set symmetric by

choosing p1x = p2x.

Application to the real system

For the controller used in the laboratory experiments it was decided to work with dynamic
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state feedback as it provides the possibility to set the error dynamics symmetric for x and

y. Furthermore it is easy to avoid singularities in the equations for u1 and u2 by introducing

a lower limit > 0 for the integrator state of x4. Since the used trajectories always demand

the vehicles speed being positiv and greater zero this is constraint is justi�ed. Additionally

an upper integrator limit can be used as an anti windup measure.

Another requirement for the application to the real system are the values of vx und vy.

These sizes can't be measured directly and therefore have to be estimated, either by a

state observer or by numerical di�erentiation. Both methods were used and compared in

experiments what will be discussed in chapter 8.1.2.



Chapter 8

Simulation and real experiments

8.1 Simulation experiments

8.1.1 PI controller

The PI controller described in the previous chapter only uses the system state for calculat-

ing the input correction. As showed in chapter 5.2.3 EKF 12 gives the best position and

angle estimate and therefore was used.

Normal simulations were run with random delay, parameterized with near-to-real distrib-

utions (see chapter 5.1.3). In the following section the delays' in�uence on the closed-loop

stability will be analyzed. Therefore a constant delay was used.

Delays and stability

Systems with high time delays mostly are di�cult to control because the delays are desta-

bilizing the closed loop. In the underlying control system time delays are caused by sensor-

to-controller and controller-to-actuator data transmissions and thus part of the system.

To evaluate their in�uence, simulations with increasing constant delays were performed.

For controller 1 (PI) the results are presented in �gure 8.1. The left plot shows results for

the ideal model whereas on the right side the extended, error a�icted model was used.

A delay of 0.11s turned out to be the critical value for both models, any higher delays

143
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destabilized the system. The value of 0.6 re�ects an approximated mean value of the real

system and shows a slightly bigger error than the system without delay. Obviously most of

the error originates from the observer dynamics and the high sample time of the controller.

The last dataset in both plots was obtained with a signi�cantly bigger delay and a system

with saturated (vmax ≈ 4.5cm/s) inputs. This kind of saturation corresponds to the real

system as the maximum reachable velocity is about 4.5 cm/s. Interestingly this saturation

stabilizes the system even for higher delays. For the ideal model the corresponding error

even is smaller in mean and magnitude than for the unsaturated system with 50% less

delay. For the extended model the mean is comparable but still the saturation dampens

the oscillation magnitude.

Figure 8.1: Delay in�uence on closed-loop system with controller 1. For both vehicle

models 0.11s seems to be the stability border for the unsaturated system. Introducing an

input saturation provides a wider stability region.
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Figure 8.2: Position error (y component) for di�erent controller parameters. k2 seems to

be mainly responsible for the oscillating behaviour and needs a su�ciently hight k3 for

dampening. The best result was achieved with k1 = 0.5, k2 = 0.1 and k3 = 0.8.

Controller dynamics analysis

For approximating a good starting point of the controller parameters a simulative study

was made. Several parameter combinations were tested and the resulting position error

can be seen in �gure 8.2. It turned out that k2, correcting lateral errors, has to be chosen

small since it easily leads to oscillations, even on straight trajectories. Here the factor

k3 dampens these oscillations and has be be chosen su�ciently high. When set too high

(k3 > 1) it also leads to oscillations due to the overshoot it is generating. k1 appears to be

a very robust parameter but achieved the best results around a value of 0.5.

8.1.2 Dynamic state feedback

Like the PI controller setup, position and orientation estimation is done by EKF 12. Fur-

thermore the �atness-based controller needs vertical and horizontal speed vx and vy as

input. These are determined either by EKF 9 or numerical di�erentiation with running

average �ltering.

Also in this case we �rst try to evaluate the delay in�uence on the closed-loop stability.
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Delays and Stability

Also for the second controller simulations with constant increasing delays were performed

for both models and can be seen in �gure 8.3.

Interestingly the ideal model shows signi�cant errors without delay, perhaps resulting from

the large sampling interval of 150ms. For delays > 0 a small error can be observed which

is rising with increasing delays. For the ideal model the critical delay could be identi�ed to

approximately 0.15 whereas for the extended model a delay of 0.12s leads to signi�cantly

large errors. In contrary to controller 1 destabilization here not emerges in form of oscilla-

tions but a growing lateral deviation. This also explains why the saturation here shows a

negative e�ect on the performance.

Controller dynamics analysis

The two di�erent methods for velocity estimation were compared in �gure 8.4. The com-

parison was performed for two di�erent controller dynamics which both showed only a

slight dominance of the di�erentiation. In both cases the resulting controller error was

comparable but due to the additional observer dynamics the EKF appears to cause bigger

oscillations.

Furthermore various controller dynamics were tested on the extended model (�g. 8.5).

Eigenvalues of -0.6 seemed to be critical as higher values lead to growing errors and os-

cillations. Here the strong corrections combined with delays lead to overshoots. The

combination of -0.1/-0.2 and -0.3/-0.4 show the smoothest movement but lead to signi�-

cant overshoot due to the slow controller reaction. The combination -0.1/-0.5 turned out

to be the best parameter set.
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Figure 8.3: Delay in�uence on closed-loop system with controller 2. For the ideal model

the controller can handle much higher delays than controller 1 (>0.16s). Applied to the

extended model it shows severe deviation for delays > 0.1s. Here the system isn't getting

unstable but reacts with a big lateral error. Furthermore saturating the input shows no

positive e�ect.

Figure 8.4: Error of the closed-loop system using di�erentiation and EKF 9 for velocity es-

timation. For the slower controller dynamics (left) almost no di�erence is visible. However

for higher controller dynamics di�erentiation appears to produce less error, supposably due

to it's faster convergence.
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Figure 8.5: Position error (y component) for di�erent error dynamics. Error dynamics with

one λ < −0.4 seem to reduce the error signi�cantly. For one λ = −0.6 and smaller the

system begins to oscillate. The best parameter set seems to be λ1 = −0.5 and λ2 = −0.1.

8.2 Real experiments

8.2.1 PI controller

Parameters determined by simulations turned out to be a good starting point for practical

experiments. Only the factor k2 had to be set bigger (≈0.3-0.4). A small integral part for

the lateral deviation seemed to compensate for static lateral errors.

Compared to simulation the oscillations were less severe supposably due to the speed limits

and slip e�ects. Figure 8.6 shows two example results compared to the simulation. The

second parameter set shows a better performance and less oscillations. Also the initial

error is compensated with 2 overshoots. The second parameter set performs better than

the simulation but shows signi�cant overshoots in some situations.

8.2.2 Dynamic state feedback

Also for controller 2 experiments were performed. Figure 8.7 shows results for two di�er-

ent trajectories, the left one was chosen very smooth whereas the right trajectory includes

many tight turns and varying curvature.

In the experiments the maximum stable controller dynamics were identi�ed at eigenvalues

of -0.5/-0.4. Furthermore di�erentiation turned out to be very critical in the initial phase
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Figure 8.6: Experimental results with controller 1. Compared to simulation results with

equal controller parameters, the real system produces less error. Especially set 2 shows

only slight oscillation around the trajectory.
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Figure 8.7: Experimental results for periodic and non-periodic trajectories with controller

2. Again the real system performs better than the simulated system. Using controller 2 the

initial oscillations of the EKFs in some cases lead to a high initial overshoot. As trajectory

1 (left) is much smoother here a better performance can be observed.

and often lead to extreme overshoots (see left; set 1) that destabilized the closed-loop sys-

tem.

The constant lateral deviation observed in simulation for these controller dynamics couldn't

be veri�ed (�g. 8.7 left). Especially the second parameter set with an EKF for velocity

estimation showed a very good performance despite a signi�cant initial error.

For the second trajectory the best performance was reached in experiments 1 and 3. In

experiment 1 a severe overshoot because of initial EKF oscillation was observed. In exper-

iment 3 a faster controller dynamic and di�erentiation for velocity estimation was tested

and also performed very good. The initial error was compensated much faster and only

slight deviations from the reference appeared. Only in one case a small overshoot was

observed. Here again the big lateral error appearing in the simulation didn't occur.

8.3 Pathsearch experiements

To test and demonstrate the path-search algorithm discussed in chapter 6.2.2 some experi-

ments with marked obstacles were made. Therefore plane obstacles of di�erent shapes were
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made by green paper and positioned in the vision �eld. Then the path search algorithm

was started and tried to determine the shortest reachable path from the robots position to

a given end position.

Here working with natural or interpolation splines turned out to be critical as the resulting

curves are to tight what causes to high rotational speeds. As a consequence the reference

track speeds increase above the possible maximum. Furthermore the rotation is too fast

for the controller dynamics such that a big overshoot occurs.

To avoid these tight curves, smoothed splines were used und parameterized for creating a

trajectory as close as possible to the waypoints with su�ciently smooth turns. The results

of two tests can be seen in �gure 8.8.

Regarding the given system, the presented results showed a surprisingly good controller

performance and clear dominance of the non-linear controller. On the other hand problems

caused by delays and the slow controller dynamics get more severe for trajectories with

tight curves.

The mean speed with ≈ 3cm/s is not very fast but could not be increased more because

peak velocities were close to maximum. A further increase would generate a reference speed

above the saturation limit and thus cut the feedback. Moreover the delays' destabilizing

e�ects get more severe with rising speed.
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Figure 8.8: Experimental result for path search and trajectory control. The vehicle fol-

lowed a trajectory along the calculated path (top,left). The deviation from the reference

(top,right) was within a 1.5 cm range.



Chapter 9

Resumption and outlook

In course of the thesis presented in the previous chapters a control experiment was devel-

oped, using a Bluetooth-to-infrared adaptor developed at the Universidad Politecnica de

Valencia to establish a cascade trajectory control of a LEGO mindstorms vehicle. Therefore

a PID controller for the track speeds was implemented on the vehicle, whereas trajectory

planning and two more complex controllers supported by an Extended Kalman Filter are

running on a laboratory PC.

To accomplish this, adjustments for the �rmware were made to provide reliable velocity

measurements under consideration of the encoders systematic error. A tracked LEGO ve-

hicle was constructed and programmed to control its track speeds and communicate with

a PC via Bluetooth. Here simulation was used for searching PID parameters, supported

by approximated friction and error modells.

Further �rmware adjustments and a physical separation of the two infrared channels were

made to achieve su�ciently fast sampling times for the measurements. For additional

measurement of the vehicles position a JAVA image processing framework was created to

detect a marker on the vehicle with a webcam. To transform the image data to real-world

coordinates a calibration algorithm and GUI was developed in MATLAB.

For establishing trajectory control several types of EKFs were tested and evaluated sup-

ported by simulation. It lead to the awareness that the EKF based on the most simple

kinetic model delivers the best results. Also attempts to compensate the errors induced
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by transmission delays were tested, leading to slight improvements of the observer perfor-

mance.

Two controllers were tested in simulation and lab experiments with good results. Due to

the delays, performance in trajectories with sharp curves is problematic but smooth tra-

jectories could be passed with an error of less than 1.5cm at a mean speed of 2.5-3 cm/s.

The project was developed with the objective to use it for educational purposes, as

for example low-cost experiments in control engineering practicals. Therefore a framework

was created to be used by student groups easily. So with little time consumption students

can use the experimental setup to test their own controllers, image processing routines or

velocity controllers. Some possible tasks students can solve by using the presented setup

will be presented in the following.

Proposals for student labs

Preprogrammed movements with following error correction

A simple event-based system can be developed using preprogrammed basic move-

ments as 'turn' and 'move'. After preforming the action, the error has to be deter-

mined and corrected by a correction action. Here LNP can be used and interesting

tasks as model identi�cation (e.g. encoder-distance ratio) have to be done. Since

little knowledge about real-time control or control theory is needed this kind of work

is perfect for undergraduate courses.

Event based trajectory control

Using the same principle as in the previous proposal, but working with much smaller

intervals and including the error into the next movement, a kind of P/PI control can

be realized as a next step.

Realtime trajectory control

As demonstrated in this thesis real-time control experiments can be performed, too.

Student groups can develop and test di�erent kind of controllers and observers and
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have to deal with high uncertainties and delays. This kind of work is adequate for

courses in advanced control engineering and mobile robotics.

Static collision avoidance

As also demonstrated here, trajectory planning can be combined with obstacle avoid-

ances. Here again image processing on a less time-critical but perhaps more precise

level can be the objective. Furthermore di�erent kinds of path-search algorithms can

be tested.

Dynamic collision avoidance

Broadening the previous problem to moving obstacles again leads to more time-

critical and predictive algorithms and may be a problem formulation in (advanced)

mobile robotic courses.

Time-critical image processing algorithms for position detection

In signal or image processing practicals simple but e�ective algorithms for position

detection of the vehicle can be developed.

Robust velocity or position PID control for systems with high uncertainties

PID control as a typical problem in control engineering can be trained here on a

very noisy systems with problematic measurements. This also is adequate for basic

control engineering courses.

Moreover some projects can be proposed to enhance the described system or its abilities.

Proposals for further works or projects

Separation of the IR channels

By extending the BT adaptor to two IR channels with di�erent frequencies the tube

can be made redundant and sporadic signal noise can be reduced.

Path search

For path search alternativ methods can be implemented and tested. Furthermore the

presented method can be extended to continuous sampling and a followed distance
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veri�cation as in the presented method the spline function may get too close to the

obstacle such that the vehicle may collide while turning.

Camera calibration

Camera calibration can be automated with an algorithm for searching the calibration

pattern automatically. This will need further image processing techniques as edge

detection and following for instance.

Interactive systems

The system can be extended to multiple vehicles which demands a certain level of

interaction. Agent systems can be used to achieve this and perform common tasks

as for example area sweep or team games.

This thesis showed that also with 'low quality' and low-cost equipment as LEGO Mind-

storms serious control experiments can be realized. Especially the new Mindstorms gen-

eration 'NXT' with better sensors should widen the range of possibilities a lot. Thus this

provides a cheap and interesting way to bring a little more practise into university everyday

life and motivate students. I hope a lot of students will enjoy working with my experiment

buildup and thereby learn much about control systems.
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CRC-Example

A.0.1 a worked out calculation
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Appendix B

Controller implementation

Figure B.1 shows the Simulink plan used for the real-time control. The MATLAB function

getWebcamData and getRCXData used the Java clients to obtain the received data. The

webcam data then is processed further to get the real world coordinates by using the

transformation matrix MT.

For preventing Simulink to run as fast as possible and in realtime a freeware tool called

RTBlock (XXX source) was used. This tool can be set into the plan like any Simulink

block and parameterized with priority and sample time.

For sending the reference speed to the vehicle a UPD-block, included in the MATLAB

xPC-Toolbox was used. First the data has to be packed in the corresponding form (here

the signed bytes) into a UDP datagram. Then it is send by the UDP-sender block to the

declared IP address, the address of the PC running the JAVA RCXServer class.
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Figure B.1: blabla
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