UNIVERSIDAD
POLITECNICA
DE VALENCIA

Local Protection in Linux Systems

Apellidos, nombre

{Departamento

|Centro

Terrasa Barrena, Andrés (aterrasa@dsic.upv.es),
Espinosa Minguet, Agustin (aespinos@dsic.upv.es)

Dpto. de Sistemas Informdticos y Computacién|

E. T.S. de Ingenieria Informdtical

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

1. Key Concepts

This document introduces the fundamentals of local protection in Unix/Linux systems,
which is based on a few basic abstractions and mechanisms:

e The system incorporates two abstractions in order to identify and authorize
the people (or users) that can log in to use the system: user and group ac-
counts.

* The system stores some protection attributes in any running process and in
any system resource (which, in Unix, it always refers to a file).

* The system enforces some protection rules which confrol the actions each
process is allowed to do over each file, depending on the actual protection
attributes of the particular process and file involved.

The system administrator is the person in charge of configuring the system in such a way
that the right people can use the system in the right way. In order to do so, the adminis-
frator needs not only to understand the abstractions and mechanisms above, but also
to effectively use the specific system tools available for this configuration. In the case of
Unix/Linux, these tools are normally system commands.

2. Objectives

After reading this article, students will be able to:

Identify the main features of user and group accounts in Unix systems, includ-
ing the files in which they are stored and the commands to manipulate them.

» List the protection aftributes of processes and resources (files) in Unix systems
and identify which of them participate in the local protection mechanisms.

e Understand the protection rules in Unix systems and relate them to the corres-
ponding system (shell) commands; identify which of these rules are specific of
RedHat-based systems.

* Use the right protection commands to configure a RedHat-based system ac-
cording to some specific profection requirements.

3. Infroduction

Local protection is a topic in System Administration, which is a knowledge area inside
Computer Science. The aim of local protection is to configure a computer (or more
specifically, the computer’s operating system) in order to ensure that the computer is
used by the right people and in the right way; or, more specifically, that: (1) only certain
people (or users) can access the computer, and (2) when any user is working with the
computer, this user cannot compromise, either accidentally or intentionally, the integrity

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

of any other user's work or the system itself.

In this context, the term “local” is used to denote that, despite the fact that the com-
puter may be connected to other computers, the rules by which protection is enforced
are local to that computer (i.e., they do noft involve others). This is the most basic case
of protection, and it is key to understand other types of protection rules that may be
applied to many computers at once (which are outside the scope of this document).

In particular, this document infroduces the local protection rules of Linux systems. Linux is
an open-source operating system that belongs to a family of systems generally called
Unix (please note that Unix also refers to a particular member of this family, but in this
case, the registered mark UNIX® should be used instead). In this context, most of the
concepts of this document not only apply to Linux but to the general Unix family, while
some others are specific to Linux and, particularly, to some Linux distributions based on
RedHat Linux (such as RedHat Enterprise, CentOS Linux, Fedora, etc.).

4. The User Table

The valid users of a Unix system are registered in the / et ¢/ passwd file. Every line corres-
ponds to a single user and describes the user's attributes. Within this line, attributes are
separated by the "' character. For example, given the following line of the /
et ¢/ passwd file, Table 1 below describes each of its elements:

user 1: 1Zt oHWEykKW eCLHz SUi gg5KAEy: 1002: 2000: User 1:/hone/ user 1:/bi n/ bash

Element Description

userl User name (or login name)

$1$7t oHWEykKW eCL Encrypted password

Hz SUi gg5KAEyY

1002 User IDentifier (UID)

2000 Group IDentifier. This is the identifier of the primary
group of the user

User 1 Description of the user

/ hone/ user 1 User's home (private) directory

/ bi n/ bash User's shell (initial program)

Table 1. Elements in the User Table.

There are several special users which are built-in in the system, normally the users whose
UIDs are below 500. Among these users, there is one called r oot , whose UID is 0. This
user is the system administrator, usually known as the superuser. Other special users are
used to associate some access level to certain system services, such as the users mai |
and news. Finally, another user that should be mentioned is the user nobody, which is
normally used to represent network connections carried out by unknown or anonymous

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

users. All these user accounts are created during the installation of the system and
should not be modified.

5. The Extension of the User Table

In addition of the user table described in the previous section, most of the current Unix
systems use another table, contained in the / et ¢/ shadowfile, in which the system stores
additional information of users.

Each line in this second file corresponds to one in the / et ¢/ passwd file, and the inform-
afion that it contains is now described, following the example above:

user 1: 1Zt oHWEykKW eCLHz SUi gg5KAEy: 10989: 0: 99999: 7: - 1: - 1: 134538436

Element Description

userl User name (or login name)
$1$7t oHwEykK/ eCLH Encrypted password

zSUi gg5KAEy

10989: 0: 99999: 7: - Information about the password age
1:-1:134538436

Table 2. Extension of the user table

When the system uses this new table, passwords are not stored in the / et ¢/ passwd file
but in the / et c/ shadow file. In this case, the password element in the / et ¢/ passwd file
is substituted by the character 'x'. Since / et c/ passwd must be readable by every user
in the system, whereas / et ¢/ shadowis only readable by r oot , the use of shadow pass-
words improves system security, preventing users from accessing the encrypted pass-
words in the system.

The information about the password expiration (or age) in the / et ¢/ shadow file is ex-
pressed in days, but ifs inferpretation is difficult by reading it directly from the file. For this
reason, it is normally recommended to modify and consult this information by using spe-
cific administrative tools, such as the passwd or chage commands, or some graphical
applications.

6. The Group Table

In a Unix system, groups are registered in a file named / et ¢/ gr oup. Each line in this file
corresponds to a single group and describes the group's attributes. In each line, attrib-
utes are separated by the " ' character. The following example describes each of these
attributes:

proj 1:: 65534: user 1, user 2, user 3

e

A UNIVERSIDAD
\ ?ﬁﬁ:}] POLITECNICA
a” DE VALENCIA

o=

Element Description
proj1 Group name

Encrypted password (empty in the example). The use
of this password allows a user to change his/her
primary group. However, this functionality is no longer
in use in modern systems

65534 Group IDentifier (GID)

user 1, user 2, user 3 Comma-separated list of users belonging to that group

Table 3. Elements in the Group Table

As it can be deduced from the example, a given user can be on the list of more than
one group, that is, a user can belong to several groups. Among all these potential
groups, the one which GID appears on the user's line in the / et ¢/ passwd file is called
the user's primary group. The rest of groups that the user may belong to are called the
user's supplementary groups.

In the same way that it was explained for users above, there are certain groups with a
special meaning for the system. These built-in groups have a GID below 500. Analog-
ously fo the special users, these groups represent services, anonymous users, etc. There-
fore, they should not be modified.

7. Creating Users and Groups

In most Unix systems in the family called System V (including systems based on RedHat
Linux), the following commands can be used to manage users and groups: useradd,
userdel and usermod care used to create, delete and modify the characteristics of user
accounts; groupadd, groupdel, and groupmod are used fo create, delete and modify
the characteristics of group accounts; passwd is used to change the password of a user
account; and chage is used fo manage the password age of a user account.

Note

Detailed information about these or any other commands mentioned in this
document can be found by using the command man on a Linux terminal (e.g.,
man useradd).

Nowadays, the use of graphical tools that facilitate the administrative tasks (such as the
User Manager by RedHat) is becoming very common in modern Unix systems. However,
the use of commands is still considered by many administrators the native way of man-
aging Unix systems, and it is especially useful when the user or group management is
performed inside shellscripts (for example, when a large amount of users/groups has to
be created automatically).

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

8. Protection Attributes of Processes

The afttributes of a process that participate in the protection mechanism are the follow-
ing:

1. Identifiers of the process' owner user. In fact, every process has two different
versions of the user identifier, the so-called real version (or rUID) and the effect-
ive version (or eUID). The real version always corresponds to the user that cre-
ated the process. The effective version corresponds to the user on behalf of
which the process is executing, and it is the one used in the protection mech-
anism. In any given process, both identifiers are normally equal, except in the
case in which the executable file that the process is running has the so-called
SETUI D bit set (as explained later in this document).

2. ldentifiers of the process' owner group. In this case, the process also has a real
version (rGID) and an effective version (eGID) of the group identifier. The real
version always corresponds fo the primary group of the user that created the
process. The effective version corresponds to the group on behalf of which the
process is executing, and it is the one used in the protection mechanism.
Again, both identifiers are normally equal, except in the case in which the ex-
ecutable file that the process is running has the so-called SETA D bit set (as ex-
plained later in this document).

3. List of supplementary groups. This is the list of all the supplementary groups of
the user that created the process.

These attributes are assigned to the process in its creation and they are directly inher-
ited from its parent process. Every user logged in a Unix system has an attention process,
which can normally be a graphical desktop or a simple command interpreter or shell. In
any of both cases, this process is the parent of all the processes that the user may cre-
ate. This initial desktop or shell process does not get its attributes by inheritance, but
they are assigned by the system when the user logs in by using his/her login name and
password. In particular, the rUID and rGID aftributes are read from the user table (/
et ¢/ passwd) while the list of supplementary groups is built by reading the group table
(I et ¢/ group). The attributes eUID and eGID are initially assigned from their respective
real versions. In this context, there is an interesting command named id, that displays alll
these attributes for the current user.

9. Protection Attributes of Files
The attributes of a file that participate in the protection mechanism of the system are
the following:

1. Owner Ul D. Identifier of the user that is the owner of the file.

2. Owner @ D. Identifier of the group that is the owner of the file.

e

A UNIVERSIDAD
. ;mﬁifl POLITECNICA
ks’ DE VALENCIA

o=

3. Permission bits. A total of 12 bits that express the operations that are allowed on
the file depending on the process that accesses the file. Table 4 below shows
the meaning of every one of these bits.

Bit Meaning

11 SETUI D

10 SETGA D

9 Sticky

8,7,6 Read, write and execute for the owner.

54,3 Read, write and execute for the group.

2,1,0 Read, write and execute for other (i.e., the rest of)
users.

Table 4. Meaning of the permission bits in Unix

The meaning of the "read", "write" and "execute" bits is different depending on the type
of the file in which they are set. For regular files, they have their evident meaning (they
allow users to read, modify and run the file, respectively). Obviously, the execution bit
only makes sense if the file is an executable binary or contains a shellscript.

In a directory, the meaning of these three bits is the following:

1. Read. Allows listing the contents of the directory.

2. Wirite. Allows the creation, deletion or renaming of any file or directory inside
the directory in which this bit is seft.

3. Execute. Allows using the name of the directory in which the bit is set fo form a
path name. That is, the directory can be used to name a file which path con-
tains the directory.

From all the above, it can be derived that there is not an specific bit controlling the de-
letion of files/directories in Unix. This permission is actually controlled by means of the
"write" bit in the parent directory of the file/directory that we want to delete. In some
Unix systems (like, for example, RedHat-based Linux distributions), the sti cky bit is used
precisely to modify this rule controlling the deletion of files: if this bit is set in a directory,
then a user can only delete a file inside it if the user is the owner of that file. The SETUI D
and SETd D bits are explained in detail later in this chapter.

The modification of the protection attributes of files can be performed by means of spe-
cific commands: the owner Ul D can be changed by executing the command chown.
The owner A D can be changed by executing the command chgrp. The permission bits
can be changed by running the command chmod.

10. The Basic Protection Rules

The basic protection rules are activated when a process noftifies the system that it wants

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

fo use a given file. The process also notifies which kind of operation(s) it wants to per-
form over the file: reading, writing or executing. According fo this, the system always
applies the following rules:

e |f the eUl D of the process is equal to 0, then the permission is granted (this is
the case in which the process belongs to r oot . Otherwise...

* If the eUl D of the process is equal to the owner Ul D of the file, then the permis-
sion is granted if the operation is allowed in the group of bits 6 to 8 (those cor-
responding to the file owner). Otherwise...

e |If the ed D of the process or any of the process' supplementary groups is
equal to the owner A D of the file, then the permission is granted if the opera-
fion is allowed in the group of bits 3 to 5 (those corresponding to the group).
Otherwise...

* In any other case, the permission is granted if the operation is allowed in the
group of bits 0 to 2 (those corresponding to the rest of users).

It must be noted that the system applies one rule only, precisely the one that first
matches the process attributes. In other words, the system determines first which group
of three bits has to apply and then grants (or denies) the operation depending on the
operation type and the state of these three bits.

11. Change of the Protection Atiributes of Files

Unix establishes some specific profection rules that control the modification of any of
the protection attributes of a file, having that these modifications are considered differ-
ent from writing operations on the file, and therefore cannot be granted/denied by
checking the permission bits of the file.

In particular, the rules controlling the modification of such protection attributes are now
defined:

1. Permission bits change. A process can modify the permission bits of a file only if:

e The process' eUl Dis equal to 0 (i.e., the process belongs to r oot), or else
* The process' eUl Dis equal to the owner Ul D of the file.

(That is, only root and the owner of a file can modify the file's permission bits.)
2. Owner change. Only the superuser can change the owner of a file.
3. Group change. A process can modify the owner group of a file only if:

* The process' eUl Dis equal to 0 (i.e., the process belongs to r oot), or else

e The process' eUl Dis equal to the owner Ul D of the file (the user performing the
change is the file's owner) and the new owner G D corresponds to one of the
user's groups.

ey

@ UNIVERSIDAD
i ?ﬁﬁ:}] POLITECNICA
==/ DE VALENCIA

o=

12. The SETUID and SETGID Bits in Executable Files

These two bifs are used to allow a program fo run under the privileges of a user which is
different from the user that is executing the program. They work like this:

e [If the executable file has the SETUI D bit set, the eUl D of the process that runs
the file is made equal to the file's owner Ul D.

e If the executable file has the SETA D bit set, the ed D of the process that runs
the file is made equal to the file's owner G D.

Normally programs like these belong to the superuser, and they allow regular users to
run privileged tasks under certain given conditions. The ability of a user to change his/
her own password is an example of use of this fechnique.

The existence of these program files in the system must be carefully supervised by the
superuser. Many of the security attacks to Unix systems use these files to try to break the
system security.

13. The SETGID Bit in Directories

The utilization of the SETGA D bit in directories is oriented towards facilitating the work of
a group of users in a collection of common files and directories. The mechanism works
like this: if a directory D has the SETA D bit set, then:

* if afile is created inside D, the owner G D of the file is made equal to the own-
er@ DofD.

e if a directory is created inside D, the owner G D of the new directory is made
equal fo the owner @ D of D, and the new directory has its SETA D bit set.

It can be seen that, in essence, it is an inheritance mechanism. When the SETA D bit is
not set in a directory, any file/directory created inside it gets its owner @ D from the e@ D
of the process that creates it. However, when the SETA D bit is set, all newly created
files and directories will have a common owner G D, even if they are created by differ-
ent users. By combining this fact with an appropriate set of initial permissions, then these
users will be able to read and modify all such files by default.

14. The User Mask

The tools in Unix that create files use by default the protection word rwrwrw when
creating regular (non-executable) files, and r wxr wxr wx when creating directories or ex-
ecutable files. It can be seen that in each case, all the possible permissions (with some
meaning) are set by default.

In order to modify this behavior, every user can specify which bits should not be set
when creating new files and directories, by means of the user mask (or file creation

ey

AR UNIVERSIDAD
¢ ;mﬁf'.' POLITECNICA
ks’ DE VALENCIA

o=

mask). Any user can set his/her own mask with the command umask. Every bit which is
set in the user mask is a bit that will be unset in new files or directories created by the
user (e.g., a mask equal to 022 would unset the "write" bits for the group and others).

The administrator is responsible of assigning a reasonable default user mask to any user.
This can be easily achieved by using the file / et ¢/ profi | e, which customizes the initial
environment of users when they log in, independently of the shell they use. However, in
RedHat-based systems, which use bash as the initial shell by default, the initial user mask
of users has to be set in the / et ¢/ bashr c file.

15. The Private Group Strategy

This strategy is used by default in RedHat-based Linux distributions and it is oriented to-
wards making the assignment of users to groups more flexible and rational. The keys of
this strategy are the following:

e Creating a private group for each user (this group is named exactly as the
user) and making this group to be the user's primary group.

¢ Grouping users by using supplementary groups only.

* Combining the use of the SETA D bit and a supplementary group in those dir-
ectories where some given users have to share files/directories.

e Using each user's private group in his/her home directory.
* Assigning 00X as the default user mask for every regular user in the system;

that is, all of the user and group bits set, and whatever the superuser thinks
appropriate for the rest of users.

16. Concluding Remarks

This document has presented the fundamentals of local protection in Linux. After read-
ing it, you should be capable of creating and maintaining users and groups, and to ef-
fectively configure the permissions of the system in order fo create a safe and product-
ive environment on which several users can work, either in common or on their own.

Among the tools which are available to the system administrator to configure the sys-
tem protfection, this document has infroduced a series of system commands. The use of
system commands is considered the native way of managing Linux systems, and it is
very useful when the administrator is performing configurations over great amounts of
data (users, groups, files), because commands can be easily embedded in shellscripts.

17. Bibliography

[1] Red Hat Enferprise Linux, System Administration Guide (Red Hat, Inc.). Available in:
http://docs. redhat. conf docs/ en-US/ Red_Hat Enterprise_Li nux/index. htmn

	Local Protection in Linux Systems
	1. Key Concepts
	2. Objectives
	3. Introduction
	4. The User Table
	5. The Extension of the User Table
	6. The Group Table
	7. Creating Users and Groups
	8. Protection Attributes of Processes
	9. Protection Attributes of Files
	10. The Basic Protection Rules
	11. Change of the Protection Attributes of Files
	12. The SETUID and SETGID Bits in Executable Files
	13. The SETGID Bit in Directories
	14. The User Mask
	15. The Private Group Strategy
	16. Concluding Remarks
	17. Bibliography

