
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/139654

Burgos-Simon, C.; Cortés, J.; Debbouche, A.; Villafuerte, L.; Villanueva Micó, RJ. (2019).
Random fractional generalized Airy differential equations: A probabilistic analysis using
mean square calculus. Applied Mathematics and Computation. 352:15-29.
https://doi.org/10.1016/j.amc.2019.01.039

https://doi.org/10.1016/10.1016/j.amc.2019.01.039

Elsevier



Random fractional generalized Airy differential equations: A
probabilistic analysis using mean square calculus

C. Burgosa, J.-C. Cortésa, A. Debboucheb,∗, L. Villafuertec, R.-J. Villanuevaa

aInstituto Universitario de Matemática Multidisciplinar,
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Abstract

The aim of this paper is to study a generalization of fractional Airy differential equations whose
input data (coefficient and initial conditions) are random variables. Under appropriate hypothe-
ses assumed upon the input data, we construct a random generalized power series solution of the
problem and then we prove its convergence in the mean square stochastic sense. Afterwards, we
provide reliable explicit approximations for the main statistical information of the solution pro-
cess (mean, variance and covariance). Further, we show a set of numerical examples where our
obtained theory is illustrated. More precisely, we show that our results for the random fractional
Airy equation are in full agreement with the corresponding to classical random Airy differential
equation available in the extant literature. Finally, we illustrate how to construct reliable ap-
proximations of the probability density function of the solution stochastic process to the random
fractional Airy differential equation by combining the knowledge of the mean and the variance
and the Principle of Maximum Entropy.

Keywords: Caputo fractional derivative, Random analysis, Airy differential equations, Mean
square calculus, Stochastic simulations, Principle of Maximum Entropy.

1. Introduction

Differential equations (DEs) have demonstrated to be useful mathematical tools to model
complex problems in different scientific realms such as Physics, Chemistry, Economics, Epi-
demiology, etc. Here we want to underscore two different variations of the classical formulation
of DEs that have been proposed to get a better understanding of real phenomena via their math-
ematical modelling. The first approach is based upon fractional differential equations (FDEs)
while the second is formulated by random differential equations (RDEs).
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On the one hand, FDEs are generalizations of DEs to an arbitrary order of the involved
derivatives. These kind of equations have been applied to describe the dynamics of complex
phenomena related, for example, to visco-elastic materials in Engineering, subdiffusive processes
in Physics, epidemics in Medicine, etc. The success of FDEs to deal with this type of problems
lies in their ability to account for memory effects [1, 2, 3]. Some recent papers dealing with
analytic and numerical techniques to study interesting problems about FDEs can be found in
[4, 5, 6, 7, 8, 9], for example.

On the other hand, RDEs are DEs whose formulation involves uncertain information in
their data. Examples of RDEs are those whose coefficients, unhomogeneous term and/or ini-
tial/boundary conditions are random variables and/or stochastic processes. The formulation of
RDEs appears in a natural manner when considering uncertainty stemming from the measure-
ments required to set the values of their data and the complexity of the phenomena under study
as well. It is important to point out that there exist different approaches to deal with the rigor-
ous study of RDEs. These approaches are heavily related to the type of stochastic convergence
used to define the derivative involved in the formulation of the corresponding RDE, namely,
mean square and almost surely convergences (which are strong-type stochastic convergences)
and probability and distribution convergences (which are weak-type stochastic convergences).
In general, it is better to establish results for RDEs using mean square or almost surely conver-
gences rather than using weaker stochastic convergences since strong convergence entails weak
convergence. Some interesting contributions dealing with theory and applications to RDEs can
be found in [10, 11, 12, 13, 14], for instance. Throughout our subsequent study, we will use
mean square stochastic convergence only because of its key properties that will be apparent later.
Accordingly, it is also worth pointing out that relevant results belonging to the deterministic frac-
tional calculus have been recently extended to the stochastic setting taking advantage of the mean
square stochastic convergence and its key properties [15]. These results include the definition of
the random mean square Riemann–Liouville integral and of the random mean square Caputo
derivative as well as their characterizations in terms of the associated correlation function.

In this paper, we combine FDEs and RDEs to study an important class of random fractional
differential equations (RFDEs) that generalizes the classical Airy-type differential equations both
in the random and in the fractional senses. This fractional differential equation has been studied
in the deterministic setting in reference [2, p.232] and we will extend the analysis to the random
framework. Specifically, we will deal with the following random fractional generalized Airy-type
initial value problem (IVP)

(
C Dα

0+ Y
)

(t) − B tβY(t) = 0, t > 0, n − 1 < α ≤ n, β > 0,

Y ( j)(0) = A j, j = 0, 1, . . . ., n − 1,
(1)

where (
C Dα

0+ Y
)

(t) :=
1

Γ(n − α)

∫ t

0
(t − u)n−α−1Y (n)(u)du (2)

is the mean square random Caputo fractional derivative of order α of the stochastic process Y(t)
(see [15] and references therein). Notice that if α = 2 and β = 1, then (1) becomes the classical
Airy differential equation with initial conditions A0 and A1. In our general setting to (2), n ≥ 1
is a fixed integer such that n = −b−αc being b·c the floor function. The initial conditions A j,
j = 0, 1, ..., n − 1, and coefficient B are assumed to be independent real random variables defined
in the Hilbert space (L2(Ω), 〈·, ·〉). For the sake of clarity, we recall that the elements of L2(Ω)
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are X : Ω −→ R such that E[X2] < +∞, being E[·] the expectation operator, and the inner
product is defined by 〈X,Y〉 = E [XY], X,Y ∈ L2(Ω). Therefore, ‖X‖2 = +

√
〈X, X〉 = (E[X2])1/2.

This norm is usually termed the mean square norm and from it one infers the so-called mean
square convergence. Elements of space L2(Ω) are termed second-order random variables [10].
As usual, the triplet (Ω,F ,P) denotes a common underlying complete probability space for the
random variables A j, j = 0, 1, . . . , n − 1 and B. Notice that every random variable with finite
variance belongs to L2(Ω). This class of random variables is met in the most of physical problems
involving randomness where usually the variability (variance) is finite. We also recall that given
T ⊂ R, then Z(t) is called a second-order stochastic process if Z(t) ≡ {Z(t) : t ∈ T } is a second-
order random variable for every t ∈ T . Naturally, Z(t) is said to be mean square differentiable
at t0 ∈ T ⊂ R if limh→0

∥∥∥ Z(t0+h)−Z(t0)
h − Z′(t0)

∥∥∥
2 = 0, and in that case, the second-order random

variable Z′(t0) is called its mean square first derivative at t = t0. Higher-order mean square
derivatives are defined in an analogous manner. Throughout this paper, the derivatives will be
denoted as Z(m)(t) or dmZ(t)

dtm . In [10] one presents a quite extensive overview of the mean square
random calculus including its main operational rules to rigorously handle RDEs.

The mathematical study of some classes of RFDEs using mean square stochastic calculus
has been presented in some recent contributions [15, 16, 17, 18, 19, 20]. It must be also high-
lighted other recent interesting contributions to deal with RFDEs using different approaches like
differential inclusions [21] and generalized polynomial chaos [22].

The Airy differential equations and its related functions [23] were shown best applicability in
several fields such as fluid mechanics, elasticity, quantum physics and so on. It has been studied
separately in the context of deterministic FDEs [24, 25, 26] and in the RDEs [27], however to the
best of our knowledge, its mathematical study combining both fractional and random calculus,
i.e., treating it as a RFDEs has not been undertaken yet, which is the motivation of this scientific
contribution.

The main goal of this article is to establish conditions on random variables A j, j = 0, 1, ..., n−
1, and B in order to construct a mean square solution to problem (1) in the following form

Y(t) =

n−1∑
j=0

Y j(t) with Y j(t) =

∞∑
m=0

Xm, jtγm+ j. (3)

In the above expression, Xm, j is a sequence of second-order random variables to be determined,
and γ := α + β. Observe that γ > n − 1 because n − 1 < α ≤ n and β > 0. As the solution of
random IVP (1) is a stochastic process, an important target is to compute its statistical properties
as well. Specifically, as our study is based on mean square random calculus corresponding to
L2(Ω), we will construct approximations for the two first statistical moments (the mean and the
variance) of the solution stochastic process Y(t). At this point it is worth pointing out that in this
way we will give our results in the biggest Lp(Ω)-type Lebesgue space, since it is known that
Lq(Ω) ⊂ Lp(Ω), 1 ≤ p ≤ q ≤ ∞, and taking p = 2 is guaranteed the existence of variance (or
equivalently of randomness). As an interesting application of obtaining approximations of the
mean and of the variance, we take advantage of Principle of Maximum Entropy to construct the
probability density function of the solution.

This paper is organized as follows: In Section 2, first we construct a random generalized
power series solution of the form (3) to the random fractional IVP (1) and then we provide
sufficient conditions on the coefficient B and the initial conditions A j, 0 ≤ j ≤ n − 1, in order
to guarantee the mean square convergence of that random series. Section 3 is addressed to
compute the main statistical properties of the solution stochastic process, namely, the mean, the
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variance and the covariance. Section 4 is devoted to show a set of numerical examples where
our theoretical results are illustrated. Section 5 shows, by means of a detailed example, how to
construct reliable approximations of the probability density function of the solution stochastic
process to the random fractional Airy differential equation by combining the knowledge of the
mean and of the variance together with the Principle of Maximum Entropy. In this manner we
are able to provide a full probabilistic description of the solution stochastic process at each time
instant. Our conclusions are shown in Section 6.

2. Constructing the solution stochastic process

As it will be seen right now, we will obtain the solution to the random fractional IVP (1)
following a constructive reasoning. This process will require to legitimate certain operational
rules, in the mean square sense. For the sake of clarity, we start this section by rigorously
proving these rules. To this purpose, we will apply [10, property (4.126), p. 96] to calculate
the mean square derivative of the product of a differentiable deterministic function and a mean
square differentiable stochastic process, and [28, Th. 3.1, p. 1260] to differentiate a series of
mean square stochastic processes.

Our first step will be to rigorously legitimate that the first mean square derivative of the
stochastic process Y j(t), defined in (3) for t > 0, is given by

d
dt

[
Y j(t)

]
=

∞∑
m=0

Xm, j
d
dt

[
tγm+ j

]
, j = 0, 1, . . . , n − 1. (4)

Indeed, take t0 > 0 fixed and for each j, let Um(t) = Xm, jtγm+ j being Xm, j ∈ L2(Ω). Then applying
[10, property (4.126), p. 96] to f (t) = tγm+ j and X(t) = Xm, j, one gets that Um(t) is mean square
differentiable at t0 being d

dt [Um(t)] |t=t0 = Xm, j
d
dt

[
tmγ+ j

]
|t=t0 its mean square derivative for every

m ≥ 0. Moreover, if Xm, j ∈ L2(Ω) then clearly the sequence of stochastic processes {Um(t) :
m ≥ 0} is mean square continuous at t0. Take T an interval in R+ and define U(t) =

∑
m≥0 Um(t).

If this latter sum is mean square convergent and
∑

n≥0 U′m(t) converges uniformly in the mean
square sense for each t ∈ T , then by [28, Th. 3.1, p. 1260] it is guaranteed that (4) holds. At this
point is important to underline that we have implicitly assumed that Xm, j ∈ L2(Ω). Later we will
compute explicitly coefficients Xm, j in terms of A j, j = 0, 1, ..., n − 1 and B, and then assuming
appropriate hypotheses on input data we will check that Xm, j ∈ L2(Ω). Following an analogous
reasoning, it can easily be shown that

dn

dtn

[
Y j(t)

]
=

∞∑
m=0

Xm, j
dn

dtn

[
tγm+ j

]
, n ≥ 1, (5)

being n a fixed positive integer.
Using the fractional derivative of the power function tν given by [29, Example 3.1]

C Dα
0+ tν =


tν−α Γ(ν+1)

Γ(ν+1−α) if ν > n − 1,

0 if ν = 0, 1, ..., n − 1,
n = −b−αc, α > 0, (6)

4



and (5), one derives(
C Dα

0+ Y
)

(t) =

C Dα
0+

n−1∑
j=0

Y j

 (t)

=

n−1∑
j=0

(
C Dα

0+ Y j

)
(t)

=

n−1∑
j=0

(
1

Γ(n − α)

∫ t

0
(t − u)n−α−1 dn

dun

[
Y j(u)

]
du

)

by (5) =

n−1∑
j=0

 1
Γ(n − α)

∫ t

0
(t − u)n−α−1

∞∑
m=0

Xm, j
dn

dun

[
uγm+ j

]
du


=

n−1∑
j=0

 ∞∑
m=0

Xm, j
1

Γ(n − α)

∫ t

0
(t − u)n−α−1 dn

dun

[
uγm+ j

]
du


=

n−1∑
j=0

 ∞∑
m=0

Xm, j
C Dα

0+ tγm+ j


by (6) =

n−1∑
j=0

∞∑
m=1

Xm, j
Γ(γm + j + 1)

Γ(γm + j + 1 − α)
tγm+ j−α

=

∞∑
m=0

n−1∑
j=0

Xm+1, j
Γ(γ(m + 1) + j + 1)

Γ(γ(m + 1) + j + 1 − α)
tγ(m+1)+ j−α.

Notice that when applying (5), we have used that γ = α + β > n − 1.
Hence, taking into account that γ = α + β, one obtains(

C Dα
0+ Y

)
(t) − BtβY(t) =

∞∑
m=0

n−1∑
j=0

Xm+1, j
Γ(γ(m + 1) + j + 1)

Γ(γ(m + 1) + j + 1 − α)
tγ(m+1)+ j−α

− Btβ
∞∑

m=0

n−1∑
j=0

Xm, jtγm+ j

=

∞∑
m=0

n−1∑
j=0

[
Xm+1, j

Γ(γ(m + 1) + j + 1)
Γ(γ(m + 1) + j + 1 − α)

− BXm, j

]
tγm+ j+β.

(7)

So, if we choose

Xm+1, j = BXm, j
Γ(γ(m + 1) + j + 1 − α)

Γ(γ(m + 1) + j + 1)
, m = 0, 1, . . .

in (7), it is guarantee that Y(t) defined by (3) will satisfy the random fractional differential equa-
tion

(
C Dα

0+ Y
)

(t)− BtβY(t) = 0. Taking into account that Y ( j)(0) = X0, j = A j for j = 0, 1, ..., n− 1,
the recursion for the sequence of coefficients Xm, j gives

Xm, j = BmA jGm, j, Gm, j :=
m∏

k=1

Γ(kγ + j + 1 − α)
Γ(kγ + j + 1)

> 0, m ≥ 0,

5



Table 1: Some important families of random variables that satisfy hypothesis H1.

Distribution p H η

Bounded 0 1 1
Gaussian ∼ N(0;σ2) 1/2 σ

√
2 σ

Exponential ∼ Exp(λ) 1 2/λ
√

2/λ
Weibull ∼We(a; b) 1/b a(2/b)1/b a

√
Γ(1 + 2/b)

where as usual we implicitly assume that
∏m

k=1 yk = 1 when m = 0. Therefore

Y(t) =

n−1∑
j=0

Y j(t) =

n−1∑
j=0

 ∞∑
m=0

BmA jGm, jtγm+ j


is a mean square solution of (1), provided that, for each j, the stochastic processes Y j(t) and diY j(t)

dti ,
i = 1, 2, ..., n are mean square convergent and mean square uniformly convergent on T , respec-
tively. In order to justify that these conditions fulfil, we will assume the following hypotheses
for the random inputs A j, j = 0, 1, 2, . . . and B:

H1: There exist constants η,H > 0 and p ≥ 0 and m,m0 integers such that

‖Bm‖2 ≤ ηH
m−1((m − 1)!)p, ∀m : m ≥ m0 ≥ 1.

H2: For every j, j = 0, 1, ..., n − 1, A j and B are independent random variables.

In Table 1, we collect some relevant families of random variables that satisfy hypothesis H1 by
indicating the value of involved parameters p,H and η. In particular, it is important to point out
that any bounded random variable satisfies H1, so in practice, any unbounded random variable
can be adequately truncated so that the truncated (hence bounded) random variable behaves
approximately as the original unbounded random variable, that is, approximately preserving its
main probabilistic information like mean, variance, etc. A way to do that, which is supported by
Markov-Chebyshev type inequalities, is to consider an interval with center the mean and radius
a multiple, say k > 0, of the standard deviation of the unbounded random variable [30, Ch. 5].
Taking k large enough, most of the probability mass is captured and the mean and standard
deviation of the original unbounded random variable are then approximated. Alternatively, one
can construct a truncated parametric distribution preserving a number of statistical moments
(mean, variance, etc.) so that the new (bounded) distribution approximates quite well the original
unbounded distribution, this approach is based upon the matching moment method [30, Ch. 5].

In the numerical examples that will be shown in Section 4, the random coefficient B will be
chosen from the distributions listed in Table 1.

As a consequence of hypotheses H1 and H2, one gets∥∥∥BmA jGm, jtγm+ j
∥∥∥

2 ≤ ηH
m−1((m − 1)!)p‖A j‖2Gm, jtγm+ j := δm, j(t), (8)

for j = 0, 1, . . . , n − 1, m ≥ 1 integer and t > 0. For every j fixed, we study the domain
of convergence of the infinite sum

∑∞
m=0 δm, j(t) by applying the ratio test. The approximation

Γ(x + 1) ≈ xxe−x
√

2πx as x→ ∞ will be used too. Recall that γ = α + β.

6



lim
m→∞

δm+1, j(t)
δm, j(t)

= lim
m→∞

Hmp Γ((m + 1)γ + j + 1 − α)
Γ ((m + 1)γ + j + 1)

tγ

= lim
m→∞

Hmp [
(m + 1)γ + j − α

](m+1)γ+ j−α e−((m+1)γ+ j−α)
√

2π((m + 1)γ + j − α)[
(m + 1)γ + j

](m+1)γ+ j e−((m+1)γ+ j)
√

2π((m + 1)γ + j)
tγ

= lim
m→∞

Hmp
[
(m + 1)γ + j − α

(m + 1)γ + j

](m+1)γ+ j−α (
1

(m + 1)γ + j

)α
× eα

√
(m + 1)γ + j − α

(m + 1)γ + j
tα+β

= lim
m→∞

Hmp
[
(m + 1)γ + j − α

(m + 1)γ + j

]mγ [
(m + 1)γ + j − α

(m + 1)γ + j

]β+ j ( 1
(m + 1)γ + j

)α
× eα

√
(m + 1)γ + j − α

(m + 1)γ + j
tα+β.

Now taking into account that limm→+∞

[
(m+1)γ+ j−α

(m+1)γ+ j

]mγ
= e−α and limm→+∞

(m+1)γ+ j−α
(m+1)γ+ j = 1, for

t ≥ 0 one gets

lim
m→+∞

δm+1(t)
δm(t)

= tα+βH lim
m→+∞

mp

((m + 1)(α + β) + j)α
=


0 if 0 ≤ p < α,

H tβ
(

t
α + β

)α
if p = α.

So, we have proved that the majorizing series
∑∞

m=0 δm, j(t) converges for every t inD, where

D =


[0,∞) if 0 ≤ p < α,[

0, (α+β)
α
α+β

H
1

α+β

[
if p = α.

(9)

Summarizing, we have found sufficient conditions for the second-order stochastic process Y(t)
to be a mean square solution of the IVP given in (1). The next result states our findings.

Theorem 1. If the random variables A j, j = 0, 1, ..., n − 1, and B satisfy conditions H1 and H2,
then the stochastic process

Y(t) =

n−1∑
j=0

 ∞∑
m=0

BmA jGm, jtγm+ j

 , γ = α + β, (10)

where

Gm, j =

m∏
k=1

Γ(kγ + j + 1 − α)
Γ(kγ + j + 1)

, m = 0, 1, 2, . . . , (11)

is a mean square solution of problem (1) for t ∈ T = [t1, t2] ⊂ D ⊂ R, beingD given in (9).

Notice that the domain of convergence of Y(t) depends on the relation between the order of the
fractional derivative, α > 0, and the value of p, involved in the hypothesis H1, which only affects
the random coefficient B.
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3. Probabilistic properties of the solution stochastic process

Once we have constructed a solution stochastic process, Y(t), to the random fractional IVP
(1), an important issue is to compute its main statistical properties, such as the mean (E [Y(t)]),
variance (V [Y(t)]) and covariance (Cov [Y(t),Y(s)]) functions. Since the solution stochastic
process, Y(t), has been constructed via the infinite series (10)–(11), it must be truncated to keep
feasible the computational burden. Thus, for a positive integer M, hereinafter we will consider
the truncated series, YM(t), of Y(t), defined by

YM(t) =

n−1∑
j=0

 M∑
m=0

BmA jGm, jtγm+ j

 . (12)

To this end, the following result will play a key role and it also justifies why we have made the
decision to conduct our study of uncertainty in the random fractional IVP (1) using the mean
square convergence instead of considering other stochastic convergences like almost surely, in
probability or in distribution.

Proposition 1. [10, Th. 4.3.1] Let {Xn : n ≥ 0} be a mean square convergent sequence of
random variables in L2(Ω) and let us denote its limit by X ∈ L2(Ω) as n→ ∞. Then,

E [Xn] −−−−−→
n→+∞

E [X] , V [Xn] −−−−−→
n→+∞

V [X] .

If, we further assume that {Ym : m ≥ 0} is a mean square convergent sequence of random
variables in L2(Ω), being Y ∈ L2(Ω) its limit as m→ ∞, then

E [XnYm] −−−−−−→
n,m→+∞

E [XY] ,

Cov [Xn,Ym] −−−−−−→
n,m→+∞

Cov [X,Y] .

Notice that we can take advantage of this result because mean square convergence of the infinite
series defining Y(t) for t > 0 has been rigorously established in Theorem 1.

Taking the expectation operator in (12) and using its linearity and hypothesis H2, it is clear
that the mean of YM(t) is given by

E [YM(t)] =

n−1∑
j=0

 M∑
m=0

E
[
Bm]

E[A j]Gm, jtγm+ j

 . (13)

Notice that in order to compute approximations of the expectation to the solution stochastic
process Y(t) of the random IVP (1) via YM(t), the expectation of the initial conditions, A j, 0 ≤
j ≤ n − 1, and the moments with respect to (w.r.t.) the origin up to order M of the random
coefficient B are just required.

Now, we are interested in computing an approximation of the variance of YM(t). To this end,
and for the sake of generality, we first calculate its cross-covariance
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CYM ,YN (t, s) := Cov [YM(t),YN(s)]

=

n−1∑
j=0

n−1∑
k=0

Cov

 M∑
r=0

BrA jGr, jtγr+ j ,

N∑
m=0

BmAkGm,k sγm+k


=

n−1∑
j=0

n−1∑
k=0

M∑
r=0

N∑
m=0

Cov
[
BrA j, BmAk

]
Gr, jGm,ktγr+ jsγm+k

=

n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

(
E[A jAkBm+r] − E

[
BrA j

]
E

[
BmAk

])
Gr, jGm,ktγr+ jsγm+k

=

n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

(
E[A j]E[Ak]E[Bm+r] − E[A j]E [Ak]E

[
Bm]

E
[
Br])Gr, jGm,ktγr+ jsγm+k

=

n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

E[A j]E[Ak]
(
E[Bm+r] − E

[
Bm]

E
[
Br])Gr, jGm,ktγr+ jsγm+k

=

n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

E[A j]E[Ak]Cov[Bm, Br]Gr, jGm,ktγr+ jsγm+k,

(14)

where we have used the bilinearity of the covariance, its definition and the (mutually) indepen-
dence of random variables A0, A1, . . . , B, assumed in hypothesis H2. In the particular case that
M = N and t = s in (14), one obtains the variance of the YM(t)

V [YM(t)] = Cov [YM(t),YM(t)]

=

n−1∑
j=0

n−1∑
k=0

M∑
r=0

M∑
m=0

E[A j]E[Ak]Cov[Bm, Br]Gr, jGm,ktγr+ jsγm+k

=

n−1∑
j=0

n−1∑
k=0

M∑
r=0

M∑
m=0

E[A j]E[Ak]
(
E[Bm+r] − E

[
Bm]

E
[
Br])Gr, jGm,ktγr+ jsγm+k.

(15)

Notice that in order to compute approximations of the variance to the solution stochastic
process Y(t) of the random IVP (1) via YM(t), the expectation of the initial conditions, A j, 0 ≤
j ≤ n− 1, as well as the moments w.r.t. the origin up to order 2M of the random coefficient B are
just required.

Remark 1. Now, we make a constructive comment related to hypothesis H2. In Section 2, to
prove mean square convergence of the solution stochastic process Y(t) given by (10), hypothesis
H2 could be relaxed assuming that A j and B are independent random variables for every j : 0 ≤
j ≤ n − 1 instead (to see this, just check inequality (8) and apply [31, Th. 3, p. 92]). However,
to keep a common assumption throughout the whole presentation of the manuscript we have
embraced (mutually) independence among all involved random variables in H2, which is used
to give a handy expression for the covariance, and thus for the variance too (see expressions (14)
and (15), respectively).
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Remark 2. In the proof of Th. 1, the set D is the interval where the deterministic majorizing
series,

∑∞
m=0 δm, j(t), for the solution Y(t) is convergent. As a consequence, the solution Y(t) is

mean square convergent on D, since Y(t) was majorized by
∑∞

m=0 δm, j(t) with the norm ‖·‖2.
However, the interval of convergence of Y(t) may be larger than D. As a result of Proposition
1, the above approximations of the mean, E [YM(t)], and the variance, V [YM(t)], of Y(t) are also

convergent on D. As in the case that p = α, the interval D is bounded, D =

[
0, (α+β)

α
α+β

H
1

α+β

[
, the

approximations of the variance (and thus of the mean) may converge in larger intervals. This
issue will be illustrated later in Example 3.

4. Numerical examples

This section is addressed to present some numerical examples where our previous theoret-
ical findings are illustrated. In all the following examples, we will compute approximations
to the mean (E[YM(t)]) and the variance/standard deviation (V[YM(t)]/σ[YM(t)]) of the solution
stochastic process at different time instants t by increasing the order of truncation M using the
expressions (13) and (15), respectively. The results are presented via graphical representations or
numerical tables of these statistical moments. In some of the examples, we have also calculated
the relative error of consecutive approximations of these two statistical moments with respect to
the order of truncation

RE(Mean)(t; M) =

∣∣∣∣∣E[YM+1(t)] − E[YM(t)]
E[YM(t)]

∣∣∣∣∣ , (16)

RE(Variance)(t; M) =

∣∣∣∣∣V[YM+1(t)] − V[YM(t)]
V[YM(t)]

∣∣∣∣∣ . (17)

The examples are devised to illustrate the two possible situations with respect the domain of
convergence established in Th. 1. Observe that both cases depend on the relationship between α
(order of the fractional derivative) and p (parameter involved in hypothesis H1 and related to the
behaviour of moments w.r.t. the origin of random variable B). The case p < α is illustrated in
the Example 2, while the case p = α is analysed in the Example 3. As the IVP (1) corresponds
to the random classical Airy differential equation when α = 2 and β = 1, we will begin with
Example 1 where this equation is analysed taking values of parameter α such that α → 2−.
Finally, we point out that in these three examples we have considered a wide variety of probability
distributions for the random coefficient B and different numerical values for the moments of
initial conditions A j, with the aim of showing the generality when applying the theoretical results
previously established. As required in hypothesis H2, in the following examples we will assume
that B and the involved initial conditions A j are independent random variables.

Example 1. In order to check that the our theoretical findings for the random Airy fractional
differential equation are consistent with the corresponding ones established in the previous work
[27] for the random Airy ordinary differential equation, we consider the random fractional IVP
(1) with β = 1, B ∼ Be(2, 3) (Be(2, 3) stands for a Beta distribution) and the initial conditions
A0 and A1, that are random variables such that

E[A0] = 1, E[A2
0] = 2, E[A1] = 2, E[A2

1] = 5.

In Tables 2 and 3, we collect the values of the approximations of the mean and variance of the
solution stochastic process computed via (13) and (15) with M = 10, respectively. For ease of

10



Mean α = 1.8 α = 1.85 α = 1.9 α = 1.95 α = 1.99 α = 1.999
t = 0.00 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000
t = 0.25 1.4978 1.4981 1.4983 1.4985 1.4987 1.4987
t = 0.50 1.9814 1.9831 1.9847 1.9862 1.9873 1.9875
t = 0.75 2.4325 2.4377 2.4425 2.4469 2.4503 2.451
t = 1.00 2.8289 2.8396 2.8498 2.8594 2.8668 2.8684
t = 1.25 3.1461 3.1643 3.1818 3.1987 3.2117 3.2146
t = 1.50 3.3603 3.3868 3.4128 3.4382 3.4582 3.4626
t = 1.75 3.4513 3.4853 3.5192 3.5530 3.5799 3.5859
t = 2.00 3.4064 3.4446 3.4835 3.5231 3.5553 3.5625

Table 2: Values of the expectation of the solution stochastic process of the random fractional IVP (1) computed by (13)
with M = 10 in the context of Example 1.

Variance α = 1.8 α = 1.85 α = 1.9 α = 1.95 α = 1.99 α = 1.999
t = 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
t = 0.25 1.0589 1.0593 1.0597 1.0601 1.0603 1.0603
t = 0.50 1.2227 1.2252 1.2274 1.2295 1.2311 1.2314
t = 0.75 1.4680 1.4748 1.4811 1.4870 1.4915 1.4925
t = 1.00 1.7639 1.7772 1.7900 1.8022 1.8116 1.8137
t = 1.25 2.0769 2.0980 2.1187 2.1389 2.1548 2.1583
t = 1.50 2.3820 2.4101 2.4381 2.4660 2.4882 2.4932
t = 1.75 2.6755 2.7074 2.7398 2.7725 2.7990 2.8049
t = 2.00 2.9803 3.0135 3.0470 3.0809 3.1084 3.1146

Table 3: Values of the variance of the solution stochastic process to the random fractional IVP (1) computed by (15) with
M = 10 in the context of Example 1.

comparison, the values of the inputs as well as the time instants where the mean and the variance
of the solution have been computed, are the same as in Example 12 of [27]. In Tables 2 and 3
the values of α parameter are taken numbers such as α → 2−. We evince rapid convergence for
both the mean and the variance.

To complete our numerical experiment, in Figure 1 we have plotted the approximations of the
mean (left) and the variance (right) for different order of truncations M over the time interval
0 ≤ t ≤ 5. From both plots, we can visualize the convergence of both statistical moments
as M increases over the whole time domain in agreement with our theoretical results. Notice
that we have used greater values of M for the variance (M = 7, 8, . . . , 11) than for the mean
(M = 4, 5, . . . , 8) to get good approximations. This is an expected fact since the variance is a
higher statistical moment than the mean.

To demonstrate the validity of the approximations for larger time intervals, in Figure 2 we
have represented the approximations of both the mean and the variance in the interval 0 ≤ t ≤ 9.
Notice that to compute reliable approximations on this larger time interval, greater values of
the truncation order M have been required. Specifically, for the mean, we have taken M =

18, 19, . . . , 22, and for the variance, M = 21, 22, . . . , 25. In Tables 4 and 5 we show the relative
errors for the approximations of the mean and the variance, respectively, at the time instants
t = 0, 1, . . . , 9. As expected, we can observe that for t fixed, these approximations improve as M
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Figure 1: Approximations of the mean (E[YM(t)]) and the variance (V[YM(t)]) of the solution stochastic process to the
random IVP (1) using different orders of truncations M over the interval t ∈ [0, 5] in the context of Example 1.
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RE(Mean)(t; M) t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
M = 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0385 2.0194 1.2306
M = 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0041 0.3200 1.2122
M = 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0004 0.0697 1.1899
M = 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0089 1.2018
M = 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0011 1.0551
M = 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 3.1418
M = 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2239
M = 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0410

Table 4: Relative error for the mean, given by (16), at different time instants for different orders of truncation M in the
context of Example 1.

RE(Variance)(t; M) t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
M = 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1519 0.9392
M = 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0002 0.9494
M = 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0007 0.9533
M = 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.8936
M = 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2753
M = 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0180
M = 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0006
M = 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0002

Table 5: Relative error for the variance, given by (17), at different time instants for different orders of truncation M in the
context of Example 1.

increases.

Example 2. In this example we illustrate the case where p < α. To this end, we assume that
coefficient B in the random IVP (1) has an exponential distribution with mean 4, i.e. B ∼ Exp(4),
thus p = 1 (see Table 1) and α = 2.6. We will take β = 1.7 and the two first statistical moments
w.r.t. the origin of the three random initial conditions are assumed to be

E[A0] = 1, E[A2
0] = 2, E[A1] = 2, E[A2

1] = 5, E[A2] = 4, E[A2
2] = 20.

In Figure 3, we show the approximations of the mean, E[YM(t)], and the standard deviation,
σ[YM(t)], for different orders of truncations M = 2, 3, . . . , 6 in the interval t ∈ [0, 5]. We observe
convergence being faster for the mean than for the standard deviation, as expected. According
to Th. 1 and Prop. 1, in this context convergence of the mean and the standard deviation (or
equivalently, the variance) takes place for every t. Naturally, to get better approximations the
order of truncation M needs to be increased as t departs from the origin, t = 0, where the initial
condition is set. To better assess the convergence, in Tables 6 and 7 we have collected the values
for the relative errors of the mean and the variance. We can see that figures are in fully agreement
with the previous comments.

To complete the graphical analysis in this example, in Figure 4 we show the surface of the
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Figure 2: Approximations of the mean (E[YM(t)]) and the variance (V[YM(t)]) of the solution stochastic process to the
random IVP (1) using different orders of truncations M over the interval t ∈ [0, 9] in the context of Example 1.

RE(Mean)(t; M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
M = 2 0.0 0.0 0.0044 0.0781 0.4369 1.3189 2.9417
M = 3 0.0 0.0 0.0003 0.0155 0.1674 0.6796 1.7185
M = 4 0.0 0.0 0.0 0.0024 0.0569 0.3487 1.0506
M = 5 0.0 0.0 0.0 0.0003 0.0163 0.1698 0.6493
M = 6 0.0 0.0 0.0 0.0 0.0038 0.0756 0.3956
M = 7 0.0 0.0 0.0 0.0 0.0007 0.0299 0.2326
M = 8 0.0 0.0 0.0 0.0 0.0001 0.0103 0.1293
M = 9 0.0 0.0 0.0 0.0 0.0 0.0031 0.0667

Table 6: Relative error for the mean, given by (16), at different time instants for different orders of truncation M in the
context of Example 2.
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RE(Variance)(t; M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
M = 2 0.0 0.0002 0.0427 0.6461 3.6097 14.6488 49.8305
M = 3 0.0 0.0 0.0037 0.1628 1.3583 6.1317 21.3876
M = 4 0.0 0.0 0.0002 0.035 0.5557 3.0331 11.0941
M = 5 0.0 0.0 0.0 0.0059 0.2195 1.6144 6.3768
M = 6 0.0 0.0 0.0 0.0008 0.0775 0.8774 3.8925
M = 7 0.0 0.0 0.0 0.0001 0.0232 0.4687 2.46
M = 8 0.0 0.0 0.0 0.0 0.0058 0.2379 1.5805
M = 9 0.0 0.0 0.0 0.0 0.0012 0.1113 1.0168

Table 7: Relative error for the variance, given by (17), at different time instants for different orders of truncation M in the
context of Example 2.

correlation coefficient

ρYM (t, s) =
CYM ,YM (t, s)
σYM (t)σYM (s)

, (18)

for M = 6 (where numerical results are stabilized) over the domain (t, s) ∈ [0, 5] × [0, 5].
Observe that the coefficient of correlation takes its highest value, namely 1, when t = s (on
the diagonal of the domain) since in this case YM(t) and YM(s) are completely and positively
correlated since both match. From this graphical representation and the statistical interpretation
of the correlation coefficient, we observe that the linear dependence between random variables
YM(t) and YM(s) decreases to 0 (uncorrelated) when t → 5 and s → 0 or vice versa, t → 0 and
s→ 5.

Example 3. This example is devised to illustrate the case the mean square convergence of the
solution stochastic process (10)–(11) (hence its mean and its variance too) on a bounded interval,
that is, when p = α (see Th. 1 and Prop. 1). In such a case, the interval of convergence is

given by D =

[
0, (α+β)

α
α+β

H
1

α+β

[
(see Th. 1). To this end, we choose α = 4.2 and B is a Weibull

random variable of parameters a = 0.001 and b = 1/α (see Table 1). So, according to Table 1,
H = a(2/b)1/b = 7.62. As a consequence D = [0, 2.56271[. For the rest of input parameters of
the random IVP (1), we take β = 1 and

E[A0] = 0, E[A2
0] = 2, E[A1] = 1, E[A2

1] = 5, E[A2] = 4, E[A2
2] = 17.

E[A3] = 0.5, E[A2
3] = 0.26, E[A4] = 0.75, E[A2

4] = 0.57.

In order to check that convergence of the mean and the variance in the intervalD =

[
0, (α+β)

α
α+β

H
1

α+β

[
,

in Tables 8 and 9, we have computed the relative errors of consecutive approximations of both
statistical moments (see expressions (16) and (17)), respectively. From the figures shown in
these tables we numerically evince convergence as M increases for t ∈ D. To highlight the
numerical behaviour of these relative errors about the value upper of the convergence interval,
i.e. t = 2.56271, we have included in Table 8 and Table 9 the values corresponding to times
t = 2.4, 2.5, 2.6, 2.7. Observe that relative errors also decrease beyond t = 2.56271 illustrating
the comments raised in Remark 2.
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Figure 3: Approximations of the mean (E[YM(t)]) and the standard deviation (σ[YM(t)]) of the solution stochastic process
to the random IVP (1) using different orders of truncations M in the interval t ∈ [0, 5] in the context of Example 2.

RE(Mean)(t; M) t = 1 t = 2 t = 3 t = 2.4 t = 2.5 t = 2.6 t = 2.7
M = 2 0.0 0.00119 0.10665 0.01083 0.01704 0.02598 0.03844
M = 3 0.0 3e − 05 0.02084 0.00069 0.00134 0.00252 0.00452
M = 4 0.0 0.0 0.00372 4e − 05 9e − 05 0.00021 0.00046
M = 5 0.0 0.0 0.0006 0.0 1e − 05 2e − 05 4e − 05
M = 6 0.0 0.0 9e − 05 0.0 0.0 0.0 0.0
M = 7 0.0 0.0 1e − 05 0.0 0.0 0.0 0.0
M = 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M = 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 8: Relative error for the mean, given by (16), at different time instants for different orders of truncation M in the
context of Example 3.
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Figure 4: Surface of the correlation coefficient of the solution stochastic process, defined in (18), with M = 6 over the
domain (t, s) ∈ [0, 5] × [0, 5] in the context of Example 2.

RE(Variance)(t; M) t = 1 t = 2 t = 3 t = 2.4 t = 2.5 t = 2.6 t = 2.7
M = 2 0.00018 0.80822 37.35409 4.61293 6.73642 9.6965 13.78835
M = 3 0.0 0.27955 22.74314 2.45614 3.75086 5.57471 8.10991
M = 4 0.0 0.10046 17.53194 1.6142 2.6038 4.01809 6.00033
M = 5 0.0 0.03358 14.74921 1.15213 1.97189 3.16210 4.84565
M = 6 0.0 0.01006 12.90896 0.85548 1.55995 2.59958 4.08308
M = 7 0.0 0.0027 11.56632 0.64987 1.26903 2.19841 3.5352
M = 8 0.0 0.00065 10.54187 0.50095 1.05405 1.89955 3.12451
M = 9 0.0 0.00015 9.73999 0.38981 0.89008 1.67022 2.80801

Table 9: Relative error for the variance, given by (17), at different time instants for different orders of truncation M in the
context of Example 3.
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5. Approximating the probability density function via the Maximum Entropy Principle:
An illustrative example

So far we have computed approximations of the main statistical moments of the solution
stochastic process Y(t) given by (10), namely, the mean and the variance. In this section, we use
this information to construct approximations of the probability density function (PDF), fY(t)(y, t).
The computation of the PDF is very useful since from it one can compute all one-dimensional
statistical moments of Y(t)

E[(Y(t))r] =

∫
R

yr fY(t)(y, t) dy, r = 1, 2, . . .

provided they exist. In this way a full probabilistic description of the solution stochastic pro-
cess is obtained at every time instant t. In particular, the PDF fY(t)(y, t) allows quantifying the
probability that, for each t, the solution lies in a specific interval of interest, say [y1, y2]

P[y1 ≤ Y(t) ≤ y2] =

∫ y2

y1

fY(t)(y, t) dy, (19)

which can be crucial in applications.
For these reasons this section is addressed to approximate fY(t)(y, t) by calculating the PDF,

fYM (t)(y, t), of the approximation YM(t), given by (12). To achieve this goal, we will apply the Prin-
ciple of Maximum Entropy (PME) taking advantage that we have obtained the mean, E [YM(t)],
and the variance, V [YM(t)], of YM(t) (see (13) and (15), respectively). Hereinafter, we first ex-
plain in detail the methodology and then we illustrate it by means of an example.

We first fix a time instant t and an order of truncation M large enough to guarantee that

E [YM(t)] ≈ E [Y(t)] = m1(t) ≡ m1, E[(YM(t))2] ≈ E[(Y(t))2] = m2(t) ≡ m2, (20)

i.e., that the approximations of the two first moments w.r.t to the origin (thus of the variance too)
are good. Observe that this fact has been legitimated in Section 3 because of Proposition 1. Also
notice that for convenience, in (20) we have hidden the time dependence in the notation for mi,
i = 1, 2. Then, we adapt the PME, that is typically applied within the context of random variables
[32, 33, 34], to our setting, i.e., we seek for a function g = g(y), that will represent fYM (t)(y, t)
for t and M fixed (and which approximates fY(t)(y, t)), that maximizes the following functional,
usually referred to as Shannon’s entropy,

S(g) = −

∫ a2

a1

g(y) ln(g(y)) dy, (21)

subject to the following constraints∫ a2

a1

g(y) dy = 1,
∫ a2

a1

yg(y) dy = m1,

∫ a2

a1

y2g(y) dy = m2. (22)

The first condition means that g = g(y) (i.e., fYM (t)(y, t)) is a PDF with support the interval
[a1, a2], while the two last conditions impose that g = g(y) (i.e., fYM (t)(y, t)) must satisfy the
information related to the two first moments w.r.t. the origin. On the one hand, notice that ac-
cording to Section 3 in our setting reliable approximations of both m1 and m2 are computable
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in practice. On the other hand, the support [a1, a2] can be determined using the general ap-
proximating rule, derived from the Bienaymé-Chebyshev’s inequality [35], which establishes
that [mean ± 10 standard deviation] contains the 99% of the total probability for any arbitrary
random variable. In our case, this approximations will be applied to mean = E [YM(t)] and
standard deviation =

√
V [YM(t)]. We take advantage of this general approximation for the sup-

port [a1, a2] because we do not know the true PDF, fY(t)(y, t), of the solution stochastic process.
Therefore, in the admissible set

A =

{
g : [a1, a2] −→ R :

∫ a2

a1

g(y) dy = 1,
∫ a2

a1

yig(y) dy = mi, i = 1, 2
}
,

we seek for a function g that maximizes the functional S, defined in (21), subject to the three con-
straints given by (22). To determine the function g, we apply the variational version of Lagrange
multiplier technique and then we consider the auxiliary Lagrangian function

L(g, λ0, λ1, λ2) = S(g) + λ0

(
1 −

∫ a2

a1
g(y) dy

)
+ λ1

(
m1 −

∫ a2

a1
yg(y) dy

)
+ λ2

(
m2 −

∫ a2

a1
y2g(y) dy

)
= −

∫ a2

a!

g(y)

ln(g(y)) +

2∑
i=0

λiyi

 dy + λ0 + λ1m1 + λ2m2.

From variational calculus [36] we impose:

∂L(g, λ0, λ1, λ2)
∂g

= 0,
∂L(g, λ0, λ1, λ2)

∂λi
= 0, i = 0, 1, 2. (23)

The first condition leads to

∂L(g, λ0, λ1, λ2)
∂g

= −

∫ a2

a1

ln(g(y)) +

2∑
i=0

λiyi + 1

 dy = 0. (24)

By imposing

ln(g(y)) +

2∑
i=0

λiyi + 1 = 0, a1 ≤ y ≤ a2,

condition (24) is guaranteed. Now isolating g = g(y), one gets

g(y) = 1[a1,a2] e−1−λ0−λ1y−λ2y2
, (25)

where 1[a1,a2] is the characteristic function on the interval [a1, a2]. The Lagrange multipli-
ers λ0, λ1 and λ2 are determined by using this expression (25) together with the conditions
∂L(g, λ0, λ1, λ2)/∂λi, for i = 0, 1, 2, given in (23). This leads to∫ a2

a1

e−1−λ0−λ1y−λ2y2
dy = 1,

∫ a2

a1

ye−1−λ0−λ1y−λ2y2
dy = m1,

∫ a2

a1

y2e−1−λ0−λ1y−λ2y2
dy = m2.

(26)
This is a nonlinear system of equations involving the Gauss error function erf[·] when the in-
tegrals are calculated. Therefore, in practice numerical methods, such as Newton-Raphson, are
required to determine its solution (λ0, λ1, λ2). Once these values have been computed, g(y) is
easily obtained by expression (25).
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λ0 λ1 λ2 m1 = E[Y30(t)] m2 = E[(Y30(t))2] P[y1 ≤ Y(t) ≤ y2]
t = 0 2.4189 −1.0000 0.5000 1 2 0.686141
t = 1 4.5155 −1.5000 0.2500 3 11 0.684482
t = 2 5.2236 −1.0000 0.1000 5 30 0.684439
t = 3 5.5202 −0.7000 0.0500 7 59 0.683465
t = 4 5.7179 −0.5294 0.0290 9 98 0.683692
t = 5 5.8749 −0.4230 0.0190 11 147 0.681471
t = 6 6.0082 −0.3513 0.0135 13 206 0.683482
t = 7 6.1250 −0.3000 0.0100 15 275 0.681515
t = 8 6.2292 −0.2615 0.0076 17 354 0.679679
t = 9 6.3235 −0.2317 0.0060 19 443 0.682466

Table 10: Values of λ0, λ1, λ2 that solve the nonlinear system of equations (26) (with m1 and m2 given in the last
two columns) and determine the PDF g(y) (and thus fYM (t)(y, t)) given by (25) for M = 30 at different times instants
t = 0, 1, 2, . . . , 9. This function approximates the PDF fY(t)(y, t) of the solution stochastic process to random fractional
IVP (1) for the order of the fractional derivative α = 1.9 in the context of Example 1.

To illustrate how to apply in practice this methodology, we have considered the same data as
in the context of Example 1 to determine the PDF, fYM (t)(y, t), that approximates the PDF fY(t)(y, t)
of the solution stochastic process to random fractional IVP (1) for the order of the fractional
derivative α = 1.9. To this end, we have fixed t ∈ [0, 9] and M = 30 and using expressions (13)
and (15), we have computed the moments E [YM(t)] and E[(YM(t))2] = V[YM(t)] + (E [YM(t)])2.
As we have previously pointed out, these values are good approximations of m1(t) ≡ m1 and
m2(t) ≡ m2, respectively, which are required to set the system of nonlinear equations (26). Al-
though the values a1 and a2 of the support are obviously different for each t, to simplify our
exposition we must say that, according to Bienaymé-Chebyshev’s inequality, is enough to take

[a1, a2] =

[
min

t∈[0,9]
E [YM(t)] − 10

√
V[YM(t)], max

t∈[0,9]
E [YM(t)] + 10

√
V[YM(t)]

]
,

for M fixed (remember that in our case we have taken M = 30). This leads to the following
support [a1, a2] = [−72, 110]. In order to calculate the PDF fYM (t)(y, t) for t ∈ [0, 9], we have
taken the time instants: t = tk = 0.090k, k = 0, 1, . . . , 100, and we have numerically computed
the solutions (λ0, λ1, λ2) of the nonlinear system of equations (26). In Table 10, we show the
values of λ0, λ1, λ2 as well as of the moments m1 and m2 for t = 0, 1, . . . , 9. To illustrate the use-
fulness of knowing the approximations of PDF fYM (t)(y, t), in the last column we have calculated
the probability that the solution stochastic process lies in the interval [y1, y2] for t ∈ [0, 9], by
applying (19) with y1 = E[YM(t)] −

√
V [YM(t)]] and y2 = E[YM(t)] +

√
V [YM(t)]]. Finally, in

Figure 5 we have represented the PDF fYM (t)(y, t) in the time interval t ∈ [0, 9] for M = 30, and
we have highlighted on the its surface the curves of the PDF corresponding to the time instants
t = 0, 1, . . . , 9.

6. Conclusions

In this paper we have studied an important class of random fractional differential equations,
given by (1), that include as particular case the random Airy differential equation. We have
constructed approximations of the solution stochastic process by means of random generalized
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Figure 5: Approximate PDF, fYM (t)(y, t), of the solution stochastic process Y(t) to the random fractional IVP (1) with
order of the fractional derivative α = 1.9 in the context of Example 1 using the PME for the approximate solution
stochastic process YM(t) with M = 30 and 0 ≤ t ≤ 9.

power series and we have established sufficient conditions on random inputs (initial conditions
and the coefficient B) in order to guarantee that random series is mean square convergent. The
use of mean square convergence in our analysis is a key point since from its properties the con-
vergence of the mean and the variance of the approximations to the corresponding exact ones are
guaranteed. Furthermore, we have given explicit expressions to construct reliable approxima-
tions to the mean, the variance and the covariance functions of the solution. The study has relied
heavily on the assumption made about the growth of statistical moments of the input coefficient
B. We have shown that a wide range of important random variables satisfy such hypothesis. In
future research, we will investigate alternative assumptions to B in order to broaden the family of
unbounded random variables that can play the role of input B. Nevertheless, an important issue
of this paper is that we can approximate accurately unbounded random variables by truncating its
domain so that the involved probabilistic error be as small as desired to get good approximations
taking advantage of the results established here. Our numerical experiments evince the proposed
method provides good approximations for the mean and the variance of the solution using a small
order of truncation. Finally, we have taken advantage of the approximations of the mean and the
variance of the solution stochastic process for the random fractional generalized Airy differential
equation to construct reliable approximations of the probability density function of the solution.
This is an important application of our approach since from the density function one can obtain
a more comprehensive description of the solution via all its one-dimensional statistical moments
and permits computing the probability that the solution lies in intervals of interest.
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[28] J. C. Cortés, P. Sevilla-Peris, L. Jódar, Analytic-numerical approximating processes of diffusion equa-
tion with data uncertainty, Computers and Mathematics with Applications 49 (7-8) (2005) 1255–1266.
doi:10.1016/j.camwa.2004.05.015.

[29] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential
operators of Caputo type, Springer, 2010.
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