
UNIVERSIDAD POLITÉCNICA DE VALENCIA

Depto. Sistemas Informáticos y Computación

Máster en Ingenieŕıa del Software, Métodos Formales y Sistemas de

Información

MASTER THESIS

Sequential Protocol Composition in

Maude-NPA

CANDIDATE: Sonia Santiago Pinazo

SUPERVISOR: Santiago Escobar Román

September 22, 2010

Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Camino de Vera, s/n

46022 Valencia, Spain

Contents

1 Introduction 1

2 Two Motivating Examples 5

2.1 Distance Bounding Protocol (NSL-DB) 5

2.2 Key Distribution Protocol (NSL-KD) 8

3 Background on Term Rewriting 9

4 Maude-NPA’s Execution Model 11

5 Current Syntax for Protocol Specification 17

5.1 Specifying the Protocol Syntax 17

5.2 Algebraic Properties . 18

5.3 Specifying the Strands . 19

5.4 Protocol Analysis . 20

6 Syntax for Protocol Specification and Composition 23

6.1 Specifying Sequential Composition 29

7 Maude-NPA’s Composition Execution Model 31

7.1 Composition Execution Model 31

7.2 Protocol Composition by Protocol Transformation 34

8 Formal Analysis 41

8.1 The NSL-DB protocol . 41

8.2 The NSL-KD protocol . 47

i

9 Soundness and Completeness of the Protocol Transforma-

tion 49

9.1 Relating States from Protocol Composition and Protocol Trans-

formation . 49

9.2 Soundness and Completeness for One Narrowing Step 52

9.3 Soundness and Completeness for Reachability Analysis 56

10 Related work and conclusions 61

11 Publications Associated to this Thesis 63

Bibliography 65

ii

Abstract

Protocols do not work alone, but together, one protocol relying on another

to provide needed services. Many of the problems in cryptographic protocols

arise when such composition is done incorrectly or is not well understood.

In this thesis, we discuss an extension to the current syntax and operational

semantics of the Maude-NPA, a protocol specification and analysis tool, to

support dynamic sequential composition of protocols, so that protocols can

be specified separately and composed when desired. This allows one to reason

about many different compositions with minimal changes to the specification.

Moreover, we show that, by a simple protocol transformation, we are able

to analyze and verify this dynamic composition in the current Maude-NPA

without any modification to the tool. We prove soundness and completeness

of the protocol transformation with respect to the extended operational se-

mantics, for protocol composition. Finally, we illustrate our work on some

examples of protocol composition and provide some experimental results.

i

ii

Chapter 1

Introduction

It is well known that many problems in the security of cryptographic proto-

cols arise when the protocols are composed. Protocols that work correctly

in one environment may fail when they are composed with new protocols

in new environments, either because the properties they guarantee are not

quite appropriate for the new environment, or because the composition itself

is mishandled.

The importance of understanding composition has long been acknowl-

edged, and there are a number of logical systems that support it. The Proto-

col Composition Logic (PCL) begun in [Durgin 01] is probably the first pro-

tocol logic to approach composition in a systematic way. Logics such as the

Protocol Derivation Logic (PDL) [Cervesato 05], and tools such as the Proto-

col Derivation Assistant (PDA) [Anlauff 06] and the Cryptographic Protocol

Shape Analyzer (CPSA) [Doghim 07] also support reasoning about composi-

tion. All of these are logical systems and tools that support reasoning about

the properties guaranteed by the protocols. One uses the logic to determine

whether the properties guaranteed by the protocols are adequate. This is a

natural way to approach composition, since one can use these tools to deter-

mine whether the properties guaranteed by one protocol are adequate for the

needs of another protocol that relies upon it. Thus in [Datta 03] PCL and

in [Guttman 01] the authentication tests methodology underlying CPSA are

used to analyze key exchange standards and electronic commerce protocols,

1

1. Introduction

respectively, via composition out of simpler components.

Less attention has been given to handling composition when model check-

ing protocols. However, model checking can provide considerable insight into

the way composition succeeds or fails. Often the desired properties of a com-

posed protocol can be clearly stated, while the properties of the components

may be less well understood. Using a model checker to experiment with dif-

ferent compositions and their results help us to get a better idea of what the

requirements on both the subprotocols and the compositions actually are.

The problem is in providing a specification and verification environment

that supports composition. In general, it is tedious to hand-code composi-

tions. This is especially the case when one protocol is composed with other

protocols in several different ways. In this thesis we propose a syntax and

operational semantics for sequential protocol composition in Maude-NPA

[Escobar 06, Escobar 09a], a protocol specification and analysis tool based

on unification and narrowing-based backwards search. Sequential composi-

tion, in which one or more child protocols make use of information obtained

from running a parent protocol, is the most common use of composition

in cryptographic protocols. We show that it is possible to incorporate it

via a natural extension of the operational semantics of Maude-NPA. We

have implemented this protocol composition semantics via a simple program

transformation without any change to the tool. We prove the soundness and

completeness of the transformation with respect to the semantics.

Plan of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we introduce two

protocol compositions that we will use as running examples: one example of

one-parent-one-child composition, and another of one-parent-many-children

composition. We provide some preliminaries about term rewriting and nar-

rowing in Chapter 3. In Chapter 4 we give an overview of the Maude-NPA

tool and its operational semantics. In Chapter 5 we describe the current

Maude-NPA syntax for protocol specification and analysis. In Chapter 6 we

describe the new composition syntax and semantics. In Chapter 7 we describe

2

1. Introduction

the operational semantics of composition and the protocol transformation.

The results of our experiments on the protocols used as running example

in this thesis are discussed in Chapter 8. In Chapter 9 we give soundness

and completeness results for the protocol transformation. In Chapter 10 we

conclude the paper and discuss related and future work.

3

Chapter 2

Two Motivating Examples

In both of our examples of sequential protocol composition we build on the

well-known Needham-Schroeder-Lowe (NSL) protocol [Lowe 96]. These two

examples give a flavor for the variants of sequential composition that are

used in constructing cryptographic protocols. A single parent instance can

have either many children instances, or be constrained to only one. Likewise,

parent roles can determine child roles, or child roles can be unconstrained. In

this thesis, we will show how all these types of composition can be specified

and analyzed in Maude-NPA, using these examples as running illustrations.

2.1 Distance Bounding Protocol (NSL-DB)

The first example of protocol composition, which appeared in [Guttman 08],

is an example of a one-parent, one-child protocol, which is subject to an

unexpected attack not noticed before. In this protocol, the participants use

NSL to agree on a secret nonce. We reproduce the NSL protocol in the

following.

1. A→ B : {NA, A}pk(B)

2. B → A : {NA, NB, B}pk(A)

3. A→ B : {NB}pk(B)

5

2.1. Distance Bounding Protocol (NSL-DB)

where {M}pk(A) means message M encrypted using the public key of principal

with name A, NA and NB are nonces generated by the respective principals,

and we use the comma as message concatenation.

The agreed nonce NA is then used in a distance bounding protocol. This

is a type of protocol, originally proposed by Desmedt [Desmedt 88] for smart

cards, which has received new interest in recent years for its possible appli-

cation in wireless environments [Capkun 06]. The idea behind the protocol

is that Bob uses the round trip time of a challenge-response protocol with

Alice to compute an upper bound on her distance from him. The protocol is

described as follows:

4. B → A : N ′B

Bob records the time at which he sent N ′B

5. A→ B : NA ⊕N ′B
Bob records the time he receives the response and checks the

equivalence NA = NA ⊕N ′B ⊕N ′B. If it is equal, he uses the

round-trip time of his challenge and response to estimate his

distance from Alice

where ⊕ is the exclusive-or operator satisfying associativity (i.e., X ⊕ (Y ⊕
Z) = (X ⊕ Y) ⊕ Z) and commutativity (i.e., X ⊕ Y = Y ⊕ X) plus the

properties X ⊕ X = 0 and X ⊕ 0 = X. Note that Bob is the initiator and

Alice is the responder of the distance bounding protocol, in contrast to the

NSL protocol.

This protocol must satisfy two requirements. The first is that it must

guarantee that NA ⊕ N ′B was sent after N ′B was received, or Alice will be

able to pretend that she is closer than she is. Note that if Alice and Bob do

not agree on NA beforehand, then Alice will be able to mount the following

attack: B → A : N ′B and then A→ B : N . Of course, N = N ′B⊕X for some

X. But Bob has no way of telling if Alice computed N using N ′B and X, or

if she just sent a random N . Using NSL to agree on a X = NA in advance

prevents this type of attack.

Bob also needs to know that the response comes from whom it is supposed

to be. In particular, an attacker should not be able to impersonate Alice.

6

2.1. Distance Bounding Protocol (NSL-DB)

Using NSL to agree on NA guarantees that only Alice and Bob can know NA,

so the attacker cannot impersonate Alice. However, it should also be the case

that an attacker cannot pass off Alice’s response as his own. However, this

is not the case for the NSL distance bounding protocol, which is subject to

the following attack1:

a) Intruder I runs an instance of NSL with Alice as the initiator and I as

the responder, obtaining a nonce NA.

b) I then runs an instance of NSL with Bob with I as the initiator and

Bob as the responder, using NA as the initiator nonce.

c) B → I : N ′B where I does not respond, but Alice, seeing this, thinks it

is for her.

d) A→ I : N ′B ⊕NA where Bob, seeing this thinks this is I’s response.

If Alice is closer to Bob than I is, then I can use this attack to appear

closer to Bob than he is. This attack is a textbook example of a composition

failure. NSL has all the properties of a good key distribution protocol, but

fails to provide all the guarantees that are needed by the distance bounding

protocol. However, in this case we can fix the problem, not by changing

NSL, but by changing the distance bounding protocol so that it provides a

stronger guarantee:

4. B → A : N ′B

5. A→ B : h(NA, A)⊕N ′B where h is a collision-resistant hash

function.

As we show in our analysis in Chapter 8, this prevents the attack. I cannot

pass off Alice’s nonce as his own because it is now bound to her name.

The distance bounding example is a case of a one parent, one child pro-

tocol composition. Each instance of the parent NSL protocol can have only

one child distance bounding protocol, since the distance bounding protocol

1This is not meant as a denigration of [Guttman 08], whose main focus is on timing
models in strand spaces, not the design of distance bounding protocols.

7

2.2. Key Distribution Protocol (NSL-KD)

depends upon the assumption that NA is known only by A and B. But be-

cause the distance bounding protocol reveals NA, it cannot be used with the

same NA more than once.

2.2 Key Distribution Protocol (NSL-KD)

Our next example is a one parent, many children composition, also using

NSL. This type of composition arises, for example, in key distribution pro-

tocols in which the parent protocol is used to generate a master key, and the

child protocol is used to generate a session key. In this case, one wants to be

able to run an arbitrary number of child protocols.

In the distance bounding example the initiator of the distance bounding

protocol was always the child of the responder of the NSL protocol and

vice versa. In the key distribution example, the initiator of the session key

protocol can be the child of either the initiator or responder of the NSL

protocol. So, we have two possible child executions after NSL:

4. A→ B : {SkA}h(NA,NB)

5. B → A : {SkA;N ′B}h(NA,NB)

6. A→ B : {N ′B}h(NA,NB)

4. B → A : {SkB}h(NA,NB)

5. A→ B : {SkB;N ′A}h(NA,NB)

6. B → A : {N ′A}h(NA,NB)

where SkA is the session key generated by principal A and h is again a

collision-resistant hash function.

As we show in our analysis in Chapter 8, this protocol guarantees that a

dishonest principal is not able to learn the secret key of an honest principal.

8

Chapter 3

Background on Term Rewriting

We follow the classical notation and terminology from [TeReSe 03] for term

rewriting and from [Meseguer 92, Meseguer 98] for rewriting logic and order-

sorted notions. We assume an order-sorted signature Σ with a finite poset of

sorts (S,≤) and a finite number of function symbols. We assume an S-sorted

family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.

TΣ(X)s denotes the set of terms of sort s, and TΣ,s the set of ground terms

of sort s. We write TΣ(X) and TΣ for the corresponding term algebras. We

write Var(t) for the set of variables present in a term t. The set of positions

of a term t is written Pos(t), and the set of non-variable positions PosΣ(t).

The subterm of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution σ is a sort-preserving mapping from a finite subset

of X to TΣ(X).

A Σ-equation is an unoriented pair t = t′, where t ∈ TΣ(X)s, t
′ ∈

TΣ(X)s′ , and s and s′ are sorts in the same connected component of the poset

(S,≤). Given a set E of Σ-equations, order-sorted equational logic induces a

congruence relation =E on terms t, t′ ∈ TΣ(X) (see [Meseguer 98]). Through-

out this paper we assume that TΣ,s 6= ∅ for every sort s. We denote the E-

equivalence class of a term t ∈ TΣ(X) as [t]E and the E-equivalence classes

of all terms TΣ(X) and TΣ(X)s as TΣ/E(X) and TΣ/E(X)s, respectively.

For a set E of Σ-equations, an E-unifier for a Σ-equation t = t′ is a

substitution σ s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an equation

9

3. Background on Term Rewriting

t = t′ is written CSUE(t = t′). We say CSUE(t = t′) is finitary if it contains

a finite number of E-unifiers.

A rewrite rule is an oriented pair l→ r, where l 6∈ X and l, r ∈ TΣ(X)s for

some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple

R = (Σ, E,R) with Σ an order-sorted signature, E a set of Σ-equations,

and R a set of rewrite rules. A topmost rewrite theory (Σ, E,R) is a rewrite

theory s.t. for each l → r ∈ R, l, r ∈ TΣ(X)State for a top sort State, r 6∈ X ,

and no operator in Σ has State as an argument sort.

The rewriting relation →R on TΣ(X) is t
p→R t

′ (or →R) if p ∈ PosΣ(t),

l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ. The relation →R/E on

TΣ(X) is =E;→R; =E, i.e., t →R/E s iff ∃u1, u2 ∈ TΣ(X) s.t. t =E u1 →R

u2 =E s. Note that →R/E on TΣ(X) induces a relation →R/E on TΣ/E(X) by

[t]E →R/E [t′]E iff t→R/E t
′.

When R = (Σ, E,R) is a topmost rewrite theory, we can safely restrict

ourselves to the rewriting relation →R,E on TΣ(X), where the rewriting re-

lation →R,E on TΣ(X) is t
p→R,E t′ (or →R,E) if p ∈ PosΣ(t), l → r ∈ R,

t|p =E σ(l), and t′ = t[σ(r)]p for some σ. Note that →R,E on TΣ(X) induces

a relation →R,E on TΣ/E(X) by [t]E →R,E [t′]E iff ∃w ∈ TΣ(X) s.t. t→R,E w

and w =E t
′.

The narrowing relation R on TΣ(X) is t
p
 σ,R t′ (or σ,R, R) if

p ∈ PosΣ(t), l→ r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that

E has a finitary and complete unification algorithm, the narrowing relation

 R,E on TΣ(X) is t
p
 σ,R,E t

′ (or σ,R,E, R,E) if p ∈ PosΣ(t), l → r ∈ R,

σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p).

The use of topmost rewrite theories provides several advantages (see

[Thati 07]): (i) as pointed out above the relation →R,E achieves the same

effect as the relation →R/E, (ii) also the narrowing relation R,E achieves

the same effect as a more general narrowing relation R/E, and (iii) we ob-

tain a completeness result between narrowing (R,E) and rewriting (→R/E).

10

Chapter 4

Maude-NPA’s Execution Model

Given a protocol P , we should first explain how its states are modeled al-

gebraically. The key idea is to model such states as elements of an initial

algebra TΣP/EP , where ΣP is the signature defining the sorts and function

symbols for the cryptographic functions and for all the state constructor

symbols and EP is a set of equations specifying the algebraic properties of

the cryptographic functions and the state constructors. Therefore, a state

is an EP-equivalence class [t] ∈ TΣP/EP with t a ground ΣP-term. However,

since the number of states TΣP/EP is in general infinite, rather than explor-

ing concrete protocol states [t] ∈ TΣP/EP we explore symbolic state patterns

[t(x1, . . . , xn)] ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set of vari-

ables X. In this way, a state pattern [t(x1, . . . , xn)] represents not a single

concrete state but a possibly infinite set of such states, namely all the in-

stances of the pattern [t(x1, . . . , xn)] where the variables x1, . . . , xn have been

instantiated by concrete ground terms.

In the Maude-NPA [Escobar 06, Escobar 09a], a state in the protocol

execution is a term t of sort State, t ∈ TΣP/EP (X)State. A state is a multiset

built by an associative and commutative union operator & with identity

operator ∅. Each element in the multiset can be a strand or the intruder

knowledge at that state.

A strand [Fabrega 99] represents the sequence of messages sent and re-

ceived by a principal executing the protocol and is indicated by a sequence

11

4. Maude-NPA’s Execution Model

of messages1 [msg±1 , msg
±
2 , msg

±
3 , . . . , msg

±
k−1, msg

±
k] where each msgi is

a term of sort Msg (i.e., msgi ∈ TΣP/EP (X)Msg), msg
− represents an in-

put message, and msg+ represents an output message. For each positive

message msgi in a sequence of messages [msg±1 , msg
±
2 , msg

±
3 , . . . , msg

+
i ,

. . . , msg±k−1, msg
±
k] the non-fresh variables (see below) occurring in an out-

put message msg+
i must appear in previous messages msg1,msg2,msg3, . . . ,

msgi−1. In Maude-NPA, strands evolve over time and thus we use the sym-

bol | to divide past and future in a strand, i.e., [nil,msg±1 , . . . ,msg
±
j−1 |

msg±j ,msg
±
j+1, . . . ,msg

±
k , nil] wheremsg±1 , . . . ,msg

±
j−1 are the past messages,

and msg±j ,msg
±
j+1, . . . ,msg

±
k are the future messages (msg±j is the immedi-

ate future message). The nils are present so that the bar may be placed

at the beginning or end of the strand if necessary. A strand [msg±1 , . . . ,

msg±k] is a shorthand for [nil | msg±1 , . . . ,msg±k , nil]. We often remove the

nils for clarity, except when there is nothing else between the vertical bar

and the beginning or end of a strand. We write P for the set of strands in a

protocol, including the strands that describe the intruder’s behavior.

The intruder knowledge is represented as a multiset of facts unioned to-

gether with an associative and commutativity union operator _,_ with iden-

tity operator ∅. There are two kinds of intruder facts: positive knowledge

facts (the intruder knows m, i.e., m∈I), and negative knowledge facts (the

intruder does not yet know m but will know it in a future state, i.e., m/∈I),

where m is a message expression.

Maude-NPA uses a special sort Msg of messages that allows the protocol

specifier to describe other sorts as subsorts of the top sort Msg. The specifier

can make use of a special sort Fresh in the protocol-specific signature Σ

for representing fresh unguessable values, e.g., nonces. The meaning of a

variable of sort Fresh is that it will never be instantiated by an E-unifier

generated during the backwards reachability analysis. This ensures that if

two nonces are represented using different variables of sort Fresh, they will

never be identified and no approximation for nonces is necessary. We make

explicit the Fresh variables r1, . . . , rk(k ≥ 0) generated by a strand by writing

1We write m± to denote m+ or m−, indistinctively. We often write +(m) and −(m)
instead of m+ and m−, respectively.

12

4. Maude-NPA’s Execution Model

:: r1, . . . , rk :: [msg±1 , . . . ,msg
±
n], where each ri appears first in an output

message msg+
ji

and can later be used in any input and output message of

msg±ji+1, . . . ,msg
±
n . Fresh variables generated by a strand are unique to that

strand.

Let us recall our specification of the NSL protocol for motivation. The

strands associated to the three protocol steps above are given next; having

two strands, one for each principal in the protocol. Note that the first mes-

sage A → B : {NA, A}pk(B) is represented by a message in Alice’s strand

sending pk(B, n(A, r);A)+ and another message in Bob’s strand receiving

pk(B,N ;A)−. When a principal cannot observe the contents of a concrete

part of a received message (e.g., because a key is necessary to look inside),

we use a generic variable for such part of the message in the strand (as with

variable N of sort Nonce above). We encourage the reader to compare the

protocol in strand notation to the presentation of the protocol above.

• (Alice) :: r :: [pk(B, n(A, r);A)+, pk(A, n(A, r);N ;B)−, pk(B,N)+]

• (Bob) :: r′ :: [pk(B,N ;A)−, pk(A,N ;n(B, r′);B)+, pk(B, n(B, r′))−]

Note that r, r′ are variables of sort Fresh used for nonce generation (they are

special variables handled as unique constants in order to obtain an infinite

number of available constants, see [Escobar 09a]).

There are also strands for initial intruder knowledge and intruder actions,

such as concatenation, deconcatenation, encryption, decryption, etc. For

example, concatenation by the intruder is described by the following strand

:: nil :: [(X)−, (Y)−, (X;Y)+].

Our protocol analysis methodology is then based on the idea of back-

ward reachability analysis, where we begin with one or more state patterns

corresponding to attack states, and want to prove or disprove that they are

unreachable from the set of initial protocol states. In order to perform such

a reachability analysis we must describe how states change as a consequence

of principals performing protocol steps and of intruder actions. This can be

done by describing such state changes by means of a set RP of rewrite rules,

so that the rewrite theory (ΣP , EP , RP) characterizes the behavior of proto-

col P modulo the equations EP . In the case in which new strands are not

13

4. Maude-NPA’s Execution Model

introduced into the state, the rewrite rules RP obtained from the protocol

strands P are as follows2, where L,L1, L2 denote lists of input and output

messages (+m,−m), IK, IK ′ denote sets of intruder facts (m∈I,m/∈I), and

SS, SS ′ denote sets of strands:

[L | M−, L′] & SS & (M∈I, IK)→ [L,M− | L′] & SS & (M∈I, IK) (4.1)

[L | M+, L′] & SS & IK → [L,M+ | L′] & SS & IK (4.2)

[L | M+, L′] & SS & (M/∈I, IK)→ [L,M+ | L′] & SS & (M∈I, IK) (4.3)

In a forward execution of the protocol strands, Rule (4.1) synchronizes

an input message with a message already in the channel (i.e., learned by the

intruder), Rule (4.2) accepts output messages but the intruder’s knowledge

is not increased, and Rule (4.3) accepts output messages and the intruder’s

knowledge is positively increased. Note that Rule (4.3) makes explicit when

the intruder learned a message M , which is recorded in the previous state by

the negative fact M /∈I. A fact M /∈I can be paraphrased as: “the intruder

does not yet know M , but will learn it in the future”. New strands are

added to the state by explicit introduction through dedicated rewrite rules

(one for each honest or intruder strand). It is also the case that when we

are performing a backwards search, only the strands that we are searching

for are listed explicitly, and extra strands necessary to reach an initial state

are dynamically added. Thus, when we want to introduce new strands into

the explicit description of the state, we need to describe additional rules for

doing that, as follows:

for each [l1, u+, l2] ∈ P : [l1 | u+, l2] & SS & (u/∈I, IK)→ SS & (u∈I, IK)

(4.4)

where u denotes a message, l1, l2 denote lists of input and output messages

(+m,−m), IK denotes a set of intruder facts (m∈I,m/∈I), and SS denotes a

2To simplify the exposition, we omit the fresh variables at the beginning of each strand
in a rewrite rule.

14

4. Maude-NPA’s Execution Model

set of strands. For example, intruder concatenation of two learned messages

is described as follows:

[M−1 ,M
−
2 | (M1;M2)+] & SS & ((M1;M2)/∈I, IK)→ SS & ((M1;M2)∈I, IK)

and it can be understood, in a backwards search, as “in the current state the

intruder is able to learn a message that matches the pattern M1;M2 if he is

able to learn message M1 and message M2 in prior states”. In summary, for

a protocol P , the set of rewrite rules obtained from the protocol strands that

are used for backwards narrowing reachability analysis modulo the equational

properties EP is RP = {(4.1), (4.2), (4.3)} ∪ (4.4).

The way to analyze backwards reachability is then relatively easy, namely

to run the protocol “in reverse.” This can be achieved by using the set of

rules R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis

can be performed symbolically, not on concrete states but on symbolic state

patterns [t(x1, . . . , xn)]EP by means of narrowing modulo EP (see Chapter 3).

15

Chapter 5

Current Syntax for Protocol

Specification

In this chapter, we briefly describe how to specify a protocol and all its rele-

vant items in the current version of the Maude-NPA. For further information

we refer the reader to [Escobar 09b]. Note that, since we are using Maude

also as the specification language, each declaration has to be ended by a

space and a period.

5.1 Specifying the Protocol Syntax

We begin by specifying sorts. In general, sorts are used to specify different

types of data, that are used for different purposes. The Maude-NPA tool

always assumes that the sort Msg is the top sort, but it allows user-defined

subsorts of Msg that can be specified by the user for a more accurate protocol

specification and analysis.

To illustrate the definition of sorts, we use the NSL protocol described in

Chapter 2. For this protocol we need to define sorts to distinguish names,

nonces and encrypted data. This is specified as follows:

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg . subsort Name < Public .

17

5.2. Algebraic Properties

We can now specify the different operators needed in NSL1. A nonce

generated by principal A is denoted by n(A, r), where r is a unique variable

of sort Fresh. Concatenation of two messages, e.g., NA and NB, is denoted

by the operator ; , e.g., n(A, r) ; n(B, r′). Encryption of a message M with

the public key KA of principal A is denoted by pk(A,M), e.g., {NB}pk(B)

is denoted by pk(B, n(B, r′)). Encryption with a secret key is denoted by

sk(A,M). We begin with the public/private encryption operators.

op pk : Name Msg -> Enc .

op sk : Name Msg -> Enc .

Next we specify some principal names. For NSL, we have three constants

of sort Name, a (for “Alice”), b (for “Bob”), and i (for the “Intruder”). We

now need two more operators, one for nonces, and one for concatenation.

The nonce operator is specified as follows.

op n : Name Fresh -> Nonce .

Note that the nonce operator has an argument of sort Fresh to ensure

uniqueness. The argument of type Name is not strictly necessary, but it

provides a convenient way of identifying which nonces are generated by which

principal. This makes searches more efficient, since it allows us to keep track

of the originator of a nonce throughout a search. Finally, we come to the

message concatenation operator. In Maude-NPA, we specify concatenation

via an infix operator “_;_” defined as follows:

op _;_ : Msg Msg -> Msg [gather (e E)] .

5.2 Algebraic Properties

Next, we specify the algebraic properties of the symbols defined above for the

NSL protocol. There are two types of algebraic properties in Maude-NPA:

(i) equational axioms, such as commutativity, or associativity-commutativity,

1We omit the Maude frozen attribute of operators, see [Escobar 09b].

18

5.3. Specifying the Strands

called axioms, and (ii) equational rules, called equations. Axioms are specified

within the operator declarations whereas equations are specified separately.

An equation is oriented into a rewrite rule in which the left–hand side of

the equation is reduced to the right–hand side2. In NSL, we use two equations

specifying the relationship between public and private key encryption, as

follows:

var X : Msg . var A : Name .

eq pk(A,sk(A,X)) = X .

eq sk(A,pk(A,X)) = X .

Note that there are restrictions on the equations that can be included

here, since the narrowing-based unification algorithm provided by the tool

for those equations must be finitary, see [Escobar 09b]. For instance, the

exclusive-or symbol of the DB protocol is specified as follows:

eq X * X * Y = Y .

eq X * X = null .

eq X * null = X .

Note that the redundant equational property X ∗X ∗Y = Y is necessary

in Maude-NPA for coherence purposes; see [Escobar 09a].

5.3 Specifying the Strands

As explained in Chapter 4, the protocol itself and the intruder capabilities

are both specified using strands. We use the keyword STRANDS-PROTOCOL for

storing the principal strands:

eq STRANDS-PROTOCOL =

:: r ::

[nil | +(pk(B,n(A,r) ; A)), -(pk(A,n(A,r) ; NB ; B)),

+(pk(B,NB)), nil]

&

2We omit the Maude nonexec attribute of equations, see [Escobar 09b].

19

5.4. Protocol Analysis

:: r ::

[nil | -(pk(B,NA ; A)), +(pk(A,NA ; n(B,r) ; B)),

-(pk(B,n(B,r))), nil] .

The next thing to specify is the actions of the intruder, or Dolev-Yao rules

[Dolev 83]. These specify the operations an intruder can perform. Each such

action can be specified by an intruder strand consisting of a sequence of

negative nodes, followed by a single positive node. If the intruder can (non-

deterministically) find more than one term as a result of performing one oper-

ation (as in deconcatenation), we specify each of these outcomes by separate

strands. Every operation that can be performed by the intruder, and every

term that is initially known by the intruder, should have a corresponding

intruder strand. For each operation used in the protocol we should consider

whether or not the intruder can perform it, and specify a corresponding in-

truder strand that describes the conditions under which the intruder can

perform it. For the NSL protocol, we have four operations: encryption with

a public key (pk), decryption with a private key (sk), concatenation (_;_),

and deconcatenation. We use the keyword STRANDS-DOLEVYAO for storing

the principal strands:

eq STRANDS-DOLEVYAO

= :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] &

:: nil :: [nil | -(X ; Y), +(X), nil] &

:: nil :: [nil | -(X ; Y), +(Y), nil] &

:: nil :: [nil | -(X), +(sk(i,X)), nil] &

:: nil :: [nil | -(X), +(pk(Ke,X)), nil] .

5.4 Protocol Analysis

Next, we describe how to analyze a protocol in practice. First, we explain

how a protocol state looks like, and how an attack state is specified in the

protocol. Then, we explain how the actual protocol analysis is performed.

In Maude-NPA, each state associated to the protocol execution (i.e., a

backwards search) is represented by a term with four different components

20

5.4. Protocol Analysis

separated by the symbol || in the following order: (1) the set of current

strands, (2) the current intruder knowledge, (3) the sequence of messages

encountered so far in the backwards execution, (4) some auxiliary data, and

(5) the “never pattern”, a technique to reduce the search space, associated

to that state,

Strands || Intruder Knowledge || Message Sequence || Auxiliary Data ||

Never Pattern.

The first component, the set of current strands, indicates in particular

how advanced each strand is in the execution process (by the placement of

the bar). The second component contains messages that the intruder already

knows (we use symbol _inI for the notation m∈I) and messages that the

intruder currently doesn’t know (we use symbol _!inI for the notation m/∈I)

but will learn in the future. The third, fourth, and fifth components are

irrelevant for the purposes of this work, see [Escobar 09b].

An initial state is the final result of the backwards reachability process

and is described as follows:

1. in an initial state, all strands have the bar at the beginning, i.e., all

strands are of the form :: r1, . . . , rj :: [nil | m1
±, . . . , mk

±];

2. in an initial state, all the intruder knowledge is negative, i.e., all the

items in the intruder knowledge are of the form m/∈I.

From an initial state, no further backwards reachability steps are possible.

Attack states describe not just single concrete attacks, but attack patterns

(or if you prefer attack situations), which are specified symbolically as terms

(with variables) whose instances are the final attack states we are looking

for. Given an attack pattern, Maude-NPA tries to either find an instance of

the attack or prove that no instance of such attack pattern is possible. We

can specify more than one attack state. Thus, we designate each attack state

with a natural number.

When specifying an attack state, the user should specify only the first two

components of the attack state: (i) a set of strands expected to appear in the

21

5.4. Protocol Analysis

attack, and (ii) some positive intruder knowledge. The message sequence,

auxiliary data components, and never pattern should have just the empty

symbol nil.

Note that the attack state is indeed a term with variables but the user

does not have to provide the variables denoting “the remaining strands”,

“the remaining intruder knowledge”, and the two variables for the two last

state components. These variables are symbolically inserted by the tool.

For example, to prove that the NSL protocol fixes the bug found in the

Needham-Schroeder Public Key protocol (NSPK), i.e., the intruder cannot

learn the nonce generated by Bob, we should specify the following attack

state:

eq ATTACK-STATE(0) =

:: r ::

[nil, -(pk(b,a ; NA)), +(pk(a,NA ; n(b,r) ; b)),

-(pk(b,n(b,r))) | nil]

|| n(b,r) inI

|| nil

|| nil

|| nil .

which cannot reach an initial state and has a finite search space, proving it

secure.

22

Chapter 6

Syntax for Protocol

Specification and Composition

We begin by describing the new syntactic features we need to make explicit in

each protocol to later define sequential protocol compositions. Each strand

in a protocol specification in the Maude-NPA is now extended with input pa-

rameters and output parameters. Input parameters are a sequence of variables

of different sorts placed at the beginning of a strand. Output parameters are

a sequence of terms placed at the end of a strand. Any variable contained

in an output parameter must appear either in the body of the strand, or as

an input parameter. The strand notation we will now use is [{
−→
I },
−→
M, {
−→
O}]

where
−→
I is a list of input parameter variables,

−→
M is a list of positive and

negative terms in the strand notation of the Maude-NPA, and
−→
O is a list

of output terms all of whose variables appear in
−→
M or

−→
I . The input and

output parameters describe the exact assumptions about each principal.

In the following, we first describe our syntax for protocol specification

and then introduce a new syntax for protocol composition. Similarly to the

Maude syntax for modules, we define a protocol modularly as follows:

23

6. Syntax for Protocol Specification and Composition

prot Name is

sorts Sorts .

subsorts Subsorts .

Operators

Variables

Equations

DYStrands

Strands

endp

where Name is a valid Maude module name, Sorts is a valid Maude-NPA

declaration of sorts, Subsorts is a valid Maude-NPA declaration of subsorts,

Operators is a valid Maude-NPA declaration of operators, Variables is a valid

Maude-NPA declaration of variables to be used in the equational properties

and in the honest and Dolev-Yao strands, Equations is a valid Maude-NPA

declaration of equational properties, DYStrands is a sequence of valid Maude-

NPA Dolev-Yao strands, each starting with the word DYstrand and ending

with a period, and Strands is a sequence of valid Maude-NPA strands, each

starting with the word strand and ending with a period.

In the following, we provide as an example, the specification of the three

protocols of Chapter 2 using the new syntax proposed above. By comparing

with the example specification of Chapter 5 the reader can note that the new

syntax we propose is just slightly different from the current one but is more

expressive for our purpose of dealing with sequential protocol composition in

the Maude-NPA.

Example 1 The following description of the NSL protocol contains more

technical details than the informal description of NSL in Chapter 2.

prot NSL is

--- Sort Information

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg .

subsort Name < Public .

--- Public/private encryption

24

6. Syntax for Protocol Specification and Composition

op pk : Name Msg -> Enc . op sk : Name Msg -> Enc .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E)] .

--- Variables

vars X Y : Msg . var r : Fresh .

vars A B : Name . var N : Nonce .

--- Encryption/Decryption Cancellation

eq pk(A,sk(A,X)) = X .

eq sk(A,pk(A,X)) = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(X), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(Y), nil] .

DYstrand :: nil :: [nil | -(X), +(sk(i,X)), nil] .

DYstrand :: nil :: [nil | -(X), +(pk(A,X)), nil] .

--- Strands

strand [init] :: r :: [{A,B} | +(pk(B,n(A,r);A)),

-(pk(A,n(A,r);N;B)), +(pk(B,N)), {A,B,n(A,r),N}] .

strand [resp] :: r :: [{A,B} | -(pk(B,N;A)), +(pk(A,N;n(B,r);B)),

-(pk(B,n(B,r))), {A,B,N,n(B,r)}] .

endp

Note that we allow each honest or Dolev-Yao strand to be labeled (e.g.

init or resp), in contrast to the standard Maude-NPA syntax for strands.

These strand labels play an important role in our protocol composition

method as explained below.

�

Example 2 Similarly to the NSL protocol, there are several technical details

missing in the previous informal description of DB. The specification of the

DB protocol using the new syntax is as follows:

25

6. Syntax for Protocol Specification and Composition

prot DB is

--- Sort Information

sorts Name Nonce .

subsort Name Nonce < Msg .

subsort Name < Public .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Exclusive-or operator

op _*_ : Msg Msg -> Msg [assoc comm gather (e E)] .

op null : -> Msg .

--- Variables

vars X Y : Msg . var r : Fresh .

vars A B : Name . var N : Nonce .

--- XOR equational rules

eq X * X * Y = Y .

eq X * X = null .

eq X * null = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(Y), +(X * Y), nil] .

--- Strands

strand [init]

:: r :: [{A,B,NA} | +(n(B,r)), -(n(B,r)*NA), {A,B,NA,n(B,r)}] .

strand [resp]

:: nil :: [{A,B,NA} | -(NB), +(NB * NA), {A,B,NA,NB}] .

endp

The exclusive-or operator ⊕ is written as _*_. Since Maude-NPA does

not yet include timestamps, we do not include all the actions relevant to

calculating time intervals, sending timestamps, and checking them.

In this protocol specification, it is made clear that the nonce NA used by

the initiator is a parameter and is never generated by A during the run of

DB. However, the initiator B does generate a new nonce.

�

26

6. Syntax for Protocol Specification and Composition

Example 3 The previous informal description of the KD protocol also lacks

several technical details, which we supply here. The whole protocol specifi-

cation with the new syntax is as follows:

prot KD is

--- Sort Information

sorts Name Nonce Key Hash Enc .

subsort Name Nonce Key Enc < Msg .

subsort Name < Public .

subsort Hash < Key .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E)] .

--- Hash operator

op h : Msg Msg -> Hash .

--- Key operator

op skey : Name Fresh -> Key .

--- Encryption Operators

op e : Key Msg -> Enc .

op d : Key Msg -> Enc .

--- Variables

var X : Msg . var r : Fresh . vars A B : Name .

var N : Nonce . vars K SK : Key .

--- Encryption/Decryption Cancellation

eq d(K,e(K,X)) = X . eq e(K,d(K,X)) = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(K), +(e(K,X)), nil] .

DYstrand :: nil :: [nil | -(X), -(K), +(d(K,X)), nil] .

--- Strands

strand [init] :: r :: [{A,B,K} | +(e(K,skey(A,r)),

-(e(K,skey(A,r) ; N)), +(e(K, N)), {A,B,K,skey(A,r),N}] .

strand [resp] :: r :: [{A,B,K} | -(e(K,SK)),

27

6. Syntax for Protocol Specification and Composition

+(e(K,SK ; n(B,r))), -(e(K,n(B,r))), {A,B,K,SK,n(B,r)}] .

endp

Encryption of a message M with key K is denoted by e(K,M), e.g.,

{N ′B}h(NA,NB) is denoted by e(h(n(A, r), n(B, r′)), n(B, r′′)). Cancellation

properties of encryption and decryption are described using the equations

e(X, d(X,Z)) = Z and d(X, e(X,Z)) = Z. Session keys are written

skey(A, r), where A is the principal’s name and r is a Fresh variable.

�

Sequential composition of two strands describes a situation in which one

strand (the child strand) can only execute after the parent strand has its com-

pleted execution. Each composition of two strands is obtained by matching

the output parameters of the parent strand with the input parameters of the

child strand in a user-defined way. Note that it may be possible for a single

parent strand to have more than one child strand.

The relevant fact in the DB protocol is that both nonces are required to

be unknown to an attacker before they are sent, but the nonce originating

from the responder must be previously agreed upon between the two prin-

cipals. Therefore, this protocol is usually composed with another protocol

ensuring secrecy and authentication of nonces. Furthermore, according to

[Guttman 08], there are two extra issues related to the DB protocol that

must be considered:

• the initiator of the previous protocol plays the role of the responder in

DB and viceversa, and

• nonces generated by the parent protocol cannot be shared by more than

one child so that an initiator of NSL will be connected to one and only

one responder of DB.

In our working example, we use the NSL protocol to provide these capabili-

ties.

28

6.1. Specifying Sequential Composition

6.1 Specifying Sequential Composition

Similarly to the syntax for protocols, we define protocol composition as fol-

lows1:

prot Name is Name1 ; Name2

a1{
−→
O1} ; {

−→
I1}b1 [1-1] (or [1-*]) .

...

an{
−→
On} ; {

−→
In}bn [1-1] (or [1-*]) .

endp

where Name is a valid Maude-NPA module name, Name1 and Name2 are

protocol names previously defined, a1, . . . , an are labels of strands in proto-

col Name1, and b1, . . . , bn are labels of strands in protocol Name2. The ex-

pressions [1−1] (or [1−∗]) indicate whether a one-to-one (or a one-to-many)

composition is desired for those two strands. Furthermore, for each compo-

sition ai{
−→
Oi}; {

−→
Ii }bi, strand definition :: −→rai

:: [{
−→
Iai
},−→ai , {

−→
Oai
}] for role ai in

protocol Name1, and strand definition :: −→rbi :: [{
−→
Ibi},
−→
bi , {
−→
Obi}] for role bi in

protocol Name2, we have that:

1. variables are properly renamed, i.e. Vab = Var(
−→
Ii) ∪ Var(

−→
Oi), Va =

Var(
−→
Iai

) ∪ Var(
−→
Oai

), Vb = Var(
−→
Ibi) ∪ Var(

−→
Obi), and Vab ∩ Va ∩ Vb = ∅;

2. the variables of
−→
Ii must appear in

−→
Oi (no extra variables are allowed

in a protocol composition);

3. the formal output parameters
−→
Oai

must match the actual output pa-

rameters
−→
Oi, i.e., ∃σa s.t.

−→
Oai

=EP σa(
−→
Oi); and

4. the actual input parameters
−→
Ii must match the formal input parameters

−→
Ibi , i.e., ∃σb s.t.

−→
Ii =EP σb(

−→
Ibi).

Note that for each composition, if there are substitutions σa and σb as de-

scribed above, then there is a substitution σab combining both, i.e., σab(X) =

σa(σb(X)) for any variable X, and then σa(
−→
Ii) =EP σab(

−→
Ibi). This ensures

1Operator and sort renaming is indeed necessary, as in the Maude module importation
language, but we do not consider those details in this thesis.

29

6.1. Specifying Sequential Composition

that any protocol composition is feasible and avoids the possibility of failing

protocol compositions.

Let us consider again our two NSL and DB protocols and their com-

position. Note that we do not have to modify either the NSL or the DB

specification above. The composition of both protocols is specified as fol-

lows:

prot NSL-DB is NSL ; DB

NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

NSL.resp {A,B,NA,NB} ; {A,B,NA} DB.init [1-1] .

endp

Let us now consider the NSL and KD protocols and their composition.

The composition of both protocols, which is an example of a one-to-many

composition, is specified as follows:

prot NSL-KD is NSL ; KB

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.resp [1-*] .

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.resp [1-*] .

endp

In the remainder of this thesis we remove irrelevant parameters (i.e. input

parameters for strands with no parents, and output parameters for strands

with no children) in order to simplify the exposition.

30

Chapter 7

Maude-NPA’s Composition

Execution Model

In this chapter we define a concrete execution model for the one-to-one and

one-to-many protocol compositions by extending the Maude-NPA execution

model. However, we show that, by a simple protocol transformation, we are

able to analyze and verify this dynamic composition in the current Maude-

NPA tool. We prove soundness and completeness of the protocol transfor-

mation with respect to the extended operational semantics in Chapter 9.

7.1 Composition Execution Model

As explained in Chapter 4, the operational semantics of protocol execution

and analysis is based on rewrite rules denoting state transitions which are

applied modulo the algebraic properties EP of the given protocol P . There-

fore, in the one-to-one and one-to-many cases we must add new state transi-

tion rules in order to deal with protocol composition. Maude-NPA performs

backwards search modulo EP by reversing the transition rules expressed in a

forward way; see [Escobar 06, Escobar 09a]. Again, we define forward rewrite

rules which will happen to be executed in a backwards way.1

1Note however, that we represent unification explicitly via a substitution σ instead of
implicitly via variable equality as in Chapter 4. This is because output and input param-
eters are not required to match, e.g. in the composition NSL-KD, the output parameters

31

7.1. Composition Execution Model

for each one-to-one composition {a{
−→
O}; {

−→
I }b} [1−1] with

strand definition [{
−→
Ia},−→a , {

−→
Oa}] for protocol a,

strand definition [{
−→
Ib },
−→
b , {
−→
Ob}] for protocol b,

and substitutions σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib),

we add the following rule :

[−→a | {
−→
Oa}] & [nil | {σab(

−→
Ib)}, σab(

−→
b)] &SS& IK

→ [−→a , {
−→
Oa} | nil] & [{σab(

−→
Ib)} | σab(

−→
b)] &SS& IK (7.1)

[−→a | {
−→
O}] & [nil | {σab(

−→
Ib)}, σab(

−→
b)] &SS& IK

→ [{σab(
−→
Ib)} | σab(

−→
b)] &SS& IK (7.2)

Figure 7.1: Semantics for one-to-one composition

In the one-to-one composition, we add the state transition rules of Fig-

ure 7.1. Rule 7.1 composes a parent and a child strand already present in

the current state. Rule 7.2 adds a parent strand to the current state and

composes it with an existing child strand. Note that since a strand specifica-

tion is a symbolic specification representing many concrete instances and the

same applies to a composition of two protocol specifications, we need to re-

late actual and formal parameters of the protocol composition w.r.t. the two

protocol specifications by using the substitutions σa and σab in Figure 7.1,

which are exactly those substitutions σa and σab explained in Section 6.1.

For example, given the following composition of the NSL-DB protocol

NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

where NSL.init and DB.resp are, respectively, as follows:

[NSL.init] :: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)),

+(pk(B,N)), {A,B,n(A,r),N}] .

[DB.resp] :: nil :: [{A’,B’,NA}, -(NB), +(NB * NA)] .

of the parent strand are {A,B,NA, NB} whereas the input parameters of the child strand
are {A,B, h(NA, NB)}.

32

7.1. Composition Execution Model

for each one-to-many composition {a{
−→
O}; {

−→
I }b} [1−∗] with

strand definition [{
−→
Ia},−→a , {

−→
Oa}] for protocol a,

strand definition [{
−→
Ib },
−→
b , {
−→
Ob}] for protocol b,

and substitutions σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib),

we add one Rule 7.1, one Rule 7.2, and the following rule :

[−→a | {
−→
Oa}] & [nil | {σab(

−→
Ib)}, σab(

−→
b)] &SS& IK

→ [−→a | {
−→
Oa}] & [{σab(

−→
Ib)} | σab(

−→
b)] &SS& IK (7.3)

Figure 7.2: Semantics for one-to-many composition

we add the following transition rule for Rule (7.1) using substitution σab =

{A’ 7→ A, B’ 7→ B, NA 7→ n(A,r)} where both the parent and the child strands

are present and thus synchronized

:: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N))

| {A,B,n(A,r),N}]

:: nil :: [nil | {A,B,n(A,r)}, -(NB), +(NB * n(A,r))] & SS & IK

->

:: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)), +(pk(B,N)),

{A,B,n(A,r),N} | nil]

:: nil :: [{A,B,n(A,r)} | -(NB), +(NB * n(A,r))] & SS & IK

The reader can check how bars are moved in the parent and child strands to

denote that the output parameters from the parent and the input parameters

from the child have been synchronized and also how the repeated variables are

used for proper data propagation (these variables being the effect of applying

the σab substitution.

One-to-many composition uses the rules in Figure 7.1 for the first child

plus an additional rule for subsequent children, described in Figure 7.2.

Rule 7.3 composes a parent strand and a child strand but the bar in the

parent strand is not moved, in order to allow further backwards child com-

positions. For example, given the following composition of the NSL-KD

protocol

33

7.2. Protocol Composition by Protocol Transformation

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

where NSL.resp and KD.init are, respectively, as follows:

[NSL.resp] :: r :: [-(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)),

-(pk(B,n(B,r))), {A,B,NA,n(B,r)}] .

[KD.init] :: r’ :: [{A’,B’,K}, +(e(K,skey(A’,r’)),

-(e(K,skey(A’,r’);N)), +(e(K, N))] .

we add the following transition rule for Rule (7.3) using substitution

σab = {A’ 7→ A, B’ 7→ B, K 7→ h(NA,n(B,r))}:

:: r :: [-(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)), -(pk(B,n(B,r)))

| {A,B,NA,n(B,r)}] .

:: r’ :: [nil | {A,B,h(NA,n(B,r))}, +(e(h(NA,n(B,r)),skey(A,r’)),

-(e(h(NA,n(B,r)),skey(A,r’) ; N)),

+(e(h(NA,n(B,r)), N))] .

& SS & IK

->

:: r :: [-(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)), -(pk(B,n(B,r))),

{A,B,NA,n(B,r)} | nil] .

:: r’ :: [{A,B,h(NA,n(B,r))} | +(e(h(NA,n(B,r)),skey(A,r’)),

-(e(h(NA,n(B,r)),skey(A,r’) ; N)),

+(e(h(NA,n(B,r)), N))] .

& SS & IK

Thus, for a protocol composition P1;P2, the rewrite rules governing pro-

tocol execution are R◦P1;P2
= {(4.1), (4.2), (4.3)}∪ (4.4)∪ (7.1)∪ (7.2)∪ (7.3).

7.2 Protocol Composition by Protocol Trans-

formation

Instead of implementing a new version of the Maude-NPA generating new

transition rules for each protocol composition, we have defined a protocol

34

7.2. Protocol Composition by Protocol Transformation

Φ(P1;P2) =



add strand [−→a ,−(roleb(r)),+(rolea(r) . σab(İb))] and
strand [+(roleb(r)),−(rolea(r) . İb),

−→
b]

whenever {a{
−→
O}; {

−→
I }b} [1−1] in P1;P2,

strand definition [rolea][{
−→
Ia},−→a , {

−→
Oa}] for protocol a,

strand definition [roleb][{
−→
Ib},
−→
b , {
−→
Ob}] for protocol b,

∃σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib)

and r is a fresh variable
add strand [−→a ,+(rolea(r) . σab(İb))] and strand [−(rolea(r) . İb),

−→
b]

whenever {a{
−→
O}; {

−→
I }b} [1−∗] in P1;P2,

strand definition [rolea][{
−→
Ia},−→a , {

−→
Oa}] for protocol a,

strand definition [roleb][{
−→
Ib},
−→
b , {
−→
Ob}] for protocol b,

∃σa, σab s.t.
−→
Oa =EP σa(

−→
O) and σa(

−→
I) =EP σab(

−→
Ib)

and r is a fresh variable

Figure 7.3: Protocol Transformation

transformation that achieves the same effect using the current Maude-NPA

tool.

The protocol transformation is given in Figure 7.3. Its output is a single,

composed protocol specification where:

1. Sorts, symbols, and equational properties of both protocols are put to-

gether into a single specification2. Strands of both protocols are trans-

formed and added to this single specification as described in Figure 7.3.

2. For each composition we transform the input parameters {
−→
Ib } into an

input message exchange of the form −(
−→
Ib), and the output parameters

{
−→
Oa} into an output message exchange of the form +(σab(

−→
Ib)). The

sort Param of these messages is disjoint from the sort Msg used by the

protocol in the honest and intruder strands. This ensures that they

are harmless, since no intruder strand will be able to use them. In

order to avoid type conflicts, we use a dot for concatenation within

protocol composition exchange messages, e.g. input parameters
−→
I =

{A,B,NA} are transformed into the sequence İ = A . B . NA.

3. Each composition is uniquely identified by using a composition iden-

2Note that we allow shared items but require the user to solve any possible conflict.
Operator and sort renaming is an option, as in the Maude module importation language,
but we do not consider those details in this paper.

35

7.2. Protocol Composition by Protocol Transformation

tifier (a variable of sort Fresh). Strands exchange such composition

identifier by using input/output messages of the form rolej(r), which

make the role explicit. The sort Role of these messages is disjoint from

the sorts Param and Msg.

(a) In a one-to-one protocol composition, the child strand uniquely

generates a fresh variable that is added to the area of fresh identi-

fiers at the beginning of its strand specification. This fresh variable

must be passed from the child to the parent before the parent gen-

erates its output parameters and sends it back again to the child.

(b) In a one-to-many protocol composition, the parent strand uniquely

generates a fresh variable that is passed to the child. Since an (a

priori) unbounded number of children will be composed with it,

no reply of the fresh variable is expected by the parent from the

children.

For example, for the following one-to-one protocol composition in NSL-

DB

NSL.init {A,B,NA,NB} ; {A,B,NA} DB.resp [1-1] .

where NSL.init and DB.resp are, respectively, as follows:

[NSL.init] :: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)),

+(pk(B,N)), {A,B,n(A,r),N}] .

[DB.resp] :: nil :: [{A,B,NA}, -(NB), +(NB * NA)] .

we have the following two transformed strands:

[NSL.init] :: r :: [+(pk(B,n(A,r);A)), -(pk(A,n(A,r);N;B)),

+(pk(B,N)), -(db-resp(r#)),

+(nsl-init(r#) . A . B . n(A,r))] .

[DB.resp] :: r# :: [+(db-resp(r#)), -(nsl-init(r#) . A . B . NA),

-(NB), +(NB * NA)] .

For the current 1−1 composition of NSL with the distance-bounding pro-

tocol DB, we can formulate the composition as a single protocol with these

36

7.2. Protocol Composition by Protocol Transformation

two transformed strands containing these extra synchronization messages for

protocol composition, as follows.

prot NSL-DB is

--- Synchronization for composition

sort Params Msg$ Role .

subsort Params Role Msg$ < Msg .

--- Roles

ops init-nsl resp-nsl : Fresh -> Role .

ops init-db resp-db : Fresh -> Role .

--- Composition

sort ParamSeq .

subsort Msg$ < ParamSeq .

op _._ : ParamSeq ParamSeq -> ParamSeq [gather (e E)] .

op {_} : ParamSeq -> Params .

--- Sort Information

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg$.

subsort Name < Public .

--- Encoding operators for public/private encryption

op pk : Name Msg$ -> Enc .

op sk : Name Msg$ -> Enc .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Concatenation operator

op _;_ : Msg$ Msg$ -> Msg$ [gather (e E)] .

--- Exclusive-or operator

op _*_ : Msg$ Msg$ -> Msg$ [assoc comm] .

op null : -> Msg$.

--- Variables

vars X Y Z : Msg$. vars A B : Name .

vars r r’ r’’ r# : Fresh .

vars A B C : Name .

vars NA NB N : Nonce .

vars X Y Z H : Msg$.

vars P Q : Name .

--- Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z . eq sk(A,pk(A,Z)) = Z .

37

7.2. Protocol Composition by Protocol Transformation

--- XOR equational rules

eq X * X * Y = Y . eq X * X = null . eq X * null = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(Y), +(X * Y), nil] .

DYstrand :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(X), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(Y), nil] .

DYstrand :: nil :: [nil | -(X), +(sk(i,X)), nil] .

DYstrand :: nil :: [nil | -(X), +(pk(A,X)), nil] .

--- Strands

strand [nsl-init] :: r :: [nil | +(pk(B,n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B)), +(pk(B, NB)),

-(resp-db(r#)), +({init-nsl(r#) . A . B . n(A,r)}), nil] .

strand [nsl-resp] :: r :: [nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)), -(pk(B,n(B,r))),

-(init-db(r#)), +({resp-nsl(r#) . A . B . NA }), nil] .

strand [db-init] :: r’, r# :: [nil | +(init-db(r#)),

-({resp-nsl(r#) . A . B . NA }), +(n(B,r’)),

-(NA * n(B,r’)), nil] .

strand [db-res‘] :: r# :: [nil | +(resp-db(r#)),

-({init-nsl(r#) . A . B . NA }), -(N), +(NA * N), nil]

endp

For the following one-to-many protocol composition in the NSL-KD

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

where NSL.init and KD.init are, respectively, as follows:

[NSL.resp] :: r :: [-(pk(B,N;A)), +(pk(A,N;n(B,r);B)),

-(pk(B,n(B,r))), {A,B,N,n(B,r)}] .

[KD.init] :: r :: [{A,B,K}, +(e(K,skey(A,r)),

-(e(K,skey(A,r) ; N’)), +(e(K,N’))] .

we have the following two transformed strands:

[NSL.resp] :: r,r# :: [-(pk(B,N;A)), +(pk(A,N;n(B,r);B)),

-(pk(B,n(B,r))),

+(nsl-init(r#) . A . B . h(N,n(B,r)))] .

[KD.init] :: r :: [-(nsl-init(r#) . A . B . K), +(e(K,skey(A,r)),

-(e(K,skey(A,r) ; N’)), +(e(K,N’))] .

38

7.2. Protocol Composition by Protocol Transformation

The whole composition of NSL with the key distribution protocol KD,

can be formulated as a single protocol too, as follows.

prot NSL-KD is

--- Synchronization for composition

sorts Params Role Msg$. subsort Params Role Msg$ < Msg .

--- Roles

ops init-nsl resp-nsl : Fresh -> Role .

ops init-key resp-key : Fresh -> Role .

--- Composition

sort ParamSeq .

subsorts Msg$ Role < ParamSeq .

op _._ : ParamSeq ParamSeq -> ParamSeq [gather (e E)] .

op {_} : ParamSeq -> Params .

--- Sort Information

sorts Name Nonce Key Hash Enc .

subsort Name Nonce Key Hash Enc < Msg$.

subsort Name < Public .

subsort Hash < Key .

--- Encoding operators for public/private encryption

op pk : Name Msg$ -> Enc .

op sk : Name Msg$ -> Enc .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Concatenation operator

op _;_ : Msg$ Msg$ -> Msg$ [gather (e E)] .

--- Exclusive-or operator

op _*_ : Msg$ Msg$ -> Msg$ [assoc comm] .

op null : -> Msg$.

--- Hash operator

op h : Msg$ Msg$ -> Hash .

--- Key operator

op skey : Name Fresh -> Key .

--- Encryption Operators

op e : Key Msg$ -> Enc . op d : Key Msg$ -> Enc .

--- Variables

vars X Y Z : Msg$. vars A B : Name . var K : Key .

vars r r’ r’’ r# : Fresh .

39

7.2. Protocol Composition by Protocol Transformation

vars NA NB N : Nonce .

vars P Q : Name .

vars KA KB : Key .

--- Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z .

eq sk(A,pk(A,Z)) = Z .

eq d(K,e(K,Z)) = Z .

eq e(K,d(K,Z)) = Z .

--- XOR equational rules

eq X * X * Y = Y . eq X * X = null . eq X * null = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(Y), +(X * Y), nil] .

DYstrand :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(X), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(Y), nil] .

DYstrand :: nil :: [nil | -(X), +(sk(i,X)), nil] .

DYstrand :: nil :: [nil | -(X), +(pk(A,X)), nil] .

DYstrand :: nil :: [nil | -(X), -(K), +(e(K,X)), nil] .

DYstrand :: nil :: [nil | -(X), -(K), +(d(K,X)), nil] .

strand [nsl-init] :: r , r# :: [nil | +(pk(B,n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B)), +(pk(B, NB)),

+({init-nsl(r#) . A . B . h(n(A,r) , NB) }), nil] .

strand [nsl-resp] :: r , r# :: [nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)), -(pk(B,n(B,r))),

+({resp-nsl(r#) . A . B . h(NA , n(B,r))}), nil] .

strand [kd-init] :: r’ :: [nil | -({init-nsl(r#) . A . B . K }),

+(e(K, skey(A, r’))) , -(e(K, skey(A,r’) ; N)), +(e(K, N)), nil] .

strand [kd-resp] :: r’ :: [nil | -({resp-nsl(r#) . A . B . K }),

-(e(K, KA)), +(e(K, KA ; n(B,r’))), -(e(K, n(B,r’))), nil] &

strand [kd-init] :: r’ :: [nil | -({resp-nsl(r#) . A . B . K }),

+(e(K, skey(B,r’))), -(e(K, skey(B,r’) ; N)), +(e(K, N)), nil] .

strand [kd-resp] :: r’ :: [nil | -({init-nsl(r#) . A . B . K }),

-(e(K, KB)), +(e(K, KB ; n(A,r’))), -(e(K, n(A,r’))), nil] .

endp

We leave the proof of soundness and completeness of the protocol trans-

formation with respect to the extended operational semantics until Chapter 9

and consider protocol composition in practice in the next section.

40

Chapter 8

Formal Analysis

In this chapter we present some experimental results for protocol compo-

sition based on the transformed protocol composition. First, we show the

attack for the NSL-DB explained in Section 2.1. Then we fix the NSL-

DB protocol using a hash function, also explained in Section 2.1 and show

that the protocol is verified as secure by our tool, i.e., the search space

is finite and an attack is not found. Finally, we show that the NSL-KD

is also verified as secure by the Maude-NPA. All the experiments, includ-

ing the source Maude-NPA files and the generated outputs, can be found at

http://www.dsic.upv.es/~ssantiago/composition.html. Every time

that we show a protocol secure, we also show that a regular execution can be

performed, proving that the search space is not empty a priori, however these

proofs have not been included in this thesis, though are available online.

8.1 The NSL-DB protocol

We start with the attack for the NSL-DB protocol composition. The property

(represented by an attack state) is one in which the honest principal b thinks

that he has heard from a principal P (who may or may not be honest), but

who has actually heard from an honest principal Q. This covers, for example,

the case in which P is dishonest, and tries to pass on a honest principal’s

authenticated response as his own.

41

http://www.dsic.upv.es/~ssantiago/composition.html

8.1. The NSL-DB protocol

eq ATTACK-STATE(0)

= :: r’, r# ::

[nil | +(init-db(r#)),

-({resp-nsl(r#) . P . b . n(Q,r)}),

+(n(b,r’’)), -(n(b,r’’) * n(Q,r)), nil]

|| Q != P

|| nil

|| nil

|| nil .

However, the composition of the NSL and DB protocols does not guarantee

this property. The analysis of this property for the NSL-DB transformed

protocol using the Maude-NPA finds an initial state from which the attack

state described above is reachable. The principal and intruder strands of

such an initial state are as follows:

:: nil :: [nil | -(pk(i,n(Q,r’) ; Q)), +(n(Q,r’) ; Q)] &

:: nil :: [nil | -(pk(i,n(Q,r’) ; n(b,r’’) ; b)),

+(n(Q,r’) ; n(b,r’’) ; b)] &

:: nil :: [nil | -(n(b,r)), -(n(Q,r’)), +(n(b,r) * n(Q,r’))] &

:: nil :: [nil | -(n(b,r’’)), +(pk(b,n(b,r’’)))] &

:: nil :: [nil | -(n(Q,r’)), -(i), +(n(Q,r’) ; i)] &

:: nil :: [nil | -(n(b,r’’) ; b), +(n(b,r’’))] &

:: nil :: [nil | -(n(Q,r’) ; i), +(pk(b,n(Q,r’) ; i))] &

:: nil :: [nil | -(n(Q,r’) ; Q), +(n(Q,r’))] &

:: nil :: [nil | -(n(Q,r’) ; n(b,r’’) ; b), +(n(b,r’’) ; b)] &

:: r’’ :: [nil | +(resp-nsl), -(pk(b,n(Q,r’) ; i)),

+(pk(i,n(Q,r’) ; n(b,r’’) ; b)), -(pk(b,n(b,r’’))),

-(init-db(r#)), +({resp-nsl(r#) . i . b . n(Q,r’)})] &

:: r’ :: [nil | +(init-nsl), +(pk(i,n(Q,r’) ; Q))] &

:: r , r# :: [nil | +(init-db(r#)), -({resp-nsl(r#) . i . b . n(Q,r’)}),

+(n(b,r)), -(n(b,r) * n(Q,r’))])

Figure 8.1 shows the graphical representation of the strands above given by

the Maude-NPA GUI [Santiago 09]. In this attack state the actual message

exchange between those principal and intruder strands is as follows:

42

8.1. The NSL-DB protocol

Figure 8.1: Graphical representation of the NSL-DB attack

43

8.1. The NSL-DB protocol

+(init-nsl),

+(pk(i,n(Q,r’) ; Q)),

-(pk(i,n(Q,r’) ; Q)),

+(n(Q,r’) ; Q),

-(n(Q,r’) ; Q),

+(n(Q,r’)),

-(n(Q,r’)),

-(i),

+(n(Q,r’) ; i),

-(n(Q,r’) ; i),

+(pk(b,n(Q,r’) ; i)),

+(resp-nsl),

-(pk(b,n(Q,r’) ; i)),

+(pk(i,n(Q,r’) ; n(b,r’’) ; b)),

-(pk(i,n(Q,r’) ; n(b,r’’) ; b)),

+(n(Q,r’) ; n(b,r’’) ; b),

-(n(Q,r’) ; n(b,r’’) ; b),

+(n(b,r’’) ; b),

-(n(b,r’’) ; b),

+(n(b,r’’)),

-(n(b,r’’)),

+(pk(b,n(b,r’’))),

+(init-db(r#)),

-(pk(b,n(b,r’’))),

-(init-db(r#)),

+({resp-nsl(r#) . i . b . n(Q,r’)}),

-({resp-nsl(r#) . i . b . n(Q,r’)}),

+(n(b,r)),

-(n(b,r)),

-(n(Q,r’)),

+(n(b,r) * n(Q,r’)),

-(n(b,r) * n(Q,r’))

However, as explained in Chapter 2, this attack is avoided using a hash

function. The fixed version of the DB protocol is as follows:

prot DB-hash is

--- Sort Information

sorts Name Nonce .

subsort Name Nonce < Msg .

subsort Name < Public .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Exclusive-or operator

op _*_ : Msg Msg -> Msg [assoc comm gather (e E)] .

op null : -> Msg .

--- Hash operator

op h : Msg Msg -> Hash .

--- Variables

vars X Y : Msg . var r : Fresh .

vars A B : Name . var N : Nonce .

--- XOR equational rules

eq X * X * Y = Y .

44

8.1. The NSL-DB protocol

eq X * X = null .

eq X * null = X .

--- Dolev-Yao Strands

DYstrand :: nil :: [nil | -(X), -(Y), +(X * Y), nil] .

--- Strands

strand [init]

:: r :: [{A,B,NA} | +(n(B,r)), -(n(B,r)*h(A,NA)), {A,B,NA,n(B,r)}] .

strand [resp]

:: nil :: [{A,B,NA} | -(NB), +(NB * h(A,NA)), {A,B,NA,NB}] .

endp

The transformed version of the protocol composition NSL-DB-hash is as

follows:

prot NSL-DB-HASH is

--- Synchronization for composition

sort Params Msg$ Role .

subsort Params < Msg .

subsort Msg$ Role < Msg .

subsort Role < Msg .

--- Roles

ops init-nsl resp-nsl : Fresh -> Role .

ops init-db resp-db : Fresh -> Role .

--- Composition

sort ParamSeq .

subsort Msg$ Role < ParamSeq .

op _._ : ParamSeq ParamSeq -> ParamSeq [gather (e E) frozen] .

op {_} : ParamSeq -> Params .

--- Sort Information

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg$.

subsort Name < Public .

--- Encoding operators for public/private encryption

op pk : Name Msg$ -> Enc .

op sk : Name Msg$ -> Enc .

--- Principals

ops a b i : -> Name . --- Alice Bob Intruder

--- Nonce operator

op n : Name Fresh -> Nonce .

--- Concatenation operator

45

8.1. The NSL-DB protocol

op _;_ : Msg$ Msg$ -> Msg$ [gather (e E)] .

--- Exclusive-or operator

op _*_ : Msg$ Msg$ -> Msg$ [assoc comm] .

op null : -> Msg$.

--- Hash operator

op h(_,_) : Name Nonce -> Msg$.

--- Variables

vars X Y Z : Msg$. vars A B : Name .

--- Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z .

eq sk(A,pk(A,Z)) = Z .

--- XOR equational rules

eq X * X * Y = Y . eq X * X = null . eq X * null = X .

DYstrand :: nil :: [nil | -(X), -(Y), +(X * Y), nil] .

DYstrand :: nil :: [nil | -(X), -(Y), +(X ; Y), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(X), nil] .

DYstrand :: nil :: [nil | -(X ; Y), +(Y), nil] .

DYstrand :: nil :: [nil | -(X), +(sk(i,X)), nil] .

DYstrand :: nil :: [nil | -(X), +(pk(A,X)), nil] .

strand [init-nsl] :: r :: [nil | +(pk(B,n(A,r) ; A)),

-(pk(A, n(A,r) ; NB ; B)), +(pk(B, NB)),

-(resp-db(r#)), +({init-nsl(r#) . A . B . n(A,r)}), nil] .

strand [resp-nsl] :: r :: [nil | -(pk(B,NA ; A)),

+(pk(A, NA ; n(B,r) ; B)), -(pk(B,n(B,r))),

-(init-db(r#)), +({resp-nsl(r#) . A . B . NA }), nil] .

strand [init-db] :: r’, r# :: [nil | +(init-db(r#)),

-({resp-nsl(r#) . A . B . NA }), +(n(B,r’)), -(h(A,NA) * n(B,r’)), nil] .

strand [resp-db] :: r# :: [nil | +(resp-db(r#)),

-({init-nsl(r#) . A . B . NA }), -(N), +(h(A,NA) * N), nil]

endp

And the previous property for the NSL-DB is specified in the new version

of the protocol with the following attack pattern:

eq ATTACK-STATE(0)

= :: r’, r# ::

[nil, +(init-db(r#)),

-({resp-nsl(r#) . Q . b . n(P,r) }),

+(n(b,r’)), -(n(b,r’) * h(Q,n(P,r))) | nil]

|| Q != P

46

8.2. The NSL-KD protocol

|| nil

|| nil

|| nil .

In this case, the analysis terminates without finding any attack. Thus, the

protocol is secure for such an attack pattern, since the search space was finite

(i.e., after the application of all the optimizations provided by the tool, see

[Escobar 08]).

8.2 The NSL-KD protocol

Finally, the property that we may wish for the NSL-KD protocol is to guar-

antee that a dishonest principal is not able to learn the secret key of an

honest principal. This property is represented by the following attack state:

eq ATTACK-STATE(0)

= :: r’ ::

[nil , +(resp-key),

-({resp-nsl(r#) . a . b . K }),

-(e(K, KA)), +(e(K, KA ; n(b,r’))),

-(e(K, n(b,r’))) | nil]

|| KA inI

|| nil

|| nil .

In this case, that property is satisfied by the NSL-KD, since the analysis

terminates after 7 backwards reachability steps without finding any initial

state for the attack state described above. Below we include the output of

the analysis of the NSL-KD given by the Maude-NPA.

==

reduce in MAUDE-NPA : summary(1) .

rewrites: 3391205 in 27499ms cpu (27505ms real)

(123317 rewrites/second)

result Summary: States>> 5 Solutions>> 0

==

47

8.2. The NSL-KD protocol

reduce in MAUDE-NPA : summary(2) .

rewrites: 87328734 in 504410ms cpu (504500ms real)

(173130 rewrites/second)

result Summary: States>> 8 Solutions>> 0

==

reduce in MAUDE-NPA : summary(3) .

rewrites: 218063153 in 1201493ms cpu (1201708ms real)

(181493 rewrites/second)

result Summary: States>> 8 Solutions>> 0

==

reduce in MAUDE-NPA : summary(4) .

rewrites: 385741394 in 2053801ms cpu (2054168ms real)

(187818 rewrites/second)

result Summary: States>> 5 Solutions>> 0

==

reduce in MAUDE-NPA : summary(5) .

rewrites: 252124790 in 1400027ms cpu (1400278ms real)

(180085 rewrites/second)

result Summary: States>> 3 Solutions>> 0

==

reduce in MAUDE-NPA : summary(6) .

rewrites: 186089431 in 1032143ms cpu (1032327ms real)

(180294 rewrites/second)

result Summary: States>> 1 Solutions>> 0

==

reduce in MAUDE-NPA : summary(7) .

rewrites: 80549705 in 400475ms cpu (400546ms real)

(201135 rewrites/second)

result Summary: States>> 0 Solutions>> 0

==

48

Chapter 9

Soundness and Completeness of

the Protocol Transformation

In this chapter, we prove soundness and completeness of the protocol trans-

formation with respect to the extended operational semantics.

9.1 Relating States from Protocol Composi-

tion and Protocol Transformation

First, we must relate protocol states using the protocol composition rewrite

rules of Chapter 7 and protocol states in the transformed protocol composi-

tion.

Definition 1 Let P1 and P2 be two protocols and P1;P2 their composition.

Let R◦P1;P2
be the rewrite theory associated in Section 7.1 to the protocol com-

position P1;P2 and RΦ(P1;P2) be the rewrite theory associated in Section 7.2

to the transformed protocol. Given a state St associated to the rewrite theory

R◦P1;P2
and a state St′ associated to the rewrite theory RΦ(P1;P2), we define the

(non-symmetric) relation St ◦≡Φ
P1;P2

St′ (or just St ◦≡Φ St′) as the maximal

relation satisfying the conditions in Figure 9.1.

The following auxiliary result becomes crucial and ensures that for each

state corresponding to the rewrite theory associated to the transformed pro-

49

9.1. Relating States from Protocol Composition and Protocol
Transformation

St ◦≡Φ
P1;P2

St′



whenever {a{
−→
O}; {

−→
I }b} [1−1] in P1;P2,

strand [{
−→
Ib},
−→
b1 |
−→
b2] in St,

and strand [+(roleb(r)),−(rolea(r) . İb),
−→
b1 |
−→
b2] in St′.

whenever {a{
−→
O}; {

−→
I }b} [1−1] in P1;P2,

strand [{
−→
Ib} |

−→
b] in St,

and strand [+(roleb(r)) | −(rolea(r) . İb),
−→
b] in St′.

whenever {a{
−→
O}; {

−→
I }b} [1−1] in P1;P2,

strand [nil | {
−→
Ib},
−→
b] in St,

strand [−→a1 | −→a2, {
−→
Oa}] in St,

strand [nil | +(roleb(r)),−(rolea(r) . İb),
−→
b] in St′,

and strand [−→a1 | −→a2,−(roleb(r)),+(rolea(r) . İb)] in St′.

whenever {a{
−→
O}; {

−→
I }b} [1−∗] in P1;P2,

strand [{
−→
Ib},
−→
b1 |
−→
b2] in St,

and strand [−(rolea(r) . İb),
−→
b1 |
−→
b2] in St′.

whenever {a{
−→
O}; {

−→
I }b} [1−∗] in P1;P2,

strand [{
−→
Ib} |

−→
b] in St,

strand [nil | −(rolea(r) . İb),
−→
b] in St′,

and there is no strand [−→a | +(rolea(r) . İb)] in St′.

whenever {a{
−→
O}; {

−→
I }b} [1−∗] in P1;P2,

strand [nil | {
−→
Ib},
−→
b] in St,

strand [−→a1 | −→a2, {
−→
Oa}] in St,

strand [nil | −(rolea(r) . İb),
−→
b] in St′,

and strand [−→a1 | −→a2,+(rolea(r) . İb)] in St′.

plus every element m∈I and m/∈I in the intruder knowledge of St
appears in the intruder knowledge of St′, and every element m∈I
and m/∈I in the intruder knowledge of St′ such that m is not of
sort Param or Role appears in the intruder knowledge of St.

Figure 9.1: Relation ◦≡Φ
P1;P2

from the states associated to the rewrite theory
R◦P1;P2

onto the states associated to the rewrite theory RΦ(P1;P2)

50

9.1. Relating States from Protocol Composition and Protocol
Transformation

tocol, there is always a state corresponding to the rewrite theory associated

to the protocol composition.

Lemma 1 Let P1 and P2 be two protocols and P1;P2 their composition. Let

R◦P1;P2
be the rewrite theory associated in Section 7.1 to the protocol compo-

sition P1;P2 and RΦ(P1;P2) be the rewrite theory associated in Section 7.2 to

the transformed protocol. If St′ is a protocol state associated to the rewrite

theory RΦ(P1;P2), then there is a protocol state St associated to the rewrite

theory R◦P1;P2
such that St ◦≡Φ

P1;P2
St′.

Proof. Immediate by definition of the transformation Φ in Figure 7.3 and

the binary relation St ◦≡Φ
P1;P2

St′ of Definition 1. 2

Another relevant property is ensuring that one-to-one protocol compo-

sitions are indeed one-to-one in the transformed protocol composition. We

define this result in terms of one strand composition a{
−→
O}; {

−→
I }b [1−1],

which is easily extensible to the whole protocol composition P1;P2.

Lemma 2 (Unique One-to-one Composition) Let P1 and P2 be two pro-

tocols and P1;P2 be a one-to-one composition. Let RΦ(P1;P2) be the rewrite

theory associated in Section 7.2 to the transformed protocol and R◦P1;P2
be the

rewrite theory associated in Section 7.1 to the protocol composition P1;P2.

If St′ is a protocol state associated to the rewrite theory RΦ(P1;P2), then, for

each parent strand, there is only one child composed with it.

Proof. Recall that a fresh variable r# is uniquely generated by each child

strand, sent to the prospective parent strand, and sent back to the child

strand by the input/output exchange messages. Therefore, each parent uses

only one fresh variable r#. Now, the Maude-NPA restriction that two strands

cannot generate a same fresh variable ensures that there are no two children

generating the same r#. 2

51

9.2. Soundness and Completeness for One Narrowing Step

9.2 Soundness and Completeness for One Nar-

rowing Step

We introduce our main results for soundness and completeness. First, we

consider soundness of one backwards narrowing step using the rewrite the-

ory associated to the transformed protocol (i.e., RΦ(P1;P2)) w.r.t. back-

wards narrowing using the rewrite theory associated to protocol composi-

tion (i.e., R◦P1;P2
). We write R−1 to denote the reverse form of all the

rules in R. The composition of two substitutions σ1 and σ2 is defined as

σ1 ◦ σ2(X) = σ2(σ1(X)) for any variable X. A substitution ρ is called

E-compatible with another substitution σ if there is a substitution τ s.t.

σ =E ρ ◦ τ .

Theorem 1 (One-step Soundness) Let P1 and P2 be two protocols and

P1;P2 their composition. Let R◦P1;P2
be the rewrite theory associated in

Section 7.1 to the protocol composition P1;P2 and RΦ(P1;P2) be the rewrite

theory associated in Section 7.2 to the transformed protocol. Let St′1 and

St′2 be two protocol states associated to the rewrite theory RΦ(P1;P2). If

St′1 σ,R−1
Φ(P1;P2)

,EP1;P2
St′2, then either

1. there is a protocol state St1 associated to the rewrite theory R◦P1;P2
and

a substitution ρ such that St1
◦≡Φ St′1, ρ(St1) ◦≡Φ St′2, and σ and ρ are

EP1;P2-compatible; or

2. there are two protocol states St1 and St2 associated to the rewrite the-

ory R◦P1;P2
and two substitutions ρ and ρ′ such that ρ(St1) ◦≡Φ St′1,

St2
◦≡Φ St′2, St1 ρ′,R◦,−1

P1;P2
,EP1;P2

St2, and ρ′ = ρ ◦ σ.

Proof. We prove the result by case analysis of the rewrite rules applicable

to term St′1.

Let us consider first the second case of the theorem statement where one

rewrite step in R−1
Φ(P1;P2) corresponds to one rewrite step in R◦,−1

P1;P2
. This case

corresponds to two situations: (i) the standard uses of the rule-base semantics

(i.e. Rules (4.1),(4.2), (4.3), and (4.4)) for dealing with regular incoming and

52

9.2. Soundness and Completeness for One Narrowing Step

outcoming messages in the strand; and (ii) the following transitions dealing

with the messages associated to the input and output parameters:

1. In the case in which Rule (4.4) in RΦ(P1;P2) is applied in order to pro-

duce St′2 by adding a strand [−→a | +(rolea(r).İb)] to St′1 by unification

with a term (rolea(r) . İb)∈I in the intruder knowledge of St′1, this

corresponds to the application of Rule (7.2) in R◦P1;P2
, in which the

state St2 is created by adding the strand [−→a | {
−→
Oa}] to a state St1 by

unification with the input parameters of a child strand. In this case,

the substitution ρ above is the identity, since both rule applications

produce the same unifier.

2. In the case in which the state St′2 is created by applying the rule

Rule (4.3) in RΦ(P1;P2) to unify the term +(rolea(r
′) . İb) of a strand

[−→a ,+(rolea(r
′) . İb) | nil] in St′1 with a term (rolea(r) . İb)∈I in the

intruder knowledge of St′1, this corresponds to the creation of St2 from

St1 via the application of Rule (7.1) in R◦P1;P2
, in which the output pa-

rameters {
−→
Oa} of the strand associated to protocol a are synchronized

with the input parameters {
−→
Ib } of the strand associated to protocol

b. Similarly, in this case the substitution ρ above is the identity, since

both rule applications produce the same unifier.

3. In the case in which the state St′2 is created from St′1 via application

of Rule (4.3) in RΦ(P1;P2) to unify the term +(roleb(r)) of a strand

[+(roleb(r)) | −(rolea(r) . İb),
−→
b] in St′1 with a term roleb(r)∈I in

the intruder knowledge of St′1, this corresponds to the application of

Rule (7.1) in R◦P1;P2
to create St2 from St1, in which the output pa-

rameters {
−→
Oa} of the strand associated to protocol a are synchronized

with the input parameters {
−→
Ib } of the strand associated to protocol b.

In this case, the substitution ρ above may be different from the iden-

tity, since the concrete unifier computed by Rule (7.1) was computed

before, when the term rolea(r) .
···
Ib ∈I was unified with a concrete

parent strand.

53

9.2. Soundness and Completeness for One Narrowing Step

Now, let us consider the first case of the theorem statement where one

rewrite step in R−1
Φ(P1;P2) does not correspond to one rewrite step in R◦,−1

P1;P2

and an instantiation is just computed for St1. This case corresponds to the

rule applications in RΦ(P1;P2) manipulating the input and output messages

associated to the protocol composition such that the same state is associated

to R◦P1;P2
by the equivalence ◦≡Φ . Such rule applications in RΦ(P1;P2) are as

follows:

1. In a one-to-one composition, the child transition from strand

[+(roleb(r)),−(rolea(r) . İb) |
−→
b] in St′1 to strand [+(roleb(r)) |

−(rolea(r) . İb),
−→
b] in St′2. Here, states St′1 and St′2 have the same

state St1 given by ◦≡Φ .

2. In a one-to-one composition, the parent transition from strand

[−→a ,−(roleb(r)),+(rolea(r) . İb) | nil] in St′1 to strand [−→a ,−(roleb(r)) |
+(rolea(r) . İb)] in St′2. Here, state St′1 has a state St1 given by ◦≡Φ ,

St′2 has a state St2 given by ◦≡Φ and states St1 and St2 differ only in

that St2 is an instance of St1.

3. In a one-to-one composition, the addition of parent strand [−→a ,
−(roleb(r)) | +(rolea(r) . İb)] to St′1, yields St′2. Here, state St′1 has a

state St1 given by ◦≡Φ , St′2 has a state St2 given by ◦≡Φ and states

St1 and St2 differ only in that St2 is an instance of St1.

4. In a one-to-one composition, the parent transition from strand [−→a ,
−(roleb(r)) | +(rolea(r) . İb)] in St′1 to strand [−→a | −(roleb(r)),

+(rolea(r) . İb)] in St′2. Here, states St′1 and St′2 have the same state

St1 given by ◦≡Φ .

5. In a one-to-many composition, the child transition from strand

[−(rolea(r) . İb) |
−→
b] in St′1 to strand [nil | −(rolea(r) . İb),

−→
b] in

St′2. Here, states St′1 and St′2 have the same state St1 given by ◦≡Φ .

This concludes the proof. 2

54

9.2. Soundness and Completeness for One Narrowing Step

Now, we consider completeness of one backwards narrowing step using

the rewrite theory associated to protocol composition (i.e., R◦P1;P2
) w.r.t.

backwards narrowing using the rewrite theory associated to the transformed

protocol (i.e., RΦ(P1;P2)) w.r.t. We write St1 →1,2,4
R St2 to denote that either

St1 →R St2, or there is a term St′ such that St1 →R St′ →R St2, or there

are terms St′, St′′, St′′′ such that St1 →R St
′ →R St

′′ →R St
′′′ →R St2.

Theorem 2 (One-step Completeness) Let P1 and P2 be two protocols

and P1;P2 their composition. Let R◦P1;P2
be the rewrite theory associated in

Section 7.1 to the protocol composition P1;P2 andRΦ(P1;P2) be the rewrite the-

ory associated in Section 7.2 to the transformed protocol. Let St1 and St2 be

two protocol states associated to the rewrite theory R◦P1;P2
.

If St1 σ,R◦,−1
P1;P2

,EP1;P2
St2, then there are two protocol states St′1 and St′2

associated to the rewrite theory RΦ(P1;P2) such that St1
◦≡Φ St′1, St2

◦≡Φ St′2,

and St′1
1,2,4

σ,R−1
Φ(P1;P2)

,EP1;P2

St′2.

Proof. We prove the result by case analysis of the rewrite rules applicable

to term St1. Since the proof of this theorem is very similar to the proof of

Theorem 1, we present the cases only in broad outline.

When the Rules (4.1),(4.2), (4.3), and (4.4) are applied to regular incom-

ing and outcoming messages in the strands, we have just one narrowing step

from the associated state St′1.

When we have a one-to-many composition and Rules (7.1), (7.2), or (7.3)

are applied, we have two narrowing steps from the associated state St′1 as

follows:

1. Rule (7.1) corresponds to an application of Rule (4.1) (accepting the

input parameters of the child strand) followed by an application of

Rule (4.3) (synchronizing the input of the child strand with the output

parameters of the parent strand);

2. Rule (7.2) correspond to an application of Rule (4.1) followed by an

application of Rule (4.4) (introducing a new strand); and

55

9.3. Soundness and Completeness for Reachability Analysis

3. Rule (7.3) correspond to an application of Rule (4.3) (synchronizing

the output parameters of the parent strand with the already accepted

input parameters of the child strand).

When we have a one-to-one composition and Rules (7.1) or (7.2) are

applied, we have four narrowing steps from the associated state St′1 as follows:

1. Rule (7.1) corresponds to an application of Rule (4.1) (accepting the

input parameters of the child strand) followed by an application of

Rule (4.3) (synchronizing the input of the child strand with the out-

put parameters of the parent strand), and two further applications of

Rules (4.1) and (4.3) for the roleb(r) message; and

2. Rule (7.2) correspond to an application of Rule (4.1) followed by an

application of Rule (4.4) (introducing a new strand), and two further

applications of Rules (4.1) and (4.3) for the roleb(r) message.

This concludes the proof. 2

9.3 Soundness and Completeness for Reach-

ability Analysis

Now, we extend the previous results of soundness and completeness of one

rewrite step to backwards reachability analysis.

Theorem 3 (Reachability Soundness) Let P1 and P2 be two protocols

and P1;P2 their composition. Let RΦ(P1;P2) be the rewrite theory associated

in Section 7.2 to the transformed protocol and R◦P1;P2
be the rewrite theory

associated in Section 7.1 to the protocol composition P1;P2. If St′1 and St′2

are two protocol states associated to the rewrite theory RΦ(P1;P2) such that St′2

is an initial state, and St′1
∗
σ,R−1

Φ(P1;P2)
,EP1;P2

St′2, then there are two protocol

states St1 and St2 associated to the rewrite theory R◦P1;P2
and two substitu-

tions ρ and ρ′ such that St2 is an initial state, ρ(St1) ◦≡Φ St′1, St2
◦≡Φ St′2,

St1 ∗ρ′,R◦,−1
P1;P2

,EP1;P2

St2, and ρ′ = ρ ◦ σ.

56

9.3. Soundness and Completeness for Reachability Analysis

Proof. By successive application of Theorem 1. Let us consider

St′1
n
σ,R−1

Φ(P1;P2)
,EP1;P2

St′2.

If n = 0, then the conclusion is immediate. If n > 0, then there is a state St′

s.t.

St′1 σ1,R−1
Φ(P1;P2)

,EP1;P2
St′ n−1

σ′,R−1
Φ(P1;P2)

,EP1;P2

St′2.

Then, by Theorem 2, either

1. there is a protocol state St1 associated to the rewrite theory R◦P1;P2

and a substitution ρ such that St1
◦≡Φ St′1, ρ(St1) ◦≡Φ St′ and σ1 and

ρ are EP1;P2-compatible; or

2. there are two protocol states St1 and St associated to the rewrite the-

ory R◦P1;P2
and two substitutions ρ1 and ρ′1 such that ρ1(St1) ◦≡Φ St′1,

St ◦≡Φ St′, St1 ρ′1,R
◦,−1
P1;P2

,EP1;P2
St and ρ′1 = ρ1 ◦ σ1.

In the first case, we can apply the induction hypothesis saying that there

are two protocol states Ŝt and St2 associated to the rewrite theory R◦P1;P2

and two substitutions ρ̂ and ρ̂′ such that St2 is an initial state, ρ̂(Ŝt) ◦≡Φ St′,

St2
◦≡Φ St′2, Ŝt ∗bρ′,R◦,−1

P1;P2
,EP1;P2

St2, and ρ̂′ = ρ̂◦σ′. Since ρ(St1) ◦≡Φ St′ and

ρ̂(Ŝt) ◦≡Φ St′, we can conclude by definition of the relation ◦≡Φ that there is

a substitution σ′′ s.t St1 ∗σ′′,R◦,−1
P1;P2

,EP1;P2

St2 and σ′′ = ρ ◦ ρ̂′. This concludes

this part of the proof.

In the second case, we can apply the induction hypothesis saying that

there are there are two protocol states Ŝt and St2 associated to the rewrite

theory R◦P1;P2
and two substitutions ρ̂ and ρ̂′ such that St2 is an initial state,

ρ̂(Ŝt) ◦≡Φ St′, St2
◦≡Φ St′2, Ŝt ∗bρ′,R◦,−1

P1;P2
,EP1;P2

St2, and ρ̂′ = ρ̂ ◦ σ′. Here the

conclusion follows because we can build the sequence

St1 ρ′1,R
◦,−1
P1;P2

,EP1;P2
St ∗bρ′,R◦,−1

P1;P2
,EP1;P2

St2.

such that ρ(St1) ◦≡Φ St′1 St2
◦≡Φ St′2, and ρ′1 ◦ ρ̂′ = ρ1 ◦ σ1 ◦ ρ̂ ◦ σ′. This

concludes this part of the proof. 2

57

9.3. Soundness and Completeness for Reachability Analysis

Theorem 4 (Reachability Completeness) Let P1 and P2 be two proto-

cols and P1;P2 their composition. Let RΦ(P1;P2) be the rewrite theory asso-

ciated in Section 7.2 to the transformed protocol, and R◦P1;P2
be the rewrite

theory associated in Section 7.1 to the protocol composition P1;P2. If St1 and

St2 are two protocol states associated to the rewrite theory R◦P1;P2
such that

St2 is an initial state, and St1 ∗σ,R◦,−1
P1;P2

,EP1;P2

St2, then there are two protocol

states St′1 and St′2 associated to the rewrite theory RΦ(P1;P2) such that St′2 is

an initial state, St1
◦≡Φ St′1, St2

◦≡Φ St′2, and St′1
∗
σ,R−1

Φ(P1;P2)
,EP1;P2

St′2.

Proof. By successive application of Theorem 2. Let us consider

St1
n
σ,R◦,−1
P1;P2

,EP1;P2

St2.

If n = 0, then the conclusion follows. If n > 0, then there is a state St such

that

St1 σ1,R◦,−1
P1;P2

,EP1;P2
St n

σ′,R◦,−1
P1;P2

,EP1;P2

St2.

By Theorem 2, there are two protocol states St′1 and St′ associated to the

rewrite theory RΦ(P1;P2) such that St1
◦≡Φ St′1, St ◦≡Φ St′, and

St′1
1,2,4

σ1,R−1
Φ(P1;P2)

,EP1;P2

St′. Then, by induction hypothesis, there are two

protocol states Ŝt′ and St′2 associated to the rewrite theory RΦ(P1;P2) such

that St′2 is an initial state, St ◦≡Φ Ŝt′, St2
◦≡Φ St′2, and

Ŝt′ ∗
σ′,R−1

Φ(P1;P2)
,EP1;P2

St′2. Since St ◦≡Φ Ŝt′ and St ◦≡Φ St′, by definition of

the relation ◦≡Φ we can assume that St′ = Ŝt′. The conclusion follows

because we can build the sequence

St′1
1,2,4

σ1,R−1
Φ(P1;P2)

,EP1;P2

St′ ∗
σ′,R−1

Φ(P1;P2)
,EP1;P2

St′2.

2

Finally, we put everything together into one result.

58

9.3. Soundness and Completeness for Reachability Analysis

Theorem 5 (Soundness and Completeness) Let P1 and P2 be two pro-

tocols and P1;P2 their composition. Let R◦P1;P2
be the rewrite theory asso-

ciated in Section 7.1 to the protocol composition P1;P2 and RΦ(P1;P2) be the

rewrite theory associated in Section 7.2 to the transformed protocol. Given

St and St′ associated to RΦ(P1;P2) and R◦P1;P2
, respectively, then St ◦≡Φ St′

implies that there is an initial state In reachable from St by backwards nar-

rowing in RΦ(P1;P2) iff there is an initial state In′ such that In ◦≡Φ In′ and

In′ is reachable from St′ by backwards narrowing in R◦P1;P2
.

Proof. By Theorems 3 and 4. 2

59

Chapter 10

Related work and conclusions

Our work addresses a somewhat different problem than most existing work

on cryptographic protocol composition, which generally does not address

model-checking. Indeed, to the best of our knowledge, most protocol analy-

sis model-checking tools simply use concatenation of protocol specifications

to express sequential composition. However, we believe that the problem

we are addressing is an important one that tackles a widely acknowledged

source of protocol complexity. For example, in the Internet Key Exchange

Protocol [Harkins 98] there are sixteen different one-to-many parent-child

compositions of Phase One and Phase Two protocols. The ability to synthe-

size compositions automatically would greatly simplify the specification and

analysis of protocols like these.

Future work related with the subject presented in this thesis includes

experiments with more complex protocol compositions and optimizations to

speed up the analysis. We also plan to take advantage of the Maude-NPA

GUI to give syntax support and to mechanize the protocol transformation

explained in Section 7.2, which is not supported by the current version of the

Maude-NPA yet.

Now that we have a mechanism for synthesizing compositions, we are

ready to revisit existing research on composing protocols and their prop-

erties and determine how we could best make use of it in our framework.

There have been two approaches to this problem. One (called nondestructive

61

10. Related work and conclusions

composition in [Datta 03]) is to concentrate on properties of protocols and

conditions on them that guarantee that properties satisfied separately are

not violated by the composition. This is, for example, the approach taken by

Gong and Syverson [Gong 98], Guttman and Thayer [Guttman 00], Cortier

and Delaune [Cortier 09] and, in the computational model, Canetti’s Uni-

versal Composability [Canetti 02]. The conditions in this case are usually

ones that can be verified syntactically, so Maude-NPA, or any other model

checker, would not be of much assistance here.

Of more interest to us is the research that addresses the composition-

ality of the protocol properties themselves (called additive composition in

[Datta 03]). This addresses the development of logical systems and tools

such as PCL, PDL, and CPSA cited earlier in this paper, in which infer-

ence rules are provided for deriving complex properties of a protocol from

simpler ones. Since these are pure logical systems, they necessarily start

from very basic statements concerning, for example, what a principal can

derive when it receives a message. But there is no reason why the proper-

ties of the component protocols could not be derived using model checking,

and then composed using the logic. This would give us the benefits of both

model checking (for finding errors and debugging), and logical derivations

(for building complex systems out of simple components), allowing to switch

between one and the other as needed. Indeed, Maude-NPA is well positioned

in that respect. For example, the notion of state in strand spaces that it uses

is very similar to that used by PDL [Cervesato 05], and we have already de-

veloped a simple property language that allows us to translate the “shapes”

produced by CPSA into Maude-NPA attack states. The next step in our

research will be to investigate the connection more closely from the point of

view of compositionality.

62

Chapter 11

Publications Associated to this

Thesis

The publications associated to this Master Thesis are listed in the following:

• S. Santiago, C. Talcott, S. Escobar, C. Meadows, and J. Meseguer

A Graphical User Interface for Maude-NPA.

XIV Jornadas sobre Programacin y Lenguajes (PROLE09),

Electronic Notes in Theoretical Computer Science, 258(1): 3-20 (2009)

• S. Escobar, C. Meadows, J. Meseguer and S. Santiago

Sequential Protocol Composition in Maude-NPA

Technical Report DSIC-II/06/10, Universidad Politécnica de Valencia,

June 2010.

• S. Escobar, C. Meadows, J. Meseguer and S. Santiago

Sequential Protocol Composition in Maude-NPA

15th European Symposium on Research in Computer Security

(ESORICS 2010).

Lecture Notes in Computer Science, 6345:303-318 (2010)

63

Bibliography

[Anlauff 06] M. Anlauff, D. Pavlovic, R. Waldinger & S. Westfold. Prov-

ing Authentication Properties in the Protocol Derivation As-

sistant. In Proc. of Joint Workshop on Foundations of Com-

puter Security and Automated Reasoning for Security Proto-

col Analysis, 2006.

[Canetti 02] R. Canetti, Y. Lindell, R. Ostrovsky & A.Sahai. Universally

composable two-party and multi-party secure computation. In

STOC, pages 494–503, 2002.

[Capkun 06] S. Capkun & J. P. Hubaux. Secure Positioning in Wireless

Networks. IEEE Journal on Selected Areas in Communica-

tion, vol. 24, no. 2, February 2006.

[Cervesato 05] I. Cervesato, C. Meadows & D. Pavlovic. An Encapsulated

Authentication Logic for Reasoning About Key Establishment

Protocols. In IEEE Computer Security Foundations Work-

shop, 2005, 2005.

[Cortier 09] V. Cortier & S. Delaune. Safely composing security protocols.

Formal Methods in System Design, vol. 34, no. 1, pages 1–36,

2009.

[Datta 03] A. Datta, A. Derek, J. C. Mitchell & D. Pavlovic. Secure

Protocol Composition. In Proc. Mathematical Foundations

of Programming Semantics, volume 83 of Electronic Notes in

Theoretical Computer Science, 2003.

65

[Desmedt 88] Y. Desmedt. Major security problems with the “unforgeable”

(Feige-)Fiat-Shamir proofs of identity and how to overcome

them. In Securicom 88, 6th worldwide congress on computer

and communications security and protection, pages 147–159,

Paris France, March 1988.

[Doghim 07] S. Doghim, J. Guttman & F. J. Thayer. Searching for Shapes

in Cryptographic Protocols. In TACAS 2007. Springer LNCS

4424, March 2007.

[Dolev 83] D. Dolev & A. Yao. On the security of public key protocols.

IEEE Transaction on Information Theory, vol. 29, no. 2, pages

198–208, 1983.

[Durgin 01] N. Durgin, J. Mitchell & D. Pavlovic. A Compositional

Logic for Program Correctness. In Fifteenth Computer Secu-

rity Foundations Workshop — CSFW-14, Cape Breton, NS,

Canada, 11–13 June 2001. IEEE Computer Society Press.

[Escobar 06] S. Escobar, C. Meadows & J. Meseguer. A rewriting-based

inference system for the NRL Protocol Analyzer and its meta-

logical properties. Theor. Comput. Sci., vol. 367, no. 1-2,

pages 162–202, 2006.

[Escobar 08] Santiago Escobar, Catherine Meadows & José Meseguer.

State Space Reduction in the Maude-NRL Protocol Analyzer.

In Sushil Jajodia & Javier López, editeurs, Computer Secu-

rity - ESORICS 2008, 13th European Symposium on Research

in Computer Security, Málaga, Spain, October 6-8, 2008. Pro-

ceedings, volume 5283 of Lecture Notes in Computer Science,

pages 548–562. Springer, 2008.

[Escobar 09a] S. Escobar, C. Meadows & J. Meseguer. Maude-NPA: Cryp-

tographic Protocol Analysis Modulo Equational Properties.

In A. Aldini, G. Barthe & R. Gorrieri, editeurs, FOSAD

2008/2009 Tutorial Lectures, volume 5705 of LNCS, pages

1–50. Springer, 2009.

[Escobar 09b] Santiago Escobar, Catherine Meadows & José Meseguer.

Maude-NPA, version 1.0. University of Illinois at Urbana-

Champaign, March 2009. Available at http://maude.cs.

uiuc.edu/tools/Maude-NPA.

[Fabrega 99] F. J. Thayer Fabrega, J. Herzog & J. Guttman. Strand Spaces:

What Makes a Security Protocol Correct? Journal of Com-

puter Security, vol. 7, pages 191–230, 1999.

[Gong 98] L. Gong & P. Syverson. Fail-stop protocols: An approach to

designing secure protocols. In R. K. Iyer, M. Morganti, W. K.

Fuchs & V. Gligor, editeurs, Proc. of the 5th IFIP Inter-

national Working Conference on Dependable Computing for

Critical Applications (Urbana-Champaign, IL, Sept. 1995),

pages 79–99. IEEE Computer Society Press, Los Alamitos,

CA, 1998.

[Guttman 00] J. D. Guttman & F. J. Thayer. Protocol Independence through

Disjoint Encryption. In CSFW, pages 24–34, 2000.

[Guttman 01] J. Guttman. Security Protocol Design via Authentication

Tests. In Proc. Computer Security Foundations Workshop.

IEEE Computer Society Press, 2001.

[Guttman 08] J. D. Guttman, J. C. Herzog, V. Swarup & F. J. Thayer.

Strand spaces: From Key Exchange to Secure Location.

In Carolyn Talcott, editor, Workshop on Event-Based Se-

mantics, 2008. Position papers available at http://

blackforest.stanford.edu/eventsemantics/.

[Harkins 98] D. Harkins & D. Carrel. The Internet Key Exchange (IKE),

November 1998. IETF RFC 2409.

http://maude.cs.uiuc.edu/tools/Maude-NPA
http://maude.cs.uiuc.edu/tools/Maude-NPA
http://blackforest.stanford.edu/eventsemantics/
http://blackforest.stanford.edu/eventsemantics/

[Lowe 96] G. Lowe. Breaking and fixing the Needham-Schroeder public

key protocol using FDR. In Tools and Algorithms for the

Construction and Analysis of Systems (TACAS ’96), volume

1055 of Lecture Notes in Computer Science, pages 147–166.

Springer-Verlag, 1996.

[Meseguer 92] J. Meseguer. Conditional Rewriting Logic as a Unified Model

of Concurrency. Theoretical Computer Science, vol. 96, no. 1,

pages 73–155, 1992.

[Meseguer 98] J. Meseguer. Membership algebra as a logical framework for

equational specification. In F. Parisi-Presicce, editor, Proc.

WADT’97, pages 18–61. Springer LNCS 1376, 1998.

[Santiago 09] Sonia Santiago, Carolyn L. Talcott, Santiago Escobar,

Catherine Meadows & José Meseguer. A Graphical User

Interface for Maude-NPA. Electronic Notes in Theorethical

Computer Science, vol. 258, no. 1, pages 3–20, 2009.

[TeReSe 03] TeReSe, editor. Term rewriting systems. Cambridge Univer-

sity Press, Cambridge, 2003.

[Thati 07] P. Thati & J. Meseguer. Symbolic reachability analysis

using narrowing and its application verification of crypto-

graphic protocols. J. Higher-Order and Symbolic Computa-

tion, vol. 20, no. 1–2, pages 123–160, 2007.

	Introduction
	Two Motivating Examples
	Distance Bounding Protocol (NSL-DB)
	Key Distribution Protocol (NSL-KD)

	Background on Term Rewriting
	Maude-NPA's Execution Model
	Current Syntax for Protocol Specification
	Specifying the Protocol Syntax
	Algebraic Properties
	Specifying the Strands
	Protocol Analysis

	Syntax for Protocol Specification and Composition
	Specifying Sequential Composition

	Maude-NPA's Composition Execution Model
	Composition Execution Model
	Protocol Composition by Protocol Transformation

	Formal Analysis
	The NSL-DB protocol
	The NSL-KD protocol

	Soundness and Completeness of the Protocol Transformation
	Relating States from Protocol Composition and Protocol Transformation
	Soundness and Completeness for One Narrowing Step
	Soundness and Completeness for Reachability Analysis

	Related work and conclusions
	Publications Associated to this Thesis
	Bibliography

