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Abstract

The conciliation of multiple single-disease guidelines for comorbid patients entails solving potential clinical inter-
actions, discovering synergies in the diagnosis and the recommendations, and managing clinical equipoise situations.
Personalized conciliation of multiple guidelines considering additionally patient preferences brings some further dif-
ficulties. Recently, several works have explored distinct techniques to come up with an automated process for the
conciliation of clinical guidelines for comorbid patients but very little attention has been put in integrating the patient
preferences into this process.

In this work, a Multi-Agent Planning (MAP) framework that extends previous work on single-disease temporal
Hierarchical Task Networks (HTN) is proposed for the automated conciliation of clinical guidelines with patient-
centered preferences. Each agent encapsulates a single-disease Computer Interpretable Guideline (CIG) formalized as
an HTN domain and conciliates the decision procedures that encode the clinical recommendations of its CIG with the
decision procedures of the other agents’ CIGs. During conciliation, drug-related interactions, scheduling constraints
as well as redundant actions and multiple support interactions are solved by an automated planning process. Moreover,
the simultaneous application of the patient preferences in multiple diseases may potentially bring about contradictory
clinical decisions and more interactions. As a final step, the most adequate personalized treatment plan according
to the patient preferences is selected by a Multi-Criteria Decision Making (MCDM) process. The MAP approach is
tested on a case study that builds upon a simplified representation of two real clinical guidelines for Diabetes Mellitus

and Arterial Hypertension.
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1. Introduction

Clinical Practice Guidelines (CPGs) are statements that include recommendations to assist clinical decision mak-
ing in patient care. Recent clinical research unveils a widening gap between the reality of healthcare of comorbid
patients and the practical clinical recommendations driven by CPGs [1]. A number of distinct approaches for auto-
matically conciliating CPGs of different diseases that need to be simultaneously applied in a patient have emerged
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lately, where the common mainstream relies in representing each single-disease Computer Interpretable Guideline
(CIG) in a suitable formalism, finding merging points between the CIGs and tackling the potential arising interac-
tions.

Approaches to comorbidity vary depending on various factors such as the knowledge-engineering tools to formal-
ize the individual CPGs, the type of representational formalism and the reasoning process. Despite the great variety
of models and usage of diverse technology in comorbidity, little effort has been devoted to handle comorbid patients
preferences. Most likely, the reason stems from the additional complexity of dealing with the contradictions and
adverse interactions that may arise when conciliating clinical decisions that comply with the patient preferences for
different diseases.

The inherently complexity of adding patient preferences in comorbidity settings depends to a greater or lesser
extent on the reasoning process of the comorbid approach. Approaches that merge multiple treatments for a patient,
managing actions and enforcing constraints encoded in each treatment [2], are less flexible because the appearance
of an adverse interaction when a particular merge criteria is applied on the patient compels to change one of the
treatments. On the other hand, proposals that adopt the trend of conciliating CIGs instead of treatments cannot easily
accommodate the patient preferences during conciliation since CIGs are designed for diseases, not for patients [3].
These approaches are specifically aimed to enable abstract or patient-independent reasoning in order to find possible
interactions between CIGs before execution [4].

The generation of patient-oriented CIGs is gaining much attention as it enables mobile decision support [5, 6].
Recent developments in the MobiGuide project apply CIGs to provide real-time patient-specific and personalized
recommendations by matching CIG knowledge with a highly-adaptive patient model, thus making CIGs patient-
centered and enabling their personalization [7]. Despite these advancements in accommodating personal preferences
in individual CIGs, conciliating several CIGs in a comorbidity setting also involves conciliating guideline-specific
preferences, which may render new adverse interactions (e.g., two different drugs cannot be simultaneously taken at
the patient preferable scheduled time). This opens up a new spectrum of preference interactions as a result of the
simultaneous application of the patient preferences to all the diseases, which may also have a significant impact from
a medical standpoint. With these antecedents in mind, it is understandable that efforts in comorbidity investigation
have been focused on the detection of disease interactions rather than on conciliating patient preferences.

In this paper, we present a framework for conciliating clinical guidelines that overcomes the difficulties of previous
approaches in managing patients preferences. Unlike the widely extended patient-centered treatments, our work
represents a step ahead towards patient-tailored conciliated clinical guidelines in comorbidity. We propose a dynamic
conciliation of CIGs that not only handles relevant medical interactions addressed by other approaches but also studies
the potential harmful interactions that arise when the patient preferences are applied to more than one recommendation
(preference interactions).

Beyond the medical state of the patient, which is the primary data source for medical decisions, patient preferences
relate to a number of personal choices that denote the extent to which given health states are desirable [8, 9]. In this

work, we handle two types of personal preferences:

¢ Qualitative preferences are personal choices of the patient that reflect common patterns of everyday life, habits

or lifestyle and are used to involve patients in the development of the CPG

¢ Quantitative preferences are personal choices of the patient (or institution) that reflect the extent to which some

treatment guidelines are less or more preferable than others



Our approach accounts for patient preferences at different stages of the health-care process, thus providing the

most adequate multi-disease personalized and conciliated treatment:

1) qualitative preferences are represented in a predicate-based formalism and activate alternative decision pro-
cedures in each individual disease CIG, which is formally defined by the knowledge engineer as a planning
domain (e.g., reasoning procedures differ according to the tolerance of the patient to common side effects of a
medication or to the prescribed medication the patient is accustomed to). Preferences embodied in the individual

guidelines are a helpful mechanism when designing a treatment.

2) conciliation of the most relevant interactions managed by clinicians [10] during the treatment elaboration, in-
cluding those that stem from conciliating simultaneously guideline-specific personal preferences (preferences

interactions).

3) resolving clinical equipoise situations, i.e., selecting one treatment from many possible clinically valid treat-

ments, through the use of quantitative preferences.

Our approach draws upon the use of multi-agent techniques and multi-agent planning (MAP) in particular, in
which a planning agent is regarded as encapsulating the expertise and skills of a specialist or team of specialists in a
particular disease [11]. The adoption of MAP technology is very suitable for a comorbidity setting for several reasons:
(a) there is no need to mix knowledge of different guidelines in a single representation; each agent individually
encapsulates the CPG of a particular disease; (b) ease of including as many diseases as the patient suffers; and (c)
support of existing and well-studied mechanisms of agent coordination and conflict resolution. Additionally, the
strength of deliberative temporal Hierarchical Task Network (HTN) planning reveals as a solid enabling technology
to represent CIGs and generate personalized single-disease treatments [12]. Thus, an agent-based HTN knowledge
base is used to represent the clinical expertise of the agents (decision procedures) as well as to account for the patient
preferences.

Each agent maintains an single-disease CIG represented as an HTN domain. Coordination among agents is aimed
at conciliating the agents’ local CIGs, which is performed in two steps. The first step, domain merging, requires an
agent to filter out the decision procedures that are not compliant with the patient preferences and then combine the
resulting sub-domain with the sub-domains of the other agents. Therefore, each agent ends up with its own unified
merged CIG, resulting from the combination of the agents’ decision procedures while respecting and conciliating the
contents of each CIG. Moreover, if two decision procedures are found to be in conflict due to a preference interaction
within one agent, the agent will request the other one an alternative procedure to resolve the interaction. At the
second step, the planning process, every agent generates a personalized plan with its embedded local planner, using
its conciliated CIG and considering the patient comorbid medical state and preferences. Computing a plan entails
solving the adverse interactions that appear when the combined decision procedures are applied to the particular
patient. If a planning agent finds a plan, meaning the problem is solvable, a local conciliated plan (treatment) has been
encountered for the patient. Quantitative preferences are then applied to all the found local conciliated treatments in
order to select the final multi-disease treatment plan.

A distinctive feature of our approach is the comprehensive temporal planning process applied by the agents. This
encompasses reasoning about both the temporally annotated patient data and explicit temporal constraints represented
in the HTN knowledge base, as well as handling the implicit temporal constraints derived from the hierarchical task

decomposition at different levels of abstraction. Health conditions of the patient over time or prescribed treatments
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dates are easily described with the language used to formalize CIGs as temporal HTN domains. Moreover, implicit
temporal consistency checking is used to determine the temporal instantiation of actions or the fulfillment of resource
availability restrictions. This powerful temporal reasoning machinery enables as well to infer the temporal horizon of
a treatment plan in the form of a patient follow-up date.

From a technical standpoint, we propose a novel agent-based planning method to tackle the problem of person-
alizing treatments for comorbid patients accounting for personal and treatment choices of the patient. Our approach
highlights the distributed representation of clinical knowledge and the coordination among agents as key elements to
conciliate clinical guidelines, enabling specialists to exchange their knowledge to come up with a patient-centered
treatment plan. Moreover, it also analyzes equipoise situations when several clinically valid alternatives exist for the
same patient.

The outcome of our tool is an automatically built conciliated plan which is then shown to the physician. While the
physician does not interactively intervene during the construction of the plan, the decisions made by the HTN planner
are guided by human knowledge encoded by knowledge engineers in collaboration with physicians. Since the reasons
leading to the output plan are internally recorded, they would be readily retrievable and accessible to the physician
in the form HTN-based explanations through a suitable human-computer interface. This way, automated processes
that follow a human-centered knowledge modeling like ours enable the generation of transparent and explainable
decisions.

We must note that in this paper we do not address the issue of plan monitoring, plan execution (treatment execu-
tion) or the interaction with the patient, beyond the interaction required to capture the patient preferences. All in all,
our proposal is an enabling technology; i.e., a methodology that, in combination with other associated technologies
like user interaction, plan execution or computer-physician interaction, can provide the means to develop clinical de-
cision systems. More details on how the tool is extensible to account for these interactive technologies will be exposed
in the section devoted to discuss some open issues.

In the remainder of this paper, we will see the benefits of exploiting MAP technology for our comorbidity ap-
proach. This paper is organized as follows. In the next section, we summarize the principal approaches to comor-
bidity. Section 3 introduces the principal concepts of our HTN-based knowledge representation formalism. Section
4 overviews our patient preference classification. Section 5 outlines the architecture for the proposed MAP system
and it explains the overall workflow. Section 6 presents the two steps of our MAP proposal, the domain merging and
planning processes. The following section is devoted to briefly explain the multi-criteria decision-making process that
takes into account the quantitative preferences to select the final conciliated treatment. Section 7 presents a case-study
based on two real clinical guidelines for Diabetes Mellitus and Arterial Hypertension. The next section discusses the

main limitations of our approach and the last section concludes.

2. Related Work

There exist diverse approaches to comorbidity that feature different models for the identification of merge criteria,
representational schemes of CIGs or automation level of the reasoning procedures.

The automated conciliation in [13] proposes a divide-and-conquer strategy that distinguishes between clinical
actions to measure the seriousness of the disease and treatment recommendations. Whilst this work is founded on
the analysis of five clinical practical guidelines analyzed by a senior practitioner who designs a treatment model for
each disease, other approaches rely upon experienced practitioners in comorbidity to identify the merging criteria and

develop a representation ontology that captures the criteria to achieve the merging of multiple CPGs [14].
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Handling interactions between comorbid diseases is of paramount importance in the development of automated
tools for clinical decision support. In general, existing approaches put the emphasis in the design of automated
reasoning processes to identify the most relevant interactions managed by clinicians [10]; namely, (1) redundant rec-
ommendations in more than one CPG; (2) undesirable physiological interactions between different drugs or between a
drug and a disease; (3) scheduling constraints due to resource or temporal conflicts; or (4) contradictory recommenda-
tions. Techniques to address clinical interactions vary from their level of automation. Thus, one can find model-based
automatic combination of multiple treatments [13], frameworks for eliminating redundancy and identifying adverse
interactions [15], semi-automatic detection of interactions among redundant drug recommendations that require some
attention from experts [16] or mixed-initiative proposals that provide physicians with management and reasoning
tools when facing multiple CPGs [17]. A recent work suggests the introduction of different interactions strengths to
measure the relevance of an interaction according to the features of the related elements [18].

The community of Artificial Intelligence in Medicine has already addressed the problem of planning comorbid
patient treatments from different perspectives, which can be categorized depending on the outcome of the tool. This
outcome can be either a single multiple-disease CIG that is dynamically created and then interpreted at execution time
([14], [17]), or it can be a personalized multi-disease treatment plan that is later delivered and enacted as a clinical
pathway. Among the works that return a single multiple-disease CIG, the work in [13] applies an automated merging
process of several treatment models (each obtained from the respective disease CPG) based on the pairwise combina-
tion of clinical actions and treatment tables through merging operators. The merging process is complemented by a
rule-based execution engine that solves drug-interactions among actions. Other works, however, explicitly deal with
multi-disease treatment plans, like the care plan oriented approach based on a semi-automatic knowledge acquisition
process [19]. This approach is guided by the initial definition of a high-level and abstract plan previously identified by
clinicians as the common steps to guide the development of the comorbid care plan. The process proposed in [19] is
based on PROforma [20] and it is supported by knowledge engineering tools that help define a common guideline to
concurrently treat two diseases by reusing elements in a plan library. The merging of guidelines is not fully automated
and requires human intervention at every step in the life cycle. The work in [21] uses an ontology-based approach
to merge Protégé-OWL clinical pathways of comorbidities, which are separately modeled and semi-automatically
merged using the ontology merging techniques provided by Protégé. Merging comorbidity pathways ontologies in-
volves solving duplications and managing drug interaction or adverse events since pathways (or the CG from which
they are originated) may not explicitly state interactions. Other approaches focus on drug-drug and disease-drug
interactions that arise in contradictory single-disease treatments, or suggest the utilization of specific programming
models to analyze and detect interactions [22], which results in a combination of individual therapies derived from
two involved CPGs. This latter work extends the proposal in [23] by using iterative actions for the administration of
pharmacological treatments as well as numerical variables for the dosages in the administration of a medication.

The strength of agent-based representations has been exploited in projects like GLINDA [24] for solving inter-
actions and consolidating treatment recommendations as well as in the K4Care platform, where agents personify the
domain actors necessary for the execution of personalized home care treatments [25]. However, agent-based reasoning
can be exploited not only for conciliation of medication in a reactive way, but also for planning tailored single-disease
treatments following a deliberative approach. In previous works [26, 12], deliberative temporal HTN planning was
used to represent formal CPGs', generate personalized care pathways and adaptively execute them [30].

The field of Multi-Agent Planning (MAP) is experimenting great advances over the last years by its capacity

I'This representation can be done either directly, in the proper HTN formalism, by using a specific knowledge engineering tool [27, 28], or
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and flexibility of modeling applications that require distribution of knowledge sources and reasoning. Particularly,
the existence of disease specialist agents makes MAP a very suitable technique to address the comorbidity problem.
MAP emphasizes the combination of two principal activities, planning and coordination. Some approaches apply a
pre-planning coordination, distributing the task goals across agents before planning. This approach fits well tasks
whose solution plan is made up as a composition of the individual plans of the agents [31]. MAP frameworks that
apply post-planning coordination are particularly aimed to merge individual agent’s plans into a single joint plan
while solving interactions among the plans, as for example the partial global planning framework [32], which allows
agents to communicate their local plans to the rest of agents and then merge this information into their own partial
global plan in order to improve it. Finally, approaches that continuously interleave planning and coordination are more
appropriate for tasks that require cooperative goals and where agents are not able to attain the goals by themselves
[33].

In this work, we adopt a pre-planning coordination view differently to the classical MAP approaches. Rather than
giving each single-disease specialist agent the goal of finding a plan (treatment) for its respective disease and then
merging all the individual plans, agent coordination in our approach involves agents exchanging and combining the
preference-filtered decision procedures of their respective CIGs. Our MAP approach allows each specialist agent to
put forward its personal view in the conciliation of CIGs, thus obtaining as many patient-tailored agent-personalized
conciliated CIGs as number of specialists involved in the comorbidity setting. Consequently, an equipoise situation
can arise having as many treatment plans as conciliated CIGs. In this case, the patient treatment preferences are
subsequently applied to select the most adequate multi-disease personalized and conciliated treatment.

As commented above, there are hardly approaches that deal with patient preferences in comorbid settings, with
the notably exception of the work published in [34]. This work extends a first-order logic based framework to add
support for patient preferences when mitigating the concurrently application of multiple CPGs to a comorbid patient.
As we will see in the rest of the paper, our proposal brings some novelties with respect to the approach in [34] as
a distributed representation of CPGs and a reasoning model that relies on a multi-agent coordination method. This
provides a great flexibility to include or eliminate diseases as well as integrating new patient preferences without need

to modify the reasoning routines.

3. Encoding clinical knowledge

The reasoning process of the agents within the proposed MAP architecture extends the temporal HTN planning
process described in [35], which is used for the generation and execution of a personalized single disease care pathway
in [26, 12, 36]. Based on the automatic translation of CIGs into HTN domain proposed in [12], this section shows an
outline of the underlying knowledge representation and its adequacy to represent CIGs with patient preferences.

Most CIG languages are based on task-network models, characterized by a hierarchical decomposition of the care
processes into networks of component tasks that unfold over time [6]. One of the most referenced CIG languages
is Asbru, a task-network CIG language that emphasizes the representation and management of temporal aspects,
specification and execution of action, hierarchical plans and parallel tasks [37]. While CIG languages like Asbru and
HTN planning languages have shown to be very expressive in terms of their representation of temporal constraints

[35, 38], the associated inference engines of CIG languages do not provide support for the automated generation of

trough an automated translation process from standard CIG languages to this formalism [12]. Moreover, this technology has been used to develop
a pediatric oncology focused CDSS as a commercial application [29]



temporal plans. The work in [12] presents an automatic translation of CIGs specified with Asbru into the Hierarchical
Planning Description Language (HPDL) that is used in this paper to formalize CPGs as HTN planning domains. The
translation relies on an elicitation process for clinical guidelines described by experts in natural language which are
then modeled with the user-friendly tool DELT/A (the Document Exploration and Linking Tool [39]) to produce a
computer-interpretable XML-based model of the guideline. The proposal in [12] not only shows that HPDL is as
expressive as other CIG languages, but also that HPDL can be used as an instrumental language that operationalizes
clinical knowledge elicited with general tools like DELT/A. In short, HPDL enables knowledge to be interpretable
and actionable by other software components such as planning systems, thus opening up the way to reason about
knowledge and synthesize clinical plans.

An HTN planning domain described in HPDL is a compositional hierarchy of tasks that can represent either
clinical procedures or goals to be achieved. Every task has associated (one o more) decomposition methods that
describe alternative ways to accomplish it. A method describes the conditions under which a task can be decomposed
(by means of a precondition) as well as how the task can be accomplished (by means of a partially ordered sequence of
subtasks). Leaves of the hierarchy are called primitive actions and represent executable tasks that transform the world
when executed. An HTN problem consists of an initial state (describing the health conditions of a patient, among other
things) and a (partially) ordered sequence of high-level tasks to be accomplished (describing the intent to generate a
plan for the diagnosis and treatment of a patient). An HTN planner receives as input a planning domain and a problem
in order to generate a plan, i.e., a (partially) ordered sequence of primitive tasks. Previous work [12, 26] shows that
HPDL allows for a full representation of a single-disease CIG as an HTN domain (mainly due to the capability of
representing common workflow and temporal patterns required in CIGs [40]), and that this representation is directly
interpretable by an HTN planner like [35] or [28] in order to obtain a full treatment for a single patient.

The simplest structure that can be found in the activities (or tasks) of a method, either clinical or administrative,
is in sequence, within parentheses (see Figure 1) as a pattern with variables like ?patient which generalizes the

concrete names of patients or resources that take part in the activity.
((electrocardiogram 7patient 7room) (urine-analysis 7patient))

Figure 1: Representation of a sequence of activities
Activities may also be represented in parallel, within brackets, meaning that they can be carried out in any order,
even simultaneously (see Figure 2).
[(eat-fruit 7patient) (isometric-exercise 7patient)]
Figure 2: Representation of parallel/independent activities

Each activity is described with several fields which encode the clinical knowledge or restrictions associated to the

activity like its duration or the conditions that must hold for the activity to be enacted (see Figure 3).

(:durative-action electrocardiogram Name of the activity
:parameters (?p - Patient ?r - Room) Objects that take part and their types
:duration (= 15m) Expected duration of the activity
:condition (overall (available ?r)) Prerequsitite: the room must be available all the time
:effect (has-ecg 7p)) Record of the activity

Figure 3: Representation of the knowledge associated to a single activity

Goals are thought of as compound activities which can be decomposed in different ways, meaning that there are

7



different manners of achieving the same goal. In this case, every method for decomposing the goal may be qualified
with the conditions that must hold, if any, for this decomposition to be eligible (Figure 4).

(:task TreatmentArterialHypert Name of the compound activity or goal
:parameters (7p - Patient ?d - Drug) Objects that take part and their types
(:method low First decomposition method
:precondition (severityAH ?p low) Condition to be hold for the first decomposition to be eligible
:tasks ( Representation of the first decomposition

[(NonPharmaTreatAH ?p)
((DecidePharmaTreat 7p 7d ClassAH1)
(DoPharmaTreatAH ?p ?d))1))

(:method moderate Second decomposition method
:precondition (severityAH ?p mod) Condition to be hold
:tasks ( Decomposition

[(NonPharmaTreatAH ?7p)
((DecidePharmaTreat ?p ?d ClassAH2)
(DoPharmaTreatAH 7p ?7d))1))

Figure 4: Compound activity, or goal, with two decomposition methods

In HPDL, the planning problem comprises the patient profile as well as information of the patient preferences
(which is detailed in Section 4). We use a predicate-logic formalism to represent this information with simple facts
that follow the form

(<attribute> <object> <value>)

where <object> indicates the patient in question, <attribute> denotes the feature and <value> is the value of the
feature for the patient. The <attribute> component is the predicate name and the other two components are the
arguments of the predicate.

The patient model integrates a comprehensive list of attributes that is extracted from three different information
sources: Electronic Medical Records (EMRs), Clinical Guidelines and clinicians, following different methodologies
for each one. Most of the patient profile information is commonly stored in EMRs, including biometric and personal
details of a patient such as the age, the genre or the ethnicity, as well as information about his/her medical condi-
tion; e.g. diseases suffered by the patient, variables and levels of measurement. Figure 5 shows various HPDL facts
representing personal details, medical conditions and contextual information. Other attributes related to health condi-
tions are mainly elicited from CPGs following a manual process by consulting the textual guidelines. For example,
(exercise Jane regularly), (training-inhalation Jane YES), (diet Jane healthy). Allin all, the set
of attributes is defined considering different sources of information, and it may vary depending on the used guidelines,
but the attribute modelling is ultimately carried out through a knowledge engineering process prior to the system is
put into production.

By using the HPDL decomposition methods, facts related to patient profile attributes and medical conditions are
quickly made actionable as it is shown in the compound activities of Figure 4, wherein the method low is activated
when the fact (severityAH Jane low) is found in problem description, in which case the corresponding tasks
are included in the treatment. Likewise, we can assume we have the facts (age Jane 65), (has-disease Jane
Asthma) in Jane’s profile and the fact (training-inhalation Jane YES), as described in Figure 5. This medical
condition is interpreted here as a boolean value associated to a statement or observation of the patient, which may be a
supportive piece of information to the clinician. Moreover, patient medical conditions and contextual information are

used in methods’ preconditions as a way to personalize treatments. Particularly, the administration of a treatment for
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(:init
(sex Jane M)
(age Jane 65)
(has-disease Jane Asthma)
(has-disease Jane AH)
(severity-AH Jane low)
(bad-cholesterol Jane 221)
(group Jane 1)

(exercise Jane regularly)
(diet Jane healthy)
(training-inhalation Jane YES)

.2

Genre of the patient

Age of the patient

Jane suffers from Asthma

Jane suffers from Arterial Hypertension

The severity of Jane’s AH is low

Jane’s bad cholesterol level

Jane received an oncology protocol of group 1

Jane regularly does exercise
Jane’s diet is healthy
Jane has experience in inhalation techniques

Figure 5: HPDL facts that represent the patient profile and preferences.

Jane based on inhaled corticosteroids turns out to be appropriate so the system will apply the method corresponding

to the inhaled corticosteroids treatment of the Asthma CPG, represented as an HTN domain in Figure 6.

(:task TreatmentAsthma
parameters (?p - Patient 7d - Drug)
(:method with_training
:precondition (training-inhalation 7p YES)
:tasks (DoPharma ?p CorticoSteroids))
(:method no_training
:precondition (training-inhalation ?p NO)
:tasks (DoPharma 7p AntileukoTrienes)))

method applicable when

Jane has inhalation expertise

Generate a treatment with CorticoSteroids
this method is applicable when ...

Jane hasn’t inhalation experience

Generate a treatment with AntileukoTrienes

Figure 6: An example of how treatments are personalized to the medical or contextual conditions of the patient.

The representation of time and expressive temporal constraints between activities, either compound or not, is also

allowed in HPDL as shown in [35]. Every activity and goal is associated to three variables named ?start, 7end and

?duration which delimit their temporal extent.

(:task TreatmentAH

:parameters (?p - Patientm ?d - Drug)
(:method low
:precondition (severityAH ?p low)
:tasks (
[(NonPharmaTreatAH ?7p)
((DecidePharmaTreat 7p 7d ClassAH1)
((= ?start (start A2)) (DoPharmaTreatAH ?p ?d)))1))

A compound task (or activity) to generate a treatment for Arterial
Hypertension

Use of temporal constraints; ?start is the start time of task
DoPharmaTreatAH

Figure 7: Representation of temporal constraints (in bold faces) between activities: Activity DoPharmaTreatAH must be scheduled to start at the

same time than activity A2 regardless where it is within the plan.

For example, Figure 7 is a variant of Figure 4 which shows how the activity DoPharmaTreatAH is forced to start

exactly at the same time than another activity named A2, which might appear in another branch of the plan. The

?start and 7end variables can be used from one activity to another to define a large variety of temporal relations,

e.g. the ones described in Allen’s temporal logic. For example, a temporally constrained task or goal can be written

as (<temporal _constraint> <subgoal>), and the standard Allen’s temporal relation OVERLAPS(gl, g2) is

represented in HPDL as

[gl ((and (> ?start (start gl)) (< ?start (end gl)) (>= 7end (end gl))) g2)]



where 7start and 7end are variables representing the start and end points of g2, and (start gl) and (end g1)
represent the start and end points of g1. The temporal planning process is described later in Section 5.5.

The patient model of the planning problem also encodes temporal facts representing the evolution of the patient
profile along time that can be used to describe relevant changes in the patient conditions. Figure 8 shows that Jane’s
glycated hemoglobine (AC1) has changed from 7.0 on March 30 to 8.2 on June 28, what represents a significant change
of Jane’s medical conditions that affects a specific disease (Diabetes in this case). We can also observe in Figure 8
that other historical clinical aspects like the current therapy of the Jane are also encoded as temporal HPDL facts in
the initial state. Specifically, Jane was prescribed to take Metformin 500 oral mode twice a day during three months
since March 30. These two pieces of information, facts that represent the patient evolution and her current therapy,
are crucial to find a personalized treatment adapted to the evolving state of the patient along time. Hence, the planning
process (as explained in Section 5.5) will detect the change in the temporal evolution of Jane and will synthesize a
new treatment adapted to the new health conditions of Jane. Otherwise, in case that Jane’s medical conditions do not
change, the current plan (therapy) will be adopted. Section 5.5 describes in detail this temporal planning process and

Section 7.3 shows a detailed example about these concepts.

(:init

(at "30/03/2018 09:00:00" (AC1 Jane 7.0)) Jane’s glycated hemoglobin was 7.0 on March 30

(Treatment Metformin 500 oral solution twice_a_day) Jane’s is receiving a treatment of Metformin 500, mode oral,
format solution, at a daily frequency of twice a day

(start_Treatment Metformin "30/03/2018 09:00:00") Jane’s treatment began on March 30

(duration_Treatment Metformin 2160hrs) Jane’s treatment duration is 3 months (2160 hours)

(FollowUp Diabetes) Jane’s FollowUp for Diabetes

(start_FollowUp Diabetes "28/06/2018 09:00:00") Jane’s FollowUp was scheduled for current date

(duration_FollowUp Diabetes 1hr) Jane’s FollowUp session is estimated to last 1 hour

(= (start-this-visit) "28/06/2018 09:00:00") A numerical predicate storing current visit’s date

(at "28/06/2018 09:00:00" (AC1 Jane 8.2)) Jane’s glycated hemoglobin is 8.2 at the current date

)

Figure 8: HPDL temporal facts representing the evolution of the patient status along time.

Finally, we introduce here the notion of Decision Procedure which will be very relevant in the forthcoming sec-
tions. As in the case of CIGs, the full HTN planning domain is not applicable to a given patient. The application
of the patient condition and preferences in the domain results in a set of Decision Procedures, which comprise the
activities of the decomposition methods that are eligible for the patient. For example, considering the task of Figure 6,
a Decision Procedure for treating Jane’s asthma would comprise only the method applicable to her training inhalation
expertise.

In this paper, a multi-agent planning framework is defined so that every agent has the same planning capability but
has a private HPDL-based knowledge representation that encodes a clinical guideline for a different disease. In the
case of comorbid patients, these multiple planning agents collaborate with each other, by exchanging pieces of their
private knowledge representation, that is to say, Decision Procedures, to coordinate the whole treatment. The multi-
agent planning framework acts by merging the planning domain of every single disease, prior or during the search for
a coordinated plan, instead of just merging the individual plans of the agents, which would amount to combining local

treatments.
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4. Patient preferences

In this work, we identify two types of preferences: qualitative preferences used by clinicians to make decisions
while designing a personalized treatment, and quantitative preferences to facilitate the patient participation in the
selection of a final treatment from many possible choices.

Handling patient preferences involves three main tasks: elicitation, representation in the proposed formalism and
utilization in the decision-making process. Our particular interest is to incorporate patient preferences in the HTN
planning process and, specifically, use the preferences to guide reasoning during conciliation of CPGs within the
MAP framework. The issue of preference elicitation is out of the scope of this work and we will assume a manual

elicitation for extracting both qualitative and quantitative preferences.

4.1. Qualitative preferences

Qualitative preferences are personal factors, desires and preferences that determine the patient habits and lifestyle.
These are preferences to support the clinician during the development of the CPG. Qualitative preferences are elicited
by the physician through an ordinary conversation to inquire the patient about guideline-specific preferences and to
extract targeted information.

Specifically, a qualitative preference is represented as a HPDL fact such that a HTN method that encodes a par-
ticular action compliant with the preference will be triggered during the reasoning process. Similarly to the proposal
in [34], we might obtain the following derivation when assessing the preferences of a patient, Jane, whose current

treatment for diabetes (oral administration, diet and exercise) is not enough to keep the blood sugar level controlled:

1. Oral medication vs. Injectable medication. The user will respond according to the treatment benefits, burdens
and side effects of both choices. Let’s assume Jane prefers to keep on oral medication, which leads to a

preference of the type (medication-mode Jane oral).

2. Side effects vs. Side effects. Then, the physician presents the following two choices: (1) drugs which do not
cause low blood glucose but has side-effects such as bloating, upset stomach or diarrhea vs. (2) drugs that
can cause low blood glucose but has less severe side effects such as occasional skin rash or irritability. Let’s
assume Jane rather avoid the risk of low blood glucose. This is translated into health-related preferences like

(medication-type Jane Biguanides) and (medication-type Jane Alpha-glucosidase).

3. Once aday vs. Twice a day vs. Each meal. The next inquiry is about her preferable dosage schedule: taking pills
at every meal, twice a day with breakfast and evening meal or take once a day in the morning. Assuming that
Jane opts for taking pills once a day in the morning, the preference (medication-time Jane breakfast)

is generated.

The above preferences activate the first method of the task for diabetes oral medication administration shown in
Figure 9 which recommends Metformin extended release for a patient with the same preferences as Jane.

Another example of preference is a patient that suffers from Arterial Hypertension and opts for a treatment that re-
duces hospitalization rate although it causes persistent dry cough and dizziness (e.g., ACE inhibitors), over a treatment
with diuretics that is less effective but has also less troublesome side effects such as frequent urination.

Qualitative preferences are formally represented as statements that are used to select the decision procedures

that agents will handle at planning time. It is important to remark that the HTN tasks are usually decomposed in
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(:task PharmaTreat-diabetes-oral
:parameters (7p - Patient)
(:method ml (:method m2
:precondition :precondition
(and (medication-type ?p Biguanides) (and (medication-type 7p Biguanides)
(medication-time ?p breakfast)) (medication-time 7p twice-a-day))
:tasks ( :tasks (
(:inline () (assign ?NRep (ndays))) (:inline () (assign ?NRep (ndays)))
(= 7start (breakfast-time 7p)) (= ?start (breakfast-time ?7p))
(DoPharma ?p Metformin-extended-release 7NRep 24h)) (DoPharma ?p Metformin ?NRep 12h)))
(:method m3 (:method m4
:precondition :precondition
(and (medication-type ?7p Sulfonylureas) (and (medication-type 7p Alpha-glucosidase)
(medication-time 7p twice-a-day)) (medication-time ?p each-meal))
:tasks ( :tasks (
(:inline () (assign 7?NRep (ndays))) (:inline () (assign ?NRep (ndays)))
(= ?start (breakfast-time ?p)) (= ?start (breakfast-time 7p))
(DoPharma ?p Glipizide ?NRep 12h))) (DoPharma ?p Acarbose ?NRep 8h)))

Figure 9: Oral medication for diabetes according to patient preferences

several methods and that a method embodies the line of reasoning to adopt when a personal preference, or sim-
ply a health-related condition, is fulfilled. However, if contradictory interactions are found at planning time with
the preferences specified by Jane for the Arterial Hypertension guideline, an alternative method specified in the
PharmaTreat-diabetes-oral task shown in Figure 9 or in the tasks of the Arterial Hypertension CPG will be
launched.

4.2. Quantitative preferences

Preference (plan feature) | Description Label Norm.
Priority

times_per_day Counts dosage schedules weighted by dosing frequency moderate (3) 0.21
pills_per_day Counts the number of pills that the patient takes in a day. medium (2) 0.14
number_of_medical_visits Number of medical visits for the patient, including primary care, medical laboratory, hospitals, etc. very much (5) 0.36
medical_visits_duration Number of hours the patient must spend in all of the scheduled medical visits along the treatment. moderate (3) 0.21
treatment_duration The total duration of the treatment measured in days which gives an idea of the length and pacing of indifferent (1) 0.07

treatment, including, if necessary, durations of hospital stays. In order to label the criterion, consider

that the shorter the duration, the better for the patient.

Table 1: Example of patient quantitative preferences

Quantitative preferences include measurable terms that are used to determine the patient perception over a treat-
ment?. Quantitative preferences help select one option from many possible treatment outcomes (plans) and support
shared decision making. In our approach, quantitative preferences capture the priority of a patient for a plan or treat-
ment. These preferences are elicited through a simple and comprehensive questionnaire that enables the patient to
respond questions about a given treatment. Patients provide answers in a qualitative scale, which is more suitable to
answering certain kinds of questions, and then responses are automatically converted to a numeric rating scale. Table
1 shows the five patient quantitative preferences (plan features) we deal with in this work (first column) along with
their description (second column).

The third column of Table 1 shows an example of the qualitative score of each preference given by a patient to

a particular plan. Each row maps a preference to a qualitative score (label) representing to which extent the value

2Examination of costs from the institution standpoint is also addressed with quantitative preferences. This will be detailed in Section 6
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of such preference in the plan is bothersome for the patient. The qualitative scores filled out by the patient describe
the importance in terms of nuisance {nothing, indifferent, medium, moderate, much, very much} of each preference in
the treatment or plan. The qualitative scores are mapped into a numerical value in the scale [0..5] since there are six
possible values (the numerical values are shown within parenthesis besides the qualitative label). Then, we apply a
normalization by the sum of all values to quantify the relative importance of each plan feature to the patient. Hence,
a high priority for a preference denotes that the patient would prefer a conciliated plan with lower values of such
feature. Following the values of the fourth column of Table 1, the most bothersome aspect of the plan to the patient is
the number of medical visits, which means the patient would rather a conciliated plan with few medical visits. Details

of the process that calculates the values and weights of the preferences are provided in section 6).

5. A MAP Architecture for conciliating CIGs accounting for patient preferences
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Figure 10: Multi-agent Architecture to conciliate N different diseases with an Initiator agent plus one Specialist agent for every disease

This section describes our proposed multi-agent planning system architecture (Figure 10) along with the technical

details. The numbered labels in Figure 10 are used for the ease of the explanation. The Initiator agent receives
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a request [1], which may come from a physician, to design the treatment for a comorbid patient. This request is
named Common goal since, irrespective of the number of diseases a patient might present, this goal is common
to all the agents and it is locally interpreted by each agent. The Initiator agent gathers all the information in the
patient profile and launches the whole multi-agent process, integrating the information coming from the Specialist
agents. There may be as many Specialist agents as required by the comorbidities of the patient, each disease being
attended by a different Specialist agent that encodes the respective CIG expressed as an HTN domain, as sketched in
the previous section. Most data needed to feed the multi-agent architecture might be obtained by dumping the data
contained in Electronic Medical Records (EMR), or Hospital Information Systems (HIS) or Patient portals. Data are
comprised by the following items: Common goal, Patient information, Comorbid information and Hospital resources.
A detailed example about information items is provided in Section 7, Table 3. Note that in Figure 10 patient’s profile
also includes information about the Current Therapy followed by the patient at the beginning of the patient-clinician
encounter (should it eventually have been prescribed in previous visits). It is a key piece of information to address
dynamic aspects of the problem and to cope with the evolution of the patient, as described in Section 5.5 and shown

in Section 7.3.

5.1. Common Goal management

The common goal takes the form of a set of (partially) ordered compound tasks (also called subgoals) that can be
annotated with temporal constraints as the ones used in the decomposition methods (Figure 7). Subgoals are ordered
as in decomposition methods; e.g., (g1 g2) stands for g2 to be sequenced after g1 and [gl g2] means that both
subgoals have to be scheduled in parallel. The Initiator agent receives the request to start a new planning episode and
iterates over every single subgoal of the Common goal. In our case, the common goal of treating a patient is composed
of two sequentially ordered subgoals: diagnose the patient and prescribe a treatment. The initiator sends the subgoals,
in their corresponding order, to all the Specialist agents to be processed . The order of solving the subgoals is not
mandatorily the same order to be followed at execution since additional temporal constraints may impose a parallel or
any other time relation when executing the subgoals. In our particular case diagnosis and treatment will be executed
in the same order as they are solved.

Subgoals are accomplished by following a planning process guided by the task decomposition schemes of an
HTN domain. Each Specialist agent includes in its HTN domain a decomposition scheme (as shown in Figure 4)
that specifies how to accomplish each subgoal of the Common Goal. This means that, each agent interprets every
subgoal received from the Initiator differently and accomplishes it according to its own knowledge. For example,
the accomplishment of the subgoal ((= ?start (current-visit-date)) (Treatment Jane)) could lead to
different medication plans by different specialists. Moreover, tasks required to accomplish one same subgoal do not
need to be synchronized nor aligned on time and can be executed independently of each other as long as they respect
the temporal constraints specified in the domain (as explained in Figure 7, Section 3). An agent will not participate
in the accomplishment of a particular subgoal if either its CIG does not directly contemplate the subgoal (in this case
the agent would return an empty plan) or the conditions to accomplish the subgoal do not hold. For example, in the
case of a patient who is already being treated for other diseases, an agent may decide not to accomplish the subgoal
(Treatment Jane) of the Common Goal and maintain instead the patient’s current therapy if the patient status has
not significantly changed from the last visit (the underlying process is detailed later in Section 5.5).

The accomplishment of a subgoal starts the conciliation of CIGs as a local process composed of two steps, the
domain merging and the plan synthesis. The domain merging step of a local agent is, in turn, composed of two sub-

steps: filtering the Decision Procedures (DPs) to be sent to peer agents, and combining the DPs received from peer
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agents with its local domain. Once agents have their own local merged CIG, they proceed to compute a plan with their

embedded local planner. These processes are detailed below.

5.2. Filtering of decision procedures

Each agent carries out a local planning episode (with the local HTN domain and current patient state and pref-
erences) aimed at marking the decomposition methods in every planning decision . Since patients’ qualitative
preferences are encoded in methods’ preconditions, the marking process indeed filters the eligible decomposition
methods according to the patient preferences, as well as other information included in the patient profile (see example
of decision procedures in Figure 6). Once the planning episode ends with success, the marked methods are broad-
casted to the peer agents [4]. The sending agent is aware of the alternative methods that have been discarded, and this
allows the process to backtrack and send the alternative decision procedures, in the case a concrete decision procedure

would not be conciliable with the CIGs of other agents.

5.3. Combination of decision procedures into a merged domain @

This process adds to the private local domain of each agent a renamed copy of the methods included in the decision
procedures filtered by the other agents . This labelling step is required in order to later identify the actions of the
conciliated plan that are applicable to each disease. Additionally, since the local planning process needs to know how
to manage the decision procedures of the other agents, a merged goal is created too, for representing the simultaneous
handling of the involved diseases @ This merged goal takes the form of parallel compound activities including the
local goals of each agent. For instance, suppose two different specialist agents A and B engaged in the resolution
of the common subgoal (Diagnosis 7p), where 7p denotes the patient. Their local compound activities in the
merged domain will look something like (DiagnosisA 7p) and (DiagnosisB ?7p).Therefore, the merged goal will
take the form [(DiagnosisA 7p) (DiagnosisB ?p)], that actually stands for “apply concurrently two decision
procedures, coming from different guidelines, to the same patient”. This merged goal is used as the starting point for

the HTN planning process, which is explained in the next section.

5.4. Plan synthesis: generation of a conciliated plan based on HTN Planning

Starting from the patient preferences and comorbidity information (represented in the initial state), along with
the merged domain and goal provided by the merging process, an HTN planning process is carried out in order to
generate a personalized conciliated plan |7]| 3. The planner follows a state-based forward search process, guided by
the knowledge of the decomposition methods that were filtered according to patient preferences (and other patient
contextual information). Higher level tasks are thereby decomposed in the order specified in the common goal. This
means that once a goal has been accomplished by decomposing a high-level task, the planner keeps track of the
resulting state after accomplishing that goal. Therefore, the search and reasoning process starts from, and accounts
for, this updated state in order to achieve subsequent goals. Thus, the accomplishment of a goal is always aware of
the resulting state after the application of a prior goal.

Moreover, besides preference interactions, the planning process also deals with the comorbidities of the patient
and is able to manage drug-drug, disease-drug, mutex, redundant intervention and multiple-support interactions. In
our approach, interactions are represented in HPDL in the public initial state (comorbidity information) as well as in

the predicates and basic actions of the domain, which are assumed to be common to all the local guidelines.

3More details about how this planner is used for generating single-disease treatment plans can be found in [12].
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(:durative-action admin-drug Administration of a drug to a patient
:parameters (?p - Patient ?d - Drug with a dosage
7ds - Dosage) The action is applicable if
:condition (recommended ?p ?d)) the drug has been recommended in a
:effects previous clinical decision

(and (prescribed 7p ?d) The drug is marked as prescribed
(when When

(and (prescribed ?p 7other ) another prescribed drug
(drugs-interact 7d 7other)) interacts with the current ome ...
Ed;ug—drug—interaction 7p 7dl 7d2))))) .. a drug-drug interaction is detected.
a

(®)

Figure 11: HPDL code for representing a drug administering action that detects if two drugs prescribed for the patient interact. The action makes
use of HPDL standard concept of conditional effect, representing that some effects of an action are only applied when some condition holds in the
planning state.

(:action isometric-exercise Doing isometric exercise may be
:parameters (?p - Patient discouraged or recommended
?support - [discouraged recommended])
:condition ()

:effect Effects:

(and (recommend isometric-exercise ?support) Record the recommendation

(when (and (recommend isometric-exercise 7other) When another one exists

(/= 7support 7other)) with a different support
(contradictory-support isometric-exercise))) Inform about this contradiction

)

Figure 12: HPDL code for representing an action that can arise multiple-support interaction.

Drug-drug interactions occur between two different drugs that must not be administered together. Disease-drug
interactions occur when a drug must not be administered to a patient suffering a concrete disease. Such interactions
can be represented with HPDL activities, as shown in Figure 11, and solved by following basic techniques used in
planning as state space search.

Mutex interactions may occur when several actions, prescribed by different CIGs, require the same non-shareable
resource and cannot be overlapped in time. HPDL can represent that a required resource must be available during the
execution of an activity (see action electrocardiogram of Figure 3 wherein the availability of the non-shareable re-
source 7t is checked in the action’s preconditions). The local HTN planner resolves a mutex interaction by scheduling
the interacting activity after the resource is released.

Redundant-intervention interactions occur when the same intervention is prescribed by different CIGs for the
same patient, but should be applied just once to the patient. In order to represent this kind of interactions, HPDL
allows a CIG designer to label some activities as potentially redundant. The local HTN planner detects an interaction
when, once a potentially redundant activity is selected to be added to the plan, it finds another instance of the same
activity in the plan. In this case the interaction is resolved by ignoring the action. The planner assumes that two
instantiated actions that are to be added to a plan are redundant if they are instances of the same action pattern, are
recommended by different guidelines and are labeled as potentially redundant.

Multiple-support interactions occur very often [1] when non-pharmacological redundant recommendations for
comorbid patients (e.g. “do isometric-exercise””) are recommended by different CIGs with contradictory support
values (e.g., recommended or discouraged). This kind of interactions are represented as redundant-intervention in-
teractions, but their effects allow to inform about contradictory recommendations (if any, see Figure 12). The local
HTN planner detects an interaction when a non-pharmacological recommendation is redundant and its support value
is contradictory with the same recommendation already included in the plan. The planner just solves the interaction by

informing about the contradictory situation (e.g. “the recommendations about isometric exercise are contradictory”).
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Preferences interactions occur when preferences cannot be met in the simultaneous application of two decision
procedures coming from different CIGs. The local HTN planner detects a preference interaction when the application
of an instantiated method (sent by another agent and merged into the local domain), activated by a precondition
representing a qualitative preference, fails due to (part of) its activities cannot be conciliated with the local plan. This
forces the local planner to backtrack and restart the conciliation process to request the sender agent an alternative
decision procedure that meets the patient preferences. The case study in Section 7 shows a detailed example.

Once all the arising interactions are resolved, the output of the local HTN planner is a patient-centered (accounts
for the patient preferences and clinical state) multi-disease (multiple CIGs are combined and served as a merged
HTN domain) conciliated (interactions among CIGs are resolved) treatment plan for a comorbid patient. Since each
Specialist agent gives priority to its own local decisions, and the patient preferences may be differently adapted by
the agents, each Specialist agent might find a different conciliated plan. Then, the conciliated local plans are sent to
the Initiator Agent | 8| so that the most adequate plan from the patient standpoint is selected. A multi-criteria decision
making process @ (see the next section), wherein patient quantitative preferences play a crucial role, is performed to
that end by the Initiator agent. Finally, the Initiator broadcasts the best conciliated local plan to every Specialist agent
, and each one adopts the best conciliated local plan before proceeding with the next subgoal of the Common goal.

5.5. Plan adoption: addressing temporal and dynamic aspects of the problem

Plan adoption is a process by which an agent receives a plan as input and integrates it in its internal state. Plan

adoption occurs in two situations:

e Within a planning episode when the Initiator sends the Specialist agents the best local conciliated plan that
solves the diagnosis subgoal. Agents must adopt this conciliated plan and synthesize a treatment plan in accor-
dance with the diagnosis plan.

o At the beginning of a planning episode when a Specialist agent opts for maintaining the current therapy of its
disease because no significant change is observed in the health conditions of a patient during a follow-up visit.

In this case the Initiator sends the rest of agents the plan they must adopt in their internal procedures.

The plan adoption of a Specialist agent involves a validation process that iterates on every action of the input
plan using standard planning techniques to test if every action in the plan is consistent with the current plan under
construction and the internal state of the planner. In the second case of plan adoption, Specialist agents do not build
a new plan "from scratch” but they consider and integrate the plan of the agent that opted for maintaining its current
therapy. Our MAP architecture is thereby able to cope with the dynamic aspects of the problem, accounting for
changes in the patient status along time and considering as well a temporal planning horizon that determines to what
extent the treatment plan should last.

Plan adoption as well as plan synthesis are addressed by a temporal planning process* that manages the temporal
constraints described in the tasks of the HTN domain at different levels of abstraction (See Figure 13). Constraints
are internally managed over a Simple Temporal Network (STN), a graph structure where nodes are time points bound
to a domain of values and edges are the posted temporal constraints. During plan generation, a plan is deployed over
the STN following a simple schema: (1) every task (either primitive or compound) is associated to a start and an end
time point; (2) temporal points of compound tasks bound the time points of its subtasks; (3) temporal constraints are

4We refer the reader to [35] and [12] for a detailed description and experimentation about the specific single-agent temporal planning process.
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(:task TreatAndFollowup-AH_S1 Task to schedule Treatment and FollowUp for Arterial Hypertension at
the stage S1

:parameters (7p - Patient ) Applied to the patient ?p
(:method adoptThePlan Method for the case of no changing conditions
:precondition (not (changed-conditions ?p AH)) If there are no significat changes in patient status
:tasks ((AdoptPlan 7p AH))) Adopt the current treatment plan represented in the patient profile.
(:method fromScratch Method for the case of changing conditions
:precondition (changed-conditions ?p AH) If there are significant changes in Arterial Hypertension
:tasks ( Generate a new treatment
[ (DecidePharmaTreat ?p 7d ClassAH1) Select an appropriate drug for this stage of AH
((AND (> ?start (start-this-visit) Temporal constraints for DoPharmaTreatAH: the treatment must start
(>= ?duration 3mths) (variable ?start) after the date of the current visit, and should last
(<= ?duration 6mths)) between 3 and 6 months
(DoPharmaTreatAH 7p ?7d)) Time points of all the subtasks of DoPharmaTreatAH are bound by the

start and end points of this task

((AND (>= 7?start (+ (start-this-visit) 3mths)) Constraints of this form provide flexibility for expressing the start time of

(<= ?start (+ (start-this-visit) 6mths))) a task execution. This constraint indicates that the next Follow-up
session should neither start earlier than 3 months nor later than 6
months.

(FollowUp_AH ?7p)) In this method, every task prior to FollowUp_AH must end before its start

point (planning horizon for the next visit) since they are totally ordered

Figure 13: An example of a task representing both, the conditions to carry out the adoption of a pre-existing treatment plan (method
adoptThePlan), and how to schedule a pharmacological treatment (method fromScratch), with a duration between 3 and 6 months. The
second method also schedules a follow-up session prescribed to occur between 3 and 6 months. The planning horizon is inferred by the temporal
planning process following the temporal constraint satisfaction process explained.

encoded as absolute constraints with respect to the absolute start point of the STN; and (4) temporal constraints define
the earliest and latest time of the start/end points associated to the tasks as described in Figure 13.

Whenever a compound or primitive task is added to the plan, all time points and constraints of the STN are posted,
propagated and validated automatically (temporal consistency is based on the well-known AC3 algorithm [41]). This
mechanism allows the planner to manage not only explicit temporal constraints derived from numerical constraints
described in the domain, but also implicit temporal constraints derived from qualitative order constraints expressed
in decomposition methods. The consistency of implicit temporal constraints involved in plan-subplan relations is
also granted, since the time points of subtasks of any task ¢ are bound and embraced by the time points of ¢; that
is, subtasks inherit the constraints of their higher-level task. This makes it possible to represent and reason about
temporal constraints derived from hierarchical decompositions.

In practice the temporal horizon of a plan is inferred by the planner by using this temporal HTN planning process.
As shown in Figure 13, the planning horizon is indirectly derived by means of a process that accounts for the temporal
constraints of the tasks. In this Figure, the high-level pharmacological treatment must end before the follow-up task
starts, which in turn is scheduled to start by [3,6] months after the date of the current visit. This forces the planner to
schedule all the actions prior to the follow-up session to occur before the follow-up task. Hence, the start time of the
follow-up tasks plays the role of the planning horizon (see the example in Section 7.3 for more details).

Consistency checking of temporal constraints is a key operation in our approach since the temporal planning
process is aimed to find legal executable treatment plans from a given input CIG. If an inconsistency is detected at
planning time in the STN during the decomposition of a given task ¢, the search process backtracks and tries to find

another valid decomposition for ¢, seeking alternative decomposition methods. The search process continues until the
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space of alternative decompositions is exhausted. In the case that a temporally inconsistent guideline is provided as
input, the temporal HTN model will also be inconsistent. No legal executable pathway can be found and, therefore,
the planner will return a FAIL.

When the Common goal contains pending subgoals , the process iterates back to . Otherwise, the best
aggregated plan is finally obtained and sent back to the physician and patient to support their final decision.

6. Selection of a conciliated plan accounting for quantitative preferences.

The conciliated plans or treatments proposed by each Specialist agent adhere to merged clinical guidelines and
fulfill patient qualitative preferences as far as possible but may differ in characteristics like medication administration
complexity, treatment duration or number of medical visits. The Initiator agent upon reception of the proposed
conciliated plans sent by specialists, carries out a Multi-Criteria Decision Making (MCDM) process [42] that helps
select the most suitable conciliated plan according to patient (resp. institution’s) quantitative preferences”.

The MCDM process scores every plan j received by the Specialist agent through a plan evaluation function, p(j),
that takes into account the patient quantitative preferences (see Table 1). This process requires calculating the value

of the five preferences (plan features) in plan j and the weight or priority of each preference to the patient.

Values of the plan features. The values of the features in plan j are calculated as follows:

1. times_per_day quantifies the complexity of the medication regimen by summing the number of different
dosage schedules weighted for dosing frequency [10]. For instance, if the treatment in j consists of m drugs
taken twice per day and n drugs taken once per day, this results in a complexity score of 3 (2+1). A patient will

most likely opt for a treatment with few drugs and few different dosage schedules.

2. pills_per_day complements times_per_day to account for the complexity of the treatment administration.

In the above example, the value of this feature is m + n.
3. number_of medical_visits is calculated by counting the actions of j that represent a medical visit.

4. medical visits_duration is calculated by summing up the value of the parameter :duration of all the

medical visit actions
5. treatment_duration is the plan duration

Since features are measured in different units, the values of the five features in plan j are normalized with respect
to the values of the features in the rest of plans. Given a set of plans P, 1 < j < P, the normalized value of feature i in
1P|
plan j, n;;, is calculated by considering the value of the same feature 7 in every plan of P: n;; = v;;/ 3, vi.
k=1
Weights of the patient preferences. As explained in Section 4, the user qualitatively scores the five plan features
in Table 1. Scores are then translated into a numerical rating scale. A numerical value of 1 is assigned to the lowest
ranked criterion (the least annoying) and for each qualitative score up in the ranking, we increase the numerical value

by one. For each feature 1 < i < 5, the numerical value assigned to i (s;) is divided by the sum of the numerical values

5
assigned by the patient to the five plan features, thus yielding a normalized priority value for each i: pr; = s;/ Y sk.

5The MCDM process is equivalent for handling institution’s preferences. Details on this type of preferences are given later
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5
Finally, the formula that returns how much the patient dislikes plan jis: p(j) = >, pri * n;j.
i=1

The MCDM process can be easily extended to account for preferences of other actors involved in the care process.
Medical institution preferences, for instance, are especially valuable by clinicians so as to promote medical decision
making while considering treatment costs and optimization of resources. In this regard, quantitative preferences that
reflect institution preferences can also be included with a new evaluation function, m(j), that considers the costs
incurred along the treatment. Table 2 shows the five quantitative institution preferences included in the evaluation of
the treatment cost. The evaluation process is equivalent to the one described for patient preferences and the value of
m(j) is calculated with the same formula that computes p(j).

In order to aggregate both functions, the final score for a treatment is computed as a weighted average S (j) = w), *
p(j) +wp, *m(j), where the weights ponder the relative importance of each category of preferences. A deeper analysis
of the patient and institution preferences and the utility functions might lead to discover nonlinear relationships, thus
allowing for a wider range of possible dependencies.

In any case, once the plans are scored, the Initiator agent selects the plan with the lowest score S(j). This
automated selection process could be replaced with a mixed-initiative process where both clinician and patient interact.
Subsequently, the plan is sent to and adopted by every Specialist agent in order to proceed with the rest of activities

of the common goal.

Criteria Description

drug_cost The cost of the drug administration in the patient treatment.

laboratory _test_cost The cost of blood tests, urine tests, body tissues tests,...

RX_study_cost The cost of regular X-rays, MRI or CT scans.

medical_visit_cost The cost of the medical visits to the specialist.

hospitalization_cost | The cost per impatient per day.

Table 2: Example of medical institution’s quantitative preferences. The qualitative scores are filled out by a clinician and describe how relevant is a
criterion with respect to the cost of a treatment {nothing, indifferent, medium, moderate, much, very much }. They are later mapped into a numeric
value (within parentheses) that is translated into a normalized priority value.

7. Experimental validation

In this section, we present a case study to analyze the entire life cycle of the architecture while illustrating a
comprehensive view of the concepts and procedures exposed in the prior sections. Section 7.1 shows the generation
of the plans at the Diagnosis stage and section 7.2 explains the solving process of the Treatment stage. Following
the case study, Section 7.3 presents four validation scenarios that exhibit the health conditions of a patient at different
times as well as the progressive adaptation of the conciliated treatment plan for the patient. Finally, section 7.4
describes the insight of the clinicians about the behaviour of the tool.

The case study is based on an architecture configured with two Specialist agents (labeled A for AH and D for
DMT?2) and one Initiator agent. The information required is summarized in Table 3. The HPDL representation
shown in the table is a simplification devoted to illustrate only the main issues described so far. In the remainder
of this section, we will illustrate that during the accomplishment of the Diagnosis subgoal, only mutex interactions
and redundant intervention interactions arise. Then, during the accomplishment of the Treatment subgoal, drug-drug,

drug-disease and multiple-support interactions arise. Qualitative preferences interactions arise during the accomplish-
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Patient profile

This information is represented as HPDL conditions, as shown in Section 3 Figure 5.

The case is represented by a 65-year-old female named Jane, who has a
Systolic Blood Pressure (SBP) of 7145, a comorbid patient with Diabetes
Mellitus Type II (DMT?2) and Arterial Hypertension (AH).

Quantitative preferences

Patient preferences are shown in Table 1, Section 6. Medical institution’s preferences are
shown in Table 2, Section 6.

In a initial step, Jane fills out a form to capture her quantitative preferences.
The clinician fills a similar form to capture medical institution’s preferences.

Qualitative preferences

(medication-time Jane breakfast)

Jane prefers to take the medication at breakfast time. The value of this
qualitative preference is provided by the clinician after asking the patient
for her preference about taking medications.

Comorbitiy information

(drug-is-for-disease GLI DMT2) (drug-is-for-disease CHL AH)
(drug-is-for-disease GLY DMT2) (drug-is-for-disease TRA-VHC AH)
(drug-is-for-disease ACA DMT2) (drug-is-for-disease TEL-AML AH)

Recommended drugs for each disease. GLIpizide, GLYburide and ACAr-
bose are drugs for DMT2 and CHLorthalidone, TELmisartan + AMLodip-
ine and TRAndolapril + VerapamilHydroChloride are drugs for AH. These
drugs have been represented after consulting the corresponding CPGs.
These facts are needed to select which drugs can be prescribed or to de-
cide alternative drugs to resolve drug interactions.

(drug-admin-time GLI breakfast) (drug-admin-time GLY breakfast)
(drug-admin-time CHL breakfast) (drug-admin-time TEL-AML breakfast)
(drug-admin-time TRA-VHC breakfast) (drug-admin-time ACA each-meal)

Drugs’ administration time is also provided, in order for the agents to
both adapt pharmacological treatments to patient qualitative preference, and
detect and resolve qualitative preferences interactions. This information is
known by clinicians either by consulting the administration mode of drugs
recommended by a CPG, or by their own clinical practice experience

(drug-interacts-with-drug TRA-VHC GLI)
(drug-interacts-with-drug TRA-VHC GLY)
(drug-interacts-with-disease CHL DMT2)

Drug-drug or drug-disease interactions are represented with these facts,
meaning that Trandolapril plus VerapamilHydroChloride interacts with both
GLIpizide and Glyburide, while CHLorthalidone interacts with the disease
DMT?2. This information will be used to resolve drug-drug and disease-drug
interactions as will be shown later in this section

Resources

(available rooml)

This fact represents a non-shareable room for some clinical test. In order
to evaluate quantitative institutional preferences, information about costs
of actions related to diagnosis procedures have to be provided. We have
assumed integer monetary costs for the following actions related to institu-
tional criteria: laboratory_test_cost (i.e., blood-test cost: 4, urine-analysis
cost: 3, fasting-plasma-glucose cost: 4.); radiographic study_cost (i.e.,
electrocardiogram cost: 5); and medical visits_cost (i.e., measure-blood-
pressure = measure-height-weight = measure-waist-circumf: 0, check-
clinical-history cost: 1, check-organ-damage cost: 1, ocular-tests cost: 1).

Common Goal

((Diagnosis Jane) (Treatment Jane))

The conciliated plan should be built in two sequential steps: the first sub-
goal represents the step at which activities required for the patient diagnosis
need to be included in the diagnosis plan and the second one represents
that the conciliated plan should also embody the pharmacological and non-
pharmacological treatment activities.

CIGs represented as HTN

domains

The CIGs represented for this case are built on two real CPGs for Diabetes Mellitus Type 11
(DMT?2) [43] and Arterial Hypertension (AH) [44].

CIGs’ representation has been carried out in collaboration with a team of
three clinicians, two internists and one pediatric oncologist with several
years of expertise, at the Hospital San Agustin of Linares (Spain), who also
participated in the validation of the proof of concept (described at the end
of this section).

Table 3: Required information to carry out the case study. Temporal facts about patient conditions and current therapy are addressed in examples
of Section 7.3.
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(:task DiagnosisAH :parameters (?p - Patient)

(:task DiagnosisDMT2 :parameters (?p - Patient) (:method diagAH :precondition ()

(:method diagDMT2 :precondition () :tasks( (measure-blood-pressure ?7p)

:tasks((blood-test 7p) (blood-test 7p)

(urine-analysis 7p)
(fasting-plasma-glucose 7p)
(measure-height-weight 7p) (check-clinical-history 7p)
(measure-waist-circumf ?p) (measure-height-weight ?7p)
(measure-blood-pressure 7p) (measure-waist-circumf ?p)
(ocular-tests ?p)))) (check-organ-damage ?p) ))

(urine-analysis 7?p)
(electrocardiogram ?p)

Figure 14: Decision Procedures filtered from local CIGs for the subgoal (Diagnosis Jane) and for the patient Jane: DMT?2 (left) and AH (right). A
suffix labeling the disease has been added to the names of compound tasks and decomposition methods.

ment of the Treatment subgoal too, and we will show that the cause of this interaction is that a qualitative preference

cannot be fulfilled by one of the agents, which asks for alternative decision procedures to the other agent.

7.1. First subgoal: Diagnosis

Each Specialist agent selects the set of DPs from its local CIG that are suitable for this subgoal and Jane’s qual-
itative preferences (see Section 5.2). In this case, the Decision Procedures of agents A and D are both composed of
a single method of their respective CIGs (e.g., methods diagDMT2 and diagAH, respectively, in Figure 14). Each
Specialist agent sends its DPs to the other agent. Then, each Specialist agent combines the received DPs with its local
CIG, proposing a merged domain for Diagnosis and a merged goal that represents the concurrent application of its
own Diagnosis method with the received DPs (as explained in Section 5.3).

Note that many actions in Figure 14 are redundant, and the actions electrocardiogram and ocular-tests (both
in different CIGs) make use of the non-sharable resource rooml (as explained in Section 3, Figure 3). With this
input information, each agent carries out the plan synthesis, coming up with a conciliated plan (see Figure 15). The
conciliated plans of agents A and D are different because each agent gives priority to its local CIG when adding actions
to the plan. That is to say, agent D first adds to the plan the actions of its own local method diagnosisDMT?2 (Figure
14), and then adds the actions of the DPs coming from agent A. While adding these actions, agent D tries to resolve
redundant-intervention and mutex interactions (Section 5.4) with the actions recommended by A , but not all can be
resolved (except the mutex) due to the ordering constraints imposed by the DP of agent A (thus, it simply appends
these actions to its conciliated plan). On the contrary, agent A is able to synthesize a conciliated plan since it manages

the subgoals of its local merged goal in a different order.

Global Plan agent D | Global Plan agent A
Criteria (i) Dri ViD nip pri*nip | via niA Dri * nia
laboratory_test_cost 0.33 | 18 0.62 0.2 11 0.38 0.13
radiographic_study_cost | 0.33 5 0.5 0.17 5 0.5 0.17
medical_visit_cost 033 | 3 0.5 0.17 3 0.5 0.17
i pPri * nip 0.54 23:1])1’,- * NiA 0.47
i=1 i=

Table 4: Medical institution criteria for Diagnosis stage

Once the conciliated plans are synthesized, agents send them to the Initiator, and the MCDM process is applied in

order to evaluate and select the best plan (see Section 6) according to patient and institutions quantitative preferences
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Figure 15: Conciliated Plans for the Diagnosis stage, synthesized by the local HTN planner of each agent. The conciliated plans contain information
about the merged and redundant actions.

and (see Tables 1 and 2 in Section 6). In the Diagnosis stage of this case study, the only criterion that has an impact
on the patient preferences is number_of-medical visits. Because of that, the normalized values of the two conciliated
plans are calculated by using only the number_of_medical visits. The conciliated plan of agent D is composed of
14 medical visits (Figure 15, top), and the one of agent A is composed of 11 medical visits (Figure 15, down). If
we normalize these values we get the values p(Conciliated_Plan_D) = 0.56 and p(Conciliated_Plan_A) = 0.44.
Medical institution’s criteria and values are shown in Table 4, assuming for this case study that only three criteria
are considered and all with the same priority of 0.33. Finally, as explained in Section 6 the final value of the global
plans taking into account quantitative preferences of both patient and medical institution is calculated as a weighted
average: s(Global_Plan_D) = 0.7 + 0.56 + 0.3 * 0.54 = 0.55, and s(Global_Plan_A) = 0.7 % 0.44 + 0.3 % 0.47 = 0.45.
In this case we set the weight of the patient preferences to 0.7 and the medical institution’s preferences to 0.3, thus
giving more importance to the patient opinion.

Therefore, the conciliated plan obtained by agent A is selected because of its lower score, and each agent adopts

this plan before proceeding with the next subgoal.

7.2. Second goal: Treatment

The next (and last) subgoal of the common goal is (Treatment Jane). The Initiator selects this subgoal and
sends it to the Specialist agents. Agents filter its set of Decision Procedures and keep the methods for administering
the pharmacological treatment at breakfast time, which is Jane’s personal preference. Agents send the filtered DPs to
each other and try to conciliate them with their own through their local HTN planner.

Table 5 shows that agent D is able to find a conciliated plan in this step, but agent A is not. On the one hand,
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Specialist | Non Pharmacological DMT2 Pharma | AH Pharma
Agent Treatment Treatment Treatment

D intake-alcohol(D)(Cons) GLI TEL+AML
eat-fruit(R)(Cons) at breakfast at breakfast
physical-exercise(R)(Cons) (1 per day) (1 per day)
isometric-exercise(R)(Contra) during 10 days during 10 days
isometric-exercise(D)(Contra)
glucose-monitoring(R)(NMS)
smoke(D)(NMS)
intake-sodium(D)(NMS)
weight-reduction(R)(NMS)

A First attempt to conciliate (preference interaction detected)

no plan found
A Conciliated plan after asking for alternative DPs

intake-alcohol(D)(Cons) ACA TRA+VHC
eat-fruit(R)(Cons) once per meal at breakfast
physical-exercise(R)(Cons) (3 per day) (1 per day)

isometric-exercise(R)(Contra)

during 10 days

during 10 days

isometric-exercise(D)(Contra)
glucose-monitoring(R)(NMS)
smoke(D)(NMS)
intake-sodium(D)(NMS)
weight-reduction(R)(NMS)

Table 5: Conciliated Plans for the subgoal (Treatment Jane). Agent A needs to backtrack and ask for alternative methods to conciliate its
plan. The format for recommendations is recommendation-name(local-support)(aggregated-support). The aggregated support value is set in the
aggregated-support metatag of the actions. Abbreviations: R = Recommended; D = Discouraged; Cons = Consistent; Contra = Contradictory;
NMS = No Multiple Support.

regarding the non-pharmacological part of the treatment, agent D is able to detect and manage all of the multiple-
support interactions (Section 5.4) within the non-pharmacological treatments, so the aggregated support is reflected
in the conciliated plan (for instance, the action isometric-exercise is found in both plans with local values of support
recommended and discouraged, so it is labeled with the contradictory aggregated support value).

Regarding the pharmacological treatment, it is worth analyzing the result from the each agent standpoint:

e Agent D’s standpoint: agent D first adds the actions and constraints from its own CIG to the conciliated plan.
The drugs are selected from the alternative instantiations of predicate (drug-is-for-disease ?drug DMT2). As
a result of this process, GLIpizide is the drug selected for treating DMT?2 since it is the first drug declared in
the initial state. This is a selection criterion that has been illustrated for the sake of simplicity in this example.
Indeed, HPDL has the capability of using more complex expressions in actions and methods preconditions in
order to use other selection criteria, for example using heuristic/utility values to select the most appropriate
drug for the patient. The plan built so far is a sequence of instantiated drug-administering actions, each one

represented as shown in Figure 11, Section5.4.

Afterwards, the DPs received from agent A are processed, and Agent D tries to determine a non-interacting
drug for Arterial Hypertension, using those DPs. According to initial state drug interaction facts, the only
option is to prescribe TEL-AML as a drug to treat Arterial Hypertension. This way, Agent D is capable of ob-
taining a conciliated plan that incorporates a pharmacological treatment for the disease AH based on TELmis-

artan+ AMLodipine. because there is no interaction among this combination of drugs and GLIzipide.

e Agent A’s standpoint: agent A does not find a conciliated plan because of a preference interaction. It first
adds the actions and constraints from its local CIG to its conciliated plan and, according to its priorities, the
pharmacological treatment is, in a first attempt, based on TRA-VHC. Afterwards, the DPs coming from agent
D are processed, but no pharmacological treatment can be found because all the drugs for DMT2 (namely
Glipizide and Glyburide) that can be prescribed for breakfast interact with TRA-VHC. At this point, agent A
asks agent D for another alternative set of DPs to deploy a pharmacological treatment for DMT2 conciliable
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with its local CIG (for this to be possible, D’s local CIG should have been appropriately designed with such an
alternative). In this case, agent A is able to conciliate the new set of DPs coming from D by using Acarbose (to

be taken by the patient not at breakfast but at each meal) for treating DMT?2.

Table 5 shows the conciliated plan, wherein patient personal preferences are met as far as possible. Note also
that the conciliated plans of both agents are substantially different with respect to pharmacological treatment,
but both valid from a clinical standpoint. For this reason the MCDM process is needed to resolve this equipoise
situation. Finally, it is worth mentioning that in the non-pharmacological treatment shown in Table 5 there are
two actions that recommend isometric-exercise with contradictory support. The planner is capable of analyzing
and simplifying redundant recommendation when they are not contradictory (as explained in Section 5, but it has
not enough knowledge (i.e. we have not encoded knowledge in the CIG) to make an autonomous decision about
which action should be recommended when two different guidelines make a contradictory recommendation.
However, the planner is capable of detecting such situation and at present, the only proposed solution is to

inform the clinician about this contradiction.

Considering the application of the MCDM process to select among the proposed conciliated plans, the patient
quantitative preferences are influenced by the times_per_day, pills_per_day and treatment_duration criteria. However,
in this case institution’s preferences are not used, since none of the institutional criteria is applicable to evaluate Jane’s
conciliated treatment plan. Table 6 shows the priorities obtained from the form filled by Jane giving importance to
each criterion, along with the value of each criterion in both plans as well as their normalized values. The value of
Jane’s quantitative preferences for both conciliated plans are obtained as explained in Section 7. Consequently, agent
D’s proposal is preferable over A’s proposal due to its lower score. Finally, as described in Section 5 (points 8 and
12), the system returns agent D’s proposal as the best plan and, since there are no more pending goals, the process

terminates.

Global Plan agent D | Global Plan agent A
Criteria (i) pri ViD np prixnip | via nia PFi % nia
0.2 0.1 4 0.8 0.32
0.33 0.1 4 10.666 | 0.22
0.5 009 | 10| 0S5 0.09

3
pri * njp 0.29 Z pPri * nja 0.63
i=1

times_per_day 0.5
pills_per_day 0.33

treatment_duration | 0.17

Mo S| —

1

Table 6: Patient quantitative preferences to evaluate criteria for the Treatment stage. Priorities’s values (pr[i]) are obtained after normalizing
the qualitative values provided by the patient for each criterion. Moderate for times_per_day, Medium for pills_per_day and Indifferent for
treatment_duration.

Note that this is a step-wise process in which the conciliated plan is incrementally generated and synchronized by
the Initiator agent. The high-level steps in the common goal of this case study are just an example, and should not be
considered as the only strategy to come up with a conciliated plan. Indeed, it is possible to differently customize the

common goal used as guide towards conciliation accordingly to the patient case.

7.3. Validation scenarios

We implemented a proof of concept of the architecture and life cycle described in Section 5. Our aim was to

validate the technical feasibility of the described techniques, highlighting that MAP is an enabling technology to
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Scenario (7)

Description (7)

TEMPORAL FACTS ABOUT PATIENT PROFILE(?)

Health Conditions at ¢

Current therapy followed by the patient prescribed at scenario ¢-1

(A1C Jane 7.0)

(26/04/2018)
Eventual  visit
because of el-

tions. Curent therapy metformin
500 twice a day. Diabetes Revi-
sion at 28/06/2018. Detected El-

(A1C Jane 7.0)
(SBP Jane 131)
(DBP Jane 82)
(CVDR Jane 0.2)

Scenariol A 46 years old woman with A1C (SBP Jane 120) None (New patient)

(30/03/2018) =7, SBP = 120, DBP = 80, CV- (DBP Jane 80)

First visit DRisk = 0.1 (CVDR Jane 0.1)

Scenario2 Patient keeps Diabetes condi- (Treatment Metformin 500 oral solution twice_a.day)

(start_Treatment Metformin "30/03/2018 09:00:00")
(duration_Treatment Metformin 2160hrs)
(FollowUp Diabetes)

FollowUp  for
Diabetes and for
Hypertension

Diabetes therapy is Metformin
500 twice a day but at this Fol-
lowUp, after 3months, Diabetes
conditions change from AIC= 7
to A1C =8.0.

(DBP Jane 82)
(CVDR Jane 0.2)

evated blood evated BP (131/82). CVDRisk = (start_FollowUp Diabetes "28/06/2018 09:00:00")
pressure 02 (duration_FollowUp Diabetes 1hr)
Hypertension current therapy
. is LiSinOPfil 10 once a day. <same Diabetes current therapy than Scenario2>
Scenario3 HyPertensmn copdmons re- (A1C Jane 8.0) (Treatment Lisinopril 10 oral tablet once_a_day)
(28/06/2008) mains the same since last visit (SBP Jane 131) (start_Treatment Lisinopril "26/04/2018 09:00:00")
Scheduled (26/04/2018).

(duration_Treatment Lisinopril 720hrs)

(FollowUp HyperTension)

(start_FollowUp HyperTension "28/06/2018 09:00:00")
(duration_FollowUp HyperTenmsion 1hr)

Scenario4
(30/09/2018)
Scheduled
FollowUp  for

Hypertension current therapy is
Lisinopril 10 once a day. Hyper-
tension conditions have evolved
to Hypertension Stage2.

Diabetes therapy is Metformin
500 twice a day + Glyburide 1.25

(A1C Jane 7.0)
(SBP Jane 145)
(DBP Jane 92)

<same Hypertension current therapy than Scenario3,
though revision date changes>

(FollowUp HyperTension)

(start_FollowUp HyperTension "30/09/2018 09:00:00")
(duration_FollowUp HyperTenmsion 1hr)

(Treatment Metformin 500 oral solution twice_a_day)
(start_Treatment Metformin "28/06/2018 09:00:00")

Diabetes and
Hypertension

(CVDR Jane 0.2) (duration_Treatment Metformin 2160.hrs)

(Treatment_second Glyburide 1.25 oral tablet three_a_day)
(start_Treatment_second Glyburide "28/06/2018 09:00:00")
(duration_Treatment_second 2160hrs)

three a day. At this FollowUp
Diabetes conditions change from
AIC =8.0to AIC=7.0.

Figure 16: A summary of the four scenarios set to validate the architecture. Column Scenario shows several visits of the patient at different times
(from the earliest to the latest date). Column Description shows a commonly written text by a clinician to describe the current status of the patient
(ACI stands for glycated hemoglobin value, SBP for Systolic Blood Pressure, DBP for Diastolic Blood Pressure, and CVDRisk for Cardiovascular
Disease risk). Column Health Conditions shows the HPDL temporally annotated facts that represents the health conditions when the patient comes
to consultation. The last column contains the temporal facts that represent the current therapy the patient is taking when (s)he comes to the visit.

conciliate CPGs in comorbidity settings accounting for patients preferences. Additionally, our experimentation is
designed to show that our architecture is capable of facing with dynamic situations in multiple scenarios, coping with
the evolution of a patient whose health conditions change during the application of a treatment which, in turn, has
to be modified and adapted to the new patient health conditions. We conducted an experimentation with the two
specialist agents described in previous section. The DMT2 guideline (Agent D) is represented as an HTN domain
with 42 primitive tasks and 13 compound tasks, and the AH guideline (Agent A) includes 42 primitive tasks and 22
compound tasks.

Figure 16 depicts multiple scenarios, each one representing the health conditions for one same patient at different
time points. Our purpose is to show that the architecture is able to tackle different patient states along time (as a
consequence of the patient response to the treatment over time). For the sake of clarity, we intentionally obviate
the diagnosis subgoal in this validation and focus instead exclusively on treatment plans. For each scenario, the
second column textually describes the findings of a clinician for the given patient (anamnesis). The patient profile is
represented by the health conditions and the temporal information that embodies the currently applied therapy to the
patient. It is worth observing that since health conditions are temporally annotated, the architecture is able to detect
whether the patient health conditions have changed from one scenario to another. Moreover, temporal information
about the current therapy which was prescribed in the previous medical consultation is represented as well. Concretely,

we show the following temporal information for each scenario:
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[scenario [ Month

I 3 4I 5| 6| 7I 8 9 10 11 12
[N Health state at Datel » PE"_""";‘E » Medication1
(Date1) PISOCE H 1
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4 of 10| 1 12
Datel Date2 Date3 Date4
Medicationl Metformin 500 twice a day (breakfast&dinner) _Treatment for Diabetes
Medication2 Lisinopril 10 once a day (breakfast) Treatment for Hypertension
Medication3 Metformin500 twice a day +Glyburide1.25 once a day (every meal) ] Diabetes Revision
Medication4 Metformin 500 twice a day (breakfast&dinner) I Hypertension Revision
Medications Trandolapril4 +Atenolol100 once a day (breakfast) H Revision for both

Figure 17: Conciliated plans generated for each scenario. A plan for Scenario[i] is generated in a planning episode at Date[i], considering the
patient health conditions at Date[i] and the treatment plan generated at Date[i-1], i = 2..4.

e prescribed medication: for example, the fact (Treatment Metformin 500 oral solution twice_a_day) means the
patient is taking Metformin 500, oral mode, format as solution and frequency twice a day when the patient

comes to medical consultation; this therapy was prescribed in the previous visit

e duration of the treatment: for example, the fact (duration_Treatment Metformin 2160hrs) represents that the

treatment prescribed in the last visit has a duration of 3 months (2160 hours)

o start time of the revision of a prescribed treatment: for example, the fact (start_FollowUp HyperTension ”28/06/2018
09:00:00”) represents that a Hypertension follow-up scheduled for 28/06/2018 09:00:00” was set in the pre-

vious medical visit

In summary, if at time # the patient is under a treatment which was prescribed at the previous scenario ¢ — 1, this is
represented in the fourth column of the scenario at time ¢ in Figure 16. Consequently, the prescribed therapy is taken
into account when generating the conciliated treatment plan for the health conditions of the patient at time ¢.

The multiple scenario setting is intended to show the flexibility of the architecture to cope with situations wherein
the conditions of each disease progress separately and thereby comorbidity conditions are not needed to be synchro-
nized all at once. Concretely, Scenario I represents the state of a patient at a given time with only one disease
(Diabetes). Scenario 2 represents a new state (at a later time) of the same patient, who becomes a comorbid patient
because of elevated levels of blood pressure (Diabetes and Hypertension). Scenario 3 represents a new state of the
same patient in which only the conditions of one disease (Diabetes) have changed. Scenario 4 represents a later state
of the same patient in which the health conditions of both diseases have changed concurrently.

Figure 17 shows for each scenario several conciliated treatment plans at different planning episodes generated by

the architecture. The chronological evolution of the different scenarios is as follows®:

61t is important to note that this is a simulation, and for the sake of simplicity we have represented abrupt changes in medication that might
not correspond to real practice. We are aware that in real clinical cases the cessation or exchange of medication is not as abrupt as shown in this
chronological sequence.
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e Scenariol: The conciliated treatment consists of medication for only one disease (Diabetes) since the patient
has not yet been diagnosed with AH. The Diabetes Guideline recommends, given the health conditions of the
patient in this scenrio (A1C = 7), to prescribe Metformin during three months and a follow-up visit for revising

the patient’s diabetes conditions.

e Scenario2: The conciliated treatment generated for this case is an adaptation of the treatment generated in Sce-
nariol. The adapted treatment incorporates new medication for AH (Lisinopril) given that the Hypertension
conditions in this scenario (SBP=131/DBP=82) represent an elevated blood pressure (BP). The diabetes treat-
ment prescribed in Scenariol remains unaltered because the patient’s diabetes conditions have not changed.
Therefore, following the recommendations of the Hypertension Guideline, the treatment plan for Diabetes pre-
scribed in Scenariol is modified by adding one task that represents the prescription of Lisinopril during two
months and another task that schedules a follow-up visit for 28/06/2018 (Date3 in Figure 17) to check patient’s
AH conditions. Note that, in this case, both revisions of Diabetes and AH are scheduled for the same date. That

is, the planner adapts the follow-up date of AH to the date of Diabetes.

e Scenario3 is a symmetric case to Scenario2, wherein Diabetes conditions have changed and a new treatment
must be generated for this disease but the AH treatment remains the same, except that a new follow-up date
is scheduled for AH. The diabetes Guideline prescribes a combined therapy of two drugs (Metformin500+
Glyburide1.25) when the glycated hemoglobin (A1C) is beyond 7.5 during three months. Just as in Scenario2
the new treatment plan also includes a follow-up session of both Diabetes and Hypertension for 30/09/2018
(Date4 in Figure 17).

e Scenario4 assumes that three months have passed since the last visit and that the patient health conditions
have changed for both diseases. In this case the conditions of Diabetes have improved and those of AH have
worsened. In both cases, it is necessary to generate a new conciliated plan that incorporates treatments to
respond to the new patient condition. Since the Diabetes conditions have improved, the medication for Diabetes
is again the same as the one prescribed in Scenariol. However, the treatment for AH is intensified with a
combination of two drugs (Trandolapril4+Atenolol100). In addition, a follow-up session of AH is scheduled
for the following month, and another one for Diabetes within three-month time.

As it can be seen, our approach is able to cope with several cases in which the status of a patient evolves over
time, and the therapy is decided on the basis of such evolution; that is, the therapy is determined at the different
patient consultation dates, choosing each time a treatment adapted to the patient response to the previous treatment.
Moreover, the treatment is scheduled according to the current date of the visit as well as to the recommendations of
each clinical guideline. This experimentation shows that the planning activity is fully adapted to the requirements of
the guidelines, and that the planning horizon (i.e. the point where the planning activity reaches to) depends on the
frequency of visits (follow-up sessions) recommended by the guidelines.

In Scenario2 both agents are in charge of elaborating a treatment for the patient (same subgoal of the Common
goal) but only the Hypertension agent calculates a plan since the Diabetes agent detects that patient’s Diabetes con-
ditions are unchanged (as explained in Section 5.5). This highlights that although the two agents are dealing with the
same treatment subgoal in each scenario, each agent interprets the goal differently and accomplishes it accordingly to
its own knowledge (encoded in the domain) and the temporal information encoded in the initial state.

The different plans are generated according to the clinical guidelines, but also taking into account the patient

preferences, as described above. Except for the first scenario, in which only one agent participates, the application of
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PROFILE AND PREFERENCES CONCILIATED PLAN

Scenario Ag| Renal Side pref. Intake pref. Medication Dosage Frequency Intake Duration Rev. Date
(3%782?;(;)118) D | No | hypoovergi | breakfast Metformin 500 twice a day breakfast-dinner 3months | 28/06/2018
Scenl-Whatlf-1 D | Yes hypo over gi breakfast Miglitol 25 every meal breakfast-lunch-dinner 3 months 28/06/2018
Scenl-WhatIf-2 | D | Yes gi over hypo breakfast Glyburide 1.25 once a day breakfast 3 months 28/06/2018

The Diabetes Guideline recommends Metformin as first medication unless it is contraindicated because adverse effects when the patient suffers kidney disease. In this
case, Alpha Glucosidase Inhibitors (as Miglitol) are recommended. If additionally the patient prefers to avoid gastro-intestinal risks, a drug of class Sulfonylureas is
recommended (Glyburide). Intake time preferences cannot be fulfilled in plans 1 and 2, since the only drug administration for which the daily frequency is once a day
(an the intake preference for breakfast can be fulfilled) is Glyburide, other drugs cannot be administered as preferred by the patient.

D | No hypo over gi breakfast Metformin 500 twice a day breakfast-dinner 3 months 28/06/2018

Scenario2 Lisinopril 10 once a day breakfast 2 months 28/06/2018
(26/04/2018) A | No hypo over gi breakfast Metformin 500 twice a day breakfast-dinner 3 months 28/06/2018
Lisinopril 10 once a day breakfast 1 month 29/05/2018

D | Yes hypo over gi breakfast Miglitol 25 three a day every meal 3 months 28/07/2018

Scenario2 Chlortalidone 25 once a day breakfast 1 month 29/05/2018
Whatlf A | Yes hypo over gi breakfast Miglitol 25 three a day every meal 3 months 28/07/2018
Chlortalidone 25 once a day breakfast 1 month 29/05/2018

At Scenario2, Agent D proposes to continue with Diabetes therapy, a duration of 2 months for the treatment of Hypertension, and schedules the revision of Hypertension
at the same date that revision of Diabetes. This is due to the resolution of a redundant intervention, as one of the many illustrated in Section 7.1. Agent A gives priority
to the Hypertension Guideline that recommends a follow-up session after one month.

At Scenario2-Whatlf, none agent recommend to continue with the current Diabetes treatment, since the additional qualitative preference “renal” (i.e. the patient prefers
avoid the risk of kidney adverse effects) force to choose different drugs. Both agents recommend the same treatments because patient preferences hardly limit the
possible choices of treatments.

Table 7: Several plans generated for different combinations of qualitative preferences.

the life cycle of the architecture follows the same process as in the example presented in Section 7. Particularly, two
plans are generated, each one by a different agent, and are evaluated according to the quantitative preferences. Clinical
guidelines actually offer a large number of alternatives for medication and the main knowledge source to decide the
medication to prescribe, besides the clinical knowledge which is the top-priority element, are the patient qualitative
preferences.

Table 7 shows the qualitative preferences of the conciliated plans of Scenariol and Scenario2 of Figure 17 as
well as the output of the architecture in case that other different preferences of the patient were considered (What-if
episodes). Clinicians have positively evaluated the display of alternative episodes since they are very useful to inform
the patients about multiple plans with different medication prescriptions. Thereby, patients can make a better informed
decision considering their own preferences.

In the What-if planning episodes of Table 7, the profile exhibits the patient has renal problems. This information is
decisive for the clinician to determine the most adequate drug family according to the clinical guideline. Additionally,
column [Side pref] shows qualitative preferences related to medication side effects (as the ones explained in Section
4.1 as Side effects vs. Side effects). For example, [hypo over gi] stands for “’the patient prefers a medication that
reduces risk of hypoglycemia over another that has less risk of gastro-intestinal problems”, or viceversa, [gi over
hypo]. On the other hand, qualitative preferences related to administration attributes (as those explained in Section 4.1
as Oral medication vs. Injectable medication, or Once a day vs. Twice a day vs. Each meal), are shown in column
[Intake pref.], which only shows the preferred time to take drugs.

Plans highlighted in bold face are the final conciliated plans of Scenariol and Scenario2 of Figure 17 that result
from the evaluation of the patient quantitative preferences. The What-if episodes show conciliated plans generated by
each agent with additional preferences. For each planning episode, a comment about the main decisions made by the
planning process is shown. As an example, the first plan of Scenariol in Table 7 shows a plan generated for a patient
without renal problems, who prefers avoiding the risk of hypoglycemia and taking medication once a day during

breakfast. In the third plan of this scenario, the patient has renal problems and would rather avoid gastro-intestinal
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adverse effects as well as taking medication once a day during breakfast.

7.4. Discussion

The final conciliated plans obtained in the validation were shown to the clinicians. The results in Table 7 show
several what-if episodes that were used by the clinicians to simulate different scenarios and assess to what extent
the plans generated by our approach and the plans they would have elaborated are alike. Clinicians validated the
correctness of the conciliated treatment plans and valued very positively the capability of the architecture to assimilate
different qualitative preferences in the design of a treatment plan for a comorbid patient based on the conciliation of
several guidelines. They also stressed the value of the quantitative preferences to allow the patient select one treatment
over the others, as shown in the example of Table 6. In general, clinicians enthusiastically encourage the use of patient
preferences in their daily clinical practice as long as the patient has been correctly informed about the consequences
of the decision.

Interestingly, the use of quantitative preferences is a distinguishable feature of our approach with respect to the
work presented in [34], which also deals with preferences of multimorbid patients. One can easily associate the pa-
tient preferences and mitigation process of [34] with our qualitative preferences and preference interaction detection
procedure, respectively. However, quantitative preferences, as personal options of the patient that do not entail ad-
verse clinical interactions but simply represent personal choices, are neglected in [34]. For instance, the treatment
duration or the number of medical visits are not determinant factors for a clinically valid treatment; they simply denote
aspects that will make the patient life more comfortable. On the other hand, the inherently distributed computation
of our agent-based approach promotes diversity by suggesting a series of different treatment plans that encompass the
knowledge of physicians (agents) and enable patients to express their preferable choices.

One limitation argued by clinicians is that our approach does not support plan execution, patient monitoring or
clinician-patient interaction during the planning process. We intend to overcome these issues in future development

as described in the next section.

8. Open issues

Our tool relies upon well-known computational formalisms such as existing planning technology to reason about
interactions or standard agent communication protocols to simulate exchange of knowledge amongst physicians.
Hence, the model is flexible enough so as to be able to plug in other modules that enable plan execution or computer-
physician interaction. Currently, our tool is aimed at calculating a plan but our intention is to leverage the experience
of some of the authors of this paper in the identification of the characteristics of patient-tailored treatment plans exe-
cution on single-agent planning [27, 36]. Concretely, it is worth noting the need of adaptation to deviations like the
evolving patient conditions or the high dynamism and unpredictability of the clinical environment. The execution of
a multi-agent conciliated plan, on the other hand, can be envisioned with a dedicated execution agent per Specialist
agent responsible of monitoring the actions resulting from their decision procedures (distributed execution); or with
a single agent executing all of the plan actions (centralized execution). Distributed execution is commonly adopted
in domains where control of plan entities is costly [45]. In the particular case of a comorbid setting, even though
knowledge and planning abilities are distributed across specialist agents, every agent is able to build a conciliated plan
using the decision procedures of the other agents and so monitoring and executing a plan for a comorbid patient can be
done by a single execution agent. Our conciliated plan approach thus enables a centralized execution, which is more

flexible and effective for both the patient and institution because it avoids the need of communication and interaction
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among agents. Moreover, a centralized execution facilitates the integration with standard tools for process execution
like BPM’ runtime engines and consoles [46]. These tools provide support for user interaction, ubiquitous access and
collaborative execution of a treatment plan, allowing for a rapid prototyping methodology and an agile capture of user
requirements [36]. Nevertheless, when these tools are integrated with planning technologies, appropriate techniques
capable of detecting and handling medical exceptions need to be incorporated (as we have shown in [36]). Regarding
our MAP approach, in case of a deviation that compels calculating a new plan, all planning agents will be likewise
involved in the planning process independently of the execution modality.

Another lacking feature of our approach is the capacity of computer-physician interaction. A mixed-initiative
approach would enable physicians to interactively intervene during the construction of the plan, to guide the planner
to adjust the plan to the patient health status or to track the plan execution. The fact that the conciliation process is
orchestrated by the Initiator agent opens up the way to the participation of clinicians and patients in a mixed-initiative
process, making each step of a plan selection be a decision shared by clinician and patient with the help of the scores
and alternative plans provided by the architecture. Moreover, our approach highlights other features that pave the
way towards a mixed-initiative tool. Most importantly, it draws upon on knowledge-driven process that takes into
account the expertise, knowledge and opinions of the clinicians when designing the decision procedures that encode
the clinical recommendations of the CIGs represented as HTN domains. In real scenarios, clinicians would hardly
agree to execute a plan without prior consideration of the decisions made to build a plan, and this is the reason
they were deeply involved in the design of the decision procedures and patient’s preferences to guide the automated
planning process. All in all our approach would never be categorized as a black-box system because an HTN planner
is based on a deliberative planning process guided by human expert knowledge. Not only all the decisions made
by an HTN planner are guided by human knowledge (previously encoded by knowledge engineers in collaboration
with clinicians), but all these decisions along with the reasoning process keep recorded in an internal structure named
decomposition tree, and with the appropriated machinery to provide user-friendly explanations (this is a matter of
Human Computer Interaction and falls out of the scope of this paper) all these decisions can be communicated to the
physician.

Another limitation is related to the burden of knowledge engineers to operationalize clinical knowledge into our
architecture. Automated knowledge acquisition and model elicitation actually present a bottleneck that negatively
affects the generalized adoption of knowledge-based clinical technologies. In fact, the development of methodologies
and tools to translate CPGs into Computer Interpretable Guidelines (CIGs) is still an active research area and various
alternatives to knowledge acquisition and authoring tools have been proposed in the literature [6]. In section 3 we
argued that HPDL can be regarded as an instrumental language for making clinical knowledge actionable. HPDL is a
domain-independent planning language that has been successfully applied to several domains [47, 48, 49, 12]. How-
ever, it presents some limitations for knowledge elicitation mainly because it was developed as a generic language
and not particularly oriented to clinical knowledge representation. On the other hand, we have shown in this paper
that HPDL offers sufficient expressiveness and flexibility to represent and reason about not only a formalized clinical
guideline itself, but also patient profiles, possible resources, or other potentially relevant requirements or constraints
(e.g., drug costs or staff availability). Other CIG languages like Asbru [37], PROforma [20] or GLARE [50] are specif-
ically designed for clinical domains, and they provide their own methodologies for clinical knowledge acquisition,
elicitation and representation. The translation scheme of Asbru-specified CIGs into our HPDL language proposed in

[12] can be integrated with virtually any off-the-shelf methodology for medical knowledge elicitation, thus revealing
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that state-of-the-art authoring tools and methodologies are also applicable to our approach. Hence, it is reasonable
to assume that developing a system upon our MAP approach would require a similar effort as with any equivalent
knowledge representation scheme.

Additionally, a key step to augment portability of the system is concerned with its integration with EHR data.
Since the data model of HPDL is based on a hierarchy of types along a set of predicates and functions (with typed
parameters referring to the types hierarchy), it is straightforward to come up with a systematic procedure that maps
classes of an ontology into the type hierarchy, and properties and relations into functions and predicates, respectively.
Moreover, our research group has developed a graphical editing tool of HPDL language based on an UML model [28]
that leverages automated integration with external databases, thus minimizing the effort of integrating and adapting

the system to different scenarios.

9. Conclusions

This paper presents a Multi-Agent Planning proposal to support the conciliation of clinical guidelines in comorbid-
ity and handles two types of patient preferences. Each agent encapsulates the knowledge and expertise of a physician
on a particular disease and embodies a single-disease CIG formalized as an HTN domain with activities, goals and
patient preferences. The hierarchical representation enables the definition of compound activities around different
decomposition methods, which are subject to the satisfaction of a medical condition or a patient preference.

Qualitative preferences activate conditional decomposition methods which determine the activities or drugs that
best suit the patient desires. When conciliation of drugs or activities is not doable, this preference interaction is
undertaken by selecting an alternative method of a task. On the other hand, quantitative preferences capture the
troublesome guidelines of a treatment to a patient and are used to select a treatment from many possible options.
Hence, our approach handles the most relevant interactions identified by clinicians as well as the interactions that
emerge when dealing with personalized CIGs.

The multi-agent architecture revolves around two concepts: coordination to attain the domain merging or con-
ciliation of CIGs, and planning to synthesize a multi-disease personalized and conciliated treatment (plan). At co-
ordination, agents exchange their preference-filtered decision procedures and create a personalized merged CIG that
conciliates the clinical recommendations of all the CIGs. At planning time, agents generate a conflict-free concili-
ated treatment plan solving the clinical and preference interactions, giving priority to their own decisions in case of
conflict or requesting an alternative decomposition method in case of a preference interaction. Since each agent will
most likely end up with a different conciliated plan, the patient quantitative preferences are applied through a MDCM
process to select the most patient-tailored plan. This process also accounts for medical institution preferences. The
evaluation function of the MCDM process is used to resolve equipoise situations and can be seen as an agreement
procedure between agents in order to decide the best conciliated plan, which is later assimilated by every agent in
order to proceed with the next subgoal of the common goal.

The results of the case study show that MAP is a flexible technology to support clinical decision making in
comorbidity considering patient preferences. Extending single-agent planning for clinical decision support towards
automated MAP technology for personalized conciliation of multiple guidelines requires: (1) providing additional
knowledge to represent sources of potential interactions as well as patient preferences; (2) providing agents with
a coordination mechanism to conciliate guidelines by detecting and managing interactions between CIGs; and (3)

providing a mechanism to resolve equipoise situations.
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The MAP architecture brings several advantages that are worth mentioning:

o Flexibility: we propose to dynamically exchange portions of HTN domains (decision procedures) instead of
fully-instantiated plans as in classical multi-agent plan merging. That is, agents exchange the decision logic to
build plans, what leads to a more flexible interaction solving process. Unlike plan merging, in our approach
agents backtrack over the HTN domain representation sent by the other agents when interactions are found so

they are not compelled to request a new plan and restart the whole process.

¢ Distributed Knowledge Representation: the novel proposed knowledge representation (CIGs formalized as
HTN planning domains), together with the dynamic exchange of knowledge among agents, allows a Specialist

agent to gather the best clinical evidence of other CIGs for which it is not a specialist.

¢ Potentially scalable: the encapsulation of knowledge in each agent leads to a loosely-coupled architecture
that opens the way to a scalable management of new diseases. A new disease might be incorporated into the
life cycle with a minimal impact in the performance of the system. Given a single-disease CIG represented as
an HTN domain, the only requirement to include a new disease is to extend the knowledge representation as
illustrated in the case study. Hence, providing a new agent with a CIG represented in such terms should suffice

for the management of a comorbid patient with more than two diseases.

An interesting future work is to exploit the MAP step-wise process to give support to Shared Decision Making. The

architecture should be regarded as a core technology to provide support to both clinicians and patients when making

decisions before the enactment of the conciliated plan. This way, agents representing other health-care stakeholders,

such as patients, evaluation units or medical institutions, can be easily incorporated in the architecture. The step-

wise cycle would enable agents to communicate their local solutions either to clinicians, patients or even institution

managers, who can confirm whether the proposed plans fit their preferences, or even make alternative proposals. The

architecture can thus be used for what-if analysis by both institution managers and specialists to propose different

treatments of a patient (that might include aspects like material and human resources).
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