
 

 

 

CRANFIELD UNIVERSITY 

 

 

 

 

JUAN ANTONIO JUST AMARGÓS 

 

 

 

 

SENSITIVITY OF MULTI-CRITERIA DECISION MAKING IN 

SUSTAINABLE MANUFACTURING SYSTEMS 

 

 

 

 

SCHOOL OF AEROSPACE TRANSPORT AND MANUFACTURING 

Management & Information Systems 

 

 

 

 

MSc 

Academic Year: 2018 - 2019 

 

 

 

 

Supervisor:  Dr Emanuele Pagone 

September 2019  

 

 

  



 

 

 

CRANFIELD UNIVERSITY 

 

 

 

SCHOOL OF AEROSPACE TRANSPORT AND MANUFACTURING 

Management & Information Systems 

 

 

MSc 

 

 

Academic Year 2018 – 2019 

 

 

JUAN ANTONIO JUST AMARGÓS 

 

 

Sensitivity of Multi-Criteria Decision Making in Sustainable 

Manufacturing Systems 

 

 

Supervisor:  Emanuele Pagone 

September 2019 

 

 

This thesis is submitted in partial fulfilment of the requirements for 

the degree of Master of Science  

(NB. This section can be removed if the award of the degree is 

based solely on examination of the thesis) 

 

© Cranfield University 2019. All rights reserved. No part of this 

publication may be reproduced without the written permission of the 

copyright owner. 



i 

ABSTRACT 

Multi-Criteria Decision Making (MCDM) is a powerful tool that can support 

decision makers in choosing among alternatives combining their characteristics 

in order to consider conflicting features. 

The aim of this study is to find an innovative approach to make a sensitivity 

analysis to MCDM methods, in order to demonstrate the robustness of the 

decision process, specifically applied to the MCDM method Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS). This analysis is suited to 

be applied in the area of sustainable manufacturing to weight the importance of 

traditional performance indicators (e.g. time, cost, quality) with a wide spectrum 

of sustainability areas (i.e. economic, environmental, social…). 

Results of the Sensitivity Analysis will determine the amount of variations of 

rank reversals when the different criterion weights are changed and will 

measure the change needed to create these variations, resulting in a new and 

accurate value of each criterion‟s sensitivity. 
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1 Introduction 

The following Individual Research Project focuses on the objectives of coming 

up with a new definition of the Sensitivity Coefficient (SC) and a complete 

methodology for a specific weight related Sensitivity Analysis, oriented to the 

Sustainable Manufacturing sector and to the Technique for Order of Preference 

by Similarity to the Ideal Solution (TOPSIS).  

The new definition of SC and the methodology used have been selected after 

numerous researches over what has been done recently in the Sensitivity 

Analysis world, investigating the lacks in the definition and developing new 

parameters to create a more complete description of the coefficient. 

This approach to the Sustainable Manufacturing market is accomplished thanks 

to the company chosen for the Case Study developed in section 4. Not only the 

Environmental Sustainability of the production process of the company is 

analysed, but it also fulfils a series of conditions to be considered into this 

Sustainable Manufacturing market. Numerous examples defend this 

classification such as three of the key targets they have proposed for 2020 to 

improve the company environmental performance: 

 Total Energy Usage (amount of energy used against the Cost of Goods 

Sold): The target for 2020 is a 40% reduction normalized to cost of goods 

sold from 2008 baseline year. 

 Water Usage (amount of water used against the Cost of Goods Sold): 

the target for 2020 is a 40% reduction normalized to cost of goods sold 

from 2008 baseline year. 

 20% of Waste Redirected from Landfill. 

The Sensitivity Analysis is applied to the Case Study, calculating all the results 

and parameters to define the robustness of the decision-making process. 
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2 Literature Review 

2.1 Introduction 

The purpose of the literature review focuses on the idea of defining a new 

approach to Sensitivity Analysis application and demonstrate the robustness in 

a Multi-Criteria Decision Making problem using a method known as TOPSIS. 

The literature review questions are: 

 What is Multi-Criteria Decision Making? 

 What is TOPSIS? 

 How is a Sensitivity Analysis performed? 

2.2 Multi-Criteria Decision Making 

MCDM tools are techniques used in operations research that evaluate the 

different criteria involved in decision making, criteria which are usually in conflict 

among them. These methods can be used not only in daily life situations but 

also in any other aspects of life and business that involve a decision with 

multiple options (in our case we will focus on a Sustainable Manufacturing 

situation). Frequently, in the decision making process, certain criteria are 

inversely proportional in terms of suitability for the decision maker, such as price 

and quality for example. The Multi-Criteria Decision Analyses tries to solve this 

habitual conflict between the different criteria and the conditions of each 

alternative related to the criteria. 

Structuring complex problems and appropriately weighting the different criteria 

leads to make better decisions with the support of an appropriate basis of 

knowledge. Since the start of the MCDM discipline in the 1960s there have 

been numerous advances, many developed through specialised decision-

making software.  

The problems of MCDM can be classified into two categories: Multiple Attribute 

Decision Making (MADM) and multiple objective decision making (MODM): 

 MODM methods have decision variable values that are determined in a 

continuous or integer domain, with either an infinite or a large number of 
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choices, the best of which should satisfy the decision maker‟s 

constraints and preference priorities. 

 MADM methods are generally discrete, with a limited number of 

predetermined alternatives. MADM is an approach employed to solve 

problems involving selection from among a finite number of alternatives. 

An MADM method specifies how to process attribute information in order 

to arrive at a choice. MADM methods require both inter- and intra-

attribute comparisons and involve appropriate explicit trade-offs. 

“Each decision situation requires at least 4 main parts: alternatives (Ai with i 

from 1 to N), criterions (Cj with j from 1 to M), weights (wj with j from 1 to M) and 

measure of performance of the alternative in terms of the criterions (mij with I 

from 1 to N and j from 1 to M).“ [1] 

Along the history of MCDM, numerous researchers have used many different 

Multi-Criteria Decision Making methods, such as Weighted Product Method 

(WPM), Analytic Hierarchy Process (AHP) Method, Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) Method, Compromise 

Ranking Method (VIKOR), etc… 

Depending on the situation studied and the belief of the researchers, the 

different techniques have been applied in many case studies and not only their 

validity, but their robustness has been demonstrated. Some authors have 

suggested that it is important to use alternative MCDM methods in order to 

achieve reliable and viable ranking results while others just deeply research the 

methods and choose the one that seems to be the most trustworthy. 

For example, Vida Maliene et al. uses five commonly used MCDM models: 

Weighted Sum Model (WSM), Weighted Product Model (WPM), revised Analytic 

Hierarchy Process (rAHP), Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS), and Complex proportional Assessment (COPRAS). 

The environment they work in is related to the affordability of sustainable 

housing and the acquired data comes from conducting interviews and literature 

review. A total of eighteen decision criteria and eleven alternatives were used in 
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the assessment of sustainable housing affordability, as an empirical case study 

[2]. 

Regarding the paper to be presented, this literature review will focus on the 

TOPSIS method. 

2.3 TOPSIS Method 

The TOPSIS method was created in 1981 by Hwang and Yoon, and it is based 

on the idea that there is an ideal best solution and an ideal negative solution. 

The best alternative among the possible ones should have the shortest 

Euclidean distance to the best ideal solution and the largest distance to the 

negative ideal solution, according to the method. The ideal solution is a 

hypothetical solution for which all the attribute values are equal to the maximum 

attribute values in the database comprising the satisfying solutions, while the 

negative ideal solution is the one for which all attribute values represent the 

minimum values of the different attributes among the options. 

Different authors have used TOPSIS as their key method to solve their MCDM 

problems in their papers. E. Pagone et al. used the TOPSIS method to select 

the most suitable material for the manufacture of an automotive component 

using the High Pressure Die Casting (HPDC) process.  

The performance of three different alternatives (Aluminium-A380, Magnesium-

AZ91D and Zinc-ZA8) was assessed based on four different criterions. The four 

different performance measurements of the criterions were evaluated, and each 

one of the four classes of criteria examined was assessed using a number of 

metrics normalised by mass to generalise the yielded results. After applying all 

the algorithm calculations and making the comparison with the ideal solutions, 

the decision about which was the most suitable material was taken [3]. 

2.4 Sensitivity Analysis 

We can use Sensitivity as an indicator in multiple fields with different meanings 

or definitions. However, different studies agree when they mathematically define 

it as an index that shows the dependence of the output in terms of the input. For 
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instance, in their research paper, S. Ray et al., [4] state their sensitivity index 

using Jorgensen‟s (1994) definition as: 

  

  
 
  
 

 

(2-1) 

 

Where S stands for sensitivity, x is the state variable, P parameter, dx and dp 

are change of values of state variables, parameters, respectively. 

In the case we will focus on, the studied and considered Sensitivity Analysis can 

be defined as the study of how uncertain the output of a mathematical model 

can be as a consequence of variations allocated to the different inputs.  

This process of recalculating the output under assumptions that change the 

initial input values to determine the impact in a decision under sensitivity 

analysis helps to: 

 Understand better the relationship between the input variable and the 

output variables. 

 Test the robustness of the system. 

 Check the model to find for hidden errors in it. 

However, the way of applying this sensitivity analysis varies among the different 

researchers who want to check the stability and robustness of the decision they 

made. Several ways of challenging the robustness of a decision have been 

created during the recent decades and each of them focuses on a particular 

characteristic of the decision process. After an intense research, the following 

classification of sensitivities has been established: 

 Weights Sensitivity 

 Scale Sensitivity 

 Criteria Formulation Sensitivity 
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2.4.1 Weights Sensitivity 

2.4.1.1 Most Critical Criterion 

The authors previously mentioned ([2]) consider that the Sensitivity Analysis 

should be carried out through two approaches: 

 First, by quantifying the level of crosstalk between criteria and ranking by 

making small (5%) or large (50%) changes in the criterions weights to get 

specific values of relative sensitivity coefficients. 

 Second, by determining the most critical criterion (criterion for which the 

smallest relative change, in percentage, in its weight value must occur to 

alter the existing ranking of the alternatives) of the criterions so that it 

could furtherly be treated carefully. 

The final definition of the sensitivity term is described with the following 

expression: 

    
 

  
, j=1,2…n 

 

(2-2) 

 

Where SCj is the measurement of sensitivity per criteria and Dj  was defined as 

the  smallest relative change (defined in the weight value). that must occur to 

change the rank reversal of the most critical criterion.  

This mathematical definition does not seem to be accurate enough as it 

considers a criterion with a high number of rank reversal changes as sensitive 

as one with just one change as long as the distance to the closest change is 

equal for the both of them. This definition will be modified in the development of 

this study in order to really assess the stability and robustness of a MCDM 

mathematical model. 

This idea of determining the most critical criterion continues appearing in 

research papers such as [5], where this criterion is defined in four ways:  

 The criterion that makes any rank reversal with the smallest absolute 

weight change. 

 The criterion that changes the first ranked alternative with the smallest 

absolute weight change. 
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 The criterion that makes any rank reversal with the smallest relative 

weight change. 

 The criterion that changes the first ranked alternative with the smallest 

relative weight change. 

However, it lacks a mathematical definition for the sensitivity coefficient derived 

from the identification of this criterion. 

2.4.1.2 Stability Interval 

A different analysis is applied in [6], the Sensitivity Analysis is performed over 

PROMETHEE and TOPSIS weights by using stability intervals. The calculations 

that the PROMETHEE algorithm applies to reach the rank reversal are also 

applied to TOPSIS method and the different stability regions are obtained. In 

this particular case, PROMETHEE and TOPSIS results are in the same trend 

and they have similar stability analysis results. In the meantime, PROMETHEE 

and TOPSIS results vary little because the notations of the methods and the 

additional parameters that the decision makers decide subjectively. 

These stability intervals are widely used among researchers and, expressed in 

different or similar ways, they represent the same. For example, in [7] the 

following framework is proposed to calculate the stability interval‟s thresholds: 

 

Figure 2-1 – Framework methodology for calculating the interval’s threshold. 
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As we can see, the approach is alike, starting with some initial data, iterating 

with a determined frequency and increasing it until the ranking is modified, then 

the thresholds of the intervals are set. 

Moreover, in A. Rosa et al. this stability interval is applied to Multi objective 

linear programming problems, so this interval becomes a zone in the 2 

dimensional cartesian plane defined as a hypercube centred on the estimated 

weight with a radius called the allowable tolerance which fulfils the condition of 

maintaining the current rank [8]. 

Furthermore, in N. Zhao et al. the Ordered Weighted Averaging (OWA) method 

is used to define the sensitivity of the case study. With a similar approach to the 

calculation of the stability region, the orness measure is calculated and the 

tolerance of the region (ηi) is determined [9]. 

Finally, M. Jirí proposes an approach full of similarities with the methodology 

defended in this study. His idea of sensitivity analysis is set forth in the following 

five steps [10]: 

1. Perform standard TOPSIS while saving the matrixes R+, R- (the two 

vectors of the distances of unweighted criteria), W (vector of weights) 

and the resulting order of the alternatives for further use. 

2. Change one weight and adjust the other weights, construct W‟ out of the 

changed values. 

3. Calculate the new distances from the saved vectors. 

4. Calculate the new relative closeness using the standard TOPSIS 

procedure. 

5. Evaluate the new order of alternatives and check if it equals the original, 

saved order. 

This paper, despite proposing a good theoretical working framework where the 

stability region is in fact being calculated, lacks a mathematical calculation of 

the sensitivity index itself (as most of the papers) and doesn‟t give an example 

of an application of the framework, there is no real sensitivity analysis 

suggested. However, the basis of the methodology relates to the one 

propounded in the following study and can be considered as a good starting 

point in order to perform a complete sensitivity analysis. 
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2.4.1.3 Sampling Scenarios 

Simpler approaches such as sampling different scenarios with weight variations 

and checking the ranking variations have been widely performed too. This 

modality is followed in the study of Y. Gülsah et al., in order to compare different 

preference scenarios, an equal weights case and four additional cases are 

analysed, each of the additional sensitive cases expresses a different point of 

view (technocratic, mercantilist, eco-social and administrative), with a different 

weight distribution reinforcing the specific weight of the criterion most valuable 

according to the decision maker‟s point of view. [11] 

H. Dinçer et al. apply the same methodology for nine different cases with 

variance among the criteria weights in order to prove the stability of the decision 

made. [12] 

N. Favretto et al. assess six different situations in which certain criterion weights 

are doubled or halved in order to visualise the sensitivity of the analysed 

criterion. [13] 

Moreover, D. Martín et al. uses five alternative criteria weighting schemes and 

one alternative scoring scheme to observe the alteration in the output values 

and check their behaviour. [14]  

In addition, S. Ray et al. suggest an approach of variations of 10% in the criteria 

weights in order to determine the robustness of the model. [4] 

C. Erlacher et al. try to go a bit further and change the common manual 

sampling by using a Graphic Processing Unit (GPU)-based approach to sample 

random scenarios with computational aid evaluating weight modifications to 

assess the sensitivity of the case study. [15] 

 

Finally, the research paper, N. Kokaraki et al. try to give a new point of view 

about the Weights Sensitivity Analysis. In this case, the sensitivity analysis is 

carried out by analysing three causes of uncertainty: criteria weightings, 

stakeholders' design preferences and stakeholders‟ relative importance over the 

decision process. In order to test these ideas, four different scenarios were 

chosen and simulated: [16] 
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1. The first scenario is the base case study with the initial weight distribution 

(Stakeholder1= 11%, Stakeholder2= 57%, Stakeholder3=27%, 

Stakeholder4= 5%.) 

2. In scenario 2, the selected performance criteria have equal importance 

for all the stakeholders. Equally-weighted criteria is a common situation, 

against which the sensitivity of the results is tested. In this case study the 

selected performance criteria are six and thus each one has a weight 

factor of 100%/6=16.667%. 

3. Scenario 3 incorporates a change in the stakeholders' relative 

importance (10% 50%, 35% and 5% respectively). 

4. In scenario 4, the client considers the options that have an specific 

characteristic to be a little more desirable, concluding to alternatives 

No.25 to No.32 as more preferred. 

Despite the two last scenarios seem to be innovative approaches, they end up 

being a different way of modifying the specific weights of the criteria, so the 

three uncertainty causes appear to be alike. If you modify the preferences of the 

stakeholders (decision makers), you modify the weight distribution assigned to 

the criteria; and if you modify the importance of these stakeholders, you also 

modify the importance of the one that supports more or less a criterion, which 

ends up in a modification of the specific weights of the criteria. 

Furthermore, as there is no mathematical way of defining and comparing the 

sensitivity indexes of the situation. The authors make a comparison of the 

different scenarios two by two with the different MCDM techniques used (AHP, 

TOPSIS, ELECTRE III – Minimum Rank, ELECTRE III – Maximum Rank and 

PROMETHEE II) so they are able to graphically see which is the method that 

has the lowest occurrence rate of rank reversal despite no figure of sensitivity is 

stated. 

These ways of analysing sensitivity by spotting specific situations can result 

interesting as it is a quick way of evaluating sensitivity depending on the 

decision maker‟s character. However, the analysis itself it is poor as it only 

considers some specific situations and does not give a value for the sensitivity 
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itself (a lack seen in a big quantity of articles related to MCDM sensitivity that 

tries to be solved by this study). 

2.4.1.4 Graphical Sensitivity 

 A new way of representing the weights sensitivity is shown in [17]. The main 

difference between this paper and the ones above mentioned is that the desired 

result of the sensitivity analysis in its case study is not a figure of the sensitivity 

index, but a graphical solution. The application of the MCDM technique together 

with the usage of GIS (Geographical Information Software) result in heat maps 

of the analysed provinces with the distribution of the criteria performance in the 

entire region. This leads to a sensitivity analysis represented by different graphs 

showing the weight distribution per criterion in the X-axis and the hectares (ha) 

classified as highly desirable in the studied province in the Y-axis. There is one 

graph for each province and each graphic explains graphically the behaviour of 

each criterion depending on the weight variation; in another words, the slope of 

the graph represents the sensitivity of each criterion depending on the weight 

variation. 

Exactly the same method but with different structure is used to as they create 

one graph for each alternative representing the variation of the output (the cost) 

in relation with the input (the cubic meters of land removed) [18]. This technique 

can represent the sensitivity of each alternative depending on the percentage of 

completion of the duty. 

2.4.1.5 Remaining Sensitivities 

E. Hernández et al. propose a different mathematical definition for sensitivity. 

They assume that all of the performance values and weights are considered as 

inputs and their uncertainties are modelled as random variables properly 

characterized through known probability distribution functions [19]. This means 

that the ranking is now a random variable, and its elements  have files that 

represent the distributions of the possible ranks. With this new scenario, some 

constrains (weight change scenarios) are set and a random number of samples 

is taken as result of the scenarios. Recording the value of yk (being yk the status 
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of the kth sample), being 1 if the constrain is satisfied or 0 if it is not, the 

sensitivity is defined as: 

            
  

     
 

(2-3) 

Where: 

 TP is the number of examples where the constrain is satisfied. 

 FP TP is the number of examples where the constrain is not satisfied. 

The same exact definition is used in N. Chai et al.‟s article where they use not 

only the sensitivity but also the specificity to draw the Receiver Operating 

Characteristic (ROC) curve of the one parameter against the other one.[20] 

A diverse expression for sensitivity is defined in H. Chen‟s et al. article, 

introducing two new indicators to determine the sensitivity‟s characteristics of a 

decision-making problem [21]: 

 The Operating Point Sensitivity Coefficient (OPSC): defined as the 

shortest distance from the current contribution value to the edges of its 

tolerance. Depends on the operating point and the direction of the 

weights change (if it is increasing or decreasing). Mathematically is 

defined as: 

        {|   
 | |   

 |} 
(2-4) 

 The Total sensitivity Coefficient (TSC): Specifies that the shorter the 

tolerances of a decision element‟s contributions are, the more sensitive 

the final decision is to variations of that decision element. Mathematically 

is defined as: 

     |   
   

  

 
| (2-5) 

Where: 

 The allowable range of perturbation is [   
   

  

 
] to preserve the initial 

ranking. 

A different definition is set out in J. Song and E. Chung‟s article, where the 

researchers focus their efforts in developing Guillen et al. (1998) definition for 

the robustness of the decision [22]. This definition gives a value for the 
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robustness between two of the selected alternatives being only able to assess 

them by pairs. Mathematically can be expressed as: 

         
   (         )       (         )

   |(         )|       |(         )|
 

(2-6) 

Where: 

          is the robustness between alternatives 1 and 2. The result can 

range from -1 to 1. 

    is the criteria weight applied to criterion m 

      is the performance value of criterion m of Alternative 1. 

Once the robustness values are calculated, we can calculate the new criteria 

weights (  ) that reverses the ranking between the paired alternatives with the 

following equations: 

 If           , then   
                  (2-7) 

 If           , then  1 =  1+ 1×ƴ( 1, 2) 
(2-8) 

The limitations of this method are: 

 It is only applicable to the Weighted Summation Method (WSM) 

 Critical Criteria weights cannot be identified, as an equal proportion 

adjusts all weights. 

 The sum of the optimized criteria weights no longer equals the sum of 

the initial criteria weights. 

2.4.2 Scale Sensitivity 

This weight sensitivity approach does not seem to be enough for A. 

Randjelovic. In this paper, the researcher assesses the consistency evaluation 

of an MCDM method on an example of the logistical centre location selection, 

defending that the Sensitivity Analysis, in order to be complete and trustful, 

should consist of: 

 Solution stability assessment in the case that weight of criteria is 

changed. This approach is similar to the one proposed in the previous 
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reference and  focuses mainly in the variation of original weights 

distribution and its effects. [23] 

 Result consistency analysis according to changes in the measurement 

scale used to depict qualitative criteria. Using French‟s (1988) 

“Normative theory of decision making in risk and uncertainty conditions” 

definition of the Measurement Scale Independency (MSI): “The value of 

the outcome of an action Ai during the realization of circumstance θj is 

labelled as νij and expressed in cardinal units of usefulness of the 

decision maker (it is measured on an interval scale). We can measure 

cardinal values on different measurement scales, whereby outcome 

values are measured on two scales, νij and νij
+, mutually connected by 

positive affine transformation [23]: 

   
           (2-9) 

Where a and b are constants under condition of a > 0.” Regarding this 

condition, when evaluating a criterion according to a specific scale, the 

measurement of performance of these criteria must be tested in different 

scales and fulfil the MSI condition and the results of the initial weighted 

criteria must not change for the decision maker. 

2.4.3 Criteria Formulation Sensitivity 

Finally, in the paper above mentioned, an innovative approach related to the 

sensitivity of the way the different criteria are formulated takes place. The 

researchers state that the result of the consistency analysis considering criteria 

formulation in a case when the same criterion can be shown in two normatively 

equivalent ways can differ. Using “Kahneman & Tversky (1981) definition of 

Criteria Formulation Independence (CFI), which is formulated based on the 

descriptive invariability condition described in the behavioural theory of decision 

making as the condition of choice rationality of an individual decision maker.” 

[23] defending that, despite the multiple existing ways of formulating a criterion 

(with a positive or negative framework), this should not affect the decision 

maker evaluation. According to these observations, Pamučar & Ćirović (2015) 

defend that “Positive and negative framework are connected with a function: 
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(2-10) 

Where C is a constant and Xj  refers to the positive or negative framework 

depending on the sign they have.” Regarding this condition, when evaluating a 

criterion according to a specific framework or formulation, the measurement of 

performance of these criteria must be tested within the different frameworks, 

they must fulfil the CFI condition and the results of the initial weighted criteria 

must not change for the decision maker. 

This analysis was applied to the TOPSIS, COPRAS, VIKOR, and ELECTRE 

methods and showed that these methods are sensitive to changes in weight but 

they maintain the priorities of alternatives.  

These two innovative approaches referred to the independency of scale and 

criteria formulation represent interesting ways of checking the validity of the 

initial conditions of the MCDM analysis. However, they do not really seem to 

fulfil the  definition suggested for sensitivity analysis as they do not challenge 

the robustness of the method (TOPSIS in this case), only testing really the 

correct formulation of the case study and the initial weight distribution selected 

by the decision maker. They can be considered as good complements for a 

Sensitivity Analysis in order to pre-check the situation where the analysis will be 

applied but will not probably be applied in this study. 

2.5 Summary 

This literature review has served to describe the Multi-Criteria Decision Making 

methods, their categories, their common uses, and mentioned some of the 

different types using references found during the research. 

Among this broad list of techniques, TOPSIS has been chosen for the case 

study concerning this project. The TOPSIS method has been analysed, 

reinforcing this choice with the different references to papers where it has also 

been used. In the following parts of this work further information about TOPSIS, 

the algorithm, and the steps will be explained. 
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Finally, a complete view of the Sensitivity Analysis and the Sensitivity index 

itself is shared. Several papers of authors of the recent decades have been 

analysed and challenged if their description of sensitivity lacked a mathematical 

description, an analysis or any characteristic. 

These three mains (MCDM techniques, TOPSIS and Sensitivity Analysis) topics 

already covered enable the reader to have the appropriate knowledge to 

understand the next steps of this research project and be aware of the 

techniques used. 
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3 Methodology 

3.1 Introduction 

Several ways of challenging the robustness in a Multi-Criteria Decision Making 

problem have been developed during the recent years, these Sensitivity 

Analysis have also come up with different possibilities of defining 

mathematically the term of Sensitivity. 

In this research project, a new methodology for this Sensitivity Analysis, that 

differs from those previously formulated, is suggested and defended. 

3.2 Case Definition 

In order to proceed with this analysis, firstly we must define the case. This 

involves deciding on the problem we are facing with the alternatives among 

which we can choose, the different criterions and sub criterions for the decision 

makers, and the measures of performance of the alternatives in relation to the 

criterions. 

3.3 TOPSIS Method 

Once these data are stablished it is time to apply the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) method, the steps for the 

calculation are the following: 

Step 1: The first step is to determine the situation to be studied, the objective, 

and defining the four above mentioned main parts of the decision situation 

(alternatives, criterions, weights, and measurement performances). 

Step 2: This step represents a matrix based on all the information available on 

criterion (Decision Table). In this matrix, each row is allocated to one 

alternative, and each column to one attribute. 

Therefore, an element mij of the decision table gives the value of the j-th 

criterion in original real values (non-normalized form and units) for the i-th 

alternative. 



 

18 

In the case of a subjective criterion, a ranked value judgement on a scale is 

adopted, and then the adopted value is calculated in the same manner as the 

objective ones. 

Step 3: Calculating the normalized decision matrix, Rij. We can calculate this 

matrix with the following expression: 

     
   

√∑    
  

   

 
(3-1) 

Step 4: Decide the weights of the different criterions (wj (for j from 1 to M)) 

fulfilling the rule that ∑    . 

Step 5: Calculate the weighted normalized matrix Vij, multiplying of each 

element of the column of the matrix Rij by its associated weight wj. The 

elements of the matrix Vij can be expressed by means of the following formula: 

           (3-2) 

Step 6: Obtain the ideal and negative ideal solutions in this step. These can be 

expressed as: 
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Where J = (j = 1, 2, …, M) /j is associated with beneficial attributes, and J‟ = (j = 

1, 2, …, M) /j is associated with non-beneficial attributes. Vj
+ indicates the ideal 

value of the considered criterion among the values that criterion for different 

alternatives. In the case of beneficial criterion, Vj
+ indicates the higher value of 

the attribute. In the case of non-beneficial criterion, Vj
+ indicates the lower value 

of the attribute. 

Vj
- indicates the negative ideal value of the considered criterion among the 

values of that criterion for different alternatives. In the case of beneficial 

attributes, Vj
- indicates the lower value of the criterion. In the case of non-

beneficial attributes, Vj
- indicates the higher value of the attribute. 

Step 7: Calculate the separation measures. The separation of each alternative 

from the ideal one is given by the Euclidean distance in the following equations. 

  
   {∑√(      

 )
 

 

   

}            
(3-5) 

  
   {∑√(      
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}            
(3-6) 

Step 8: The relative closeness of an alternative to the ideal solution (Pi) can be 

expressed as: 

   
  
 

  
    

  
(3-7) 

Step 9: The different alternatives are ranked in descending order, according to 

the value of Pi indicating the most preferred (highest Pi) and least preferred 

feasible solution (lowest Pi). Pi may also be called the overall performance 

score of an alternative. 
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3.4 Sensitivity Analysis 

Once the ranking for the initial weights that the decision maker set is achieved, 

the Sensitivity Analysis takes place. In first place, using an iteration algorithm 

written with R © software, we reproduce the above mentioned TOPSIS 

procedure changing the weights of each different criterion from 1% to 100% 

with steps of 1%, and distributing the difference in percentages between the 

new weight and the original one equally among the remaining criterions. This 

procedure will give us enough information to create graphs such as the 

following one: 

 

Figure 3-1 – Ranking/Weights graph example  

Once the stability and the changing intervals are defined (like in the picture 

above), we should quantify the distance in terms of percentage from the original 

weight decided by the decision maker to the changes of rank reversal. 

With all these data, the sensitivity of each criterion can be calculated according 

to the following formula: 

   
 

   
 
  

   
 

(3-8) 

Where: 

     is the minimum weight variation to the first ranking change from the 

original weights decided by the decision maker in percentage units. 
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    is the number of rank reversals during the 100 iterations. 

     is the average of the weight variations from the original weight to the 

changes of rank reversal expressed in percentage units. 

According to this definition, we manage to reflect the inversely proportional 

impact in the sensitivity term of the      term, the closest the first rank reversal 

change is, the highest the sensitivity is. The effect of the number of changes 

during the iteration is expressed with the term   , these changes represent 

instability and increase the value of the sensitivity as the number of changes 

grows. Finally, the term     allows to distinguish the difference between 

criterions where changes of rank reversal appear closer to the initial weight of 

the decision maker (what clearly means instability as a smaller modification in 

decision weighting is needed) and the criterions where the changes appear 

almost in the final zones of the graph. 
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4 Case Study 

4.1 Introduction 

The proposed Case Study focuses on the selection process of the most 

adequate material for the barrel of a pre-fillable syringe, a product designed to 

enable the performance for large volume drug-delivery.  

Several specifications describing the performance of the different resins used to 

produce this part of the product have been studied, and the most significant 

have been finally taken into account and measured. Their positive or negative 

impact has been assessed considering the effect of an increase in the quantity 

of the metric for each criterion. Furthermore, the different metrics have been 

classified according to four criteria:  

1. Cost 

2. Quality 

3. Environmental Sustainability 

4. Time 

4.2 Criteria 

4.2.1 Cost 

Some of the parameters needed to calculate the Cost section are expressed in 

table 1. 

Cost 

Parameters 

Resin 1 Resin 2 Resin 3 Impact 

Density (kg/m3) 1200* 1023* 900* Negative 

Extrusion 

Energy (MJ/kg) 

6.43* 10.9* 6.5* Negative 

Moulding 

Energy (MJ/kg) 

20.6* 28.4* 22.6* Negative 
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Recycling 

Energy (MJ/kg) 

38.7* 63.8* 27.2* Negative 

Raw Material 

Cost (£/kg) 

7.325 11.459 2.851 Negative 

Table 4-1 –Initial Parameters for Cost calculations 

* This data were acquired from CES EduPack 2018 software. [24] 

The different parameter‟s importance is explained following: 

 Density: Once the dimensions of the barrel are measured and the 

volume of raw material required to produce it is calculated, we have to 

know the density in order to calculate the mass of raw material needed, 

and, therefore, its price per unit. This price will comprise not only the raw 

material itself but also the price of the energy needed to produce it. 

After measuring the size and dimensions of a unit of the product, the 

volume of the finished good is of 38,02    . The production processes of 

extrusion and moulding have a material utilisation fraction of [0.9-0.99], in 

our case study we will consider the value of 0.9. This value has been 

found in CES EduPack 2018 software [24]. The software‟s sources only 

refer to the processes, not to the materials, so the utilisation fraction has 

been considered equal for the three resins. This gives us a quantity of 

42.24    -of-required raw material in order to achieve the desired 

volume in the finished good. 

 Extrusion and Moulding Energy: the process of transforming the raw 

material involves these two actions. Using this data, we can calculate the 

amount of energy needed and, considering that this process uses only 

electricity, calculate the cost of this process per unit. 

 Recycling Energy: we are focusing on the entire life cycle of the product, 

so the recycling part is also important in our study. Using the same path 

than in the property afore mentioned, the cost of energy for the recycling 

process can be estimated (due to lack of information about this process, 

it has been assumed that the totality of it can be executed with electric 
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energy, using the same energy cost than n the extrusion and moulding 

parameter to calculate the final value). 

 The Raw Material cost has been provided by the company of the case 

study in £/Kg, this unit will be converted into an extensive magnitude (£) 

using the density and the volume of each unit. 

Moreover, the intensive magnitudes of energy will be transformed from MJ/Kg 

to kWh/Kg applying the following unit‟s conversion: 

 
  

  
         

   

  
 

(4-1) 

Finally, in order to calculate the cost of energy consumption for the process the 

price of the kWh of electric energy in 2018 in UK has been used [25]: 

                     (4-2) 

As a result, the following table that summarises the different Economic 

parameters related to the Cost Criterion: 

Cost 
Parameters Resin 1 Resin 2 Resin 3 Impact 

Manufacturing 

Process Cost 

(£) 

0.047 0.058 0.038 Negative 

Raw Material 

Cost (£) 

0.371 0.495 0.108 Negative 

Recycling Cost 

(£) 

0.067 0.095 0.036 Negative 

Table 4-2 – Definitive Cost Parameters 

The metrics initially considered finally provided us with three main indicators:  

 Manufacturing process cost: Involves the cost related to the energy 

consumed in the extrusion and moulding processes. 



 

25 

 Raw material cost: Involves the cost of the raw material itself plus the 

cost of the energy needed to produce it. 

 Recycling process cost: Involves the cost of the energy needed to 

recycle the material once the life cycle of the product is over. 

4.2.2 Quality 

The different properties that have been evaluated for the Quality section are 

expressed in table 3. 

Quality 

Parameters 
Resin1 Resin 2 Resin 3 Impact 

Density (kg/m3) 1200* 1023* 900* Negative 

Heat 

Deflection Tª 

(ºC) 

[132-142]* [131-134]* 80* Positive 

Transparency Transparent Opaque Translucent Positive 

Table 4-3 – Initial Quality Parameters table with qualitative data 

* This data were acquired from CES EduPack 2018 software [24]. 

We can classify the characteristics above mentioned in three different criteria: 

 Density: Its importance lies in the weight of the material, the denser it is, 

the heaviest and uncomfortable it will be for the final user. 

 Heat Deflection Temperature: is the temperature at which 

a polymer or plastic sample deforms under a specified load. This is taken 

into account during storage in bad conditions, the highest the property is, 

the less risks of deformation the product will have. As two of the resins 

present intervals as a performance measure for this sub-criterion, the 

middle value of the ranges has been considered for the case study. 

Transparency: The syringe will contain drug and an appropriate visual contact 

with it is necessary, as the user may need to know how full the device is or if it 
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is clean or not before applying it. The information obtained this parameter is 

qualitative, but TOPSIS needs quantitative values in order to apply the 

algorithm, so these values should be transformed. Following the steps of A. 

Randjelovic, Fuzzificated Likert scale was used in order to evaluate the 

qualitative criteria (Camparo, 2013). The qualitative values were transformed 

into triangular fuzzy distributions that after were defuzzificated with the following 

formula [23]: 

  [(         )  (         )]           (4-3) 

Where: 

              respectively represent the right and left confidence interval of 

the triangular distributions. 

   represents the value of the defuzzificated parameter, the final 

transformation of the qualitative initial value. 

                 the peak value of the triangular distribution. 

 

Quality 
Parameters 

Resin 1 Resin 2 Resin 3 Impact 

Density 
(kg/m3) 

1200 1023 900 Negative 

Heat 
Deflection Tª 

(ºC) 
137 132,5 80 Positive 

Transparency 4.11 0.88666667 2.49666667 Positive 

Table 4-4 – Definitive Quality Parameters table with defuzzificated quantitative 

parameters 

4.2.3 Sustainability 

In terms of sustainability, the aim is to focus on the environmental sustainability 

parameters that are involved in the total life cycle of the product, including: 

production, extrusion, moulding and recycling processes. Table 5 represents 
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the initial data measured and the initial metrics taken into account to evaluate 

this criterion: 

Sustainability 

Parameters 
Resin 1 Resin 2 Resin 3 Impact 

Production 

CO2 Footprint 

(Kg/Kg) 

4.99* 9.93* 1.89* Negative 

Production 

Water Usage 

(l/Kg) 

182* 451* 41.2* Negative 

Extrusion CO2 

Footprint 

(Kg/Kg) 

0.43* 0.874* 0.488* Negative 

Extrusion 

Water Usage 

(l/Kg) 

7.24* 9.79* 7.28* Negative 

Moulding CO2 

Footprint 

(Kg/Kg) 

1.55* 2.27* 1.69* Negative 

Moulding 

Water Usage 

(l/Kg) 

18.9* 23.3* 20* Negative 

Recycling CO2 

Footprint 

(Kg/Kg) 

2.56* 3.38* 1.17* Negative 

Recycling 

Water Usage 
0.742* 0* 5.81* Negative 
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(l/Kg) 

Table 4-5 – Initial Environmental Sustainability Parameters table 

* This data were acquired from CES EduPack 2018 software [24] 

In order to facilitate comprehension, the data from the different steps of the 

process has been merged depending on its nature, and transformed into 

extensive values. The water usage per production process was calculated by 

multiplying the data from Table 5 times the mass of each unit of product. For the 

calculation of the CO2 footprint, the value was calculated using the MJ/Kg 

values appearing in Table 1, multiplying them by the mass of each unit of 

product depending on its material, transforming the energies into kWh and 

using the Carbon Intensity of Electricity value for UK 2018 [26]: 

              (4-4) 

The final results for the parameters taken into account for the sustainability 

criterion is shown in table 6: 

Sustainability 

Parameters 
Resin 1 Resin 2 Resin 3 Impact 

Raw Material 

Production 

CO2 Footprint 

(Kg) 

0.243 0.351 0.121 Negative 

Raw Material 

Production 

Water Usage 

(l) 

8.303 17.541 1.410 Negative 

Manufacturing 

CO2 Footprint 

(Kg) 

0.059 0.073 0.048 Negative 
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Manufacturing 

Water Usage 

(l) 

1.193 1.287 0.933 Negative 

Recycling CO2 

Footprint (Kg) 
0.085 0.119 0.045 Negative 

Recycling 

Water Usage 

(l) 

0.034 0.051 0.199 Negative 

Table 4-6 – Definitive Environmental Sustainability Parameters table 

The six main sub-criteria consider the CO2 footprint that each process 

(production, manufacturing and recycling) with each material creates measured 

in kg of CO2 per unit of product produced, and the water usage described in 

litres per unit of finished goods produced. These measures clearly have a 

negative impact, as the higher they are, the more they contaminate or the more 

they consume, which means a negative effect towards the environmental 

sustainability pursued in this study. 

The energy consumption of each process can‟t be taken into account 

individually as a parameter in this criterion as it has already been taken into 

account in the Cost criterion and TOPSIS forces its criteria to be independent 

among them and do not repeat data, otherwise the results will lead to errors. 

4.2.4 Time 

Despite this criterion is commonly one of the most complex ones when referring 

to production processes. the capacity of mass production of the producing plant 

and the various moulding machines in the studied location allows us to consider 

as equal the production time of the different resins, considering also their 

similarity in terms of the production related characteristics. Therefore, the only 

metric to be taken into consideration is the lead time of the supplier to deliver 

the material. These measures can be found below in table 7: 
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Time criterion Resin 1 Resin 2 Resin 3 Impact 

Lead Time 

(days) 
63 60 90 Negative 

Table 4-7 – Time Parameters table 

The impact of this criterion is obviously negative as the higher the delivery time 

is, the longer it will take to buy new raw material needed for the production 

process. 

4.3 Weight Selection Process 

The weights along the different criteria and sub-criteria have been defined 

thanks to a survey answered by  40 students from the Cranfield School of 

Aerospace. Transport and Manufacturing belonging to different MSc courses 

with knowledge related to the discussed fields.  

The results obtained will define the initial weight distribution for our case study, 

presented in the following tables: 

Table 8 shows the initial weight distribution among the four different criteria, 

these values will be used as the original point of our sensitivity analysis. 

Criterion Cost Quality Environmental 

Sustainability 

Time 

Weights 

Distribution 

26% 31% 22% 21% 

Table 4-8 – Criteria Weight Distribution 

Some of the criteria have sub-criteria, that is why the different specific weights 

of these sub-criteria should be determined too in order to introduce it in the 

TOPSIS algorithm. 
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Table 9 shows the initial weight distributions of the three sub-criteria of the Cost 

criterion. 

Cost Sub-

criteria 

Manufacturing 

Energy Cost 

Raw Material 

Cost 

Recycling 

Energy Cost 

Weights 

Distribution 
39% 33% 28% 

Table 4-9 – Cost’s Sub-criteria Weight distribution 

Following the path above, Table 10 expresses the division of relative 

importance among the different sub-criteria of the Quality criterion. 

Quality 

Sub-criteria 
Density 

Heat Deflection 

Temperature 
Transparency 

Weights 

Distribution 
36% 35% 29% 

Table 4-10 – Quality’s Sub-criteria Weight distribution 

Finally, Table 11 expresses the weight distribution of the six sub-criteria for the 

Environmental Sustainability criterion. Time criterion does not have a weight 

distribution, as it is the only criterion without sub-criteria. 

Environmental 

Sustainability 

Sub-criteria 

CO2-

RM1 
Water- RM2 CO2-M

3 
Water-

M4 

CO2-

R5 
Water-R6 

Weights 

Distribution 
15% 21% 14% 16% 20% 14% 

Table 4-11 – Environmental Sustainability’s Sub-criteria Weight distribution 

1. CO2-RM1 stands for the CO2 footprint created in the Ram Material 

production process. 

2. Water- RM2 stands for the Water Usage in the Ram Material production 

process. 
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3. CO2-M
3 stands for the CO2 footprint created in the manufacturing 

process (extrusion and moulding). 

4. Water-M4 stands for the Water Usage in the manufacturing process 

(extrusion and moulding). 

5. CO2-R
5 stands for the CO2 footprint created in the recycling process. 

6. Water-R6 stands for the Water Usage in the recycling process. 

As a combination of the weights of the criteria and sub-criteria, the final Weight 

Distribution Vector that will appear in the TOPSIS algorithm is shown in Table 

12: 

Cost 
Density 
(kg/m3) 

Heat 
Deflection 

Tª (ºC) 
Transparency 

CO2 
Footprint 

(Kg) 

Water 
Usage 

(l) 

Time 
(days) 

26% 11% 11% 9% 11% 11% 21% 

Table 4-12 – Final Weight Distribution Vector  
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5 Results & Discussion 

5.1 Introduction 

In the following section, the methodology of section 3 will be applied to the case 

study of section 4 in closeness to get the results for our proposed Case Study. 

The four criteria and their multiple sub-criteria for which the methodology will be 

applied are shown in Figure 3: 

 

Figure 5-1 – Breakdown of the Case Study Decision Making Problem 

5.2 Original weight distribution 

Once the weights vector and the measure of the performance matrix were 

determined, adding them to the optimisation vector (the one that determines if a 

positive variation in the measurement performance of an indicator is positive or 

negative for the desired outcome), the TOPSIS algorithm is applied with the 

initial weights is applied. In Table 13 we can see the answers provided: 

Resins Relative closeness to ideal solution Ranking 

1 0.3626375 2 

2 0.2637381 3 
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3 0.7121498 1 

Table 5-1 – Ranking and Relative Closeness to Ideal Solution Values with 

the initial specific weights as input 

It can be stated that, based on the results according to the initial conditions, 

Resin 3 is considered the best alternative with a big difference compared to the 

next competitor, Resin 1, that is closely followed by Resin 2. 

After collecting the results, the next step will be executing the Sensitivity 

Analysis proposed in the Methodology section. An iteration of the specific 

weights of each criterion from 0% to 100% with 1% steps will be performed. The 

results obtained are commented in the following sections. 

5.3 Cost criterion 

After applying the algorithm to iterate the weight values of the cost criterion, the 

following graphs where obtained: 

 

Figure 5-2 – Ranking behaviour during the iteration process of the Cost criterion 

Figure 4 represents the ranking of the different alternatives along the different 

weight associated to the Cost criterion. As we can clearly see, Resin 3 is ranked 

as the first option, independently of the weight associated to the criterion. The 

same happens with Resin 1, ranked as the second best; and with Resin 2 

ranked as the third option. Moreover, according to what Figure 3 is showing, the 

relative closeness to the ideal solution of Resin 3 grows until reaching 1 when 
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the weight of the Cost criterion reaches 100%, while the value for the other two 

resins diminishes until Resin 2 reaches 0. 

This means that, not only Resin 3 is considered the best option along the entire 

process, demonstrating the robustness of this criterion, but also that the 

decision gets more robust as its weight increases.  

 

Figure 5-3 – Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Cost criterion 

According to the information provided by the graphs, is easy to guess that the 

sensitivity of the Cost criterion is SC=0 as there are no rank reversals and there 

is no distance to the closest change in the ranking (the ranking never changes). 

5.4 Quality criterion 

As has been explained in the Case study section of the report, the Quality 

criterion is formed by three sub-criterion whose measurement performances are 

expressed in diverse units. In this section we will cover the robustness of each 

of them individually.  
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5.4.1 Density 

The following graphs express the behaviour of the Density sub-criterion: 

 

Figure 5-4 - Ranking behaviour during the iteration process of the Density sub-

criterion 

As is shown in Figure 6, Resin 3 maintains itself as the best alternative along 

the entire process, while Resin 2 and Resin 1 switch their rank when the 

specific weight of the criterion reaches 36%. At that moment Resin 1 goes from 

second position to third, and Resin 2 does the opposite movement. 

Moreover, Figure 7 also demonstrates the different tendencies of resins 2 and 1 

in the rank reversal in iteration. In addition, its closeness to the ideal solution 

grows almost during all the process, reinforcing the leadership of Resin 3 

referring to the density criterion. 
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Figure 5-5 - Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Density sub-criterion 

As opposed to the previous criterion, Density does have a change of rank 

reversal, so its measurement of Sensitivity Coefficient cannot be zero. Its 

Sensitivity measurement can be expressed as SC=0.08. 

5.4.2 Heat Deflection Temperature (HDT) 

The second sub-criterion inside the cost criterion is the Heat Deflection 

Temperature property of the resins. 

 

Figure 5-6 - Ranking behaviour during the iteration process of the Heat 

Deflection Temperature sub-criterion 
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It can clearly be observed that the Heat Deflection Temperature sub-criterion is 

the most critical out of the three previously studied. It has two rank reversals, 

with three alternative position changes, in iteration 36 and iteration 40, and each 

of the alternatives appears in at least 2 different positions of the rank, while 

Resin 3 is ranked in every position along the iteration process. The two 

alternatives that can be considered as the best options are Resin 3 (with 

specific HDT weights from 1% to 36%) and Resin 1 (with specific HDT weights 

from 36% to 100%). 

While the 2nd position of the ranking is held by all the 3 alternatives: Resin 1 

from iteration 1 until iteration 36, Resin 3 from iteration 36 until the 40th, and 

last but not least, the Resin 2 maintains itself ranked there until the end of the 

process.  

Finally, the worst option starts being Resin 2, but as times passes and the 40th 

iteration arrives; Resin 3 takes the lead and stays as the worst option. 

The graph shown in Figure 9 reinforces these behaviour descriptions. Despite 

Resin 3 starts with the highest relative closeness to ideal solution value, its 

tendency is clearly downward and in its way to the value 0 it crosses the other 

two alternatives, which present a growing tendency. It is remarkable to mention 

also that, according to the graph, Resin 2‟s tendency seems to have a higher 

slope than Resin 1 and, if the experiment would have carried on with iterations 

over 100% in specific weight terms, Resin 2 would have probably became the 

best ranked solution. 
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Figure 5-7 – Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Heat Deflection Temperature sub-criterion 

To conclude, the Sensitivity Coefficient of this sub-criterion was calculated, 

attending to the amount of changes, and the specific  weight difference of this 

changes from the initial value, giving a score of SC=0.11407. 

5.4.3 Transparency 

The last sub-criterion that forms the Quality main criterion has also been 

analysed. The following graphs define its behaviour. 

  

Figure 5-8 - Ranking behaviour during the iteration process of the Transparency 

sub-criterion 
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This sub-criterion‟s behaviour is similar to the one for density. The main 

difference between both of them is that the ranking position held always by the 

same alternative is the worst one, not the first one (as happened in the Density 

criterion analysis). Undoubtedly, Resin 2 ranks as the worst alternative along 

the totality of the process while Resins 1 and 3 share the first and second 

position. Resin 3 starts at the top of the ranking but falls into the second position 

after iteration number 31, where Resin 1 takes the lead and keeps it until the 

end of the process.  

As Figure 11 shows below, Resin 1 has a positive tendency while Resin 3 has a 

negative slope, this leads to the change of ranking in the 31st iteration. Resin 2 

starts as the less close to the Ideal Solution and its decreasing tendency 

prevents it from changing the position it is ranked along the process. However, 

at the starting point it is very close to Resin 1, and with a measurement 

performance slightly better, the initial rank for the first iteration could have been 

different. 

 

Figure 5-9 - Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Transparency sub-criterion 
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Finally, the Sensitivity Coefficient of the Transparency sub-criterion was 

calculated, giving a value of SC=0.09091. This value is higher than the 

Density‟s SC, despite having the same amount of rank reversals, because of 

the ranking change appearing before the Density‟s one. However, the value is 

lower than the HDT‟s one as there is only 1 change of rank. 

5.4.4 Environmental Sustainability 

As explained in the Case study section, the Environmental Sustainability 

criterion is also formed by more than one sub-criterion and their measurement 

performance are expressed in different units. In this section, we will cover the 

robustness of the two of them individually. 

5.4.5 CO2 Footprint 

The ranking along the process and the Relative Closeness to the Ideal Solution 

of the CO2 Footprint sub-criterion are plotted in the following graphs. 

 

Figure 5-10 - Ranking behaviour during the iteration process of the CO2 

Footprint sub-criterion 

This specific sub-criterion shows no rank reversal during the process, the three 

different resins are ranked in the same order constantly. Resin 3 is classified as 

the best option, followed by Resin 1 and Resin 2 completes the classification. 

Moreover, Figure 11 shows the negative slope of 2 while Resin 3 has a clearly 

positive gradient, which marks the difference between the alternatives, 

increasing as the iterations advance. Finally, Resin 1 shows an almost neutral 
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slope (slightly negative), so the initial difference with the other two resins 

increases too as they have clearly negative or positive gradients. 

 

Figure 5-11 - Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the CO2 Footprint sub-criterion 

It is plain to see that the figure for the Sensitivity Coefficient of this sub-criterion 

will be- SC=0, as there is no rank reversal along the process. 

5.4.6 Water Usage 

If we analyse the results obtained from the second sub-criterion of the 

Environmental Sustainability criterion, similar conclusions will be found. 
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Figure 5-12 - Ranking behaviour during the iteration process of the Water Usage 

sub-criterion 

The results shown in Figure 14 are exactly the same as the ones previously 

seen in Figure 10. Resin 3 leads the ranking along the entire process, Resin 1 

ranks second and Resin 2 ranks third. However, the results do slightly differ 

from the previous sub-criterion if we take into account Figure 13 and 15. The 

main difference lies in the tendency of the second ranking criterion. In this case, 

Resins 2 and 1 have clear negative slopes and Resin 3 shows a mainly positive 

one. 

 

Figure 5-13 - Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Water Usage sub-criterion 
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It is obvious to state that the Sensitivity Coefficient for this sub-criterion will be 

also SC=0. 

5.5 Time 

The last criterion to analyse is the lead-time criterion. Exactly like happened 

with the Cost criterion, this criterion lacks sub-criterions, so the analysis is 

simpler than the previous ones. The following graphs show its behaviour. 

 

Figure 5-14 - Ranking behaviour during the iteration process of the Time criterion 

As Figure 16 shows, the Time criterion presents some variances along the 

iteration process. Resin 3 is ranked as the best option from the first iteration 

until the fiftieth, where it changes its rank directly to the 3rd position. Resin 1 

shows an uncommon behaviour, at first it ranked 2nd from the beginning of the 

process until the 50th iteration, where it ranked the first position, but just 8 

iterations later, goes back to the second position and remains secondly ranked 

until the end of the process. Finally, Resin 2 starts as the worst ranked option; it 

changes into the 2nd best ranked option in the 50th iteration and in the 58th 

iteration swaps its position with Resin 1 becoming the new ranking leader. 

This behaviour description of the alternatives is supported by Figure 17. 

Although the zone where the 3 criteria get closer is too narrow to appreciate it 

clearly, we can see how, right after the iteration where they cross, Resin 3 goes 

from the highest Relative Closeness to Ideal Solution value to the lowest, and 

0

1

2

3

4

1
%

6
%

1
1
%

1
6
%

2
1
%

2
6
%

3
1
%

3
6
%

4
1
%

4
6
%

5
1
%

5
6
%

6
1
%

6
6
%

7
1
%

7
6
%

8
1
%

8
6
%

9
1
%

9
6
%

R
a
n

k
in

g
 

Weights 

Resin 1

Resin 2

Resin 3



 

45 

Resin 1 presents a higher value than Resin 2 only during some iterations from 

the crossing moment. Following, despite both have positive slopes; Resin 2 

maintains the 1st position of the ranking while Resin 1 follows it closely. 

However, Resin 3 showed a negative tendency from the beginning of the 

iteration and ends the experiment with a Relative Closeness to Ideal Solution 

value of zero. 

 

Figure 5-15 - Relative Closeness to the Ideal Solution Value behaviour during the 

iteration process of the Time criterion 

To end this section, the value of the Sensitivity Coefficient of this criterion must 

be calculated. It is important to notice that, in spite of the fact that several 

changes take place along the process, these changes appear in points that are 

distant from the original specific weight value, which decreases the Sensitivity 

Coefficient significantly. The figure the Sensitivity formula gives us is 

SC=0.09508. 

5.6 Comparison with VIKOR 

With the objective of determining the sensitivity analysis validity, the same 

methodology has been applied but using VIKOR as MCDM technique instead of 

TOPSIS to see how the results diverge depending on the tools used. 
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5.6.1 Original Weight Distribution 

Attending to the same original weight‟s distribution utilised for the TOPSIS 

algorithm, the following table has been completed: 

Resins Ranking 

1 2 

2 3 

3 1 

Table 5-2 - Ranking with the initial specific weights as input using VIKOR 

As It can be seen, based on the results according to the initial conditions, the 

order of the alternatives is exactly the same than the obtained using the 

TOPSIS algorithm. 

The following step will be applying the Methodology defined in Section 3 but 

using the VIKOR (Appendix A3) code instead of the TOPSIS code (Appendix 

A2). 

5.6.2 Cost Criterion 

The ranking of the cost criterion slightly diverges from the one previously 

obtained with the TOPSIS algorithm, as it can be seen in Figure 16: 
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Figure 5-16 - Ranking behaviour during the iteration process of the Cost criterion 

 

The iteration process starts with Resin 1 as the best ranked but when the 

specific weight of the Cost criterion reaches 21%, Resin 1 swaps its position in 

the ranking with Resin 3 and both maintain this new order during the entire 

process. Meanwhile, Resin 2 is ranked as the worst alternative during the 

totality of the process. Despite there is only one change in the Cost Sensitivity 

Analysis, we can appreciate a high figure for the Sensitivity Coefficient SC=0.4. 

This appears to be because the rank reversal happens in iteration 25th which is 

really close to the original specific weight value of the Cost criterion (26%).  

5.6.3 Density Sub-Criterion 

The first sub-criterion of the Quality criterion represents a less stable behaviour 

when analysing it with VIKOR than with TOPSIS as the following figure shows: 
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Figure 5-17 - Ranking behaviour during the iteration process of the Density sub-

criterion 

As it can be seen, the iteration starts with Resin 1 as the best ranking, but this 

only happens until the 8th iteration where Resin 3 takes the lead. Further in the 

process, in iteration 34, it swaps its position with Resin 2 and keeps ranked as 

the worst option until the end of the process; it has a clear negative tendency. 

On the other side, both Resin 2 and 3 are able to maintain their ranking after the 

swapping with Resin 1 and end the process in 2nd and 1st position, respectively.  

This sub-criterion also shows a high value of Sensitivity Coefficient, 

SC=0.48718 due to the position of the first change (8th iteration), which appears 

to be very near to the initial specific weight value (11%). 

5.6.4 Heat Deflection Temperature Sub-Criterion 

Just like with the TOPSIS algorithm, this sub-criterion appears to be one of the 

most sensitive with VIKOR too. As the following figure shows, 2 ranking 

changes appear during the iteration process. 
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Figure 5-18 - Ranking behaviour during the iteration process of the HDT sub-

criterion 

These changes appear to happen in the 15th and 30th iteration, the first one is 

also near to the initial weight value of the sub-criterion (11%), that is the reason 

why the Sensitivity Coefficient gives a high figure as result, SC=0.42391. 

5.6.5 Transparency Sub-Criterion 

When it comes to talk about transparency, its behaviour with VIKOR seems to 

be almost the same than with TOPSIS, as the following figure shows: 
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Figure 5-19 - Ranking behaviour during the iteration process of the Transparency 

sub-criterion 

As the figure shows, Resin 2 is ranked as the 3rd alternative during the totality of 

the process. However, the ranking of Resin 1 and 3 varies, Resin 1 starts in the 

2nd position but after iteration 16, swaps its position with Resin 3 and both 

maintain the 1st and 2nd position in the ranking respectively. 

Despite this criterion is quite stable, it does have a significant value of 

Sensitivity Coefficient (SC=0.28571) because the rank reversal appears in the 

16th iteration, just 7% away from the initial specific weight value. 

5.6.6 CO2 Footprint Sub-Criterion 

The analysis of the CO2 footprint shows a sub-criterion that tends to be very 

stable as the iterations advance. Resin 1 starts as first ranked and Resin 3 as 

second, but in the 5th iteration they swap their position and keep them until the 

end of the experiment. Resin 2 is considered the worst alternative during the 

entire process. 
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Figure 5-20 - Ranking behaviour during the iteration process of the CO2 

Footprint sub-criterion 

Despite this apparent stability, in the first steps of the experiment the rank 

reversal (fifth iteration), which tends to be very close to its initial weight value 

(11%), provokes the high figure of Sensitivity Coefficient the algorithm gives 

SC=0.33.  

5.6.7 Water Usage Sub-Criterion 

Its behaviour is similar to the previous described sub-criterion, as the following 

figure represents: 

 

Figure 5-21 – Ranking behaviour during the iteration process of the Water Usage 

sub-criterion 
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In it, Resin 2 is ranked during the entire process as the worst one and Resin 1 

and 3 swap their ranking positions in the third iteration, leaving Resin 3 as the 

best ranked until the end of the process and Resin 1 as the 2nd ranked. 

The value for the Sensitivity Coefficient of this sub-criterion (SC=0.25) is still a 

significant figure, despite is slightly smaller than the previous one due to the 

appearance of the rank  reversal in a slightly further iteration to the initial weight 

than in the previous sub-criterion (3rd iteration). 

5.6.8 Time Criterion 

Finally, the Time criterion appears to be one of the most sensitive, just like in 

the TOPSIS SA, due to the 3 rank reversals that the following graph shows: 

 

Figure 5-22 - Ranking behaviour during the iteration process of the Time criterion 

As it can be clearly seen, Resin 2 starts the iteration process in the last position 

of the ranking, but advances to the second position in iteration number 39 to 

finally end as the first ranked after the 74th iteration. On the other hand, Resin 3 

makes the opposite path: it starts ranked as the 1st option, but switches to the 

2nd position in the rankling after 25 iterations and ends last in the ranking from 

the 39th iteration until the end of the process. Finally, Resin 1 starts as the 

second alternative, but during 49 iterations is ranked as the best one, until the 

74th iteration, where it swaps with Resin 2, going back to the 2nd position of the 
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ranking. Despite the high amount of rank reversals, the Time criterion is not the 

one with the highest figure of Sensitivity Coefficient (SC=0.37) due to the 

remoteness of the rank reversal compared to the initial specific weight of the 

criterion. 

5.7 Summary 

Table 15 shows the different calculated values and interest points of the 

behaviour of all the criteria and sub-criteria after the performance of the totality 

of the analysis applying TOPSIS method. 

Criterion 
Sub-

Criterion 

Number of 

Rank 

Reversals 

Iteration 

of the 

Rank 

changes 

Sensitivity 

Coefficient 

Sensitivity 

Coefficient 

(SC) 

Cost Cost 0 0 0 0 

Quality 

Density 1 36 0.08 

0.09499 
Heat Deflection 

Tª 
2 

36 

0.11407 

40 

Transparency 1 31 0.09091 

Environmental 

Sustainability 

CO2 Footprint 0 0 0 

0 

Water Usage 0 0 0 

Time Time 2 

50 

0.09508 0. 09508 

58 

Table 5-3 – Sensitivity Coefficient, number and position of rank changes per 

criterion and sub-criterion using TOPSIS technique 

While Table 16 shows the same values but for the VIKOR method: 

Criterion Sub- Number of Iteration Sensitivity Average 
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Criterion Rank 

Reversals 

of the 

Rank 

changes 

Coefficient 

(SC) 

Sensitivity 

Coefficient  

Cost Cost 1 21 0.4 0.4 

Quality 

Density 2 

8 

0.48718 

0.39893 

34 

Heat Deflection 

Tª 
2 

15 

0.42391 

30 

Transparency 1 16 0.29571 

Environmental 

Sustainability 

CO2 Footprint 1 5 0.333 

0.29165 

Water Usage 1 3 0.25 

Time Time 3 

25 

0.37 0. 37 39 

74 

Table 5-4 - Sensitivity Coefficient, number and position of rank changes per 

criterion and sub-criterion using VIKOR technique 

Comparing the 2 methods, we can state that TOPSIS provides more robust 

results than VIKOR, as after all the analysis performed. Two of the criteria have 

a Sensitivity Coefficient SC=0, and despite two other Criteria show some 

changes in the ranking along the process, the value of their SC is not very high 

and the first rank reversal appears when Transparency sub-criterion is worth a 

31%, when its initial value (mentioned in Table 13, section 4) is 9% (22% of 

specific weight difference). The other changes appear in higher iterations, so 

they compromise even less the stability of the decision-making process. 

However, VIKOR not only provokes more rank reversals (one more per each 

criterion or sub-criterion but for HDT which maintains the 2 changes), but these 
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changes tend to appear generally in earlier moments of the iteration process, 

this tendency is the one that results in such a difference between the Sensitivity 

Coefficients calculated with the two different methods. However, the Sensitivity 

Analysis technique positively analyses the robustness of the different decisions 

and gives representative values of the Sensitivity Coefficient, so it is easy to 

determine just by reading the coefficient, which is more sensitive or robust, 

characteristic which is graphically demonstrated with the figures. 

5.8 Future Work 

After the results of the two MCDM techniques were analysed and evaluated as 

positive, two targets remain to be met. Firstly, despite the methodology has 

been proved to be successful with TOPSIS and VIKOR, it stills need to be 

assessed with many other MCDM techniques that involve weight selection 

process (such as ELECTREE, PROMETHEE, WSM, WPM…) and their results 

must be analysed. Finally, a new definition of a Global Sensitivity Coefficient 

able to merge the various criteria Sensitivity Coefficient needs to be invented 

and evaluate its validity. 
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6 Conclusion 

Multi-Criteria Decision Making techniques are powerful tools decision makers 

use when facing difficult decisions with various alternatives and criteria to 

evaluate. Sensitivity Analysis is an accurate way of assessing the reliability of 

these decisions in order to reinforce the conviction of having taken the right 

decision. 

Due to the lack of research in these practises, a deep research about the 

current and past Sensitivity Analysis approaches was done in the Literature 

Review. Once a knowledge basis was established, an innovative methodology 

for performing this technique, together with a new mathematical definition of the 

Sensitivity Coefficient were created and exposed. Moreover, a case study was 

analysed, and the methodology was applied to it, giving as a result a detailed 

analysis of the robustness of the initial decision and an accurate measurement 

of the sensitivity of each criterion. 

As a conclusion, the aim of the Individual Research Project has been fulfilled 

and the objectives have been met, considering the new Sensitivity definition a 

success based on the results obtained and all the references found in the 

Literature Review.
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APPENDICES 

Appendix A - R Simulation Code 

A.1 Introduction 

In order to calculate the results shown in section 5, the software called R has 

been used. Using the TOPSIS code already created in the [27], an iteration 

algorithm that reproduced the explained technique in the Methodology section 

has been developed so that not only the ranking order along the iteration but 

also the Relative Closeness to the ideal solution values were saved in vectors, 

and afterwards plotted using Excel to create the graphs shown in the Results & 

Discussion section. 

A.2 Code using TOPSIS algorithm 

library(MCDM) 

MP <-

matrix(c(0.1438,0.19145,0.0545,1200,1023,900,137,132.5,80,4.11,0.88667,2.4

9667,0.06177,0.08684,0.03375,1.93925,3.8966,0.47323,63,60,90),nrow=3,ncol

=7) 

Ncrit<-7 

newweight<-rep(0,7) 

w1<-0.26 

w2<-0.11 

w3<-0.11 

w4<-0.09 

w5<-0.11 

w6<-0.11 

w7<-0.21 
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MinDistC1<-0 

MinDistC2<-0 

MinDistC3<-0 

MinDistC4<-0 

MinDistC5<-0 

MinDistC6<-0 

MinDistC7<-0 

AvgDistC1<-0 

AvgDistC2<-0 

AvgDistC3<-0 

AvgDistC4<-0 

AvgDistC5<-0 

AvgDistC6<-0 

AvgDistC7<-0 

AcumC1<-0 

AcumC2<-0 

AcumC3<-0 

AcumC4<-0 

AcumC5<-0 

AcumC6<-0 

AcumC7<-0 

sensitivityC1<-0 

sensitivityC2<-0 
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sensitivityC3<-0 

sensitivityC4<-0 

sensitivityC5<-0 

sensitivityC6<-0 

sensitivityC7<-0 

C1order1<-rep(0,100) 

C1order2<-rep(0,100) 

C1order3<-rep(0,100) 

C2order1<-rep(0,100) 

C2order2<-rep(0,100) 

C2order3<-rep(0,100) 

C3order1<-rep(0,100) 

C3order2<-rep(0,100) 

C3order3<-rep(0,100) 

C4order1<-rep(0,100) 

C4order2<-rep(0,100) 

C4order3<-rep(0,100) 

C5order1<-rep(0,100) 

C5order2<-rep(0,100) 

C5order3<-rep(0,100) 

C6order1<-rep(0,100) 

C6order2<-rep(0,100) 

C6order3<-rep(0,100) 
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C7order1<-rep(0,100) 

C7order2<-rep(0,100) 

C7order3<-rep(0,100) 

 

C1closeness1<-rep(0,100) 

C1closeness2<-rep(0,100) 

C1closeness3<-rep(0,100) 

C2closeness1<-rep(0,100) 

C2closeness2<-rep(0,100) 

C2closeness3<-rep(0,100) 

C3closeness1<-rep(0,100) 

C3closeness2<-rep(0,100) 

C3closeness3<-rep(0,100) 

C4closeness1<-rep(0,100) 

C4closeness2<-rep(0,100) 

C4closeness3<-rep(0,100) 

C5closeness1<-rep(0,100) 

C5closeness2<-rep(0,100) 

C5closeness3<-rep(0,100) 

C6closeness1<-rep(0,100) 

C6closeness2<-rep(0,100) 

C6closeness3<-rep(0,100) 

C7closeness1<-rep(0,100) 
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C7closeness2<-rep(0,100) 

C7closeness3<-rep(0,100) 

 

 

optimise<-c('min','min','max','max','min','min','min') 

changesC1<-0 

changesC2<-0 

changesC3<-0 

changesC4<-0 

changesC5<-0 

changesC6<-0 

changesC7<-0 

changemomentC1<-rep(1000,100) 

changemomentC2<-rep(1000,100) 

changemomentC3<-rep(1000,100) 

changemomentC4<-rep(1000,100) 

changemomentC5<-rep(1000,100) 

changemomentC6<-rep(1000,100) 

changemomentC7<-rep(1000,100) 

counterC1<-1 

counterC2<-1 

counterC3<-1 

counterC4<-1 
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counterC5<-1 

counterC6<-1 

counterC7<-1 

plotvectorC1<-c() 

plotvectorC2<-c() 

plotvectorC3<-c() 

plotvectorC4<-c() 

plotvectorC5<-c() 

plotvectorC6<-c() 

plotvectorC7<-c() 

for (i in 1:100){ 

weight<-c(round(i/100,digits=20),round((w2+((w1-i/100)/(Ncrit-

1))),digits=20),round((w3+((w1-i/100)/(Ncrit-1))),digits=20),round((w4+((w1-

i/100)/(Ncrit-1))),digits=20),round((w5+((w1-i/100)/(Ncrit-

1))),digits=20),round((w6+((w1-i/100)/(Ncrit-1))),digits=20),round((w7+((w1-

i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round(i/100,digits=20),round((w2+((w1-i/100)/(Ncrit-

1))),digits=20),round((w3+((w1-i/100)/(Ncrit-1))),digits=20),round((w4+((w1-

i/100)/(Ncrit-1))),digits=20),round((w5+((w1-i/100)/(Ncrit-

1))),digits=20),round((w6+((w1-i/100)/(Ncrit-1))),digits=20),round((w7+((w1-

i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 



 

67 

weight<-c(round(i/100,digits=20)/normalise,round((w2+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w1-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(1,0,0,0,0,0,0) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C1order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C1order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C1order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C1closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C1closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C1closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

if (i>1){ 
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if (C1order1[i]!=C1order1[i-1]||C1order2[i]!=C1order2[i-

1]||C1order3[i]!=C1order3[i-1]){ 

changesC1=changesC1+1 

changemomentC1[i]=i 

}}} 

 

for (i in 1:100){ 

weight<-c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w3+((w2-i/100)/(Ncrit-

1))),digits=20),round((w4+((w2-i/100)/(Ncrit-1))),digits=20),round((w5+((w2-

i/100)/(Ncrit-1))),digits=20),round((w6+((w2-i/100)/(Ncrit-

1))),digits=20),round((w7+((w2-i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w3+((w2-i/100)/(Ncrit-

1))),digits=20),round((w4+((w2-i/100)/(Ncrit-1))),digits=20),round((w5+((w2-

i/100)/(Ncrit-1))),digits=20),round((w6+((w2-i/100)/(Ncrit-

1))),digits=20),round((w7+((w2-i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w3+((w2-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w4+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w2-i/100)/(Ncrit-1))),digits=20)/normalise) 
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#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,1,0,0,0,0,0) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C2order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C2order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C2order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C2closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C2closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C2closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

 

if (i>1){ 

if (C2order1[i]!=C2order1[i-1]||C2order2[i]!=C2order2[i-

1]||C2order3[i]!=C2order3[i-1]){ 

changesC2=changesC2+1 
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changemomentC2[i]=i 

}}} 

 

for (i in 1:100){ 

weight<-c(round((w1+((w3-i/100)/(Ncrit-1))),digits=20),round((w2+((w3-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w4+((w3-i/100)/(Ncrit-

1))),digits=20),round((w5+((w3-i/100)/(Ncrit-1))),digits=20),round((w6+((w3-

i/100)/(Ncrit-1))),digits=20),round((w7+((w3-i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w3-i/100)/(Ncrit-1))),digits=20),round((w2+((w3-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w4+((w3-i/100)/(Ncrit-

1))),digits=20),round((w5+((w3-i/100)/(Ncrit-1))),digits=20),round((w6+((w3-

i/100)/(Ncrit-1))),digits=20),round((w7+((w3-i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w4+((w3-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w5+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w3-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 
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if (i==100){ 

weight<-c(0,0,1,0,0,0,0) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C3order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C3order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C3order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C3closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C3closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C3closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

 

if (i>1){ 

if (C3order1[i]!=C3order1[i-1]||C3order2[i]!=C3order2[i-

1]||C3order3[i]!=C3order3[i-1]){ 

changesC3=changesC3+1 

changemomentC3[i]=i 

}}} 
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for (i in 1:100){ 

weight<-c(round((w1+((w4-i/100)/(Ncrit-1))),digits=20),round((w2+((w4-

i/100)/(Ncrit-1))),digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w5+((w4-i/100)/(Ncrit-

1))),digits=20),round((w6+((w4-i/100)/(Ncrit-1))),digits=20),round((w7+((w4-

i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w4-i/100)/(Ncrit-1))),digits=20),round((w2+((w4-

i/100)/(Ncrit-1))),digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w5+((w4-i/100)/(Ncrit-

1))),digits=20),round((w6+((w4-i/100)/(Ncrit-1))),digits=20),round((w7+((w4-

i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w4-i/100)/(Ncrit-

1)))/normalise,digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w5+((w4-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w6+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w4-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 
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weight<-c(0,0,0,1,0,0,0) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C4order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C4order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C4order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C4closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C4closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C4closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

if (i>1){ 

if (C4order1[i]!=C4order1[i-1]||C4order2[i]!=C4order2[i-

1]||C4order3[i]!=C4order3[i-1]){ 

changesC4=changesC4+1 

changemomentC4[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w5-i/100)/(Ncrit-1))),digits=20),round((w2+((w5-

i/100)/(Ncrit-1))),digits=20),round((w3+((w5-i/100)/(Ncrit-

1))),digits=20),round((w4+((w5-i/100)/(Ncrit-
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1))),digits=20),round(i/100,digits=20),round((w6+((w5-i/100)/(Ncrit-

1))),digits=20),round((w7+((w5-i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w5-i/100)/(Ncrit-1))),digits=20),round((w2+((w5-

i/100)/(Ncrit-1))),digits=20),round((w3+((w5-i/100)/(Ncrit-

1))),digits=20),round((w4+((w5-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w6+((w5-i/100)/(Ncrit-

1))),digits=20),round((w7+((w5-i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w6+((w5-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w7+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,0,0,0,1,0,0) 

} 
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TOPSISLinear(MP,weight,optimise) 

C5order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C5order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C5order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C5closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C5closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C5closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

if (i>1){ 

if (C5order1[i]!=C5order1[i-1]||C5order2[i]!=C5order2[i-

1]||C5order3[i]!=C5order3[i-1]){ 

changesC5=changesC5+1 

changemomentC5[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w6-i/100)/(Ncrit-1))),digits=20),round((w2+((w6-

i/100)/(Ncrit-1))),digits=20),round((w3+((w6-i/100)/(Ncrit-

1))),digits=20),round((w4+((w6-i/100)/(Ncrit-1))),digits=20),round((w5+((w6-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w7+((w6-i/100)/(Ncrit-

1))),digits=20)) 
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#print(weight) 

 

normalise<-sum(c(round((w1+((w6-i/100)/(Ncrit-1))),digits=20),round((w2+((w6-

i/100)/(Ncrit-1))),digits=20),round((w3+((w6-i/100)/(Ncrit-

1))),digits=20),round((w4+((w6-i/100)/(Ncrit-1))),digits=20),round((w5+((w6-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w7+((w6-i/100)/(Ncrit-

1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w7+((w6-

i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(0,0,0,0,0,1,0) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C6order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 
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C6order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C6order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 

 

C6closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C6closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C6closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

if (i>1){ 

if (C6order1[i]!=C6order1[i-1]||C6order2[i]!=C6order2[i-

1]||C6order3[i]!=C6order3[i-1]){ 

changesC6=changesC6+1 

changemomentC6[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w7-i/100)/(Ncrit-1))),digits=20),round((w2+((w7-

i/100)/(Ncrit-1))),digits=20),round((w3+((w7-i/100)/(Ncrit-

1))),digits=20),round((w4+((w7-i/100)/(Ncrit-1))),digits=20),round((w5+((w7-

i/100)/(Ncrit-1))),digits=20),round((w6+((w7-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20)) 

#print(weight) 
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normalise<-sum(c(round((w1+((w7-i/100)/(Ncrit-1))),digits=20),round((w2+((w7-

i/100)/(Ncrit-1))),digits=20),round((w3+((w7-i/100)/(Ncrit-

1))),digits=20),round((w4+((w7-i/100)/(Ncrit-1))),digits=20),round((w5+((w7-

i/100)/(Ncrit-1))),digits=20),round((w6+((w7-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(0,0,0,0,0,0,1) 

} 

 

TOPSISLinear(MP,weight,optimise) 

C7order1[i]<-TOPSISLinear(MP,weight,optimise)[1,3] 

C7order2[i]<-TOPSISLinear(MP,weight,optimise)[2,3] 

C7order3[i]<-TOPSISLinear(MP,weight,optimise)[3,3] 
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C7closeness1[i]<-TOPSISLinear(MP,weight,optimise)[1,2] 

C7closeness2[i]<-TOPSISLinear(MP,weight,optimise)[2,2] 

C7closeness3[i]<-TOPSISLinear(MP,weight,optimise)[3,2] 

 

 

if (i>1){ 

if (C7order1[i]!=C7order1[i-1]||C7order2[i]!=C7order2[i-

1]||C7order3[i]!=C7order3[i-1]){ 

changesC7=changesC7+1 

changemomentC7[i]=i 

}}} 

 

 

MinDistC1= min(changemomentC1) 

SensDistC1<-round(abs(MinDistC1-w1*100),digits=20) 

if (MinDistC1==1000){ 

SensDistC1<-0 

} 

MinDistC2= min(changemomentC2) 

SensDistC2<-round(abs(MinDistC2-w2*100),digits=20) 

if (MinDistC2==1000){ 

SensDistC2<-0 
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} 

MinDistC3= min(changemomentC3) 

SensDistC3<-round(abs(MinDistC3-w3*100),digits=20) 

if (MinDistC3==1000){ 

SensDistC3<-0 

} 

MinDistC4= min(changemomentC4) 

SensDistC4<-round(abs(MinDistC4-w4*100),digits=20) 

if (MinDistC4==1000){ 

SensDistC4<-0 

} 

MinDistC5= min(changemomentC5) 

SensDistC5<-round(abs(MinDistC5-w5*100),digits=20) 

if (MinDistC5==1000){ 

SensDistC5<-0 

} 

MinDistC6= min(changemomentC6) 

SensDistC6<-round(abs(MinDistC6-w6*100),digits=20) 

if (MinDistC6==1000){ 

SensDistC6<-0 

} 

MinDistC7= min(changemomentC7) 

SensDistC7<-round(abs(MinDistC7-w7*100),digits=20) 
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if (MinDistC7==1000){ 

SensDistC7<-0 

} 

 

for (i in 1:100){ 

 if (changemomentC1[i]!=1000){ 

 AcumC1=AcumC1+round(abs(changemomentC1[i]-w1*100),digits=20) 

 plotvectorC1[counterC1]<-changemomentC1[i] 

 counterC1<-counterC1+1 

} 

if (changemomentC2[i]!=1000){ 

 AcumC2=AcumC2+round(abs(changemomentC2[i]-w2*100),digits=20) 

plotvectorC2[counterC2]<-changemomentC2[i] 

 counterC2<-counterC2+1 

} 

if (changemomentC3[i]!=1000){ 

 AcumC3=AcumC3+round(abs(changemomentC3[i]-w3*100),digits=20) 

plotvectorC3[counterC3]<-changemomentC3[i] 

 counterC3<-counterC3+1 

} 

if (changemomentC4[i]!=1000){ 

 AcumC4=AcumC4+round(abs(changemomentC4[i]-w4*100),digits=20) 

plotvectorC4[counterC4]<-changemomentC4[i] 
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 counterC4<-counterC4+1 

} 

if (changemomentC5[i]!=1000){ 

 AcumC5=AcumC5+round(abs(changemomentC5[i]-w5*100),digits=20) 

plotvectorC5[counterC5]<-changemomentC5[i] 

 counterC5<-counterC5+1 

} 

if (changemomentC6[i]!=1000){ 

 AcumC6=AcumC6+round(abs(changemomentC6[i]-w6*100),digits=20) 

plotvectorC6[counterC6]<-changemomentC6[i] 

 counterC6<-counterC6+1 

} 

if (changemomentC7[i]!=1000){ 

 AcumC7=AcumC7+round(abs(changemomentC7[i]-w7*100),digits=20) 

plotvectorC7[counterC7]<-changemomentC7[i] 

 counterC7<-counterC7+1 

} 

} 

 

AvgDistC1<-AcumC1/changesC1 

sensitivityC1<-(1/SensDistC1)+(changesC1/AvgDistC1) 

if (SensDistC1==0||AvgDistC1==0){ 

sensitivityC1<-0 
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} 

 

AvgDistC2=AcumC2/changesC2 

sensitivityC2=(1/SensDistC2)+(changesC2/AvgDistC2) 

if (SensDistC2==0||AvgDistC2==0){ 

sensitivityC2<-0 

} 

 

AvgDistC3=AcumC3/changesC3 

sensitivityC3=(1/SensDistC3)+(changesC3/AvgDistC3) 

if (SensDistC3==0||AvgDistC3==0){ 

sensitivityC3<-0 

} 

 

AvgDistC4=AcumC4/changesC4 

sensitivityC4=(1/SensDistC4)+(changesC4/AvgDistC4) 

if (SensDistC4==0||AvgDistC4==0){ 

sensitivityC4<-0 

} 

 

AvgDistC5=AcumC5/changesC5 

sensitivityC5=(1/SensDistC5)+(changesC5/AvgDistC5) 

if (SensDistC5==0||AvgDistC5==0){ 
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sensitivityC5<-0 

} 

 

AvgDistC6=AcumC6/changesC6 

sensitivityC6=(1/SensDistC6)+(changesC6/AvgDistC6) 

if (SensDistC6==0||AvgDistC6==0){ 

sensitivityC6<-0 

} 

 

AvgDistC7=AcumC7/changesC7 

sensitivityC7=(1/SensDistC7)+(changesC7/AvgDistC7) 

if (SensDistC7==0||AvgDistC7==0){ 

sensitivityC7<-0 

} 

A.3 Code using TOPSIS algorithm 

library(MCDM) 

MP <-

matrix(c(0.1438,0.19145,0.0545,1200,1023,900,137,132.5,80,4.11,0.88667,2.4

9667,0.06177,0.08684,0.03375,1.93925,3.8966,0.47323,63,60,90),nrow=3,ncol

=7) 

Ncrit<-7 

newweight<-rep(0,7) 

v<-1 

w1<-0.26 
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w2<-0.11 

w3<-0.11 

w4<-0.09 

w5<-0.11 

w6<-0.11 

w7<-0.21 

MinDistC1<-0 

MinDistC2<-0 

MinDistC3<-0 

MinDistC4<-0 

MinDistC5<-0 

MinDistC6<-0 

MinDistC7<-0 

SensDistC1<-0 

SensDistC2<-0 

SensDistC3<-0 

SensDistC4<-0 

SensDistC5<-0 

SensDistC6<-0 

SensDistC7<-0 

AvgDistC1<-0 

AvgDistC2<-0 

AvgDistC3<-0 
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AvgDistC4<-0 

AvgDistC5<-0 

AvgDistC6<-0 

AvgDistC7<-0 

AcumC1<-0 

AcumC2<-0 

AcumC3<-0 

AcumC4<-0 

AcumC5<-0 

AcumC6<-0 

AcumC7<-0 

sensitivityC1<-0 

sensitivityC2<-0 

sensitivityC3<-0 

sensitivityC4<-0 

sensitivityC5<-0 

sensitivityC6<-0 

sensitivityC7<-0 

C1order1<-rep(0,100) 

C1order2<-rep(0,100) 

C1order3<-rep(0,100) 

C2order1<-rep(0,100) 

C2order2<-rep(0,100) 
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C2order3<-rep(0,100) 

C3order1<-rep(0,100) 

C3order2<-rep(0,100) 

C3order3<-rep(0,100) 

C4order1<-rep(0,100) 

C4order2<-rep(0,100) 

C4order3<-rep(0,100) 

C5order1<-rep(0,100) 

C5order2<-rep(0,100) 

C5order3<-rep(0,100) 

C6order1<-rep(0,100) 

C6order2<-rep(0,100) 

C6order3<-rep(0,100) 

C7order1<-rep(0,100) 

C7order2<-rep(0,100) 

C7order3<-rep(0,100) 

 

C1closeness1<-rep(0,100) 

C1closeness2<-rep(0,100) 

C1closeness3<-rep(0,100) 

C2closeness1<-rep(0,100) 

C2closeness2<-rep(0,100) 

C2closeness3<-rep(0,100) 
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C3closeness1<-rep(0,100) 

C3closeness2<-rep(0,100) 

C3closeness3<-rep(0,100) 

C4closeness1<-rep(0,100) 

C4closeness2<-rep(0,100) 

C4closeness3<-rep(0,100) 

C5closeness1<-rep(0,100) 

C5closeness2<-rep(0,100) 

C5closeness3<-rep(0,100) 

C6closeness1<-rep(0,100) 

C6closeness2<-rep(0,100) 

C6closeness3<-rep(0,100) 

C7closeness1<-rep(0,100) 

C7closeness2<-rep(0,100) 

C7closeness3<-rep(0,100) 

 

 

optimise<-c('min','min','max','max','min','min','min') 

changesC1<-0 

changesC2<-0 

changesC3<-0 

changesC4<-0 

changesC5<-0 



 

89 

changesC6<-0 

changesC7<-0 

changemomentC1<-rep(1000,100) 

changemomentC2<-rep(1000,100) 

changemomentC3<-rep(1000,100) 

changemomentC4<-rep(1000,100) 

changemomentC5<-rep(1000,100) 

changemomentC6<-rep(1000,100) 

changemomentC7<-rep(1000,100) 

counterC1<-1 

counterC2<-1 

counterC3<-1 

counterC4<-1 

counterC5<-1 

counterC6<-1 

counterC7<-1 

plotvectorC1<-c() 

plotvectorC2<-c() 

plotvectorC3<-c() 

plotvectorC4<-c() 

plotvectorC5<-c() 

plotvectorC6<-c() 

plotvectorC7<-c() 
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for (i in 1:100){ 

weight<-c(round(i/100,digits=20),round((w2+((w1-i/100)/(Ncrit-

1))),digits=20),round((w3+((w1-i/100)/(Ncrit-1))),digits=20),round((w4+((w1-

i/100)/(Ncrit-1))),digits=20),round((w5+((w1-i/100)/(Ncrit-

1))),digits=20),round((w6+((w1-i/100)/(Ncrit-1))),digits=20),round((w7+((w1-

i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round(i/100,digits=20),round((w2+((w1-i/100)/(Ncrit-

1))),digits=20),round((w3+((w1-i/100)/(Ncrit-1))),digits=20),round((w4+((w1-

i/100)/(Ncrit-1))),digits=20),round((w5+((w1-i/100)/(Ncrit-

1))),digits=20),round((w6+((w1-i/100)/(Ncrit-1))),digits=20),round((w7+((w1-

i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round(i/100,digits=20)/normalise,round((w2+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w1-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w1-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(1,0,0,0,0,0,0) 
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} 

 

VIKOR(MP,weight,optimise,v) 

C1order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C1order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C1order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 

 

C1closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C1closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C1closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

if (i>1){ 

if (C1order1[i]!=C1order1[i-1]||C1order2[i]!=C1order2[i-

1]||C1order3[i]!=C1order3[i-1]){ 

changesC1=changesC1+1 

changemomentC1[i]=i 

}}} 

 

for (i in 1:100){ 

weight<-c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w3+((w2-i/100)/(Ncrit-

1))),digits=20),round((w4+((w2-i/100)/(Ncrit-1))),digits=20),round((w5+((w2-

i/100)/(Ncrit-1))),digits=20),round((w6+((w2-i/100)/(Ncrit-

1))),digits=20),round((w7+((w2-i/100)/(Ncrit-1))),digits=20)) 
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#print(weight) 

 

normalise<-sum(c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w3+((w2-i/100)/(Ncrit-

1))),digits=20),round((w4+((w2-i/100)/(Ncrit-1))),digits=20),round((w5+((w2-

i/100)/(Ncrit-1))),digits=20),round((w6+((w2-i/100)/(Ncrit-

1))),digits=20),round((w7+((w2-i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w3+((w2-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w4+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w2-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w2-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,1,0,0,0,0,0) 

} 

 

VIKOR(MP,weight,optimise,v) 
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C2order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C2order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C2order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 

 

C2closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C2closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C2closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

 

if (i>1){ 

if (C2order1[i]!=C2order1[i-1]||C2order2[i]!=C2order2[i-

1]||C2order3[i]!=C2order3[i-1]){ 

changesC2=changesC2+1 

changemomentC2[i]=i 

}}} 

 

for (i in 1:100){ 

weight<-c(round((w1+((w3-i/100)/(Ncrit-1))),digits=20),round((w2+((w3-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w4+((w3-i/100)/(Ncrit-

1))),digits=20),round((w5+((w3-i/100)/(Ncrit-1))),digits=20),round((w6+((w3-

i/100)/(Ncrit-1))),digits=20),round((w7+((w3-i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 
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normalise<-sum(c(round((w1+((w3-i/100)/(Ncrit-1))),digits=20),round((w2+((w3-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w4+((w3-i/100)/(Ncrit-

1))),digits=20),round((w5+((w3-i/100)/(Ncrit-1))),digits=20),round((w6+((w3-

i/100)/(Ncrit-1))),digits=20),round((w7+((w3-i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w4+((w3-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w5+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w3-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w3-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,0,1,0,0,0,0) 

} 

 

VIKOR(MP,weight,optimise,v) 

C3order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C3order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C3order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 
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C3closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C3closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C3closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

 

if (i>1){ 

if (C3order1[i]!=C3order1[i-1]||C3order2[i]!=C3order2[i-

1]||C3order3[i]!=C3order3[i-1]){ 

changesC3=changesC3+1 

changemomentC3[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w4-i/100)/(Ncrit-1))),digits=20),round((w2+((w4-

i/100)/(Ncrit-1))),digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w5+((w4-i/100)/(Ncrit-

1))),digits=20),round((w6+((w4-i/100)/(Ncrit-1))),digits=20),round((w7+((w4-

i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w4-i/100)/(Ncrit-1))),digits=20),round((w2+((w4-

i/100)/(Ncrit-1))),digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w5+((w4-i/100)/(Ncrit-
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1))),digits=20),round((w6+((w4-i/100)/(Ncrit-1))),digits=20),round((w7+((w4-

i/100)/(Ncrit-1))),digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w4-i/100)/(Ncrit-

1)))/normalise,digits=20),round((w3+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w5+((w4-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w6+((w4-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w7+((w4-i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,0,0,1,0,0,0) 

} 

 

VIKOR(MP,weight,optimise,v) 

C4order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C4order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C4order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 
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C4closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C4closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C4closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

if (i>1){ 

if (C4order1[i]!=C4order1[i-1]||C4order2[i]!=C4order2[i-

1]||C4order3[i]!=C4order3[i-1]){ 

changesC4=changesC4+1 

changemomentC4[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w5-i/100)/(Ncrit-1))),digits=20),round((w2+((w5-

i/100)/(Ncrit-1))),digits=20),round((w3+((w5-i/100)/(Ncrit-

1))),digits=20),round((w4+((w5-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w6+((w5-i/100)/(Ncrit-

1))),digits=20),round((w7+((w5-i/100)/(Ncrit-1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w5-i/100)/(Ncrit-1))),digits=20),round((w2+((w5-

i/100)/(Ncrit-1))),digits=20),round((w3+((w5-i/100)/(Ncrit-

1))),digits=20),round((w4+((w5-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20),round((w6+((w5-i/100)/(Ncrit-

1))),digits=20),round((w7+((w5-i/100)/(Ncrit-1))),digits=20))) 
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#print (normalise) 

 

weight<-c(round((w1+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w6+((w5-

i/100)/(Ncrit-1))),digits=20)/normalise,round((w7+((w5-i/100)/(Ncrit-

1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

 

if (i==100){ 

weight<-c(0,0,0,0,1,0,0) 

} 

 

VIKOR(MP,weight,optimise,v) 

C5order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C5order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C5order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 

 

C5closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 
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C5closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C5closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

if (i>1){ 

if (C5order1[i]!=C5order1[i-1]||C5order2[i]!=C5order2[i-

1]||C5order3[i]!=C5order3[i-1]){ 

changesC5=changesC5+1 

changemomentC5[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w6-i/100)/(Ncrit-1))),digits=20),round((w2+((w6-

i/100)/(Ncrit-1))),digits=20),round((w3+((w6-i/100)/(Ncrit-

1))),digits=20),round((w4+((w6-i/100)/(Ncrit-1))),digits=20),round((w5+((w6-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w7+((w6-i/100)/(Ncrit-

1))),digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w6-i/100)/(Ncrit-1))),digits=20),round((w2+((w6-

i/100)/(Ncrit-1))),digits=20),round((w3+((w6-i/100)/(Ncrit-

1))),digits=20),round((w4+((w6-i/100)/(Ncrit-1))),digits=20),round((w5+((w6-

i/100)/(Ncrit-1))),digits=20),round(i/100,digits=20),round((w7+((w6-i/100)/(Ncrit-

1))),digits=20))) 

#print (normalise) 
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weight<-c(round((w1+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w3+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w6-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise,round((w7+((w6-

i/100)/(Ncrit-1))),digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(0,0,0,0,0,1,0) 

} 

 

VIKOR(MP,weight,optimise,v) 

C6order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C6order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C6order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 

 

C6closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C6closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C6closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 
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if (i>1){ 

if (C6order1[i]!=C6order1[i-1]||C6order2[i]!=C6order2[i-

1]||C6order3[i]!=C6order3[i-1]){ 

changesC6=changesC6+1 

changemomentC6[i]=i 

}}} 

 

 

for (i in 1:100){ 

weight<-c(round((w1+((w7-i/100)/(Ncrit-1))),digits=20),round((w2+((w7-

i/100)/(Ncrit-1))),digits=20),round((w3+((w7-i/100)/(Ncrit-

1))),digits=20),round((w4+((w7-i/100)/(Ncrit-1))),digits=20),round((w5+((w7-

i/100)/(Ncrit-1))),digits=20),round((w6+((w7-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20)) 

#print(weight) 

 

normalise<-sum(c(round((w1+((w7-i/100)/(Ncrit-1))),digits=20),round((w2+((w7-

i/100)/(Ncrit-1))),digits=20),round((w3+((w7-i/100)/(Ncrit-

1))),digits=20),round((w4+((w7-i/100)/(Ncrit-1))),digits=20),round((w5+((w7-

i/100)/(Ncrit-1))),digits=20),round((w6+((w7-i/100)/(Ncrit-

1))),digits=20),round(i/100,digits=20))) 

#print (normalise) 

 

weight<-c(round((w1+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w2+((w7-i/100)/(Ncrit-
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1))),digits=20)/normalise,round((w3+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w4+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w5+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round((w6+((w7-i/100)/(Ncrit-

1))),digits=20)/normalise,round(i/100,digits=20)/normalise) 

#print (weight) 

check<-sum(weight) 

#print (check) 

 

if (i==100){ 

weight<-c(0,0,0,0,0,0,1) 

} 

 

VIKOR(MP,weight,optimise,v) 

C7order1[i]<-VIKOR(MP,weight,optimise,v)[1,5] 

C7order2[i]<-VIKOR(MP,weight,optimise,v)[2,5] 

C7order3[i]<-VIKOR(MP,weight,optimise,v)[3,5] 

 

C7closeness1[i]<-VIKOR(MP,weight,optimise,v)[1,4] 

C7closeness2[i]<-VIKOR(MP,weight,optimise,v)[2,4] 

C7closeness3[i]<-VIKOR(MP,weight,optimise,v)[3,4] 

 

 

if (i>1){ 
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if (C7order1[i]!=C7order1[i-1]||C7order2[i]!=C7order2[i-

1]||C7order3[i]!=C7order3[i-1]){ 

changesC7=changesC7+1 

changemomentC7[i]=i 

}}} 

 

 

 

MinDistC1= min(changemomentC1) 

SensDistC1<-round(abs(MinDistC1-w1*100),digits=20) 

if (MinDistC1==1000){ 

SensDistC1<-0 

} 

MinDistC2= min(changemomentC2) 

SensDistC2<-round(abs(MinDistC2-w2*100),digits=20) 

if (MinDistC2==1000){ 

SensDistC2<-0 

} 

MinDistC3= min(changemomentC3) 

SensDistC3<-round(abs(MinDistC3-w3*100),digits=20) 

if (MinDistC3==1000){ 

SensDistC3<-0 

} 
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MinDistC4= min(changemomentC4) 

SensDistC4<-round(abs(MinDistC4-w4*100),digits=20) 

if (MinDistC4==1000){ 

SensDistC4<-0 

} 

MinDistC5= min(changemomentC5) 

SensDistC5<-round(abs(MinDistC5-w5*100),digits=20) 

if (MinDistC5==1000){ 

SensDistC5<-0 

} 

MinDistC6= min(changemomentC6) 

SensDistC6<-round(abs(MinDistC6-w6*100),digits=20) 

if (MinDistC6==1000){ 

SensDistC6<-0 

} 

MinDistC7= min(changemomentC7) 

SensDistC7<-round(abs(MinDistC7-w7*100),digits=20) 

if (MinDistC7==1000){ 

SensDistC7<-0 

} 

 

for (i in 1:100){ 

 if (changemomentC1[i]!=1000){ 
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 AcumC1=AcumC1+round(abs(changemomentC1[i]-w1*100),digits=20) 

 plotvectorC1[counterC1]<-changemomentC1[i] 

 counterC1<-counterC1+1 

} 

if (changemomentC2[i]!=1000){ 

 AcumC2=AcumC2+round(abs(changemomentC2[i]-w2*100),digits=20) 

plotvectorC2[counterC2]<-changemomentC2[i] 

 counterC2<-counterC2+1 

} 

if (changemomentC3[i]!=1000){ 

 AcumC3=AcumC3+round(abs(changemomentC3[i]-w3*100),digits=20) 

plotvectorC3[counterC3]<-changemomentC3[i] 

 counterC3<-counterC3+1 

} 

if (changemomentC4[i]!=1000){ 

 AcumC4=AcumC4+round(abs(changemomentC4[i]-w4*100),digits=20) 

plotvectorC4[counterC4]<-changemomentC4[i] 

 counterC4<-counterC4+1 

} 

if (changemomentC5[i]!=1000){ 

 AcumC5=AcumC5+round(abs(changemomentC5[i]-w5*100),digits=20) 

plotvectorC5[counterC5]<-changemomentC5[i] 

 counterC5<-counterC5+1 
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} 

if (changemomentC6[i]!=1000){ 

 AcumC6=AcumC6+round(abs(changemomentC6[i]-w6*100),digits=20) 

plotvectorC6[counterC6]<-changemomentC6[i] 

 counterC6<-counterC6+1 

} 

if (changemomentC7[i]!=1000){ 

 AcumC7=AcumC7+round(abs(changemomentC7[i]-w7*100),digits=20) 

plotvectorC7[counterC7]<-changemomentC7[i] 

 counterC7<-counterC7+1 

} 

} 

 

AvgDistC1<-AcumC1/changesC1 

sensitivityC1<-(1/SensDistC1)+(changesC1/AvgDistC1) 

if (SensDistC1==0||AvgDistC1==0){ 

sensitivityC1<-0 

} 

 

AvgDistC2=AcumC2/changesC2 

sensitivityC2=(1/SensDistC2)+(changesC2/AvgDistC2) 

if (SensDistC2==0||AvgDistC2==0){ 

sensitivityC2<-0 
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} 

 

AvgDistC3=AcumC3/changesC3 

sensitivityC3=(1/SensDistC3)+(changesC3/AvgDistC3) 

if (SensDistC3==0||AvgDistC3==0){ 

sensitivityC3<-0 

} 

 

AvgDistC4=AcumC4/changesC4 

sensitivityC4=(1/SensDistC4)+(changesC4/AvgDistC4) 

if (SensDistC4==0||AvgDistC4==0){ 

sensitivityC4<-0 

} 

 

AvgDistC5=AcumC5/changesC5 

sensitivityC5=(1/SensDistC5)+(changesC5/AvgDistC5) 

if (SensDistC5==0||AvgDistC5==0){ 

sensitivityC5<-0 

} 

 

AvgDistC6=AcumC6/changesC6 

sensitivityC6=(1/SensDistC6)+(changesC6/AvgDistC6) 

if (SensDistC6==0||AvgDistC6==0){ 
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sensitivityC6<-0 

} 

 

AvgDistC7=AcumC7/changesC7 

sensitivityC7=(1/SensDistC7)+(changesC7/AvgDistC7) 

if (SensDistC7==0||AvgDistC7==0){ 

sensitivityC7<-0 

} 

A.4 Word Limit Extension 

 


