

STUDY AND IMPLEMENTATION OF A
FALL DETECTION SYSTEM BY MEANS

OF AN ACCELEROMETER

MASTER THESIS

Student Lucia Gallego Olivares

Date Academical year 2018/2019

Director Thesis Niccolò Mora

Course 2018/2019

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

1

ABSTRACT

Fall detection is an important area of research due to its close relation with healthcare,

especially for the elderly people. There is a need to design a reliable and quick system to

minimise the possible injuries once the fall has occurred, related to providing the fastest

intervention possible by emergency services. The aim of this work is to develop a reliable

system that is capable to obtain the acceleration signal when the subject is doing normally

daily activity and to identify fall detection in real-time. First, it will be determined a suitable

position of the sensor for the acquisition of the acceleration data during the fall. Secondly,

a hardware system will be developed for the acquisition of data based on accelerometers.

The hardware system consists on an accelerometer and a microcontroller, powered by an

external battery. The microcontroller is the responsible of reading the output signal of the

accelerometer by an SPI port, and send it to the PC trough WIFI. Likewise, it will be

developed the MATLAB program that allows reading and analysing data for falling

detection. For that, it is proposed in this thesis determine the characteristical parameters of

the acceleration signal that allow to make the difference between normal steps and falls.

Key Words: Fall detection, accelerometer, elderly.

RESUMEN

La detección de caídas es un área importante de investigación debido a su estrecha

relación con la atención médica, especialmente para las personas mayores. Es necesario

diseñar un sistema fiable y rápido para minimizar las posibles lesiones una vez que se ha

producido la caída, de manera que se ejecute la intervención por parte de los servicios de

emergencia lo más rápido posible. El objetivo de este trabajo es desarrollar un sistema

fiable que sea capaz de obtener la señal de aceleración cuando el sujeto está llevando a

cabo una actividad diaria y ser capaz de identificar la detección de caídas en tiempo real.

En primer lugar, se determinará una posición adecuada del sensor para la adquisición de

la señal de aceleración durante la caída. A continuación, se desarrollará el sistema de

hardware para la adquisición de datos basados en acelerómetros. El sistema de hardware

se compone de un acelerómetro y un microcontrolador alimentado por una batería

externa. El microcontrolador es el responsable de leer la señal de salida del acelerómetro

por un puerto SPI, y enviarlo al PC a través de una red WIFI. Asimismo, se desarrollará el

programa de MATLAB que permita la lectura y análisis de los datos para la detección de

caídas. Para ello, se propone en esta tesis determinar los parámetros característicos de la

señal de aceleración que permiten hacer la diferencia entre pasos normales del sujeto y

caídas.

Palabras: Detección de caídas, acelerómetro, personas mayores

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

2

INDEX

1 INTRODUCTION ... 6

1.1 Goals of the project ...7

1.2 Structure of the document ...7

2 HARDWARE .. 8

2.1 Sensor..8

2.1.1 MEMS accelerometer...8

2.1.2 Characteristics ADXL355 ...9

2.2 Microcontroller ...14

2.3 Connectorization ..15

3 SOFTWARE ... 17

3.1 Acquisition data ...17

3.2 Data analysis ...21

4 DESIGN OF THE EXPERIMENTATION ... 24

4.1 Expected results ..24

4.2 Position of the sensor ..26

4.3 System ...29

4.4 Scenario ...30

4.5 Description of the tests ..30

5 MODELS OF DATA ANALISYS .. 31

5.1 Algorithm model 1 ..32

5.2 Algorithm model 2 ..38

6 TESTS AND RESULTS ... 42

6.1 Test 1 ...43

6.2 Test 2 ...45

6.3 Test 3 ...47

6.4 Interpretation of the results..49

7 CONCLUSIONS AND FUTURE WORKS ... 50

BIBLIOGRAPHIC REFERENCES .. 51

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

3

ANNEX .. 52

Table 1: Accelerometer - Digital outputs ..52

Table 2: Accelerometer - pin configuration ..52

Tables 3: Acceleration data registers ...53

SECOND TESTS ..55

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

4

INDEX OF PICTURES

Figure 1: Hardware...8

Figure 2: MEMS principle of operation ..9

Figure 3: Accelerometer ADXL355 ..10

Figure 4: Accelerometer - Pin Configuration [4] ..10

Figure 5: Axes of Acceleration [4] ..11

Figure 6: SPI master slave communication protocol ...11

Figure 7: 4-wire SPI connection [4] ..12

Figure 8: SPI Protocol – Multibyte Read [4] ..12

Figure 9: Register configuration ...13

Figure 10: FIFO Data organization [4] ...14

Figure 11: Arduino MKR WIFI 1010 board ..14

Figure 12: Scheme of connection between microcontroller and accelerometer15

Figure 13: pin connection between accelerometer and microcontroller 16

Figure 14: power supply scheme ...16

Figure 15: no motion of the sensor ..24

Figure 16: step recording of the sensor ...25

Figure 17: Placement 1: floor ...26

Figure 18: First tests with sensor placed on the ground ...27

Figure 19: first steps with the sensor placed in the waist ..28

Figure 20: disposition of axes in the belt ...28

Figure 21: Diagram of the overall accelerometer system layout ...29

Figure 22: real model ...29

Figure 23: layout...30

Figure 24: Algorithm 1 – Blue: input signal / Red: Normalized signal 32

Figure 25: Algorithm 1– bandpass filter ...33

Figure 26: Algorithm 1– signal after bandpass filter ..33

Figure 27: Algorithm 1– signal after squared plus normalized ..34

Figure 28: Algorithm 1– signal after second filter ..35

Figure 29: Algorithm 1– sinusoidal and squared signals...35

Figure 30: Algorithm 1– matrix of blocks ...36

Figure 31: Algorithm 1 - matrix of peaks ..36

Figure 32: Algorithm 1– final model ...37

Figure 33: Algorithm 2– input signal ..38

Figure 34: Algorithm 2– signal after bandpass filter ..39

Figure 35: Algorithm 2– squared signal ...39

Figure 36: Algorithm 2– matrix of steps ...40

Figure 37: Algorithm 2– location peaks ...40

Figure 38: Algorithm 2– final model ...41

Figure 39: Algorithm 1 – tester 1..43

Figure 40: Algorithm 1 – tester 2..43

Figure 41: Algorithm 2 – tester 1..44

Figure 42: Algorithm 2 – tester 2..44

Figure 43: Algorithm 1 – tester 1..45

file:///C:/Users/lu/SkyDrive/Documentos/U.PARMA/THESIS/THESIS%20-%20Lucia%20Gallego-lucia.docx%23_Toc14290356
file:///C:/Users/lu/SkyDrive/Documentos/U.PARMA/THESIS/THESIS%20-%20Lucia%20Gallego-lucia.docx%23_Toc14290360

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

5

Figure 44: Algorithm 1 – tester 2..45

Figure 45: Algorithm 2 – tester 1..46

Figure 46: Algorithm 2 – tester 2..46

Figure 47: Algorithm 1 – tester 1..47

Figure 48: Algorithm 1 – tester 2..47

Figure 49: Algorithm 2 – tester 1..48

Figure 50: Algorithm 2 – tester 2..48

INDEX OF ILLUSTRATIONS

Illustration 1: Code Arduino - SPI protocol settings ...17

Illustration 2: Code Arduino – readMultipleData ..18

Illustration 3: Code Arduino - shift data..18

Illustration 4: Code Arduino - main loop...19

Illustration 5: Code Arduino - ISR FIFO function ...20

Illustration 6: Code MATLAB - tcp client ..21

Illustration 7: Code MATLAB - write for connectivity ...21

Illustration 8: Code MATLAB - create HDF5 file ..21

Illustration 9: Code MATLAB - timing tests ..22

Illustration 10: Code MATLAB - input data format ...22

Illustration 11: Code MATLAB – secondary buffer ..23

Illustration 12: Code MATLAB - open and read h5 file ..31

Illustration 13: Code MATLAB - obtaining data from axes ..31

Illustration 14: Code MATLAB algorithm 1 - first normalization ..32

Illustration 15: Code MATLAB algorithm 1 - Bandpass filter ...32

Illustration 16: Code MATLAB algorithm 1 - squared plus normalise34

Illustration 17: Code MATLAB algorithm 1 - lowpass filter ..34

Illustration 18: Code MATLAB algorithm 1 - matrix of blocks ..36

Illustration 19: Code MATLAB algorithm 1 - findpeaks..36

Illustration 20: Code MATLAB algorithm 2– normalize and cubic the input signal38

Illustration 21: Code MATLAB algorithm 2– bandpass filter..38

Illustration 22: Code MATLAB algorithm 2– matrix of steps..40

Illustration 23: Code MATLAB algorithm 2 - findpeaks..40

INDEX OF TABLES

Table 1: Accelerometer - Pin configuration ...10

Table 2: pin connection between microcontroller and Accelerometer 15

Table 4: Experiments taken by tester 2 ...42

Table 3: Experiments taken by tester 1 ...42

file:///C:/Users/lu/SkyDrive/Documentos/U.PARMA/THESIS/THESIS%20-%20Lucia%20Gallego-lucia.docx%23_Toc14290414

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

6

1 INTRODUCTION

The constant increase in the number of networked devices and the increased interest in the

sector of Internet of things (IoT) by companies, universities and private individuals are the

starting point for this academic project, which sets as its main objective the realization of a

smart system based on a simple smart object. The fields of application of these intelligent

devices are multiple depending on the sector and purposes. The smart object chosen for

this project is to develop a fall detection system.

Elderly people are known to be more prone to unexpected dangerous falls, only because

they are more fragile. This fact can aggravate the consequences related to their health if

there is no rapid intervention once they have already fall. Nowadays researches are trying

to find different solutions to solve or improve this fact since it has become a priority event

that must have the quickest possible fix.

There are currently several systems intended to detect people fallings: manual alarm

system, wearable sensors on devices placed in wrist or hips, video cameras recording

movement, vibration based method or both, vibration and sound based methods. In this

project, the device chosen consists of the combination of a digital accelerometer and a

microcontroller. Fall detection detected by acceleration measurement is an area of research

that can contribute and be useful in the field of human health, more specifically and as it

has been commented, in security and safety of elderly people.

The main idea of the system of fall detection is to capture the accelerometer changes by

means of walking and falling and then analyse them in order to set if a fall or a normal step

has occurred. Data generated by the accelerometer is collected and sent via SPI protocol

into a data acquisition device, the microcontroller, a card which processes and transmits all

the data via Wi-Fi for analyse it in a manner that to define models able to create a falling

system based on acceleration measurements.

The efficiency of these tests carried out by the particular falling system can be defined by

several factors:

- Sensor selected.

- Precision and accuracy of the sensor.

- Location of the sensor.

- Effectiveness of the codes used to perform the data obtained through the acquisition

systems.

Therefore, the first thing to do is to decide where to place the accelerometer in order to

recollect accurate data in such a way that little movements could be detected. For that,

sampling frequency and the code implemented play a very important role in this acquisition.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

7

1.1 Goals of the project

The aim of this thesis is to develop a system for detect involuntary falls, using a 3D

accelerometer sensor with adequate accuracy and precision. The steps taking are:

Schema: Layout of the system

The first objective of this project is to stablish a place where to set the accelerometer. There

are several possibilities available according to the kind of accelerometer chosen. Once

decided the appropriated place for this purpose, this thesis has also the goal of setting two

different models of counting steps, so that they can be implemented in fall detection

systems.

1.2 Structure of the document

This document is structured as follows. Chapter 2 gives an overview of the hardware used,

the software implemented for acquiring and analysing data. Also talks about the expected

results and the important point of placing the sensor. Chapter 3 discusses the design of the

experiments, how to implement the best physical solution. Chapter 4 describes the two

models proposed for the step detection. Chapter 5 describes all the tests carried out.

Chapter 6 discuss the results obtained in chapter 5. Finally, conclusions are presented in

Chapter 7.

Decide where
to place the

sensor

Data
acquisition

Data
analysis

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

8

2 HARDWARE

The hardware used in this project (Figure 1) consists of the accelerometer chosen (1), the

microcontroller (2), some data cables to connect the two devices (3), an external battery to

power the Arduino board, a computer with software of both installed (4), Arduino and

MATLAB, and finally a data cable (5) for compiling the Arduino code into the Arduino board.

Figure 1: Hardware

2.1 Sensor

The accelerometer is the measurement instrument chosen in this project for measure the

acceleration of the fall. Accelerometers are inertial devices that are used to measure

changes in gravitational acceleration, across the three orthogonal axes (x, y and z). The

measurements obtained are output as an analog signal, measuring in g-forces (g), where 1

g in Earth equals to 9.81 m/s2. [1]

In order to select an appropriate sensor for the system, it should have a list of requirements

that has to accomplish.

 The first one is a limitation on the sensor size and mass. The accelerometer must

be as light and small as possible.

 The second requirement is that the accelerometer must be ultralow noise in order

for the data to be usable.

These three requirement leave MEMS accelerometers as the only option. They provide

great noise characteristics and they meet the size, mass and power requirements.

2.1.1 MEMS accelerometer

Microelectromechanical systems (MEMS) have been used to implement inertial sensing

methods on an integrated chip (IC) in micro scale [2]. MEMS sensors can be used to

measure physical parameters such as acceleration in a vary range of applications, such as

airbag deployment, earthquake detection and navigation purposes. MEMS sensors are

1

3

2

4

5

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

9

smaller and lower cost than a conventional accelerometer, but they are limited in

performance. Due to this facts, they have also been more and more used in smartphone,

home uses and medical applications.

Principle of operation

The ADXL355 is MEMS capacitive sensor. This means that this device measures vibration

or acceleration when the movement of a structure or an object occurs. The force generated

by this, causes the internal mass to compress the piezoelectric material, generating an

electrical charge that is proportional to the force applied on it. The fact that the load is

proportional to the force and that the mass is constant, makes that the charge is also

proportional to the acceleration. This makes this type of accelerometers to have higher

range but low sensitivity devices than the variable capacitive accelerometers. This concept

is illustrated in Figure 2:

Figure 2: MEMS principle of operation

The resonant or natural frequency is defined by the combination of the stiffness of the

cantilever springs and the mass of the proof mass. MEMS sensors are generally designed

to have high resonant frequencies by using a lightweight proof mass and high stiffness

cantilever springs. The natural frequency of the ADXL355 is at about 2.5 kHz.

2.1.2 Characteristics ADXL355

The measurements are performed by an ADXL355 accelerometer, manufactured by Analog

Devices [3]. The ADXL355 is a MEMS three-axis accelerometer, ultranoise and ultrastable

offset accelerometer with 3.3 V of power supply and with the possibility of select different

measuring ranges. The sensor comes with an Evaluation Board as shown in the Figure 3.

The ADXL355 is programmable for ±2 g, ±4 g and ±8 g as an output full-scale range, in this

project the chosen range is 2g. It also has a high long-term stability, allowing precision

applications with minimal calibration and reducing the cost of resources and calibration, The

accelerometer has a digital filter from 1 Hz to 1 kHz, with a declared consumption of 200μA.

All these parameters can be found in the table 1 of the annex.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

10

Figure 3: Accelerometer ADXL355

The accelerometer is able to measure both static acceleration from gravity and dynamic

acceleration, resulting from movement and vibrations.

The sensor is equipped with 12 pins as it is shown in the figure 4. In the table 1 are shown

the pins and their own operation. All this information is available in the table 2 of the annex.

The connection with the microcontroller will be shown later.

Figure 4: Accelerometer - Pin Configuration [4]

Pin Pin function
Pin

name
Pin Pin function

Pin
name

1 Chip Select CS 7 Interrupt 1 INT1

2 Master Out Slave In MOSI 8 Not Connected NC

3 Master In Slave Out MISO 9 Interrupt 2 INT2

4 Serial Clock SCLK 10 Data Ready DRDY

5 Digital Ground DGND 11 Digital Ground DGND

6 Digital Power VDD 12 Digital Power VDD

Table 1: Accelerometer - Pin configuration

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

11

Normal operation

The axis of acceleration sensitivity in this accelerometer are displayed as it sets the figure

5. Considering the case that the accelerometer is laid down in a flat surface, as for example

in the same position set in the picture and with no movement recorded, the Z-axis is in the

±1-g field of gravity and reads ±1g for being the one perpendicular to the surface, the X-

and Y-axis are in the 0-g field of gravity and thus read 0g. [4]

Figure 5: Axes of Acceleration [4]

Serial SPI communication

The communication between the microcontroller and the peripheral devices is handled via

Serial Peripheral Interface (SPI), which makes use of the master/slave principle. The

Master is the device that controls the system. It has the ability to invade and receive data

and commands to start the transmission session. It also provides the synchronisation clock

of the data exchange. The Slave is a peripheral device that can receive and send data, but

cannot send commands. In this particular case the microcontroller Arduino acts as the

master device while the ADXL355 is connected as slave device. The communication is

handled as shown in Figure 6:

Figure 6: SPI master slave communication protocol

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

12

Typically there are three lines common to all the devices:

 MISO (Master In Slave Out) - The Slave line for sending data to the master.

 MOSI (Master Out Slave In) - The Master line for sending data to the peripherals.

 SCK (Serial Clock) - The clock pulses which synchronize data transmission

generated by the master.

Additionally, there is one Slave Select (SS) line for each device, which is used to enable or

disable the communication with the specific peripheral. This way, the master can choose

which slave device to send data to and receive data from, even though the communication

lines are shared between all of them. In order to receive data from a slave device, the master

device has to send a read command to that specific device first. This prevents the different

peripherals from sending data at the same time, which would lead to parts of the data being

corrupted. [5]

When a device's Slave Select pin is low, it communicates with the master. When it's high,

it ignores the master. This allows to have multiple SPI devices sharing the same MISO,

MOSI, and CLK lines.

The schema defines the connection of the ADXL355 for SPI communication with a generic

processor is the one shown in figure 7:

Figure 7: 4-wire SPI connection [4]

The data in XDATA, YDATA, and ZDATA (data from each axis of the accelerometer) is

always the most recent available because the accelerometer continuously updates its data

registers. It is not guaranteed that data form a set corresponding to one sample point in

time. The routine used to retrieve the data from the device, controls this data set continuity.

For multibyte read or write transactions through either serial interface, it has been used the

FIFO address, so that, data can be read continuously from the FIFO as a multibyte

transaction.

Figure 8: SPI Protocol – Multibyte Read [4]

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

13

Register configuration

This accelerometer has an output resolution of up to 24 bits for each axis: the significant

information is however contained in the first 20bit (a bit with the sign), while the 4 bits less

significant are discarded because affected by possible noise. The accelerations along the

3 axes (x, y and z) are stored inside 9 registers: 3 registers for each axis. Each register

consists of 8 bits with a total of 24 bits for each axis, as it shown in figure 9.

Figure 9: Register configuration

According to reading acceleration data from the interface, this is found as left justified where

the register address is ordered from most significant data to least significant data, which

allows to use multibyte transfers and to take only the 20 bits data required. For example,

for x-axis acceleration, XDATA1 is the low byte register and XDATA3 is the high byte

register.

Acceleration data is received in the so-called two’s complement notation which is used to

represent signed integers as binary numbers. The conversion is done by the

microcontroller.

FIFO

To read acceleration data from the sensor via SPI it can be read repeatedly from the

registers corresponding to the x-, y- and z-axis, however, since the acceleration data is 20

bits long while each register only contains 8 bits (1 byte) three registers have to be read to

access the measurement for each axis. This poses a problem when new acceleration data

arrives while the previous data is read out. In this case, it is possible that the three bytes

comprising a data point originate from different measurements at different points in time.

This mixing of data is undesirable since it can invalidate the measurement results.

Furthermore, if the data registers are not read before the next measurement is available,

the previous values will be overwritten.

However, the ADXL355 features a so-called FIFO (First In First Out), a data structure that

works like a queue and allows data to be stored for a short amount of time before it is read.

By default, the FIFO is not available. If the FIFO is in use, it operates in a stream mode, this

means that when the FIFO overruns the new data overwrites the oldest one. A read from

the FIFO address guarantees that the three bytes associated with the acceleration

XDATA3 XDATA1 XDATA2

YDATA3 YDATA2

ZDATA1

YDATA1

ZDATA3 ZDATA2

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

14

measurement on an axis all pertain to the same measurement. The FIFO never overruns,

and data is always taken out in sets as a multiple of three data points.

Figure 10: FIFO Data organization [4]

The figure 10 shows that there are 96 21-bit locations in the FIFO. Each location contains

20 bits of data and a marker bit for the x-axis data, which allows a quick identification of

the next samples of data. The FIFO control logic inserts the two LSB reads on the interface.

Bit 1 indicates that an attempt was made to read an empty FIFO, and that the data is not

valid acceleration data, as happens in the figure 10 in the first row. Moreover, bit 0 is a

marker bit to identify the x-axis, which allows a user to verify that the FIFO data was correctly

read.

2.2 Microcontroller

The microcontroller board that has been chosen for this project in order to arrange the

communication between the accelerometer and the computer is an Arduino MKR WIFI 1010

(Figure 11). It is an open-platform circuit board that features a microcontroller, several

programmable digital input/output pins as well as analog connectors and a low power Wi-

Fi module integrated on it. [6]

Figure 11: Arduino MKR WIFI 1010 board

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

15

The MKR Wi-Fi 1010 offers low power consumption and has been designed not only to

speed up and simplify the prototyping of Wi-Fi-based IoT applications, but also to be

embedded in IoT applications that require Wi-Fi connectivity, which gives the possibility to

run different types of projects.

Its USB port can be used to supply 5 V of power to the board. The MKR1010 board can be

programmed via USB port through the Arduino development environment (IDE). The

programming language used in this is based on the C/C++ language with a set of particular

functions of Arduino environment.

All of these features plus the small size and low energy consumption make this board the

preferred choice for this thesis, which is a perfect example of the emerging IoT battery-

powered projects.

2.3 Connectorization

The pin connection between accelerometer and microcontroller is set in the table 2. This

configuration allows setting the SPI communication between them.

ADXL355
Pin Number

Pin description
Arduino Pin

Number

1 Chip Select (CS) 07

2 Master Out Slave In
(MOSI)

08

3 Master In Slave Out

(MISO)

10

4 Serial Clock (CLK) 09

5 / 11 Digital Ground GND

6 / 12 Digital Power VCC

7 Pin interrupt INT1

9 Pin interrupt INT2

10 Data Ready DRDY

Table 2: pin connection between microcontroller and Accelerometer

In this configuration the role of master is performed by Arduino while that of slave by the

accelerometer. The master, in this case, accesses to the registers of the slave by sending

a byte, where the first 7 bits represent the address of the log to access while the last bit

represents the access mode (Read or Write). A scheme of the connection is shown below:

Figure 12: Scheme of connection between microcontroller and accelerometer

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

16

The final and real wiring connection between both devices is shown in the figure 13.

Figure 13: pin connection between accelerometer and microcontroller

The interconnection between the accelerometer and the Arduino board has been following

the pin configuration given in the datasheet of the ADXL355 accelerometer. This can be

found in the table 2 of the annex .

Power supply

Talking about how to power the system, there are several ways which can be used:

- By the grid throughout a power converter.

- By a computer via USB port

- By an external battery.

Finally, for the kind of application on development, it has chosen a 5V wearable power bank

to power the microcontroller, in order to make it much easier. It can thus provide an output

of 3.3V to power the accelerometer.

This picture shows an idea of how the system is interconnected.

Figure 14: power supply scheme

It also has a Li-Po battery that allows the Arduino board to run on both battery power and

an external 5 V source, running on external power while charging the Li-Po battery,

switching from one to another automatically.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

17

3 SOFTWARE

3.1 Acquisition data

The open-source Arduino Software (IDE - Integrated Development Environment) is a cross-

platform application perfect for many operating system. It is used to write and upload

programs to Arduino compatible boards, in this particular case, the MKR WIFI 1010 board

[7].

The code implemented for this project includes some relevant functions so that it is tried to

collect data sent via SPI from the sensor in the most efficient way. These are described

below:

Parameters defined

In order to be able to operate with Arduino software, it is necessary to include, that is, to

define in the code the libraries which it is required to work with. The accelerometer data is

passed to Arduino via the SPI protocol, using the SPI library while the WiFiNINA library is

used for Wi-Fi communication protocol. It is also necessary an ADXL355 library used for

defining specific parameters of the accelerometer.

SPI function

Before acquiring any data it is required to set the SPI communication protocol between the

two devices. In order to receive data from the slave device, the master device has to send

first a read command, so that the communication will be stablished.

Illustration 1: Code Arduino - SPI protocol settings

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

18

While the SPI communication is defined, the main read function readMultipleData is also

defined, essential to acquire data from the accelerometer.

ReadMultipleData

The fundamental part of the firmware is contained within the function adxl355ISR(), an

interrupt function which will be commented further later. Inside this function there is another

function called readMultipleData function, which is used to read data from the 9 registers

that the sensor provides. This function takes as arguments the addresses of the registers

(axisAddresses), the number of registers (dataSize) and the measured value of the axis

(axisMeasures), defined as it shows the illustration 2.

Illustration 2: Code Arduino – readMultipleData

Since the SPI.transfer() function transfers 8 bits of uint8_t type at a time, the values read

by the SPI protocol are converted directly to uint32_t (no sign). The three registers (one for

each axis) are grouped in a single register (e.g. axdata for the axis x). At this point the data

is converted into an integer with a 32 bit plus sign, this is why a right shift of 12 bits is

required, deleting the 4 less significant bits.

Illustration 3: Code Arduino - shift data

WifiServer

Once set a specific port number to make the Wi-Fi connection through it, it is possible to

stablish the WifiServer connection between Arduino (Server) and MATLAB (Client). The

connection takes part inside the main loop.

For making this connection possible, it is required that Arduino not only sends the data to

MATLAB but also reads what the Client sends to the Server, in order to stablish a secure

connection and not to lose it. This is a Quality of Service level 1.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

19

Illustration 4: Code Arduino - main loop

Whenever the connection between server and client is stablished, a LED in the Arduino

board switches on. This is because all the test are been carried out with an external battery,

so that, the test can only start when this LED is on; also for making sure that the connection

does not get lost during all the tests.

ISR function

As it has been mentioned previously, it has been used an interrupt function. This is because

using a delay function normally suppose a continuous consumption of the processor and

energy, having to ask continuously for the status of the input. However, the interruption

allows to associate a function to the occurrence of a certain event. This associated call-

back function is called ISR (Interruption Service Routine). [8]

The one used in this project is called adxl355ISR(). The ISR function is used for the

attachInterrupt. Interrupts are useful for making readings happen automatically in the

microcontroller until having 1040 bytes, in order to send packets of 1040 bytes each time,

once the connection is stablished. Each packet is composed of 65 acquisitions of: 4 bytes

of the counter, 4 bytes of X data, 4 bytes of Y data and 4 bytes of Z data. The counter is

simply used to make sure that all the information is sent and it has been sent in the correct

order.

For making this attach possible it is required to define the appropriate pin, in this case pin

number 0.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

20

To implement the ISR function it is needed a First In First Out function (FIFO) in order to

send packets of 1040 bytes to MATLAB. So, once the ISR connection is stablished,

whenever one packet is sent, the following packet is created, in such a way that, when the

first packet is already sent the second one is already ready for being sent too. With this

method, waiting times are deleted.

Illustration 5: Code Arduino - ISR FIFO function

The code also includes a counter so that an account of the data acquisition takes place in

order to know if some data has been lost during the sending. Every packet (1040 bytes) is

made of 65 data acquisition: 32 bits each axe (4 bytes each, 12 bytes in total) plus 4 bytes

for the counter.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

21

3.2 Data analysis

Data analysis consists in two different models of filtering the input signal in order to obtain

two possible solutions for the system. For analysing data, it has used two scripts in

MATLAB. The main script and a function. Father later the two different models will be

explained.

The connection client server in MATLAB is done by a function called tcpip, where it is

mandatory to set the port server (the same chosen in the Arduino code) and the Remote

host ID, the same that the Arduino board has been connected to.

Illustration 6: Code MATLAB - tcp client

It is important to open but also to close this function. The closure has to be once the HDF5

file has been written. Another crucial thing is to send something to the server (write), in

order to stablish the connection. In this case it is just send a row of numbers that the Arduino

receives and enables the connection.

Illustration 7: Code MATLAB - write for connectivity

While stablishing this connection, there is need to create an HDF5 file in the main function.

This kind of file formats are made to designed to store and organize large amounts of data,

perfect for the current application.

Illustration 8: Code MATLAB - create HDF5 file

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

22

The creation of the files consists in first check the presence of files in the folder they are

kept and then create the .h file with the next number unused. This function is created in

order to create the next Walking_dataX.h5 file automatically.

The program is set to finish with a specific time frame. If Arduino is set to read with a

frequency of 250 Hz, having 1040 bytes each packet by 16 bytes each acquisition, the time

required for a single packet is 2.6 seconds. However, in every cycle it is received a number

of 15 packets. That is why the tests are set in multiple of 3.9 seconds. In all the tests carried

out it has been almost 2 minutes and a half.

Illustration 9: Code MATLAB - timing tests

All mentioned since now belongs to the main script. However, it has been used a function

script in order to implement a function which reorder de input data and stores it in a specific

format. In this case the function is called readtcp().

Illustration 10: Code MATLAB - input data format

The input data is read in a single column. For being able to operate with data is mandatory

to reorder it in order to, at the end, have a matrix based on 4 columns: the counter, x data,

y data and z data respectively. This is what shows the image 10, where several steps have

been taken to get this matrix:

 Data is set in such a way that every 4 bytes is one value. The first step consist in

making a matrix made of 4 columns, representing each row a value.

 Second step consists in cluster this four columns in one, obtaining the final value.

So it is obtained again a matrix formed by only one column.

 It is need now a reshape of the data from a single column to a matrix of 4 rows:

counter, x y and z.

 Finally, transpose this matrix to obtain the final one made of 4 columns.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

23

Once the matrix is obtained, it has been chosen a FIFO to set a secondary buffer. In the pc

there are four processors, if all of them are being used it is impossible to read and write at

the same time. That is why a secondary buffer is used.

This is shown in the illustration 11, where B1 and B2 represent the two different functions,

while one is reading the other one is writing in the file.

Illustration 11: Code MATLAB – secondary buffer

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

24

4 DESIGN OF THE EXPERIMENTATION

4.1 Expected results

The efficiency of the tests that should be carried out could be defined and conditioned by

several factors, among others:

- The sensor selected.

- The place where the sensor is going to be placed.

- Effectiveness of the code used to perform the data obtained through the acquisition

systems.

- Effectiveness of the analysis code.

- The way user walk.

Talking about the expected results, it is known that if we placed the sensor horizontally on

a flat surface with no vibration, we would get a result like the one shown in figure X, in which

Z axe is 1g and the other two axis, X and Y are 0g. Assuming that the sum of the three axis

is always 1g.

Figure 15: no motion of the sensor

The same would happen if it is changed the sensor layout, this means if the orientation is

changed. In that case, it would be any of the other two axes, X or Y, which would be 1g.

However, whenever steps are carried out, the graph changes dramatically (figure 16). The

three axes will capture movement so that, as already mentioned, the sum of the 3 is 1g.

The expected layout of the three axis is the one shown on the figure.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

25

Figure 16: step recording of the sensor

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

26

4.2 Position of the sensor

The most important part of this thesis is to establish where the sensor is going to be located,

since the filtering of the input signal changes depending on this. To know where to place it,

once the data acquisition is done correctly and the system is able to analyse the first

samples, the first tests are performed.

The first test are carried out by placing the sensor in the ground (figure 17). The

accelerometer is fixed in the floor, so that when the event occurs, the vibrations generated

in the ground next to it are captured and are supposed to be read and analysed by the

accelerometer.

Figure 17: Placement 1: floor

In the image above, the sensor is fixed in the floor with a tape (1), trying to place the sensor

as flat as possible in the ground. Connected to it is the microcontroller (2) and the system

is feed with an USB port from the computer (3).

Once the stage is set, the first steps are performed, testing at various distances of the

sensor and with different intensities (it is different strength in the steps), so that all possible

possibilities are covered. We find a situation (shown in figure 18) in which the information

collected is very weak in both cases. These cases are two different assumptions, each with

a different sampling frequency to try to solve the problem we encounter. It turns out that the

accelerometer is unable to pick up the vibrations because the ground on which it is located

is much thicker than expected, so the wave propagation is very weak.

As it has been mentioned, it has been tried to improve the sampling frequency to try to make

the sensor as sensitive as possible, but it has not been fixed. Figure 18 shows that only the

steps vary (in z axis, perpendicular to the ground) from 0 to 0.001. Values that are too poor

to be able to operate with.

1

3

2

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

27

The reason why this fact happens is because the sensor is not precise enough to be able

to catch the vibrations of a ground which is apparently much thicker than it was expected to

be, so the vibrations propagated through the ground around it are not good indicators

enough to measure steps.

Only in the vicinity of the sensor, very close to it, it is possible to get a correct reading of the

steps, however, whenever the steps are carried out at a distance greater than half a metre,

it is impossible to capture anything. This is why placing the sensor on the ground has been

discarded.

The second option for this project is setting the same accelerometer in a belt placed in the

waist, since it is thought that by putting the sensor on the waist, with the movement of

walking, the information can be read in a more precise way. In the same way as in the

previous case, the first experiments have been carried out in order to determine whether

this second arrangement is suitable for this system.

By setting an initial sampling rate of 250 Hz, it can be seen from figure 19 that the results

obtained are much more realistic, in comparison with the comments made in the section on

expected results. In this second graph, the three distinct axes appear on a scale appropriate

to the reality.

Figure 18: First tests with sensor placed on the ground

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

28

Figure 19: first steps with the sensor placed in the waist

So, as it has seen, by positioning the sensor on the waist, is the best option of the two

proposals. This is why, from this moment on, the algorithm models that are going to be

implemented for the study of the steps, will be in operation of this provision.

Finally, an important aspect to consider is which of the three axis is the one to study. As

shown in figure 20, the arrangement of the accelerometer in the belt indicates that the Y

axis is the one that follows with the advance of the steps. Therefore it is the Y axis the one

which will be studied.

Figure 20: disposition of axes in the belt

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

29

4.3 System

The diagram of the final system is illustrated in the figure 21. Formed by a user who carries

on his waist the belt with the portable data acquisition system and with the connection Wi-

Fi established between this system and the computer so that the information can be sent

whenever required.

Figure 21: Diagram of the overall accelerometer system layout

The system consists of five sections connected, this is shown in the figure 22:

1. The accelerometer sensor, placed just in the down part of the belly bottom.

2. The signal processing and data acquisition circuit, the microcontroller.

3. The external battery for powering the system.

4. The belt, made with a strap and incorporates a manual closure.

5. The wires connecting the accelerometer sensor to the signal processing circuit.

Figure 22: real model

1 2

3

4

5

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

30

4.4 Scenario

The scenario in which the tests have been carried out is what shows in figure 23. It consists

of a straight line formed by six stickers, all separated by the same distance of approximately

one human step. Each step is marked by a square of red tape, so that every step taken

must be on top of it.

Figure 23: layout

This scenario is delimited by the form and installation of the laboratory where they were

made. Although it may be thought to be an impediment, it is considered an advantage

because in this way the rotation of the sensor can be also studied.

4.5 Description of the tests

The experiments have been carried out in the scenario shown above. The tests consists in

walking on the red tape a total of 5 steps until the end is reached. Once reach the last piece

of tape, there is need to make a 180º turn to return for the same direction but in the opposite

direction. Tests have been carried out by two testers of different sex, different body weight

and different kind of walking. Simply the tester has to wear the belt, run the program and

place in the first square of red tape. The code includes a “bong” sound both at the beginning

and at the end of the acquisition. Whenever it sounds at the beginning, the person has 5

seconds to place and start walking when it sounds. Same occurs at the end, when it sounds

the person has to stop walking.

1

5

6

4

3

2

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

31

5 MODELS OF DATA ANALISYS

To carry out the models of the algorithms designed for this thesis, a first test recording of

about 6 times the scenario (made of 5 steps). So the filtering of the input signal for both

models is based on this file formed by a total of 30 steps. This file is Walking_Data1.h5

(illustration 12).

Once chosen the file to study, simply there is need to open it and read the matrix formed by

the four columns: the counter, X data, Y data and Z data, as it has been explained in the

chapter 2.3 Data analysis.

Illustration 12: Code MATLAB - open and read h5 file

The first step is to perform the conversion from bits to g, for that, having chosen a full of

scale of 2g, so that the sensor is much more precise for this application, the result of the

conversion in shown in illustration 13. It is done for the three axis, however, it is only

mandatory on the Y axe, as it is the important one. Y has a size of 9750x1.

Illustration 13: Code MATLAB - obtaining data from axes

These first two steps are common to both algorithms, from now on, both are defined

separately so that each of them will have a different filtering of the input signal.

The difference between them is that in the first one we look for a square signal that

encompasses each block of 5 steps, so that after obtaining these blocks, they can be

studied separately. However, in the second algorithm, the square signal is made from each

of the peaks representing the steps. This will become clearer in the following pages.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

32

5.1 Algorithm model 1

In this first model, two different filtering have been carried out. They will be described below.

First of all, the input signal has been normalized:

Illustration 14: Code MATLAB algorithm 1 - first normalization

In order to have the signal between 0 and 1, as shown in the following image (red graph), it

has used the MATLAB function normalize with the input argument range, which allows to

set this range of values. The original input signal of the Y axe is the blue one.

Figure 24: Algorithm 1 – Blue: input signal / Red: Normalized signal

The next step is to apply the first filtering: a bandpass filter, which allows the signal between

two specific frequencies to pass, but that discriminates against signals at other frequencies,

without distorting the input signal or introducing extra noise. This band of frequencies can

be any width and is commonly known as the filters bandwidth, composed by the lower cut-

off frequency and the higher cut-off frequency that in this particular case is 1.1 Hz and 2 Hz.

[9].

Illustration 15: Code MATLAB algorithm 1 - Bandpass filter

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

33

Bandwidth is commonly defined as the frequency range that exists between two specified

frequency cut-off points (ƒc), that are 3dB below the maximum centre or resonant peak

while attenuating or weakening the others outside of these two points. This can be seen in

the following image.

This first filter is carried out in order to isolate the 30 steps carried out, so that it can operate

much better with the signal of illustration 3 in comparison to illustration 1.

Figure 25: Algorithm 1– bandpass filter

The obtained signal after appliying the filter is the one shown in the figure 26.

Figure 26: Algorithm 1– signal after bandpass filter

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

34

As shown in figure 26, the amplitude of the signal after filtering is very small, that is why a

square function of the signal is then performed and finally normalise it.

Illustration 16: Code MATLAB algorithm 1 - squared plus normalise

The result signal is the one shown below, with an amplitude much bigger allowing to operate

with the signal in a better way.

Figure 27: Algorithm 1– signal after squared plus normalized

The objective of this first algorithm, as it has been said, is to obtain, by the help of two

filtering, an squared signal that collects in each block the data related of 5 steps. A second

filtering is required for obtaining that. It consists of a lowpass filter. This is a filter that passes

signals with a frequency lower than a selected cutoff frequency and attenuates signals with

frequencies higher than the cutoff that in this case is 0,005 Hz normalized out of 250Hz.

Illustration 17: Code MATLAB algorithm 1 - lowpass filter

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

35

This second filtering (which is already normalized) is the yellow line in the figure 28.

Figure 28: Algorithm 1– signal after second filter

Once it is obtained this sinusoidal signal, it is very easy to create a squared signal. The

code implemented for that is not included, but the main idea is to enclose in a block every

time the sinusoidal goes up and down, in this order.

Figure 29: Algorithm 1– sinusoidal and squared signals

The next step is to create a matrix in which each column contains all the data related to a

block of 5 steps, in this particular case, the matrix is formed by 6 columns.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

36

Illustration 18: Code MATLAB algorithm 1 - matrix of blocks

This matrix is declared with a size of 9750x6, however, each column occupy approximately

1/6 of the length.

Figure 30: Algorithm 1– matrix of blocks

Finally it would only remain to find the peaks in each of these columns as shown in the code

below. It has been set a minimum at 0.7, so that only peaks above this value are considered

as steps.

Illustration 19: Code MATLAB algorithm 1 - findpeaks

The peaks are kept in a vector, as shown in figure 31. These numbers are the x-position of

the peaks in samples.

Figure 31: Algorithm 1 - matrix of peaks

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

37

With all these steps followed so far, the first algorithm model will be completed. Figure 32

represents how this model looks.

Figure 32: Algorithm 1– final model

The expected results when applying this algorithm are those shown in Figure 32, formed by

the input signal (normalised) in blue colour, the square wave that collects in blocks every 5

steps in orange colour and in a yellow circle each of the peaks (steps) detected by the

algorithm.

From this algorithm it is expected to obtain results like that of figure 32, in which it is able to

detect every 5 steps a block and within each block the steps given.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

38

5.2 Algorithm model 2

In this second model the square signal is not performed to the block of 5 steps but is done

to each of the steps separately. This is why it only requires one filter. The steps follow until

the final model are described below.

This second model starts in the same way as the first one, normalizing the input signal with

the same function normalize between the range of 0 and 1, and realizing in addition, the

cube of the signal.

Illustration 20: Code MATLAB algorithm 2– normalize and cubic the input signal

Figure 33: Algorithm 2– input signal

The next step is a Bandpass filter carried out in the same way as the one in the previous

model, simply changing the frequencies to 0.5 Hz and 2.4 Hz, as seen in the illustration 21.

This frequency adjustment has been done simply because empirical tests have shown that

these values fit better to the desired filtering.

Illustration 21: Code MATLAB algorithm 2– bandpass filter

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

39

The result obtained after filtering is the one shown in figure 34: comparing the normal one

with the filtered.

Figure 34: Algorithm 2– signal after bandpass filter

The square signal is now created. In this case it does not form a block grouping together a

set of steps, but collects in each, a wave of the filtered signal. It is for this reason that the

square signal is much larger than that obtained in model 1.

Figure 35: Algorithm 2– squared signal

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

40

In this way, the matrix is created. Each column represents each of the square waves of the

squared signal. There are more columns than steps taken because it also considers the

possible perturbations during the turn.

Illustration 22: Code MATLAB algorithm 2– matrix of steps

In this example, which has been said that the file is made of a recording of 30 steps, it

contains 60 columns.

Figure 36: Algorithm 2– matrix of steps

Finally, as it has been done in the algorithm above, the peaks are searched in each

column. In the previous case, for each column (each block of steps) it was expected to find

at least 5 steps. However, in this case, since the square wave is much more restricted, a

single peak is sought.

Illustration 23: Code MATLAB algorithm 2 - findpeaks

As it was expected, the number of peaks is 30, the total of steps taken during the test.

Figure 37: Algorithm 2– location peaks

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

41

Finally the results of this second model are shown in figure 38.

Figure 38: Algorithm 2– final model

The expected results when applying this second algorithm are those shown in Figure 38,

formed by the input signal (filtered) in red colour, the square wave that collects in blocks

every 5 steps in orange colour and in a black circle each of the peaks (steps) detected by

the algorithm.

From this algorithm it is expected to obtain results like that of figure 38, in which it is able to

detect a step every wave of the signal higher than a certain value set in 0.65.

For both algorithms (figure 32 and figure 38), the y-axe represents samples and the x-axe

represents the standard input signal normalised between 0 and 1.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

42

6 TESTS AND RESULTS

Once the models have been perfectly defined, a series of tests have been taken by two

different testers:

- Test 1: walking tests at a slow speed.

- Test 2: walking tests at a normal speed.

- Test 3: walking tests at a fast speed.

Test have been carried out with time not with number of steps like the one used for setting

the algorithms. The specific time set for all the tests is 35 times de 3,9 seconds stablished

for acquiring 15 packets (illustration 9). This is why the number of steps at each test (inside

the same category) are never the same. Both testers have tried to get the same number in

both tests, but several factors influences in this: the way of walking, the breadth of the

strides, the way the testers spin, etc.

TESTER 1

File .h Test steps

6 slow 50

7 slow 53

9 normal 95

12 normal 110

11 fast 124

13 fast 130

Table 4: Experiments taken by tester 1

It has been tried to reach in the slow mode about 50 steps, in the normal mode over 100

steps and in the fast one approximately 130 steps.

A total of 24 tests have been carried out, two for each tester and for each test. In the next

paragraph, half of the results have been included, the other half have been attached in the

annexes. A total of 4 tests for each type are shown, 2 for each algorithm and for each tester.

All the graphs obtained will be shown below and in the results section all will be commented

together.

TESTER 2

File .h Test steps

14 slow 47

15 slow 48

16 normal 85

17 normal 100

21 fast 129

22 fast 130

Table 3: Experiments taken by tester 2

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

43

6.1 Test 1

Type 1 tests consist of recording 50 steps at a slow speed. This means, in the programmed

time, about 5 turns, considering a turn one way and back (10 steps).

The results of the first algorithm at slow speed are:

Figure 39: Algorithm 1 – tester 1

Figure 40: Algorithm 1 – tester 2

As it can be seen in this two grafics from the algorithm 1, as it was expected, there are over

10 blocks of the square wave in each, in which more than 5 steps are collected.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

44

The results of the second algorithm at slow speed are:

Figure 41: Algorithm 2 – tester 1

Figure 42: Algorithm 2 – tester 2

In this case the results of both testers are similar. By setting the limit at the 0.65 commented,

5 steps are detected at each turn.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

45

6.2 Test 2

Type 2 tests consist of recording 100 steps at a normal speed. This means, in the

programmed time, about 10 turns, considering a turn one way and back (10 steps).

The results of the first algorithm at normal speed are:

Figure 43: Algorithm 1 – tester 1

Figure 44: Algorithm 1 – tester 2

It is noted that when the speed is increases, the algorithm is not as effective due to it does

not stablish clearly the blocks of 5 steps. It was supposed to detect 20 blocks of the squared

form, however, neither of them gets this.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

46

The results of the second algorithm at normal speed are:

Figure 45: Algorithm 2 – tester 1

Figure 46: Algorithm 2 – tester 2

However, with algorithm 2 it occurs the opposite. Whenever the speed is increased, it gets

a greater precision and even greater stability. In this case again the results of both testers

are similar. Tall the steps are detected perfectly.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

47

6.3 Test 3

Type 3 tests consist of recording 130 steps at a fast speed. This means, in the programmed

time, about 13 turns, considering a turn one way and back (10 steps).

The results of the first algorithm at fast speed are:

Figure 47: Algorithm 1 – tester 1

Figure 48: Algorithm 1 – tester 2

It confirms the commented above, at higher speed the precision is lower.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

48

The results of the second algorithm at fast speed are:

Figure 49: Algorithm 2 – tester 1

Figure 50: Algorithm 2 – tester 2

In this last case, it is confirmed too that speed provides higher precision in the algorithm. All

steps are detected perfectly in both testers.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

49

6.4 Interpretation of the results

We have just shown that our system, hardware and software is working as predicted when

making the tests. The results will be commented in function of the algorithm used. So first

the viability of algorithm 1 and then that of algorithm 2.

ALGORITHM 1

The following conclusions can be drawn from figures 39, 40, 43, 44, 47 and 48:

This type of algorithm as said previously is limited to find the peaks within each of the blocks

formed by 5 steps. In order to do this, a limit is set, so that all peaks above this value (set

in 0.7) are considered as steps. This leads to a huge error, as it depends a lot on the signal

filtering. Although every attempt has been made to obtain the filtering as accurate as

possible, as shown in the figures, there is a fairly high error. In all the blocks there are more

than 5 peaks.

It can be checked that in the cases where the tester has a higher speed, the probability of

the algorithm of finding the block of the 5 steps is lower. This is certainly because the

rotation transition is done very quickly, not giving enough time to the algorithm to detect it

as a turn. This can be seen in figures 44 and 48 at both normal and fast speeds.

Another aspect that has been observed, is that the quicker the tests are carried out, the

more chaotic behaviour the figures show. This means that the algorithm is not sensitive

enough for speed changes, which is assumed to be a very negative aspect.

ALGORITHM 2

The following conclusions can be drawn from figures 41, 42, 45, 46, 49 and 50:

This algorithm, compared to the previous one, is limited to find 1 peak for each part of the

signal that has been collected within the square wave. This gives it much more precision,

as there is only one chance of finding one peak. In this case, it is established a limit too

from which all the peaks above are considered steps, in this algorithm this value is 0,65. As

can be seen in the figures, this algorithm is much more accurate and less complicated in

terms of finding the steps above this value, instead, if this peak does not exceed the limit

value, the goal of counting steps is lost.

One characteristic that is observed in the obtained results is that the higher the speed of

the tests, the greater the stability of the peaks is achieved. That is, if it is looked at the peaks

found in all the figures, in the tests of normal and fast type the peaks are less dispersed

than in the tests of type slow.

This can also be compared with the results obtained in the algorithm 1, where the dispersion

is much greater and remarkable. This is only due to the type of filtration that has been

carried out in both algorithms.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

50

7 CONCLUSIONS AND FUTURE WORKS

In this paper, it has been demonstrated the feasibility of using a wireless sensor network to

design two models that will be able to detect fall events.

The sensor used in the measurements was assembled and programmed in the scope of

this work. It features an accelerometer as the main detection instrument, a programmable

microcontroller as a control system and an hdf5 file in MATLAB to store the measured data.

The sensor is able to operate independently of an external power supply. The final system

is based on a belt that incorporates all the devices mentioned.

In this thesis, two different methods have been implemented to detect the steps of a person

while walking, wearing the implemented belt. With the results obtained after testing by two

testers, it has been found that both have some advantages and disadvantages.

On the one hand, the first algorithm provides a greater probability of finding all steps carried

out during the test. The square wave, which is the one that delimits the search area of the

peaks, encompasses 5 steps, giving to this algorithm a wide possibility of finding the peaks

(the steps).

On the other hand, however, being this area of searching peaks so big in the algorithm 1,

makes it to be less accurate. With algorithm 2, if the search limit is well set, the accuracy of

the algorithm is very high, as it has been demonstrated in all the tests carried out.

It can be conclude from the results obtained that it is possibly to perform reliable data

acquisition and analysis using low-cost and easily available hardware and software for

implementing a future fall detection system. It is still too early to determine if the models

proposed are the most appropriate for the fall detection system, however, algorithm 2 is a

valid candidate for counting steps, leading the development of a fall detection system in the

future.

In future work it could be also combine these sensor with a GPS chip, to provide localization

of the person outside the home. Visual environmental factors such as lighting levels and

room layout changes can be significant for many elderly people with poor vision and are

implicated in falls. Automatic detection of such changes can also be under investigation.

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

51

BIBLIOGRAPHIC REFERENCES

[1] https://learn.sparkfun.com/tutorials/accelerometer-basics/all

[2] http://www.pcb.com/Resources/Technical-Information/mems-accelerometers

[3] Analog Devices. Low Noise, Low Drift, Low Power, 3-Axis MEMS

AccelerometersADXL354/ADXL355.2016. https://www.analog.com/media/en/technical-

documentation/data-sheets/adxl354_355.pdf

[4] https://learn.sparkfun.com/tutorials/accelerometer-basics/all

[5] https://www.arduino.cc/en/reference/SPI

[6] https://store.arduino.cc/mkr-wifi-1010

[7] https://www.arduino.cc/en/Main/Software

[8] https://aprendiendoarduino.wordpress.com/2016/11/13/interrupciones/

[9] https://www.electronics-tutorials.ws/filter/filter_4.html

https://learn.sparkfun.com/tutorials/accelerometer-basics/all
http://www.pcb.com/Resources/Technical-Information/mems-accelerometers
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf
https://learn.sparkfun.com/tutorials/accelerometer-basics/all
https://www.arduino.cc/en/reference/SPI
https://store.arduino.cc/mkr-wifi-1010
https://www.arduino.cc/en/Main/Software
https://aprendiendoarduino.wordpress.com/2016/11/13/interrupciones/
https://www.electronics-tutorials.ws/filter/filter_4.html

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

52

ANNEX

Table 1: Accelerometer - Digital outputs

Table 2: Accelerometer - pin configuration

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

53

Tables 3: Acceleration data registers

X-DATA

Y-DATA

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

54

Z-DATA

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

55

SECOND TESTS

TEST 1

Algorithm 1 – tester 1:

Algorithm 1 – tester 2:

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

56

Algorithm 2 – tester 1:

Algorithm 2 – tester 2:

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

57

TEST 2

Algorithm 1 – tester 1:

Algorithm 1 – tester 2:

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

58

Algorithm 2 – tester 1:

Algorithm 2 – tester 2:

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

59

TEST 3

Algorithm 1 – tester 1:

Algorithm 1 – tester 2:

STUDY AND IMPLEMENTATION OF A FALL DETECTION SYSTEM BY MEANS OF AN ACCELEROMETER

60

Algorithm 2 – tester 1:

Algorithm 2 – tester 2:

