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Since the geopolitical world is not polarized anymore, the market competitivity is 

increasing as never before so in order to survive as an industrial organization, it is key 

to be competitive. That is, reducing costs and production times among other needs. 

Mobile robots are resources that manage to get those needs relieved since they can 

substitute humans and perform better. This causes human issues casuistic drop, human 

resources re-allocation in more creative job positions which cannot replaced by robots, 

and more long-term efficiency. 

 

The state-of-the-art of the use of mobile robots remains on the fact that we are talking 

about not just a single mobile robot but a fleet of them which performs in a smart and 

coordinated way. These devices can be integrated in the supply-chain so that can 

transport payloads without the need of any human intervention. In addition, such 

integration allows a huge flexibility since smart industrial mobile robots can adapt to new 

conditions, imposed parameters and obstacles that were not predicted. For any 

autonomous mobile robot, a prior knowledge about its environment is necessary before 

performing autonomous navigation, that is to have a previous map. Mapping usually is a 

human intervened task which takes time, especially for large facilities. This work 

proposes a way to map autonomously, in the most efficient way, an indoor 2D 

environment by using the Rapidly-exploring Random Trees approach since it is biased 

towards unknown regions. 

 

In addition, this work proposes object discrimination during mapping. With the 

conventional approach, during the mapping process laser scanners read the presence 

of all the obstacles in the environment. This fact is undesired since some of such scanned 

obstacles are scanned just by causality during the exploration (e.g. personnel, industrial 

mobile equipment…). Such undesired registered data in the map suppose noise and 

does not represent the actual long-term environment. The implementation of removing 

such noise is managed by the combination of two modules. On one hand, by using state-

of-the-art deep learning tools in order to achieve real-time object detection. On the other 

hand, a filter to the laser scanner so that it is blind towards such detections during the 

exploration, so they are never registered on the map. 

 

The results show quite potential high-quality results which are intrinsically associated 

with the object detector module. Since such module is state-of-the-art, the technology 

involved is constantly developing and improving not just the performance but also 

flexibility and capabilities. This work is a potential new high-fidelity approach besides the 

conventional approach in order to perform mobile robot exploration. 
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1. INTRODUCTION 

The topic of robot navigation is getting more and more relevant nowadays since quite 

useful applications on industry had been found to be interesting tolls that fight costs and 

time wasting. A mobile robot in order to proceed with an efficient navigation must know 

its environment through a representative map a priori. And the procedure to obtain such 

map is what is known as map exploration, which is moving around an unknown region 

while recording data out of it on a map[1]. The targets of this procedure are to minimize 

the time of map building while maximizing the area to explore considering a behaviour 

of the mobile robot biased toward regions still unexplored avoiding the zones already 

mapped. 

 

The navigation hierarchy can be represented in a simplified manner as in Figure 1. 

The hierarchical approach in SLAM starts with the lowest level, which is localization. This 

is for the robot knowing real-time position and orientation on the real world, that is pose, 

which is with respect a selected frame (global or relative). After this priority, the following 

level is the ability of moving autonomously of the robot which is performed by path 

planning which consist of the generation of targets and moving towards them considering 

obstacle avoidance, that is an improvisation ability. Once these both levels are operating, 

then it is possible for the highest level to be executed, that is exploration, which must be 

performed in parallel with the other levels of hierarchy while updating the map. 

 

 
 

Figure 1. Hierarchical approach in SLAM. 

 

In comparison with other exploration approached, the frontier-based ones have 

currently more attention from the research community[2]. Why? Because they are more 

efficient since there is no redundancy on the exploration, that is, not exploring again 

known regions. This is achieved as the mobile robot is biased towards frontiers which 

represent the borders between known from unknown areas of the map. Image 

processing tools for the frontier edge detection makes this approach possible. Other 

approaches are based on randomized path planning methods whose hypothesis relies 

on the inherent probabilistic feature of already being biased towards the frontiers[3]. 
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This work proposes a frontier-based strategy based on the path planning method of 

Rapidly-exploring Random Tree, which can be extrapolated to the third dimensional 

space. The navigation under this implementation ensures that the path planning is 

independent from the growth of the tree so that makes able the tree to spread quicker 

increasing the efficiency of the algorithm. It is also considered the minimization of energy 

consumption in the way that the target assigner discards those targets which are too far 

away from the mobile robot. This is because in such cases the likelihood of exploration 

redundancy is high. So that the implementation has a target filter assigner module whose 

purpose is to consider relevant points to have as navigation goals. 

 

In addition to the previous, once the exploration is done with the conventional 

approach, all material shapes present in the environment, regardless whether they are 

relevant or not to the map, have been recorded on it. That are, personnel walking around, 

temporal objects (such as industrial trucks) and other objects which can be assumed that 

are just transitory in the environment. The work pursues an implementation using object 

detection algorithms based in deep learning and a map filtering module. With the 

information provided by the object detector (bounding boxes encapsulating the 

detections), it is possible to omit such objects during the map scan. Since nowadays 

there are available quite powerful and flexible deep learning-based object detectors, it is 

possible to infer an object category despite its perspective, illumination variance, and 

bizarre shape. In addition, this set of tools allows to use pre-trained models which 

nowadays can detect dozens of different object categories (chair, person, car, …) and 

filter them in order to detect a certain class of objects. 

1.1 Motivation 

Nowadays, the industry is experiencing a transition to a next level never experienced 

before. Globalization is the catalyst for this situation as generates competitivity 

worldwide. So that, industrial businesses must update their systems in order to survive 

in the market. This transition is known as Industry 4.0[4] or The 4th Industrial Revolution. 

Which is the trend of automating as many manufacturing processes as possible via 

digital data exchange and monitoring. One application can be the management of a fleet 

of mobile robots in a highly automated factory. Mobile robots need previous information 

of their environment encoded in a map in order to perform path planning. The problem 

comes when such map does not represents the reality properly, so neither do the path 

plannings. The effects of this fact can be perceived in a long-term period, especially, this 

effect is exponential when such path plannings are performed by a fleet of robots that 

use the same map. 
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1.2 Problem definition 

Mapping the indoors of industrial facilities takes a considerable amount of time as the 

areas to explore are usually large. The usual approach is done via teleoperation which 

involves human resources to commit such task. In addition, the environments to map in 

the industrial context are usually quite dynamic, i.e., there are constantly mobile 

elements moving around or certain types of objects, although ”static”, that are known 

that they will not be in the same position in the near future since they are considered 

temporal. The problem comes when during the mapping, these objects are recorded 

anyways without regard of their features which make them not suitable to figure on the 

map. 

1.2.1 Justification of the work 

 

The point of seeking for a solution is to upgrade the synergy of the processes to the 

next level. That is adopting the premises that Industry 4.0 postulates. In few words, to 

improve competitivity minimizing costs in terms of time and money by allocating correctly 

available resources) and enhancing all the processes involved in the supply-chain. 

1.2.2 Problem Statement 

 

Exploring autonomously an area with the possibility of discarding, from the generated 

map, certain selected categories of objects in the environment under the hypothesis that 

they are dynamic in the space (i.e. temporal or positionally non-static). 

1.3 Research questions 

- How can I perform autonomous navigation which involves path planning without 

a map? 

 

There exist exploration algorithms that are based on SLAM by targeting unknown 

areas 

 

- How can I perform object detection with generalization capacity to know a certain 

type of objects? 

 

Deep learning has the required capability of generalization from the learning. That 

is, can recognize an object of a certain type even though has never seen it before 

(i.e. it is not in the training set). 

 

- What sensors do I need for the implementation? 

 

o Laser scanner provides the readings for the mapping 

o Depth camera provides the RGB image required to feed the Object 

Detector Module 
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- What software environment do I choose to work with? 

  

 Robot Operating System (ROS). Since this environment provides open source 

ready-to-use packages, high flexibility and high interchangeability, easy  

communication with the robot and other devices, and community support. 

 

- Do I need a GPU for the implementation? 

 

Yes, the object detection algorithm requires a lot of tensorial computations that 

the CPU cannot handle properly. Modern GPUs are optimized for such applications. 

1.4 Objectives 

The aim of this work is to increase the automatization level in the previous stage of 

the integration of the mobile robots in the supply-chain and to increase the efficiency 

during the integration phase. The former goal is achieved by automating the usually 

teleoperated mapping phase before the mobile robot fleet deployment. The later goal, 

by making the mobile robots compute the path plannings according to real environments 

free of mapped objects that actually do not exist anymore in the position they were 

recorded. This actually means more efficient path planning, since the generated paths 

are more straightforward since they are not affected by re-routing due to objects that 

presumably do not exist anymore in such recorded positions. This is made under the 

hypothesis that a certain class of object is considered transitory. A case would be an 

industrial mobile equipment that was transporting goods in a facility was recorded while 

mapping with the mobile robot. Most likely, such object will not be anymore in that static 

position anymore in the future. 

1.5 Thesis outline 

After clearing the context of this work, now you will see the fundamentals and theory 

that makes the implementation work behind scenes. Under a scientific approach, this 

document makes clear any rational questions sort of “How does it work?”, “How come is 

this possible?”, “What is/was the context of this?”, “Is actually black magic what is behind 

all of this? Witchery may be?”. If you are not familiar with concepts such as SLAM, robot 

perception, neural networks, deep learning, object detection and so on, it is highly 

recommended to go through this point. 

 

Once the concepts behind scenes are clear enough, the proposal of the work 

indicates what and why in this work certain approaches were considered as valid. Then 

in the implementation point, documentation provides a guide on how come this was 

managed to make the whole thing work. 
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Finally, the results of the synergy of every module of the system are provided as 

evidence that the proposed system works. Also, at the end, the document suggests 

enhancements and future developments from this work. 
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2. LITERATURE AND TECHNOLOGY REVIEW 

2.1 Industrial mobile robots 

Since the 3rd industrial revolution, the attention and use of industrial mobile robots 

has increased exponentially due to the constant evolution of electronics. The point of 

such fact is contributing to the increase of the automation degree promoted by that 

revolution. It is proven that despite these devices commit mistakes, they are less frequent 

than the ones made by human labours. In addition, they are capable of working in 

hazardous areas which for a human would be dangerous[4]. 

 

The use of mobile industrial robots is mainly intended for payload transportation and 

palletization. 

 

 

Figure 2. Palletizer mobile robot designed by Boston Dynamics. [5] 

Before the current autonomous mobile robots, the traditional Automated Guided 

Vehicles (AGV) had not path planning algorithms in order to perform navigation and they 

relied usually on guide tapes (magnetic or colored if robot posses primitive machine 

vision) printed on the floors so the robots could follow such manually and previously 

made paths. The main drawbacks are the lack of flexibility and use limitation for 

elementary fleet coordination and non-complex environments. 

 

 
AGV navigation system based on guided tapes. [6] 
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Since technology evolved, smarter mobile robots now are capable of performing real-

time path planning which enables the possibility of coordinate large fleets of mobile 

robots, improvise on-the-way if there are obstacles such as humans with obstacle 

avoidance protocols that communicate directly with path planning algorithms. The 

implementation of the technologies offers huge flexibility since paths can be modified 

and monitored from a computer which is connected wirelessly to the mobile robots[7]. 

 

A more robust and advanced robot perception makes the implementation possible. 

The mainly used sensors in order to perform autonomous navigation are laser scanners 

and depth cameras. 

 

 

Figure 3. Amazon robot fleet in warehouse. [8] 

 

For this it is needed previous information of the environment contained on the map of 

the environment where the mobile robots are going to perform and share space. Thus, 

the global planner is based on such map in order to compute path planning and proceed 

with SLAM. Note: all the robots of a fleet working in the same area use the same map. 

 

 

Figure 4. Diagram of fleet management system for autonomous vehicles. [7] 
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2.2 Robot perception 

Robot perception is the ability of a computerized system to interpret the world 

environment through the data provided by sensors such as laser scanners or depth 

cameras. This feature is fundamental in order to make the mobile hardware perform in a 

coherent way with the real world. 

2.2.1 LiDAR technology 

 

An application of the LASER technology is LIDAR which is a surveying which 

quantifies the distance between the target and the sensor. It is robust perception 

approach since the illumination and noise are invariants. The parameters to compute 

such distance are wavelengths and return times of the reflected pulsed laser light. In 

order to compute the distance, the speed of light and the time of the returning photon 

coming from the laser beam is: 

𝐷 =  
1

2
· 𝑐 · 𝑡    (1) 

 

 

Figure 5. Surveying process of a single laser beam.[9] 

Such rotating laser can be stacked with other beams so several scanned planes are 

retrieved forming a pointcloud. 

 

 

Figure 6. Pointcloud formed by multi-laser scan layer horizontally stacked. [10] 
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2.2.2 Stereo vision 

 

A very important ability to have depth perception of the real world, that is why life 

evolution has provided animals and humans with two sensors (eyes) instead of one. In 

the field of computer vision, stereo vision is the extraction of the depth information from 

digital images. Such extraction is made in dense depth maps and pointclouds. 

 

 
Figure 7. The depth retrieval information from a single image is inherently 

ambiguous. 

  

 The mathematical model of the stereo vision is based on the epipolar geometry 

which is described as follows: 

 

 
Figure 8.  Geometric representation of the mathematical model of the stereo vision. 

[11] 

 

 

The depth 𝑧0 is function of the disparity, which is defined as: 

 

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑥0 − 𝑥0′ =
𝐵·𝑓

𝑧0
    (2) 

 

The baseline, which is the distance between the cameras, is modeled as: 

 

{
𝐵 = 𝐵1 + 𝐵2 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋0 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝐵 = 𝐵1 − 𝐵2 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋0 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

 

And finally 𝑓 is an intrinsic parameter of the camera defined as the focal length. 
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2.2.3 Point Cloud 

 

It is the representation of the scene and its objects, which are observed by a certain 

scanner sensor, in a set of points displayed in 3D Euclidian space[12]. The points are 

meant to be in the contours and surfaces visible by the aforementioned scanner which 

is a valuable information for depth perception. 

 

The point cloud is mathematically defined as: 

 

𝐶 = {𝑝𝑖}𝑖=1
𝑛     (3) 

 

in which 𝑝𝑖 means a point in such cloud: 

 

𝑝𝑖 = {𝑥, 𝑦, 𝑧}    (4) 

 

which are the global coordinates with respect to the scanner sensor frame. 

 

The information of a single point of the cloud usually is irrelevant, so it is the whole 

set which is useful for data analysis. Some applications[13] of point clouds are the 

generation of 3D maps (RTAB-Maps), extraction of keypoints in the 3D space for 

descriptors, outliers filtering from noisy data, robot perception, LiDARs, and so on. 

 

 

 

Figure 9. Pointcloud with RGB data in Rviz. 

 

On the left side, an RGB image received by a depth camera. On the right side, the 

point cloud generated mixed with RGB data. [14] 
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2.3 Environment exploration 

 

One of the godfathers of the frontier-based exploration is Yamauchi[1]. His work could 

make a mobile robot to explore autonomously a complex indoor environment with 

obstacles and map it. It was based on the principle that the algorithm is biased towards 

unexplored areas. After an iterative process, the whole area should be completely 

explored. Such implementation was tested using a mobile robot in a real office which 

contained furniture, objects and so on as obstacles. 

 

 
Figure 10. Yamauchi’s map obtainment process. 

a) Generated map b) Frontier edges c) Frontiers areas 

 

The empty spaces (white areas) represents known space, the region with dots 

symbolizes unknown region and the plusses symbols circumscripted in circles are the 

frontier areas. 

 

In his implementation, frontier detection is an iterative process that re-starts every 

time the mobile robot arrives the designated target position. This feature means a high 

computational cost[15] since the whole map has to be scanned completely every 

iteration. After Yamauchi’s work, alternative and variants of exploration strategies based 

on the idea of frontier detection were discovered. 

 

Not many years ago, researchers[2, pp. 113–120] proposed two more efficient 

variants of frontier detection strategy. FFD (Fast Frontier Detector) and WFD (Wave 

Frontier Detector). The first approach just considers the laser scans messages (which 

were converted in contours) in the frontier searching. The process consisted on the fact 

that when the detected frontier is not previously stored then it is created and stored. The 

second approach considers just the known areas of the map. The trigger of the extraction 

of the containing edge happens when a target is found on the frontier edge. 

 

Other exploration approaches are based on randomized path planning methods. The 

purpose of frontier-based approaches is to avoid redundancy while exploring unknown 

maps, that is to avoid already explored regions. This is accomplished by exploiting the 
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inherent probabilistic properties of the RRT algorithms. So that, there is no need of 

detecting frontier regions in order to direct the mobile robot towards to unexplored areas. 

The resulting growth of the tree[3] during robot navigation is biased the frontiers so that 

the map is iteratively expanded. 

 

There is a variation of RRT algorithm known as SRT (Sensor-based Random Tree) 

[16] in which navigation goals are randomly generated within a range limited surrounding 

space of the mobile robot laser scanner. On the other hand, RRT generates target 

positions along the entire map. This main difference makes this variant a depth-first 

exploration approach since the sequence of random targets will appear like a chain of 

nodes. Instead, in RRT, trees branches spread in alternative directions sub-growing in 

sub-branches (kind of fractals). Because of the divergence of both variants, the SRT 

implementation need of backtracking. This is the mobile robot requires to retrocede and 

track parented nodes of the ascending node when a branch stops spreading, i.g. this can 

happen if the robot arrives to a dead end for instance. The problem comes when 

backtracking involves visiting certain places more than once, since it an undesired 

feature. Nonetheless, some researches[17] propose enhanced treatments to this issue. 

 

The exploration methods that cannot be related to the aforementioned approaches 

can be categorised into information-based exploration[18], [19]. That considers mapping 

and localization simultaneously with exploration in the way that target positions are 

selected so that increases the certainty of the mobile robot pose, thing that improves the 

information got in the map.  

2.4 Path Planning 

 

This is the core procedure in navigation. There is a starting position where the robot 

begins to compute the path planning and a goal position to which the robot has to arrive 

somehow. These two points are located in a map which contains the obstacles that 

should be avoided. Here it is covered an explanation and differences between Dijkstra’s 

algorithm and RRT algorithm. The main difference between both implementations is that 

the former one is used when the map is already built and the purpose is to minimize the 

distances between points. Meanwhile the later one is meant to be used to find exploration 

goals, that is, when the map is not made yet. 
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2.4.1 Common concepts in Dijkstra’s and RRT algorithms 

 

Map X: Represents the space containing the whole information. 

 

FreeSpace Xfree: It is the space containing nothing. 

 

Vertices V: Points or nodes appearing on the map. The RRT algorithm generates 

them so they are interconnected forming tree branches. Each point is defined as vertex. 

The whole set of the different vertices are stored in a vector V. 

 

Edge E: It is the line connecting pairs of vertices. Each edge is stored in terms of the 

spacial coordinates of both points. The edges are stored in the vector E. 

 

Graph: Vertices and Edges generates a graph. G = (V, E). 

 

 
Figure 11. RRT graph structure. [20] 

 

Nearest(G = (V, E), x ⊂ Xfree): It takes a certain graph and a generic point in the free 

space as input. This function returns the closest vertex to a point v ⊂ V in the way that 

Nearest(G = (V, E)) = argmin v ⊂ V ||x – v||. 

 

Steer: This function takes a pair of points with x and y coordinates and outputs a z 

point where ||z – y|| is minimized, while ||z – x|| ≤ η, which η is the tree growth rate and 

η > 0. 

 

ObstacleFree: The output of this function is the type of a boolean, in which a pair of 

points in the FreeSpace are the input. So it outputs False if there is any obstacle between 

them. 

 

getFirstMinCost: It returns the first vertex x ⊂ G with the lowest cost. 

 

Neighbor(Q, u): It returns the vector of vertices that are directly connected to u vertex, 

Xneighbor ⊂ Q. 

 

Cost(x1, x2): Represents the cost assigned to an edge connecting a pair of vertices. 

It can be an assigned cost or the edge length. 

 

Parent: Each parent vertex can generate multiple child vertices and has a unique 

parent. 
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2.4.2 Dijkstra’s algorithm 

 

From a certain graph G(V, E), this algorithm is meant to find the shortest path between 

any pair of vertices that belong to G under the assumption of such path. In the 

implementation of the work proposal, this algorithm is used to coordinate the mobile robot 

toward goal nodes generated by the tree obtained via RRT algorithm. For a certain vertex 

R on the minimum distance (or cost) path between two other vertices (A and Z), seeking 

this path means finding the minimum path between A and R. This means that the 

optimum path which connects a pair of vertices is also the optimum paths connecting all 

the belonging vertices[21]. So that, the algorithm keeps seeking for the optimum paths 

to all vertices until the goal node is reached. 

 

 

Figure 12. Dijkstra’s algorithm pseudocode[22]. 

 

 

  



17 

 

2.4.3 RRT algorithm 

 

Introduced by Steven Lavalle[22], it is composed by a tree structure which starts from 

an initial vertex V = {Xinit} and E = ∅. Every iteration generates a random point xrand ⊂ Xfree 

which is sampled. Then, the nearest vertex xnearest ⊂ V belonging to the tree to this 

random coordinate xrand is identified. Now the Steer function generates anew point xnew 

between xrand and xnearest. As long as there is no obstacle, both the vertex xnew and the 

edge {(xnearest, xnew)} are incorporated to the tree. After successive iterations, the tree 

incrementally grows in the free space until the target coordinate is found, once that 

happens, the loop stops. 

 

 
(a)              (b) 

 

 
(c)                (d) 

 

Figure 13. Progress of the tree propagation during RRT execution. 

In (a) the tree begins to shape and the branches reaching obstacles stop. (b) and (c) 

show the spreading of the tree branches around the free space. Finally in (d) one of the 

branches reach the target point. 
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Figure 14. RRT pseudocode. [22] 

2.5 Map Representation 

The core concept of this work is the map, which is the representation of the 

environment of a mobile robot. It is a list of obstacles present in the environment with 

features[23] attached: 

 

𝑚 = {𝑚1, … , 𝑚𝑂}    (5) 

 

in which O is the total amount of obstacles. 

 

Map data can be sorted in three classes: topological maps, volumetric maps and 

featured-based maps. 

2.5.1 Topological maps 

 

It is a simplified version that just contains essential information and unrelevant 

information is discarded. That is, only certain regions in the environment with the 

relationships between those areas are stored in the map. The graph of this sort of maps 

have nodes which represents the regions and edges that link nodes. Topological 

maps[24] can be extracted from occupancy grid (see concept in next section) maps. 

 

 
(a)      (b)  

Figure 15. Extraction of topological maps. 

In (a) it is visible the occupancy grid map and in (b) the topological extraction. 



19 

 

2.5.2 Volumetric maps 

 

In this kind of maps, every item in the equation (5) belongs to a certain position in the 

environment so that is why it is also known as location-based map. So the result is an 

occupancy grid which objects, free space and unknown space is represented. 

 

 

Figure 16. An example of an occupancy grid map made in an office. 

 

This representation is a 2-D grid composed by cells. Those cells are the equivalent of 

pixels and their meaning are: whiter pixels are free, blacker pixels are occupied, and 

pixels in between are unknown. The occupancy grid mathematical model is: 

 

𝑝(𝑚) =  ∏ 𝑝(𝑚𝑖)𝑖      (6) 

 

in which mi are the cells in the grid that corresponds to a certain position in the mapped 

region. If the probability value 𝑝(𝑚𝑖) is null, then it means that the cell is free. Otherwise, 

if the value is 𝑝(𝑚𝑖) = 1, then the cell is certainly occupied, while a 𝑝(𝑚𝑖) = 0.5 means 

that there is a state of maximum uncertainty, so the status of such cell is unknown. The 

resolution of a map depends directly on the cell size. 

 

 

Figure 17. A detailed view of an occupancy grid map showing the cells. 
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2.5.3 Featured-based maps 

 

This is a more elementary version than the previous type of maps. It is just intended 

to store certain features of the environment and not all locations. Every detected obstacle 

mi  in equation (5) is a feature which contains properties and localization. A property could 

be a visual landmark, but for this case it would be necessary to deploy vision sensors. It 

is recommended when memory size is a limitation. 

2.6 SLAM: Rao-Blackwellized Particle Filters (RBPF) 

 

In autonomous navigation, Simultaneous Localization and Mapping (SLAM) is 

concept that defines the robotic problem of building a map of an unknown environment 

while simultaneously keeping track of the robot's location on the map that is being built. 

A standard ROS package implementing this module is known as gmapping[25]. The 

contained SLAM algorithm makes use of Rao-Blackwellized Particle Filter (RBPF). The 

inputs of this package are the odometry and laser scanner data. And the outputs are the 

map generation as a occupancy grid and robot pose (position and orientation). 

2.6.1 Rao-Blackwellization process 

 

The point os SLAM is to estimate the robot pose within the simultaneously map 

generation. The problem is modelled as seeking the following joint probability: 

 

𝑝(𝑗1:𝑝, 𝑚 | 𝑘1:𝑝, 𝑙1:𝑝)    (7) 

 

in which 𝑗 is the robot pose, 𝑚 is the map, 𝑘 is the observation (e.g. laser scanner 

readings) and 𝑙 is the control input (odometry data usually). This approach, known as 

Rao-Blackwellization is divided into two different subproblems: 

 

- Estimating the map posterior 𝑝(𝑚 | 𝑘1:𝑝, 𝑗1:𝑝) for every 𝑝 − 𝑡ℎ particle 

- Estimating the robot pose posterior 𝑝(𝑗1:𝑝 | 𝑘1:𝑝, 𝑙1:𝑝) using a particle filter 

 

The former subproblem is also known as mapping with known poses. Then the SLAM 

problem can be simplified in: 

 

𝑝(𝑗1:𝑝, 𝑚 | 𝑘1:𝑝, 𝑙1:𝑝) =  𝑝(𝑚 | 𝑘1:𝑝, 𝑗1:𝑝) ·  𝑝(𝑗1:𝑝 | 𝑘1:𝑝, 𝑙1:𝑝)    (8) 
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2.6.2 The process of building a map with known pose 

 

Having known the sensor observations and the robot path, the problem model is: 

 

𝑝(𝑚 | 𝑗1:𝑝, 𝑘1:𝑝) =  ∏ 𝑝(𝑚𝑖  | 𝑗1:𝑝, 𝑘1:𝑝)𝑖     (9) 

 

where m is the occupancy grid map and mi is a cell in such grid. Making use of the 

Bayesian filter, the probability 𝑝(𝑚𝑖) can be estimated[23] as: 

 

𝑙(𝑚𝑖  | 𝑗1:𝑝, 𝑘1:𝑝) =  𝑙(𝑚𝑖 | 𝑗𝑝, 𝑘𝑝) +  𝑙(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝−1) −  𝑙(𝑚𝑖)    (10) 

 

where 

 

𝑙(𝑥) = 𝑙𝑛
𝑝(𝑥)

1−𝑝(𝑥)
    (11) 

 

Summarizing, 𝑙(𝑚𝑖) is the prior which is computed from p(mi) in (11). Usually the cell 

is initialized as unknown, that is, 𝑝(𝑚𝑖) = 0.5. The term 𝑙(𝑚𝑖  | 𝑗𝑝, 𝑘𝑝) refers to the inverse 

sensor model which is updated from the sensor readings and 𝑙(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝−1) is a 

recursive term of the equation (10).  

2.7 Frontier-Based Autonomous Exploration 

So far, this strategy is the most widely used for autonomous exploration. So that, this 

approach is compared to RRT-based exploration. In the proposed strategy, RRT is 

meant to find exploration targets while the robot task allocator assigns the detected 

exploration goals. 

 

The frontier-based approach detects exploration targets by the extraction of frontier 

edges which, in an occupancy grid, are the lines that separate the known from unknown 

space. After such extraction, the center of every edge is targeted as exploration goals. 

2.7.1 Frontier edge extraction 

 

In the proposed strategy, frontier edge extractions are made by the use of computer 

vision tools, particularly OpenCV. The process consists of: 

 

1. The occupancy grid map topic is converted into a image with a grey-scale format. 

This is necessary since OpenCV works with image files. The map topic message 

(nav_msgs/OccupancyGrid[26]) has this structure: 
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# This represents a 2-D grid map, in which each cell represents the probability of 

# occupancy. 

Header header  

 

#MetaData for the map 

MapMetaData info 

 

# The map data, in row-major order, starting with (0,0). 

# Occupancy probabilities are in the range [0,100].  Unknown is -1. 

int8[] data 

 

Here data is a 1-D array in which the elements are the values of every cell in the grid. 

So that, it is converted into a 2-D array which is the grey-scale image that will be fed to 

OpenCV. The conversion is made in the following way: 

 

- Occupancy grid cell value of 0 (free space) → pixel value of 255 (white) 

- Occupancy grid cell value of 100 (occupied) → pixel value of 0 (black) 

- Occupancy grid cell value of -1 (unknown) → pixel value of 205 (grey) 

 

 

(a)                                (b) 

Figure 18. Frontier edge extraction example. [20] 

(a) The occupancy grid map. (b) Detected frontier edges and extracted. 

 

2. Then in order to keep just the pixels occupied by obstacles a threshold is applied 

on the image file (Figure Yb), after that, contours are marked (Figure Yc). Finally, 

a negative filter is applied to the image so the result is just occupied grid cells in 

the map marked in bold. 

 

3. After previous step, a Canny edge detector is applied returning an image that 

contains all edges, occupied grid cells (walls or obstacles) and the frontier edges 

(Figure Ye). 

 

4. Finally, occupied cells are subtracted from edges gathered in the prior step giving 

as result only frontier edges. This is achieved by the bitwise operation AND 

between the images gathered in the steps 2 and 3, giving as a result the filtered 

frontier edges image (Figure Yf). 
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(a)                       (b)           (c) 

 
(d)                                 (e)           (f) 

 

Figure 19. Frontier edge extraction procedure. [20] 

 

Nevertheless, frontier-based algorithms have the limitation of relying too much on 

the map representation. That is, the map requires to be in an occupancy grid format 

which is meant for just 2-D spaces. For 3-D environments, this approach is not 

suitable[27]. 

2.8 Mean Shift Clustering 

 

Mean shift clustering is integrated in the implementation and it is meant in order to 

increase computational efficiency by lowering the computational cost. The proposed 

exploration approach detects frontier targets in the map. Such amount of targets can be 

in certain cases considerably high which usually portions of them are located massively 

nearby. So that, those point groups should be clustered in order to remove redundancy. 

The approach selects this algorithm to solve this problem as the number of clusters 

is not required as an input but the size of the cluster. These properties makes adequate 

this selection as part of the integration. 
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2.8.1 General concepts 

 

The mean shift algorithm takes as input the samples taken from a PDF (Probability 

Density Function), 𝑓𝑘(𝑥1), where higher likelihoods correspond to dense areas (clusters) 

given a set of points {𝑥1𝑖}𝑖=1
𝑁  ∈  ℝ𝑑𝑖𝑚. The center of mass of every cluster corresponds 

to the local maxima of 𝑓𝑘(𝑥1). Iteratively, this algorithm shifts the points to their belonging 

local maxima. 

 

The kernel density estimator provides 𝑓𝑘(𝑥1), by using a specific kernel K(x1). 

 

𝑓𝑘(𝑥1) =  
1

𝑁ℎ𝑛
∑ 𝐾

𝑥1−𝑥1𝑖

ℎ
𝑁
𝑖=1     (12) 

 

𝐾(𝑥1) =  
1

(2𝜋)𝑛/2 𝑒−
1

2
 |𝑥1|2

    (13) 

 

where dim is the dimension of the data and h is known as the bandwidth, which for a 

Gaussian kernel h is the variance (width of the normal distribution). The PDF equation 

(12) states that is composed by the addition of individual kernel functions. 

 

 

Figure 20. PDF function composed by individual kernels. 

In this example, 6 individual kernels (red dashed curves) are shown. The Gaussian 

kernel density produces the blue curve. [20] 

 

Tunning the bandwidth value will shape the PDF plot shape. So that, the smaller this 

parameter gets, the sharper 𝑓𝑘(𝑥1) curve shows (Figure 22.a). On the contrary, the larger 

it gets, the smoother it becomes (Figure 22.b). There is an actual optimal value for the 

bandwidth that will fit the best the cluster models (Figure 22.c). [21] 
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              (a)                                            (b) 

 
         (c) 

 

Figure 21. Influence of the bandwidth value on the PDF curve. 

The number of local maxima of 𝑓𝑘(𝑥) is equal to the amount of obtained clusters after 

applying the kernel density estimator. 

 

 
     (a)                                                                (b) 
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Figure 22. Kernel density estimation. 

(a) shows the surface plot of the kernel density estimation of the data and (b) shows 

the contour plot of (a). 

 

The mean shift algorithm shifts data towards the direction of the gradient ∆𝑓𝑘(𝑥). That 

is adding the mean shift vector to the data. 

 

 

 

(a)                                                             (b) 

 
(c)                                                             (d) 

 

Figure 23. Mean shift clustering using uniform kernels. 

 

(a) Shows clusters before being processed. In (b) a kernel is applied so the shifting 

of the detected clusters begins. (c) Clusters converge into their corresponding 

local maxima. (d) shows the processed clusters remaining only a singular value 

per cluster. 
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2.8.2 Mean shift with flat kernels 

 

Flat kernels are defined as: 

 

𝐾(𝑥) =  
1

2
{

1, 𝑖𝑓 ||𝑥1|| ≤ ℎ 

0, 𝑖𝑓 ||𝑥1|| > ℎ 
    (14) 

 

Every point that belongs to a certain cluster data 𝑥1 ∈ {𝑥1𝑖}𝑖=1
𝑁  is shifted towards the 

mean 𝑚(𝑥) of such cluster data points[28]. After each iteration until convergence, such 

points are shifted step by step. Such cluster center is defined as: 

 

𝑚(𝑥1) =  
∑ 𝐾(𝑥1𝑖−𝑥1)𝑥1𝑁

𝑖=1

∑ 𝐾(𝑥1𝑖−𝑥1)𝑁
𝑖=1

    (15) 

 

in which 𝑚(𝑥1) − 𝑥1 is the mean shift. 

 

There is already a ready-to-use Scikit-learn library[29] implementing this algorithm, 

so it is used in the proposed exploration approach. 

 

 

Figure 24. Kernel density estimation curve by use of flat kernel. 
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2.9 Neural networks and Deep Learning 

Neural networks it is a computer science field which has been researched for 

decades. In the beginning, due to the inferior computational processing power, lack of 

databases and know-how, the order of categories was a few dozens and the input 

dimensions, the order of hundreds. 

 

Nowadays, that is different, the input sizes feeding the neural networks can reach the 

order of 100k from different thousand of categories. Additionally, some decades ago the 

NN were fully connected (i.e. dense layers) networks with one up to three layers. Today, 

it is possible to make work a NN with a thousand of hidden layers. 

2.9.1 Neural networks 

 

A neural network is composed by neurons or perceptrons, which is a unit defined by the 

dot product between the inputs 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) and the weights 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚). 

Then a non-linear (commonly logsig or tanh) function is applied to it. So that, a NN is a 

stack of logistic regression (or other nonlinearity) models. 

 

 
Figure 25. Perceptron morphology and two common activation functions. [30] 

 

In addition, usually it is incorporated a bias as component of the weight vector by 

always including a feature with value set to 1. So that, for the case of the use of 

Logistic Regression function: 

 

𝑦𝑘 = 𝜎(𝑧) =  𝜎(𝑤 · 𝑥2 + 𝑏)    (16) 

 

𝜎(𝑧) =  
1

1+𝑒−𝑧    (17) 

 

being 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚), with all components set to the same value. These variables 

are known as parameters of the NN. 
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2.9.1.1 Training a neural network 

 

The training procedure is about adjusting the weights according to the partial 

derivatives: 

 

𝑤𝑎𝑏 ← 𝑤𝑎𝑏 −  ε
𝜕𝐸

𝜕𝑤𝑎𝑏
    (18) 

 

Which means that the b-th weight of the a-th neuron steps (ε > 0, which is one of the 

hyperparameters of the NN) towards the negative gradient[31]. Note: 𝐸 is the error 

function[32]. 

 

 

 
Figure 26. Error function and updating of the weights during gradient 

propagation. 

 

So in each iteration of the training the forward and backpropagation of the gradients 

is computed. The first procedure feeds one or more samples to the NN and gradients 

are computed layer by layer using the chain rule. The second one proceeds to compute 

the resulting error and propagates back the gradients re-adjusting the weights one at a 

time. Once all samples are fed to the NN, an epoch occured (usually there are thousands 

of them)[30]. 

 

 

Figure 27. Back and forward propagations in a neural network 
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The database which feeds the neural network needs to be split randomly in: 

- Training set: inputs for the forward propagation (usually 80% of the whole 

dataset). 

- Validation set: hyperparameters tunned on this partition of the dataset to make 

optimal the training. (It is optional and when it is present, the proportion is 

around 10%) 

- Test set: this part of the dataset evaluates the generalization capacity after the 

learning (20% if there is no validation set, 10% in afirmative case). 

It is fundamental that the partitions of training and test sets have completely different 

data, otherwise, the test will not evaluate the actual learning but just the memory (i.e. it 

will not evaluate the generalization capabilities). Usually a NN requires of a quite large 

training dataset. 

 

Figure 28. Usual proportions of the partitions in the dataset for a neural 
network. 

2.9.1.2 Initial problems with deep neural networks and solutions 

 

It was a huge problem with the NN deeper than a couple of hidden layers since: 

- The deeper the NN becomes, the larger the local minima areas get. So the training 

stucks at one of these fake minima areas. 

 

 

Figure 29. Local and global minima areas. 

 

- The propagated gradient vanishes at the bottom layers, so that the nonlinearity 

tends to shrink its magnitude at each layer. At some point, the value is that small 

that the NN stops learning from the training. 

 

These problems were solved and enabled a new era in the pattern recognition field, 

the deep learning field was born. So in few words, deep learning is the field that deals 

with deep neural networks. This was possible by unsupervised pre-training which 

consists on: 
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- Train layered models that learned to represent data without any classification and 

class labels 

- Then, initialize the NN with the resulting weights coming from such unsupervised 

model. 

 

for these, some of the tools used are the deep belief network (DBN), restricted 

Boltzmann machine (RBM), autoencoders, and so on. 

 

However, new researchs found some ways to avoid that unsupervised pre-training 

procedure: 

- Novel weight initialization techniques (e.g. Xavier initialization) adjusts the initial 

weight magnitudes layerwise[33]. 

- Dropout regularization to prevent overfitting by increasing randomness to the NN. 

This procedure consists on randomly shutting down a portion of the perceptrons 

during the training[34]. 

- Enhanced non-linearities (or activation functions) that preserves the gradient over 

layers (e.g. ReLU(z) = max(0,z))[35]. 

 

 
Figure 30. Rectified Linear Unit activation function. 

2.9.2 Convolutional Neural Networks 

 

This neural network architecture makes possible to preserve the topology of the 

input[36]. It is mainly intended for image processing but it is also possible to use CNNs 

for Natural Language Processing (NLP), recommendation systems and so on. 

 

The structure usually is composed by: 

1) Input image 

2) Convolution filters the input with a number of convolutional kernels. 

 

Figure 31. Feature maps resulted from the convolution from a sample image. 
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3) Non-linearity ReLu passes feature maps through a pixelwise Rectified Linear 

Unit. 

4) Spatial pooling: subsampling shrinks the input dimensions by an integer factor. 

o Although it was a good practice using the average of each 2x2 block, 

nowadays it is taken the maximum value, i.e. maxpooling. 

o It reduces the data size without losing information along the pipeline and 

improves spatial invariance. 

 

Figure 32. Appearance of the filter after maxpooling. 

 

5) Normalization 

 

Figure 33. Appearance of the feature maps after normalization. 

 

6) Feature maps 

 

The feed for the CNNs in image recognition are usually RGB-based images, that 

means, that the file owns three channels: Red, Green and Blue. For this standard color 

format, the values of each cell is comprised between 0 and 255. If the image is in gray 

scale, it will have just a single channel. 

 

 

Figure 34. RGB-based image structure. 
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Figure 35. Appearance of the learned filters in the CNN. 

 

 

Figure 36. CNN structure. [37] 

 

Once the feature maps are generated, the flatten module converts the tensor into a 

vector which will feed the standard neural network (a fully connected layer or more) which 

outputs the image classification. Basically, a deep convolutional neural network is a 

sequence of filters and non-linear functions. Such output can be binary if there is a single 

class label (e.g. a cat, not a cat) or can be multiple if there are several class labels (e.g. 

car, truck, van, bicycle, ...). In the last case, instead of a bottom hidden layer with a single 

perceptron, the softmax layer is used so that it outputs the probabilities of such classes 

appearing on the image (e.g. car (0.01), truck(0.04), van (0.94), bycicle (0.02), ...). 

 

The softmax function is: 

 

𝑃(𝑐 | 𝑥) =  
exp(𝑤𝑐·𝑥2)

∑ exp(𝑤𝑖·𝑥2)𝐶
𝑖=1

    (19) 

 

CNNs by themselves are only capable of output the class/es of the detected object/s 

and its/their probability but not the location/s. 

2.9.2.1 Applications and state-of-the-art 

 

In a matter of two decades the evolution of the field has been frenetic: 

- The available database escalated from less than 50K images up to more than 1M 

- The number of category labels in the open source databases increased from less 

than 100 up to more than 1000 

- From small image samples of size 10x10 up to 256x256 

- The achieved depths of the networks went from less than 4 layers up to more than 

100 
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And all of this has been possible due to an altruistic community which shared know-

how and labeled databases under the open source philosophy. 

 

Some of the most famous CNN architectures which supposed a milestone in the deep 

learning field are[38]: 

 

- LeNet 

- AlexNet 

- VGGNet 

- Inception 

- ResNet 

- ZFNet 

 

The most significant one was AlexNet[39] in 2012, since significally outperformed all 

the previous competitors in the ImageNet Large Scale Visual Recognition Competition 

(ILSVRC), achieving to reduce the top-51 error from 26% to 15.3%. The main features 

are it is deeper than LeNet with stacked convolutional layers and more filters per layer. 

It consisted of 3 convolutions, max poolings, dropout, data augmentation, ReLu 

activations after every convolution and fully connected (FC) layers, and SGD with 

momentum. It contains 60M parameters and was trained by using the open database of 

ImageNet. 

 

 
Figure 37. AlexNet architecture. [38] 

 

Besides it is possible to train a network from scratch, it is possible to apply a pre-

training or transfer learning which consists on using the same parameters of ready-

working models such as VGG16 or ResNet by downloading the weights from a database. 

Then, it is either possible to use it directly for generic detections or it is possible to train 

with custom dataset in order to refine detections. The results of the training procedure 

by using one or the other method are different: 

 

                                                
1 Unlike top-1 error, the error is computed by taking in account the 5 detected objects with highest 
probability predicted by the network. 
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Figure 38. Results of training from scratch or by initializing the weigths with a 

ready-to-use model. 

2.9.3 ROC and Precision-Recall curves 
 

The Receiver Operating Characteristics (ROC) curve is an illustrating empirical tool 

to vizualise the detector performance. It describes the relationship between the 

probability of false alarm (PFA which is the False Positive Rate (FPR) or Fall-out) and the 

probability of detection (PD which is the True Positive Rate (TPR) or Recall) for all 

possible values of the threshold γ. It is used when there are approximately the same 

number of observations for each class. 

 
Figure 39. Table of contingency or confusion matrix. [40] 
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Figure 40. A ROC curve from a certain detector. [41] 

 

When there is a moderate to large class imbalance, then Precision-Recall curve 

should be taken in consideration instead of the ROC curve. The reason is because ROC 

curves present an optimistic illustration of the model on datasets with category 

imbalance[42] which can lead to incorrect interpretations. The threshold (value of the 

detector sensitivity) is directly proportional to the precision and inversely proportional to 

the recall. 

 

 
Figure 41. Precision-Recall curve of a dataset size of 10 images and 5 

relevant outputs of a detector. [43] 

 

The metric to measure the efficiency of the detector is the Area Under Curve (AUC) 

so that it is directly proportional to such efficiency. 

 

 

 

Figure 42. The larger the AUC is, the better detector performance. [30] 
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2.10 Deep learning object detection algorithms 

Traditional object detection methods based on machine learning algorithms required 

of a pre-process of the image data so the feature extraction was handcrafted and then 

shallow trainable architectures such as SVMs would make the corresponding 

classification. The apparition of deep learning tools enable the implementation of new 

object detection approaches which are proven to be more powerful, capable of learning 

semantics, high-level and deeper features[44]. 

2.10.1 Two stage detectors 

 

These detectors are the precursors of the single stage detectors and the architecture 

is based on: 

 

1) Region proposal network (RPN) 

2) Feature extraction rom regions for classification and regression of the proposed 

region 

 

The two stage based object detector has gone through two iterations in order to 

achieve a good enough performance for real-time image sequence inference. The final 

version is capable to be used for real-time object detection. 

 

o R-CNN → Fast R-CNN → Faster R-CNN 

 

The problems with R-CNN[45] are that it takes a huge amount of time to be trained 

since it has to classify 2 K region proposals per image, so the real-time implementation 

is just impossible since it takes almost 50 sec to inference each image. With regard of 

Fast R-CNN[46], during testing time by including region proposals the algorithm is 

affected negatively since it is still slow. Thus, region proposals still suppose 

bottlenecks[47] in the performance and makes the inference time, 2 sec, to still be 

impractical. 

 

Since selective search is slow and time-consuming, the removal of such module in 

the algorithm is achieved in Faster R-CNN[48] architecture. The image is fed to the CNN 

backbone based on a VGG16 pre-trained on ImageNet which provides a convolutional 

feature map which is used by an auxiliar network to predict the region proposals instead 

of using selective search algorithm directly on the feature map. Then, the predicted 

region proposals are reshaped by the RoI pooling layer that is afterwards used to classify 

the image within such proposed regions and predict the offset values for the bounding 

boxes. This architecture manages to inference in 0.2 sec per image, which makes it 

suitable for real-time purposes. 
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Figure 43. Faster R-CNN architecture. 

 

 

Figure 44. VGG-16 which composes the backbone of the Faster R-CNN. [38] 

  

2.10.2 Single stage detectors 

 

Unlike the two stage detectors, the single detectors do not have an explicit region 

proposal network (RPN) stage but they are built into the architecture, i.e. into the 

convolutional layers. In comparison, this kind of detectors are significantly faster in terms 

of inference time. 

 

- SSD (Single Shot MultiBox Detector) 

- YOLO (You Only Look Once) 

- TinyFaces 

- CornerNet 

- RetinaNet 

- RefineNet 
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Unlike the two stage based detectors, the network does not look at the whole image 

at once but instead the parts of the image with higher probabilities of containing the 

objects. A single convolutional network predicts the bounding boxes and their category 

probabilities. 

 

A popular single stage object detector is SSD[49]: 

 

 

Figure 45. SSD architecture. 

It just uses a single deep neural network and discretizes the output space of bounding 

boxes into a group of default bounding boxes over different aspect ratios and scales per 

feature map. During the inferencing, this detector generates scores of the different 

detected objects of each class per default bounding box and then such boxes are resized 

accordingly to match every object with the correct aspect ratio. 

 

Besides, it combines predictions from several feature maps with different resolutions 

in order to manage objects of different sizes and scales in the same image. In conclusion, 

it encapsulates all computation in a single network and removes completely the proposal 

generation and subsequent feature resampling stage. 

 

 
Figure 46. SSD generating scores and adjusting the correct aspect ratios of 

the bounding boxes. 

 

 

  



40 

 

2.10.3 Benchmarks 

 

The quality of detections is based on two factors: accuracy and speed inference. 

There is a trade-off between them so that if the preferred accuracy is too high then the 

speed inference will be slower and viceversa. Besides the type of detector, there are 

other factors that affect the performance[50]: 

 

• Training configuration (batch size included), learning rate, input image resize 
and other hyperparameters 

• The deep learning platform used for implementation 

• Output strides for the extraction 

• Matching approach and IoU threshold (how predictions are excluded in 
calculating loss) 

• Which feature map layers used for detection 

• Localization loss function 

• Non-max suppression IoU threshold 

• Training dataset 

• Data augmentation 

• Boundary box encoding 

• Number of proposals and predictions 

• Hard example mining ratio (positive vs. Negative anchor ratio) 

• Use of multi-scale images in training or testing (with cropping) 

 

The two most used benchmarks are: 

2.10.3.1 PASCAL VOC dataset 

 

The dataset contains objects from 20 different categories: airplane, bicycle, boat, 

bottle, bus, car, cat, chair, cow, dining, table, dog, horse, motorbike, person, potted plant, 

sheep, train, TV. 

 

It is obtained from real world images downloaded from Flickr[51]. The point is to 

contemplate complex scenes, different lighting conditions, occlusions, clutter, multiple 

scales... so it makes the network learning robust. There is approximately similar 

distribution between training and test sets and a minimum of 600 training objects per 

category. 

 

Competitions have been arranged in order to impulse progress in the field. This fact 

had a huge impact in the development of the state-of-the-art algorithms for object 

detection. 
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Figure 47. PASCAL VOC Leaderboard of December 2015. The winner was 

the Faster R-CNN architecture with a precision of 83.8%. 

 

 

Figure 48. Progress in the object detection field. 

 

2.10.3.2 MS COCO 

 

Microsoft COCO (Common Objects in Context)[52] is a large-scale object detection, 

segmentation, and captioning dataset. This dataset is larger than PASCAL VOC, it 

contains 80 object categories and more than 200K labeled images. In addition, COCO 

dataset also provides additional labeled dataset intended for object segmentation[53].  

 

With the COCO dataset, it has been evaluated the performance of the different 

modern convolutional detectors. As mentioned beforehand, it is observed a speed / 

accuracy trade-off[54] for this algorithms. 
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Figure 49. Inverse relationship between precision vs. Inference time. 

2.10.4 Bounding boxes 
 

Unlike image classification models which only provides as output the category label 

of the detected object in the image, object detection models provides in addition the 

detection localizations. This can be done by encapsulating the detections in bounding 

boxes defined as: 

 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥𝑖 = {𝐶𝑖, 𝑃𝑖 , 𝑥𝑚𝑖𝑛𝑖, 𝑦𝑚𝑖𝑛𝑖, 𝑥𝑚𝑎𝑥𝑖, 𝑦𝑚𝑎𝑥𝑖}    (20) 

 

In which 𝑥𝑚𝑖𝑛𝑖, 𝑦𝑚𝑖𝑛𝑖 define the coordinates of the upper left corner and 𝑥𝑚𝑎𝑥𝑖, 𝑦𝑚𝑎𝑥𝑖 

define the coordinates of the bottom right corner. 

 

 

Figure 50. Example of bounding boxes. 

 

Or alternatively as 

 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥𝑖 = {𝐶𝑖, 𝑃𝑖 , 𝑏𝑥𝑖, 𝑏𝑦𝑖, 𝑏𝑤𝑖, 𝑏ℎ𝑖}    (21) 
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Figure 51. Bounding box in cental coordinate, width and height format. 

 

In which 𝑏𝑥𝑖, 𝑏𝑦𝑖 are the coordinates of the geometric center of the bounding box and 

𝑏𝑤𝑖, 𝑏ℎ𝑖 are the width and height respectively. 

 

Commonly to both representation styles, 𝐶𝑖, 𝑃𝑖 are respectively the class label of the 

i-th detection and P its probability. 

2.11 ROS ecosystem 

 

ROS (Robot Operating System) is the most popular open-source platform for robots 

software development. It provides tools and libraries that allows splitting code into 

modular and reusable packages. The purpose of this framework is to provide high 

reusability of code so that developers can create hardware-independent content. The 

libraries and tools aforementioned include: 

 

- Device Drivers: Provides an already built-in compatibility feature among many 

different robot platforms and sensors, so the user does not need to waste time 

coding software to enable the utilities. In addition, provides an standardization of 

the format messages transmitted by the sensors. 

 

- Hardware abstraction: One of the cornerstones of ROS, it allows independence 

between software and hardware. This is achieved as long as each actuator or 

sensor is operating with ROS drivers. Those are the elements that exchange data 

at a low level with the hardware, coded in ROS standard messages and 

communicated with the software. 

 

- Libraries and Community Support: As an open-source platform, it counts with 

many people worldwide which contribute with their content, commits fixes and 

enhancements of packages, help other users with their issues. Some of the 

contributions are such powerful that they got standardized as official ROS 

packages, such as SLAM (Simultaneous Localization and Mapping) features. 

Since it is not limited by any organization, it ensures a long term operativity. 
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- The distribution of computation and message passing: It allows message passing 

between processes which can be on different robot platforms at the same time to 

the same local network. 

 

- ROS file system: The content is arranged in modules called packages which 

contain pieces of code known as nodes. They can also contain configuration 

parameters, message formats, and more complex data structures such as 

services and action servers. Every package, after being compiled (catkin_make), 

a file known as package manifest which has general information about the 

package is created. Packages can also form conglomerates, also known as stacks 

or metapackages (i.g. navigation stack which contains multiple packages 

global_planner, map_server, move_base, ... that are interdependent). 

 

 
 

Figure 52. ROS File system 

 

ROS ecosystem consists in 3 different levels  

2.11.1 ROS basics 

 

ROS ecosystem consists in 3 different levels[55]: the file system level, the 

computational graph level and the community level. The computational graph level is the 

one that processes and shares data via peer-to-peer network. The main concepts at this 

level are: 

 

- Nodes: they are processes that performs computation, that is an executable script 

(.py, .cpp, ...). It is usual that a package runs several nodes simultaneously. 

 

- Subscriber: a node which receives data. 

 

- Publisher: a node which sends data. 
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- Topics: content of the messages that are either published or subscribed. This 

feature provides independency from the need of having third party nodes running. 

 

- Messages: represent the data structure, format and type of the topics (integer, 

boolean, floating point, ...). They are stored in text files which are used during the 

compilation of a package so that ROS translates their content into the source code 

on the programming language implemented. For instance, a ROS message used 

in this work is sensor_msgs/LaserScan.msg which is used to input the data 

gathered by the laser scanner to the system. The LaserScan message is actually 

a text file with the ”.msg” extension which is located within sensor_msgs native 

ROS folder. Here there is the structure of this particular message: 

 

 

# Single scan from a planar laser range-finder 

# If you have another ranging device with different behavior (e.g. a sonar 

# array), please find or create a different message, since applications 

# will make fairly laser-specific assumptions about this data 

 

Header header            # timestamp in the header is the acquisition time of  

                               # the first ray in the scan. 

                               # in frame frame_id, angles are measured around  

                               # the positive Z axis (counterclockwise, if Z is up) 

                               # with zero angle being forward along the x axis 

                          

float32 angle_min              # start angle of the scan [rad] 

float32 angle_max             # end angle of the scan [rad] 

float32 angle_increment    # angular distance between measurements [rad] 

 

float32 time_increment   # time between measurements [seconds] - if your scanner 

                                   # is moving, this will be used in interpolating position 

                                   # of 3d points 

 

float32 scan_time           # time between scans [seconds] 

 

float32 range_min         # minimum range value [m] 

float32 range_max        # maximum range value [m] 

 

float32[] ranges     # range data [m] (Note: values < range_min or > range_max                        

should be discarded) 

float32[] intensities    # intensity data [device-specific units].  If your 

                             # device does not provide intensities, please leave 

                             # the array empty. 

 

Notice that float32 is a ROS native type that in C++ is compiled as double type. 
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- Parameter Server: it is where parameters such as configuration parameters are 

stored by the master. All nodes can become clients of this server so they can 

retrieve any needed parameter at anytime. 

 

- Master: it is the nexus and coordinator module as responds for tracking of topics, 

node registration, services and action servers. 

 

Finally, the community level is about all related to repositories, ROS distributions and 

forums and so on. 
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2.11.2 ROS coordinate systems 

 

By convention[56] x-axis points forward, y-axis points to the left and z-axis points 

upwards of the mobile robot. As long as there are more than one frame, then it is required 

transformations among them, that is, the relationship among coordinate systems in terms 

of position and orientation. In ROS there is a package which does the relevant 

computations, this is tf package[57]. It allows to do the mentioned computations and 

store them in a tree format over the time, that means that their pose history is stored. 

Usually the transformations are published by a node in charge of that. Regarding mobile 

robots, the standard[58] frames are: 

 

- base_link: rigidly attached to the mobile robot base. It is possible that can be 

attached to any arbitrary pose of such base. This frame is the head in the tf tree 

which contains all sensors and mobile parts of the robot. 

 

- odom: is a global fixed frame which represents the pose obtained by the odometry 

data (visual or mechanic) or IMU (inertial measurement unit). The main feature is 

that is continuous which means that the pose of the mobile robot always evolves 

in a smooth way without discrete jumps. It is an accurate short-term reference but 

it drifts over time so it makes it not suitable for long-term reference. 

 

- map: this is the global fixed frame. It is not continuous which means that discrete 

jumps over time can happen but drifts over time is limited which makes it suitable 

for long-term use. This frame is estimated using localization algorithms by using 

laser scanners or other sensors that allows the mobile robot understand where is 

it. Notice that is not recommended for local actuation and sensing due to the 

discrete nature.  

 

- base_footprint: is the projection of base_link to the ground where roll and pitch 

orientations are null but yaw is the same as base_link value. 

 

- laser_link: is the frame corresponding to the pose of the laser scanner and it has 

no relative motion with the mobile platform. 
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Figure 53. Usual frames in mobile robots. [59] 

 

2.11.3 ROS launchers 

 

In the UNIX command line the launch files can be executed by the roslaunch 

command. This type of files have the purpose of remapping2 variables, setting 

parameters and running nodes. They allow to execute multiple nodes simultaneously 

which can be the same (with other parameters) or different. This feature is needed for 

complex projects containing multiple instances. A launch file can also call another launch 

files. 

 

2.11.4 ROS visualizer 

 

Also known as RVIZ, it is a tool that allows you to visualize Images, PointClouds, 

Lasers, Kinematic Transformations, RobotModels... It is fundamental in order to get 

interpretable information about what the robot is perceiving, i.e., the message topics in 

a graphic representation. 

 

                                                
2 Change of a ROS variable name which allows high interchangeability of topics and allows run-
ning simultaneous instances of the same node with different configurations. 
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Figure 54. Point cloud data visible in 3-D space in Rviz. 

2.12 Conclusions 

In conclusion, after assessing the usability of the concepts for the work in both of the 

Methodology  and Literature and technology review sections, the work is based on 

certain theoretical foundations (marked on green color) and other concepts are not 

required for the implementation but for analysis explanation for the solutions. This can 

be summarized in the following table: 

 

Robot perception LiDAR Stereo Vision Point clouds 
RGB 

images 

Exploration 

approach 
Randomized Frontier-based   

Exploration 

strategies 
FFD WFD RRT SRT 

Map 

representation 
Topological Volumetric 

Featured-

based 
 

Mean Shift 

Clustering 
Gaussian kernel Flat kernel   

Neural network 

training approach 
From scratch Pre-trained   

Object detection 

foundations 

Machine Learning 

based 

Deep learning 

based 
  

Object detector 

types 
Two stage Single stage   

Benchmarks Pascal VOC MS COCO   

 

Figure 55. Table showing what concepts are implemented in the work. 
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3. PROPOSED SOLUTION 

3.1 Sensors 

In the field of mobile robots, there is a wide range of sensors that can be utilized in 

order to be source for the input data of the navigation module. So the automated 

navigation can be based on some of the following examples: 

 

- Wires 

- Guide tape 

- Laser scanners 

- Thermal cameras 

- GPS 

- Sonar 

- Vision guidance 

 

For this work, the navigation is performed by the input of the laser scanner data which 

is quite a robust source[60], that much that is implemented in autonomous vehicles. It is 

invariant to the illumination factor or outdoor conditions unlike vision guidance or thermal 

cameras. In addition, a industrial mobile robot usually performs indoors, so the use of 

GPS is not feasible. Neither it is the use of sonar, since it requires clean ambient sound 

and industry environments are usually noisy. On the other hand, wires and guide tapes 

need to be embedded in the environment previously to the robot navigation and they 

work in sort of the same way as trains in rails. For instance, robots based on guide tapes 

follow the lines with a steering control and a guidance system. 

 

Besides, the MiR100 has by default embedded basic sensors for navigation such as 

an odometer and an Inertial Measurement Unit (IMU). The first device measures the 

variation of the pose along the time (orientation and position). The second one, measures 

among other parameters, linear and angular accelerations. In addition, it counts with 

ultrasonic sensors as redundant security measures. For instance, laser scanners might 

have problems to detect translucid or transparent objects while the ultrasonic sensors do 

not have such drawback. 

 

For the object detector module, since convolutional neural networks take as input a 

2D image, the already embedded depth camera can provide a channel with RGB 

streamed live video. For this, the object detector takes a constant sequence of image 

that has to process in real-time. 
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3.2 Navigation for autonomous exploration module 

This module of the work is based on the single robot case of "Multi-Robot Map 

Exploration Based on Multiple Rapidly-Exploring Randomized Trees” work[20], [61]. 

 

The algorithm is divided in two modules: the RRT-based frontier detector module and 

the filter module. The former is in charge of the frontier targets detection and returning 

those to the filter module. The later uses the mean shift clustering algorithm in order to 

cluster the frontier points, filter the incompatible and outdated ones, and store the valid 

frontier targets[62]. In addition, it is required also the path planning and SLAM modules 

which are implicit in this exploration strategy[21], [63], [64]. 

 

 
 

Figure 56. General diagram of the exploration system. 

 

Such configuration structure provides the capability of having several instances of 

frontier detectors running in parallel for quicker performance. In addition, it provides the 

possibility of executing different types of frontier detectors simultaneously, feature 

which is required when comparing different sorts of frontier detectors. 

3.2.1 Good to know 

 

Before continue, you should know what these terms mean: 

 

PublishPoint: This is the function in charge of sending detected frontier points to the 

filter module. 

 

Invalid frontier point: The mobile robot cannot reach it in the real world which means 

that there is no valid path possible between such point and the mobile robot position. 

 

Old frontier point: Detected in earlier iterations and no longer belonging to the 

unknown area of the map. 

 

 

GridCheck: A function whose input are the map and two points. It returns 1 if the 

points are in the known space. It returns 0 if there is any obstacle between the points. 

And finally, returns -1 if there is unknown area between such points. 
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3.2.2 Motivation of RRT 

 

Since RRT is highly biased[3] to unknown areas of the map, the generated trees tend 

to grow towards such directions which is an desired feature for the proposal. So that it 

makes this approach more interesting than just the use of frontier-based 

implementations. This means that it is more efficient in terms of time, thus in terms of 

energy and derived costs. 

 

To explain the biased property of the RRT-based algorithm, the voronoi diagram is a 

proper math tool to clarify this fact. Such diagram consists of the division of the space 

into discrete areas created by circles growing from every vertex filling all the possible 

available space until neighbor circles boundaries collide, then a linear frontier is created 

separating non-intersected regions. An area is a set of points that are the most close to 

the corresponding vertex. So that, such diagram is useful in practice to know in a visual 

way which vertex is closer to any certain point in the map. The Voronoi area associated 

with a certain vertex is larger the closer the vertex is to the frontier with the unknown 

space. The tree tends to spread more in the bigger regions as vertices selection is made 

bylooking for the closest neighbor. 

 

 
 

Figure 57. Voronoi diagram resulted from RRT exploration. 

 

Another useful feature of RRT approach is that can be extrapolated to the 3-D 

exploration[65], [66] unlike frontier-based techniques. In addition, it is probabilistically 

robust[67], so that, it is assured that the environment sooner or later will be completely 

mapped. 
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3.2.3 Frontier detector 

 

This module is actually a combination of two parallel sub-modules: the local frontier 

detector and the global frontier detector. Any point reached by the growing generated 

tree is a frontier point as long as it belongs to the unknown area of the environment. The 

execution of extra instances of the frontier detectors enhances the frontier point detection 

but with a higher computational consumption as trade-off. 

 

3.2.3.1 Local frontier detector 

 

The tree generated in this sub-module begins from an initial vertex  V = {xinit} and E = 

∅. Every each iteration a random point is stored xrand ⊂ Xfree. Such initial vertex is the 

nearest to xrand xnearest ⊂ V. 

 

 

Figure 58. Local frontier detector pseudocode. [20] 

 

3.2.3.2 Global frontier detector 

 

This detector sub-module is the same as the previous one with the difference that the 

tree does not get reset and keeps on growing indefinitely during the exploration. This 

makes it similar to the RRT algorithm. It is intended for the detection of frontier points 

through the entire map considering areas far away from the mobile robot. 
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Figure 59. Global frontier detector pseudocode. [20] 

3.2.3.3 Their combination purpose 

 

The local tree resets when a frontier point is detected and starts growing again from 

the robot current position. Thus, in order to avoid the mobile robot from not exploring  

small corners in the environment and to assure that the far away frontier targets are also 

explored, the global frontier detector is required. The combination synergy provides a 

faster detection of target points since the tree begins to grow from the prior detected 

frontier point so that the next point selected from the RRT in the unknown area has a 

higher likelihood. 

 

Nevertheless, the spreader the tree becomes in the global frontier detector, the slower 

the growth gets. By observing the Voronoi diagram of RRT, this fact can be explained: 

the more amount of vertices, the more decomposed in smaller regions the map becomes; 

so that the steer function will generate smaller edges, thus, the target point detection 

gets slower. This is the reason why local frontier detector complements the global frontier 

detector so that the performance is quicker. 

3.2.4 Filter module 

 

The input of this module is the output of the frontier detector module which is the set 

of the different possible frontier points. Every detection is stored in a frontier points array 

which will be filtered by using the mean shift clustering algorithm[29], [62]. Then the array 

is cleaned from the discarded points, the ones that do not belong to a center of a certain 

cluster. This module is needed since the generated points of the frontier detector can be 

many and this suppose redundancy and uncertainty which increases computational 

consumption. In addition, it gets rid of non-valid and outdated frontier points for every 

iteration. Afterwards, a votation system selects the most convenient and efficient target 

out of all the possible candidates. 
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3.3 Object detection module 

Briefly is worth to mention that another taken approach could have been the use of 

object detectors based on machine learning methods. The problem comes with the poor 

generalization capabilities since feature extraction requires to be handcrafted for every 

class and the shallow classification method is not robust against constant object state 

changes (i.e. noise, scale, illumination, position, angle, ...). For all of this, the enhanced 

object detection technology based on deep learning is taken as the valid approach for 

the work. 

 

This module generates the bounding boxes encapsulating the detections which are 

the inputs of the Map filtering module. 

3.3.1 Transfer learning 

 

Since CNN-based object detection algorithms requires huge amount of training 

dataset, it is out of the scope of this work to train a customized model either from a pre-

trained model or from a model from scratch. Fortunately, there are open source[68] pre-

trained models with the parameters (weights) already tuned which makes them suitable 

to be ready-to-use without any posterior training procedure. The procedure of obtaining 

the parameters of an already trained network and applying to a vanilla model is known 

as transfer learning. 

 

Such open source available pre-trained models can be fed from several datasets[68]: 

o COCO 

o PASCAL VOC 

o Kitti 

o Open Images 

o iNaturalist Species 

 

Among all of the available bases, the pre-trained models based on the COCO dataset 

is the most generic and with more detectable categories (80 different classes). So this is 

the one chosen for the work. 
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3.3.2 Selective object discrimination 

 

Since this work intends for selective object detection it is possible to do so by doing 

some modifications which filter the label map or the corresponding configuration file for 

the pre-trained model. For instance, in the context of Tensorflow Object Detection API 

with a COCO based pre-trained model there is a file called mscoco_label_map.pbtxt 

which contains the 80 different category labels from the COCO dataset[68]: 

 

 

Figure 60. A small piece of code of mscoco_label_map.pbtxt. [68] 

 

3.3.3 Object detection model 

 

Since this module has to work in the context of SLAM, which is a real-time process, it 

is fundamental the inference time. Since the most efficient state-of-the-art of the real-

time object detection nowadays is YOLOv3[69], this model has been selected for the 

work. 
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Figure 61. YOLO architecture. 

It works in the way that the input image is split into an S x S grid, within each of the 

grid cells, n bounding boxes are retrieved. For each of the generated bounding boxes, 

the network outputs a category probability and offset values for the bounding box. As 

long as the candidate bounding boxes have a class probability above a certain threshold, 

they are selected and used to localize the object in the image. The main limitation is that 

small objects are hardly detected due to the spatial constraints. 

 
Figure 62. Comparative plot of the current best real-time object detectors 

available. [69] 

 

 
Figure 63. Comparative table of the current best real-time object detectors 

available. [69] 
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3.4 Map filtering module 

Since ROS allows huge flexibility it is possible to do the proper modifications of the 

laser scan or the live generated map during the process, so that, post-processing is 

actually not needed. Actually, it is undesired since by doing such approach, it is less 

straightforward and it would require to store the history of the positions of the mobile 

robot and the detected objects along the time which it would increase the complexity of 

the module. 

 

3.4.1 Object discrimination procedure 

 

For this module, two approaches were found feasible. For simplifying the problem, 

let’s call them RGB+PointCloud input and RGB+LaserScan input approaches: 

 

3.4.1.1 RGB+PointCloud input approach 

 

This approach takes RGB and pointcloud streamings as inputs. The RGB feeds the 

object detector and then there is an auxiliar process in charge of retrieving the depth of 

the bounding boxes in the space via the pointcloud input. Such retrieval is possible to do 

it in different ways, some of them can be by taking the depth of the point in the pointcloud 

corresponding to the pixel which is at the same time corresponding to the center of the 

bounding box. A more refined way is it take the average of the positions of the 

neighboring points from the pointcloud so that the depth retrieval is more robust to noise. 

 

Once the position in the 3D space is retrieved, it is saved in a frame whose parent 

frame is the camera frame. Since the orientation is irrelevant, all the generated frames 

have the same default orientation.  

 

 

Figure 64. Workflow chart of the RGB+PointCloud input approach. 
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When defining the masks, that is, the polygon areas that will override the occupied 

grid cell values with free values, there can be different approaches. One approach 

(option A) is to gather all the neighboring and connected occupied grid cells, and also 

the ones surrounded by them. Then, their grid cell values are set to free, so that, such 

detected object will no longer be part of the map. Let’s see an example with a scanned 

paper bin in an office: 

 

    

Figure 65. Occupancy grid processed values by the RGB+PointCloud input 
approach from the map filtering module. 

 

The left image shows the occupancy of the example after being scanned. In the center 

image, the neighboring and surrounded grid cells gathered in common values are 

shown. The right image displays all the grid cells a priori composing the detection set to 

free values. 

 

The other approach (option B) takes also as input the width of the bounding boxes of 

the detected objects and then apply a polygon under the assumption that the detected 

object has a certain width / depth ratio. That ratio can be generalized to 1 since many 

objects frequently share such similar ratio value. The model can be much more refined 

since the bounding boxes are labeled with their corresponding category. A certain 

category always will hold a similar width / depth ratio value among the different 

corresponding samples.  

 

Another core feature of this approach is to correct the position of the frame 

corresponding to the detection. That is because it is by default located in the contour of 

the object and it should be in its center of gravity which is obtained under the assumption 

of a certain depth dimension value. So that when the polygon area is applied to the 

detection, it is made sure that it is centered and matched with the object projection to the 

map.  



60 

 

 
Figure 66. Backbone testing of this approach showing the detections and their 

location in 3-D space using the generated pointcloud by the depth camera. 

3.4.1.2 RGB+LaserScan input approach 

 

This approach aims for the RGB feeding for the object detector and then apply a filter 

to the laser scanner input data so it crops the range in wich the detected object/s are 

found. This means, that such objects will be blind to the sensors during the entire 

exploration procedure. 

 

Figure 67. Workflow chart of the RGB+LaserScan input approach. 
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The algorithm used for range data discrimination in the LaserScan stream works as: 

 

 

Figure 68. Laser Filtering module pseudocode. 

3.4.2 Motivation of selecting the RGB+LaserScan input 

approach 

 

There is an actual trade-off of using one approach or the other. On one hand, the 

RGB+PointCloud input approach tends to be more sensitive when discriminating 

detected objects from the map because, even though there is a False Alarm (i.e. False 

Positive) in the detection, such object will be removed from the map. On the other hand, 

the RGB+LaserScan input approach has the opposite effect, it is less strict when it comes 

discriminating objects since a non-detection of an actual object in the real world (a False 

Negative) will include it on the map. 

 

The point of removing the detections from the map is to increase the long-term global 

path plannings of the mobile robots using such map. So there is a seek in maximizing 

the amount of discriminated objects as long as it is done in a reasonable way. It is 

considerably more undesirable to have a False Positive which is part of the structural 

environment since such structural item will stay there permanently. For example, a 

column which is falsely inferred by the object detector as a paper bin. 

 

On the other hand, if there is a False Negative of a temporal object, i.e. it is not 

detected and included on the map, it is a less critical issue, since the navigation is more 

efficient if it is performed by just relying on the global path planning and not the local path 
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planning since re-routing would require more time if unpredicted obstacles are 

encountered in the real world and are not documented on the map. Thus, precision is 

ponderately more relevant than recall. 

 

In addition, the RGB+LaserScan input approach is computationally more efficient. 

This is especially important for SLAM since it is undesirable to overload the computer 

system operating the robot as it requires higher hardware capabilities and more energy. 

Besides, it is way less complex to implement since it does not need to deal with any type 

of depth information such as depth images or pointclouds. This means, we keep the 

scope of the work in the 2-D dimension so does the output, i.e. the filtered map, so we 

do not have to care about the technical specifications of the depth resolution and ranges 

of the depth camera. 

 

Lastly, the drawbacks when applying masks with the RGB+PointCloud input approach 

are serious: 

 

• Option A: By gathering all the neighboring and connected occupied grid cells 
and also the ones surrounded by them, there is not certainty when is enough 
to stop gathering. For instance, let’s imagine a detected paper bin contiguous 
to a wall, without any post processing, the wall will also be included and then 
deleted from the map. So that, an additional process would be necessary in 
order to control this problem. 

• Option B: By assuming a certain width / depth ratio of a detection is quite a 
subjective hypothesis. It makes the system biased and unreliable. On the 
contrary, the RGB+LaserScan input approach is absolutely objective since 
any assumption was made when determining the parameters of the system. 

3.5 The system as a whole 

So that the system runs in the way that the navigation for autonomous exploration 

module runs in independently in parallel with the sequence: map filtering module which 

depends on the object detection module. All of this can be visualized in a simple diagram: 

 
Figure 69. Diagram of the whole system. 
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4. IMPLEMENTATION 

4.1 Navigation for exploration module 

 

The autonomous exploration approach is composed of the SLAM module, the path 

planning, the frontier detector and the filter modules. 

 

For the implementation, the first two aforementioned modules are standard ROS open 

source packages available to use for path planning and planning. The other modules are 

integrated by the rrt_exploration package which is composed by the frontier detector and 

the filter nodes. 

4.1.1 SLAM module 

 

The inputs are the laser scan readings, the transformations between the robot base 

frame and the laser scanner sensor frame, and the odometry. It provides the map 

building implementation and the localization of the mobile robot in the environment 

simultaneously, so the outputs are the occupancy grid and the robot pose. For this 

purpose, gmapping package[25] which implements Rao-Blackwellized particle filtering is 

used[63], [64]. 

4.1.2 Path planning module 

 

It takes the outputs of the previous module and a target position so that this module 

publishes velocity commands to the mobile robot. In order to carry on this task, the 

move_base node[70] which is part of the navigation stack[71] is required. This node 

generates the local and global costmaps which are needed for navigation. The costmaps 

are similar to maps with the difference that the cell values of the occupancy grids range 

from 0 to 100 (not binary like maps whose cells are either 100 or 0). Such values are the 

costs derived of inflating obstacles so that the closer the cells are to a certain obstacle 

the higher the cost value is. The local planner takes the local costmap as input which is 

in charge of directing the mobile robot to obey the orders of the global path generated 

by the global planner which takes as input the global costplan. 
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Figure 70. Visualization of the generated costmaps. [72] 

 

 
Figure 71. Move base internal structure graph. [70] 

4.1.3 Frontier detector module 

 

The two nodes are written in C++ to make the detection procedure the quickest 

possible. They are subscribed to the map topic and publish the identified frontier points 

in the topic /detected_points (of PointStamped type). 

 

The related nodes have a couple of parameters that set the performance. The map 

topic name and the growth rate η of the generated tree. As different instances of 

global/local detector modules can be run simultaneously, they should have different topic 

names so that there is no information conflict (topic overlapping). 
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4.1.4 Filter module 

 

This ROS node is written in Python programming language. It is subscribed to the 

ROS topic /detected_points which is the message (PointStamped type) containing the 

detected frontier points. Such topic contains point localization shown in coordinate 

frames. 

 

The global costmap is used for the invalid frontier points deletion. The procedure 

consists of the fact that when a point is got by the node, its coordinate frame associated 

is read. Then, with the global costmap information, such frame will be analyzed to check 

the validity of such point. Thus, if the value of the grid cell of the global costmap in the 

position of the frame is above a certain threshold (defined by the parameters) then it will 

be considered as invalid and, as result, removed. Also this module computes the 

information gain of such frontier points so that if it is null then it they are discarded as 

outdated. 

 

Once the frontier points are filtered, this node publishes clean data as /filtered_points 

topic which is the type of PointArray (default ROS message). 

 

The ROS parameters that can be customized in this node are: 

 

- map_topic: sets the map topic processed by the filter node to remove outdated 

frontier points (from this occupancy grid, the information gain of the frontier points 

is computed). By default is /map. 

- info_radius: it is the information gain radius. By default is 1 meter. 

- costmap_clearing_threshold: it is the threshold considered for the invalid frontier 

point filtering. If the cost value of a certain frontier point is higher than such 

threshold, then it will be discarded. The higher costs correspond to the grid cells 

closer to the obstacles. This is because the mobile robot cannot reach them in the 

real world because it would collide. By default it is 70. 

- goal_topic: received frontier points are published in this topic. By default is 

/detected_points. 

- rate: the node performs with this frequency. By default is 100 Hz. 
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4.2 Object detection Module 

The implementation of this module is not trivial since it requires of specific software 

drivers in order to operate correctly and a compatible powerful GPU. 

4.2.1 Software drivers 

 

Modern object detection implementations based in deep learning for real-time 

applications require of a considerable computational power since they have to deal with 

inferencing a constant stream of images. In addition, the best accuracy and a fast 

invariant function taking in consideration constant object state changes (i.e. noise, scale, 

illumination, position, angle, ...) cannot be computed by a CPU. In order to deal with such 

intensive calculations and obtain a good performance, a Graphic Processing Unit (GPU) 

based on parallel processing technique, Data Level Parallelism (DLP), and single 

instruction multiple data (SIMD) operations with Compute Unified Device Architecture 

(CUDA) are required[73]. This device is optimized for tensorial calculations unlike CPU. 

 

CUDA is a platform based on parallel computing and a programming model created 

by nVidia for general computing purposes on GPUs. With this tool it is possible to 

significantly speed up computing applications[74]. 

 

In addition, it is also used NVIDIA CUDA Deep Neural Network library (cuDNN) [75] 

which provides highly optimized implementations for standard routines such as forward 

and backward convolution, pooling, normalization and activation layers. It allows to avoid 

spending time on low-level GPU performance tuning. 

4.2.2 Deep Learning framework 

 

For the implementation, DarkNet[76] has been selected as the proper deep learning 

framework for YOLO:Real-Time Object Detection[77] whose current YOLO version is 

YOLOv3. It is nicely wrapped-up and the installation is much more simpler and 

straightforward than TensorFlow Object Detection API[68]. 

 

It is open source and efficient since it is written in C and CUDA which is intended for 

parallel computing. 

4.3 Map filtering module 

The filtering process should follow this sequence: 

 

1) The laser scanner readings are appended in a cache until the object detector 

outputs the bounding boxes related data since the output rate publishing differs. 

In such instant, within such stored data, the laser scan timestamp reading is 

matched with the nearest timestamp of the object detector output. 
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For this piece of the implementation, it is used a message filtering protocol 

integrated in ROS under the name of message_filters/ApproximateTime[78]. 

 

2) The selected laser scan readings are converted into pointcloud data. 

 

3) The pointcloud initial coordinate reference is translated to the robot’s camera 

frame so that there is a perfect correlation. Thus, the misaligned problem is by-

passed. For this piece of the implementation, it is used the library: 

 

image_geometry/ProjectTfFrameToImage[79]. 

 

 
Figure 72. Vertical axes offset between camera and laser scanner frame 

leads to some issues. 

 

Without the step 3), in the left figure we would face some non-intersected field of 

views small areas. In the right figure, a non-clean solution would be to spin slightly the 

laser scanner field of view towards the field of view of the camera just valid for short 

distances. 

 

4) All points outside the image frame are discarded. 

 

5) All the points that lay inside any of the detected published bounding boxes are 

classified and discarded from the structural LaserScan stream topic. 

 

6) All the points that lay inside any of the published bounding boxes are classified 

and included in a secondary non-structural LaserScan stream topic. 

 

7) As a result, two LaserScan topics are published, one containing all the LaserScan 

data that lay outside any of the published bounding boxes (/struct_scan topic) and 

another one with the data inside any of such bounding boxes (/nonstruct_scan 

topic). 

 

Both LaserScan stream topics (struct_scan and nonstruct_scan) are fed in the 

modified slam_gmapping module. 
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Figure 73. Resulting included (in green) and excluded (in red) pointcloud data 
printed directly to the camera data from the laser scanner. 

4.3.1 Additional required features 

 

4.3.1.1 Laser scanner angular range cropping 

 

Since the mobile robot has a frontal laser scanner with a field of view of 270º and also 

a another one in the rear (see section 5.1.3), it is needed to use just the frontal one and 

crop it so that there are not blind spots for the camera. That is, to match the field of views 

of both the camera and the frontal laser scanner. 

 

The reason for this is that, the camera cannot make detections to objects which are 

out of the field of view. In the case, the laser scanner is recording such ”non-visible” 

objects, they will be recorded on the map despite being discarded in the case they were 

”visible” for the camera. Proceeding in this way, this taken measure allows to discard a 

considerable amount of False Positives during the exploration. 
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4.3.1.2 darknet_ros package modification 

 

Since the published topics rely on a constant subscription to the bounding boxes topic, 

despite of not having detections, such topic should still be publishing. In order to achieve 

such thing the source code has been just modified with a character in a single line. From 

the YoloObjectDetector.cpp in line 588: 

 

Instead of 

 

if (num > 0 && num <= 100) { 

 

replace with 

 

if (num >= 0 && num <= 100) { 

 

so that this issue is solved. 

 

4.3.1.3 gmapping package modification 

 

The published bounding boxes of certain detections are not constant due to a constant 

change in illumination, scale, and perspective since the mobile robot is moving so that 

the camera does. 

 

 

 
Figure 74. Screenshots of a sequence which shows the limitations of the 

object detector while publishing constant bounding boxes. 

 

From left to right and from top to bottom, representative frames of the mobile robot 

spinning clockwise motion. 
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Since the implementation relies entirely on the constant bounding boxes published 

detections streaming, if there is a frame during the real-time sequence that there is a 

misdetection (false positive), the laser scanner will record such object on the map 

regardless the fact it was previously detected and discarded. 

 

To overcome this problem, a voting system is included in the algorithm that records 

information for a period of time and classifies the grid cells by using a statistical model. 

 

The standard gmapping algorithm stores the number of visits and the number of 

detections in each grid cell of the map 

 

1) The visits count value is incremented each time a detection lays inside a grid cell 

and each time a laser line runs through a cell. 

2) The number of detections is incremented each time a detection lays inside a grid 

cell. 

 

At a periodic rate, a new map is published. The grid cells, as mentioned in previous 

sections can hold three states: 

 

- Empty cell: with values of 0. 

- Occupied cell: with values of 100. 

- Unknown cell: with values of -1. 

 

The decision to classify each cell is defined by the following procedure: 

 

- Non-visited cells, i.e. grid cells with visits count null, are classified as unknown 

cells. 

- The occupancy of each cell is calculated with the ratio of the number of detections 

and the number of visits. 

- If the occupancy is greater than a certain threshold, such grid cells are classified 

as occupied cells, otherwise, as empty or free cells. 

 

This algorithm is modified so that it can use two different counter for the detected laser 

scans: One for the structural detections and another for the non-structural detections. 

When a detection lays inside a cell, if such detection is from a structural point, the 

structural counter is incremented, otherwise, the non-structural counter is incremented. 

In order to calculate the occupancy of the modified cell, the sum of the structural and 

non-structural counters is divided by the number of visits. 

 

Thus, the modified map data includes a new cell value: 55 which is meant for the non-

structural cells belonging to the detected objects in the environment. The non-structural 

occupancy is calculated as a simple ratio of non-struct / (struct + non-struct). A grid cell 

is classified as non-structural if it has an occupied cell with a non-structural occupancy 

greater than a certain threshold. 
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In addition, in order to reduce noise in the data, a neighboring filtering is included 

which converts an occupied cell to a non-structural cell if some of its neighbors are non-

structural cells. 
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5. TESTS AND RESULTS 

5.1 Hardware setup 

For the experimental work, the components that have been used for the 

implementation have been the MiR100 robot and a computer connected wirelessly. 

 

 

Figure 75. Implementation components diagram. 

5.1.1 External computer 

 

An external computer with Ubuntu 16.04 LTS as 64-bit OS with ROS Kinetic installed 

is connected wirelessly and directly to the MiR100 router. The implementation of all the 

modules and sub-modules runs in this device. The model used for testing has an i5 CPU 

@ 2.50 GHz and 12 GB RAM memory. 
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5.1.2 External Graphic Card 

 

Due to the exigent required computational power demanded by the object detector 

module, an external GPU is connected to the external computer via Thunderbolt 3 

connection[80] which uses the same connector format as the USB-C type. This 

connector provides a maximum transfer data speed of 40 Gbps which makes it suitable 

for the implementation. However, this cannot be done directly but by using a GPU dock 

which is the interface between the external computer and the GPU. The device used is 

an Akitio Node Pro[81], in which a NVIDIA GTX 1080 Ti[82] is attached. 

 

This GPU model is designed to perform for virtual reality which is a very demanding 

computational task, so it is assured that it is a competent device for deep learning based 

object detectors. The memory speed is 11 Gbps and it is designed to support CUDA and 

cuDNN libraries. 

5.1.3 Robot platform 

 

The MiR100 (Mobile Industrial Robot) is the mobile robot used to experiment the 

implementation. The main purpose of this model is to transport autonomously payloads 

in indoor environments. It comes with ready-to-use autonomous navigation algorithms 

and teleoperating features via virtual joystick for manual map elaboration through a pre-

build browser web interface based on REST services. The implementation of such 

algorithms is based in ROS packages which are installed in a mini computer which runs 

the ROS master with Ubuntu as OS (operative system). The MiR100 includes also a Wi-

Fi router so that any device can be directly connected to the mobile robot. 

 

 

 
Figure 76. MiR100 as robot platform with embedded sensors. 
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5.1.3.1 Laser scanner 

 

The MiR100 comes with two embedded laser scanners located in the front-left corner 

and back-right corner, diagonally opposed so that they cover a full range surrounding 

entirely the mobile robot. Each sensor individually scans an angle range of 270º but when 

fusing the data of both sensors, the angle range is full 360º so that there are no blind 

spots. Both models are SICK S300[83] located 200 mm above the ground with a 

maximum laser scan range of 8 m. 

5.1.3.2 Intel RealSense Depth Camera 

 

The depth camera model D435[84] which is embedded in the MiR100 takes two 

simultaneous images so that the distance of the pixels, with respect to the camera frame, 

is possible to be retrieved. It detects objects from ground level up to 995 mm above the 

ground with a maximum distance range of 1950 mm and 86º of angle range. The 

minimum distance from which the camera sees the floor is 370 mm. 
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Figure 77. MiR100 laser scanners and front depth camera fields and ranges 
of views. 

 
(a)                                                                  (b) 

Figure 78. Coordinate frames of the sensors with respect to the mobile robot 
in 3-D space. 

Seen from above. (b) Isometric view. 

5.2 Network setup 

 

By executing the ROS master in a machine (with /roscore command), a ROS network 

can be built. The MiR100 does this by default every time is turned on. Besides, it 

executes automatically the required launchers in order to initialize all the features 

provided by the MiR100 and its components (e.g. the initialization of the depth camera 

with the corresponding calibration parameters). 

 

Since it is a straightforward connection, in order to connect to the MiR100 it is 

necessary to  just run two commands: 

 

export ROS_MASTER_URI=http://192.168.12.20:11311 

export ROS_IP=192.168.12.253 

 

However, there are some important details to have in account. First of all, the clocks 

of the machines connected to a ROS network must be synchronized since many ROS 

messages are time stamped, and considerable time offsets will definitely cause errors.  

 

Secondly, since MiR100 is an industrial robot which is not designed to be modified 

(not flexible for research / academic purposes), its unaccesible computer is protected 

with unknown username and password, so it is not possible to figure out of the version 

details of the embedded packages. While running the move_base node in the external 

computer an error occurs due to incompatibility between some topic versions: 

 

Client [/mir_auto_bagger] wants topic /move_base/goal to have 

datatype/md5sum 
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In order to by-pass this issue, a ROS bridge[85] is required for all the terminals which 

are related to the move_base goal. This is achieved by communicating indirectly to the 

topics of the MiR100 via this interface which is launched with the following command 

after having installed the referenced packages: 

 

roslaunch mir_driver mir.launch 

 

On the other hand, a ROS bridge cannot deal with large and high-frequency topics 

such as the ones coming from the pointcloud or image streaming data. This is because 

internally uses JSON to transfer messages in the network which blows up the message 

size by a factor of 5 and adds a significant computational overhead compared to directly 

subscribing to the ROS messages. The result is a huge lag in the network which makes 

unsustainable any SLAM procedure. 

 

The solution to this is to use ROS bridge, omitting such large and high-frequency 

topics, in the terminals that move_base node and dependent are run. On the rest of the 

terminals, the other approach is to subscribe directly to the ROS topics by the two 

aforementioned commands. 

5.3 Limitations 

In practice, the implementation of every real engineering system always has some 

weaknesses. Those are defined by the allocated resources, the environments and 

conditions to operate. 

5.3.1 Limited camera vertical field of view 

 

The camera of the mobile robot is approximately as the same heigh as the laser 

scanner sensor. It is a relevant position since the pre-built camera is intended for 

navigation purposes. The problem comes when, during exploration, the mobile robot 

approaches too much to a tall object so that the most representative part of such object 

is out of the field of view of the camera. For some cases, the object detector is such 

powerful that is capable of inferring and encapsulating the object even though just part 

of it is viewed by the camera. But in other cases this is not possible to make a proper 

detection. 
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Figure 79. Limited camera vertical field of view. 

In the left image, the object detector would inference the tables since the whole 

picture of the object offers a clear semantic of the case. In the right image, just the 

poles of the tables are observed, but there is not enough information to infere that the 

poles corresponds to tables. 

5.3.2 Map filtering module limitation 

 

As any approach, this one has its own drawbacks yet makes the system still work 

objectively for the intended purpose of discriminating detected objects from the map. 

 

On one hand, for the cases in which the mobile robot can maneuver around the 

detected objects, the expected result is a blind spot in the map in which such object is 

supposed to be located. In terms of occupancy grid cell values this spot will be defined 

by UNKNOWN values, but not OCCUPIED since this is undesired value. 

 

 

Figure 80. Filtered map with a non-adjacent detected obstacle. 

On the other hand, for such cases in which the mobile robot cannot maneuver around 

the detected objects such as the ones contiguous to another objects or walls, there will 

be a blind area on the map caused by the occlusion product of the detection. This is due 

to the fact that the laser scanner is blind towards such detections so that everything 

behind such detection is occluded. 

 

Figure 81. Case of detections with contiguous wall and other obstacles. 
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5.4 Testings 

The scenarios for the testing cases are replicated with the same conditions so that 

the variability of the external conditions does not affect the behaviour of the result. Thus, 

the initial pose of the MiR is the same for all the experiments so does illumination 

conditions. 

 

Even though the drawback consisting on not mapping occlusions behind the 

detections (explained in section 5.3.2), such collateral effect will not be considered as a 

metric. This is due to the fact that this effect is not related to the efficiency of the system, 

but mostly related to the layout of the environment and distribution of the objects. 

 

Thus the metrics to evaluate the performance of the system are mainly: 

 

a) Time spent to generate a good enough representative map during exploration. 

  

b) Proportion of grid cell values set to FREE belonging to detections which should 

be removed since they are the considered temporal objects → True Positives. 

 

c) Proportion of grid cell values with UNKNOWN value which should be KNOWN 

since they belong to the exploration area. It is a metric which measures the 

quality of the generated map. 

 

 
 

Figure 82. Ground truth map Mgt (on the left) with permanent (green) and 
temporal objects (red) and filtered map Mf (on the right) with red fill figure 

representing a False Positive and an empty red figure a True Positive. 

 

Thus, for expressing quantitatively the second metric, the parameter TPRP (True 

Positive Removal Performance) is defined as: 

 

 

𝑇𝑃𝑅𝑃 = 1 − 
#𝑐𝑒𝑙𝑙𝑠 ∈ (𝑀𝑓 ∩ 𝑇𝑃)

#𝑐𝑒𝑙𝑙𝑠 ∈ 𝑀𝑔𝑡
 ∈  𝑇. 𝑂.    (22) 

 

in which the grid cells belongs to the T.O. (Temporal Object) subset. The ratio is 

defined by the grid cells contained in the filtered map which corresponds to detections 



79 

 

and the ones contained in the original map (or ground truth map). This parameter defines 

the desired effect in the map filtering since it considers the temporal objects that are 

removed, which is the purpose of the filtering module. 

 

The third metric is defined by the parameter LMQR (Local Map Quality Ratio): 

 

 

𝐿𝑀𝑄𝑅 = 1 − 
#𝑐𝑒𝑙𝑙𝑠 ∈ 𝑈𝑁𝐾𝑁𝑂𝑊𝑁

#𝑐𝑒𝑙𝑙𝑠
 ∈  𝑀𝑓 , 𝐿𝑜𝑐𝑎𝑙 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎    (23) 

 

in which the grid cells belongs filtered map and the local exploration area is defined 

as a control area just for testing purposes in order to quantify and evaluate a common 

region among all the experiments. The ratio is defined by the grid cells which 

corresponds to UNKNOWN values and the total number of grid cells. This parameter 

defines the proportion of UNKNOWN grid cells which should have FREE values but they 

are not most likely due to imperfections of the mapping module and occlusions of the 

detections which are not properly explored during the autonomous exploration. 

 

The testings are performed in the FAST laboratory of TUT which is a quite dynamic 

environment which constantly evolves over the time, i.e. there is a constant change in 

the layout given by transitory objects, e.g. chairs, tables, people and other temporal stuff.  

The calculated efective3 area for exploration is about 70 m2. 

 

 

Figure 83. Testing area for the implementation of the system. 

The local exploration area mentioned beforehand is 23.4 m2 and it is defined by 4 

manually allocated corners. 

 

                                                
3 The main and nearby explorable area which is not occluded by large structural objects such as 
the robot cages which are part of the environment. 
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Figure 84. Corners strategically allocated to compose the local exploration 

area. 

5.4.1 Case: Degree of crowdedness in the map 
 

For this case scenario, the experiments are recreated by using chairs of similar type 

as obstacles in the environment since in the office there are plenty of them as resource. 

The point of this case scenario is to analyze the impact in the quality of the filtered map 

of the crowdedness of the objects present in the environment as study factor. The 

distribution of such objects is random and the layout is refreshed at each iteration during 

experimentation. 

 

 

(a) 

 
                           (b)                                                             (c) 



81 

 

 

Figure 85. Experiment No. 5 in the case scenario of 7 chairs in the area. 

 

In (a) the shot of the environment. The figure (b) shows the raw map and (c) the 

filtered map. 

 

It has been observed that the degree of crowdedness in a certain environment affects 

the required time to obtain a decent map as expected. The apparent correlation is non-

linear, it reminds of the logarithmic function. And as expected, directly proportional. 

 

 
Figure 86. Box and whiskers of the influence of number of obstacles in the 

exploration duration. 

 

On the other hand, there is no evidence that TPRP is correlated with the level of 

crowdedness in the area. 

 

And finally, there is evidence that LMQR is affected by the amount of obstacles in 

the area and it is inversely proportional. 
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                                    (a)                                                                    (b) 

Figure 87. Box and whiskers of the influence of the obstacles amount in (a) 
the TPRP and (b) the LMQR. 

 

5.4.2 Case: Degree of objects size in the map 

 

For this case scenario, the experiments are recreated by using two objects of the 

same category, one of them adjacent to a wall or permanent object and the other one 

non-adjacent to anything. The point of this case scenario is to analyze the impact in the 

quality of the filtered map with the different sizes of the objects present in the environment 

as study factor. 

 

The sizes of the obstacles are quantified by the diameter of the circumcircle 

encapsulating the coplanar section of any object with the laser scanner height. 

 

 
Figure 88. Circumcircle of the coplanar section with the laser scanner range 

of a certain object. 
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There are three considered size types for the testings: 

- Small: Office chairs (circumcircle diameter of 7 cm approximately) 

- Medium: Backpacks (circumcircle diameter of 35 cm approximately) 

- Large: Bean bags (circumcircle diameter of 120 cm approximately) 

 

 
(a) 

 
                                  (b)                                                             (c) 

 

Figure 89. Experiment No. 5 in the case scenario with large objects (bean 
bags). 

In (a) the shot of the environment. The figure (b) shows the raw map and (c) the 

filtered map. 

 

It has been observed that the degree of objects size in a certain environment affects 

the required time to obtain a decent map as expected. The apparent correlation linear 

and as expected, directly proportional. 
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Figure 90. Box and whiskers of the influence of obstacle sizes in the 

exploration duration. 

On the other hand, there is an evidence that TPRP is correlated with the level of 

crowdedness in the area in an inversely proportional way. 

 

And finally, there is evidence that LMQR is affected by the amount of obstacles in the 

area in an inversely proportional way too. 

 

 

Figure 91. Box and whiskers of the influence of obstacles sizes in (a) the 
TPRP and (b) the LMQR. 

 

 



85 

 

5.4.3 Discussion of the results 

 

It has been observed that the results for the quantity of false positives and false 

negatives are influenced by the motion of the mobile robot. So the quickness of the 

motion is a parameter to consider since it affects the system performance, however it 

has not been evaluated since it is out of the scope of this work. This is due to the fact, 

the camera has a certain shutter speed by default which would lead to blurry images if 

the motion of the camera is too fast. Naturally, the object detection module has a 

significantly harder task when dealing with blurry images in order to make proper 

detections. 

 

 

Figure 92. Motion blur visual concept function of the camera shutter speed. 

 

Due to this fact, among others, the stream of bounding boxes might not be constant 

and that is why the modification in the gmapping package (section 4.3.1.3) was 

necessary in order to have a memory effect of the detections. 

 

With regards of the TPRP, the value of this parameter might not be unity due to the 

fact that the bounding boxes are not encapsulating totally the obstacles due to bizarre 

shapes. Also another cause could be due to the fact that the camera of the mobile robot 

does just see the part of the detected object during exploration so some portions are 

blind to the filtering. 

 

It has been observed that the required times to perform autonomous exploration 

increases the more crowded the exploration area is of obstacles and the bigger the 

objects are within it. This is something obvious since the mobile robot needs to perform 

obstacle avoidance during the mapping and do some re-routings in order to cover the 

blind spots caused by such obstacles. In addition to this, it has been detected a direct 

correlation with the hardware of the mobile robot, the computer capabilities and 

performance which is operating the implemented system, the wireless connection quality 

and the gmapping parameters. 

 

Regarding the TPRP parameter, the quality of filtering is impacted in a directly 

proportional way by the size of the detections in the scene. This is evidently occurring 

since the bigger the detections are, the more prone to error the system is when filtering. 

Actually, the more surface area of such objects are scanned, the more likely it is to miss 

some portion from it with the encapsulating bounding boxes. In addition, bizarre shapes 
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of objects which are non-homogeneously looking are more difficult to be recognized and 

properly encapsulated by the object detection module. 

 

And finally, the LMQR variable also is inversely proportional to the complexity of the 

scene. Besides, larger objects will cause larger hollows (UNKNOWN grid cells) which 

means lower LMQR. 

 

 
(a) 

 
                                  (b)                                                           (c) 

 

Figure 93. A sample of the testings in which the object detector is enabled for 
all object categories with several objects of different categories in the scene. 

Notice the occlusions as grey cells. It is physically impossible to know what is 

beyond a scanned surface, so that objects with section larger than a parameter given 

by the resolution of the map are mapped as hollow. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Contributions 

Despite of a remarkable progress in the field of SLAM and autonomous exploration 

the last decades, yet it is needed an approach in order to make the process of mapping 

more reliable so that is more coherent with the real world mapped scenario. That is not 

to just assume that the raw map is good enough for representing the environment. But a 

processed map which gets rid of objects which are inherently irrelevant to the map since 

they are not actual obstacles since they were at the moment of mapping just by casuality 

as they are considered temporal. The point of having more coherent maps for mobile 

robot navigation is to increase path planning efficiency since mobile robots do not need 

to avoid presumably non-existing obstacles, since temporal objects won’t be there 

anymore in the near future. A potential of this implementation is that the filtered map 

generated by autonomous mobile exploration on this approach performed by a single 

robot can be used by a fleet of mobile robots which considers also the removal of such 

temporal objects. 

6.2 Lessons Learned 

It was learned that it is possible to make use of deep learning object detection tools 

for real-time applications in order to build a customizable filtered map which makes it 

more coherent to the long-term environment layout. 

 

The initial thoughts were that it was only possible to do the implementation in a post-

processing way, that is, to gather the coordinates of the detections on the map and then 

apply a removal once the map was finished. On the other hand, it was considered to use 

the depth information of the detections out of the pointcloud generated by the camera. 

Despite all of these ideas, a computationally more efficient and more straight-forward 

approach is just making the laser scanners blind towards the detections so we keep the 

scope in the 2-D dimension avoiding way more complicated approaches. 

6.3 Future Work and Research Directions 

The implementation of this algorithm has demonstrated to work properly on static 

detections. Due to time limitations and scope of this thesis, this implementation has not 

been tested on detections with motion during the exploration (e.g. persons moving 

around while doing the mapping). However, since the potential is considerable, it is 

expected to also work in a dynamic environment with objects moving on the scene, so it 

is a future work to verify this capability and, if required, to tune the algorithm of the 

package in order to adapt to this needs. Currently, the bottleneck is the Wi-Fi 

connectivity, since the camera video streaming speed rate is much slower than the laser 
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scanner data. This means that with the current setup, the system is verified to work for 

static and objects with very slow motion. 

 

Since the MiR allows the possibility of adding a top camera just above the floor 

camera (the frontal one by default), it is wise to improve the performance of the system 

by feeding the object detector with a combination of two simultaneous cameras so that 

the vertical field of view is larger. This is a quite desirable feature especially for cluttered 

and tight environments in which the robot does not have enough distance to incorporate 

tall objects to the camera field of view. 

 

It is possible also to add extra cameras to the corners and laterals, and then merging 

the images into a single one in order to feed the object detector. It is not worth to run 

parallel object detectors for every camera since the computational cost would be huge. 

In this case, by stitching4 images, it would be possible to extend the laser scanner 

angular range to the fullest. Even should be possible to fuse the data of both laser 

scanners for the exploration in the case a 360º panoramic image would be generated by 

multiple cameras surrounding the mobile robot. 

 

Due to the fact that the Map Filtering Module cannot take in consideration what is 

behind the objected detections while mapping, an approach dealing with this problem 

would post-process the map to infer missing parts of the walls that were occluded by 

such detections and re-fill the hollows caused by the filtering of the objects by changing 

such UNKNOWN grid cell values to FREE. 

 

And finally, it is also a future work to generate the datasets with custom data for 

training the Object detector module in order to detect specific objects that are not part of 

the MS COCO dataset in which is based the current Object detector module. 

                                                
4 It is the procedure of combining multiple images with overlapping fields of view so that a 
panoramic image is generated. 
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APPENDIX A: DEGREE OF CROWDEDNESS DATA 

 
Figure 94. Raw data results for the degree of crowdedness in the map 

experiments. 
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APPENDIX B: DEGREE OF OBJECTS SIZE DATA 

 
Figure 95. Raw data results for the degree of objects size in the map 

experiments. 
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