
i

Christen Blom-Dahl Casanova

AUTONOMOUS ROBOT EXPLORATION
WITH SELECTIVE OBJECT

DISCRIMINATION BY USING DEEP
LEARNING OBJECT DETECTION

Faculty of Engineering and
Natural Sciences

Master of Science Thesis
May 2019

ABSTRACT

Christen Blom-Dahl Casanova: “Autonomous Robot Exploration with Selective Object
Discrimination by Using Deep Learning Object Detection”

Master of Science Thesis, 105 pages, 2 Appendix pages
Tampere University
Robotics and AI
May 2019

Since the geopolitical world is not polarized anymore, the market competitivity is

increasing as never before so in order to survive as an industrial organization, it is key

to be competitive. That is, reducing costs and production times among other needs.

Mobile robots are resources that manage to get those needs relieved since they can

substitute humans and perform better. This causes human issues casuistic drop, human

resources re-allocation in more creative job positions which cannot replaced by robots,

and more long-term efficiency.

The state-of-the-art of the use of mobile robots remains on the fact that we are talking

about not just a single mobile robot but a fleet of them which performs in a smart and

coordinated way. These devices can be integrated in the supply-chain so that can

transport payloads without the need of any human intervention. In addition, such

integration allows a huge flexibility since smart industrial mobile robots can adapt to new

conditions, imposed parameters and obstacles that were not predicted. For any

autonomous mobile robot, a prior knowledge about its environment is necessary before

performing autonomous navigation, that is to have a previous map. Mapping usually is a

human intervened task which takes time, especially for large facilities. This work

proposes a way to map autonomously, in the most efficient way, an indoor 2D

environment by using the Rapidly-exploring Random Trees approach since it is biased

towards unknown regions.

In addition, this work proposes object discrimination during mapping. With the

conventional approach, during the mapping process laser scanners read the presence

of all the obstacles in the environment. This fact is undesired since some of such scanned

obstacles are scanned just by causality during the exploration (e.g. personnel, industrial

mobile equipment…). Such undesired registered data in the map suppose noise and

does not represent the actual long-term environment. The implementation of removing

such noise is managed by the combination of two modules. On one hand, by using state-

of-the-art deep learning tools in order to achieve real-time object detection. On the other

hand, a filter to the laser scanner so that it is blind towards such detections during the

exploration, so they are never registered on the map.

The results show quite potential high-quality results which are intrinsically associated

with the object detector module. Since such module is state-of-the-art, the technology

involved is constantly developing and improving not just the performance but also

flexibility and capabilities. This work is a potential new high-fidelity approach besides the

conventional approach in order to perform mobile robot exploration.

Keywords: Exploration, Rapidly-exploring Random Tree, RRT, Robot exploration, La-

ser Scanner, MiR, Industrial Mobile Robot, Non-Structural, Mapping, Robot Operating

System, ROS, Computer Vision, Mapping, OpenCV, SLAM, Stereo Camera, Intel Re-

alSense, Pointcloud, Deep Learning, Object Detection, Pretrained Models, Transfer

Learning, 3D Tracking, 3D Localization, Machine Vision, Robot Perception,…

PREFACE

Without the contribution of active members on ROS forums (like Thomas Delbaere),

GitHub (especially Martin Günther), and guides on the Internet this would not have been

possible at all. This demonstrates how powerful can be an open source altruistic com-

munity. Also, thanks to the deep learning community for providing the required datasets

and pre-trained networks that makes possible transfer learning.

I would also like to thank:

- TUT-Robotics Slack members for their contributions

- Matti, awesome IT guy from FAST department in TUT, for providing me a suitable

laptop for my implementation

- ROS Ignite Academy

- Prof. Jose Luis Martinez Lastra for the Master’s thesis position

- Prof. Joni Kämäräinen for his time, kindness and advices

Finally, and the most important, I would like to thank my mother and father for all the

support and advices along this tough but rewarding challenge.

This work contains research areas such as Autonomous Exploration, Mobile Robots,

Mobile Robots applied to Logistics, Path Planning, SLAM, Image Processing, Neural

Networks, Convolutional Neural Networks, Deep Learning, Machine Learning and

Pattern Recognition, Computer Vision, Robot Perception, depth machine vision, and

integration in ROS.

CONTENTS

1. INTRODUCTION .. 3
1.1 Motivation .. 4

1.2 Problem definition .. 5

1.2.1 Justification of the work ... 5

1.2.2 Problem Statement ... 5

1.3 Research questions ... 5

1.4 Objectives .. 6

1.5 Thesis outline ... 6

2. LITERATURE AND TECHNOLOGY REVIEW... 8
2.1 Industrial mobile robots .. 8

2.2 Robot perception .. 10

2.2.1 LiDAR technology ... 10

2.2.2 Stereo vision ... 11

2.2.3 Point Cloud ... 12

2.3 Environment exploration .. 13

2.4 Path Planning... 14

2.4.1 Common concepts in Dijkstra’s and RRT algorithms 15

2.4.2 Dijkstra’s algorithm .. 16

2.4.3 RRT algorithm ... 17

2.5 Map Representation ... 18

2.5.1 Topological maps .. 18

2.5.2 Volumetric maps ... 19

2.5.3 Featured-based maps ... 20

2.6 SLAM: Rao-Blackwellized Particle Filters (RBPF) 20

2.6.1 Rao-Blackwellization process.. 20

2.6.2 The process of building a map with known pose 21

2.7 Frontier-Based Autonomous Exploration .. 21

2.7.1 Frontier edge extraction .. 21

2.8 Mean Shift Clustering ... 23

2.8.1 General concepts .. 24

2.8.2 Mean shift with flat kernels .. 27

2.9 Neural networks and Deep Learning .. 28

2.9.1 Neural networks .. 28

2.9.2 Convolutional Neural Networks ... 31

2.9.3 ROC and Precision-Recall curves ... 35

2.10 Deep learning object detection algorithms .. 37

2.10.1 Two stage detectors ... 37

2.10.2 Single stage detectors .. 38

2.10.3 Benchmarks.. 40

2.10.4 Bounding boxes .. 42

2.11 ROS ecosystem ... 43

2.11.1 ROS basics .. 44

2.11.2 ROS coordinate systems .. 47

2.11.3 ROS launchers ... 48

2.11.4 ROS visualizer .. 48

2.12 Conclusions ... 49

3. PROPOSED SOLUTION .. 50
3.1 Sensors .. 50

3.2 Navigation for autonomous exploration module 51

3.2.1 Good to know .. 51

3.2.2 Motivation of RRT ... 52

3.2.3 Frontier detector ... 53

3.2.4 Filter module ... 54

3.3 Object detection module .. 55

3.3.1 Transfer learning ... 55

3.3.2 Selective object discrimination .. 56

3.3.3 Object detection model ... 56

3.4 Map filtering module ... 58

3.4.1 Object discrimination procedure .. 58

3.4.2 Motivation of selecting the RGB+LaserScan input approach 61

3.5 The system as a whole .. 62

4. IMPLEMENTATION .. 63
4.1 Navigation for exploration module .. 63

4.1.1 SLAM module ... 63

4.1.2 Path planning module ... 63

4.1.3 Frontier detector module ... 64

4.1.4 Filter module ... 65

4.2 Object detection Module .. 66

4.2.1 Software drivers .. 66

4.2.2 Deep Learning framework ... 66

4.3 Map filtering module ... 66

4.3.1 Additional required features .. 68

5. TESTS AND RESULTS .. 72
5.1 Hardware setup .. 72

5.1.1 External computer ... 72

5.1.2 External Graphic Card .. 73

5.1.3 Robot platform .. 73

5.2 Network setup .. 75

5.3 Limitations .. 76

5.3.1 Limited camera vertical field of view .. 76

5.3.2 Map filtering module limitation ... 77

5.4 Testings ... 78

5.4.1 Case: Degree of crowdedness in the map 80

5.4.2 Case: Degree of objects size in the map 82

5.4.3 Discussion of the results ... 85

6. CONCLUSIONS AND FUTURE WORK .. 87
6.1 Contributions .. 87

6.2 Lessons Learned ... 87

6.3 Future Work and Research Directions ... 87

REFERENCES... 89
APPENDIX A: DEGREE OF CROWDEDNESS DATA ... 94
APPENDIX B: DEGREE OF OBJECTS SIZE DATA .. 95

LIST OF FIGURES

Figure 1. Hierarchical approach in SLAM. ... 3
Figure 2. Palletizer mobile robot designed by Boston Dynamics. [5] 8
Figure 3. Amazon robot fleet in warehouse. [8] ... 9
Figure 4. Diagram of fleet management system for autonomous vehicles. [7] 9
Figure 5. Surveying process of a single laser beam.[9] 10
Figure 6. Pointcloud formed by multi-laser scan layer horizontally stacked.

[10] ... 10
Figure 7. The depth retrieval information from a single image is inherently

ambiguous. .. 11
Figure 8. Geometric representation of the mathematical model of the stereo

vision. [11] .. 11
Figure 9. Pointcloud with RGB data in Rviz. .. 12
Figure 10. Yamauchi’s map obtainment process. .. 13
Figure 11. RRT graph structure. [20] ... 15
Figure 12. Dijkstra’s algorithm pseudocode[22]. .. 16
Figure 13. Progress of the tree propagation during RRT execution. 17
Figure 14. RRT pseudocode. [22] ... 18
Figure 15. Extraction of topological maps. .. 18
Figure 16. An example of an occupancy grid map made in an office. 19
Figure 17. A detailed view of an occupancy grid map showing the cells. 19
Figure 18. Frontier edge extraction example. [20] ... 22
Figure 19. Frontier edge extraction procedure. [20] .. 23
Figure 20. PDF function composed by individual kernels. 24
Figure 21. Influence of the bandwidth value on the PDF curve.............................. 25
Figure 22. Kernel density estimation. .. 26
Figure 23. Mean shift clustering using uniform kernels. ... 26
Figure 24. Kernel density estimation curve by use of flat kernel. 27
Figure 25. Perceptron morphology and two common activation functions. [30] 28
Figure 26. Error function and updating of the weights during gradient

propagation. ... 29
Figure 27. Back and forward propagations in a neural network 29
Figure 28. Usual proportions of the partitions in the dataset for a neural

network. ... 30
Figure 29. Local and global minima areas. .. 30
Figure 30. Rectified Linear Unit activation function. .. 31
Figure 31. Feature maps resulted from the convolution from a sample image....... 31
Figure 32. Appearance of the filter after maxpooling. .. 32
Figure 33. Appearance of the feature maps after normalization. 32
Figure 34. RGB-based image structure. .. 32
Figure 35. Appearance of the learned filters in the CNN. 33
Figure 36. CNN structure. [37] .. 33
Figure 37. AlexNet architecture. [38] ... 34
Figure 38. Results of training from scratch or by initializing the weigths with a

ready-to-use model. ... 35
Figure 39. Table of contingency or confusion matrix. [40] 35
Figure 40. A ROC curve from a certain detector. [41] .. 36
Figure 41. Precision-Recall curve of a dataset size of 10 images and 5

relevant outputs of a detector. [43] ... 36
Figure 42. The larger the AUC is, the better detector performance. [30] 36
Figure 43. Faster R-CNN architecture. .. 38
Figure 44. VGG-16 which composes the backbone of the Faster R-CNN. [38] 38
Figure 45. SSD architecture. ... 39

Figure 46. SSD generating scores and adjusting the correct aspect ratios of
the bounding boxes. ... 39

Figure 47. PASCAL VOC Leaderboard of December 2015. The winner was
the Faster R-CNN architecture with a precision of 83.8%. 41

Figure 48. Progress in the object detection field. ... 41
Figure 49. Inverse relationship between precision vs. Inference time. 42
Figure 50. Example of bounding boxes. .. 42
Figure 51. Bounding box in cental coordinate, width and height format. 43
Figure 52. ROS File system .. 44
Figure 53. Usual frames in mobile robots. [59] .. 48
Figure 54. Point cloud data visible in 3-D space in Rviz. 49
Figure 55. Table showing what concepts are implemented in the work. 49
Figure 56. General diagram of the exploration system. ... 51
Figure 57. Voronoi diagram resulted from RRT exploration. 52
Figure 58. Local frontier detector pseudocode. [20] .. 53
Figure 59. Global frontier detector pseudocode. [20] ... 54
Figure 60. A small piece of code of mscoco_label_map.pbtxt. [68] 56
Figure 61. YOLO architecture. .. 57
Figure 62. Comparative plot of the current best real-time object detectors

available. [69] ... 57
Figure 63. Comparative table of the current best real-time object detectors

available. [69] ... 57
Figure 64. Workflow chart of the RGB+PointCloud input approach. 58
Figure 65. Occupancy grid processed values by the RGB+PointCloud input

approach from the map filtering module. .. 59
Figure 66. Backbone testing of this approach showing the detections and

their location in 3-D space using the generated pointcloud by the
depth camera. .. 60

Figure 67. Workflow chart of the RGB+LaserScan input approach. 60
Figure 68. Laser Filtering module pseudocode. .. 61
Figure 69. Diagram of the whole system. .. 62
Figure 70. Visualization of the generated costmaps. [72] 64
Figure 71. Move base internal structure graph. [70] .. 64
Figure 72. Vertical axes offset between camera and laser scanner frame

leads to some issues.. 67
Figure 73. Resulting included (in green) and excluded (in red) pointcloud data

printed directly to the camera data from the laser scanner. 68
Figure 74. Screenshots of a sequence which shows the limitations of the

object detector while publishing constant bounding boxes. 69
Figure 75. Implementation components diagram. ... 72
Figure 76. MiR100 as robot platform with embedded sensors. 73
Figure 77. MiR100 laser scanners and front depth camera fields and ranges

of views. ... 75
Figure 78. Coordinate frames of the sensors with respect to the mobile robot

in 3-D space. .. 75
Figure 79. Limited camera vertical field of view. .. 77
Figure 80. Filtered map with a non-adjacent detected obstacle. 77
Figure 81. Case of detections with contiguous wall and other obstacles. 77
Figure 82. Ground truth map Mgt (on the left) with permanent (green) and

temporal objects (red) and filtered map Mf (on the right) with red fill
figure representing a False Positive and an empty red figure a
True Positive. ... 78

Figure 83. Testing area for the implementation of the system. 79
Figure 84. Corners strategically allocated to compose the local exploration

area. .. 80

Figure 85. Experiment No. 5 in the case scenario of 7 chairs in the area. 81
Figure 86. Box and whiskers of the influence of number of obstacles in the

exploration duration. .. 81
Figure 87. Box and whiskers of the influence of the obstacles amount in (a)

the TPRP and (b) the LMQR. ... 82
Figure 88. Circumcircle of the coplanar section with the laser scanner range

of a certain object. .. 82
Figure 89. Experiment No. 5 in the case scenario with large objects (bean

bags). ... 83
Figure 90. Box and whiskers of the influence of obstacle sizes in the

exploration duration. .. 84
Figure 91. Box and whiskers of the influence of obstacles sizes in (a) the

TPRP and (b) the LMQR. ... 84
Figure 92. Motion blur visual concept function of the camera shutter speed.......... 85
Figure 93. A sample of the testings in which the object detector is enabled for

all object categories with several objects of different categories in
the scene. .. 86

Figure 94. Raw data results for the degree of crowdedness in the map
experiments. .. 94

Figure 95. Raw data results for the degree of objects size in the map
experiments. .. 95

LIST OF ABBREVIATIONS

3D 3-Dimension

AGV Automated Guided Vehicle

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processor Unit

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network

DBN Deep Belief Network

DLP Data Level Parallelism

e.g. exempli gratia (for example)

Exp. Experiment

FAST Factory Automation Systems and Technologies

FC Fully Connected

FFD Fast Frontier Detector

GPS Global Positioning System

GPU Graphic Processor Unit

i.e. id est (that is)

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IMU Inertial Measurement Unit

JSON JavaScript Object Notation

LASER Light Amplification by Stimulated Emission of Radiation

LiDAR Light detection and ranging

LTS Long Term Support

MiR Mobile Industrial Robot

NLP Natural Language Processing

NN Neural Network

No. Number

OpenCV Open Computer Vision

PDF Probability Density Function

RAM Random-access memory

RBM Restricted Boltzmann Machine

RBPF Rao-Blackwellized Particle Filter

R-CNN Region-Current Neural Network

ReLU Rectified Linear Unit

REST REpresentational State Transfer

RGB Red Green Blue

ROC Receiver Operating Characteristics

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

RTAB Real-Time Appearance-Based Mapping

RViz ROS Visualizer

SGD Stochastic Gradient Descent

SIMD Single Instruction Multiple Data

SLAM Simultaneous Localization and Mapping

SRT Sensor-based Random Tree

SSD Single Shot Detector

SVM Support Vector Machine

UNIX from uni- ‘one’ + a respelling of -ics, on the pattern of an earlier less

compact system called Multics

USB Universal Serial Bus

VOC Visual Object Classes

WFD Wave Frontier Detector

Wi-Fi Wireless Fidelity

YOLO You Only View Once

1

LIST OF SYMBOLS

IoU Intersection over Union

mAP Mean Average Precision

FPR False Positive Rate

AUC Area Under Curve

PPV Positive Predictive Value

Gbps Gigabits per second

GB Gigabytes

GHz Gigahertz

D Laser beam length m

c Speed of light m/s

t Time sec

x0 Projection of the observed point, X0, in the scanline left im-

age

m

x0’ Projection of the observed point, X0, in the scanline right

image

m

X0 Observed point in the 3D world m

B Baseline m

B1 Distance from 0 to the projection of X0 in the baseline m

B2 Distance from 0’ to the projection of X0 in the baseline m

f Focal length m

z0 Normal distance from X0 to the baseline

C Pointcloud or set of pi m

pi Point in the 3D space belonging to C m

i i-th iteration over series or loops

{x, y, z} Coordinates in the 3D cartesian space m

X Map

x Point belonging to X

xrand Random point belonging to X

xinit Initial point

xnearest Nearest point between xrand and the graph G

xnew Output point generated by the Steer function

xcurrent Current point during the iteration

xfree Free space in the domain of X

V Vertices vector which contains v elements

v Vertex generated by the RRT

E Edges vector which contains e elements

e Pair of vertices generated by the RRT

G Graph which is a set composed by V and E

z Output from steer function which minimizes ||z – y||

η Tree growth rate

Q Vertex set

u u-th vertex

2

∅ Null symbol

∞ Infinite symbol

O Total amount of obstacles

𝑚𝑖 i-th obstacle present in the mapped environment

𝑚 Set of mn

𝑗 Robot pose m

𝑘 Observation (e.g. laser scanner reading) m

𝑙 Control input (e.g. odometry data) m

𝑝 p-th particle

ℝ𝑑𝑖𝑚 Real domain of dim-th dimension

dim dim-th dimension

x1 Point remaining to a certain cluster

N Total amount of x1

h Bandwidth of the kernel

x2 Input data of a perceptron

b Bias of a perceptron

𝑤 Weight of a neuron

𝑦𝑘 Output prediction of the neuron

𝑤𝑎𝑏 The b-th weight of the a-th neuron

ε Learning rate of a neural network

E Error function

c or 𝐶𝑖 Category of a detection

g Sensitivity or threshold of a detector

K Thousand unit

𝑃𝑖 Probability of a detection

mm Millimetres

º Decimal degrees

m Meters

m2 Squared meters

Number of / Amount

𝑇𝑃𝑅𝑃 True Positive Ratio Performance

𝐿𝑀𝑄𝑅 Local Map Quality Ratio

𝑃. 𝑂. Permanent Object set

𝑇. 𝑂. Temporal Object set

𝑀𝑓 Filtered map

𝑀𝑔𝑡 Ground truth map

p.u. per unit (in this case, per unit of the average of times

required to perform exploration with no obstacles)

AVG. Average

Number (quantity)

3

1. INTRODUCTION

The topic of robot navigation is getting more and more relevant nowadays since quite

useful applications on industry had been found to be interesting tolls that fight costs and

time wasting. A mobile robot in order to proceed with an efficient navigation must know

its environment through a representative map a priori. And the procedure to obtain such

map is what is known as map exploration, which is moving around an unknown region

while recording data out of it on a map[1]. The targets of this procedure are to minimize

the time of map building while maximizing the area to explore considering a behaviour

of the mobile robot biased toward regions still unexplored avoiding the zones already

mapped.

The navigation hierarchy can be represented in a simplified manner as in Figure 1.

The hierarchical approach in SLAM starts with the lowest level, which is localization. This

is for the robot knowing real-time position and orientation on the real world, that is pose,

which is with respect a selected frame (global or relative). After this priority, the following

level is the ability of moving autonomously of the robot which is performed by path

planning which consist of the generation of targets and moving towards them considering

obstacle avoidance, that is an improvisation ability. Once these both levels are operating,

then it is possible for the highest level to be executed, that is exploration, which must be

performed in parallel with the other levels of hierarchy while updating the map.

Figure 1. Hierarchical approach in SLAM.

In comparison with other exploration approached, the frontier-based ones have

currently more attention from the research community[2]. Why? Because they are more

efficient since there is no redundancy on the exploration, that is, not exploring again

known regions. This is achieved as the mobile robot is biased towards frontiers which

represent the borders between known from unknown areas of the map. Image

processing tools for the frontier edge detection makes this approach possible. Other

approaches are based on randomized path planning methods whose hypothesis relies

on the inherent probabilistic feature of already being biased towards the frontiers[3].

4

This work proposes a frontier-based strategy based on the path planning method of

Rapidly-exploring Random Tree, which can be extrapolated to the third dimensional

space. The navigation under this implementation ensures that the path planning is

independent from the growth of the tree so that makes able the tree to spread quicker

increasing the efficiency of the algorithm. It is also considered the minimization of energy

consumption in the way that the target assigner discards those targets which are too far

away from the mobile robot. This is because in such cases the likelihood of exploration

redundancy is high. So that the implementation has a target filter assigner module whose

purpose is to consider relevant points to have as navigation goals.

In addition to the previous, once the exploration is done with the conventional

approach, all material shapes present in the environment, regardless whether they are

relevant or not to the map, have been recorded on it. That are, personnel walking around,

temporal objects (such as industrial trucks) and other objects which can be assumed that

are just transitory in the environment. The work pursues an implementation using object

detection algorithms based in deep learning and a map filtering module. With the

information provided by the object detector (bounding boxes encapsulating the

detections), it is possible to omit such objects during the map scan. Since nowadays

there are available quite powerful and flexible deep learning-based object detectors, it is

possible to infer an object category despite its perspective, illumination variance, and

bizarre shape. In addition, this set of tools allows to use pre-trained models which

nowadays can detect dozens of different object categories (chair, person, car, …) and

filter them in order to detect a certain class of objects.

1.1 Motivation

Nowadays, the industry is experiencing a transition to a next level never experienced

before. Globalization is the catalyst for this situation as generates competitivity

worldwide. So that, industrial businesses must update their systems in order to survive

in the market. This transition is known as Industry 4.0[4] or The 4th Industrial Revolution.

Which is the trend of automating as many manufacturing processes as possible via

digital data exchange and monitoring. One application can be the management of a fleet

of mobile robots in a highly automated factory. Mobile robots need previous information

of their environment encoded in a map in order to perform path planning. The problem

comes when such map does not represents the reality properly, so neither do the path

plannings. The effects of this fact can be perceived in a long-term period, especially, this

effect is exponential when such path plannings are performed by a fleet of robots that

use the same map.

5

1.2 Problem definition

Mapping the indoors of industrial facilities takes a considerable amount of time as the

areas to explore are usually large. The usual approach is done via teleoperation which

involves human resources to commit such task. In addition, the environments to map in

the industrial context are usually quite dynamic, i.e., there are constantly mobile

elements moving around or certain types of objects, although ”static”, that are known

that they will not be in the same position in the near future since they are considered

temporal. The problem comes when during the mapping, these objects are recorded

anyways without regard of their features which make them not suitable to figure on the

map.

1.2.1 Justification of the work

The point of seeking for a solution is to upgrade the synergy of the processes to the

next level. That is adopting the premises that Industry 4.0 postulates. In few words, to

improve competitivity minimizing costs in terms of time and money by allocating correctly

available resources) and enhancing all the processes involved in the supply-chain.

1.2.2 Problem Statement

Exploring autonomously an area with the possibility of discarding, from the generated

map, certain selected categories of objects in the environment under the hypothesis that

they are dynamic in the space (i.e. temporal or positionally non-static).

1.3 Research questions

- How can I perform autonomous navigation which involves path planning without

a map?

There exist exploration algorithms that are based on SLAM by targeting unknown

areas

- How can I perform object detection with generalization capacity to know a certain

type of objects?

Deep learning has the required capability of generalization from the learning. That

is, can recognize an object of a certain type even though has never seen it before

(i.e. it is not in the training set).

- What sensors do I need for the implementation?

o Laser scanner provides the readings for the mapping

o Depth camera provides the RGB image required to feed the Object

Detector Module

6

- What software environment do I choose to work with?

 Robot Operating System (ROS). Since this environment provides open source

ready-to-use packages, high flexibility and high interchangeability, easy

communication with the robot and other devices, and community support.

- Do I need a GPU for the implementation?

Yes, the object detection algorithm requires a lot of tensorial computations that

the CPU cannot handle properly. Modern GPUs are optimized for such applications.

1.4 Objectives

The aim of this work is to increase the automatization level in the previous stage of

the integration of the mobile robots in the supply-chain and to increase the efficiency

during the integration phase. The former goal is achieved by automating the usually

teleoperated mapping phase before the mobile robot fleet deployment. The later goal,

by making the mobile robots compute the path plannings according to real environments

free of mapped objects that actually do not exist anymore in the position they were

recorded. This actually means more efficient path planning, since the generated paths

are more straightforward since they are not affected by re-routing due to objects that

presumably do not exist anymore in such recorded positions. This is made under the

hypothesis that a certain class of object is considered transitory. A case would be an

industrial mobile equipment that was transporting goods in a facility was recorded while

mapping with the mobile robot. Most likely, such object will not be anymore in that static

position anymore in the future.

1.5 Thesis outline

After clearing the context of this work, now you will see the fundamentals and theory

that makes the implementation work behind scenes. Under a scientific approach, this

document makes clear any rational questions sort of “How does it work?”, “How come is

this possible?”, “What is/was the context of this?”, “Is actually black magic what is behind

all of this? Witchery may be?”. If you are not familiar with concepts such as SLAM, robot

perception, neural networks, deep learning, object detection and so on, it is highly

recommended to go through this point.

Once the concepts behind scenes are clear enough, the proposal of the work

indicates what and why in this work certain approaches were considered as valid. Then

in the implementation point, documentation provides a guide on how come this was

managed to make the whole thing work.

7

Finally, the results of the synergy of every module of the system are provided as

evidence that the proposed system works. Also, at the end, the document suggests

enhancements and future developments from this work.

8

2. LITERATURE AND TECHNOLOGY REVIEW

2.1 Industrial mobile robots

Since the 3rd industrial revolution, the attention and use of industrial mobile robots

has increased exponentially due to the constant evolution of electronics. The point of

such fact is contributing to the increase of the automation degree promoted by that

revolution. It is proven that despite these devices commit mistakes, they are less frequent

than the ones made by human labours. In addition, they are capable of working in

hazardous areas which for a human would be dangerous[4].

The use of mobile industrial robots is mainly intended for payload transportation and

palletization.

Figure 2. Palletizer mobile robot designed by Boston Dynamics. [5]

Before the current autonomous mobile robots, the traditional Automated Guided

Vehicles (AGV) had not path planning algorithms in order to perform navigation and they

relied usually on guide tapes (magnetic or colored if robot posses primitive machine

vision) printed on the floors so the robots could follow such manually and previously

made paths. The main drawbacks are the lack of flexibility and use limitation for

elementary fleet coordination and non-complex environments.

AGV navigation system based on guided tapes. [6]

9

Since technology evolved, smarter mobile robots now are capable of performing real-

time path planning which enables the possibility of coordinate large fleets of mobile

robots, improvise on-the-way if there are obstacles such as humans with obstacle

avoidance protocols that communicate directly with path planning algorithms. The

implementation of the technologies offers huge flexibility since paths can be modified

and monitored from a computer which is connected wirelessly to the mobile robots[7].

A more robust and advanced robot perception makes the implementation possible.

The mainly used sensors in order to perform autonomous navigation are laser scanners

and depth cameras.

Figure 3. Amazon robot fleet in warehouse. [8]

For this it is needed previous information of the environment contained on the map of

the environment where the mobile robots are going to perform and share space. Thus,

the global planner is based on such map in order to compute path planning and proceed

with SLAM. Note: all the robots of a fleet working in the same area use the same map.

Figure 4. Diagram of fleet management system for autonomous vehicles. [7]

10

2.2 Robot perception

Robot perception is the ability of a computerized system to interpret the world

environment through the data provided by sensors such as laser scanners or depth

cameras. This feature is fundamental in order to make the mobile hardware perform in a

coherent way with the real world.

2.2.1 LiDAR technology

An application of the LASER technology is LIDAR which is a surveying which

quantifies the distance between the target and the sensor. It is robust perception

approach since the illumination and noise are invariants. The parameters to compute

such distance are wavelengths and return times of the reflected pulsed laser light. In

order to compute the distance, the speed of light and the time of the returning photon

coming from the laser beam is:

𝐷 =
1

2
· 𝑐 · 𝑡 (1)

Figure 5. Surveying process of a single laser beam.[9]

Such rotating laser can be stacked with other beams so several scanned planes are

retrieved forming a pointcloud.

Figure 6. Pointcloud formed by multi-laser scan layer horizontally stacked. [10]

11

2.2.2 Stereo vision

A very important ability to have depth perception of the real world, that is why life

evolution has provided animals and humans with two sensors (eyes) instead of one. In

the field of computer vision, stereo vision is the extraction of the depth information from

digital images. Such extraction is made in dense depth maps and pointclouds.

Figure 7. The depth retrieval information from a single image is inherently

ambiguous.

 The mathematical model of the stereo vision is based on the epipolar geometry

which is described as follows:

Figure 8. Geometric representation of the mathematical model of the stereo vision.

[11]

The depth 𝑧0 is function of the disparity, which is defined as:

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 𝑥0 − 𝑥0′ =
𝐵·𝑓

𝑧0
 (2)

The baseline, which is the distance between the cameras, is modeled as:

{
𝐵 = 𝐵1 + 𝐵2 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋0 𝑖𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝐵 = 𝐵1 − 𝐵2 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋0 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

And finally 𝑓 is an intrinsic parameter of the camera defined as the focal length.

12

2.2.3 Point Cloud

It is the representation of the scene and its objects, which are observed by a certain

scanner sensor, in a set of points displayed in 3D Euclidian space[12]. The points are

meant to be in the contours and surfaces visible by the aforementioned scanner which

is a valuable information for depth perception.

The point cloud is mathematically defined as:

𝐶 = {𝑝𝑖}𝑖=1
𝑛 (3)

in which 𝑝𝑖 means a point in such cloud:

𝑝𝑖 = {𝑥, 𝑦, 𝑧} (4)

which are the global coordinates with respect to the scanner sensor frame.

The information of a single point of the cloud usually is irrelevant, so it is the whole

set which is useful for data analysis. Some applications[13] of point clouds are the

generation of 3D maps (RTAB-Maps), extraction of keypoints in the 3D space for

descriptors, outliers filtering from noisy data, robot perception, LiDARs, and so on.

Figure 9. Pointcloud with RGB data in Rviz.

On the left side, an RGB image received by a depth camera. On the right side, the

point cloud generated mixed with RGB data. [14]

13

2.3 Environment exploration

One of the godfathers of the frontier-based exploration is Yamauchi[1]. His work could

make a mobile robot to explore autonomously a complex indoor environment with

obstacles and map it. It was based on the principle that the algorithm is biased towards

unexplored areas. After an iterative process, the whole area should be completely

explored. Such implementation was tested using a mobile robot in a real office which

contained furniture, objects and so on as obstacles.

Figure 10. Yamauchi’s map obtainment process.

a) Generated map b) Frontier edges c) Frontiers areas

The empty spaces (white areas) represents known space, the region with dots

symbolizes unknown region and the plusses symbols circumscripted in circles are the

frontier areas.

In his implementation, frontier detection is an iterative process that re-starts every

time the mobile robot arrives the designated target position. This feature means a high

computational cost[15] since the whole map has to be scanned completely every

iteration. After Yamauchi’s work, alternative and variants of exploration strategies based

on the idea of frontier detection were discovered.

Not many years ago, researchers[2, pp. 113–120] proposed two more efficient

variants of frontier detection strategy. FFD (Fast Frontier Detector) and WFD (Wave

Frontier Detector). The first approach just considers the laser scans messages (which

were converted in contours) in the frontier searching. The process consisted on the fact

that when the detected frontier is not previously stored then it is created and stored. The

second approach considers just the known areas of the map. The trigger of the extraction

of the containing edge happens when a target is found on the frontier edge.

Other exploration approaches are based on randomized path planning methods. The

purpose of frontier-based approaches is to avoid redundancy while exploring unknown

maps, that is to avoid already explored regions. This is accomplished by exploiting the

14

inherent probabilistic properties of the RRT algorithms. So that, there is no need of

detecting frontier regions in order to direct the mobile robot towards to unexplored areas.

The resulting growth of the tree[3] during robot navigation is biased the frontiers so that

the map is iteratively expanded.

There is a variation of RRT algorithm known as SRT (Sensor-based Random Tree)

[16] in which navigation goals are randomly generated within a range limited surrounding

space of the mobile robot laser scanner. On the other hand, RRT generates target

positions along the entire map. This main difference makes this variant a depth-first

exploration approach since the sequence of random targets will appear like a chain of

nodes. Instead, in RRT, trees branches spread in alternative directions sub-growing in

sub-branches (kind of fractals). Because of the divergence of both variants, the SRT

implementation need of backtracking. This is the mobile robot requires to retrocede and

track parented nodes of the ascending node when a branch stops spreading, i.g. this can

happen if the robot arrives to a dead end for instance. The problem comes when

backtracking involves visiting certain places more than once, since it an undesired

feature. Nonetheless, some researches[17] propose enhanced treatments to this issue.

The exploration methods that cannot be related to the aforementioned approaches

can be categorised into information-based exploration[18], [19]. That considers mapping

and localization simultaneously with exploration in the way that target positions are

selected so that increases the certainty of the mobile robot pose, thing that improves the

information got in the map.

2.4 Path Planning

This is the core procedure in navigation. There is a starting position where the robot

begins to compute the path planning and a goal position to which the robot has to arrive

somehow. These two points are located in a map which contains the obstacles that

should be avoided. Here it is covered an explanation and differences between Dijkstra’s

algorithm and RRT algorithm. The main difference between both implementations is that

the former one is used when the map is already built and the purpose is to minimize the

distances between points. Meanwhile the later one is meant to be used to find exploration

goals, that is, when the map is not made yet.

15

2.4.1 Common concepts in Dijkstra’s and RRT algorithms

Map X: Represents the space containing the whole information.

FreeSpace Xfree: It is the space containing nothing.

Vertices V: Points or nodes appearing on the map. The RRT algorithm generates

them so they are interconnected forming tree branches. Each point is defined as vertex.

The whole set of the different vertices are stored in a vector V.

Edge E: It is the line connecting pairs of vertices. Each edge is stored in terms of the

spacial coordinates of both points. The edges are stored in the vector E.

Graph: Vertices and Edges generates a graph. G = (V, E).

Figure 11. RRT graph structure. [20]

Nearest(G = (V, E), x ⊂ Xfree): It takes a certain graph and a generic point in the free

space as input. This function returns the closest vertex to a point v ⊂ V in the way that

Nearest(G = (V, E)) = argmin v ⊂ V ||x – v||.

Steer: This function takes a pair of points with x and y coordinates and outputs a z

point where ||z – y|| is minimized, while ||z – x|| ≤ η, which η is the tree growth rate and

η > 0.

ObstacleFree: The output of this function is the type of a boolean, in which a pair of

points in the FreeSpace are the input. So it outputs False if there is any obstacle between

them.

getFirstMinCost: It returns the first vertex x ⊂ G with the lowest cost.

Neighbor(Q, u): It returns the vector of vertices that are directly connected to u vertex,

Xneighbor ⊂ Q.

Cost(x1, x2): Represents the cost assigned to an edge connecting a pair of vertices.

It can be an assigned cost or the edge length.

Parent: Each parent vertex can generate multiple child vertices and has a unique

parent.

16

2.4.2 Dijkstra’s algorithm

From a certain graph G(V, E), this algorithm is meant to find the shortest path between

any pair of vertices that belong to G under the assumption of such path. In the

implementation of the work proposal, this algorithm is used to coordinate the mobile robot

toward goal nodes generated by the tree obtained via RRT algorithm. For a certain vertex

R on the minimum distance (or cost) path between two other vertices (A and Z), seeking

this path means finding the minimum path between A and R. This means that the

optimum path which connects a pair of vertices is also the optimum paths connecting all

the belonging vertices[21]. So that, the algorithm keeps seeking for the optimum paths

to all vertices until the goal node is reached.

Figure 12. Dijkstra’s algorithm pseudocode[22].

17

2.4.3 RRT algorithm

Introduced by Steven Lavalle[22], it is composed by a tree structure which starts from

an initial vertex V = {Xinit} and E = ∅. Every iteration generates a random point xrand ⊂ Xfree

which is sampled. Then, the nearest vertex xnearest ⊂ V belonging to the tree to this

random coordinate xrand is identified. Now the Steer function generates anew point xnew

between xrand and xnearest. As long as there is no obstacle, both the vertex xnew and the

edge {(xnearest, xnew)} are incorporated to the tree. After successive iterations, the tree

incrementally grows in the free space until the target coordinate is found, once that

happens, the loop stops.

(a) (b)

(c) (d)

Figure 13. Progress of the tree propagation during RRT execution.

In (a) the tree begins to shape and the branches reaching obstacles stop. (b) and (c)

show the spreading of the tree branches around the free space. Finally in (d) one of the

branches reach the target point.

18

Figure 14. RRT pseudocode. [22]

2.5 Map Representation

The core concept of this work is the map, which is the representation of the

environment of a mobile robot. It is a list of obstacles present in the environment with

features[23] attached:

𝑚 = {𝑚1, … , 𝑚𝑂} (5)

in which O is the total amount of obstacles.

Map data can be sorted in three classes: topological maps, volumetric maps and

featured-based maps.

2.5.1 Topological maps

It is a simplified version that just contains essential information and unrelevant

information is discarded. That is, only certain regions in the environment with the

relationships between those areas are stored in the map. The graph of this sort of maps

have nodes which represents the regions and edges that link nodes. Topological

maps[24] can be extracted from occupancy grid (see concept in next section) maps.

(a) (b)

Figure 15. Extraction of topological maps.

In (a) it is visible the occupancy grid map and in (b) the topological extraction.

19

2.5.2 Volumetric maps

In this kind of maps, every item in the equation (5) belongs to a certain position in the

environment so that is why it is also known as location-based map. So the result is an

occupancy grid which objects, free space and unknown space is represented.

Figure 16. An example of an occupancy grid map made in an office.

This representation is a 2-D grid composed by cells. Those cells are the equivalent of

pixels and their meaning are: whiter pixels are free, blacker pixels are occupied, and

pixels in between are unknown. The occupancy grid mathematical model is:

𝑝(𝑚) = ∏ 𝑝(𝑚𝑖)𝑖 (6)

in which mi are the cells in the grid that corresponds to a certain position in the mapped

region. If the probability value 𝑝(𝑚𝑖) is null, then it means that the cell is free. Otherwise,

if the value is 𝑝(𝑚𝑖) = 1, then the cell is certainly occupied, while a 𝑝(𝑚𝑖) = 0.5 means

that there is a state of maximum uncertainty, so the status of such cell is unknown. The

resolution of a map depends directly on the cell size.

Figure 17. A detailed view of an occupancy grid map showing the cells.

20

2.5.3 Featured-based maps

This is a more elementary version than the previous type of maps. It is just intended

to store certain features of the environment and not all locations. Every detected obstacle

mi in equation (5) is a feature which contains properties and localization. A property could

be a visual landmark, but for this case it would be necessary to deploy vision sensors. It

is recommended when memory size is a limitation.

2.6 SLAM: Rao-Blackwellized Particle Filters (RBPF)

In autonomous navigation, Simultaneous Localization and Mapping (SLAM) is

concept that defines the robotic problem of building a map of an unknown environment

while simultaneously keeping track of the robot's location on the map that is being built.

A standard ROS package implementing this module is known as gmapping[25]. The

contained SLAM algorithm makes use of Rao-Blackwellized Particle Filter (RBPF). The

inputs of this package are the odometry and laser scanner data. And the outputs are the

map generation as a occupancy grid and robot pose (position and orientation).

2.6.1 Rao-Blackwellization process

The point os SLAM is to estimate the robot pose within the simultaneously map

generation. The problem is modelled as seeking the following joint probability:

𝑝(𝑗1:𝑝, 𝑚 | 𝑘1:𝑝, 𝑙1:𝑝) (7)

in which 𝑗 is the robot pose, 𝑚 is the map, 𝑘 is the observation (e.g. laser scanner

readings) and 𝑙 is the control input (odometry data usually). This approach, known as

Rao-Blackwellization is divided into two different subproblems:

- Estimating the map posterior 𝑝(𝑚 | 𝑘1:𝑝, 𝑗1:𝑝) for every 𝑝 − 𝑡ℎ particle

- Estimating the robot pose posterior 𝑝(𝑗1:𝑝 | 𝑘1:𝑝, 𝑙1:𝑝) using a particle filter

The former subproblem is also known as mapping with known poses. Then the SLAM

problem can be simplified in:

𝑝(𝑗1:𝑝, 𝑚 | 𝑘1:𝑝, 𝑙1:𝑝) = 𝑝(𝑚 | 𝑘1:𝑝, 𝑗1:𝑝) · 𝑝(𝑗1:𝑝 | 𝑘1:𝑝, 𝑙1:𝑝) (8)

21

2.6.2 The process of building a map with known pose

Having known the sensor observations and the robot path, the problem model is:

𝑝(𝑚 | 𝑗1:𝑝, 𝑘1:𝑝) = ∏ 𝑝(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝)𝑖 (9)

where m is the occupancy grid map and mi is a cell in such grid. Making use of the

Bayesian filter, the probability 𝑝(𝑚𝑖) can be estimated[23] as:

𝑙(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝) = 𝑙(𝑚𝑖 | 𝑗𝑝, 𝑘𝑝) + 𝑙(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝−1) − 𝑙(𝑚𝑖) (10)

where

𝑙(𝑥) = 𝑙𝑛
𝑝(𝑥)

1−𝑝(𝑥)
 (11)

Summarizing, 𝑙(𝑚𝑖) is the prior which is computed from p(mi) in (11). Usually the cell

is initialized as unknown, that is, 𝑝(𝑚𝑖) = 0.5. The term 𝑙(𝑚𝑖 | 𝑗𝑝, 𝑘𝑝) refers to the inverse

sensor model which is updated from the sensor readings and 𝑙(𝑚𝑖 | 𝑗1:𝑝, 𝑘1:𝑝−1) is a

recursive term of the equation (10).

2.7 Frontier-Based Autonomous Exploration

So far, this strategy is the most widely used for autonomous exploration. So that, this

approach is compared to RRT-based exploration. In the proposed strategy, RRT is

meant to find exploration targets while the robot task allocator assigns the detected

exploration goals.

The frontier-based approach detects exploration targets by the extraction of frontier

edges which, in an occupancy grid, are the lines that separate the known from unknown

space. After such extraction, the center of every edge is targeted as exploration goals.

2.7.1 Frontier edge extraction

In the proposed strategy, frontier edge extractions are made by the use of computer

vision tools, particularly OpenCV. The process consists of:

1. The occupancy grid map topic is converted into a image with a grey-scale format.

This is necessary since OpenCV works with image files. The map topic message

(nav_msgs/OccupancyGrid[26]) has this structure:

22

This represents a 2-D grid map, in which each cell represents the probability of

occupancy.

Header header

#MetaData for the map

MapMetaData info

The map data, in row-major order, starting with (0,0).

Occupancy probabilities are in the range [0,100]. Unknown is -1.

int8[] data

Here data is a 1-D array in which the elements are the values of every cell in the grid.

So that, it is converted into a 2-D array which is the grey-scale image that will be fed to

OpenCV. The conversion is made in the following way:

- Occupancy grid cell value of 0 (free space) → pixel value of 255 (white)

- Occupancy grid cell value of 100 (occupied) → pixel value of 0 (black)

- Occupancy grid cell value of -1 (unknown) → pixel value of 205 (grey)

(a) (b)

Figure 18. Frontier edge extraction example. [20]

(a) The occupancy grid map. (b) Detected frontier edges and extracted.

2. Then in order to keep just the pixels occupied by obstacles a threshold is applied

on the image file (Figure Yb), after that, contours are marked (Figure Yc). Finally,

a negative filter is applied to the image so the result is just occupied grid cells in

the map marked in bold.

3. After previous step, a Canny edge detector is applied returning an image that

contains all edges, occupied grid cells (walls or obstacles) and the frontier edges

(Figure Ye).

4. Finally, occupied cells are subtracted from edges gathered in the prior step giving

as result only frontier edges. This is achieved by the bitwise operation AND

between the images gathered in the steps 2 and 3, giving as a result the filtered

frontier edges image (Figure Yf).

23

(a) (b) (c)

(d) (e) (f)

Figure 19. Frontier edge extraction procedure. [20]

Nevertheless, frontier-based algorithms have the limitation of relying too much on

the map representation. That is, the map requires to be in an occupancy grid format

which is meant for just 2-D spaces. For 3-D environments, this approach is not

suitable[27].

2.8 Mean Shift Clustering

Mean shift clustering is integrated in the implementation and it is meant in order to

increase computational efficiency by lowering the computational cost. The proposed

exploration approach detects frontier targets in the map. Such amount of targets can be

in certain cases considerably high which usually portions of them are located massively

nearby. So that, those point groups should be clustered in order to remove redundancy.

The approach selects this algorithm to solve this problem as the number of clusters

is not required as an input but the size of the cluster. These properties makes adequate

this selection as part of the integration.

24

2.8.1 General concepts

The mean shift algorithm takes as input the samples taken from a PDF (Probability

Density Function), 𝑓𝑘(𝑥1), where higher likelihoods correspond to dense areas (clusters)

given a set of points {𝑥1𝑖}𝑖=1
𝑁 ∈ ℝ𝑑𝑖𝑚. The center of mass of every cluster corresponds

to the local maxima of 𝑓𝑘(𝑥1). Iteratively, this algorithm shifts the points to their belonging

local maxima.

The kernel density estimator provides 𝑓𝑘(𝑥1), by using a specific kernel K(x1).

𝑓𝑘(𝑥1) =
1

𝑁ℎ𝑛
∑ 𝐾

𝑥1−𝑥1𝑖

ℎ
𝑁
𝑖=1 (12)

𝐾(𝑥1) =
1

(2𝜋)𝑛/2 𝑒−
1

2
 |𝑥1|2

 (13)

where dim is the dimension of the data and h is known as the bandwidth, which for a

Gaussian kernel h is the variance (width of the normal distribution). The PDF equation

(12) states that is composed by the addition of individual kernel functions.

Figure 20. PDF function composed by individual kernels.

In this example, 6 individual kernels (red dashed curves) are shown. The Gaussian

kernel density produces the blue curve. [20]

Tunning the bandwidth value will shape the PDF plot shape. So that, the smaller this

parameter gets, the sharper 𝑓𝑘(𝑥1) curve shows (Figure 22.a). On the contrary, the larger

it gets, the smoother it becomes (Figure 22.b). There is an actual optimal value for the

bandwidth that will fit the best the cluster models (Figure 22.c). [21]

25

 (a) (b)

 (c)

Figure 21. Influence of the bandwidth value on the PDF curve.

The number of local maxima of 𝑓𝑘(𝑥) is equal to the amount of obtained clusters after

applying the kernel density estimator.

 (a) (b)

26

Figure 22. Kernel density estimation.

(a) shows the surface plot of the kernel density estimation of the data and (b) shows

the contour plot of (a).

The mean shift algorithm shifts data towards the direction of the gradient ∆𝑓𝑘(𝑥). That

is adding the mean shift vector to the data.

(a) (b)

(c) (d)

Figure 23. Mean shift clustering using uniform kernels.

(a) Shows clusters before being processed. In (b) a kernel is applied so the shifting

of the detected clusters begins. (c) Clusters converge into their corresponding

local maxima. (d) shows the processed clusters remaining only a singular value

per cluster.

27

2.8.2 Mean shift with flat kernels

Flat kernels are defined as:

𝐾(𝑥) =
1

2
{

1, 𝑖𝑓 ||𝑥1|| ≤ ℎ

0, 𝑖𝑓 ||𝑥1|| > ℎ
 (14)

Every point that belongs to a certain cluster data 𝑥1 ∈ {𝑥1𝑖}𝑖=1
𝑁 is shifted towards the

mean 𝑚(𝑥) of such cluster data points[28]. After each iteration until convergence, such

points are shifted step by step. Such cluster center is defined as:

𝑚(𝑥1) =
∑ 𝐾(𝑥1𝑖−𝑥1)𝑥1𝑁

𝑖=1

∑ 𝐾(𝑥1𝑖−𝑥1)𝑁
𝑖=1

 (15)

in which 𝑚(𝑥1) − 𝑥1 is the mean shift.

There is already a ready-to-use Scikit-learn library[29] implementing this algorithm,

so it is used in the proposed exploration approach.

Figure 24. Kernel density estimation curve by use of flat kernel.

28

2.9 Neural networks and Deep Learning

Neural networks it is a computer science field which has been researched for

decades. In the beginning, due to the inferior computational processing power, lack of

databases and know-how, the order of categories was a few dozens and the input

dimensions, the order of hundreds.

Nowadays, that is different, the input sizes feeding the neural networks can reach the

order of 100k from different thousand of categories. Additionally, some decades ago the

NN were fully connected (i.e. dense layers) networks with one up to three layers. Today,

it is possible to make work a NN with a thousand of hidden layers.

2.9.1 Neural networks

A neural network is composed by neurons or perceptrons, which is a unit defined by the

dot product between the inputs 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) and the weights 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚).

Then a non-linear (commonly logsig or tanh) function is applied to it. So that, a NN is a

stack of logistic regression (or other nonlinearity) models.

Figure 25. Perceptron morphology and two common activation functions. [30]

In addition, usually it is incorporated a bias as component of the weight vector by

always including a feature with value set to 1. So that, for the case of the use of

Logistic Regression function:

𝑦𝑘 = 𝜎(𝑧) = 𝜎(𝑤 · 𝑥2 + 𝑏) (16)

𝜎(𝑧) =
1

1+𝑒−𝑧 (17)

being 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚), with all components set to the same value. These variables

are known as parameters of the NN.

29

2.9.1.1 Training a neural network

The training procedure is about adjusting the weights according to the partial

derivatives:

𝑤𝑎𝑏 ← 𝑤𝑎𝑏 − ε
𝜕𝐸

𝜕𝑤𝑎𝑏
 (18)

Which means that the b-th weight of the a-th neuron steps (ε > 0, which is one of the

hyperparameters of the NN) towards the negative gradient[31]. Note: 𝐸 is the error

function[32].

Figure 26. Error function and updating of the weights during gradient

propagation.

So in each iteration of the training the forward and backpropagation of the gradients

is computed. The first procedure feeds one or more samples to the NN and gradients

are computed layer by layer using the chain rule. The second one proceeds to compute

the resulting error and propagates back the gradients re-adjusting the weights one at a

time. Once all samples are fed to the NN, an epoch occured (usually there are thousands

of them)[30].

Figure 27. Back and forward propagations in a neural network

30

The database which feeds the neural network needs to be split randomly in:

- Training set: inputs for the forward propagation (usually 80% of the whole

dataset).

- Validation set: hyperparameters tunned on this partition of the dataset to make

optimal the training. (It is optional and when it is present, the proportion is

around 10%)

- Test set: this part of the dataset evaluates the generalization capacity after the

learning (20% if there is no validation set, 10% in afirmative case).

It is fundamental that the partitions of training and test sets have completely different

data, otherwise, the test will not evaluate the actual learning but just the memory (i.e. it

will not evaluate the generalization capabilities). Usually a NN requires of a quite large

training dataset.

Figure 28. Usual proportions of the partitions in the dataset for a neural
network.

2.9.1.2 Initial problems with deep neural networks and solutions

It was a huge problem with the NN deeper than a couple of hidden layers since:

- The deeper the NN becomes, the larger the local minima areas get. So the training

stucks at one of these fake minima areas.

Figure 29. Local and global minima areas.

- The propagated gradient vanishes at the bottom layers, so that the nonlinearity

tends to shrink its magnitude at each layer. At some point, the value is that small

that the NN stops learning from the training.

These problems were solved and enabled a new era in the pattern recognition field,

the deep learning field was born. So in few words, deep learning is the field that deals

with deep neural networks. This was possible by unsupervised pre-training which

consists on:

31

- Train layered models that learned to represent data without any classification and

class labels

- Then, initialize the NN with the resulting weights coming from such unsupervised

model.

for these, some of the tools used are the deep belief network (DBN), restricted

Boltzmann machine (RBM), autoencoders, and so on.

However, new researchs found some ways to avoid that unsupervised pre-training

procedure:

- Novel weight initialization techniques (e.g. Xavier initialization) adjusts the initial

weight magnitudes layerwise[33].

- Dropout regularization to prevent overfitting by increasing randomness to the NN.

This procedure consists on randomly shutting down a portion of the perceptrons

during the training[34].

- Enhanced non-linearities (or activation functions) that preserves the gradient over

layers (e.g. ReLU(z) = max(0,z))[35].

Figure 30. Rectified Linear Unit activation function.

2.9.2 Convolutional Neural Networks

This neural network architecture makes possible to preserve the topology of the

input[36]. It is mainly intended for image processing but it is also possible to use CNNs

for Natural Language Processing (NLP), recommendation systems and so on.

The structure usually is composed by:

1) Input image

2) Convolution filters the input with a number of convolutional kernels.

Figure 31. Feature maps resulted from the convolution from a sample image.

32

3) Non-linearity ReLu passes feature maps through a pixelwise Rectified Linear

Unit.

4) Spatial pooling: subsampling shrinks the input dimensions by an integer factor.

o Although it was a good practice using the average of each 2x2 block,

nowadays it is taken the maximum value, i.e. maxpooling.

o It reduces the data size without losing information along the pipeline and

improves spatial invariance.

Figure 32. Appearance of the filter after maxpooling.

5) Normalization

Figure 33. Appearance of the feature maps after normalization.

6) Feature maps

The feed for the CNNs in image recognition are usually RGB-based images, that

means, that the file owns three channels: Red, Green and Blue. For this standard color

format, the values of each cell is comprised between 0 and 255. If the image is in gray

scale, it will have just a single channel.

Figure 34. RGB-based image structure.

33

Figure 35. Appearance of the learned filters in the CNN.

Figure 36. CNN structure. [37]

Once the feature maps are generated, the flatten module converts the tensor into a

vector which will feed the standard neural network (a fully connected layer or more) which

outputs the image classification. Basically, a deep convolutional neural network is a

sequence of filters and non-linear functions. Such output can be binary if there is a single

class label (e.g. a cat, not a cat) or can be multiple if there are several class labels (e.g.

car, truck, van, bicycle, ...). In the last case, instead of a bottom hidden layer with a single

perceptron, the softmax layer is used so that it outputs the probabilities of such classes

appearing on the image (e.g. car (0.01), truck(0.04), van (0.94), bycicle (0.02), ...).

The softmax function is:

𝑃(𝑐 | 𝑥) =
exp(𝑤𝑐·𝑥2)

∑ exp(𝑤𝑖·𝑥2)𝐶
𝑖=1

 (19)

CNNs by themselves are only capable of output the class/es of the detected object/s

and its/their probability but not the location/s.

2.9.2.1 Applications and state-of-the-art

In a matter of two decades the evolution of the field has been frenetic:

- The available database escalated from less than 50K images up to more than 1M

- The number of category labels in the open source databases increased from less

than 100 up to more than 1000

- From small image samples of size 10x10 up to 256x256

- The achieved depths of the networks went from less than 4 layers up to more than

100

34

And all of this has been possible due to an altruistic community which shared know-

how and labeled databases under the open source philosophy.

Some of the most famous CNN architectures which supposed a milestone in the deep

learning field are[38]:

- LeNet

- AlexNet

- VGGNet

- Inception

- ResNet

- ZFNet

The most significant one was AlexNet[39] in 2012, since significally outperformed all

the previous competitors in the ImageNet Large Scale Visual Recognition Competition

(ILSVRC), achieving to reduce the top-51 error from 26% to 15.3%. The main features

are it is deeper than LeNet with stacked convolutional layers and more filters per layer.

It consisted of 3 convolutions, max poolings, dropout, data augmentation, ReLu

activations after every convolution and fully connected (FC) layers, and SGD with

momentum. It contains 60M parameters and was trained by using the open database of

ImageNet.

Figure 37. AlexNet architecture. [38]

Besides it is possible to train a network from scratch, it is possible to apply a pre-

training or transfer learning which consists on using the same parameters of ready-

working models such as VGG16 or ResNet by downloading the weights from a database.

Then, it is either possible to use it directly for generic detections or it is possible to train

with custom dataset in order to refine detections. The results of the training procedure

by using one or the other method are different:

1 Unlike top-1 error, the error is computed by taking in account the 5 detected objects with highest
probability predicted by the network.

35

Figure 38. Results of training from scratch or by initializing the weigths with a

ready-to-use model.

2.9.3 ROC and Precision-Recall curves

The Receiver Operating Characteristics (ROC) curve is an illustrating empirical tool

to vizualise the detector performance. It describes the relationship between the

probability of false alarm (PFA which is the False Positive Rate (FPR) or Fall-out) and the

probability of detection (PD which is the True Positive Rate (TPR) or Recall) for all

possible values of the threshold γ. It is used when there are approximately the same

number of observations for each class.

Figure 39. Table of contingency or confusion matrix. [40]

36

Figure 40. A ROC curve from a certain detector. [41]

When there is a moderate to large class imbalance, then Precision-Recall curve

should be taken in consideration instead of the ROC curve. The reason is because ROC

curves present an optimistic illustration of the model on datasets with category

imbalance[42] which can lead to incorrect interpretations. The threshold (value of the

detector sensitivity) is directly proportional to the precision and inversely proportional to

the recall.

Figure 41. Precision-Recall curve of a dataset size of 10 images and 5

relevant outputs of a detector. [43]

The metric to measure the efficiency of the detector is the Area Under Curve (AUC)

so that it is directly proportional to such efficiency.

Figure 42. The larger the AUC is, the better detector performance. [30]

37

2.10 Deep learning object detection algorithms

Traditional object detection methods based on machine learning algorithms required

of a pre-process of the image data so the feature extraction was handcrafted and then

shallow trainable architectures such as SVMs would make the corresponding

classification. The apparition of deep learning tools enable the implementation of new

object detection approaches which are proven to be more powerful, capable of learning

semantics, high-level and deeper features[44].

2.10.1 Two stage detectors

These detectors are the precursors of the single stage detectors and the architecture

is based on:

1) Region proposal network (RPN)

2) Feature extraction rom regions for classification and regression of the proposed

region

The two stage based object detector has gone through two iterations in order to

achieve a good enough performance for real-time image sequence inference. The final

version is capable to be used for real-time object detection.

o R-CNN → Fast R-CNN → Faster R-CNN

The problems with R-CNN[45] are that it takes a huge amount of time to be trained

since it has to classify 2 K region proposals per image, so the real-time implementation

is just impossible since it takes almost 50 sec to inference each image. With regard of

Fast R-CNN[46], during testing time by including region proposals the algorithm is

affected negatively since it is still slow. Thus, region proposals still suppose

bottlenecks[47] in the performance and makes the inference time, 2 sec, to still be

impractical.

Since selective search is slow and time-consuming, the removal of such module in

the algorithm is achieved in Faster R-CNN[48] architecture. The image is fed to the CNN

backbone based on a VGG16 pre-trained on ImageNet which provides a convolutional

feature map which is used by an auxiliar network to predict the region proposals instead

of using selective search algorithm directly on the feature map. Then, the predicted

region proposals are reshaped by the RoI pooling layer that is afterwards used to classify

the image within such proposed regions and predict the offset values for the bounding

boxes. This architecture manages to inference in 0.2 sec per image, which makes it

suitable for real-time purposes.

38

Figure 43. Faster R-CNN architecture.

Figure 44. VGG-16 which composes the backbone of the Faster R-CNN. [38]

2.10.2 Single stage detectors

Unlike the two stage detectors, the single detectors do not have an explicit region

proposal network (RPN) stage but they are built into the architecture, i.e. into the

convolutional layers. In comparison, this kind of detectors are significantly faster in terms

of inference time.

- SSD (Single Shot MultiBox Detector)

- YOLO (You Only Look Once)

- TinyFaces

- CornerNet

- RetinaNet

- RefineNet

39

Unlike the two stage based detectors, the network does not look at the whole image

at once but instead the parts of the image with higher probabilities of containing the

objects. A single convolutional network predicts the bounding boxes and their category

probabilities.

A popular single stage object detector is SSD[49]:

Figure 45. SSD architecture.

It just uses a single deep neural network and discretizes the output space of bounding

boxes into a group of default bounding boxes over different aspect ratios and scales per

feature map. During the inferencing, this detector generates scores of the different

detected objects of each class per default bounding box and then such boxes are resized

accordingly to match every object with the correct aspect ratio.

Besides, it combines predictions from several feature maps with different resolutions

in order to manage objects of different sizes and scales in the same image. In conclusion,

it encapsulates all computation in a single network and removes completely the proposal

generation and subsequent feature resampling stage.

Figure 46. SSD generating scores and adjusting the correct aspect ratios of

the bounding boxes.

40

2.10.3 Benchmarks

The quality of detections is based on two factors: accuracy and speed inference.

There is a trade-off between them so that if the preferred accuracy is too high then the

speed inference will be slower and viceversa. Besides the type of detector, there are

other factors that affect the performance[50]:

• Training configuration (batch size included), learning rate, input image resize
and other hyperparameters

• The deep learning platform used for implementation

• Output strides for the extraction

• Matching approach and IoU threshold (how predictions are excluded in
calculating loss)

• Which feature map layers used for detection

• Localization loss function

• Non-max suppression IoU threshold

• Training dataset

• Data augmentation

• Boundary box encoding

• Number of proposals and predictions

• Hard example mining ratio (positive vs. Negative anchor ratio)

• Use of multi-scale images in training or testing (with cropping)

The two most used benchmarks are:

2.10.3.1 PASCAL VOC dataset

The dataset contains objects from 20 different categories: airplane, bicycle, boat,

bottle, bus, car, cat, chair, cow, dining, table, dog, horse, motorbike, person, potted plant,

sheep, train, TV.

It is obtained from real world images downloaded from Flickr[51]. The point is to

contemplate complex scenes, different lighting conditions, occlusions, clutter, multiple

scales... so it makes the network learning robust. There is approximately similar

distribution between training and test sets and a minimum of 600 training objects per

category.

Competitions have been arranged in order to impulse progress in the field. This fact

had a huge impact in the development of the state-of-the-art algorithms for object

detection.

41

Figure 47. PASCAL VOC Leaderboard of December 2015. The winner was

the Faster R-CNN architecture with a precision of 83.8%.

Figure 48. Progress in the object detection field.

2.10.3.2 MS COCO

Microsoft COCO (Common Objects in Context)[52] is a large-scale object detection,

segmentation, and captioning dataset. This dataset is larger than PASCAL VOC, it

contains 80 object categories and more than 200K labeled images. In addition, COCO

dataset also provides additional labeled dataset intended for object segmentation[53].

With the COCO dataset, it has been evaluated the performance of the different

modern convolutional detectors. As mentioned beforehand, it is observed a speed /

accuracy trade-off[54] for this algorithms.

42

Figure 49. Inverse relationship between precision vs. Inference time.

2.10.4 Bounding boxes

Unlike image classification models which only provides as output the category label

of the detected object in the image, object detection models provides in addition the

detection localizations. This can be done by encapsulating the detections in bounding

boxes defined as:

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥𝑖 = {𝐶𝑖, 𝑃𝑖 , 𝑥𝑚𝑖𝑛𝑖, 𝑦𝑚𝑖𝑛𝑖, 𝑥𝑚𝑎𝑥𝑖, 𝑦𝑚𝑎𝑥𝑖} (20)

In which 𝑥𝑚𝑖𝑛𝑖, 𝑦𝑚𝑖𝑛𝑖 define the coordinates of the upper left corner and 𝑥𝑚𝑎𝑥𝑖, 𝑦𝑚𝑎𝑥𝑖

define the coordinates of the bottom right corner.

Figure 50. Example of bounding boxes.

Or alternatively as

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝐵𝑜𝑥𝑖 = {𝐶𝑖, 𝑃𝑖 , 𝑏𝑥𝑖, 𝑏𝑦𝑖, 𝑏𝑤𝑖, 𝑏ℎ𝑖} (21)

43

Figure 51. Bounding box in cental coordinate, width and height format.

In which 𝑏𝑥𝑖, 𝑏𝑦𝑖 are the coordinates of the geometric center of the bounding box and

𝑏𝑤𝑖, 𝑏ℎ𝑖 are the width and height respectively.

Commonly to both representation styles, 𝐶𝑖, 𝑃𝑖 are respectively the class label of the

i-th detection and P its probability.

2.11 ROS ecosystem

ROS (Robot Operating System) is the most popular open-source platform for robots

software development. It provides tools and libraries that allows splitting code into

modular and reusable packages. The purpose of this framework is to provide high

reusability of code so that developers can create hardware-independent content. The

libraries and tools aforementioned include:

- Device Drivers: Provides an already built-in compatibility feature among many

different robot platforms and sensors, so the user does not need to waste time

coding software to enable the utilities. In addition, provides an standardization of

the format messages transmitted by the sensors.

- Hardware abstraction: One of the cornerstones of ROS, it allows independence

between software and hardware. This is achieved as long as each actuator or

sensor is operating with ROS drivers. Those are the elements that exchange data

at a low level with the hardware, coded in ROS standard messages and

communicated with the software.

- Libraries and Community Support: As an open-source platform, it counts with

many people worldwide which contribute with their content, commits fixes and

enhancements of packages, help other users with their issues. Some of the

contributions are such powerful that they got standardized as official ROS

packages, such as SLAM (Simultaneous Localization and Mapping) features.

Since it is not limited by any organization, it ensures a long term operativity.

44

- The distribution of computation and message passing: It allows message passing

between processes which can be on different robot platforms at the same time to

the same local network.

- ROS file system: The content is arranged in modules called packages which

contain pieces of code known as nodes. They can also contain configuration

parameters, message formats, and more complex data structures such as

services and action servers. Every package, after being compiled (catkin_make),

a file known as package manifest which has general information about the

package is created. Packages can also form conglomerates, also known as stacks

or metapackages (i.g. navigation stack which contains multiple packages

global_planner, map_server, move_base, ... that are interdependent).

Figure 52. ROS File system

ROS ecosystem consists in 3 different levels

2.11.1 ROS basics

ROS ecosystem consists in 3 different levels[55]: the file system level, the

computational graph level and the community level. The computational graph level is the

one that processes and shares data via peer-to-peer network. The main concepts at this

level are:

- Nodes: they are processes that performs computation, that is an executable script

(.py, .cpp, ...). It is usual that a package runs several nodes simultaneously.

- Subscriber: a node which receives data.

- Publisher: a node which sends data.

45

- Topics: content of the messages that are either published or subscribed. This

feature provides independency from the need of having third party nodes running.

- Messages: represent the data structure, format and type of the topics (integer,

boolean, floating point, ...). They are stored in text files which are used during the

compilation of a package so that ROS translates their content into the source code

on the programming language implemented. For instance, a ROS message used

in this work is sensor_msgs/LaserScan.msg which is used to input the data

gathered by the laser scanner to the system. The LaserScan message is actually

a text file with the ”.msg” extension which is located within sensor_msgs native

ROS folder. Here there is the structure of this particular message:

Single scan from a planar laser range-finder

If you have another ranging device with different behavior (e.g. a sonar

array), please find or create a different message, since applications

will make fairly laser-specific assumptions about this data

Header header # timestamp in the header is the acquisition time of

 # the first ray in the scan.

 # in frame frame_id, angles are measured around

 # the positive Z axis (counterclockwise, if Z is up)

 # with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]

float32 angle_max # end angle of the scan [rad]

float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your scanner

 # is moving, this will be used in interpolating position

 # of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m] (Note: values < range_min or > range_max

should be discarded)

float32[] intensities # intensity data [device-specific units]. If your

 # device does not provide intensities, please leave

 # the array empty.

Notice that float32 is a ROS native type that in C++ is compiled as double type.

46

- Parameter Server: it is where parameters such as configuration parameters are

stored by the master. All nodes can become clients of this server so they can

retrieve any needed parameter at anytime.

- Master: it is the nexus and coordinator module as responds for tracking of topics,

node registration, services and action servers.

Finally, the community level is about all related to repositories, ROS distributions and

forums and so on.

47

2.11.2 ROS coordinate systems

By convention[56] x-axis points forward, y-axis points to the left and z-axis points

upwards of the mobile robot. As long as there are more than one frame, then it is required

transformations among them, that is, the relationship among coordinate systems in terms

of position and orientation. In ROS there is a package which does the relevant

computations, this is tf package[57]. It allows to do the mentioned computations and

store them in a tree format over the time, that means that their pose history is stored.

Usually the transformations are published by a node in charge of that. Regarding mobile

robots, the standard[58] frames are:

- base_link: rigidly attached to the mobile robot base. It is possible that can be

attached to any arbitrary pose of such base. This frame is the head in the tf tree

which contains all sensors and mobile parts of the robot.

- odom: is a global fixed frame which represents the pose obtained by the odometry

data (visual or mechanic) or IMU (inertial measurement unit). The main feature is

that is continuous which means that the pose of the mobile robot always evolves

in a smooth way without discrete jumps. It is an accurate short-term reference but

it drifts over time so it makes it not suitable for long-term reference.

- map: this is the global fixed frame. It is not continuous which means that discrete

jumps over time can happen but drifts over time is limited which makes it suitable

for long-term use. This frame is estimated using localization algorithms by using

laser scanners or other sensors that allows the mobile robot understand where is

it. Notice that is not recommended for local actuation and sensing due to the

discrete nature.

- base_footprint: is the projection of base_link to the ground where roll and pitch

orientations are null but yaw is the same as base_link value.

- laser_link: is the frame corresponding to the pose of the laser scanner and it has

no relative motion with the mobile platform.

48

Figure 53. Usual frames in mobile robots. [59]

2.11.3 ROS launchers

In the UNIX command line the launch files can be executed by the roslaunch

command. This type of files have the purpose of remapping2 variables, setting

parameters and running nodes. They allow to execute multiple nodes simultaneously

which can be the same (with other parameters) or different. This feature is needed for

complex projects containing multiple instances. A launch file can also call another launch

files.

2.11.4 ROS visualizer

Also known as RVIZ, it is a tool that allows you to visualize Images, PointClouds,

Lasers, Kinematic Transformations, RobotModels... It is fundamental in order to get

interpretable information about what the robot is perceiving, i.e., the message topics in

a graphic representation.

2 Change of a ROS variable name which allows high interchangeability of topics and allows run-
ning simultaneous instances of the same node with different configurations.

49

Figure 54. Point cloud data visible in 3-D space in Rviz.

2.12 Conclusions

In conclusion, after assessing the usability of the concepts for the work in both of the

Methodology and Literature and technology review sections, the work is based on

certain theoretical foundations (marked on green color) and other concepts are not

required for the implementation but for analysis explanation for the solutions. This can

be summarized in the following table:

Robot perception LiDAR Stereo Vision Point clouds
RGB

images

Exploration

approach
Randomized Frontier-based

Exploration

strategies
FFD WFD RRT SRT

Map

representation
Topological Volumetric

Featured-

based

Mean Shift

Clustering
Gaussian kernel Flat kernel

Neural network

training approach
From scratch Pre-trained

Object detection

foundations

Machine Learning

based

Deep learning

based

Object detector

types
Two stage Single stage

Benchmarks Pascal VOC MS COCO

Figure 55. Table showing what concepts are implemented in the work.

50

3. PROPOSED SOLUTION

3.1 Sensors

In the field of mobile robots, there is a wide range of sensors that can be utilized in

order to be source for the input data of the navigation module. So the automated

navigation can be based on some of the following examples:

- Wires

- Guide tape

- Laser scanners

- Thermal cameras

- GPS

- Sonar

- Vision guidance

For this work, the navigation is performed by the input of the laser scanner data which

is quite a robust source[60], that much that is implemented in autonomous vehicles. It is

invariant to the illumination factor or outdoor conditions unlike vision guidance or thermal

cameras. In addition, a industrial mobile robot usually performs indoors, so the use of

GPS is not feasible. Neither it is the use of sonar, since it requires clean ambient sound

and industry environments are usually noisy. On the other hand, wires and guide tapes

need to be embedded in the environment previously to the robot navigation and they

work in sort of the same way as trains in rails. For instance, robots based on guide tapes

follow the lines with a steering control and a guidance system.

Besides, the MiR100 has by default embedded basic sensors for navigation such as

an odometer and an Inertial Measurement Unit (IMU). The first device measures the

variation of the pose along the time (orientation and position). The second one, measures

among other parameters, linear and angular accelerations. In addition, it counts with

ultrasonic sensors as redundant security measures. For instance, laser scanners might

have problems to detect translucid or transparent objects while the ultrasonic sensors do

not have such drawback.

For the object detector module, since convolutional neural networks take as input a

2D image, the already embedded depth camera can provide a channel with RGB

streamed live video. For this, the object detector takes a constant sequence of image

that has to process in real-time.

51

3.2 Navigation for autonomous exploration module

This module of the work is based on the single robot case of "Multi-Robot Map

Exploration Based on Multiple Rapidly-Exploring Randomized Trees” work[20], [61].

The algorithm is divided in two modules: the RRT-based frontier detector module and

the filter module. The former is in charge of the frontier targets detection and returning

those to the filter module. The later uses the mean shift clustering algorithm in order to

cluster the frontier points, filter the incompatible and outdated ones, and store the valid

frontier targets[62]. In addition, it is required also the path planning and SLAM modules

which are implicit in this exploration strategy[21], [63], [64].

Figure 56. General diagram of the exploration system.

Such configuration structure provides the capability of having several instances of

frontier detectors running in parallel for quicker performance. In addition, it provides the

possibility of executing different types of frontier detectors simultaneously, feature

which is required when comparing different sorts of frontier detectors.

3.2.1 Good to know

Before continue, you should know what these terms mean:

PublishPoint: This is the function in charge of sending detected frontier points to the

filter module.

Invalid frontier point: The mobile robot cannot reach it in the real world which means

that there is no valid path possible between such point and the mobile robot position.

Old frontier point: Detected in earlier iterations and no longer belonging to the

unknown area of the map.

GridCheck: A function whose input are the map and two points. It returns 1 if the

points are in the known space. It returns 0 if there is any obstacle between the points.

And finally, returns -1 if there is unknown area between such points.

52

3.2.2 Motivation of RRT

Since RRT is highly biased[3] to unknown areas of the map, the generated trees tend

to grow towards such directions which is an desired feature for the proposal. So that it

makes this approach more interesting than just the use of frontier-based

implementations. This means that it is more efficient in terms of time, thus in terms of

energy and derived costs.

To explain the biased property of the RRT-based algorithm, the voronoi diagram is a

proper math tool to clarify this fact. Such diagram consists of the division of the space

into discrete areas created by circles growing from every vertex filling all the possible

available space until neighbor circles boundaries collide, then a linear frontier is created

separating non-intersected regions. An area is a set of points that are the most close to

the corresponding vertex. So that, such diagram is useful in practice to know in a visual

way which vertex is closer to any certain point in the map. The Voronoi area associated

with a certain vertex is larger the closer the vertex is to the frontier with the unknown

space. The tree tends to spread more in the bigger regions as vertices selection is made

bylooking for the closest neighbor.

Figure 57. Voronoi diagram resulted from RRT exploration.

Another useful feature of RRT approach is that can be extrapolated to the 3-D

exploration[65], [66] unlike frontier-based techniques. In addition, it is probabilistically

robust[67], so that, it is assured that the environment sooner or later will be completely

mapped.

53

3.2.3 Frontier detector

This module is actually a combination of two parallel sub-modules: the local frontier

detector and the global frontier detector. Any point reached by the growing generated

tree is a frontier point as long as it belongs to the unknown area of the environment. The

execution of extra instances of the frontier detectors enhances the frontier point detection

but with a higher computational consumption as trade-off.

3.2.3.1 Local frontier detector

The tree generated in this sub-module begins from an initial vertex V = {xinit} and E =

∅. Every each iteration a random point is stored xrand ⊂ Xfree. Such initial vertex is the

nearest to xrand xnearest ⊂ V.

Figure 58. Local frontier detector pseudocode. [20]

3.2.3.2 Global frontier detector

This detector sub-module is the same as the previous one with the difference that the

tree does not get reset and keeps on growing indefinitely during the exploration. This

makes it similar to the RRT algorithm. It is intended for the detection of frontier points

through the entire map considering areas far away from the mobile robot.

54

Figure 59. Global frontier detector pseudocode. [20]

3.2.3.3 Their combination purpose

The local tree resets when a frontier point is detected and starts growing again from

the robot current position. Thus, in order to avoid the mobile robot from not exploring

small corners in the environment and to assure that the far away frontier targets are also

explored, the global frontier detector is required. The combination synergy provides a

faster detection of target points since the tree begins to grow from the prior detected

frontier point so that the next point selected from the RRT in the unknown area has a

higher likelihood.

Nevertheless, the spreader the tree becomes in the global frontier detector, the slower

the growth gets. By observing the Voronoi diagram of RRT, this fact can be explained:

the more amount of vertices, the more decomposed in smaller regions the map becomes;

so that the steer function will generate smaller edges, thus, the target point detection

gets slower. This is the reason why local frontier detector complements the global frontier

detector so that the performance is quicker.

3.2.4 Filter module

The input of this module is the output of the frontier detector module which is the set

of the different possible frontier points. Every detection is stored in a frontier points array

which will be filtered by using the mean shift clustering algorithm[29], [62]. Then the array

is cleaned from the discarded points, the ones that do not belong to a center of a certain

cluster. This module is needed since the generated points of the frontier detector can be

many and this suppose redundancy and uncertainty which increases computational

consumption. In addition, it gets rid of non-valid and outdated frontier points for every

iteration. Afterwards, a votation system selects the most convenient and efficient target

out of all the possible candidates.

55

3.3 Object detection module

Briefly is worth to mention that another taken approach could have been the use of

object detectors based on machine learning methods. The problem comes with the poor

generalization capabilities since feature extraction requires to be handcrafted for every

class and the shallow classification method is not robust against constant object state

changes (i.e. noise, scale, illumination, position, angle, ...). For all of this, the enhanced

object detection technology based on deep learning is taken as the valid approach for

the work.

This module generates the bounding boxes encapsulating the detections which are

the inputs of the Map filtering module.

3.3.1 Transfer learning

Since CNN-based object detection algorithms requires huge amount of training

dataset, it is out of the scope of this work to train a customized model either from a pre-

trained model or from a model from scratch. Fortunately, there are open source[68] pre-

trained models with the parameters (weights) already tuned which makes them suitable

to be ready-to-use without any posterior training procedure. The procedure of obtaining

the parameters of an already trained network and applying to a vanilla model is known

as transfer learning.

Such open source available pre-trained models can be fed from several datasets[68]:

o COCO

o PASCAL VOC

o Kitti

o Open Images

o iNaturalist Species

Among all of the available bases, the pre-trained models based on the COCO dataset

is the most generic and with more detectable categories (80 different classes). So this is

the one chosen for the work.

56

3.3.2 Selective object discrimination

Since this work intends for selective object detection it is possible to do so by doing

some modifications which filter the label map or the corresponding configuration file for

the pre-trained model. For instance, in the context of Tensorflow Object Detection API

with a COCO based pre-trained model there is a file called mscoco_label_map.pbtxt

which contains the 80 different category labels from the COCO dataset[68]:

Figure 60. A small piece of code of mscoco_label_map.pbtxt. [68]

3.3.3 Object detection model

Since this module has to work in the context of SLAM, which is a real-time process, it

is fundamental the inference time. Since the most efficient state-of-the-art of the real-

time object detection nowadays is YOLOv3[69], this model has been selected for the

work.

57

Figure 61. YOLO architecture.

It works in the way that the input image is split into an S x S grid, within each of the

grid cells, n bounding boxes are retrieved. For each of the generated bounding boxes,

the network outputs a category probability and offset values for the bounding box. As

long as the candidate bounding boxes have a class probability above a certain threshold,

they are selected and used to localize the object in the image. The main limitation is that

small objects are hardly detected due to the spatial constraints.

Figure 62. Comparative plot of the current best real-time object detectors

available. [69]

Figure 63. Comparative table of the current best real-time object detectors

available. [69]

58

3.4 Map filtering module

Since ROS allows huge flexibility it is possible to do the proper modifications of the

laser scan or the live generated map during the process, so that, post-processing is

actually not needed. Actually, it is undesired since by doing such approach, it is less

straightforward and it would require to store the history of the positions of the mobile

robot and the detected objects along the time which it would increase the complexity of

the module.

3.4.1 Object discrimination procedure

For this module, two approaches were found feasible. For simplifying the problem,

let’s call them RGB+PointCloud input and RGB+LaserScan input approaches:

3.4.1.1 RGB+PointCloud input approach

This approach takes RGB and pointcloud streamings as inputs. The RGB feeds the

object detector and then there is an auxiliar process in charge of retrieving the depth of

the bounding boxes in the space via the pointcloud input. Such retrieval is possible to do

it in different ways, some of them can be by taking the depth of the point in the pointcloud

corresponding to the pixel which is at the same time corresponding to the center of the

bounding box. A more refined way is it take the average of the positions of the

neighboring points from the pointcloud so that the depth retrieval is more robust to noise.

Once the position in the 3D space is retrieved, it is saved in a frame whose parent

frame is the camera frame. Since the orientation is irrelevant, all the generated frames

have the same default orientation.

Figure 64. Workflow chart of the RGB+PointCloud input approach.

59

When defining the masks, that is, the polygon areas that will override the occupied

grid cell values with free values, there can be different approaches. One approach

(option A) is to gather all the neighboring and connected occupied grid cells, and also

the ones surrounded by them. Then, their grid cell values are set to free, so that, such

detected object will no longer be part of the map. Let’s see an example with a scanned

paper bin in an office:

Figure 65. Occupancy grid processed values by the RGB+PointCloud input
approach from the map filtering module.

The left image shows the occupancy of the example after being scanned. In the center

image, the neighboring and surrounded grid cells gathered in common values are

shown. The right image displays all the grid cells a priori composing the detection set to

free values.

The other approach (option B) takes also as input the width of the bounding boxes of

the detected objects and then apply a polygon under the assumption that the detected

object has a certain width / depth ratio. That ratio can be generalized to 1 since many

objects frequently share such similar ratio value. The model can be much more refined

since the bounding boxes are labeled with their corresponding category. A certain

category always will hold a similar width / depth ratio value among the different

corresponding samples.

Another core feature of this approach is to correct the position of the frame

corresponding to the detection. That is because it is by default located in the contour of

the object and it should be in its center of gravity which is obtained under the assumption

of a certain depth dimension value. So that when the polygon area is applied to the

detection, it is made sure that it is centered and matched with the object projection to the

map.

60

Figure 66. Backbone testing of this approach showing the detections and their

location in 3-D space using the generated pointcloud by the depth camera.

3.4.1.2 RGB+LaserScan input approach

This approach aims for the RGB feeding for the object detector and then apply a filter

to the laser scanner input data so it crops the range in wich the detected object/s are

found. This means, that such objects will be blind to the sensors during the entire

exploration procedure.

Figure 67. Workflow chart of the RGB+LaserScan input approach.

61

The algorithm used for range data discrimination in the LaserScan stream works as:

Figure 68. Laser Filtering module pseudocode.

3.4.2 Motivation of selecting the RGB+LaserScan input

approach

There is an actual trade-off of using one approach or the other. On one hand, the

RGB+PointCloud input approach tends to be more sensitive when discriminating

detected objects from the map because, even though there is a False Alarm (i.e. False

Positive) in the detection, such object will be removed from the map. On the other hand,

the RGB+LaserScan input approach has the opposite effect, it is less strict when it comes

discriminating objects since a non-detection of an actual object in the real world (a False

Negative) will include it on the map.

The point of removing the detections from the map is to increase the long-term global

path plannings of the mobile robots using such map. So there is a seek in maximizing

the amount of discriminated objects as long as it is done in a reasonable way. It is

considerably more undesirable to have a False Positive which is part of the structural

environment since such structural item will stay there permanently. For example, a

column which is falsely inferred by the object detector as a paper bin.

On the other hand, if there is a False Negative of a temporal object, i.e. it is not

detected and included on the map, it is a less critical issue, since the navigation is more

efficient if it is performed by just relying on the global path planning and not the local path

62

planning since re-routing would require more time if unpredicted obstacles are

encountered in the real world and are not documented on the map. Thus, precision is

ponderately more relevant than recall.

In addition, the RGB+LaserScan input approach is computationally more efficient.

This is especially important for SLAM since it is undesirable to overload the computer

system operating the robot as it requires higher hardware capabilities and more energy.

Besides, it is way less complex to implement since it does not need to deal with any type

of depth information such as depth images or pointclouds. This means, we keep the

scope of the work in the 2-D dimension so does the output, i.e. the filtered map, so we

do not have to care about the technical specifications of the depth resolution and ranges

of the depth camera.

Lastly, the drawbacks when applying masks with the RGB+PointCloud input approach

are serious:

• Option A: By gathering all the neighboring and connected occupied grid cells
and also the ones surrounded by them, there is not certainty when is enough
to stop gathering. For instance, let’s imagine a detected paper bin contiguous
to a wall, without any post processing, the wall will also be included and then
deleted from the map. So that, an additional process would be necessary in
order to control this problem.

• Option B: By assuming a certain width / depth ratio of a detection is quite a
subjective hypothesis. It makes the system biased and unreliable. On the
contrary, the RGB+LaserScan input approach is absolutely objective since
any assumption was made when determining the parameters of the system.

3.5 The system as a whole

So that the system runs in the way that the navigation for autonomous exploration

module runs in independently in parallel with the sequence: map filtering module which

depends on the object detection module. All of this can be visualized in a simple diagram:

Figure 69. Diagram of the whole system.

63

4. IMPLEMENTATION

4.1 Navigation for exploration module

The autonomous exploration approach is composed of the SLAM module, the path

planning, the frontier detector and the filter modules.

For the implementation, the first two aforementioned modules are standard ROS open

source packages available to use for path planning and planning. The other modules are

integrated by the rrt_exploration package which is composed by the frontier detector and

the filter nodes.

4.1.1 SLAM module

The inputs are the laser scan readings, the transformations between the robot base

frame and the laser scanner sensor frame, and the odometry. It provides the map

building implementation and the localization of the mobile robot in the environment

simultaneously, so the outputs are the occupancy grid and the robot pose. For this

purpose, gmapping package[25] which implements Rao-Blackwellized particle filtering is

used[63], [64].

4.1.2 Path planning module

It takes the outputs of the previous module and a target position so that this module

publishes velocity commands to the mobile robot. In order to carry on this task, the

move_base node[70] which is part of the navigation stack[71] is required. This node

generates the local and global costmaps which are needed for navigation. The costmaps

are similar to maps with the difference that the cell values of the occupancy grids range

from 0 to 100 (not binary like maps whose cells are either 100 or 0). Such values are the

costs derived of inflating obstacles so that the closer the cells are to a certain obstacle

the higher the cost value is. The local planner takes the local costmap as input which is

in charge of directing the mobile robot to obey the orders of the global path generated

by the global planner which takes as input the global costplan.

64

Figure 70. Visualization of the generated costmaps. [72]

Figure 71. Move base internal structure graph. [70]

4.1.3 Frontier detector module

The two nodes are written in C++ to make the detection procedure the quickest

possible. They are subscribed to the map topic and publish the identified frontier points

in the topic /detected_points (of PointStamped type).

The related nodes have a couple of parameters that set the performance. The map

topic name and the growth rate η of the generated tree. As different instances of

global/local detector modules can be run simultaneously, they should have different topic

names so that there is no information conflict (topic overlapping).

65

4.1.4 Filter module

This ROS node is written in Python programming language. It is subscribed to the

ROS topic /detected_points which is the message (PointStamped type) containing the

detected frontier points. Such topic contains point localization shown in coordinate

frames.

The global costmap is used for the invalid frontier points deletion. The procedure

consists of the fact that when a point is got by the node, its coordinate frame associated

is read. Then, with the global costmap information, such frame will be analyzed to check

the validity of such point. Thus, if the value of the grid cell of the global costmap in the

position of the frame is above a certain threshold (defined by the parameters) then it will

be considered as invalid and, as result, removed. Also this module computes the

information gain of such frontier points so that if it is null then it they are discarded as

outdated.

Once the frontier points are filtered, this node publishes clean data as /filtered_points

topic which is the type of PointArray (default ROS message).

The ROS parameters that can be customized in this node are:

- map_topic: sets the map topic processed by the filter node to remove outdated

frontier points (from this occupancy grid, the information gain of the frontier points

is computed). By default is /map.

- info_radius: it is the information gain radius. By default is 1 meter.

- costmap_clearing_threshold: it is the threshold considered for the invalid frontier

point filtering. If the cost value of a certain frontier point is higher than such

threshold, then it will be discarded. The higher costs correspond to the grid cells

closer to the obstacles. This is because the mobile robot cannot reach them in the

real world because it would collide. By default it is 70.

- goal_topic: received frontier points are published in this topic. By default is

/detected_points.

- rate: the node performs with this frequency. By default is 100 Hz.

66

4.2 Object detection Module

The implementation of this module is not trivial since it requires of specific software

drivers in order to operate correctly and a compatible powerful GPU.

4.2.1 Software drivers

Modern object detection implementations based in deep learning for real-time

applications require of a considerable computational power since they have to deal with

inferencing a constant stream of images. In addition, the best accuracy and a fast

invariant function taking in consideration constant object state changes (i.e. noise, scale,

illumination, position, angle, ...) cannot be computed by a CPU. In order to deal with such

intensive calculations and obtain a good performance, a Graphic Processing Unit (GPU)

based on parallel processing technique, Data Level Parallelism (DLP), and single

instruction multiple data (SIMD) operations with Compute Unified Device Architecture

(CUDA) are required[73]. This device is optimized for tensorial calculations unlike CPU.

CUDA is a platform based on parallel computing and a programming model created

by nVidia for general computing purposes on GPUs. With this tool it is possible to

significantly speed up computing applications[74].

In addition, it is also used NVIDIA CUDA Deep Neural Network library (cuDNN) [75]

which provides highly optimized implementations for standard routines such as forward

and backward convolution, pooling, normalization and activation layers. It allows to avoid

spending time on low-level GPU performance tuning.

4.2.2 Deep Learning framework

For the implementation, DarkNet[76] has been selected as the proper deep learning

framework for YOLO:Real-Time Object Detection[77] whose current YOLO version is

YOLOv3. It is nicely wrapped-up and the installation is much more simpler and

straightforward than TensorFlow Object Detection API[68].

It is open source and efficient since it is written in C and CUDA which is intended for

parallel computing.

4.3 Map filtering module

The filtering process should follow this sequence:

1) The laser scanner readings are appended in a cache until the object detector

outputs the bounding boxes related data since the output rate publishing differs.

In such instant, within such stored data, the laser scan timestamp reading is

matched with the nearest timestamp of the object detector output.

67

For this piece of the implementation, it is used a message filtering protocol

integrated in ROS under the name of message_filters/ApproximateTime[78].

2) The selected laser scan readings are converted into pointcloud data.

3) The pointcloud initial coordinate reference is translated to the robot’s camera

frame so that there is a perfect correlation. Thus, the misaligned problem is by-

passed. For this piece of the implementation, it is used the library:

image_geometry/ProjectTfFrameToImage[79].

Figure 72. Vertical axes offset between camera and laser scanner frame

leads to some issues.

Without the step 3), in the left figure we would face some non-intersected field of

views small areas. In the right figure, a non-clean solution would be to spin slightly the

laser scanner field of view towards the field of view of the camera just valid for short

distances.

4) All points outside the image frame are discarded.

5) All the points that lay inside any of the detected published bounding boxes are

classified and discarded from the structural LaserScan stream topic.

6) All the points that lay inside any of the published bounding boxes are classified

and included in a secondary non-structural LaserScan stream topic.

7) As a result, two LaserScan topics are published, one containing all the LaserScan

data that lay outside any of the published bounding boxes (/struct_scan topic) and

another one with the data inside any of such bounding boxes (/nonstruct_scan

topic).

Both LaserScan stream topics (struct_scan and nonstruct_scan) are fed in the

modified slam_gmapping module.

68

Figure 73. Resulting included (in green) and excluded (in red) pointcloud data
printed directly to the camera data from the laser scanner.

4.3.1 Additional required features

4.3.1.1 Laser scanner angular range cropping

Since the mobile robot has a frontal laser scanner with a field of view of 270º and also

a another one in the rear (see section 5.1.3), it is needed to use just the frontal one and

crop it so that there are not blind spots for the camera. That is, to match the field of views

of both the camera and the frontal laser scanner.

The reason for this is that, the camera cannot make detections to objects which are

out of the field of view. In the case, the laser scanner is recording such ”non-visible”

objects, they will be recorded on the map despite being discarded in the case they were

”visible” for the camera. Proceeding in this way, this taken measure allows to discard a

considerable amount of False Positives during the exploration.

69

4.3.1.2 darknet_ros package modification

Since the published topics rely on a constant subscription to the bounding boxes topic,

despite of not having detections, such topic should still be publishing. In order to achieve

such thing the source code has been just modified with a character in a single line. From

the YoloObjectDetector.cpp in line 588:

Instead of

if (num > 0 && num <= 100) {

replace with

if (num >= 0 && num <= 100) {

so that this issue is solved.

4.3.1.3 gmapping package modification

The published bounding boxes of certain detections are not constant due to a constant

change in illumination, scale, and perspective since the mobile robot is moving so that

the camera does.

Figure 74. Screenshots of a sequence which shows the limitations of the

object detector while publishing constant bounding boxes.

From left to right and from top to bottom, representative frames of the mobile robot

spinning clockwise motion.

70

Since the implementation relies entirely on the constant bounding boxes published

detections streaming, if there is a frame during the real-time sequence that there is a

misdetection (false positive), the laser scanner will record such object on the map

regardless the fact it was previously detected and discarded.

To overcome this problem, a voting system is included in the algorithm that records

information for a period of time and classifies the grid cells by using a statistical model.

The standard gmapping algorithm stores the number of visits and the number of

detections in each grid cell of the map

1) The visits count value is incremented each time a detection lays inside a grid cell

and each time a laser line runs through a cell.

2) The number of detections is incremented each time a detection lays inside a grid

cell.

At a periodic rate, a new map is published. The grid cells, as mentioned in previous

sections can hold three states:

- Empty cell: with values of 0.

- Occupied cell: with values of 100.

- Unknown cell: with values of -1.

The decision to classify each cell is defined by the following procedure:

- Non-visited cells, i.e. grid cells with visits count null, are classified as unknown

cells.

- The occupancy of each cell is calculated with the ratio of the number of detections

and the number of visits.

- If the occupancy is greater than a certain threshold, such grid cells are classified

as occupied cells, otherwise, as empty or free cells.

This algorithm is modified so that it can use two different counter for the detected laser

scans: One for the structural detections and another for the non-structural detections.

When a detection lays inside a cell, if such detection is from a structural point, the

structural counter is incremented, otherwise, the non-structural counter is incremented.

In order to calculate the occupancy of the modified cell, the sum of the structural and

non-structural counters is divided by the number of visits.

Thus, the modified map data includes a new cell value: 55 which is meant for the non-

structural cells belonging to the detected objects in the environment. The non-structural

occupancy is calculated as a simple ratio of non-struct / (struct + non-struct). A grid cell

is classified as non-structural if it has an occupied cell with a non-structural occupancy

greater than a certain threshold.

71

In addition, in order to reduce noise in the data, a neighboring filtering is included

which converts an occupied cell to a non-structural cell if some of its neighbors are non-

structural cells.

72

5. TESTS AND RESULTS

5.1 Hardware setup

For the experimental work, the components that have been used for the

implementation have been the MiR100 robot and a computer connected wirelessly.

Figure 75. Implementation components diagram.

5.1.1 External computer

An external computer with Ubuntu 16.04 LTS as 64-bit OS with ROS Kinetic installed

is connected wirelessly and directly to the MiR100 router. The implementation of all the

modules and sub-modules runs in this device. The model used for testing has an i5 CPU

@ 2.50 GHz and 12 GB RAM memory.

73

5.1.2 External Graphic Card

Due to the exigent required computational power demanded by the object detector

module, an external GPU is connected to the external computer via Thunderbolt 3

connection[80] which uses the same connector format as the USB-C type. This

connector provides a maximum transfer data speed of 40 Gbps which makes it suitable

for the implementation. However, this cannot be done directly but by using a GPU dock

which is the interface between the external computer and the GPU. The device used is

an Akitio Node Pro[81], in which a NVIDIA GTX 1080 Ti[82] is attached.

This GPU model is designed to perform for virtual reality which is a very demanding

computational task, so it is assured that it is a competent device for deep learning based

object detectors. The memory speed is 11 Gbps and it is designed to support CUDA and

cuDNN libraries.

5.1.3 Robot platform

The MiR100 (Mobile Industrial Robot) is the mobile robot used to experiment the

implementation. The main purpose of this model is to transport autonomously payloads

in indoor environments. It comes with ready-to-use autonomous navigation algorithms

and teleoperating features via virtual joystick for manual map elaboration through a pre-

build browser web interface based on REST services. The implementation of such

algorithms is based in ROS packages which are installed in a mini computer which runs

the ROS master with Ubuntu as OS (operative system). The MiR100 includes also a Wi-

Fi router so that any device can be directly connected to the mobile robot.

Figure 76. MiR100 as robot platform with embedded sensors.

74

5.1.3.1 Laser scanner

The MiR100 comes with two embedded laser scanners located in the front-left corner

and back-right corner, diagonally opposed so that they cover a full range surrounding

entirely the mobile robot. Each sensor individually scans an angle range of 270º but when

fusing the data of both sensors, the angle range is full 360º so that there are no blind

spots. Both models are SICK S300[83] located 200 mm above the ground with a

maximum laser scan range of 8 m.

5.1.3.2 Intel RealSense Depth Camera

The depth camera model D435[84] which is embedded in the MiR100 takes two

simultaneous images so that the distance of the pixels, with respect to the camera frame,

is possible to be retrieved. It detects objects from ground level up to 995 mm above the

ground with a maximum distance range of 1950 mm and 86º of angle range. The

minimum distance from which the camera sees the floor is 370 mm.

75

Figure 77. MiR100 laser scanners and front depth camera fields and ranges
of views.

(a) (b)

Figure 78. Coordinate frames of the sensors with respect to the mobile robot
in 3-D space.

Seen from above. (b) Isometric view.

5.2 Network setup

By executing the ROS master in a machine (with /roscore command), a ROS network

can be built. The MiR100 does this by default every time is turned on. Besides, it

executes automatically the required launchers in order to initialize all the features

provided by the MiR100 and its components (e.g. the initialization of the depth camera

with the corresponding calibration parameters).

Since it is a straightforward connection, in order to connect to the MiR100 it is

necessary to just run two commands:

export ROS_MASTER_URI=http://192.168.12.20:11311

export ROS_IP=192.168.12.253

However, there are some important details to have in account. First of all, the clocks

of the machines connected to a ROS network must be synchronized since many ROS

messages are time stamped, and considerable time offsets will definitely cause errors.

Secondly, since MiR100 is an industrial robot which is not designed to be modified

(not flexible for research / academic purposes), its unaccesible computer is protected

with unknown username and password, so it is not possible to figure out of the version

details of the embedded packages. While running the move_base node in the external

computer an error occurs due to incompatibility between some topic versions:

Client [/mir_auto_bagger] wants topic /move_base/goal to have

datatype/md5sum

76

In order to by-pass this issue, a ROS bridge[85] is required for all the terminals which

are related to the move_base goal. This is achieved by communicating indirectly to the

topics of the MiR100 via this interface which is launched with the following command

after having installed the referenced packages:

roslaunch mir_driver mir.launch

On the other hand, a ROS bridge cannot deal with large and high-frequency topics

such as the ones coming from the pointcloud or image streaming data. This is because

internally uses JSON to transfer messages in the network which blows up the message

size by a factor of 5 and adds a significant computational overhead compared to directly

subscribing to the ROS messages. The result is a huge lag in the network which makes

unsustainable any SLAM procedure.

The solution to this is to use ROS bridge, omitting such large and high-frequency

topics, in the terminals that move_base node and dependent are run. On the rest of the

terminals, the other approach is to subscribe directly to the ROS topics by the two

aforementioned commands.

5.3 Limitations

In practice, the implementation of every real engineering system always has some

weaknesses. Those are defined by the allocated resources, the environments and

conditions to operate.

5.3.1 Limited camera vertical field of view

The camera of the mobile robot is approximately as the same heigh as the laser

scanner sensor. It is a relevant position since the pre-built camera is intended for

navigation purposes. The problem comes when, during exploration, the mobile robot

approaches too much to a tall object so that the most representative part of such object

is out of the field of view of the camera. For some cases, the object detector is such

powerful that is capable of inferring and encapsulating the object even though just part

of it is viewed by the camera. But in other cases this is not possible to make a proper

detection.

77

Figure 79. Limited camera vertical field of view.

In the left image, the object detector would inference the tables since the whole

picture of the object offers a clear semantic of the case. In the right image, just the

poles of the tables are observed, but there is not enough information to infere that the

poles corresponds to tables.

5.3.2 Map filtering module limitation

As any approach, this one has its own drawbacks yet makes the system still work

objectively for the intended purpose of discriminating detected objects from the map.

On one hand, for the cases in which the mobile robot can maneuver around the

detected objects, the expected result is a blind spot in the map in which such object is

supposed to be located. In terms of occupancy grid cell values this spot will be defined

by UNKNOWN values, but not OCCUPIED since this is undesired value.

Figure 80. Filtered map with a non-adjacent detected obstacle.

On the other hand, for such cases in which the mobile robot cannot maneuver around

the detected objects such as the ones contiguous to another objects or walls, there will

be a blind area on the map caused by the occlusion product of the detection. This is due

to the fact that the laser scanner is blind towards such detections so that everything

behind such detection is occluded.

Figure 81. Case of detections with contiguous wall and other obstacles.

78

5.4 Testings

The scenarios for the testing cases are replicated with the same conditions so that

the variability of the external conditions does not affect the behaviour of the result. Thus,

the initial pose of the MiR is the same for all the experiments so does illumination

conditions.

Even though the drawback consisting on not mapping occlusions behind the

detections (explained in section 5.3.2), such collateral effect will not be considered as a

metric. This is due to the fact that this effect is not related to the efficiency of the system,

but mostly related to the layout of the environment and distribution of the objects.

Thus the metrics to evaluate the performance of the system are mainly:

a) Time spent to generate a good enough representative map during exploration.

b) Proportion of grid cell values set to FREE belonging to detections which should

be removed since they are the considered temporal objects → True Positives.

c) Proportion of grid cell values with UNKNOWN value which should be KNOWN

since they belong to the exploration area. It is a metric which measures the

quality of the generated map.

Figure 82. Ground truth map Mgt (on the left) with permanent (green) and
temporal objects (red) and filtered map Mf (on the right) with red fill figure

representing a False Positive and an empty red figure a True Positive.

Thus, for expressing quantitatively the second metric, the parameter TPRP (True

Positive Removal Performance) is defined as:

𝑇𝑃𝑅𝑃 = 1 −
#𝑐𝑒𝑙𝑙𝑠 ∈ (𝑀𝑓 ∩ 𝑇𝑃)

#𝑐𝑒𝑙𝑙𝑠 ∈ 𝑀𝑔𝑡
 ∈ 𝑇. 𝑂. (22)

in which the grid cells belongs to the T.O. (Temporal Object) subset. The ratio is

defined by the grid cells contained in the filtered map which corresponds to detections

79

and the ones contained in the original map (or ground truth map). This parameter defines

the desired effect in the map filtering since it considers the temporal objects that are

removed, which is the purpose of the filtering module.

The third metric is defined by the parameter LMQR (Local Map Quality Ratio):

𝐿𝑀𝑄𝑅 = 1 −
#𝑐𝑒𝑙𝑙𝑠 ∈ 𝑈𝑁𝐾𝑁𝑂𝑊𝑁

#𝑐𝑒𝑙𝑙𝑠
 ∈ 𝑀𝑓 , 𝐿𝑜𝑐𝑎𝑙 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎 (23)

in which the grid cells belongs filtered map and the local exploration area is defined

as a control area just for testing purposes in order to quantify and evaluate a common

region among all the experiments. The ratio is defined by the grid cells which

corresponds to UNKNOWN values and the total number of grid cells. This parameter

defines the proportion of UNKNOWN grid cells which should have FREE values but they

are not most likely due to imperfections of the mapping module and occlusions of the

detections which are not properly explored during the autonomous exploration.

The testings are performed in the FAST laboratory of TUT which is a quite dynamic

environment which constantly evolves over the time, i.e. there is a constant change in

the layout given by transitory objects, e.g. chairs, tables, people and other temporal stuff.

The calculated efective3 area for exploration is about 70 m2.

Figure 83. Testing area for the implementation of the system.

The local exploration area mentioned beforehand is 23.4 m2 and it is defined by 4

manually allocated corners.

3 The main and nearby explorable area which is not occluded by large structural objects such as
the robot cages which are part of the environment.

80

Figure 84. Corners strategically allocated to compose the local exploration

area.

5.4.1 Case: Degree of crowdedness in the map

For this case scenario, the experiments are recreated by using chairs of similar type

as obstacles in the environment since in the office there are plenty of them as resource.

The point of this case scenario is to analyze the impact in the quality of the filtered map

of the crowdedness of the objects present in the environment as study factor. The

distribution of such objects is random and the layout is refreshed at each iteration during

experimentation.

(a)

 (b) (c)

81

Figure 85. Experiment No. 5 in the case scenario of 7 chairs in the area.

In (a) the shot of the environment. The figure (b) shows the raw map and (c) the

filtered map.

It has been observed that the degree of crowdedness in a certain environment affects

the required time to obtain a decent map as expected. The apparent correlation is non-

linear, it reminds of the logarithmic function. And as expected, directly proportional.

Figure 86. Box and whiskers of the influence of number of obstacles in the

exploration duration.

On the other hand, there is no evidence that TPRP is correlated with the level of

crowdedness in the area.

And finally, there is evidence that LMQR is affected by the amount of obstacles in

the area and it is inversely proportional.

82

 (a) (b)

Figure 87. Box and whiskers of the influence of the obstacles amount in (a)
the TPRP and (b) the LMQR.

5.4.2 Case: Degree of objects size in the map

For this case scenario, the experiments are recreated by using two objects of the

same category, one of them adjacent to a wall or permanent object and the other one

non-adjacent to anything. The point of this case scenario is to analyze the impact in the

quality of the filtered map with the different sizes of the objects present in the environment

as study factor.

The sizes of the obstacles are quantified by the diameter of the circumcircle

encapsulating the coplanar section of any object with the laser scanner height.

Figure 88. Circumcircle of the coplanar section with the laser scanner range

of a certain object.

83

There are three considered size types for the testings:

- Small: Office chairs (circumcircle diameter of 7 cm approximately)

- Medium: Backpacks (circumcircle diameter of 35 cm approximately)

- Large: Bean bags (circumcircle diameter of 120 cm approximately)

(a)

 (b) (c)

Figure 89. Experiment No. 5 in the case scenario with large objects (bean
bags).

In (a) the shot of the environment. The figure (b) shows the raw map and (c) the

filtered map.

It has been observed that the degree of objects size in a certain environment affects

the required time to obtain a decent map as expected. The apparent correlation linear

and as expected, directly proportional.

84

Figure 90. Box and whiskers of the influence of obstacle sizes in the

exploration duration.

On the other hand, there is an evidence that TPRP is correlated with the level of

crowdedness in the area in an inversely proportional way.

And finally, there is evidence that LMQR is affected by the amount of obstacles in the

area in an inversely proportional way too.

Figure 91. Box and whiskers of the influence of obstacles sizes in (a) the
TPRP and (b) the LMQR.

85

5.4.3 Discussion of the results

It has been observed that the results for the quantity of false positives and false

negatives are influenced by the motion of the mobile robot. So the quickness of the

motion is a parameter to consider since it affects the system performance, however it

has not been evaluated since it is out of the scope of this work. This is due to the fact,

the camera has a certain shutter speed by default which would lead to blurry images if

the motion of the camera is too fast. Naturally, the object detection module has a

significantly harder task when dealing with blurry images in order to make proper

detections.

Figure 92. Motion blur visual concept function of the camera shutter speed.

Due to this fact, among others, the stream of bounding boxes might not be constant

and that is why the modification in the gmapping package (section 4.3.1.3) was

necessary in order to have a memory effect of the detections.

With regards of the TPRP, the value of this parameter might not be unity due to the

fact that the bounding boxes are not encapsulating totally the obstacles due to bizarre

shapes. Also another cause could be due to the fact that the camera of the mobile robot

does just see the part of the detected object during exploration so some portions are

blind to the filtering.

It has been observed that the required times to perform autonomous exploration

increases the more crowded the exploration area is of obstacles and the bigger the

objects are within it. This is something obvious since the mobile robot needs to perform

obstacle avoidance during the mapping and do some re-routings in order to cover the

blind spots caused by such obstacles. In addition to this, it has been detected a direct

correlation with the hardware of the mobile robot, the computer capabilities and

performance which is operating the implemented system, the wireless connection quality

and the gmapping parameters.

Regarding the TPRP parameter, the quality of filtering is impacted in a directly

proportional way by the size of the detections in the scene. This is evidently occurring

since the bigger the detections are, the more prone to error the system is when filtering.

Actually, the more surface area of such objects are scanned, the more likely it is to miss

some portion from it with the encapsulating bounding boxes. In addition, bizarre shapes

86

of objects which are non-homogeneously looking are more difficult to be recognized and

properly encapsulated by the object detection module.

And finally, the LMQR variable also is inversely proportional to the complexity of the

scene. Besides, larger objects will cause larger hollows (UNKNOWN grid cells) which

means lower LMQR.

(a)

 (b) (c)

Figure 93. A sample of the testings in which the object detector is enabled for
all object categories with several objects of different categories in the scene.

Notice the occlusions as grey cells. It is physically impossible to know what is

beyond a scanned surface, so that objects with section larger than a parameter given

by the resolution of the map are mapped as hollow.

87

6. CONCLUSIONS AND FUTURE WORK

6.1 Contributions

Despite of a remarkable progress in the field of SLAM and autonomous exploration

the last decades, yet it is needed an approach in order to make the process of mapping

more reliable so that is more coherent with the real world mapped scenario. That is not

to just assume that the raw map is good enough for representing the environment. But a

processed map which gets rid of objects which are inherently irrelevant to the map since

they are not actual obstacles since they were at the moment of mapping just by casuality

as they are considered temporal. The point of having more coherent maps for mobile

robot navigation is to increase path planning efficiency since mobile robots do not need

to avoid presumably non-existing obstacles, since temporal objects won’t be there

anymore in the near future. A potential of this implementation is that the filtered map

generated by autonomous mobile exploration on this approach performed by a single

robot can be used by a fleet of mobile robots which considers also the removal of such

temporal objects.

6.2 Lessons Learned

It was learned that it is possible to make use of deep learning object detection tools

for real-time applications in order to build a customizable filtered map which makes it

more coherent to the long-term environment layout.

The initial thoughts were that it was only possible to do the implementation in a post-

processing way, that is, to gather the coordinates of the detections on the map and then

apply a removal once the map was finished. On the other hand, it was considered to use

the depth information of the detections out of the pointcloud generated by the camera.

Despite all of these ideas, a computationally more efficient and more straight-forward

approach is just making the laser scanners blind towards the detections so we keep the

scope in the 2-D dimension avoiding way more complicated approaches.

6.3 Future Work and Research Directions

The implementation of this algorithm has demonstrated to work properly on static

detections. Due to time limitations and scope of this thesis, this implementation has not

been tested on detections with motion during the exploration (e.g. persons moving

around while doing the mapping). However, since the potential is considerable, it is

expected to also work in a dynamic environment with objects moving on the scene, so it

is a future work to verify this capability and, if required, to tune the algorithm of the

package in order to adapt to this needs. Currently, the bottleneck is the Wi-Fi

connectivity, since the camera video streaming speed rate is much slower than the laser

88

scanner data. This means that with the current setup, the system is verified to work for

static and objects with very slow motion.

Since the MiR allows the possibility of adding a top camera just above the floor

camera (the frontal one by default), it is wise to improve the performance of the system

by feeding the object detector with a combination of two simultaneous cameras so that

the vertical field of view is larger. This is a quite desirable feature especially for cluttered

and tight environments in which the robot does not have enough distance to incorporate

tall objects to the camera field of view.

It is possible also to add extra cameras to the corners and laterals, and then merging

the images into a single one in order to feed the object detector. It is not worth to run

parallel object detectors for every camera since the computational cost would be huge.

In this case, by stitching4 images, it would be possible to extend the laser scanner

angular range to the fullest. Even should be possible to fuse the data of both laser

scanners for the exploration in the case a 360º panoramic image would be generated by

multiple cameras surrounding the mobile robot.

Due to the fact that the Map Filtering Module cannot take in consideration what is

behind the objected detections while mapping, an approach dealing with this problem

would post-process the map to infer missing parts of the walls that were occluded by

such detections and re-fill the hollows caused by the filtering of the objects by changing

such UNKNOWN grid cell values to FREE.

And finally, it is also a future work to generate the datasets with custom data for

training the Object detector module in order to detect specific objects that are not part of

the MS COCO dataset in which is based the current Object detector module.

4 It is the procedure of combining multiple images with overlapping fields of view so that a
panoramic image is generated.

89

REFERENCES

[1] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in
Proceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97. “Towards New Computational Principles for
Robotics and Automation,” 1997, pp. 146–151.

[2] International Foundation for Autonomous Agents and Multiagent Systems, The 11th
International Conference on Autonomous Agents and Multiagent Systems:
Conference Proceedings - Volume III. Ann Arbor: IFAAMAS, 2012.

[3] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,”
1998.

[4] G. s. Virk, “Industrial mobile robots: the future,” Ind. Robot Int. J. Robot. Res. Appl.,
vol. 24, no. 2, pp. 102–105, Apr. 1997.

[5] “Handle | Boston Dynamics.” [Online]. Available:
https://www.bostondynamics.com/handle. [Accessed: 16-Apr-2019].

[6] “Building a Magnetic Track Guided AGV.” [Online]. Available:
https://www.roboteq.com/index.php/applications/100-how-to/278-building-a-
magnetic-track-guided-agv. [Accessed: 16-Apr-2019].

[7] A. Singhal, N. Kejriwal, P. Pallav, S. Choudhury, R. Sinha, and S. Kumar,
“Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics
Platform,” ArXiv170608931 Cs, Jun. 2017.

[8] “Amazon Warehouse Order Picking Robots - YouTube.” [Online]. Available:
https://www.youtube.com/watch?v=Ox05Bks2Q3s. [Accessed: 16-Apr-2019].

[9] “Lidar,” Wikipedia. 14-Apr-2019.
[10] “Incorrect visualization of LiDAR · Issue #32 · carla-simulator/ros-bridge,” GitHub.

[Online]. Available: https://github.com/carla-simulator/ros-bridge/issues/32.
[Accessed: 16-Apr-2019].

[11] E. Rahtu, “Fundamentals of Robot Vision slides from Two-View geometry and
stereo vision.” Lab of Signal Processing, TUNI, 2019.

[12] T. Volodine, “Point Clout Processing Using Linear Algebra And Graph Theory.”
KATHOLIEKE UNIVERSITEIT LEUVEN, 2007.

[13] “About - Point Cloud Library (PCL).” [Online]. Available:
http://pointclouds.org/about/. [Accessed: 10-Apr-2019].

[14] Intel(R) RealSense(TM) ROS Wrapper for D400 series and SR300 Camera: intel-
ros/realsense. Intel ROS, 2019.

[15] P. G. C. N. Senarathne, D. Wang, Z. Wang, and Q. Chen, “Efficient frontier
detection and management for robot exploration,” in 2013 IEEE International
Conference on Cyber Technology in Automation, Control and Intelligent Systems,
2013, pp. 114–119.

[16] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The SRT method: randomized
strategies for exploration,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, 2004, vol. 5, pp. 4688-4694 Vol.5.

[17] H. El-Hussieny, S. F. M. Assal, and M. Abdellatif, “Improved Backtracking Algorithm
for Efficient Sensor-Based Random Tree Exploration,” in 2013 Fifth International
Conference on Computational Intelligence, Communication Systems and
Networks, 2013, pp. 19–24.

[18] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration
using Rao-Blackwellized particle filters,” in In RSS, 2005, pp. 65–72.

[19] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-
Whyte, “Information based adaptive robotic exploration,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002, vol. 1, pp. 540–545 vol.1.

90

[20] H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration based on
multiple rapidly-exploring randomized trees,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 1396–1402.

[21] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numer Math,
vol. 1, no. 1, pp. 269–271, Dec. 1959.

[22] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University
Press, 2006.

[23] S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents).” The MIT Press, 2005.

[24] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,”
Artif. Intell., vol. 99, no. 1, pp. 21–71, Feb. 1998.

[25] “gmapping - ROS Wiki.” [Online]. Available: http://wiki.ros.org/gmapping.
[Accessed: 08-Apr-2019].

[26] “nav_msgs/OccupancyGrid Documentation.” [Online]. Available:
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/OccupancyGrid.html.
[Accessed: 08-Apr-2019].

[27] C. Zhu, R. Ding, M. Lin, and Y. Wu, “A 3D Frontier-Based Exploration Tool for
MAVs,” in 2015 IEEE 27th International Conference on Tools with Artificial
Intelligence (ICTAI), 2015, pp. 348–352.

[28] “Mean shift, mode seeking, and clustering,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 17, no. 8, pp. 790–799, Aug. 1995.

[29] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.
Res., vol. 12, no. Oct, pp. 2825–2830, 2011.

[30] H. Huttunen, “SGN-41007 Pattern Recognition and Machine Learning. Slideset 6:
Neural Networks and Deep Learning,” 2019. [Online]. Available:
http://www.cs.tut.fi/courses/SGN-41007/. [Accessed: 14-Apr-2019].

[31] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1998.

[32] “Backpropagation | Brilliant Math & Science Wiki.” [Online]. Available:
https://brilliant.org/wiki/backpropagation/. [Accessed: 14-Apr-2019].

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J Mach
Learn Res, vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[35] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, 2011, pp. 315–323.

[36] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional
neural network,” in 2017 International Conference on Engineering and Technology
(ICET), 2017, pp. 1–6.

[37] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5
way,” Towards Data Science, 15-Dec-2018. [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. [Accessed: 14-Apr-2019].

[38] S. Das, “CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more
….,” Medium, 16-Nov-2017. .

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, USA, 2012, pp.
1097–1105.

[40] “Receiver operating characteristic,” Wikipedia. 20-Mar-2019.

91

[41] H. Huttunen, “SGN-41007 Pattern Recognition and Machine Learning. Slideset 3:
Detection Theory,” 2019. [Online]. Available: http://www.cs.tut.fi/courses/SGN-
41007/. [Accessed: 14-Apr-2019].

[42] J. Davis and M. Goadrich, “The Relationship Between Precision-Recall and ROC
Curves,” in Proceedings of the 23rd International Conference on Machine Learning,
New York, NY, USA, 2006, pp. 233–240.

[43] E. Rahtu, “Fundamentals of Robot Vision slides from Image Retrieval.” Lab of
Signal Processing, TUNI, 2019.

[44] Z.-Q. Zhao, P. Zheng, S. Xu, and X. Wu, “Object Detection with Deep Learning: A
Review,” ArXiv180705511 Cs, Jul. 2018.

[45] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,
“Selective Search for Object Recognition,” Int. J. Comput. Vis., vol. 104, 2013.

[46] R. Girshick, “Fast R-CNN,” ArXiv150408083 Cs, Apr. 2015.
[47] R. Gandhi, “R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection

Algorithms,” Towards Data Science, 09-Jul-2018. [Online]. Available:
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-
detection-algorithms-36d53571365e. [Accessed: 15-Apr-2019].

[48] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” ArXiv150601497 Cs, Jun. 2015.

[49] W. Liu et al., “SSD: Single Shot MultiBox Detector,” ArXiv151202325 Cs, vol. 9905,
pp. 21–37, 2016.

[50] J. Hui, “Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN,
SSD, FPN, RetinaNet and…,” Medium, 27-Mar-2018. .

[51] “The PASCAL Visual Object Classes Homepage.” [Online]. Available:
http://host.robots.ox.ac.uk/pascal/VOC/. [Accessed: 15-Apr-2019].

[52] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” ArXiv14050312
Cs, May 2014.

[53] J. Cheng, Y.-H. Tsai, W.-C. Hung, S. Wang, and M.-H. Yang, “Fast and Accurate
Online Video Object Segmentation via Tracking Parts,” ArXiv180602323 Cs, Jun.
2018.

[54] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object
detectors,” ArXiv161110012 Cs, Nov. 2016.

[55] “ROS/Concepts - ROS Wiki.” [Online]. Available: http://wiki.ros.org/ROS/Concepts.
[Accessed: 08-Apr-2019].

[56] “REP 103 -- Standard Units of Measure and Coordinate Conventions (ROS.org).”
[Online]. Available: http://www.ros.org/reps/rep-0103.html. [Accessed: 08-Apr-
2019].

[57] “tf - ROS Wiki.” [Online]. Available: http://wiki.ros.org/tf. [Accessed: 08-Apr-2019].
[58] “REP 105 -- Coordinate Frames for Mobile Platforms (ROS.org).” [Online].

Available: http://www.ros.org/reps/rep-0105.html. [Accessed: 08-Apr-2019].
[59] “hector_slam/Tutorials/SettingUpForYourRobot - ROS Wiki.” [Online]. Available:

http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot. [Accessed: 08-
Apr-2019].

[60] V. Potó, J. Á. Somogyi, T. Lovas, and Á. Barsi, “Laser scanned point clouds to
support autonomous vehicles,” Transp. Res. Procedia, vol. 27, pp. 531–537, Jan.
2017.

[61] H. Umari, A ROS package that implements a multi-robot RRT-based map
exploration algorithm. It also has the image-based frontier detection that uses
image processing to extract frontier points.: hasauino/rrt.. 2019.

[62] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space
analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, May
2002.

[63] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving Grid-based SLAM with
Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective

92

Resampling,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, 2005, pp. 2432–2437.

[64] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping
With Rao-Blackwellized Particle Filters,” IEEE Trans. Robot., vol. 23, no. 1, pp. 34–
46, Feb. 2007.

[65] S. Mukhopadhyay and F. Zhang, “A path planning approach to compute the
smallest robust forward invariant sets,” in 2014 American Control Conference,
2014, pp. 1845–1850.

[66] P. Varnell, S. Mukhopadhyay, and F. Zhang, “Discretized boundary methods for
computing smallest forward invariant sets,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), 2016, pp. 6518–6524.

[67] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion
Planning,” ArXiv11051186 Cs, May 2011.

[68] Models and examples built with TensorFlow. Contribute to tensorflow/models
development by creating an account on GitHub. tensorflow, 2019.

[69] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
ArXiv180402767 Cs, Apr. 2018.

[70] “move_base - ROS Wiki.” [Online]. Available: http://wiki.ros.org/move_base.
[Accessed: 08-Apr-2019].

[71] “navigation - ROS Wiki.” [Online]. Available: http://wiki.ros.org/navigation.
[Accessed: 18-Apr-2019].

[72] “Global costmap cleared from time to time · Issue #783 · ros-planning/navigation,”
GitHub. [Online]. Available: https://github.com/ros-planning/navigation/issues/783.
[Accessed: 18-Apr-2019].

[73] S. A. Dawwd and U. T. Salim, “GPU acceleration of object detection on video
stream using CUDA,” in 2013 International Conference on Electrical
Communication, Computer, Power, and Control Engineering (ICECCPCE), 2013,
pp. 198–203.

[74] “CUDA Zone,” NVIDIA Developer, 18-Jul-2017. [Online]. Available:
https://developer.nvidia.com/cuda-zone. [Accessed: 16-Apr-2019].

[75] “NVIDIA cuDNN,” NVIDIA Developer, 02-Sep-2014. [Online]. Available:
https://developer.nvidia.com/cudnn. [Accessed: 16-Apr-2019].

[76] J. Redmon, “Darknet: Open Source Neural Networks in C,” 2016-2013. [Online].
Available: https://pjreddie.com/darknet/. [Accessed: 15-Apr-2019].

[77] “YOLO: Real-Time Object Detection.” [Online]. Available:
https://pjreddie.com/darknet/yolo/. [Accessed: 18-Apr-2019].

[78] “message_filters/ApproximateTime - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/message_filters/ApproximateTime. [Accessed: 29-Apr-2019].

[79] “image_geometry/Tutorials/ProjectTfFrameToImage - ROS Wiki.” [Online].
Available:
http://wiki.ros.org/image_geometry/Tutorials/ProjectTfFrameToImage#CA-
c6a3f2753eb8c6c346819f225dd63e566b352f98_12. [Accessed: 29-Apr-2019].

[80] D. Ngo, “Here’s everything you need to know about USB-C and Thunderbolt 3,”
CNET. [Online]. Available: https://www.cnet.com/how-to/usb-type-c-thunderbolt-3-
one-cable-to-connect-them-all/. [Accessed: 21-Apr-2019].

[81] “Node Pro - Thunderbolt 3 PCIe Expansion Chassis with PD,” AKiTiO. [Online].
Available: https://www.akitio.com/expansion/node-pro. [Accessed: 21-Apr-2019].

[82] “It’s Here: The New GeForce GTX 1080Ti Graphics Card,” NVIDIA. [Online].
Available: https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-
1080-ti/. [Accessed: 21-Apr-2019].

[83] “S300 Standard | SICK.” [Online]. Available: https://www.sick.com/fi/en/opto-
electronic-protective-devices/safety-laser-scanners/s300-standard/c/g187239.
[Accessed: 21-Apr-2019].

93

[84] “Intel® RealSenseTM Depth Camera D435.” [Online]. Available:
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d435.html.
[Accessed: 21-Apr-2019].

[85] ROS support for the MiR100 Robot. Contribute to dfki-ric/mir_robot development
by creating an account on GitHub. DFKI Robotics Innovation Center, 2019.

94

APPENDIX A: DEGREE OF CROWDEDNESS DATA

Figure 94. Raw data results for the degree of crowdedness in the map

experiments.

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls

6
1

1
1

3
7

1
.7

4
2

2
0

1
9

1
4

0
4

2
7

0
.9

7
8

8
1

2
1

5
7

1
.9

9
2

0
1

1
8

4
5

4
3

3
7

0
.9

8
2

1
0

3
3

6
6

0
.8

4
4

0
1

1
9

0
5

1
2

5
3

0
.9

8
7

4
7

4
6

0
0

.7
6

3
0

1
1

8
5

9
2

3
6

3
0

.9
8

0

8
5

5
7

7
0

.9
8

1
0

1
1

8
6

8
8

5
8

4
0

.9
6

9

7
0

6
1

0
3

1
.3

1
2

0
1

1
9

4
3

9
1

5
1

3
0

.9
2

2

1
0

4
7

1
3

4
1

.7
0

2
0

1
1

9
3

0
7

1
8

2
4

0
.9

0
6

7
8

.7
A

V
G

.
1

0
4

.9
1

.3
3

0
.8

5
7

0
.9

6
0

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

1
1

4
4

1
.8

3
4

0
1

0
2

0
7

0
1

1
8

9
5

1
1

4
9

4
0

.9
2

1

2
9

7
1

.2
3

2
0

5
0

2
0

9
0

1
1

8
6

5
1

8
4

6
0

.9
5

5

3
1

5
3

1
.9

4
4

0
2

0
4

0
1

0
0

1
1

8
6

7
9

7
3

9
0

.9
6

0

4
1

1
8

1
.5

0
2

0
2

0
4

0
8

0
1

1
9

4
5

3
1

4
4

0
0

.9
2

6

5
7

1
0

.9
0

5
0

3
0

3
0

1
1

0
1

1
9

0
3

3
1

9
3

4
0

.8
9

8

6
1

4
2

1
.8

0
5

0
2

0
1

0
8

0
1

1
8

7
0

3
3

0
2

0
.9

8
4

7
1

5
6

1
.9

8
3

0
4

0
2

0
9

0
1

1
9

4
8

1
1

0
5

0
0

.9
4

6

A
V

G
.

1
2

5
.9

1
.6

0
1

.0
0

0
0

.9
4

2

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

1
1

2
9

1
.6

4
1

0
1

0
4

0
4

0
4

4
2

0

2
1

5
8

2
.0

1
3

0
2

0
1

0
1

0
2

0
3

0

3
1

1
8

1
.5

0
4

0
3

0
2

0
2

0
1

0
N

U
LL

 N
U

LL

4
1

1
1

1
.4

1
3

0
3

0
1

0
3

0
4

0
1

0

5
1

3
2

1
.6

8
2

0
4

0
4

0
1

0
2

0
2

0

6
1

2
7

1
.6

1
4

0
3

0
2

0
3

0
4

0
5

0

7
1

4
0

1
.7

8
2

0
2

0
3

0
3

0
4

0
1

0

A
V

G
.

1
3

0
.7

1
.6

6

#O
cc

. C
el

ls
 #F

ilt
. O

cc
. C

el
ls#

O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls

1
1

0
1

7
4

0
.7

6
4

7
0

5
9

1
8

1
0

7
7

4
3

0
.9

5
9

2
3

0
1

5
0

1
1

9
2

6
9

1
4

0
8

0
.9

2
7

3
2

0
1

4
0

1
1

9
1

2
5

1
5

2
0

0
.9

2
1

4
3

0
1

8
0

1
1

7
9

6
3

5
7

5
0

.9
6

8

5
1

0
1

6
0

1
1

8
9

4
6

1
7

1
9

0
.9

0
9

6
2

0
2

3
0

1
1

8
9

3
2

1
4

6
2

0
.9

2
3

7
3

0
1

8
0

1
1

8
5

4
6

7
0

4
0

.9
6

2

A
V

G
.

0
.9

6
6

0
.9

3
8

7
 o

b
je

ct
s

N
u

m
b

er
 o

f
o

b
je

ct
s

in
 t

h
e

sc
en

e

Ex
p

. N
o

.

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

O
b

je
ct

 A

O
b

je
ct

 A
Ti

m
e

(s
ec

)

Ti
m

e
(p

.u
.)

#U
N

K
. C

el
ls

LM
Q

R
O

b
je

ct
 B

O
b

je
ct

 C

O
b

je
ct

 E
O

b
je

ct
 F

O
b

je
ct

 G

O
b

je
ct

 A

7
 o

b
je

ct
s

3
 o

b
je

ct
s

TP
R

P

Ti
m

e
(p

.u
.)

O
b

je
ct

 B
O

b
je

ct
 C

G
lo

b
al

TP
R

P
#T

o
ta

lL
o

cC
el

ls
#U

N
K

. C
el

ls
LM

Q
R

O
b

je
ct

 D

Ti
m

e
(p

.u
.)

TP
R

P
LM

Q
R

G
lo

b
al

#T
o

ta
lL

o
cC

el
ls

N
o

n
e

Ti
m

e
(s

ec
)

1
 o

b
je

ct

#T
o

ta
lL

o
cC

el
ls

Ex
p

. N
o

.

N
u

m
b

er
 o

f
o

b
je

ct
s

in
 t

h
e

sc
en

e

N
u

m
b

er
 o

f
o

b
je

ct
s

in
 t

h
e

sc
en

e

Ex
p

. N
o

.
#U

N
K

. C
el

ls

N
u

m
b

er
 o

f
o

b
je

ct
s

in
 t

h
e

sc
en

e

Ex
p

. N
o

.

95

APPENDIX B: DEGREE OF OBJECTS SIZE DATA

Figure 95. Raw data results for the degree of objects size in the map

experiments.

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls

61
1

10
8

1.
37

1
0

1
0

2
0

1
18

54
8

11
10

0.
94

81
2

10
0

1.
27

N
U

LL
N

U
LL

4
0

4
0

1
19

28
6

21
60

0.
89

10
3

3
93

1.
18

1
0

1
0

2
0

1
19

25
0

58
3

0.
97

47
4

11
5

1.
46

5
0

3
0

8
0

1
18

35
8

73
3

0.
96

85
5

14
6

1.
85

1
0

3
0

4
0

1
18

73
8

37
4

0.
98

70
6

75
0.

95
4

0
3

0
7

0
1

18
35

2
90

3
0.

95

10
4

7
10

2
1.

30
N

U
LL

N
U

LL
4

0
4

0
1

19
65

5
10

72
0.

95

78
.7

A
V

G
.

10
5.

57
1.

34
1.

00
0

0.
94

8

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls

1
15

8
2.

01
27

1
28

0
55

1
0.

98
18

25
6

57
1

0.
97

2
17

0
2.

16
26

0
18

18
44

18
0.

59
19

71
4

22
98

0.
88

3
13

6
1.

73
23

0
25

0
48

0
1

18
74

2
91

4
0.

95

4
14

9
1.

89
34

0
20

0
54

0
1

18
36

4
52

8
0.

97

5
12

8
1.

63
33

0
20

0
53

0
1

19
57

9
18

90
0.

90

6
14

2
1.

80
33

0
20

0
53

0
1

19
73

8
12

46
0.

94

7
14

3
1.

82
13

0
26

0
39

0
1

18
96

3
12

64
0.

93

A
V

G
.

14
6.

57
1.

86
0.

93
9

0.
93

5

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls
#O

cc
. C

el
ls

#F

ilt
. O

cc
. C

el
ls

#O
cc

. C
el

ls

#F
ilt

. O
cc

. C
el

ls

1
17

0
2.

16
38

0
81

21
11

9
21

0.
82

19
28

0
23

84
0.

88

2
19

5
2.

48
74

0
78

2
15

2
2

0.
99

18
76

9
27

91
0.

85

3
19

5
2.

48
42

6
94

2
13

6
8

0.
94

19
24

5
20

70
0.

89

4
24

8
3.

15
42

1
59

0
10

1
1

0.
99

18
35

8
29

14
0.

84

5
12

9
1.

64
43

0
46

0
89

0
1

17
94

9
15

53
0.

91

6
22

8
2.

90
83

10
62

2
14

5
12

0.
92

18
49

4
19

68
0.

89

7
16

7
2.

12
40

2
51

3
91

5
0.

95
19

62
8

14
66

0.
93

A
V

G
.

19
0.

29
2.

42
0.

94
3

0.
88

5

C
ir

cu
m

ci
rc

le
 o

rd
er

 o
f

th
e

o
b

je
ct

 t
o

 b
e

fi
lt

er
ed

La
rg

e

O
b

je
ct

 A
O

b
je

ct
 B

Ti
m

e
(s

ec
)

Ti
m

e
(p

.u
.)

Ti
m

e
(s

ec
)

Ti
m

e
(p

.u
.)

Ti
m

e
(p

.u
.)

Ti
m

e
(s

ec
)

Ex
p

. N
o

.

Ex
p

. N
o

.

Ex
p

. N
o

.

C
ir

cu
m

ci
rc

le
 o

rd
er

 o
f

th
e

o
b

je
ct

 t
o

 b
e

fi
lt

er
ed

M
ed

iu
m

O
b

je
ct

 A
O

b
je

ct
 B

G
lo

b
al

TP
R

P
#T

o
ta

lL
o

cC
el

ls
#U

N
K.

 C
el

ls
LM

Q
R

TP
R

P
#T

o
ta

lL
o

cC
el

ls
#U

N
K.

 C
el

ls
LM

Q
R

G
lo

b
al

TP
R

P
#T

o
ta

lL
o

cC
el

ls
#U

N
K.

 C
el

ls
LM

Q
R

N
o

n
e

O
b

je
ct

 A
O

b
je

ct
 B

C
ir

cu
m

ci
rc

le
 o

rd
er

 o
f

th
e

o
b

je
ct

 t
o

 b
e

fi
lt

er
ed

Ti
m

e
(s

ec
)

Sm
al

l

G
lo

b
al

