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Summary

The study of the dynamics of the size of a population via mathematical modelling
is a problem of interest and widely studied. Traditionally, continuous deterministic
methods based on differential equations have been used to deal with this problem.
However discrete versions of some models are also available and sometimes more
adequate. In this paper, we randomize the Pielou logistic equation in order to include
the inherent uncertainty in modelling. Taking advantage of the method of trans-
formation of random variables, we provide a full probabilistic description to the
randomized Pielou logistic model via the computation of the probability density
functions of the solution stochastic process, the steady state and the time until a cer-
tain level of population is reached. The theoretical results are illustrated by means of
two examples, the first one consists of a numerical experiment and the second one
shows an application to study the diffusion of a technology using real data.

KEYWORDS:
Random difference stochastic equations, Population dynamics, Pielou logistic equation, first probability
density function, random variable transformation technique, modelling real data

1 INTRODUCTION

Some interesting problems in population dynamics are to model the changes in the size and to quantify the composition of the
population along the time1. Mathematical models of populations can be used to accurately describe changes in a population
and, more importantly, to predict future changes.
Population growth can be described by several mathematical models. The simplest model is the Malthusian one. It can predict

an exponential increase in the population with time, which is unrealistic for long time. But it can be an adequate model in
short-time studies. A typical application of Malthusian model is the study of the evolution of bacteria in a laboratory.
A more realistic and popular continous model of population growth is the logistic o Verhulst-Pearl equation

x′(t) = x(t)(� − �x(t)), �, � > 0, (1)

where x(t) is the size of the population at time t, � is the rate of population growth if the resources were unlimited and the
individuals did not affect one another, and −�x2(t) represents the negative effect on the growth due to crowdedness and lim-
ited resources. This model was introduced by Pierre Verhulst2,3. Although originally this equation was introduced to model
populations, it has also been used to model different problems4.

0Abbreviations: 1-PDF, first probability density function; PDF, probability density function; RV, random variable; RVT, random variable transformation
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Most models that describe population dynamics are continuous. But many times only data is available for discrete times, so
it is interesting to have the solution for those moments. In this case, a difference equation instead of a differential equation can
be more appropriate to model this situation. For the sake of clarity, as time variable can be considered discrete or continuous,
depending upon the context, hereinafter we will called period in the former case and time in the latter.
The discrete version of the logistic equation is known as Pielou logistic equation and it is stated as

xn+1 =
axn

1 + bxn
, (2)

where a > 1 and b > 05,6,7. By letting zn = 1∕xn, the nonlinear difference Equation (2) is transformed into the following linear
difference equation

zn+1 =
1
a
zn +

b
a
. (3)

Taking the initial condition z0 = 1∕c, the solution of Equation (3) is

zn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[1
c
− b
a − 1

]

a−n + b
a − 1

, if a ≠ 1,

1
c
+ bn, if a = 1.

Thus, the solution of Pielou logistic equation (2) is given by

xn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

an(a − 1)
ban + 1

c
(a − 1) − b

, if a ≠ 1,

1
1
c
+ bn

if a = 1.

(4)

In real problems coefficients and initial conditions are not usually known exactly. This may be due to measurement errors
or the inherent complexity associated to their own nature. So, it seems more realistic to consider that parameters and initial
conditions are RVs instead of deterministic values. Notice that hereinafter capital letters are used to denote a RV.
There are some recent interesting contributions concerning continuous randommodelling in population dynamics8,9. Discrete

random models have not been widely studied in the literature. Recently, authors of this paper have made several contributions
related to Markov models10,11 and linear difference equations12.
The main objective of this paper is to construct a randomized version of the Pielou logistic equation. To the best of our

knowledge, this problem has not been considered in the extant literature yet, but randomizing parameters of amodel is a technique
used in other contexts.
Solving a random difference equation means not only to calculate the exact solution of the stochastic process but also its main

statistical functions. The computation of the 1-PDF, fX1 (x; n), allows us to have a complete statistical description of the solution.
From the 1-PDF we can calculate easily the mean, variance and other higher statistical moments, by means of the following
expressions, respectively

�X(n) = E[Xn] =

∞

∫
−∞

x fX1 (x; n)dx, (5)

�2X(n) = V [Xn] =

∞

∫
−∞

x2 fX1 (x; n)dx −
(

�X(n)
)2 ,

E[(Xn)k] =

∞

∫
−∞

xk fX1 (x; n)dx, k = 0, 1, 2,…

Furthermore significant information such as the probability of the solution lies within a set of interest can be determined from
the 1-PDF

ℙ[a ≤ Xn ≤ b] =

b

∫
a

fX1 (x; n)dx.
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This improves the computation of rough bounds, like the one derived via Chebyshev’s inequality16

ℙ
[

|Xn − �X(n)| ≥ �
]

≤
(�X(n))2

�2
, � > 0,

usually applied in practice.
RVT method is a powerful technique that has been recently used by the authors to compute the 1-PDF of the solution of

some differential and difference equations13,14,15,12. The RVT technique permits to compute the PDF of a RV which results from
mapping another RV whose PDF is known. The multidimensional version of the RVT technique is stated in Theorem 1.

Theorem 1 (RVT Multidimensional version16,14 ). Let U = (U1,… , Um)⊤ and V = (V1,… , Vm)⊤ be two m-dimensional
absolutely continuous random vectors. Let r ∶ ℝm → ℝm be a one-to-one deterministic transformation of U into V, i.e.,
V = r(U). Assume that r is continuous in U and has continuous partial derivatives with respect to U. Then, if fU(u) denotes
the joint probability density function of vector U, and s = r−1 = (s1(v1,… , vm),… , sm(v1,… , vm))⊤ represents the inverse
mapping of r = (r1(u1,… , um),… , rm(u1,… , um))⊤, the joint probability density function of vector V is given by

fV(v) = fU (s(v)) ||Jm|| , (6)

where |
|

Jm|| is the absolute value of the Jacobian, which is defined by

Jm = det
(

)s⊤
)v

)

= det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

)s1(v1,… , vm)
)v1

⋯
)sm(v1,… , vm)

)v1
⋮ ⋱ ⋮

)s1(v1,… , vm)
)vm

⋯
)sm(v1,… , vm)

)vm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

Remark 1. In the context of solving random difference equations, when Theoerem 1 is applied the choice of random vector V
(that defines the mapping r) often can be made in different ways. The convenience of choosing one mapping against another
depends heavily upon the feasibility of obtaining the inverse mapping s as well as the involved computations to obtain the 1-
PDF of the solution stochastic process. Anyway, the 1-PDF obtained is equivalent independently of the mapping initialy chosen.
This issue will be illustrated later (see Remark 2).

This paper is organized as follows. In Section 2, the Pielou logistic equation (2) is randomized. Then, the solution, the steady
state and the time until a given population level is achieved are determined. Also a full probabilistic description of these mag-
nitudes is provided via their 1-PDF and PDFs, respectively. In Section 3, the theoretical findings are illustrated by examples.
Finally, conclusions are drawn in Section 4.

2 RANDOMIZED PIELOU LOGISTIC EQUATION

Random Pielou logistic equation can be written as
⎧

⎪

⎨

⎪

⎩

Xn+1 =
AXn

1 + BXn
, n = 0, 1, 2,…

X0 = C,
(8)

where all the input parameters A,B and C are assumed to be absolutely continuous RVs defined on a common complete prob-
ability space (Ω, ,ℙ). As a natural extension of its deterministic counterpart5, we assume ℙ [{! ∈ Ω ∶ A(!) > 1}] = 1,
ℙ [{! ∈ Ω ∶ B(!) > 0}] = 1 and ℙ [{! ∈ Ω ∶ C(!) > 0}] = 1. For the sake of generality, hereinafter we will assume that
A,B, C are dependent RVs whose joint PDF is fC,A,B(c, a, b).
The main goal of this section is to obtain the 1-PDF of the solution of the random Pielou logistic equation (8), say fX1 (x; n).

In this section we will also determine the PDF of another interesting quantities in dealing with the Pielou equation. Specifically,
the steady state and the time until a given proportion is reached will be studied from a probabilistic standpoint.
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2.1 1-PDF of the solution of the randomized Pielou equation
Inspired in the deterministic theory (2)–(4), by introducing the change of variableZn = 1∕Xn in Equation (8), it is linearized and
then solved. As A is an absolutely continuous RV, then ℙ [{! ∈ Ω ∶ A(!) = 1}] = 0, for all event ! ∈ Ω. As a consequence,
we obtain that the solution of random Pielou logistic problem (8) is given by

Xn =
An(A − 1)

BAn + 1
C
(A − 1) − B

, n = 0, 1,… (9)

and this solution is well-defined from a probabilistic point of view.
In order to compute the 1-PDF of (9), we can define the transformation r ∶ ℝ3 ←→ ℝ3,

y1 = r1 (c, a, b) =
an(a − 1)

ban + 1
c
(a − 1) − b

,

y2 = r2 (c, a, b) = a,
y3 = r3 (c, a, b) = b,

whose inverse mapping s = r−1 is given by

c = s1
(

y1, y2, y3
)

=
y1

(

y2 − 1
)

yn2
(

y2 − 1
)

− y3y1
(

yn2 − 1
) ,

a = s2
(

y1, y2, y3
)

= y2,
b = s3

(

y1, y2, y3
)

= y3,
and the absolute value of the Jacobian of the inverse mapping, s, is

|

|

J3|| =
|

|

|

|

)s1
)y1

|

|

|

|

=
|

|

|

|

|

|

(

y2 − 1
)2 yn2

(

yn2
(

y2 − 1
)

− y3y1
(

yn2 − 1
))2

|

|

|

|

|

|

,

which is different from zero if y2 = a > 1, which holds by hypothesis.
Applying RVT technique (Theorem 1) for an arbitrary but fixed value of n, the PDF of the random vector (Y1, Y2, Y3) defined

by mapping r is given by

fY1,Y2,Y3
(

y1, y2, y3
)

= fC,A,B

(

y1
(

y2 − 1
)

yn2
(

y2 − 1
)

− y3y1
(

yn2 − 1
) , y2, y3

)

|

|

|

|

|

|

(

y2 − 1
)2 yn2

(

yn2
(

y2 − 1
)

− y3y1
(

yn2 − 1
))2

|

|

|

|

|

|

. (10)

Finally, the 1-PDF of the solution of the randomized Pielou logistic model, Xn is obtained by marginalizing expression (10)
with respect to A and B, being n arbitrary,

fX1 (x; n) = ∫ ∫
(A,B)

fC,A,B

(

x (a − 1)
an (a − 1) − bx (an − 1)

, a, b
)

|

|

|

|

|

(a − 1)2 an

(an (a − 1) − bx (an − 1))2
|

|

|

|

|

da db, (11)

where (A,B) stands for the domain of the random vector (A,B).

Remark 2. Notice that another possibility to choose an adequate mapping r when applying Theorem 1 would be

y1 = r1 (c, a, b) =
an(a − 1)

ban + 1
c
(a − 1) − b

,

y2 = r2 (c, a, b) = a,
y3 = r3 (c, a, b) = c.

This choice would lead to an equivalent expression to fX1 (x; n) given in (11).
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2.2 PDF of the steady state of the randomized Pielou equation
A key magnitude in population dynamics is to determine its long term behaviour. Mathematically it can be obtained calculating
the limit as n tends to infinite of the solution Xn. So, the steady state of the randomized Pielou equation, X∞, is

X∞ = lim
n→∞

Xn = lim
n→∞

An(A − 1)
BAn + 1

C
(A − 1) − B

= A − 1
B

. (12)

Notice that, as ℙ [{! ∈ Ω ∶ A(!) > 1}] = 1 and ℙ [{! ∈ Ω ∶ B(!) > 0}] = 1 for all event ! ∈ Ω , X∞ is a well-defined
positive RV as is required for the size of a population.
By applying again the RVT technique (Theorem 1), considering the mapping r ∶ ℝ3 ←→ ℝ3,

y1 = r1 (c, a, b) =
a − 1
b

,
y2 = r2 (c, a, b) = a,
y3 = r3 (c, a, b) = b,

and, after some technical computations, we obtain the PDF of the RV steady state,

fX∞
(x) = ∫ ∫

(C,B)

fC,A,B (c, xb + 1, b) |b| dc db, (13)

where (C,B) stands for the domain of the random vector (C,B).

2.3 PDF of time until a given population size is reached
Another interesting question in dealing with discrete population models is to determine the distribution of the time where the
size of the population reaches a certain specific value, X̂,

X̂ = Xn =
An(A − 1)

BAn + 1
C
(A − 1) − B

. (14)

Again the RVT technique is very useful to answer this interesting question. In order to determine the PDF of the time where the
size of the population reaches a certain specific value, say fN (n), we first isolate n from expression (14), and as the obtained
expression is a RV, we use capital letter notation to denote it,N ,

N =
log

(

X̂(CB−A+1)
C(BX̂−A+1)

)

log(A)
.

Defining an appropriate mapping, for example, r ∶ ℝ3 ←→ ℝ3,

y1 = r1 (c, a, b) =
log

(

x̂(cb−a+1)
c(bx̂−a+1)

)

log(a)
,

y2 = r2 (c, a, b) = a,
y3 = r3 (c, a, b) = b,

and applying the RVT method (Theorem 1), one can obtain the PDF ofN ,

fN (n) = ∫ ∫
(A,B)

fC,A,B

(

x̂(1 − a)
x̂b(an − 1) + an(1 − a)

, a, b
)

|x̂(a − 1)an(1 − a + x̂b) log(a)|
(x̂b(an − 1) + an(1 − a))2

da db, (15)

where (A,B) stands for the domain of the random vector (A,B).

3 EXAMPLES

In this section we will present two examples. In Subsection 3.1, we show a numerical example aimed to illustrate the theoretical
results obtained in Section 2. In Subsection 3.2, a second example is presented concerning modelling. Although Pielou equation
is usually applied to model population dynamics, it can model other interesting situations as the diffusion of a technology. In
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particular, we describe the dynamics of the number of mobile lines in Spain during the range of years 1999–2015 using real
data by means of the randomized Pielou equation. We assume that A, B and C are independent RVs.

3.1 Numerical example
We consider the randomized Pielou model (8) and we assume the following probability independent distributions for the inputs.
For the initial condition we choose a truncated normal distribution, C ∼ N]0,1[(0.5; 0.05), and for A and B uniform and beta
distributions A ∼ Un([1.1, 2]) and B ∼ Be(2; 3), respectively. We have chosen these distributions to illustrate the capability of
our approach to deal with different probability distributions, although other distribution can be used too. All the computations
have been carried out using the software Mathematica R© 17.
We have calculated the 1-PDF of the solution stochastic process Xn, fX1 (x; n), given by (11). Also we have determined the

PDF of the steady state, fX∞
(x), given by (13). In Figure 1 it is plotted fX1 (x; n) for different values of n and fX∞

(x). We can
observe that fX1 (x; n) tends to fX∞

(x) as n increases. For the sake of clarity, in Figure 2 it is plotted fX1 (x; 15) and fX∞
(x), and

we can observe that both PDFs are similar.

f1
X (x,1) f1

X (x,2)

f1
X (x,3) f1

X (x,5)

f1
X (x,10) f1

X (x,15)

fX∞ (x)

1 2 3 4 5
x

0.5

1.0

1.5

2.0

2.5

FIGURE 1 1-PDF of the solution stochastic process Xn with n ∈ {1, 2, 3, 5, 10, 15} and PDF of the equilibrium RV X∞.
Example 3.1.

In Figure 3 it is represented the expectation (left) and the standard deviation (right) of Xn. One can observe that they tend
to the expectation and the standard deviation of the steady state, respectively.

3.2 Application: modelling the diffusion of a technology
This subsection is addressed to apply the theoretical results obtained in Section 2 tomodel a problem using real data. In particular,
we consider the number of mobile lines in Spain including prepaid or postpaid contracts. We assume that this situation can be
modelled by the random Pielou logistic equation (8). For this proposal we consider data provided by the Spanish Commission of
Markets and Competition (’Comisión Nacional de los Mercados y la Competencia’)18. In Table 1 the total number of mobile
lines in Spain in each year during the range of years 1999–2015 are collected. For computations, data and outputs are expressed
in ten millions of mobile lines. So, all the results presented in this section are expressed in these units.

Since the model parameters A, B and C do not have a physical meaning and involve very complex factors that determine the
dynamics of the number of mobile phones in Spain, we take advantage of the Central Limit Theorem in Probability to approxi-
mate them via Gaussian random variables. Therefore, let us take Gaussian distributions for the random inputs A ∼ N(�A; �A),
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f1
X (x,15)

fX∞ (x)

1 2 3 4 5
x

0.1

0.2

0.3

0.4

FIGURE 2 1-PDF of the solution stochastic process in n = 15, X15, and PDF of the steady state X∞. Example 3.1.

[Xn]

[X∞]

10 20 30 40 50
n

0.5

1.0

1.5

σ[Xn]

σ[X∞]

10 20 30 40 50
n

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIGURE 3 Left: Blue points: E
[

Xn
]

for different n ∈ {1, 2,… , 50}. Orange solid line: E
[

X∞
]

. Right: Blue points: �
[

Xn
]

for
different n ∈ {1, 2,… , 50}. Orange solid line: �

[

X∞
]

. Example 3.1.

B ∼ N(�B; �B) and C ∼ N(�C ; �C ), where the means and standard deviations are determined by adjusting the real data xn to
the theoretical expectation of random Pielou logistic model. For this proposal, we find a solution of the following optimiza-
tion problem that consists of minimizing the square error between real data xn and punctual predictions via the expectation
(E

[

Xn(�A, �B , �C , �A, �B , �C )
]

),

min
�A,�B ,�C ,�A,�B ,�C

16
∑

n=0

(

xn − E
[

Xn(�A, �B , �C , �A, �B , �C )
])2

where

E
[

Xn(�A, �B , �C , �A, �B , �C )
]

=

∞

∫
−∞

x fX1 (x; n) dx.

Using the command NMinimize of Mathematica R© software for optimization, the following parameters are obtained
�A = 1.4912, �B = 0.095109, �C = 1.76917,
�A = 0.00531, �B = 0.0025587, �C = 0.0050285.

(16)

In Figure 4 the number of mobile lines in Spain during the range of years 1999–2015, xn, obtained from Table 1 is repre-
sented by blue points. To calculate the expectation and confidence intervals, first we calculate fX1 (x; n) with parameters (16).
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TABLE 1 Number of mobile lines in Spain, xn, at year n during the range of years 1999–2015. Example 3.2.

Year n xn Year n xn
1999 0 15 003 708 2008 9 49 623 339
2000 1 24 265 059 2009 10 51 052 693
2001 2 29 655 729 2010 11 51 389 417
2002 3 33 530 997 2011 12 52 590 507
2003 4 37 219 839 2012 13 50 665 099
2004 5 38 622 582 2013 14 50 158 689
2005 6 42 693 832 2014 15 50 806 251
2006 7 45 675 855 2015 16 51 067 569
2007 8 48 422 470 – – –

Source: Spanish Commission of Markets and Competition (’Comisión Nacional de los Mercados y la Competencia’)18.

The expectation of Xn is calculated by expression (5) and it has been plotted by a solid line. We can observe a good fitting
between xn and the expected values E[Xn]. In the same graphical representation, the 75% and 99% confidence intervals are
plotted in dash-dotted lines. These confidence intervals have been computed in the following way. Firstly a value of the period
n̂ ≥ 1 and � ∈ (0, 1) are fixed, and secondly z1 = z1(n̂) and z2 = z2(n̂) are determined such that

z1

∫
0

fX1 (x; n̂) dx =
z
2
=

1

∫
z2

fX1 (x; n̂) dx .

Then, (1 − �) × 100%-confidence interval is specified by

1 − � = ℙ
({

! ∈ Ω ∶ Xn̂(!) ∈
[

z1, z2)
]})

=

z2

∫
z1

fX1 (x; n̂) dx .

real data

Expectation

75% Confidence Interval

99% Confidence Interval

0 5 10 15
n

2

3

4

5

FIGURE 4 Probabilistic fitting via the proposed approach to model the dynamics of the number of mobile lines in Spain during
the range of years 1999-2015 using real data collected in Table 1 and 75% and 99% confidence intervals. Example 3.2.

As we can observe most of the data lies in the confidence intervals. Only two points are outside the corresponding confidence
intervals. This is a good result taking into account the uncertainties in the market of mobile lines due to people preferences and
economic oscillations.
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A key feature of the previous methodology with respect to other available approaches is that it permits to construct confidence
intervals considering the real probability distribution of the model output rather than using asymptotic approximations, which
usually rely in the Gaussian distribution via rules of the type mean plus/minus two standard deviations. Notice that using the
methodology proposed in this paper, and assuming appropriate distributions for the input data (in our case we have assumed
that A, B and C are Gaussian), we are able to compute the theoretical probability distribution of the model output (which in our
case is not Gaussian), and from it, to determine precise confidence intervals using a prefixed but arbitrary confidence level.
In Figure 5 the 1-PDF of Xn, fX1 (x; n), at different fixed periods n are plotted. We can observe that these 1-PDFs tend, as n

increases, to the PDF of the steady state, fX∞
(x), calculated by expression (13) and represented in light blue colour.

f1
X(x,0) f1

X(x,1)

f1
X(x,2) f1

X(x,3)

f1
X(x,5) f1

X(x,8)

fX∞ (x)

2 3 4 5 6 7 8
x

2

4

6

FIGURE 5 PDFs fX1 (x, n) for different n ∈ {0, 1, 2, 3, 5, 8} and fX∞
(x). Example 3.2.

In order to better visualize the tendency of fX1 (x; n) to fX∞
, as n increases, in Figure 6 we have plotted fX1 (x; 16) together

with fX∞
(x). We can observe the mentioned tendency.

f1
X(x,16)

fX∞ (x)

5.1 5.2 5.3 5.4 5.5 5.6
x

1

2

3

4

5

FIGURE 6 PDFs fX1 (x, 16) and fX∞
(x). Example 3.2.

An interesting question that arises in modelling the dynamics of the number of mobile lines is to know the period nwhen there
will be a certain number of mobile phones. This allows to predict the period when mobile telecommunication infrastructures
might be necessary to expand, for example. The PDF of this time is calculated by (15). In Figure 6 it is plotted the distribution
of time until a given proportion of the population has got line mobile. For example, if we observe the PDF for x̂ = 5, we can
derive that there were about 50 000 000 line mobiles in Spain at year 2008 (n = 9).
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FIGURE 7 PDF ofN for different sizes of the population x̂ ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5}. Example 3.2.

4 CONCLUSIONS

In this paper a randomization of the Pielou logistic model to study the dynamics of a population has been considered. Important
goals in this type of equations are to compute its solution, to study the steady state and to compute the time until a certain level
of population is reached. A full probabilistic description of these randomized magnitudes has been provided. This has been
achieved taking advantage of the RVT technique.
RVT technique allows us to calculate the PDF from a particular mapping. In each case studied throughout this paper,

appropriate mapping have been chosen to reduce the computational cost.
Theoretical findings have been illustrated via two examples. The first one consists in some numerical experiments to illustrate

our results from a mathematical standpoint. While the second one shows a real application to modelling the dynamics of the
number of mobile lines in Spain during the range of years 1999–2015. We can conclude that the obtained results are satisfactory.
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