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Abstract

We randomize the following class of linear differential equations with delay, x′τ(t) = axτ(t) +

bxτ(t − τ), t > 0, and initial condition, xτ(t) = g(t), −τ ≤ t ≤ 0, by assuming that coeffi-
cients a and b are random variables and the initial condition g(t) is a stochastic process. We
consider two cases, depending on the functional form of the stochastic process g(t), and then
we solve, from a probabilistic point of view, both random initial value problems by determining
explicit expressions to the first probability density function, f (x, t; τ), of the corresponding solu-
tion stochastic processes. Afterwards, we establish sufficient conditions on the involved random
input parameters in order to guarantee that f (x, t; τ) converges, as τ→ 0+, to the first probability
density function, say f (x, t), of the corresponding associated random linear problem without de-
lay (τ = 0). The paper concludes with several numerical experiments illustrating our theoretical
findings.

Keywords: Random linear differential equation with delay, Probability density function,
Random Variable Transformation technique.

1. Introduction and motivation1

Ordinary differential equations are useful mathematical tools to model phenomena in areas2

like Physics, Engineering, Epidemiology, Economics, etc. In many applications, differential3

equations are formulated using the principle of causality based upon the fact that future state of a4

system under study is independent of its past state and is solely determined by the current state.5

Although many phenomena can be properly described using this tenet, there are other situations6
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where it may be more realistic to model the current state of a physical system (understood in7

a wide sense) in terms of past information. In that case, it is more suitable to describe the8

dynamics of the physical system by means of differential equations incorporating the past history9

of the system under analysis. These kinds of differential equations are usually referred to as10

delay differential equations (DDEs). One commonly distinguishes two main classes of DDEs11

depending on the type of delay considered therein. If only a part of the history has a relevant12

influence on the current state, then discrete DDEs are formulated, while continuous DDEs are13

those whose delay is unbounded or infinite. In this latter case, the whole past history is taken into14

account to describe the phenomenon under study. In this paper, we will deal with the following15

class of linear discrete DDEs with initial condition16 {
x′τ(t) = axτ(t) + bxτ(t − τ), t > 0, τ > 0,
xτ(t) = g(t), −τ ≤ t ≤ 0, (1)

where τ > 0 denotes a prefixed finite delay, a is the coefficient of the non-delay term, xτ(t), b17

is the coefficient of the delay term, xτ(t − τ), and g(t) is an arbitrary function (initial condition)18

defined on the interval [−τ, 0].To avoid confusion with the notation introduced for the initial19

condition and the solution of the initial value problem (IVP) formulated in (1), hereinafter the20

solution will be denoted by xτ(·). This notation is necessary to explicitly indicate the dependence21

of the solution on the τ parameter since later we will study the convergence of the solution of the22

IVP (1) as τ → 0+ to the solution of the corresponding IVP without delay. Now, if we assume23

that g(t) is continuous in [−τ, 0] and differentiable in ]−τ, 0[ then, according to Theorem 1 below,24

there exists an exact expression of the solution of IVP (1).25

Theorem 1 ([1, 2]). Let us consider IVP (1) and assume that g(t) is continuous in [−τ, 0] and26

differentiable in ] − τ, 0[, i.e., g(·) ∈ C1([−τ, 0]). Then, IVP (1) has a unique solution xτ(·) ∈27

C0([−τ,∞]) ∩ C1([−τ, 0]) ∩ C1([0,∞]) given by28

xτ(t) = ea(t+τ) eb1, t
τ g(−τ) +

∫ 0

−τ

ea(t−s) eb1,t−τ−s
τ (g′(s) − ag(s)) ds, (2)

where b1 = e−aτ b, and eb1, t
τ and eb1,t−τ−s

τ denote the delayed exponential function, ec,t
τ , evaluated29

at (c, t) = (b1, t) and (c, t) = (b1, t − τ − s), respectively. This function appears in a natural way30

in dealing with the linear discrete DDE (1) since its solution is constructed segment by segment31

(see for example [2]). For the sake of completeness, below we recall its definition.32

Definition 1. ([2]) Let c be a real number and τ > 0, then the function33

ec, t
τ =



0, −∞ < t < −τ,
1, −τ ≤ t < 0,

1 + c
t

1!
, 0 ≤ t < τ,

1 + c
t

1!
+ c2 (t − τ)2

2!
, τ ≤ t < 2τ,

...
...

n∑
k=0

ck (t − (k − 1)τ)k

k!
, (n − 1)τ ≤ t < nτ,

(3)

is called the delayed exponential function, where n = bt/τc+1, being bxc the greatest integer less34

than or equal to x.35
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So far we have revised the main definitions and results involving the solution of deterministic36

IVP (1) for the linear discrete DDE. When this class of equations is applied to model the dynam-37

ics of real phenomena, its input parameters, i.e. the coefficients a and b, and the initial condition,38

g(t), must be fixed from experimental data which often involve uncertainties because they are39

obtained after measurements and sampling. This fact allows us to treat the input coefficients,40

a and b, as random variables (RVs), and the initial condition, g(t), as a stochastic process (SP)41

rather than deterministic constants and a classical function, respectively. This leads to the full42

randomization of IVP (1)43 {
x′τ(t;ω) = a(ω)xτ(t;ω) + b(ω)xτ(t − τ;ω), t > 0, τ > 0,
xτ(t;ω) = g(t;ω), −τ ≤ t ≤ 0, (4)

where a(ω) and b(ω) are assumed to be absolutely continuous RVs and g(t;ω) is a SP, being44

all of them defined on a common complete probability space (Ω,F ,P). In accordance with45

Theorem 1, and using the so-called “sample random calculus” for SPs [3, App. I], hereinafter it46

will be assumed that the initial condition SP, g(t;ω), satisfies the following condition,47

g( · ;ω) ∈ C1([−τ, 0] ×Ω), a.e., (5)

where, as usual, a.e. stands for ‘almost everywhere’, so that the existence of a unique sample48

solution SP, xτ(t;ω), to random IVP (4) can be guaranteed.49

The study of differential equations with delay involving uncertainties has been studied from50

different approaches. In [4], authors study a class of stochastic impulsive differential equations51

involving Bernoulli distribution where trial lengths vary randomly. In [5], the complete controlla-52

bility property of a class of nonlinear stochastic differential equation with delay, in the fractional53

sense, is investigated assuming that delays are described by Poisson jumps. Stochastic differen-54

tial equations with delay have been proposed to model interesting real problems. For example, in55

[6] the nonlinear delay differential neoclassical growth model is analysed assuming that stochas-56

tic perturbations of the white noise type. In [7], authors provide sufficient conditions for stability57

in probability of the equilibrium point of a social obesity epidemic model with distributed delay58

and stochastic perturbations. In dealing with delay differential equations it is usual to study the59

behaviour of the solution when the delay tends to zero, i.e., to investigate conditions under which60

there is convergence of the solution of the IVP with delay to the corresponding solution of the61

IVP when the delay vanishes. In [8] it is shown that the solution of a mixed stochastic delay62

differential equation depends continuously on the coefficients and the initial data. In addition,63

authors prove the convergence of the solutions to equations with vanishing delay to the solution64

of corresponding equations without delay. In [9] one deals with the mean square convergence65

and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay66

differential equation.67

Solving a random (ordinary/partial/fractional/delay/etc.) differential equation means not just68

to obtain an exact/approximate solution SP, but also its main statistical properties, like the mean69

and the variance functions. These equations are said to be solved, from a probabilistic standpoint,70

when the first probability density function (1-PDF) of the solution SP is exact/approximately71

obtained since from this deterministic function one can completely characterize the probabilistic72

behaviour of the solution SP at every time instant. As a consequence, mean, variance, skewness,73

etc., as well as any one-dimensional moment of the solution SP can be derived from the 1-PDF,74

provided these moments exist. To be specific, if f (x, t; τ) denotes the 1-PDF of the solution SP75

xτ(t;ω) to random IVP (1), then the mean, E[xτ(t;ω)], and the variance, V[xτ(t;ω)], functions76
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can be obtained by77

E
[
(xτ(t;ω))k

]
=

∫
R

xk f (x, t; τ) dx, k = 1, 2, . . .

as78

E[xτ(t;ω)] =

∫
R

x f (x, t; τ) dx, V[xτ(t;ω)] =

∫
R

x2 f (x, t; τ) dx − (E[xτ(t;ω)])2 , (6)

respectively. Fixed a time instant, say t̂, the computation of the probability that the solution,79

xτ(t̂;ω), lies within an interval of specific interest can also be computed just by integrating the80

1-PDF81

P
[
ω ∈ Ω : a ≤ xτ(t̂;ω) ≤ b

]
=

∫ b

a
f (x, t̂; τ) dx.

At this point is important to stress that, to the best of our knowledge, this approach has already82

been dealt with some classes of random fractional, ordinary and partial differential equations and83

of random difference equations as well (see for instance, [10], [11, 12, 13, 14, 15], [16, 17, 18,84

19] and [20, 21], respectively), but the corresponding analysis for random DDEs has not been85

addressed yet.86

In the spirit of these previous contributions, the main objective of this paper is solving, from87

a probabilistic point of view, random IVP (4) by obtaining the 1-PDF, f (x, t; τ), of its solution88

SP, xτ(t;ω), which, according to the deterministic solution formulated in (2), for each t ∈ [(n −89

1)τ, nτ[, with τ > 0 fixed and n = 1, 2, . . ., is given by90

xτ(t;ω) = ea(ω)(t+τ) eb1(ω), t
τ g(−τ;ω) +

∫ 0

−τ

ea(ω)(t−s) eb1(ω), t−τ−s
τ

(
g′(s;ω) − a(ω)g(s;ω)

)
ds, (7)

where b1(ω) = e−a(ω)τ b(ω). The key tool that will be applied to achieve this goal is the Random91

Variable Transformation (RVT) method. This technique allows us to obtain the PDF of a random92

vector, which results from mapping another random vector whose PDF is known. The following93

result provides the RVT technique in its multidimensional version.94

Theorem 2 (Multidimensional RVT method, [3]). Let x(ω) = (x1(ω), . . . , xm(ω)) and y(ω) =

(y1(ω), . . . , ym(ω)) be two m-dimensional absolutely continuous random vectors defined on a
complete probability space (Ω,F ,P). Let r : Rm → Rm be a one-to-one deterministic trans-
formation of x(ω) into y(ω), i.e., y(ω) = r(x(ω)). Assume that r is continuous in x and has
continuous partial derivatives with respect to x. Then, if fx(x) denotes the joint probability
density function of the random vector x(ω), and s = r−1 = (s1(y1, . . . , ym), . . . , sm(y1, . . . , ym))
represents the inverse mapping of r = (r1(x1, . . . , xm), . . . , rm(x1, . . . , xm)), the joint probability
density function of the random vector y(ω) is given by

gy(y) = fx(s(y)) |Jm| ,

where |Jm|, which is assumed to be different from zero, denotes the absolute value of the Jacobian
defined by the determinant

Jm = det


∂s1(y1, . . . , ym)

∂y1
· · ·

∂sm(y1, . . . , ym)
∂y1

...
. . .

...
∂s1(y1, . . . , ym)

∂ym
· · ·

∂sm(y1, . . . , ym)
∂ym


.
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Once we have obtained the 1-PDF, f (x, t; τ), of the solution SP to random IVP (4), the next95

objective of this paper is to study the relationship between f (x, t; τ) and the 1-PDF, say f (x, t),96

of the corresponding random IVP without delay, i.e.,97 {
x′(t;ω) = (a(ω) + b(ω))x(t;ω), t > 0,
x(0;ω) = g(0;ω) = g0(ω), (8)

where g0(ω) is an absolutely continuous RV. To be specific, we will establish conditions in order98

to guarantee that99

lim
τ→0+

f (x, t; τ) = f (x, t), for each (x, t) ∈ D(xτ(t;ω)) ∩D(x(t;ω)) × [(n − 1)τ, nτ[ fixed, (9)

being n = 1, 2, . . . and where D(xτ(t;ω)) and D(x(t;ω)) denote the codomains of SPs xτ(t;ω)100

and x(t;ω), respectively. This analysis will focus on the following choices of the initial condition101

g(t;ω) for random IVP (4)102

• Case I: g(t;ω) = ea(ω)t+c(ω).103

• Case II: g(t;ω) =

m∑
j=0

c j(ω) t j, m ≥ 0.104

The choice in Case I has been made because, as it will be seen later, it allows us to deal with105

a scenario that illustrates adequately the main ideas of our approach. While Case II involves106

the general case in which the initial condition is a random polynomial of degree m, which has107

interest by itself since, similarly to what happens in the deterministic context, many important108

random SPs can be approximated by appropriate random polynomials.109

The rest of this paper is organized as follows. Section 2 is split into two subsections, in110

the first one, we determine an explicit expression to the 1-PDF, f (x, t; τ), of the solution SP to111

random IVP (1) in Case I, i.e., when g(t;ω) = ea(ω)t+c(ω). Subsection 2.1 is addressed to establish112

sufficient conditions upon the involved random input parameters a(ω), b(ω) and c(ω), in order113

to guarantee that f (x, t; τ) converges, as τ → 0+, to the 1-PDF, f (x, t), of the corresponding114

associated random linear problem without delay (τ = 0). For the sake of clarity, Section 3 is115

organized analogously as Section 2 to conduct the corresponding study in Case II, i.e., when116

the initial condition to random IVP (1) is a random polynomial g(t;ω) =
∑m

j=0 c j(ω) t j, m ≥117

0. Several numerical examples, corresponding to Cases I and II are exhibited in Section 4.118

Conclusions are drawn in Section 5.119

2. Case I: Computing the 1-PDF of the solution SP and study of the convergence120

Let us consider random IVP (4) where the initial condition is given by the SP g(t;ω) =121

ea(ω)t+c(ω). Observe that this situation corresponds to the case where g(t;ω) is the solution of the122

following random IVP123 {
g′(t;ω) = a(ω)g(t;ω), t ≥ −τ, τ > 0,
g(−τ;ω) = e−a(ω)τ+c(ω) .

(10)

In other words, we are then implicitly considering a stochastic control problem defined by (4)124

and (10). In agreement with (7), the solution SP of this control problem is given by125

xτ(t;ω) = ea(ω)t+c(ω) eb1(ω), t
τ , t ∈ [(n − 1)τ, nτ[, n ∈ N fixed, (11)
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where b1(ω) = e−a(ω)τ b(ω). Henceforth, we will assume that the random inputs a(ω), b(ω) and126

c(ω) are absolutely continuous dependent RVs with a joint PDF denoted by fc,a,b(c, a, b), which127

is assumed to be known. Observe that g(t;ω) satisfies condition (5).128

2.1. Computing the PDF129

First at all, notice that if t̂ is such that xτ(t̂;ω) = 0, then clearly the 1-PDF is given by130

f (x, t̂; τ) = δ(x), −∞ < x < ∞, being δ(·) the Dirac delta function. Thus, in order to determine the131

1-PDF of the solution SP, xτ(t;ω), given by (11), we will only consider time instants t such that132

xτ(t;ω) , 0 a.e. As a consequence, as xτ(t;ω) = ea(ω)t+c(ω) eb1(ω), t
τ , one derives that eb1(ω), t

τ , 0133

a.e., at every time instant t where the 1-PDF f (x, t; τ) is going to be determined.134

Let t ∈ [(n−1)τ, nτ[ be fixed, next we will apply the RVT method (see Theorem 2), in order to135

obtain the PDF, f (x, t; τ), of the solution SP, xτ(t;ω), given by (11). This PDF will be expressed136

in terms of the joint PDF fc,a,b(c, a, b). To this end, consider the following deterministic mapping137

r : R3 −→ R3
138

x1 = r1(c, a, b) = eat+c eb1, t
τ ,

x2 = r2(c, a, b) = a,
x3 = r3(c, a, b) = b,

where b1 = e−aτ b. The inverse mapping, s : R3 −→ R3, of r is given by139

c = s1(x1, x2, x3) = ln
(

x1 e−x2t

eb1, t
τ

)
,

a = s2(x1, x2, x3) = x2,
b = s3(x1, x2, x3) = x3,

where b1 = e−x2τ x3. Observe that the Jacobian of s is |J3| = 1/|x1| , 0. Moreover, |J3| is well-140

defined since xτ(t;ω) = x1 , 0 a.s. for each instant time t. Therefore, applying the RVT method141

one obtains the PDF of the random vector (x1(ω), x2(ω), x3(ω)),142

f (x1, x2, x3) = fc,a,b

(
ln

(
x1 e−x2t

eb1, t
τ

)
, x2, x3

)
1
|x1|

, where b1 = e−x2τ x3.

Then, marginalizing with respect to the random vector (x2(ω), x3(ω)) = (a(ω), b(ω)) and taking143

t ∈ [(n − 1)τ, nτ[ arbitrary, one gets the 1-PDF of the solution SP, xτ(t;ω),144

f (x, t; τ) =

∫
R2

fc,a,b

(
ln

(
x e−at

eb1, t
τ

)
, a, b

)
1
|x|

da db, where b1 = e−aτ b. (12)

2.2. Convergence145

As it has been indicated previously, this subsection is devoted to investigate the relationship146

between the 1-PDF, f (x, t; τ), given in (12), as τ → 0+, and the 1-PDF, f (x, t), of the solution147

SP to random IPV (8). In order for the corresponding analysis makes sense (put τ → 0+ in the148

initial condition of (10)), we will take as initial condition in this latter IVP g0(ω) = ec(ω), so the149

solution SP to random IPV (8) is given by150

x(t;ω) = ec(ω) e(a(ω)+b(ω)) t .
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By applying the RVT method, it can be checked that the 1-PDF of x(t;ω) is given by151

f (x, t) =

∫
R2

fc,a,b
(
ln

(
x e−(a+b)t

)
, a, b

) 1
|x|

da db. (13)

In order to find out sufficient conditions that guarantee the convergence given in (9), where152

f (x, t; τ) and f (x, t) are given by (12) and (13), respectively, we first establish the following result153

that permits relating the delayed exponential function to the (classical) exponential function as154

the delay tends to zero. The proof of this result is based upon the ideas exhibited in [22, Theorem155

A.3.].156

Theorem 3 (Convergence of the delayed exponential function). Let c ∈ R, τ0 > 0, α = 1 +157

eτ0 |c| > 1. Then, for any τ ∈ ]0, τ0[,158

| ect − ec, t
τ | ≤ τ|c|

(
eα|c|T + e|c|(T−τ)

)
, t ∈ [0,T ].

If τ = 0 then ect = ec, t
τ .159

Proof Let τ ∈ ]0, τ0[. We will apply mathematical induction in order to prove that for any n ∈ N160

| ect − ec, t
τ | ≤ τ|c|

(
eα|c|nτ + e|c|(n−1)τ

)
, for t ∈ [(n − 1)τ, nτ]. (14)

• If n = 1, then t ∈ [0, τ] and, by the definition of the delayed exponential function given in161

(3), ec, t
τ = 1 + ct. Therefore, we must prove162

| ect −(1 + ct)| ≤ τ|c|
(
eα|c|τ +1

)
.

Applying the Fundamental Calculus Theorem (FCT) and the Mean Value Theorem (MVT)163

for integration, one derives164

| ect −(1 + ct)| ≤ | ect −1| + |ct| FCT
=

∣∣∣∣∣∣
∫ t

0

[
d
dx

(ecx)
]

dx

∣∣∣∣∣∣ + |c|t ≤
∫ t

0

∣∣∣∣∣ d
dx

(ecx)
∣∣∣∣∣ dx + |c|t

= |c|
∫ t

0
ecx dx + |c|t

t≤τ
≤ |c|

∫ τ

0
ecx dx + |c|τ

MVT
≤ |c|τ ecδ +|c|τ

(I)
≤ |c|τ

(
eα|c|τ +1

)
.

Now, we justify Step (I) previously applied.165

Step (I): By the MVT, δ ∈ [0, τ]. Let α > 1 , then166

cδ ≤ |c|δ ≤ |c|τ ≤ α|c|τ,

and, as the exponential is an increasing function, ecδ ≤ eα|c|τ.167

• Now, assuming that claim (14) is satisfied for n ≥ 1 (induction hypothesis), we will apply168

the FCT to prove inequality (14) for n + 1. Let t ∈ [nτ, (n + 1)τ],169
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| ec, t
τ − ect |

(II)
≤ |c|τ

(
eα|c|nτ + e|c|(n−1)τ

)
+

∫ (n+1)τ

nτ

∣∣∣∣∣ d
ds

(ec, s
τ − ecs)

∣∣∣∣∣ ds

= |c|τ
(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|

∫ (n+1)τ

nτ

∣∣∣ec, s−τ
τ − ecs

∣∣∣ ds

≤ |c|τ
(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|

∫ (n+1)τ

nτ

∣∣∣ec, s−τ
τ − ec(s−τ)

∣∣∣ ds

+ |c|
∫ (n+1)τ

nτ

∣∣∣ec(s−τ) − ecs
∣∣∣ ds

(III)
≤ |c|τ

(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|

∫ (n+1)τ

nτ
|c|τ

(
eα|c|nτ + e|c|(n−1)τ

)
ds

+ |c|
∫ (n+1)τ

nτ

∫ s

s−τ

∣∣∣∣∣ d
dσ

(ecσ)
∣∣∣∣∣ dσds

= |c|τ
(
eα|c|nτ + e|c|(n−1)τ

)
+ (|c|τ)2

(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|2

∫ (n+1)τ

nτ

∫ s

s−τ
ecσ dσds

(IV)
≤ |c|τ

(
eα|c|nτ + e|c|(n−1)τ

)
+ (|c|τ)2

(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|2

∫ (n+1)τ

nτ

∫ s

s−τ
eα|c|nτ+|c|τ dσds

= |c|τ
(
eα|c|nτ + e|c|(n−1)τ

)
+ (|c|τ)2

(
eα|c|nτ + e|c|(n−1)τ

)
+ |c|2τ2 eα|c|nτ+|c|τ

= |c|τ
(
eα|c|nτ

(
1 + |c|τ + |c|τ e|c|τ

)
+ e|c|(n−1)τ(1 + |c|τ)

)
(V)
≤ |c|τ

(
eα|c|(n+1)τ + e|c|nτ

)
.

Now, we justify Steps (II)–(V) previously applied.170

Step (II): By the FCT171 ∫ t

nτ

d
ds

(ec, s
τ − ecs)ds = ec, t

τ − ect − ec, nτ
τ + ecnτ .
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Then by the induction hypothesis and taking into account that t ≤ (n + 1)τ, we have172

| ec, t
τ − ect | ≤ | ec, nτ

τ − ecnτ | +

∫ t

nτ

∣∣∣∣∣ d
ds

(ec, s
τ − ecs)

∣∣∣∣∣ ds

≤ |c|τ
(
eα|c|nτ + e|c|(n−1)τ

)
+

∫ (n+1)τ

nτ

∣∣∣∣∣ d
ds

(ec, s
τ − ecs)

∣∣∣∣∣ ds.

Step (III): In this step we apply both the FCT and the hypothesis of induction (14).173

Step (IV): Following the same argument of Step (I), being α > 1174

cσ ≤ |c|σ ≤ |c|s ≤ |c|(n + 1)τ ≤ α|c|nτ + |c|τ,

so, ecσ ≤ eα|c|nτ+|c|τ.175

Step (V): Applying that ep ≥ 1 + p, ∀p ≥ 0 and taking α = 1 + e|c|τ0 , as 0 < τ ≤ τ0, then176

1 + |c|τ + |c|τ e|c|τ = 1 + |c|τ(1 + e|c|τ) ≤ 1 + |c|τ(1 + e|c|τ0 ) = 1 + α|c|τ ≤ eα|c|τ .

And analogously, 1 + |c|τ ≤ e|c|τ.177

This concludes the proof.178
�179

Before showing the convergence (9), we need to establish some technical results that will be180

required in the subsequent analysis.181

Let c ∈ R be arbitrary and let us take τ0 → 0+ (thus τ→ 0+, too) in Theorem 3. Then182

lim
τ→0+

ec,t
τ = ect, t ∈ [0,T ], (15)

where, according to Definition 3, t = (n−1)τ, n→ +∞ and τ→ 0+. Furthermore, as the delayed183

exponential function is continuous, one derives that184

if lim
τ→0+

f (τ) = f̂ , then lim
τ→0+

e f (τ), t
τ = e f̂ t , 0. (16)

In particular, if we take f (τ) = e−aτ b with a, b ∈ R fixed, as e−aτ b
τ→0+

−→ b in (16), then185

lim
τ→0+

ee−aτ b,t
τ = ebt , 0.

Therefore, there exists τ1 > 0 such that186

eb1,t
τ , 0, b1 = e−aτ b, ∀τ ∈ [0, τ1].

As a consequence of the continuity of the logarithm function and of the delayed exponential187

function (15), one further obtains188

lim
τ→0+

ln
(

x e−at

eb1,t
τ

)
= ln

(
x e−(a+b)t

)
.
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Therefore, for all ε > 0 there exists τ2 : 0 < τ2 ≤ τ1 such that189 ∣∣∣∣∣∣ln
(

x e−at

eb1, t
τ

)
− ln

(
x e−(a+b)t

)∣∣∣∣∣∣ < ε, ∀τ ∈]0, τ2[. (17)

To prove the convergence f (x, t; τ)
τ→0+

−→ f (x, t) introduced in (9), hereinafter the following190

hypotheses will be assumed191

H1 :
The random vector of coefficients (a(ω), b(ω)) is independent of the RV c(ω), i.e.,

fc,a,b(c, a, b) = fc(c) fa,b(a, b).
192

H2 :
fc(c) is Lipschitz continuous in R, i.e.,

∃ L fc ≥ 0 : | fc(c0,1) − fc(c0,2)| ≤ L fc |c0,1 − c0,2|, ∀c0,1, c0,2 ∈ R,

Let τ ∈]0, τ∗[: 0 < τ∗ < τ2 and (x, t) ∈ D(xτ(t;ω)) ∩ D(x(t;ω)) × [(n − 1)τ, nτ[⊂ R × [0,T ]193

being all of them fixed. Then, taking into account expressions (12) and (13), for ε∗ > 0 arbitrary194

| f (x, t; τ) − f (x, t)| =
1
|x|

∣∣∣∣∣∣
∫
R2

[
fc,a,b

(
ln

(
x e−at

eb1, t
τ

)
, a, b

)
− fc,a,b

(
ln

(
x e−(a+b)t

)
, a, b

)]
da db

∣∣∣∣∣∣
H1
=

1
|x|

∣∣∣∣∣∣
∫
R2

[
fc

(
ln

(
x e−at

eb1, t
τ

))
− fc

(
ln

(
x e−(a+b)t

))]
fa,b(a, b) da db

∣∣∣∣∣∣
≤

1
|x|

∫
R2

∣∣∣∣∣∣ fc
(
ln

(
x e−at

eb1, t
τ

))
− fc

(
ln

(
x e−(a+b)t

))∣∣∣∣∣∣ fa,b(a, b) da db

H2
≤

L fc

|x|

∫
R2

∣∣∣∣∣∣ln
(

x e−at

eb1, t
τ

)
− ln

(
x e−(a+b)t

)∣∣∣∣∣∣ fa,b(a, b) da db

(VI)
<

L fc

|x|
ε∗
|x|
L fc

∫
R2

fa,b(a, b) da db = ε∗,

where b1 = e−aτ b. In Step (VI), we have applied (17) with ε = ε∗ |x|L fC
> 0, while in the last step195

we have used that
∫
R2 fa,b(a, b) da db = 1, since fa,b(a, b) is a PDF.196

Summarizing, the following result has been established197

Theorem 4. Consider the random discrete delay differential equation (4) with g(t;ω) = ea(ω)t+c(ω)
198

and whose solution SP, xτ(t;ω), is given by (11). Assume that a(ω), b(ω) and c(ω) are absolutely199

continuous RVs being fc,a,b(c, a, b) their joint PDF. Then, the 1-PDF, f (x, t; τ), of the solution200

SP xτ(t;ω) is given by (12) at every time instant t where xτ(t;ω) , 0. Further assume that hy-201

potheses H1 and H2 hold, then f (x, t; τ) converges to the 1-PDF, f (x, t), of the solution SP to the202

random linear differential equation (8), according to (9).203

3. Case II: Computing the PDF of the solution SP and study of the convergence204

In this section we will analyze Case II following an analogous structure to the one exhibited205

in Section 2. Thus, we will consider random IVP (4) assuming that the initial condition is given206
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by a random polynomial of degree m207

g(t, ω) =

m∑
j=0

c j(ω) t j, m ≥ 0, (18)

where c j(ω), j = 0, 1, . . . ,m are absolutely continuous RVs defined on a common complete208

probability space (Ω,F ,P). For the sake of generality in the subsequent study, we will assume no209

independence among the involved random inputs, i.e., henceforth, we will assume that fw(w) is210

the PDF of the random vector w(ω) = (c0(ω), c1(ω), . . . , cm(ω), a(ω), b(ω)) made of polynomial211

coefficients, c j(ω), 0 ≤ j ≤ m of the initial condition given by (18), and of coefficients a(ω) and212

b(ω) of the random delayed differential equation (4).213

3.1. Computing the PDF214

In this case, according to expression (7), the solution SP xτ(t;ω) is given by215

xτ(t;ω) = ϕ0
τ(t, ω)c0(ω) +

m∑
j=1

ϕ
j
τ(t, ω)c j(ω), (19)

being216

ϕ0
τ(t, ω) = ea(ω)(t+τ) eb1(ω),t

τ −

∫ 0

−τ

a(ω) ea(ω)(t−s) eb1(ω), t−τ−s
τ ds, (20)

and217

ϕ
j
τ(t, ω) = ea(ω)(t+τ) eb1(ω),t

τ (−τ) j +

∫ 0

−τ

ea(ω)(t−s) eb1(ω), t−τ−s
τ ( j − a(ω)s)s j−1ds, j = 1, 2 . . . ,m,

(21)
where b1(ω) = e−a(ω)τ b(ω) and τ > 0 is a fixed delay.218

Remark 1. Notice that, in order to have a non-trivial solution, at least one coefficient c j(ω), in219

the initial condition
∑m

j=0 c j(ω)t j must be, in the probabilistic sense, different from zero. This220

fact is guaranteed since c j(ω), j = 0, 1, . . . ,m, are absolutely continuous RVs.221

Let t ∈ [(n − 1)τ, nτ[ be fixed, and let us apply the RVT method (Theorem 2) to obtain the222

PDF of the solution SP, xτ(t;ω), in terms of the PDF, fw(w), of the random vector w(ω) =223

(c0(ω), c1(ω), . . . , cm(ω), a(ω), b(ω)). To this end, we will define the following mapping r :224

Rm+3 −→ Rm+3 whose components are defined by225

x1 = r1(c0, c1, . . . , cm, a, b) = ϕ0
τ(t, a, b)c0 +

m∑
j=1

ϕ
j
τ(t, a, b)c j,

x2 = r2(c0, c1, . . . , cm, a, b) = c1,
x3 = r3(c0, c1, . . . , cm, a, b) = c2,
...

...
...

xm+1 = rm+1(c0, c1, . . . , cm, a, b) = cm,
xm+2 = rm+2(c0, c1, . . . , cm, a, b) = a,
xm+3 = rm+3(c0, c1, . . . , cm, a, b) = b.

11



Observe that, for the sake of clarity, in the previous expression we have emphasized that ϕ j
τ226

depends on a and b. The inverse mapping of r is s : Rm+3 −→ Rm+3 whose components are227

c0 = s1(x1, x2, . . . , xm+3) =
x1 −

∑m
j=1 ϕ

j
τ(t, xm+2, xm+3)x j+1

ϕ0
τ(t, xm+2, xm+3)

,

c1 = s1(x1, x2, . . . , xm+3) = x2,
c2 = s2(x1, x2, . . . , xm+3) = x3,
...

...
...

cm = sm+1(x1, x2, . . . , xm+3) = xm+1,
a = sm+2(x1, x2, . . . , xm+3) = xm+2,
b = sm+3(x1, x2, . . . , xm+3) = xm+3.

The Jacobian of mapping s is given by228

|Jm+3| =
1

|ϕ0
τ(t, xm+2, xm+3)|

, 0.

Notice that, the absolute value of the Jacobian is well-defined since a(ω) and b(ω) are abso-229

lutely continuous RVs, thus by (20) ϕ0
τ(t, xm+2, xm+3) is different from zero with probability one.230

Therefore, the PDF of the random vector x(ω) = (x1(ω), x2(ω), . . . , xm+3(ω)) in terms of the PDF231

of w(ω) = (c0(ω), c1(ω), . . . , cm(ω), a(ω), b(ω)) is given by232

fx(x) = fw

 x1 −
∑m

j=1 ϕ
j
τ(t, xm+2, xm+3)x j+1

ϕ0
τ(t, xm+2, xm+3)

, x2, . . . , xm+3

 1
|ϕ0
τ(t, xm+2, xm+3)|

.

Then, marginalizing with respect to the random vector (x2(ω), x3(ω), . . . , xm+3(ω)) = (c1(ω),233

. . . , cm(ω), a(ω), b(ω)), given τ > 0 and taking t ∈ [(n − 1)τ, nτ[ arbitrary, the 1-PDF of the234

solution SP xτ(t;ω) becomes235

f (x, t; τ) =

∫
Rm+2

fw

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

, c1, . . . , cm, a, b

 1
|ϕ0
τ(t, a, b)|

db da dcm · · · dc1. (22)

3.2. Convergence236

This subsection is addressed to study conditions in order to the 1-PDF, f (x, t; τ), given by237

(22), that corresponds to random IVP (4) with delay, converges to the 1-PDF, f (x, t), of the238

solution SP of the corresponding non-delayed random IVP239 {
x′(t;ω) = (a(ω) + b(ω))x(t;ω), t ≥ 0,
x(0;ω) = c0(ω). (23)

To compute the 1-PDF, f (x, t), notice that the solution SP of random IVP (23) is given by240

x(t;ω) = c0(ω) e(a(ω)+b(ω))t .

Then applying the RVT method (see Theorem 2), it is straightforward to check that241

f (x, t) =

∫
R2

fc0,a,b

(
x e−(a+b)t, a, b

)
e−(a+b)t db da. (24)
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Here, fc0,a,b(c0, a, b) stands for the joint PDF of the RVs c0(ω), a(ω) and b(ω), which is obtained242

by marginalizing the PDF, fc0,c1,...,cm,a,b(c0, c1, . . . , cm, a, b), with respect to the RVs c1(ω), . . . , cm(ω)243

(notice that by hypothesis this PDF is known),244

fc0,a,b(c0, a, b) =

∫
Rm

fc0,c1,...,cm,a,b(c0, c1, . . . , cm, a, b)dcm · · · dc1.

To prove the convergence f (x, t; τ)
τ→0+

−→ f (x, t) introduced in (9), hereinafter the following245

hypotheses will be assumed246

Ĥ1 :
c0(ω), c1(ω), . . . , cm(ω), a(ω), b(ω) are independent RVs, i.e.,

fc0,c1,...,cm,a,b(c0, c1, . . . , cm, a, b) = fc0 (c0) fc1 (c1) · · · fcm (cm) fa(a) fb(b).

Ĥ2 :
fc0 (c0) is Lipschitz continuous in R, i.e.,

∃ L fc0
: | fc0 (c0,1) − fc0 (c0,2)| ≤ L fc0

|c0,1 − c0,2|, ∀c0,1, c0,2 ∈ R.

Let τ ∈]0, τ∗[, where τ∗ will be specified later and (x, t) ∈ D(xτ(t;ω)) ∩ D(x(t;ω)) × [(n −247

1)τ, nτ[⊂ R × [0,T ] fixed, then taking into account (22) and (24)248

| f (x, t; τ) − f (x, t)| =

∣∣∣∣∣∣∣
∫
Rm+2

fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

, c1, . . . , cm, a, b

 1
|ϕ0
τ(t, a, b)|

db da dcm · · · dc1

−

∫
R2

fc0,a,b

(
x e−(a+b)t, a, b

)
e−(a+b)t db da

∣∣∣∣∣
(VII)
≤

∫
Rm+2

∣∣∣∣∣∣∣ fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

, c1, . . . cm, a, b

 1
|ϕ0
τ(t, a, b)|

− fc0,c1,...,cm,a,b

(
x e−(a+b)t, c1, . . . , cm, a, b

)
e−(a+b)t

∣∣∣∣ db da dcm · · · dc1

Ĥ1
=

∫
Rm+2

∣∣∣∣∣∣∣ fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

− fc0

(
x e−(a+b)t

)
e−(a+b)t

∣∣∣∣ fc1 (c1) · · · fcm (cm) fa(a) fb(b)db da dcm · · · dc1

≤

∫
Rm+2


∣∣∣∣∣∣∣ fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

− fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 e−(a+b)t

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 e−(a+b)t − fc0

(
x e−(a+b)t

)
e−(a+b)t

∣∣∣∣∣∣∣


× fc1 (c1) · · · fcm (cm) fa(a) fb(b)db da dcm · · · dc1
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249

=

∫
Rm+2

 fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

︸                            ︷︷                            ︸
(A)

∣∣∣∣∣∣ 1
|ϕ0
τ(t, a, b)|

− e−(a+b)t

∣∣∣∣∣∣︸                      ︷︷                      ︸
(B)

+

∣∣∣∣∣∣∣ fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 − fc0

(
x e−(a+b)t

)∣∣∣∣∣∣∣︸                                                    ︷︷                                                    ︸
(C)

e−(a+b)t︸ ︷︷ ︸
(D)


× fc1 (c1) · · · fcm (cm) fa(a) fb(b)db da dcm · · · dc1

(VIII)
<

∫
Rm+2


L fc0

(
ε0 + e|a|T e|b|T

) |x| + m∑
j=1

ε j|c j|

 + F0

 ε0

+L fc0

|x| ε0 +
(
ε0 + e|a|T e|b|T

) m∑
j=1

ε j|c j|

 e|a|T e|b|T


× fc1 (c1) · · · fcm (cm) fa(a) fb(b)db da dc1 · · · dcm

= ε0E

L fc0

(
ε0 + e|a(ω)|T e|b(ω)|T

) |x| + m∑
j=1

ε j|c j(ω)|

 + F0


+L fc0

E


|x| ε0 +

(
ε0 + e|a(ω)|T e|b(ω)|T

) m∑
j=1

ε j|c j(ω)|

 e|a(ω)|T e|b(ω)|T


= ε0E


L fc0

(
ε0 + e|a(ω)|T e|b(ω)|T

) |x| + m∑
j=1

ε j|c j(ω)|

 + F0




+L fc0
E


|x| ε0 e|a(ω)|T e|b(ω)|T +

(
ε0 e|a(ω)|T e|b(ω)|T + e2|a(ω)|T e2|b(ω)|T

) m∑
j=1

ε j|c j(ω)|




= ε0

L fc0

(
ε0 + E

[
e|a(ω)|T

]
E

[
e|b(ω)|T

]) |x| + m∑
j=1

ε jE
[
|c j(ω)|

] + F0


+L fc0

(
|x| ε0E

[
e|a(ω)|T

]
E

[
e|b(ω)|T

]
+

(
ε0E

[
e|a(ω)|T

]
E

[
e|b(ω)|T

]
+E

[
e2|a(ω)|T

]
E

[
e2|b(ω)|T

]) m∑
j=1

ε jE
[
|c j(ω)|

] .
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Let us justify the steps made throughout the previous expression.250

251

Step (VII): Let N > M, if the joint PDF, gxN (x1, . . . , xN), of a random vector, say,252

xN(ω) = (x1(ω), . . . , xM(ω), xM+1(ω), . . . , xN(ω))

is marginalized with respect to RVs xM+1(ω), . . . , xN(ω), the joint PDF of the random vector253

xM(ω) = (x1(ω), . . . , xM(ω)) is obtained via254

gxM (x1, . . . , xM) =

∫
RN−M

gxN (x1, . . . , xM , xM+1, . . . , xN) dxN · · · dxM+1.

Using the notation of previous development255

fc0,a,b (c0, a, b) =

∫
Rm

fc0,c1,...,cm,a,b (c0, c1, . . . , cm, a, b) dcm · · · dc1.

Therefore, substituting this expression in the left-hand side of (VII), this term can be expressed256

as257 ∣∣∣∣∣∣∣
∫
Rm+2

fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

db da dcm · · · dc1

−

∫
R2

fc0,a,b

(
x e−(a+b)t, a, b

)
e−(a+b)t dbda

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
Rm+2

fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

db da dcm · · · dc1

−

∫
R2

(∫
Rm

fc0,c1,...,cm,a,b

(
x e−(a+b)t, c1, . . . , cm, a, b

)
dc1 · · · dcm

)
e−(a+b)t db da

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
Rm+2

fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

db da dcm · · · dc1

−

∫
Rm+2

fc0,c1,...,cm,a,b

(
x e−(a+b)t, c1, . . . , cm, a, b

)
e−(a+b)t db da dc1 · · · dcm

∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
Rm+2

 fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

− fc0,c1,...,cm,a,b

(
x e−(a+b)t, c1, . . . , cm, a, b

)
e−(a+b)t

)
db da dcm · · · dc1

∣∣∣∣
≤

∫
Rm+2

∣∣∣∣∣∣∣ fc0,c1,...,cm,a,b

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 1
|ϕ0
τ(t, a, b)|

− fc0,c1,...,cm,a,b

(
x e−(a+b)t, c1, . . . , cm, a, b

)
e−(a+b)t

∣∣∣∣ db da dcm · · · dc1,
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which is just the right-hand side of (VII).258

Step (VIII): In this step we will prove that (A) and (D) are bounded, and (B) and (C) tend to zero259

as τ→ 0+.260

• Let us see that expression (B) tends to zero as τ→ 0+.261

According to (20), for each ω ∈ Ω, given a(ω) = a and b(ω) = b, it is known that262

ϕ0
τ(t, a, b) = ea(t+τ) eb1, t

τ −a
∫ 0
−τ

ea(t−s) eb1, t−τ−s
τ ds, then by the MVT and the convergence of263

the delayed exponential function to the exponential one, Theorem 3, we have264

lim
τ→0+

ϕ0
τ(t, a, b) = e(a+b)t .

By continuity, it is clear that 1/ϕ0
τ(t, a, b)

τ→0+

−→ 1/ e(a+b)t, then for all ε0 > 0 there exists τ1265

such that for every τ ∈]0, τ1[∩]0, τ0[ (being τ0 defined in Theorem 3),266 ∣∣∣∣∣∣ 1
ϕ0
τ(t, a, b)

−
1

e(a+b)t

∣∣∣∣∣∣ < ε0. (25)

• Let us see that expression (A) is bounded.267

Let F0 = fc0 (0) > 0, then by the Lipschitz condition, hypothesis Ĥ1,268

fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 ≤ L fc0

1
|ϕ0(t, a, b; τ)|

|x| + m∑
j=1

|ϕ
j
τ(t, a, b)||c j|

 + F0

≤ L fc0

(
ε0 + e|a|T e|b|T

) |x| + m∑
j=1

ε j|c j|

 + F0,

where last inequality is justified by formula (25),269 ∣∣∣∣∣∣ 1
ϕ0
τ(t, a, b)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
ϕ0
τ(t, a, b)

−
1

e(a+b)t

∣∣∣∣∣∣ +
1

e(a+b)t < ε0 + e−(a+b)t ≤ ε0 + e|a|T e|b|T , t ∈ [0,T ].

On the other hand, by (21), ϕ j
τ(t, a, b) = ea(t+τ) eb1, t

τ (−τ) j +
∫ 0
−τ

ea(t−s) eb1, t−τ−s
τ ( j− as)s j−1ds,270

1 ≤ j ≤ m, then by the MVT, the convergence of the delayed exponential function to the271

exponential function and, Theorem 3, we have272

lim
τ→0+

ϕ
j
τ(t, a, b) = 0, t ∈ [0,T ].

Thus, for each j = 1, . . . ,m and ε j > 0 arbitrary, there exists τ j+1 > 0 such that for every273

τ ∈]0, τ j+1[∩]0, τ0[274 ∣∣∣∣ϕ j
τ(t, a, b)

∣∣∣∣ < ε j. (26)

• Let us see that expression (C) tends to zero as τ→ 0+.275
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By the Lipschitz condition, hypothesis Ĥ1, and expressions (25)–(26), one derives276 ∣∣∣∣∣∣∣ fc0

 x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

 − fc0

(
x e−(a+b)t

)∣∣∣∣∣∣∣ ≤ L fc0

∣∣∣∣∣∣∣ x −
∑m

j=1 ϕ
j
τ(t, a, b)c j

ϕ0
τ(t, a, b)

− x e−(a+b)t

∣∣∣∣∣∣∣
≤ L fc0

|x|
∣∣∣∣∣∣ 1
ϕ0
τ(t, a, b)

− e−(a+b)t

∣∣∣∣∣∣ +
1

|ϕ0
τ(t, a, b; τ)|

m∑
j=1

|ϕ
j
τ(t, a, b)||c j|


< L fc0

|x| ε0 +
(
ε0 + e|a|T e|b|T

) m∑
j=1

ε j|c j|

 ,
with τ ∈ ∩m+1

j=0 ]0, τ j[.277

• Let us see that expression (D) is bounded. Indeed, it is clear that278

e−(a+b)t ≤ e|a|T e|b|T , t ∈ [0,T ].

Then, the right hand-side of the inequality of Step (VIII) is obtained.279

Finally, we use the definition of the expectation and the independence between the RVs a(ω),280

b(ω) and c j(ω), j = 1, 2, . . . ,m, obtaining the last expression.281

Now, we assume the following hypothesis in order to prove the convergence282

Ĥ3 : E
[(

e|a(ω)|T
)2
]

= ka < +∞, E
[(

e|b(ω)|T
)2
]

= kb < +∞, E
[
|c j|

]
= k j < +∞.

Notice that if E
[
(y(ω))2

]
= ky < ∞, then by the Cauchy-Schwarz inequality E

[
y(ω)

]
≤283

E
[
(y(ω))2

]1/2
= k1/2

y < ∞.284

Therefore, for τ ∈]0, τ∗[, τ∗ = min{τ j : 0 ≤ j ≤ m}, (x, t) ∈ D(xτ(t;ω)) ∩ D(x(t;ω)) × [(n −285

1)τ, nτ[⊂ R × [0,T ] all of them being fixed286

| f (x, t; τ) − f (x, t)| ≤ ε0

L fc0

(
ε0 + E

[
e|a(ω)|T

]
E

[
e|b(ω)|T

]) |x| + m∑
j=1

ε jE
[
|c j(ω)|

] + F0


+ L fc0

|x| ε0E
[
e|a(ω)|T

]
E

[
e|b(ω)|T

]
+ L fc0

(
ε0E

[
e|a(ω)|T

]
E

[
e|b(ω)|T

]
+ E

[
e2|a(ω)|T

]
E

[
e2|b(ω)|T

]) m∑
j=1

ε jE
[
|c j(ω)|

]

≤ ε0

L fc0

(
ε0 + k1/2

a k1/2
b

) |x| + m∑
j=1

ε jk j

 + F0


+ L fc0

|x| ε0k1/2
a k1/2

b +
(
ε0k1/2

a k1/2
b + kakb

) m∑
j=1

ε jk j

 .
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Summarizing, the following result has been established.287

Theorem 5. Consider the random discrete delay differential equation (4) with g(t;ω) given288

by (18) and whose solution SP, xτ(t;ω), is given by (19)–(21). Let us assume that w(ω) =289

(c0(ω), c1(ω), . . . , cm(ω), a(ω), b(ω)), is an absolutely continuous random vector being fw(w)290

their joint PDF. Then, the 1-PDF, f (x, t; τ), of the solution SP xτ(t;ω) is given by (22). Fur-291

ther assume that hypotheses Ĥ1–Ĥ3 hold, then f (x, t; τ) converges to the 1-PDF, f (x, t), of the292

solution SP to the random linear differential equation (23), according to (9).293

4. Numerical examples294

This section is devoted to illustrate our theoretical findings by means of several numerical295

experiments where the 1-PDF of the solution SP to random IVP (4) is computed in the two cases296

previously investigated. For the sake the clarity in the presentation, the explicit expressions297

of the 1-PDFs, in each one of the numerical examples, are reported in Appendix B since their298

mathematical representation are somewhat cumbersome. It is important to point out that we have299

chosen a wide variety of probability distributions for the input parameters a(ω), b(ω) and c(ω).300

Example 1. Let us consider random IVP (4) whose initial condition has the form g(t;ω) =301

ea(ω)t+c(ω), which corresponds to Case I. We will assume that a(ω), b(ω) and c(ω) are independent302

continuous absolutely RVs (hence hypothesis H1 is fulfilled) with the following distributions:303

• a(ω) is a Gaussian RV with zero mean and standard deviation 0.1, i.e., a(ω) ∼ N(0; 0.1).304

• b(ω) is a Beta RV with parameters 2 and 3, i.e., b(ω) ∼ Be(2; 3).305

• c(ω) is an Exponential RV with mean 1/20, i.e., c(ω) ∼ Exp(20).306

Since the first derivative of the PDF of RV c(ω) is bounded, hypothesis H2 also holds. Therefore,307

assumptions of Theorem 4 are fulfilled. Now, we check numerically that the 1-PDF, f (x, t; τ),308

of the solution SP of random IVP (4) with g(t;ω) = ea(ω)t+c(ω) converges to the 1-PDF, f (x, t),309

of the solution SP of random IVP (8). To this end, in Figure 1 we have plotted f (x, t) together310

with f (x, t; τ) with different delays τ ∈ {0.01, 0.05, 0.1, 0.5, 2} at different time instants t = 0.1,311

t = 0.5 and t = 1. From this graphical representation we can observe that f (x, t; τ) converges312

rapidly to f (x, t) as τ → 0+. To numerically assess this convergence, in Table 1 we show the313

error between f (x, t) and f (x, t; τ) for the values of the delays and the time instants previously314

indicated, according to the following error measure315

ePDF
τ (t) =

∫
R
| f (x, t; τ) − f (x, t)| dx. (27)

We observe that for t fixed, the error ePDF
τ (t) decreases as τ → 0+, as expected. We also observe316

that the velocity of the convergence decreases as t increases.317

Example 2. In this second example we consider that the initial condition in random IVP (4) is318

a polynomial of degree m, g(t;ω) =
∑m

j=0 c j(ω)t j, m ≥ 0 which corresponds with Case II studied319

before. We will consider two problems, when the initial condition is a constant RV (i.e., random320

polynomial of degree m = 0) and when is a random polynomial of degree m = 1.321

Problem 1: g(t;ω) = c0(ω).322

323

Let T = 0.5 and assume that a(ω), b(ω) and c0(ω) are independent RVs (hence hypothesis324

Ĥ1 is fulfilled) with the following distributions:325
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t=0.1
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f1(x,t;0.05)
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Figure 1: Graphical representation of the PDFs, f (x, t) and f (x, t; τ), with different delays τ ∈ {0.01, 0.05, 0.1, 0.5, 2}, at
different time instants: t = 0.1 (top), t = 0.5 (center) and t = 1 (bottom) in the context of Example 1.
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ePDF
τ (t) τ = 2 τ = 0.5 τ = 0.1 τ = 0.05 τ = 0.01

t = 0.10 0.040793 0.027599 0.021251 0.015753 0.003949
t = 0.50 0.215938 0.172538 0.061891 0.032553 0.006153
t = 1.00 0.382194 0.252025 0.069224 0.035766 0.007786

Table 1: Error measure ePDF
τ (t), defined by (27), with different delays τ ∈ {0.01, 0.05, 0.1, 0.5, 2}, at different time instants,

t ∈ {0.1, 0.5, 1}, in the context of Example 1.

• a(ω) follows a truncated Gaussian distribution on the interval I = [−1, 1] with zero mean326

and standard deviation 0.1, i.e., a(ω) ∼ NI(0; 0.1).327

• b(ω) is an Exponential RV with mean 1/50, i.e., b(ω) ∼ Exp(50).328

• c0(ω) is a Beta RV with parameters 2 and 3, i.e., c0(ω) ∼ Be(2; 3).329

Since f ′c0
(c0) is bounded, hypothesis Ĥ2 also holds. Finally, we compute the three values330

given in hypothesis Ĥ3 with T = 0.5, obtaining331

ka = 1.08507, kb = 1.02041, k0 = 0.4,

which are all finite. Therefore, assumptions of Theorem 5 hold. Now, as in the previous example,332

in order to see the convergence of f (x, t; τ) to f (x, t), in Figure 2 we have plotted f (x, t) together333

with f (x, t; τ) with different delays τ ∈ {0.1, 0.5, 1, 2, 3} at the time instants t = 0.1 and t = 0.5.334

In addition, in Table 2 we have calculated the error given in formula (27). From both we can see335

graphical and numerical the convergence as τ→ 0+.336

t=0.1

f(x,t)

f(x,t;3)

f(x,t;2)
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f(x,t;0.5)
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x

0.66
0.68
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0.72
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0.76

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0.5
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t=0.5
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f(x,t;0.1)
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x

0.5

1.0

1.5

Figure 2: Graphical representation of the PDFs f (x, t) and f (x, t; τ), with different delays τ ∈ {0.1, 0.5, 1, 2, 3}, at different
time instants t = 0.1 (left) and t = 0.5 (right) in the context of Problem 1 in Example 2.

In addition, in Figure 3 the mean and the variance of x(t;ω) and xτ(t;ω) for different τ ∈337

{0.1, 0.5, 1, 2, 3} in the time interval [0, 0.5] have been represented. To calculate the mean and338

the variance of xτ(t;ω) we have used the expressions of E[xτ(t;ω)] and V[xτ(t;ω)], respectively,339

given in (6), where f (x, t; τ) is defined by (22). In a similar way we have computed the mean and340

the variance of x(t;ω) but using (24). We can observe the convergence as τ → 0+. For sake of341

clarity, the error defined by (28) has been calculated in Table 3.342
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ePDF
τ (t) τ = 3 τ = 2 τ = 1 τ = 0.5 τ = 0.1

t = 0.10 0.425626 0.261867 0.098525 0.028427 0.001875
t = 0.50 0.449224 0.287860 0.115015 0.043369 0.005402

Table 2: Error measure ePDF
τ (t), defined by (27), with different delays τ ∈ {0.1, 0.5, 1, 2, 3}, at different time instants,

t ∈ {0.1, 0.5}, in the context of Problem 1 of Example 2.

eEτ =

∫ T

0
|E[xτ(t;ω)] − E[x(t;ω)]| dt, eVN =

∫ T

0
|V[xτ(t;ω)] − V[x(t;ω)]| dt. (28)
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[x2(t,ω)]
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Figure 3: Graphical representation of the mean (left) and the variance (right) of the solutions SP x(t;ω) and xτ(t;ω), with
different delays τ ∈ {0.01, 0.05, 0.1, 0.5, 2}, at the time interval [0, 1] in the context of Problem 1 in the Example 2.

τ = 3 τ = 2 τ = 1 τ = 0.5 τ = 0.1
eEτ 0.0218545 0.0101997 0.00301312 0.000995992 0.00011704
eVτ 0.049849 0.0214272 0.00574011 0.00172316 0.000165323

Table 3: Error measures eEτ and eVτ , defined by (28), with different delays τ ∈ {0.1, 0.5, 1, 2, 3}, in the context of Problem 1
in Example 2.

Problem 2: g(t;ω) = c0(ω) + c1(ω)t.343

344

We take T = 0.5 and we will assume that a(ω), b(ω), c0(ω) and c1(ω) are independent RVs345

(hence hypothesis Ĥ1 is fulfilled) with the following distributions:346

• a(ω) is a Beta RV with parameters 2 and 3, i.e., a(ω) ∼ Be(2; 3).347

• b(ω) follows a Gaussian distribution with mean −1 and standard deviation 0.2, i.e., b(ω) ∼348

N(−1; 0.2).349

• c0(ω) is a Uniform RV in the interval [−1, 1], i.e., c0(ω) ∼ U([−1, 1]).350
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• c1(ω) follows an Exponential distribution with mean 1/20, i.e., c1(ω) ∼ Exp(20).351

Since c0(ω) follows a Uniform distribution, then its PDF is a constant and therefore the352

derivative of the PDF is 0, then hypothesis Ĥ2 also holds. Finally, we compute the three values353

given in hypothesis Ĥ3 with T = 0.5, obtaining354

ka = 1.52247, kb = 2.77319, k0 = 0.5, k1 = 0.05,

which are all finite. Therefore, assumptions of Theorem 5 are satisfied. Now, as in the previous355

example, in order to see the convergence of f (x, t; τ) to f (x, t), in Figure 4 we have plotted f (x, t)356

together with f (x, t; τ) with different delays τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5} at time instants t =357

0.1 and t = 0.5. In addition, in Table 4 we have calculated the error given in formula (27). From358

both we can see graphical and numerical the convergence as τ→ 0+.359
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Figure 4: Graphical representation of the PDFs f (x, t) and f (x, t; τ), with different delays τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5},
at different time instants t = 0.1 (left) and t = 0.5 (right) in the context of Problem 2 in Example 2.

ePDF
τ (t) τ = 2.5 τ = 2 τ = 1.5 τ = 1

t = 0.10 0.853492 0.666295 0.454429 0.236062
t = 0.50 0.808335 0.639961 0.440874 0.248945

ePDF
τ (t) τ = 0.5 τ = 0.1 τ = 0.05

t = 0.10 0.0631106 0.00712427 0.00581714
t = 0.50 0.182441 0.0520957 0.0178104

Table 4: Error measure ePDF
τ (t), defined by (27), with different delays τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5}, at different time

instants: t ∈ {0.10, 0.50}, in the context of Problem 2 in Example 2.

In Figure 5 the mean and the variance of f (x, t) and f1(x, t; τ) for different τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5}360

in the time interval [0, 0.5] have been represented. We can observe the convergence as τ → 0+.361

As in the previous Problem 1, in Table 5 we show the error for the mean and the variance defined362

by (28). We observe that the difference of these errors becomes smaller as τ goes to zero.363
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Figure 5: Graphical representation of the mean (left) and the variance (right) of the solutions SP x(t;ω) and xτ(t;ω), with
different delays τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5}, at the time interval [0, 0.5] in the context of Problem 2 of Example 2.

τ = 2.5 τ = 2 τ = 1.5 τ = 1
eEτ 0.0642834 0.0434024 0.0258283 0.0121818
eVτ 0.11049 0.0967728 0.0742367 0.0479234

τ = 0.5 τ = 0.1 τ = 0.05
eEτ 0.0033024 0.000101439 0.000011333
eVτ 0.0282562 0.0208731 0.0194024

Table 5: Error measures eEτ and eVτ , defined by (28), with different delays τ ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5}, in the context
of Problem 2 in Example 2.
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5. Conclusions364

The main goal of the paper has been to compute the first probability density function (1-PDF)365

of the solution stochastic process of an important class of random linear differential equations366

with discrete delay. The study has been split into two cases depending on the functional form of367

the initial condition. It is important to point out that the success of our approach relies upon the368

knowledge of an explicit expression of the solution. Otherwise, RVT method would need to be369

combined with numerical strategies. In the examples, we have shown how to compute the mean370

and the variance of the solution stochastic process from the 1-PDF. It is important to point out371

that the analysis performed in this contribution is also useful to deal with other types of initial372

conditions different from the ones presented here. To the best of our knowledge, this is the first373

time that this class of random differential equations with delay are studied following the proposed374

approach. In a future contribution, we plan to go a step forward by studying the case which the375

coefficients of the differential equation are stochastic processes rather than random variables.376
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390

Appendix A. Proof of Theorem 1: Existence and uniqueness of the solution391

First, we will show how to construct the solution given in expression (2). To this end, first it392

is convenient to construct the solution of the following IVP393 {
x′τ(t) = bxτ(t − τ), t > 0, τ > 0,
xτ(t) = 1, −τ ≤ t ≤ 0, (A.1)

which corresponds to the IVP (1) with a = 0 and g(t) = 1. We will see that its solution is the394

delayed exponential function, xτ(t) = eb, t
τ . This fact will check in the subintervals [−τ, 0], [0, τ],395

[τ, 2τ], . . .:396

• If t ∈ [−τ, 0], it is clear, taken into account the definition of the delayed exponential func-397

tion (see (3)), that xτ(t) = 1 = eb, t
τ , −τ ≤ t ≤ 0, satisfies the IVP (A.1).398
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• If t ∈ [0, τ], we integrate the DDE in (A.1) on the interval [0, t]399 ∫ t

0
x′τ(s) ds =

∫ t

0
bxτ(s − τ) ds.

As s ∈ [0, t] and t ∈ [0, τ], s− τ ∈ [−τ, 0], then by the definition of the delayed exponential400

function xτ(s − τ) = 1. Therefore, applying the FCT401

xτ(t) − xτ(0) =

∫ t

0
b ds

xτ(0)=1
=⇒ xτ(t) = 1 + bt = eb, t

τ , 0 ≤ t ≤ τ.

• If t ∈ [τ, 2τ], we integrate the DDE in (A.1) on the interval [τ, t]402 ∫ t

τ

x′τ(s) ds =

∫ t

τ

bxτ(s − τ) ds.

Analogously, s ∈ [τ, t] and t ∈ [τ, 2τ] implies s − τ ∈ [0, τ], then, by the previous step,403

xτ(s − τ) = 1 + b(s − τ). Therefore, applying the FCT and integrating one gets404

xτ(t)−xτ(τ) =

∫ t

τ

b(1+b(s−τ)) ds
xτ(τ)=1+bτ

=⇒ xτ(t) = 1+bt+b2 (t − τ)2

2
= eb, t

τ , τ ≤ t ≤ 2τ.

Following this reasoning, it is straightforward we conclude by induction that the solution of IVP405

(A.1) is given by xτ(t) = eb, t
τ , for each t ∈ [(n − 1)τ, nτ], n = 0, 1, 2, . . ..406

On the other hand, suppose that the initial condition in (A.1) is a time-dependent function xτ(t) =407

g(t), with −τ ≤ t ≤ 0. By the method of variation of constants [], the solution can be written as408

xτ(t) = x∗τ(t)c +

∫ 0

−τ

x∗τ(t − τ − s)φ′(s) ds, (A.2)

being x∗τ(t) = eb, t
τ the solution of (A.1), c an unknown constant and φ(s) is an unknown continu-409

ously differentiable function which must be determined. If −τ ≤ t ≤ 0, then xτ(t) = g(t). Thus,410

substituting in (A.2)411

g(t) = x∗τ(t)c +

∫ 0

−τ

x∗τ(t − τ − s)φ′(s) ds, −τ ≤ t ≤ 0.

We split this integral into the two following integrals412

g(t) = x∗τ(t)c +

∫ t

−τ

x∗τ(t − τ − s)φ′(s) ds +

∫ 0

t
x∗τ(t − τ − s)φ′(s) ds.

Now, by the properties of the delayed exponential function x∗τ(t) = eb, t
τ one gets413

• −τ ≤ t ≤ 0 implies x∗τ(t) = 1.414

• When s ∈ [−τ, t], then t − τ − s ∈ [−τ, 0]. Therefore, x∗τ(t − τ − s) = 1.415

• When s ∈ [t, 0], then t − τ − s ∈ [−2τ,−τ]. Therefore, x∗τ(t − τ − s) = 0 if s , t and416

x∗τ(t − τ − s) = 1 if s = t.417
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Thus,418

g(t) = c +

∫ t

−τ

φ′(s) ds FCT
= c + φ(t) − φ(−τ).

Therefore, we can take in (A.2) φ(t) = g(t) and c = g(−τ) so that the previous equation fulfils.419

Summarizing, the solution is given by420

xτ(t) = eb, t
τ g(−τ) +

∫ 0

−τ

eb, t−τ−s
τ g′(s) ds. (A.3)

Now, we are ready to build the solution of the IVP (1). To this end, we will follow the same421

argument as before, so first we will construct the solution of the IVP422 {
x′τ(t) = axτ(t) + bxτ(t − τ), t > 0, τ > 0,
xτ(t) = eat, −τ ≤ t ≤ 0, (A.4)

where the initial condition eat is chosen in order to consider the non-delayed part axτ(t). In this423

case, and by the result obtained for the IVP (A.1), the solution must be of the form xτ(t) =424

eat eb1, t
τ . We will determine b1 by imposing that xτ(t) = eat eb1, t

τ satisfies the DDE displayed in425

IVP (A.4):426

x′τ(t) = d
dt

(
eat eb1, t

τ

)
= a eat eb1, t

τ + eat b1 eb1, t−τ
τ

= axτ(t) + b1 eaτ ea(t−τ) eb1, t−τ
τ

= axτ(t) + b1 eaτ xτ(t − τ).
(A.5)

Notice that we have used the differentiating rule: d
dt

(
eb1, t
τ

)
= b1 eb1, t−τ

τ . This derivative can427

be directly checked by computing the derivative of the delayed exponential in each subinterval428

from its definition (see (3)). Comparing (A.5) with (A.4) is enough taking b1 eaτ = b so that429

x∗τ(t) = eat eb1, t
τ with b1 = e−aτ b be a solution of the DDE of (A.4). As we are interested in430

computing the solution of the IVP (1) whose initial condition is a time-dependent function g(t),431

we will use the method of variation of constants again. So, we seek a solution of the IVP (1) in432

the form,433

xτ(t) = x∗τ(t)c +

∫ 0

−τ

x∗τ(t − τ − s)φ(s) ds, (A.6)

where x∗τ(t) = eat eb1, t
τ with b1 = e−aτ b, c is an unknown constant and φ(s) is an unknown434

continuously differentiable function that must be calculated. As before, we choose c and φ(s) so435

that the initial condition is satisfied, xτ(t) = g(t), −τ ≤ t ≤ 0, i.e.,436

g(t) = x∗τ(t)c +

∫ 0

−τ

x∗τ(t − τ − s)φ(s) ds, −τ ≤ t ≤ 0. (A.7)

To obtain c, we set t = −τ. Then, by the definition of the delayed exponential function one gets437

• x∗τ(−τ) = e−aτ.438

• s ∈ [−τ, 0], then t − τ − s = −2τ − s ∈ [−2τ,−τ]. Then, x∗τ(t − τ − s) = 0 if −τ < s ≤ 0 and439

x∗τ(t − τ − s) = 1 if s = −τ.440

Therefore, substituting in (A.7), g(−τ) = e−aτ c and isolating c we obtain c = eaτ g(−τ). To441

determine the function φ(t), we split the integral in expression (A.7) into two integrals442

g(t) = x∗τ(t)c +

∫ t

−τ

x∗τ(t − τ − s)φ(s) ds +

∫ 0

t
x∗τ(t − τ − s)φ(s) ds. (A.8)
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Following the same reasoning, by the definition of the delayed exponential function one deduces443

• x∗τ(t) = eat.444

• In the first integral, s ∈ [−τ, t], then t−τ−s ∈ [−τ, t] ⊂ [−τ, 0]. Then, x∗τ(t−τ−s) = ea(t−τ−s).445

• In the second integral, s ∈ [t, 0], then t−τ−s ∈ [t−τ,−τ] ⊂ [−2τ,−τ]. Then, x∗τ(t−τ−s) = 0446

if t < s ≤ 0 and x∗τ(t − τ − s) = e−aτ if s = t.447

Therefore, substituting in (A.8) and taking into account that c = eaτ g(−τ),448

g(t) = ea(t+τ) g(−τ) +

∫ t

−τ

ea(t−τ−s) φ(s) ds. (A.9)

Differentiating relation (A.9), by general Leibniz rule, we obtain449

g′(t) = a ea(t+τ) g(−τ) + a
∫ t

−τ

ea(t−τ−s) φ(s) ds + e−aτ φ(t). (A.10)

Solving the system (A.9)–(A.10), we obtain450

φ(t) = eaτ(g′(t) − ag(t)).

Finally, substituting x∗τ(t) = eat eb1, t
τ with b1 = e−aτ b, c = eaτ g(−τ) and φ(t) = eaτ(g′(t) − ag(t))451

in (A.6), we obtain the solution given in (2) to the IVP (1).452

Uniqueness follows because the function f (t, x, y) = ax + by defining the right-hand side of the453

DDE (1) (with x ≡ xτ and y ≡ xτ(t − τ)) is continuous with respect to t for every x and y, and it454

is locally Lipschitzian with respect to x and y because is linear [23, p.296].455

456

Appendix B. Explicit expressions for the 1-PDFs in the Examples 1 and 2457

Example 1: a(ω), b(ω) and c(ω) are independent RVs
(
fc,a,b(c, a, b) = fc(c) fa(a) fb(b)

)
with458

the following distributions459

• a(ω) ∼ N(µ = 0;σ = 0.1)460

fa(a) =
1

√
2πσ2

e−
(a−µ)2

2σ2 =
1

√
0.02π

e−
a2

0.02 , a ∈ R.

• b(ω) ∼ Be(α = 2; β = 3)461

fb(b) =
Γ(α + β)
Γ(α)Γ(β)

bα−1(1 − b)β−1 = 12b(1 − b)2, b ∈]0, 1[, (0, in otherwise).

• c(ω) ∼ Exp(λ = 20)462

fc(c) = λ e−λ c = 20 e−20c, c > 0, (0, in otherwise).
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We compute the 1-PDF of the solution SP of the IVP (8), substituting the above distributions in463

expression (13)464

f (x, t) =

∫ 1

0

∫ ∞

−∞

fc
(
ln

(
x e−(a+b)t

))
fa(a) fb(b)

1
|x|

da db

=

∫ 1

0

∫ ∞

−∞

fc
(
ln

(
x e−(a+b)t

)) 1
√

0.02π
e−

a2
0.02 12b(1 − b)2 1

|x|
da db .

Since c = c(ω) has an Exponential distribution, the last integral must be calculated taking into465

account the condition ln
(
x e−(a+b)t

)
> 0. This is the reason why we have not performed the formal466

substitution fc
(
ln

(
x e−(a+b)t

))
= 20

(
x e−(a+b)t

)−20
in the previous expression for f (x, t).467

Now, we determine the expression of the 1-PDF of the solution SP to the IVP (4), substituting468

the above distributions in expression (12)469

f (x, t; τ) =

∫ 1

0

∫ ∞

−∞

fc

(
ln

(
x e−at

eb1, t
τ

))
fa(a) fb(b)

1
|x|

da db

=

∫ 1

0

∫ ∞

−∞

fc

(
ln

(
x e−at

eb1, t
τ

))
1

√
0.02π

e−
a2

0.02 12b(1 − b)2 1
|x|

da db ,

where b1 = e−aτ b. Again, this last double integral must be calculated taking into account the470

condition ln
(

x e−at

eb1 , t
τ

)
> 0.471

Example 2, Problem 1: a(ω), b(ω) and c0(ω) are independent RVs with the following distribu-472

tions473

• a(ω) ∼ NI(µ = 0;σ = 0.1), with I = [α, β] = [−1, 1].474

fa(a) =
φ
(

a−µ
σ

)
σ

(
Φ

(
β−µ
σ

)
− Φ

(
α−µ
σ

)) , where φ(x) =
1
√

2π
e−

x2
2 , and Φ(x) =

1
2

(
1 + erf

(
x
√

2

))
,

being erf(x) the error function, defined by erf(x) = 2
√
π

∫ x
0 e−t2

dt.475

Notice that, in this case, it can be proved that Φ
(
β−µ
σ

)
− Φ

(
α−µ
σ

)
= 1. Then,476

fa(a) =
1

√
0.02π

e−
a2

0.02 , a ∈ [−1, 1], (0, in otherwise).

• b(ω) ∼ Exp(λ = 50)477

fb(b) = 50 e−50b, b > 0, (0, in otherwise).

• c0(ω) ∼ Be(α = 2; β = 3)478

fc0 (c0) = 12c0(1 − c0)2, c0 ∈]0, 1[, (0, in otherwise).
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We compute the 1-PDF of the solution SP of the IVP (8), substituting the above distributions in479

expression (24):480

f (x, t) =

∫ 1

−1

∫ +∞

0
fc0

(
x e−(a+b)t

)
fa(a) fb(b) e−(a+b)t db da

=

∫ 1

−1

∫ +∞

0
fc0

(
x e−(a+b)t

) 1
√

0.02π
e−

a2
0.02 50 e−50b e−(a+b)t db da .

This integral must be calculated taking into account the restriction 0 < x e−(a+b)t < 1 since fc0 (·)481

is the PDF of a Beta random variable.482

Now, we determine the expression of the 1-PDF of the solution SP of the IVP (4), substituting483

the above distributions in expression (22)484

f (x, t; τ) =

∫ 1

−1

∫ +∞

0
fc0

(
x

ϕ0
τ(t, a, b)

)
fa(a) fb(b)

1
|ϕ0
τ(t, a, b)|

db da

=

∫ 1

−1

∫ +∞

0
fc0

(
x

ϕ0
τ(t, a, b)

)
1

√
0.02π

e−
a2

0.02 50 e−50b 1
|ϕ0
τ(t, a, b)|

db da,

where ϕ0
τ(t, a, b) is defined by (20) being b1(ω) = e−a(ω)τ b(ω), τ > 0. As c0(ω) has a Beta485

distribution, this integral must be calculated taking into account the condition 0 < x/ϕ0
τ(t, a, b) <486

1.487

Example 2, Problem 2: a(ω), b(ω), c0(ω) and c1(ω) are independent RVs with the following488

distributions489

• a(ω) ∼ Be(α = 2; β = 3)490

fa(a) = 12a(1 − a)2, a ∈]0, 1[, (0, in otherwise).

• b(ω) ∼ N(µ = −1;σ = 0.2)491

fb(b) =
1

√
2πσ2

e−
(ba−µ)2

2σ2 =
1

√
0.08π

e−
(b+1)2

0.08 , b ∈ R.

• c0(ω) ∼ U([u1 = −1, u2 = 1])492

fc0 (c0) =
1

u2 − u1
=

1
2
, c0 ∈] − 1, 1[, (0, in otherwise).

• c1(ω) ∼ Exp(λ = 20)493

fc1 (c1) = 20 e−20c1 , c1 > 0, (0, in otherwise).

We compute the 1-PDF of the solution SP of the IVP (8), substituting the above distributions in494

expression (24)495

f (x, t) =

∫ 1

0

∫ +∞

−∞

fc0

(
x e−(a+b)t

)
fa(a) fb(b) e−(a+b)t db da

=

∫ 1

0

∫ +∞

−∞

fc0

(
x e−(a+b)t

)
12a(1 − a)2 1

√
0.08π

e−
(b+1)2

0.08 e−(a+b)t db da ,
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where this last double integral must be calculated taking into account the condition−1 < x e−(a+b)t <496

1 since c0(ω) ∼ U([−1, 1]).497

Now, we determine the expression of the 1-PDF of the solution SP of the IVP (4), substituting498

the above distributions in expression (22)499

f (x, t; τ) =

∫ +∞

0

∫ 1

0

∫ +∞

−∞

fc0

(
x − ϕ1

τ(t, a, b)c1

ϕ0
τ(t, a, b)

)
fc1 (c1) fa(a) fb(b)

1
|ϕ0
τ(t, a, b)|

db da dc1

=

∫ +∞

0

∫ 1

0

∫ +∞

−∞

fc0

(
x − ϕ1

τ(t, a, b)c1

ϕ0
τ(t, a, b)

)
20 e−20c1 12a(1 − a)2 1

√
0.08π

e−
(b+1)2

0.08
1

|ϕ0
τ(t, a, b)|

db da dc1

=

∫ +∞

0

∫ 1

0

∫ +∞

−∞

fc0

(
x − ϕ1

τ(t, a, b)c1

ϕ0
τ(t, a, b)

)
240
√

0.08π
e
−

(
(b+1)2

0.08 +20c1

)
a(1 − a)2

|ϕ0
τ(t, a, b)|

db da dc1 ,

where ϕ0
τ(t, a, b) and ϕ1

τ(t, a, b) are defined by (20) and (21) (for j = 1), being b1(ω) = e−a(ω)τ b(ω),500

τ > 0. The last triple integral must be calculated taking into account the following condition501

−1 < (x − ϕ1
τ(t, a, b)c1)/ϕ0

τ(t, a, b) < 1 since c0(ω) ∼ U([−1, 1]).502

Remark: Finally, we point out that the integrals defining f (x, t) and f (x, t; τ), in Example 1 and503

in Example 2 (Problems 1 and 2), have been computed numerically by Mathematica c© package.504
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probabilistic solution: A comprehensive study, Abstract and Applied Analysis 2016–ID6372108 (2016) 1–22.556

doi:10.1155/2016/6372108.557

[22] D. Y. Khusainov, M. Pokojovy, Solving the linear 1d thermoelasticity equations with pure delay, International558

Journal of Mathematics and Mathematical Siences 2015 (2015) 1–11. doi:10.1155/2015/479267.559

[23] R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York, 1977.560

31


