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3Facultad de Ciencias Económicas, Universidad laica Eloy Alfaro de Manabı́, Manta, Ecuador

Correspondence should be addressed to Eulalia Mart́ınez; eumarti@mat.upv.es

Received 5 October 2018; Revised 10 December 2018; Accepted 13 December 2018; Published 2 January 2019

Academic Editor: Changzhi Wu

Copyright © 2019 Ramandeep Behl et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity𝑚 ≥ 1. An
extensive convergence analysis is presented with the main theorem in order to demonstrate the optimal eighth-order convergence
of the proposed scheme.Moreover, a local convergence study for the optimal fourth-order method defined by the first two steps of
the newmethod is presented, allowing us to obtain the radius of the local convergence ball. Finally, numerical tests on some real-life
problems, such as a Van der Waals equation of state, a conversion chemical engineering problem, and two standard academic test
problems, are presented, which confirm the theoretical results established in this paper and the efficiency of this proposed iterative
method.We observed from the numerical experiments that our proposed iterativemethods have good values for convergence radii.
Further, they not only have faster convergence towards the desired zero of the involved function but also have both smaller residual
error and a smaller difference between two consecutive iterations than current existing techniques.

1. Introduction

The construction of higher-order optimal multipoint itera-
tive methods for locating multiple zeros with multiplicity𝑚 ≥ 1 of the involved function 𝑓 (where 𝑓 : 𝐷 ⊂
R 󳨀→ R is analytic in the enclosed region enclosing the
required zero) is one of the toughest, most challenging,
and most important tasks in the field of numerical analy-
sis. Paramount importance of optimal multipoint iterative
methods in the class of multipoint iteration functions is
because they overcome theoretical limitations of one-point
iterative methods regarding both computational efficiency
and order of convergence (for details one can see some
standard text books such as Traub [1] and Petkov́ıc et al.
[2]).

No doubts with the advancement of digital computer,
advanced computer arithmetic, and symbolic computa-
tion, the construction of higher-order multipoint methods
becomes more vital and popular because the calculation of
asymptotic error constant term or error equations of iterative

methods for multiple zeros is quite easier than in the earlier
times. Therefore, in the last decade, several scholars from
worldwide like Li et al. [3] in 2009, Neta [4] and Li et
al. [5] in 2010, Zhou et al. [6] in 2011, Sharifi et al. [7]
in 2012, Soleymani and Babajee [8], Soleymani et al. [9],
and Zhou et al. [10] in 2013, Hueso et al. [11] and Behl
et al. [12] in 2015, and Behl et al. [13] in 2016 proposed
fourth-order multipoint iterative methods. Only the iterative
methods/schemes presented by Li et al. [5] (except only two
methods) and Neta’s [4] are nonoptimal and the rest of the
above listed multipoint methods are optimal according to
the classical Kung-Traub conjecture [14]. Most of them are
the extension of modified Newton’s method (also known as
Rall’s method [1]) or Newton-like method at the expense of
additional functional evaluations or increase the substep of
the original methods.

In recent years, many researchers have tried to construct
optimal iterative schemes for multiple zeros of the involved
function with multiplicity 𝑚 ≥ 1 that present order of
convergence greater than four.
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In 2015, Geum et al. [15] proposed a two-point sixth-
order iterative scheme based on a bivariate weight function
approach for multiple zeros, which is given as follows:

𝑦𝑛 = 𝑥𝑛 − 𝑚 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) , 𝑚 > 1,
𝑥𝑛+1 = 𝑦𝑛 − 𝑄 (𝑢𝑛, 𝑠𝑛) 𝑓 (𝑦𝑛)𝑓󸀠 (𝑦𝑛) ,

(1)

where 𝑢𝑛 = 𝑚√𝑓(𝑦𝑛)/𝑓(𝑥𝑛), 𝑠𝑛 = 𝑚−1√𝑓󸀠(𝑦𝑛)/𝑓󸀠(𝑥𝑛), and 𝑄 :
C2 󳨀→ C is a holomorphic function in the neighborhood of
origin (0, 0).

The above scheme (1) uses four functional evaluations in
order to attain sixth-order convergence with the efficiency
index 61/4 = 1.5650. According to the classical Kung-Traub’s
conjecture [14], the scheme is nonoptimal. In addition to this,
scheme (1) does not work for simple zeros (i.e., m=1) either.

In 2017, Zafar et al. [16] proposed a new eighth-order
scheme for a knownmultiplicity𝑚 ≥ 1 of the desiredmultiple
zero, which is given as follows:

𝑦𝑛 = 𝑥𝑛 − 𝑚 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,
𝑧𝑛 = 𝑦𝑛 − 𝑚𝑢𝑛𝐻(𝑢𝑛) 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,

𝑥𝑛+1 = 𝑧𝑛 − 𝑢𝑛V𝑛 (𝐴2 + 𝐴3𝑢𝑛) 𝑃 (V𝑛)𝐺 (𝑤𝑛) 𝑓 (𝑦𝑛)𝑓󸀠 (𝑦𝑛) ,
(2)

where 𝐴2, 𝐴3 ∈ C are free parameters and the weight
functions 𝐻 : C 󳨀→ C, 𝑃 : C 󳨀→ C, 𝐺 : C 󳨀→ C

are analytic function in the neighborhood of 0, with 𝑢𝑛 =(𝑓(𝑦𝑛)/𝑓(𝑥𝑛))1/𝑚, V𝑛 = (𝑓(𝑧𝑛)/𝑓(𝑦𝑛))1/𝑚, 𝑤𝑛 = (𝑓(𝑧𝑛)/𝑓(𝑥𝑛))1/𝑚.
Recently, we find an interesting work due to Geun, Kim,

and Neta, see [17], given by

𝑦𝑛 = 𝑥𝑛 − 𝑚 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝐿𝑓 (𝑢𝑛) 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,

𝑥𝑛+1 = 𝑥𝑛 − 𝑚𝐻𝑓 (𝑢𝑛, V𝑛) 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,
(3)

where 𝐿𝑓 : C 󳨀→ C is analytic in a neighborhood of 0
and 𝐾𝑓 : C2 󳨀→ C is holomorphic in a neighborhood
of (0, 0) and 𝑢𝑛, V𝑛 are appropriate analytic branches of
the 𝑚-th root. In this paper the authors not only have
constructed a new generic family of optimal eighth-order
modified Newton-type multiple-zero finders but also have
studied their dynamical behavior; also this kind of study was
presented in [18].

But, none of these schemes have been studied from their
local convergence treatment in Banach spaces. Studies of

these type have a special interest fromamathematical point of
view, since these studies allow us to get the local convergence
balls, which are balls contained in the domain of the function
with center at the solution and where any point of this ball
can be taken as a starting point for getting the sequence of
iterates that converges to the root.

Therefore, our objective is to introduce methods for
multiple roots of high order of convergence and to carry out
a study of the local convergence of these.

For this purpose, our aim is to extend for the case of
multiple roots, the optimal method of eighth order for simple
roots of Chun and Neta [19].

𝑦𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) ,
𝑧𝑛 = 𝑥𝑛 − 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) [V

2
𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛

− 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛) [𝜙𝑓 (V𝑛) +
𝑓 (𝑧𝑛)𝑓 (𝑦𝑛) − 𝑎𝑓 (𝑧𝑛) +

4𝑓 (𝑧𝑛)𝑓 (𝑥𝑛) ] ,

(4)

where V𝑛 = 𝑓(𝑦𝑛)/𝑓(𝑥𝑛), 𝜙𝑓(V𝑛) is a real-valued weight
function and a is a real parameter.

The paper is organized as follows. In Section 2, our aim
is to perform a local convergence study of this extended
method. Since the radius of local convergence for higher-
order methods decreases with order, it is necessary to study
its behavior when we present a new iterative method. In
this paper, we introduce a new idea for establishing local
convergence results of iterative methods for locating multiple
zeros, under the assumption of a bounding condition for the(𝑚 + 1)th derivative of the function 𝑓(𝑥).

In Section 3, we present an optimal scheme with eighth-
order convergence which will work for multiple zeros with
multiplicity 𝑚 ≥ 1. The proposed scheme is the extension of
Chun and Neta’s scheme [19]. Moreover, their whole paper
becomes the special case of our proposed scheme for 𝑚 = 1.
The proposed family requires four functional evaluations in
order to obtain eighth-order convergence with the efficiency
index 81/4 = 1.6817 which is higher than the efficiency index
of any of the methods for multiple zeros in literature and of
the families of Thukral [20] and Geum et al. [15, 21].

In Section 4, we present several numerical tests on
some real-life problems which confirm the theoretical results
established in this paper and show the validity, accuracy,
and efficiency of our proposed iterative method. Finally, we
present some concluding remarks in Section 5.

2. Local Convergence of an Optimal
Fourth-Order Scheme

Using the first two steps of the family Chun and Neta (4) for
simple zeros we can obtain an optimal fourth-order scheme
for multiple zeros of 𝑓 : 𝐼 ⊆ R 󳨀→ R by implementing it in
the following way:
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𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑥𝑛+1 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
(5)

where 𝑢𝑛 = 𝑓(𝑥𝑛)/𝑓󸀠(𝑥𝑛), V𝑛 = (𝑓(𝑦𝑛)/𝑓(𝑥𝑛))1/𝑚.
Although (5) uses only real values, the value V𝑛 can be

extended to complex value by employing a principal branch
whose detailed description is given in [14, 20]. In addition to
the optimal convergence, the beauty of this scheme is that we
can easily obtainChun andNeta’s [19] scheme as a special case
of the above algorithm for𝑚 = 1.

In this section, our goal is to obtain a local convergence
result for the optimal fourth-order two-step method of the
new method described by (5).

We look for the radius of the local convergence ball,
that is, a real positive number 𝑟 such that the sequence 𝑥𝑛
generated by this iterative method, starting from any point in
the open ball ]𝛼− 𝑟, 𝛼+ 𝑟[, remains in this ball and converges
to 𝛼. For this kind of study, the larger value of 𝑟 is the best;
however, this will obviously depend on the conditions that
the nonlinear function satisfies.

This kind of study has been performed for methods of
second and third order. See [22] where the authors obtain
an estimate of the convergence radius of the well-known
modified Newton’s method for multiple zeros when the
involved function satisfies a Hölder and center-Hölder conti-
nuity condition. This result is improved in [23]. Third-order
methods have been considered in [24, 25]. In these papers
the authors establish the local convergence study by using
different properties of divided differences. We do not follow
this line of inquiry. We instead utilize Taylor’s developments
to introduce a new set of bounds to guarantee convergence.
Notice that the authors in [25] also use Taylor’s developments,
but work in a different way from our technique.

Lemma 1. Let 𝑓 : 𝐼 ⊆ R 󳨀→ R be a sufficiently differentiable
function in the open domain 𝐼, containing 𝛼, a zero with
multiplicity𝑚with𝑚 > 1, of the nonlinear equation 𝑓(𝑥) = 0.
Then, for all 𝑥 ∈ 𝐼, the function 𝑓(𝑥) can be expressed as

𝑓 (𝑥) = (𝑥 − 𝛼)𝑚 𝑔 (𝑥) , 𝑔 (𝛼) ̸= 0, (6)

where

𝑔 (𝑥) = 𝑓(𝑚) (𝛼)𝑚! + 1(𝑚 − 1)!
⋅ ∫1
0
[𝑓(𝑚) (𝛼 + 𝜃 (𝑥 − 𝛼)) − 𝑓(𝑚) (𝛼)]

⋅ (1 − 𝜃)𝑚−1 𝑑𝜃.
(7)

Proof. By approximating the function 𝑓(𝑥) with the Taylor
development around the multiple zero 𝛼 and performing
some calculations, we obtain

𝑓 (𝑥) = 𝑓(𝑚) (𝛼)𝑚! (𝑥 − 𝛼)𝑚 + ∫𝑥
𝛼

𝑓(𝑚+1) (𝑡)𝑚! (𝑥 − 𝑡)𝑚 𝑑𝑡
= 𝑓(𝑚) (𝛼)𝑚! (𝑥 − 𝛼)𝑚 + 1(𝑚 − 1)! ∫

𝑥

𝛼
[𝑓(𝑚) (𝑡)

− 𝑓(𝑚) (𝛼)] (𝑥 − 𝑡)𝑚−1 𝑑𝑡 = 𝑓(𝑚) (𝛼)𝑚! (𝑥 − 𝛼)𝑚
+ 1(𝑚 − 1)! ∫

1

0
[𝑓(𝑚) (𝛼 + 𝜃 (𝑥 − 𝛼)) − 𝑓(𝑚) (𝛼)] (𝑥

− 𝛼)𝑚 (1 − 𝜃)𝑚−1 𝑑𝜃 = [𝑓(𝑚) (𝛼)𝑚! + 1(𝑚 − 1)!
⋅ ∫1
0
[𝑓(𝑚) (𝛼 + 𝜃 (𝑥 − 𝛼)) − 𝑓(𝑚) (𝛼)]

⋅ (1 − 𝜃)𝑚−1 𝑑𝜃] (𝑥 − 𝛼)𝑚 .
(8)

Therefore we deduce the expression of function 𝑔(𝑥) given in
(7).

Lemma 2. Under the same conditions of Lemma 1, the func-
tion 𝑔(𝑥) satisfies
𝑔 (𝛼) = 𝑓(𝑚) (𝛼)𝑚!
𝑔󸀠 (𝑥)
= 1(𝑚 − 1)! ∫

1

0
𝑓(𝑚+1) (𝛼 + 𝜃 (𝑥 − 𝛼)) 𝜃 (1 − 𝜃)𝑚−1 𝑑𝜃.

(9)

Proof. The result holds by direct differentiation under the
integral operator of (7).

This expression suggests that we consider the following
bound property for obtaining the local convergence study:

󵄨󵄨󵄨󵄨󵄨𝑓(𝑚) (𝛼)−1 𝑓(𝑚+1) (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘1, ∀𝑥 ∈ 𝐼 (10)

where 𝑘1 is a positive real number. We first obtain certain
bounds that we will use for our local convergence study. We
define 𝑟0 = 𝑚/𝑘1; by taking a starting point 𝑥0 ∈ 𝐼0 = [𝛼 −𝑟0, 𝛼 + 𝑟0[ and denoting the local error by |𝑒0| = |𝑥0 − 𝛼| < 𝑟0
we have the following results.

Lemma 3. Under the same conditions of Lemma 1 for all 𝑥0 ∈𝐼0 we obtain these bounds:

(𝐵1) 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔 (𝑥0)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1
(𝐵2) 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔󸀠 (𝑥0)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘1𝑚 + 1
(𝐵3) 󵄨󵄨󵄨󵄨󵄨𝑔 (𝑥0)−1 𝑔 (𝛼)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑚 + 1𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨
(𝐵4) 󵄨󵄨󵄨󵄨󵄨𝑔 (𝑥0)−1 𝑔󸀠 (𝑥0)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘1𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨

(11)
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Proof. By using Lemma 2 and (10) and applying the Mean
Value Theorem we have (𝐵1)

󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔 (𝑥0)󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝑚∫1

0
𝑓(𝑚) (𝛼)−1

⋅ [𝑓(𝑚) (𝛼 + 𝜃 (𝑥0 − 𝛼)) − 𝑓(𝑚) (𝛼)]
⋅ (1 − 𝜃)𝑚−1 𝑑𝜃󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝑚∫1
0
𝑓(𝑚) (𝛼)−1

⋅ 𝑓(𝑚+1) (𝛼1) 𝜃 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 (1 − 𝜃)𝑚−1 𝑑𝜃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 ,

(12)

where in the last inequality we have used ∫1
0
𝜃(1 − 𝜃)𝑚−1𝑑𝜃 =1/𝑚(𝑚 + 1).

Similar reasoning allows us to get (𝐵2)
󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔󸀠 (𝑥0)󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑚!𝑓
(𝑚) (𝛼)−1 1(𝑚 − 1)!

⋅ ∫1
0
𝑓(𝑚+1) (𝛼 + 𝜃 (𝑥0 − 𝛼)) 𝜃 (1 − 𝜃)𝑚−1 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘1𝑚 + 1 .

(13)

We use theMean ValueTheorem to derive (𝐵3)where, for
some 𝜑 between 𝛼 and 𝑥0,󵄨󵄨󵄨󵄨󵄨1 − 𝑔 (𝛼)−1 𝑔 (𝑥0)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 (𝑔 (𝛼) − 𝑔 (𝑥0))󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔󸀠 (𝜑) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1
< 1,

(14)

where in the last inequality we have used the previous bound(𝐵2); from this, first we obtain that 𝑔(𝑥0) ̸= 0, so there exists𝑔(𝑥0)−1 and we can apply Banach Lemma so that

󵄨󵄨󵄨󵄨󵄨𝑔 (𝑥0)−1 𝑔 (𝛼)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑚 + 1𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 . (15)

The following bound can be obviously achieved by using
previous ones.

2.1. Main Result. Now we can establish the main result for
obtaining the local convergence radius of the new optimal
order iterative method introduced in (5).

Theorem 4. Let 𝐼 ⊂ R be an open, convex, and nonempty set
and𝑓 : 𝐼 󳨀→ R be inC𝑚(𝐼)with 𝛼, a root of multiplicity𝑚 for
the equation𝑓(𝑥) = 0. If boundary conditions (10) are satisfied,
let 𝑟0 = 𝑚/𝑘1. Then there exists 𝑟 ≤ 𝑟0 such that, for any initial
point 𝑥0 ∈ ]𝛼 − 𝑟0, 𝛼 + 𝑟0[ = 𝐼0, the sequence {𝑥𝑛}, 𝑛 ≥ 0,
generated by (5) is well-defined, remains in 𝐼0, and converges
to solution 𝛼, that is, the unique solution in [𝛼 − 𝑟0, 𝛼 + 𝑟0].

Proof. As has been stated in Lemma 1 for the solution 𝛼 of
multiplicity 𝑚, we have for all 𝑥0 ∈ 𝐼

𝑓 (𝑥0) = 𝑔 (𝑥0) (𝑥0 − 𝛼)𝑚 = 𝑔 (𝑥0) 𝑒𝑚0 ,
𝑓󸀠 (𝑥0) = 𝑔󸀠 (𝑥0) 𝑒𝑚0 + 𝑚𝑔 (𝑥0) 𝑒𝑚−10 . (16)

Now, we start an induction procedure where for 𝑛 = 0 the
fourth-order iteration of (5) is written as

𝑦0 = 𝑥0 − 𝑚𝑢0,
𝑥1 = 𝑥0 − 𝑚𝑢0 [V20 − 1

V0 − 1] ,
(17)

and then by subtracting 𝛼 to both sides of the first step and
substituting (16), we get

𝑒1 = 𝑦0 − 𝛼 = 𝑔󸀠 (𝑥0) 𝑒0𝑔󸀠 (𝑥0) 𝑒0 + 𝑚𝑔 (𝑥0) 𝑒0
= 𝑔 (𝛼)−1 𝑔󸀠 (𝑥0) 𝑒0/𝑚𝑔 (𝛼)−1 𝑔󸀠 (𝑥0) 𝑒0/𝑚 + 𝑔 (𝛼)−1 𝑔 (𝑥0) 𝑒0.

(18)

In order to apply Banach lemma to the denominator, by
applying the Mean Value Theorem, it follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 −
𝑔 (𝛼)−1 𝑔󸀠 (𝑥0) 𝑒0𝑚 − 𝑔 (𝛼)−1 𝑔 (𝑥0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 (𝑔 (𝛼) − 𝑔 (𝑥0))󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔󸀠 (𝑥0)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑒0𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 < 1,

(19)

so we have |(𝑔(𝛼)−1𝑔󸀠(𝑥0)𝑒0/𝑚 + 𝑔(𝛼)−1𝑔(𝑥0))−1| < 𝑚/(𝑚 −𝑘1|𝑒0|) and therefore

󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 ≤ 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨(𝑚 + 1) (𝑚 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 = 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 , (20)

where 𝐺1(𝑡) is an increasing function defined as follows:

𝐺1 (𝑡) = 𝑘1𝑡(𝑚 + 1) (𝑚 − 𝑘1𝑡) , (21)

so, by taking ℎ1(𝑡) = 𝐺1(𝑡) − 1, it satisfies ℎ(0) = −1 andℎ(𝑟−0 ) 󳨀→ +∞. We take the smallest positive real root of this
function, 𝑟1 ∈ ]0, 𝑟0[, and then 0 < 𝐺1(𝑡) < 1 ∀𝑡 ∈ ]0, 𝑟1[.
Turning to (20) we get

𝑒1 ≤ 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 . (22)

Now by subtracting 𝛼 from both sides of the second step in
(5), one has

𝑒1 = 𝑥1 − 𝛼 = 𝑒0 − V30 − V20 − 1
V0 − 1 (𝑒0 − 𝑒1) , (23)
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and, after applying (16) we have

V0 = (𝑓 (𝑦0)𝑓 (𝑥0))
1/𝑚 = (𝑔 (𝑦0)𝑔 (𝑥0))

1/𝑚 𝑒1𝑒0
= 𝑔󸀠 (𝑥0) 𝑒0𝑔󸀠 (𝑥0) 𝑒0 + 𝑚𝑔 (𝑥0) (

𝑔 (𝑦0)𝑔 (𝑥0))
1/𝑚 .

(24)

Substituting in (18), it follows that

𝑒1
= 𝑒0
− 𝑚𝑔 (𝑥0) 𝑒0
𝑚𝑔(𝑥0) − 𝑔󸀠 (𝑥0) 𝑒0 ((𝑔 (𝑦0) /𝑔 (𝑥0))1/𝑚 − 1)

− 𝑚𝑔󸀠 (𝑥0)2 𝑔 (𝑥0) (𝑔 (𝑦0) /𝑔 (𝑥0))2/𝑚 𝑒30(𝑔󸀠 (𝑥0) 𝑒0 + 𝑚𝑔 (𝑥0))3 .

(25)

If we denote 𝐶 = ((𝑔(𝑦0)/𝑔(𝑥0))1/𝑚 − 1) and assign 𝐷1
and 𝐷2 to be the denominators of the previous expression,
we obtain 𝑒1 = 𝑁̃/𝐷, where 𝐷 is the common denominator
and 𝑁̃ the corresponding numerator:

𝐷1 = 𝑚𝑔 (𝑥0) − 𝑔󸀠 (𝑥0)𝐶𝑒0,
𝐷2 = (𝑔󸀠 (𝑥0) 𝑒0 + 𝑚𝑔 (𝑥0))3 ,
𝐷 = 𝐷1𝐷2,
𝑁̃ = 𝐷1𝐷2𝑒0 − 𝐷2𝑚𝑔(𝑥0) 𝑒0

− 𝐷1(𝑚𝑔󸀠 (𝑥0)2 𝑔 (𝑥0) (𝑔 (𝑦0)𝑔 (𝑥0))
2/𝑚 𝑒30.

(26)

By performing the calculation we have

𝑁̃ = −𝐶𝑔󸀠 (𝑥0)4 𝑒50
+ 𝐶𝑔󸀠 (𝑥0)3 𝑔 (𝑥0)𝑚(𝑔 (𝑦0)𝑔 (𝑥0))

2/𝑚 − 3)𝑒40
− 𝑔󸀠 (𝑥0)2 𝑔 (𝑥0)2𝑚2(3𝐶 + (𝑔 (𝑦0)𝑔 (𝑥0))

2/𝑚)𝑒30
− 𝐶𝑔󸀠 (𝑥0) 𝑔 (𝑥0)3𝑚3𝑒20.

(27)

Now,we express the error equation in the following terms,𝑒1 = 𝑁/𝐷𝑒20, with
𝑁 = −[𝐶𝑔󸀠 (𝑥0)4 𝑒30

+ 𝐶𝑔󸀠 (𝑥0)3 𝑔 (𝑥0)𝑚(3 − (𝑔 (𝑦0)𝑔 (𝑥0))
2/𝑚)𝑒20

+ 𝑚2𝑔󸀠 (𝑥0)2 𝑔 (𝑥0)2(3𝐶 + (𝑔 (𝑦0)𝑔 (𝑥0))
2/𝑚)𝑒0

+ 𝐶𝑚3𝑔󸀠 (𝑥0) 𝑔 (𝑥0)3]
(28)

and the denominator

𝐷 = 𝑚4𝑔 (𝑥0)4 + 𝑚3 (3 − 𝐶) 𝑔󸀠 (𝑥0) 𝑔 (𝑥0)3 𝑒0
+ 3𝑚2 (1 − 𝐶) 𝑔󸀠 (𝑥0)2 𝑔 (𝑥0)2 𝑒20
+ 𝑚𝑔󸀠 (𝑥0)3 𝑔 (𝑥0) (1 − 3𝐶) 𝑒30 − 𝐶𝑔󸀠 (𝑥0)4 𝑒40.

(29)

In order to apply the established bounds from previous
lemmas, we multiply the numerator and denominator by𝑔(𝛼)−4 and consider from now on

𝑒1 = −𝑔 (𝛼)−4𝑁𝑔 (𝛼)−4𝐷𝑒20 = − 𝑁1 + 𝑁2 + 𝑁3 + 𝑁4𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 𝑒20, (30)

where𝑁𝑖, 𝐷𝑖 𝑖 = 1, 2, . . ., are
𝑁1 = 𝑚3𝐶(𝑔 (𝛼)−1 𝑔󸀠 (𝑥0)) (𝑔 (𝛼)−1 𝑔 (𝑥0))3 ,
𝑁2 = 𝑚2 (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))2 (𝑔 (𝛼)−1 𝑔 (𝑥0))2

⋅ (3𝐶 + (𝑔 (𝑦0)𝑔 (𝑥0))
2/𝑚)𝑒0,

𝑁3 = 𝐶𝑚 (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))3 (𝑔 (𝛼)−1 𝑔 (𝑥0))
⋅ (3 − (𝑔 (𝑦0)𝑔 (𝑥0))

2/𝑚)𝑒20,
𝑁4 = 𝐶 (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))4 𝑒30,

(31)

and

𝐷1 = 𝑚4 (𝑔 (𝛼)−1 𝑔 (𝑥0))4 ,
𝐷2 = 𝑚3 (3 − 𝐶) (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0)) (𝑔 (𝛼)−1 𝑔 (𝑥0))3 𝑒0,
𝐷3 = 3𝑚2 (1 − 𝐶) (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))2 (𝑔 (𝛼)−1 𝑔 (𝑥0))2

⋅ 𝑒20,
𝐷4 = 𝑚 (1 − 3𝐶) (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))3 𝑔 (𝛼)−1 𝑔 (𝑥0) 𝑒30,
𝐷5 = −𝐶𝑒40 (𝑔 (𝛼)−1 𝑔󸀠 (𝑥0))4 𝑒40.

(32)
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Using the established bounds from Lemma 2 and applying
the Mean Value Theorem, there exists 𝜁 between 𝑥0 and 𝑦0
verifying

|𝐶| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(
𝑔 (𝑦0)𝑔 (𝑥0))

1/𝑚 − 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨−1/𝑚 󵄨󵄨󵄨󵄨󵄨󵄨𝑔 (𝑥0)1/𝑚 − 𝑔 (𝑦0)1/𝑚󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1𝑚 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨−1/𝑚 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝜁) 𝑔 (𝜁)(1−𝑚)/𝑚 (𝑥0 − 𝑦0)󵄨󵄨󵄨󵄨󵄨 .

(33)

Then, if |𝑔(𝑥0)| ≤ |𝑔(𝜁)| we have that |𝑔(𝑥0)|(1−𝑚)/𝑚 ≥|𝑔(𝜁)|(1−𝑚)/𝑚 so
|𝐶| ≤ 1𝑚 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨−1/𝑚 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝜁)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑔 (𝜁)󵄨󵄨󵄨󵄨(1−𝑚)/𝑚 󵄨󵄨󵄨󵄨𝑥0 − 𝑦0󵄨󵄨󵄨󵄨

≤ 1𝑚 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨−1/𝑚 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝜁)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨(1−𝑚)/𝑚 󵄨󵄨󵄨󵄨𝑥0 − 𝑦0󵄨󵄨󵄨󵄨
≤ 1𝑚 󵄨󵄨󵄨󵄨𝑔 (𝑥0)󵄨󵄨󵄨󵄨−1 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝜁)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥0 − 𝑦0󵄨󵄨󵄨󵄨
≤ 1𝑚 𝑘1𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 (1 + 𝐺1 (

󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 .

(34)

Similar reasoning is applied if |𝑔(𝑥0)| ≥ |𝑔(𝜁)|, where it then
holds that |𝑔(𝑥0)|−1/𝑚 ≤ |𝑔(𝜁)|−1/𝑚 and so the same bound for𝐶 is obtained. By using this bound and those of Lemma 3, we
have the following bounds for the numerator terms:

󵄨󵄨󵄨󵄨𝑁1󵄨󵄨󵄨󵄨 ≤ 𝑚3 𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)
⋅ 𝑘1𝑚 + 1 (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )3 = 𝑛1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨𝑁2󵄨󵄨󵄨󵄨 ≤ 𝑚2 ( 𝑘1𝑚 + 1)
2 (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )2

⋅ ( 3𝑚
𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨

+ (𝑚 + 1 + 𝑘1𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 )2/𝑚) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 = 𝑛2 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,
󵄨󵄨󵄨󵄨𝑁3󵄨󵄨󵄨󵄨 ≤ 𝑚 𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨))𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) (

𝑘1𝑚 + 1)
3

⋅ (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )(3

+ (𝑚 + 1 + 𝑘1𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 )2/𝑚) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨2 = 𝑛3 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,
󵄨󵄨󵄨󵄨𝑁4󵄨󵄨󵄨󵄨 ≤ ( 𝑘1𝑚 + 1)

4 𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨3

= 𝑛4 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) .

(35)

Let us first consider the first term from the denominator,𝐷1. By recalling that |𝑎 − 𝑏| ≥ |𝑎| − |𝑏|, we have
󵄨󵄨󵄨󵄨𝐷1󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑚4𝑔 (𝛼)−4 𝑔 (𝑥0)4󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨𝑚4 − 𝑚4𝑔 (𝛼)−4 (𝑔 (𝛼)4 − 𝑔 (𝑥0)4)󵄨󵄨󵄨󵄨󵄨
≥ 󵄨󵄨󵄨󵄨󵄨𝑚4󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑚4𝑔 (𝛼)−4 (𝑔 (𝛼)4 − 𝑔 (𝑥0)4)󵄨󵄨󵄨󵄨󵄨 .

(36)

If we apply the Mean Value Theorem to the function𝑔(𝑥)4, it follows that there exists 𝛿 between 𝛼 and 𝑥0 with
𝑔 (𝛼)4 − 𝑔 (𝑥0)4 = 4𝑔 (𝛿)3 𝑔󸀠 (𝛿) (𝛼 − 𝑥0) , (37)

so that by using bounds (𝐵1) and (𝐵2) it follows that
󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−4 (𝑔 (𝛼)4 − 𝑔 (𝑥0)4)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨4𝑔 (𝛼)−3 𝑔 (𝛿)3 𝑔 (𝛼)−1 𝑔󸀠 (𝛿) (𝛼 − 𝑥0)󵄨󵄨󵄨󵄨󵄨
≤ 4 (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )3 𝑘1𝑚 + 1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 .

(38)

Then,𝐷1 satisfies
󵄨󵄨󵄨󵄨𝐷1󵄨󵄨󵄨󵄨 ≥ 𝑚4 − 4𝑚4 (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )3 𝑘1𝑚 + 1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 , (39)

and the other terms in the denominator likewise satisfy

󵄨󵄨󵄨󵄨𝐷2󵄨󵄨󵄨󵄨 ≤ 𝑚3 (3 + 𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) )

⋅ (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )3 𝑘1𝑚 + 1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 = 𝑑2 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,
󵄨󵄨󵄨󵄨𝐷3󵄨󵄨󵄨󵄨 ≤ 3𝑚2 (1 + 𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ) ( 𝑘1𝑚 + 1)

2

⋅ (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )2 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨2 = 𝑑3 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,
󵄨󵄨󵄨󵄨𝐷4󵄨󵄨󵄨󵄨 ≤ 𝑚(1 + 3𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) )( 𝑘1𝑚 + 1)

3

⋅ (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 ) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨3 = 𝑑4 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,
󵄨󵄨󵄨󵄨𝐷5󵄨󵄨󵄨󵄨 ≤ (𝑘1 (1 + 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 (𝑚 + 1 − 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) )( 𝑘1𝑚 + 1)

4 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨4
= 𝑑5 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ,

(40)
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so that we get
󵄨󵄨󵄨󵄨𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5󵄨󵄨󵄨󵄨
≥ 󵄨󵄨󵄨󵄨𝐷1󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝐷2 + 𝐷3 + 𝐷4 + 𝐷5󵄨󵄨󵄨󵄨
≥ 𝑚4 − 4𝑚4 (𝑚 + 1 + 𝑘1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨𝑚 + 1 )3 𝑘1𝑚 + 1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝐷2󵄨󵄨󵄨󵄨
− 󵄨󵄨󵄨󵄨𝐷3󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝐷4󵄨󵄨󵄨󵄨 − 𝐷5󵄨󵄨󵄨󵄨 .

(41)

Notice that the precedent bound can result in a negative
value, so we define function 𝐺2(𝑡) with 𝑡 ≥ 0 such that

𝐺2 (𝑡) = 𝑚4 − 4𝑚4 (𝑚 + 1 + 𝑘1𝑡𝑚 + 1 )3 𝑘1𝑚 + 1𝑡 − 𝑑2 (𝑡)
− 𝑑3 (𝑡) − 𝑑4 (𝑡) − 𝑑5 (𝑡) ,

(42)

𝐺2 satisfies 𝐺2(0) > 0 and 𝐺2(𝑟−0 ) 󳨀→ −∞, so there exists𝑟2, the smallest positive root in ]0, 𝑟0[, such that 𝐺2(𝑡) > 0 =𝐺2(𝑟2), ∀𝑡 ∈ ]0, 𝑟0[. If we take 𝑥0 such that |𝑒0| = |𝑥0−𝛼| < 𝑟2,
then
󵄨󵄨󵄨󵄨𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5󵄨󵄨󵄨󵄨 ≥ 𝐺2 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) ≥ 𝐺2 (𝑟2) = 0. (43)

Then, if we take 𝑟 = min{𝑟0, 𝑟1, 𝑟2}, we have for all 𝑥0 ∈]𝛼 − 𝑟, 𝛼 + 𝑟[
󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 ≤ 𝑛1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) + 𝑛2 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) + 𝑛3 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) + 𝑛4 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)𝐺2 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨2
≤ 𝐺3 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 ,

(44)

where

𝐺3 (𝑡) = 𝑛1 (𝑡) + 𝑛2 (𝑡) + 𝑛3 (𝑡) + 𝑛4 (𝑡)𝐺2 (𝑡) 𝑡. (45)

Defining ℎ3(𝑡) = 𝐺3(𝑡) − 1, which satisfies ℎ3(0) = −1 andℎ3(𝑟−2 ) 󳨀→ +∞, thus, there exists 𝑟3 , the smallest positive root
such that 𝐺3(𝑡) < 1, for all 𝑡 ∈ ]0, 𝑟3[.

Finally we take 𝑟 = min{𝑟, 𝑟3} and we have for all 𝑥0 ∈]𝛼 − 𝑟, 𝛼 + 𝑟[
󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 ≤ 𝐺1 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 ≤ 𝐺3 (󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 . (46)

𝐺3(𝑡) is an increasing function for 𝑛𝑖, 𝑖 = 1, . . . , 4 being
increasing and 𝐺2(𝑡) a decreasing function.

The same process holds starting from 𝑥1 and getting 𝑥2,
and then by an inductive procedure one has𝑦𝑘 , 𝑥𝑘 ∈ ]𝛼−𝑟, 𝛼+𝑟[ for all 𝑘 > 0 by using the fact that 𝐺1 and 𝐺3 are increasing
functions as follows:
󵄨󵄨󵄨󵄨𝑒𝑘󵄨󵄨󵄨󵄨 ≤ 𝐺1 (𝑟) 𝐺3 (𝑟)𝑘−1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑘󵄨󵄨󵄨󵄨 ≤ 𝐺3 (𝑟) 󵄨󵄨󵄨󵄨𝑒𝑘−1󵄨󵄨󵄨󵄨 ≤ 𝐺3 (𝑟)2 󵄨󵄨󵄨󵄨𝑒𝑘−2󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅ ≤ 𝐺3 (𝑟)𝑘 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨

< 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 ,
(47)

where |𝑒𝑘| = |𝑦𝑘−1 − 𝛼| and |𝑒𝑘| = |𝑥𝑘 − 𝛼|.

By taking limits in the last expressions and using
lim𝑘󳨀→+∞𝐺3(𝑟)𝑘 = 0, we get that lim𝑘󳨀→+∞𝑥𝑘 = 𝛼. Therefore
we have obtained 𝑟, the radius of the local convergence ball.
That is, for any starting guess 𝑥0 ∈ ]𝛼−𝑟, 𝛼+𝑟[ the sequences
obtained by the fourth-order iterative method 𝑦𝑘, and 𝑥𝑘
remain in this interval and converge to the solution 𝛼.

To show uniqueness in the interval centered at the
solution and radius 𝑟0, we assume that there exists a second
solution 𝛽 ∈ ]𝛼 − 𝑟, 𝛼 + 𝑟[, and by Lemma 1 we have

𝑓 (𝛽) = 𝑔 (𝛽) (𝛽 − 𝛼)𝑚 . (48)

By using

󵄨󵄨󵄨󵄨󵄨1 − 𝑔 (𝛼)−1 𝑔 (𝛽)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 (𝑔 (𝛼) − 𝑔 (𝛽))󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝑔 (𝛼)−1 𝑔󸀠 (𝜑) 󵄨󵄨󵄨󵄨𝛼 − 𝛽󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘1𝑚 + 1 󵄨󵄨󵄨󵄨𝑒0󵄨󵄨󵄨󵄨 < 𝑚𝑚 + 1 < 1,

(49)

we deduce that 𝑔(𝛽) ̸= 0 and then by (48) we have that 𝛽 =𝛼.
3. Development of an Optimal
Eighth-Order Scheme

In an analogous way, as we have done the extension of the
Chun and Neta method from order four to multiple roots,
introducing one more step, we have managed to extend this
method to order eight.

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛 − 𝑚𝑡𝑛𝑢𝑛 [𝜙𝑓 (V𝑛) + 𝑡𝑛

V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] ,
(50)

where the weight function 𝜙𝑓 : R 󳨀→ R is an analytic func-
tion [26] in a neighborhood of (0) with 𝑢𝑛 = 𝑓(𝑥𝑛)/𝑓󸀠(𝑥𝑛),
V𝑛 = (𝑓(𝑦𝑛)/𝑓(𝑥𝑛))1/𝑚, 𝑡𝑛 = V𝑛(𝑓(𝑧𝑛)/𝑓(𝑦𝑛))1/𝑚, and a free
variable 𝑎 ∈ R. In addition to the optimal convergence, the
beauty of this scheme is that we can easily obtain Chun and
Neta’s [19] scheme as a special case of the above algorithm for𝑚 = 1.

In Theorem 5, we demonstrate that the order of con-
vergence of the proposed scheme will reach eight without
using any additional functional evaluations. It is interesting
to observe that 𝜙𝑓 contributes its role in the construction of
the desired eighth-order convergence (for details please see
Theorem 5).

Theorem 5. Let 𝑥 = 𝛼 be a multiple zero with multiplicity𝑚 ≥ 1 of an analytic function𝑓 : R 󳨀→ R in a region enclosing



8 Mathematical Problems in Engineering

the required zero of 𝑓(𝑥). Then, the scheme defined by (50) has
an eighth-order convergence if the following expressions hold:

𝜙 (0) = 1,
𝜙󸀠 (0) = 2,
𝜙󸀠󸀠 (0) = 4,
𝜙󸀠󸀠󸀠 (0) = −6.

(51)

Proof. Let us expand the functions 𝑓(𝑥𝑛) and 𝑓󸀠(𝑥𝑛) about𝑥 = 𝛼 with the help of Taylor’s series expansion which
produce

𝑓 (𝑥𝑛) = 𝑓(𝑚) (𝛼)𝑚! 𝑒𝑚𝑛 (1 + 𝑐1𝑒𝑛 + 𝑐2𝑒2𝑛 + 𝑐3𝑒3𝑛 + 𝑐4𝑒4𝑛
+ 𝑐5𝑒5𝑛 + 𝑐6𝑒6𝑛 + 𝑐7𝑒7𝑛 + 𝑐8𝑒8𝑛 + 𝑂 (𝑒9𝑛)) ,

(52)

and

𝑓󸀠 (𝑥𝑛) = 𝑓𝑚 (𝛼)𝑚! 𝑒𝑚−1𝑛 (𝑚 + (𝑚 + 1) 𝑐1𝑒𝑛
+ (𝑚 + 2) 𝑐2𝑒2𝑛 + (𝑚 + 3) 𝑐3𝑒3𝑛 + (𝑚 + 4) 𝑐4𝑒4𝑛
+ (𝑚 + 5) 𝑐5𝑒5𝑛 + (𝑚 + 6) 𝑐6𝑒6𝑛 + (𝑚 + 7) 𝑐7𝑒7𝑛
+ (𝑚 + 8) 𝑐8𝑒8𝑛 + 𝑂 (𝑒9𝑛)) ,

(53)

respectively, where 𝑐𝑘 = (𝑚!/(𝑚−1+𝑘)!)(𝑓𝑚−1+𝑘(𝛼)/𝑓𝑚(𝛼)),𝑘 = 2, 3, 4 . . . , 8, and 𝑒𝑛 = 𝑥𝑛 − 𝛼 is the error at nth iteration.
By using expressions (52) and (53), we have

𝑢𝑛 = 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)
= 1𝑚𝑒𝑛 − 𝑐1𝑚2 𝑒2𝑛 + (𝑚 + 1) 𝑐21 − 2𝑚𝑐2𝑚3 𝑒3𝑛 + 4∑

𝑖=0

𝐺𝑖𝑒𝑖+4𝑛
+ 𝑂(𝑒9𝑛) ,

(54)

where 𝐺𝑖 = 𝐺𝑖(𝑚, 𝑐1, 𝑐2, . . . , 𝑐8) are given in terms of 𝑚, 𝑐2, 𝑐3,. . . , 𝑐8 with the first two coefficients explicitly written as 𝐺0 =(1/𝑚4)[𝑚(3𝑚 + 4)𝑐1𝑐2 − 3𝑚2𝑐3 − (𝑚 + 1)2𝑐31 ] and 𝐺1 =(1/𝑚5)[2𝑚2(2𝑚+ 3)𝑐1𝑐3 − 2𝑚(2𝑚2 + 5𝑚+ 3)𝑐21𝑐2 + 2𝑚2((𝑚 +2)𝑐22 − 2𝑚𝑐4) + (𝑚 + 1)3𝑐41 ].
Again using the Taylor Series expansion and expression

(54), we further obtain

𝑓 (𝑦𝑛) = 𝑓(𝑚) (𝛼) 𝑒2𝑚𝑛 [(𝑐1/𝑚)𝑚𝑚!
+ (2𝑚𝑐2 − (𝑚 + 1) 𝑐21 ) (𝑐1/𝑚)𝑚 𝑒𝑛𝑚!𝑐1 + ( 𝑐1𝑚)1+𝑚

⋅ 12𝑚!𝑐31 {(3 + 3𝑚 + 3𝑚2 + 𝑚3) 𝑐41

− 2𝑚 (2 + 3𝑚 + 2𝑚2) 𝑐21 𝑐2 + 4 (𝑚 − 1)𝑚2𝑐22
+ 6𝑚2𝑐1𝑐3} 𝑒2𝑛 + 5∑

𝑖=0

𝐺𝑖𝑒𝑖+3𝑛 + 𝑂 (𝑒9𝑛)] .
(55)

With the help of expressions (52) and (55), we get

V𝑛 = (𝑓 (𝑦𝑛)𝑓 (𝑥𝑛))
1/𝑚 = 𝑐1𝑒𝑛𝑚 + 2𝑚𝑐2 − (𝑚 + 2) 𝑐21𝑚2 𝑒2𝑛

+ (2𝑚2 + 7𝑚 + 7) 𝑐31 + 6𝑚2𝑐3 − 2𝑚 (3𝑚 + 7) 𝑐1𝑐22𝑚3
⋅ 𝑒3𝑛 + 𝜃1𝑒4𝑛 + 𝜃2𝑒5𝑛 + 𝑂 (𝑒6𝑛) .

(56)

where 𝜃1 = (1/6𝑚4)[12𝑚2(2𝑚 + 5)𝑐1𝑐3 + 12𝑚2((𝑚 + 3)𝑐22 −2𝑚𝑐4)−6𝑚(4𝑚2+16𝑚+17)𝑐21𝑐2 + (6𝑚3+29𝑚2+51𝑚+34)𝑐41 ]
and 𝜃2 = (1/24𝑚5)[12𝑚2(10𝑚2 + 43𝑚 + 49)𝑐21 𝑐3−24𝑚3((5𝑚+17)𝑐2𝑐3 − 5𝑚𝑐5) + 12𝑚2((10𝑚2 + 47𝑚 + 53)𝑐22 − 2𝑚(5𝑚 +13)𝑐4)𝑐1 − 4𝑚(30𝑚3 + 163𝑚2 + 306𝑚 + 209)𝑐31 𝑐2 + (24𝑚4 +146𝑚3 + 355𝑚2 + 418𝑚 + 209)𝑐51 ].

Inserting expressions (52)–(56) into the second substep of
scheme (50), we further obtain

𝑧𝑛 − 𝛼 = (𝑚 + 7) 𝑐31 − 2𝑚𝑐1𝑐22𝑚3 𝑒4𝑛 + 3∑
𝑖=0

𝐻𝑖𝑒𝑖+5𝑛 + 𝑂 (𝑒9𝑛) , (57)

where𝐻𝑖 = 𝐻𝑖(𝑚, 𝑐1, 𝑐2, . . . , 𝑐8) are given in terms of𝑚, 𝑐2, 𝑐3,. . . , 𝑐8 with the first two coefficients explicitly written as𝐻0 =−(1/6𝑚4)[(7𝑚2+66𝑚+89)𝑐41 +12𝑚2𝑐1𝑐3+12𝑚2𝑐22 −12𝑚(2𝑚+11)𝑐21 𝑐2] and𝐻1 = (1/24𝑚5)[156𝑚2(𝑚+ 5)𝑐21𝑐3 −168𝑚3𝑐2𝑐3 −4𝑚(53𝑚2 + 468𝑚 + 655)𝑐31 𝑐2 + 12𝑚2((17𝑚 + 91)𝑐22 − 6𝑚𝑐4)𝑐1
+ (46𝑚3 + 533𝑚2 + 1310𝑚 + 991)𝑐51 ].

Again, with the help of Taylor series expansion and
expression (57), we further have

𝑓 (𝑧𝑛) = 𝑓(𝑚) (𝛼)
⋅ 𝑒4𝑚𝑛 [

[
2−𝑚 (((𝑚 + 7) 𝑐31 − 2𝑚𝑐1𝑐2) /𝑚3)𝑚𝑚!

+ 5∑
𝑖=1

𝐻𝑖𝑒𝑖𝑛 + 𝑂 (𝑒6𝑛)]]
.

(58)

With the help of expressions (55) and (58), we further obtain

𝑡𝑛 = V𝑛 (𝑓 (𝑧𝑛)𝑓 (𝑦𝑛))
1/𝑚

= {(𝑚 + 7) 𝑐31 − 2𝑚𝑐2} 𝑐12𝑚3 𝑒3𝑛 + 𝛾1𝑒4𝑛 + 𝛾2𝑒5𝑛
+ 𝑂 (𝑒6𝑛) ,

(59)
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where 𝛾1 = −(1/6𝑚4)[(7𝑚2 + 69𝑚 + 110)𝑐41 + 12𝑚2𝑐1𝑐3 +12𝑚2𝑐22 − 6𝑚(4𝑚 + 23)𝑐21 𝑐2] and 𝛾2 = (1/24𝑚5)[12𝑚2(13𝑚
+ 69)𝑐21 𝑐3 + 12𝑚2((17𝑚 + 97)𝑐22 − 6𝑚𝑐4)𝑐1 − 168𝑚3𝑐2𝑐3 −4𝑚(53𝑚2 + 498𝑚 + 811)𝑐31𝑐2 + (46𝑚3 + 567𝑚2 + 1622𝑚 +1389)𝑐51 ].

It is clear from expression (56) that V𝑛 is of order 𝑒𝑛.
Therefore, we can expand the weight function 𝜙𝑓(V𝑛) in
a neighborhood of the origin (0) by using Taylor series
expansion and expand up to fourth-order terms as follows:

𝜙𝑓 (V𝑛) = 𝜙 (0) + 𝜙󸀠 (0) V𝑛 + 12!𝜙󸀠󸀠 (0) V2𝑛
+ 13!𝜙󸀠󸀠󸀠 (0) V3𝑛 + 14!𝜙󸀠󸀠󸀠󸀠 (0) V4𝑛.

(60)

By using expressions (52)–(60) in the last substep of proposed
scheme (50), we obtain

𝑒𝑛+1 = −𝑐1 (𝜙 (0) − 1) ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)2𝑚3 𝑒4𝑛
+ 4∑
𝑖=1

𝐿 𝑖𝑒𝑖+4𝑛 + 𝑂 (𝑒9𝑛) ,
(61)

where 𝐿 𝑖 = 𝐿 𝑖(𝑚, 𝑎, 𝜙(0), 𝜙󸀠(0), 𝜙󸀠󸀠(0), 𝜙󸀠󸀠󸀠(0), 𝑐1, 𝑐2, . . . , 𝑐8).
It is noteworthy that we will obtain at least fifth-order

convergence if we choose

𝜙 (0) = 1. (62)

Insert the value of 𝜙(0) = 1 in 𝐿1 = 0. Then, we obtain

(𝜙󸀠 (0) − 2) ((7 + 𝑚) 𝑐21 − 2𝑚𝑐2) 𝑐212𝑚4 = 0, (63)

which further deduce to at least sixth-order convergence,
when we use the following expression:

𝜙󸀠 (0) = 2. (64)

By substituting expressions (62) and (64) in 𝐿2 = 0, we have
−(𝜙󸀠󸀠 (0) − 4) ((7 + 𝑚) 𝑐21 − 2𝑚𝑐2) 𝑐314𝑚5 = 0, (65)

which further yields

𝜙󸀠󸀠 (0) = 4. (66)

We again use expressions (62), (64), and (66) in 𝐿3 = 0.Then,
we get

−(𝜙󸀠󸀠󸀠 (0) + 6) ((7 + 𝑚) 𝑐21 − 2𝑚𝑐2) 𝑐4112𝑚6 = 0, (67)

which further gives

𝜙󸀠󸀠󸀠 (0) = −6. (68)

Finally, substitute expressions (62), (64), (66), and (68) into
expression (61) for obtaining the optimal asymptotic error
constant term, which is given as follows:

𝑒𝑛+1 = −𝑐1 ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)48𝑚7 [(𝜙󸀠󸀠󸀠󸀠 (0)
+ 6𝑎 (𝑚 + 7)2 − 14𝑚2 − 192𝑚 − 730) 𝑐41
− 24𝑚 (𝑎 (𝑚 + 7) − 2 (𝑚 + 8)) 𝑐21 𝑐2 + 24 (𝑎 − 1)
⋅ 𝑚2𝑐22 − 24𝑚2𝑐1𝑐3] 𝑒8𝑛 + 𝑂 (𝑒9𝑛) ,

(69)

where 𝜙󸀠󸀠󸀠󸀠(0), 𝑎 ∈ R. Expression (69) demonstrates
that our proposed scheme (50) reaches eighth-order con-
vergence by using only four functional evaluations (viz.𝑓(𝑥𝑛) 𝑓󸀠(𝑥𝑛) 𝑓(𝑦𝑛) and 𝑓(𝑧𝑛)) per iteration. Therefore, it
is an optimal scheme according to Kung-Traub conjecture,
completing the proof.

3.1. Special Cases of the Proposed Scheme. In this section, we
will discuss some special cases of our proposed scheme (50)
by assigning different weight functions 𝜙𝑓. In this regard,
please see the following cases, where we have mentioned
some different kinds of members of the proposed scheme:

(1) Let us consider the following weight function directly
from the proposedTheorem 5

𝜙 (V𝑛) = 1 + 2V𝑛 + 2V2𝑛 − V3𝑛 + V4𝑛
𝜙󸀠󸀠󸀠󸀠 (0)24 , (70)

which further has

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛 − 𝑚𝑡𝑛𝑢𝑛 [1 + 2V𝑛 + 2V2𝑛 − V3𝑛 + V4𝑛

𝜙󸀠󸀠󸀠󸀠 (0)24
+ 𝑡𝑛
V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] ,

(71)

a new optimal scheme with eighth-order conver-
gence.

(2) Let us choose another weight function which satisfies
the conditions of Theorem 5. Then, we obtain

𝜙 (V𝑛) = 16
V𝑛 + 2 + 6V𝑛 − 7, (72)

which further yields another following optimal
eighth-order scheme:

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
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[5𝑝𝑡]𝑥𝑛+1
= 𝑧𝑛
− 𝑚𝑡𝑛𝑢𝑛 [ 162 + V𝑛

+ 6V𝑛 − 7 + 𝑡𝑛
V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] .

(73)

It satisfies the following optimal asymptotic error
constant term:

𝑒𝑛+1 = −𝑐1 ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)24𝑚7 [(3𝑎 (𝑚 + 7)2 − 7𝑚2
− 96𝑚 − 359) 𝑐41 + 12 (𝑎 − 1)𝑚2𝑐22
− 12𝑚 (𝑎 (𝑚 + 7) − 2 (𝑚 + 8)) 𝑐21 𝑐2 − 12𝑚2𝑐1𝑐3] 𝑒8𝑛
+ 𝑂 (𝑒9𝑛) .

(74)

(3) Consider one more weight function of the following
form:

𝜙 (V𝑛) = 1 − V3𝑛1 − 2V𝑛 + 2V2𝑛 . (75)

Then, we find another optimal eighth-order iteration
function, which is given as follows:

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛

− 𝑚𝑡𝑛𝑢𝑛 [ 1 − V3𝑛1 − 2V𝑛 + 2V2𝑛 +
𝑡𝑛

V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] ,

(76)

which has the following optimal asymptotic error
constant term:

𝑒𝑛+1 = −𝑐1 ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)24𝑚7 [(3𝑎 (𝑚 + 7)2 − 7𝑚2
− 96𝑚 − 437) 𝑐41 + 12 (𝑎 − 1)𝑚2𝑐22
− 12𝑚 (𝑎 (𝑚 + 7) − 2 (𝑚 + 8)) 𝑐21 𝑐2 − 12𝑚2𝑐1𝑐3] 𝑒8𝑛
+ 𝑂 (𝑒9𝑛) .

(77)

(4) Again, we consider

𝜙 (V𝑛) = V𝑛 + 13V3𝑛 − V𝑛 + 1 , (78)

With the above weight function, we will obtain
another new optimal eighth-order iteration function,
which is given below:

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛 − 𝑚𝑡𝑛𝑢𝑛 [ V𝑛 + 13V3𝑛 − V𝑛 + 1 +

𝑡𝑛
V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] .

(79)

It satisfies the following optimal asymptotic error
constant term:

𝑒𝑛+1 = −𝑐1 ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)24𝑚7 [(3𝑎 (𝑚 + 7)2 − 7𝑚2
− 96𝑚 − 449) 𝑐41 + 12 (𝑎 − 1)𝑚2𝑐22
− 12𝑚 (𝑎 (𝑚 + 7) − 2 (𝑚 + 8)) 𝑐21 𝑐2 − 12𝑚2𝑐1𝑐3] 𝑒8𝑛
+ 𝑂 (𝑒9𝑛) .

(80)

(5) With the help of the following weight function

𝜙 (V𝑛) = 2V2𝑛 + 3V𝑛 + 24V3𝑛 − V𝑛 + 2 . (81)

we have another following optimal eighth-order iter-
ation function:

𝑦𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛,
𝑧𝑛 = 𝑥𝑛 − 𝑚𝑢𝑛 [V2𝑛 − 1

V𝑛 − 1] ,
𝑥𝑛+1 = 𝑧𝑛

− 𝑚𝑡𝑛𝑢𝑛 [2V2𝑛 + 3V𝑛 + 24V3𝑛 − V𝑛 + 2 + 𝑡𝑛
V𝑛 − 𝑎𝑡𝑛 + 4𝑡𝑛] ,

(82)

which satisfies the following optimal asymptotic error
constant term:

𝑒𝑛+1 = −𝑐1 ((𝑚 + 7) 𝑐21 − 2𝑚𝑐2)24𝑚7 [(3𝑎 (𝑚 + 7)2 − 7𝑚2
− 96𝑚 − 419) 𝑐41 + 12 (𝑎 − 1)𝑚2𝑐22
− 12𝑚 (𝑎 (𝑚 + 7) − 2 (𝑚 + 8)) 𝑐21 𝑐2 − 12𝑚2𝑐1𝑐3] 𝑒8𝑛
+ 𝑂 (𝑒9𝑛) .

(83)

In a similar fashion arbitrary weight functions 𝜙(V𝑛) are
chosen provided the conditions of Theorem 5 should be
satisfied. Then, we can obtain several new optimal methods
of eighth-order for multiple zeros.
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4. Numerical Experiments

Here, we will check the efficiency, effectiveness, and con-
vergence behavior of our proposed scheme with the weight
functions.Therefore, we choose someof expressions fromour
schemes, namely, expression (76) for (𝑎 = 0, 𝑎 = 2(𝑚+8)/(𝑚+7) & 𝑎 = (7𝑚2+96𝑚+437)/3(𝑚+7)2) and expression (79) for(𝑎 = 0 & 𝑎 = 2(𝑚+8)/(𝑚+7)), denoted by𝑃𝑀1,𝑃𝑀2,𝑃𝑀3,𝑃𝑀4, and 𝑃𝑀5, respectively. Therefore, we consider a total
number of six test problems: first one is eigen value problem;
second is Van der Waals equation of state; third one is again
from real-life problem but for simple and complex zeros, and
the last three are standard test problems, which can be found
in examples (1)–(6).

Now, we want to compare our methods with other
existing robust methods of the same order on the basis of
difference between two consecutive iterations, computational
order of convergence 𝜌, and residual errors in the function.
We choose the following two schemes from eight-order
iterative methods proposed by Zafar [16], expression (2) for(𝐻(𝑢𝑛) = 6𝑢3𝑛 − 𝑢2𝑛 + 2𝑢𝑛 + 1, 𝑃(V𝑛) = 1 + V𝑛, & 𝐺(𝑤𝑛) =2𝑚𝑤𝑛/𝐴2𝑃0 +𝑚/𝐴2𝑃0) and expression (2) for (𝐻(𝑢𝑛) = (1 −5𝑢2𝑛 + 8𝑢3𝑛)/(1 − 2𝑢𝑛), 𝑃(V𝑛) = 1 + V𝑛, & 𝐺(𝑤𝑛) = (3𝑚𝜔𝑛 +𝑚)/𝐴2𝑃0(1 + 𝜔𝑛)), denoted by 𝑍𝑀1 and 𝑍𝑀2, respectively,
for comparison of what the highest-order is till date.

(1) Scheme ZM1
𝑦𝑛 = 𝑥𝑛 − 𝑚 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)
𝑧𝑛 = 𝑦𝑛 − 𝑚𝑢𝑛 (6𝑢3𝑛 − 𝑢2𝑛 + 2𝑢𝑛 + 1) 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)
𝑥𝑛+1

= 𝑧𝑛
− 𝑚𝑢𝑛V𝑛 (1 + 2𝑢𝑛) (1 + V𝑛) (2𝜔𝑛 + 1𝐴2𝑃0 )

𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)

(84)

(2) Scheme 𝑍𝑀2
𝑦𝑛 = 𝑥𝑛 − 𝑚 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)
𝑧𝑛 = 𝑦𝑛 − 𝑚𝑢𝑛 (1 − 5𝑢2𝑛 + 8𝑢3𝑛1 − 2𝑢𝑛 ) 𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)
𝑥𝑛+1 = 𝑧𝑛 − 𝑚𝑢𝑛V𝑛 (1 + 2𝑢𝑛) (1 + V𝑛)

⋅ ( 3𝜔𝑛 + 1𝐴2𝑃0 (1 + 𝜔𝑛))
𝑓 (𝑥𝑛)𝑓󸀠 (𝑥𝑛)

(85)

where

𝑢𝑛 = (𝑓 (𝑦𝑛)𝑓 (𝑥𝑛))
1/𝑚 ,

V𝑛 = (𝑓 (𝑧𝑛)𝑓 (𝑦𝑛))
1/𝑚 ,

Table 1: Computational cost.

Methods Computational cost𝑃𝑀1 3𝑙 + 𝜅 + 10 + 6𝛾 + 2𝛿𝑃𝑀2 3𝑙 + 𝜅 + 11 + 6𝛾 + 2𝛿𝑃𝑀3 3𝑙 + 𝜅 + 11 + 6𝛾 + 2𝛿𝑃𝑀4 3𝑙 + 𝜅 + 9 + 6𝛾 + 2𝛿𝑃𝑀5 3𝑙 + 𝜅 + 10 + 6𝛾 + 2𝛿𝑍𝑀1 3𝑙 + 𝜅 + 13 + 4𝛾 + 3𝛿𝑍𝑀2 3𝑙 + 𝜅 + 15 + 6𝛾 + 3𝛿
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Figure 1: Computational costs for 𝛾 = 1.5 and 1.5 ≤ 𝛿 ≤ 3.

𝜔𝑛 = (𝑓 (𝑧𝑛)𝑓 (𝑥𝑛))
1/𝑚

𝐴2 = 1
𝐴3 = 2
𝑃0 = 1

(86)

4.1. Computational Cost. We also make a comparison be-
tween the different methods studied above, calculating their
computational cost in terms of products.

So, if 𝛾 is the ratio between the computational cost of a
division and the computational cost of a product, 𝛿 is the ratio
between the computational cost of a radical function and the
computational cost of a product and 𝑙 and 𝜅 are the ratios
between functional evaluations of 𝑓 and 𝑓󸀠 and products,
respectively; we can express the total computational cost for
each method in terms of products in Table 1.

For establishing the comparison, we have not considered
the functional evaluations, since all the methods are optimal
of order eight and, therefore, perform the same number of
functional evaluations.

Figure 1 shows the different computational costs of the
methods studied when it is assumed that a quotient is equal to1.5 times a product and for different values of 𝛿. In Figure 2 we
find the computational cost of the methods, when we assign
a quotient equal to 1.5 times a product, and 𝛾 takes different
values between 1.5 and 2.5.
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Figure 2: Computational costs for 𝛿 = 3 and 1.5 ≤ 𝛾 ≤ 2.5.

As we can see in Figure 1, the methods 𝑃𝑀2 and 𝑃𝑀3
have the same cost value for all values of 𝛾; the 𝑃𝑀1 and𝑃𝑀4 schemes have a low computational cost, the 𝑃M4
method being the most efficient between the two. On the
other hand, the𝑍𝑀1 scheme, which has been compared with
ours, has a cost lower than the 𝑍𝑀2 (which always remains
high), but without being less than the low cost of the 𝑃𝑀4
method.

In Figure 2 we observe, as in the Figure 1, that the schemes𝑃𝑀2 and 𝑃𝑀3 are always maintained with an equal cost
value between the two in all cases. However, the rest of the
methods behave differently in each case, with the method𝑃𝑀4 being most efficient for 𝛿 = 1.5, 2, 2.5 and the most
efficient 𝑍𝑀1 scheme for 𝛿 = 3. From these observations we
can affirm that the method 𝑃𝑀4 is the most efficient of the
schemes studied.

In Tables 2 and 3, we display the number of iteration
indexes (𝑛), error in the consecutive iterations |𝑥𝑛+1 − 𝑥𝑛|,
computational order of convergence (𝜌) (we used the formula
given by Cordero and Torregrosa [27] in order to calculate𝜌), and absolute residual error of the corresponding function(|𝑓(𝑥𝑛)|). We make our calculations with several numbers
of significant digits (minimum 3000 significant digits) to
minimize the round-off error.

As we mentioned in the above paragraph we calculate
the values of all the constants and functional residuals up
to several numbers of significant digits. However, due to
the limited paper space, we display the value of errors in
the consecutive iterations |𝑥𝑛+1 − 𝑥𝑛| and absolute residual
errors in the function |𝑓(𝑥𝑛)| up to 2 significant digits with
exponent power which are mentioned in Tables 2 and 3.
Moreover, computational order of convergence is provided
up to 5 significant digits. Finally, we displayed the values of
approximated zeros up to 30 significant digits for each of the
examples.

All computations have been performed using the pro-
gramming package𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 11 with multiple precision
arithmetic. Further, the meaning of 𝑎(±𝑏) is shorthand for𝑎 × 10(±𝑏) in Tables 2 and 3.

Example 6 (eigenvalue problem). One of the main problems
of linear algebra is concernedwith calculating the eigenvalues

of a square matrix. In addition, finding the roots of the
characteristic equation of a square matrix greater than 4 is
another big challenge. Therefore, we consider the following9 × 9matrix:

𝐴

= 18

[[[[[[[[[[[[[[[[[[[
[

−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24

]]]]]]]]]]]]]]]]]]]
]

. (87)

The corresponding characteristic polynomial of matrix (A) is
given by

𝑓1 (𝑥) = 𝑥9 − 29𝑥8 + 349𝑥7 − 2261𝑥6 + 8455𝑥5
− 17663𝑥4 + 15927𝑥3 + 6993𝑥2 − 24732𝑥
+ 12960.

(88)

The above function has one multiple zero at 𝑥 = 3 of
multiplicity 4. For this 𝑓1(𝑥), we considered the initial guess𝑥0 = 3.1.
Example 7 (Van der Waals equation of state).

(𝑃 + 𝑎1𝑛2𝑉2 ) (𝑉 − 𝑛𝑎2) = 𝑛𝑅𝑇 (89)

explains the behavior of a real gas by introducing in the ideal
gas equations two parameters, 𝑎1 and 𝑎2, specific for each gas.
The determination of the volume 𝑉 of the gas in terms of
the remaining parameters requires the solution of a nonlinear
equation in V,

𝑃𝑉3 − (𝑛𝑎2𝑃 + 𝑛𝑅𝑇)𝑉2 + 𝑎1𝑛2𝑉 − 𝑎1𝑎2𝑛2 = 0. (90)

Given the constants 𝑎1 and 𝑎2 of a particular gas, one can find
values for 𝑛, 𝑃, and𝑇, such that this equation has three simple
roots. By using the particular values, we obtain the following
nonlinear function:

𝑓2 (𝑥) = 𝑥3 − 5.22𝑥2 + 9.0825𝑥 − 5.2675. (91)

which has three zeros and out of them one is themultiple zero𝛼 = 1.75 of multiplicity 2, and the other is the simple zero𝛼 = 1.72. Our desired zero is 𝛼 = 1.75 and we chose initial
approximation 𝑥0 = 1.8.
Example 8 (chemical engineering problem). Let us consider
a quartic equation from [28, 29], which describes the frac-
tion of the nitrogen-hydrogen feed that gets converted to
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Table 4: Radius of the convergence ball.

Example 𝛼 𝑚 [𝑎, 𝑏] 𝑘1 𝑟𝐻 𝑟0 𝑟1 𝑟2 𝑟3 = 𝑟𝑓𝑎 0 2 [−𝜋/2, 𝜋/2] 1 1.2679 2 1.5 0.374785 0.370698𝑓𝑏 0 2 R 12 0.1152 0.166667 0.125 0.031203 0.030895𝑓𝑐 𝜋/2 3 R 1 1.972 3 2.4 0.540385 0.537669

Table 5: Radius of the convergence ball.

Example 𝛼 𝑚 [𝑎, 𝑏] 𝑘1 𝑟0 𝑟1 𝑟2 𝑟3 = 𝑟
𝑓1 3 4 [2, 4] 21.5 0.184971 0.154142 0.032548 0.032450𝑓2 1.75 2 R 100 0.02 0.015 0.003744 0.003707𝑓4 0 2 ] −∞, 1/2[ 8.06 0.248012 0.186008 0.046432 0.045973𝑓5 1 3 ]1/2, 3/2[ 11 0.272727 0.218181 0.049129 0.048882

ammonia (this fraction is called fractional conversion). By
considering 250 atm and 500∘C, the mentioned equation can
be converted into the form

𝑓3 (𝑧) = 𝑧4 − 7.79075𝑧3 + 14.7445𝑧2 + 2.511𝑧
− 1.674. (92)

The above function has a total of four zeros, and out
of them two are real and the other two are complex
conjugate to each other. However, our desired zero is 𝛼
= 3.9485424455620457727 + 0.3161235708970163733𝑖. The
reason of considering the simple complex zeros problem is
to confirm that our methods also work for simple zeros.
In addition, it allows us to investigate the behavior of the
algorithms on simple and complex zeros. Moreover, we
considered the initial guess 𝑥0 = 3.8 + 0.32𝑖 in this case.

Example 9. Let us pick a standard nonlinear test function
fromPetkovı́c et al. [2] which is the mixture of trigonometric,
exponential, and polynomial functions given by

𝑓4 (𝑥) = 𝑥2 exp (𝑥) − sin (𝑥) + 𝑥. (93)

The above function has amultiple zero at 𝑥 = 0 ofmultiplicity2. We assumed the initial approximation 𝑥0 = 0.05 for this
function 𝑓4.
Example 10. We choose another standard test problem from
Petkovı́c et al. [2], which is defined by

𝑓5 (𝑥) = 𝑥5 − 8𝑥4 + 24𝑥3 − 34𝑥2 + 23𝑥 − 6. (94)

This function 𝑓5 has a multiple zero at 𝑥 = 1 of multiplicity 3.
For this function 𝑓5, we considered initial guess 𝑥0 = 0.9.
Example 11. Finally, we consider one more standard nonlin-
ear test function, which is given as follows:

𝑓6 (𝑥) = (𝑥 − √5)4
(𝑥 − 1)2 + 1 . (95)

The above function has a multiple zero at 𝑥 = √5 of
multiplicity 4. We have chosen the initial approximation 𝑥0 =2.5 for the function 𝑓6.

Remark 12. It is worthwhile to note from Tables 2 and 3 that
our proposed methods are efficient for determining multiple
zeros of nonlinear functions and are far better than other
well-recognized efficient sixth-order iterative methods, with
our methods obtaining better results in all the considered
problems analyzed. In addition, our methods also have the
minimum residual errors corresponding to the considered
test functions𝑓.Theminimumerror between the consecutive
iterations corresponding to the considered functions also
belongs to our proposed iterative methods. We confirm that
our methods converge faster towards the required zero of
the corresponding function as compared to other existing
methods.

Now, in order to perform the local convergence study we
take the following examples 𝑓𝑎(𝑥) = cos(𝑥) − 1, 𝑓𝑏(𝑥) =𝑥2(𝑥2−1), and𝑓𝑐(𝑥) = 𝑥+cos(𝑥)−𝜋/2 from the literature, see
[24], where the local convergence radius has been calculated
for a third-order iterative method, so we compare the local
convergence radius 𝑟𝐻 of Halley’s methods with that obtained
in this paper for a fourth-order method, 𝑟. See the results in
Table 4.

Finally, we take the examples of our numerical experience
where the exact solution is known and the corresponding
bound established in (10) can be obtained in R.

Remark 13. In Tables 4 and 5 we show the values that restrict
the local convergence radius. Notice that the value 𝑟3 in all
the examples is the final radius since we obtain a decreasing
sequence of values 𝑟0 < 𝑟1 < 𝑟2 < 𝑟3. So, the last value is
the radius of local convergence. This gave us an open interval
where one can choose the initial guess for our iterative
method, but more importantly, it proves that, despite being
a higher-order method, the interval of local convergence still
remains considerably good.

5. Conclusion

In this paper, we contributed further to the development
of the theory of iteration processes and presented optimal
eighth-order iterative methods for multiple zeros. The pro-
posed scheme is the extension of an earlier work proposed
by Chun and Neta [19] for simple zeros. The beauty of the
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proposed methods is that they have minimum error between
the consecutive iterations and minimum residual errors
corresponding to considered test functions 𝑓. Our methods
also exhibit a stable computational order of convergence. We
can even obtain the whole paper of Chun and Neta [19] as a
special case of our paper for 𝑚 = 1. The proposed scheme is
optimal in the sense of the classical Kung-Traub conjecture.
The computational efficiency index is defined as 𝐸 = 𝑝1/𝜃,
where 𝑝 is the order of convergence and 𝜃 is the number
of functional evaluations per iteration. Thus, the efficiency
index of the proposed methods is 𝐸 = 4√8 ≈ 1.682 which
is better than the classical Newton’s method 𝐸 = 2√2 ≈ 1.414
and sixth-order methods proposed by Guem et al. [15, 21],𝐸 = 4√6 ≈ 1.565. We can obtain several new optimal and
interesting iterative methods of order eight by considering
different types of weight functions. Moreover, we obtain a
local convergence study for the intermediate optimal fourth-
order method that defines the two first steps of our method,
which is important because it allows us to obtain an open
interval where one can choose the initial guess, but more
important than this is the fact that it proves that, despite
being of a higher order, the interval of local convergence still
remains considerably good. Finally, on account of the results
obtained, it can be concluded that our proposed methods are
highly efficient and perform better than the existing methods.
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