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Abstract: A generalized high-order class for approximating the solution of nonlinear systems of
equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations,
we propose an extension to nonlinear systems of equations holding the same order of convergence
but replacing the Jacobian by a divided difference in the weight functions for systems. The proposed
GH family of methods is designed from this fourth-order family using both the composition and the
weight functions technique. The resulting family has order of convergence 9. The performance of a
particular iterative method of both families is analyzed for solving different test systems and also for
the Fisher’s problem, showing the good performance of the new methods.
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1. Introduction

During the last few decades, there has been a wide amount of interest in designing iterative
schemes for estimating both equations and systems of equations presenting nonlinearities. Since the
problems of finding a zero x* € D of a system of nonlinear equations F(x) = 0, where F : D C R" —
R", are present in science and engineering, the iterative methods are an ideal candidate for finding the
solutions.

There is extensive literature on iterative methods for solving nonlinear equations, good overviews
can be found in [1,2]. However, the extension of schemes from equations to systems of equations is
not always trivial. Based on the Kung-Traub’s conjecture for nonlinear equations [3], several optimal
methods of three steps can be found in the recent works [4,5]. There are other interesting methods on
the research that reach higher order of convergence [6].

In this paper, we present a new family of iterative methods for solving nonlinear systems of
equations with convergence order nine. This class, named GH family, has two weight functions and
four steps on its iterative expression. It needs one evaluation of the Jacobian matrix and four functional
evaluations of the nonlinear function per iteration. Previously, a fourth-order family with only a
weight function is proposed. This family is the basis for designing the iterative schemes of the GH
family with a composition-type technique. The development of the family covers Section 2. In order to
check the feasibility of the proposed schemes to solve nonlinear systems of equations, Section 3 shows
the numerical results when the fourth-order scheme is used for solving Fisher’s partial differential
equation and when the ninth-order family is applied to several test functions. Finally, Section 4 collects
the main conclusions of the work.

Some basic definitions must be recalled for analyzing the order of convergence of the methods.
Further details can be found in [4,7] and also the notation used in this work.
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2. The GH Family for Solving Systems of Nonlinear Equations

In [8], a new family of iterative methods for solving nonlinear equations is introduced. Its iterative
expression is

f(x)
T PG
f() g
X1 = Xp— G(Uk)f’(xk)’ k=0,1,2,...,
where G(1;) is a weight function with 7, = % Its order of convergence is analyzed in the following

result. A complete proof can be found in [8]. Our purpose in this paper is to extend this result for the
case of multidimensional problems.

Theorem 1. Let f : (3 C R — R be a real sufficiently differentiable function in an open interval () and let
x* € Qbeasimple root of f(x) = 0. If xg is close enough to x* and G(1) satisfies conditions G(0) = G'(0) =1
and G"(0) = 4, then all the iterative methods of family (1) converge to x* with fourth-order of convergence,
their error equation being

err1 = (563 — cac3)er + O(e}), 2)

D(x*y .
where e = x; — x* and cj = j!f’#*)’] > 2.
In order to extend family (1) for solving nonlinear systems, an alternative definition for variable
1k is required. For this purpose, we develop the expression as follows:

flye) f(yx) _ flyexi] 4 f(xx) _ S ) = flye

"= F ) T e—wf ) ) -y f () F(x)

So, the extension of family (1) for solving systems of nonlinear equations turns into

y®O = x(0 [P (x00)]1E(x(R),
3
2D = 1O — G () [F (x0)] LR (x D), ©
where
e = [F/(x®)] 71 (F (x0) = [y, x0; F) 4)

and G : R"™" — R™"*" is a matrix weight function. Furthermore, if X = R"*" denotes the space of all
n X n real matrices, then we can define (see [9]) G : X — X such that its Fréchet derivatives satisfy:

(@) G'(u)(v) = Guuv, being G' : X — L(X), G; € R, and L(x) denotes the space of linear
mappings from X to itself,

() G’ (u,v)(w) = Guuvw, where G’ : X x X — L(X) and G, € R.

()  G"(u,v,w)(t) = Gauvwt, for G : X x X x X — L(X) and G5 € R.

Moreover, the definition of 7 in Label (4) uses the divided difference operator of F on R”,
[,5F]: QO xQCR"xR" — L(R"), defined in [10] as

[x,y;Fl(x —y) = F(x) — F(y), forany x,y € Q.
The next result shows the order of convergence of family (3).

Theorem 2. Let the nonlinear function F : (3 C R" — R" be a sufficiently Fréchet differentiable in an open
convex set Q), x* € Q) a solution of the system F(x) = 0. It must be also satisfied that F'(x) is continuous and
nonsingular in x*. Let us suppose that the initial guess x\©) € R" is close enough to x* and G (1) satisfies
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G(0) =1,Gy =1, Gy =4and |G3| < 400, where I denotes the identity matrix of size n x n. Then, family (3)

converges to x* with order of convergence 4, its error equation being

elktl) = (—c3c2 + (5 - icg,) c;) e+ 0(eh),

e®) = x(K) — x* being the error in the kth iteration and Ci= ;'[F’(x*)]_lF(f)(x*),j > 2.

Proof. Let us denote by e®) = x(¥) — x* for all k the error in iteration k. By using Taylor series

expansions around x*, F(x%)) and F/(x(%)) can be expressed as

5

F(x®) = F(x*) [e(k) + Cel” 4 Cge(k)3 + C4e(k)4} + 0",

4

F(x®) = F(x*) [1+2Ce® +3C5e® +4Cse®’] + 00,

1 .
where C; = ﬁ[F’(x*)]_lF(])(x*),j > 2. In the same way, it holds that

4

[F/ (x0)]~1 = [X1 + Xpe® 4 Xze® 1 X4e<k>3} [F/(x*)] 7+ O(e®7).

As [F'(x)]71F/(x®)) = I, we have X; = I and
Xj = — éixj_iﬂci, i>1.
From (5) and (6), we have
[F/ (x0T LE(x®)) = o®) — Cre®? 1 360 4 1,0 1 0 (®))
for the values ,
Ji=Ci+ éxjiﬂcil +X,  j>2

Now, from the above developments,

y® —x* = e®) _ [F'(x0) TR0 = Cre®? — 30 — 1,0 1 0 (k)

The divided difference operator is defined by the formula of Gennochi-Hermite [10]

1
[x + h, x; F] :/ F'(x + th)dt,Vx € R".
0

Expanding F/(x + th) in Taylor series around x and integrating, we have

[t F] = F(x) + 5 (0)h + %F’”(x)hz o).

In particular, for y¥) given by the first step of the family (3),

3 , i
[y(k)/x(k);p] _ Z%F(l)(x(k)>(y(k)_x(k))l 'L o)
L

= F/(x) [T+ Cae®) 4 Spe0)” 4+ 55e0°) 1 0 (W)

©)

(6)

@)

®)

)

(10)
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is obtained, where S;, 1 > 2, is

Sy =C5+GCs, an
S3=C4+CGC — G 5.
Now, the value of 7y is given by:
e = [F'(x%0)] 1 (F’(x(k)) - [y(k)/x(k);p]) — Coe® 4 Ane®® 1 Aze®® 1 O(e(k)4),
where
Ay =2C3 —3C3, 12

Az = 8C3 + 3Cy4 — 6CC3 — 4C3Ca.
By using (12), its successive powers are obtained:
n = C%e(k)2 + B3e(k)3 + O(e(k)4),
where By = Cp Ay + ACy, and
= Cg’e(k)3 + (’)(e(k)4).
Using the Taylor expansion of G(#x) around 0, we get
Gl) = G(0) + Gurie + 5 Gar + 5. Gad + O()
= G(0) + G1Cpe® + <G1A2 + ;G2C§> e®” 4 <G1A3 + %Gng + 263C§’> e®? 4 0(e®),
Then,
GO [F'(x )] F(x¥) = G(0)el + (G1 ~ G (0))Cpel?”
+ <G(O)Is + G1(—=C3 + Ap) + ;GZC§> e®?

+(G(0)]4 + G1(CoJ3 — A2Cy + A3)

+ %Gz(—cg +B3) + écg,cg)e(k* + 0.
Finally, the error equation of family (3) is

(1) = el) — ) [P/ (x )] TP (x¥)

= (1= G(0)e™ + (G(0) — G1)Cpe®" + (G(O)fa +G1(G — Az2) — ;Gz(:%) ek
1 1
+ (—G(O)]4 + Gl(—szg + A,Cy — A3) + EGZ(CS — B3)6G3C§> e(k)‘l + O(e(k)5).
By applying conditions G(0) = I, G; = 1 and G; = 4, the error equation turns into

Sk (_c3c2 n (5 _ 2G3) Cg) o9 1 0@,

so the iterative family (3) is fourth-order convergent. O
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Trying to design a higher-order class with the same structure, we now consider the fourth-step
iterative family:

g = 20— [P ()] R(),

20 = 20— G [P (x0)] (D), )
wh = 20— [F(x0]1F(z(0),
XD — 20— H ([P (x9)] T E (D),

where G(17x) and H(T) are two matrix weight functions with variables defined by

me = [F'0)]E D) - [y®,x®; ),
T = [F’(x(k))]*l(F’(x(k))_[Z(k),w(k);p}).

Let us recall that the iterative scheme (13), from now on called GH family, has been obtained by a
composition-type of the iterative family (3) with itself. The convergence of GH family is analyzed in
the next result.

Theorem 3. Let the nonlinear function F : (3 C R" — R" be a sufficiently Fréchet differentiable in an open
convex set Q), x* € Q) a solution of the system F(x) = 0. It must be also satisfied that F'(x) is continuous and
nonsingular in x*. Let us suppose that the initial estimation x\°) € R" is close enough to x* and the weight
functions G(n) and H () satisfy:

(i) G(0)=1,G =1,G,=4and Gs = 30.
(i) H(O)=1,H; =1, H, = 2 and Hs = 6.

Then, all the iterative methods of family (13) converge to x* with order of convergence 9.

Proof. By using the developments in the proof of Theorem 2 (with more terms in the error expressions)
and also the same way to proceed, we obtain for the second step of family (13)

29— = o0 — ) [P/ (x)) L F(x)

(14)
= —Kge®' — Kze®® — Kee®* — Kre® — Kge®* — Koe®’ + O(e(k)w).

The coefficients K; are obtained using expressions (7), (9), (11), and (12), and

Sy = Cs5+ C3C3 + C4Co — CaJy — C3 3,

S5 = Cs + C4C5 + C5Cy — CaJs — CaJs — CaJ3 — C3CaJ3 — C3J5Ca,

S = C7+ C4C3 + C5C5 + CCa — CaJ — CaJ5 — Cafs — CsJ3 — C3CaJs — C314Co
— C4CaJ3 — C4J3Ca + C3J3,

S7 = Cs + C5C3 + CsC3 + C7Co — CaJy — CaJo — CaJs — CsJy — CeJ3 — C3CaJs
— C3J5C2 — C4CaJs — C4JoCa — C5CaJ3 — C5J3C2 + CaJ5 — CoC3J3 — C4CaJ3Co
— C4J3C3 + C3Ja]s + Cala)s.

From these expressions, we have

j—1
Aj=(j+1)Cip1— S+ X;C + kZéXk((j —k+2)Ci_j12—Sj—k+1), j>3,
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and then

By = CAr + ArCy,
j—2

Bj = Cj—lAj—l + kE AkAjfk + Aj—lcj—lr j>3
=2

Dy = CyBs + AzC%,
j—3

Dj = C;Bj_1 + kz ArBi x4+ Aji2C3, j>4
=2

Thus, it is obtained that
b =0,
F, =2C3—C3,
F; = C3 +3Cy — 2C2Cs,
Fj = Aj+2B]'+5D‘, ] > 3.
Then, the coefficients in (14) are
Ky = J4 +3C3 —2C,C3 — 2C3Co + F,

j—1
K] = ]] + kzl Fk]jfk + 2F]'_3(C% - C3) - F]'_2C2 + F]'_l, j>4.

Then, being w®) = z(K) — [F/(x(0)]=1F(z(K)),

[Zo«),w(k); F] _ F’(Z(k))+%1:”(z(k))(w(k)_Z(k))_|_(9(e(k)6)

= F(x") [I — CoKye®' 4 (—CoKs + C2X2K4)e(k)5} + 0™,
Therefore, the Taylor development of variable T} of the weight function H is given by:

T = [F ()] (F () — 219,00 )
= Npelb) + Nze(k)2 + N;»,e(k)3 + N4(z(k)4 + N5e(k)5 + O(e(k)é),
where
Nl' = _Xi+1r i= 1,2,3, and N4 = C2K4 - X5.
When the conditions in the theorem for the weight function H are applied, we have

1

1
H(Tk) = H(O) + HlTk + *Hszz + 3!

2!
= [+ +7+7+0(%)
= I+ P+ Pze(k)2 + P3€(k)3 + P4e(k)4 + O(e(k)s),

Hg'c,f’ + O(T,f)

the coefficients being

Py = Ny,
P, = N, +N?,
P; = N3+ NiN; + Np;Nj + Nio’,

Py = Ny+NiN3+ N2+ N3Nj + N2N, + NiN,Nj + No N2,
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Finally,

H(w) [F'(x*)] 7 F(M) = Qe + Qsel” + Qe + Qre™” + Qg™ + 0 (),

being
Q4 = _K4/
Q5 = —Ks— XKy — NiKy,
Qs = —Kg— XoKs — X3K4 — N1Ks — N1 XpKy — P2 Ky,
Q7 = —Ky—XoKs — X3K5 — XKy — N1Kg — N1 XpK5 — N1 X3Kyg — P2 K5

—P,X5Ky — P3Ky,
Qs = —Kg+ CKj — X3Kg — XoK7 — X4Ks — X5K4 — N1 K7 — N1 X2Ks
Ny X3Ks — Ny X4Ky — PaKg — PaXoKs — PaX3Ky — PyKy — P3Ks — P3XoKy.

Then, the error equation of GH family is:

() = 2yt () [ (x0)) T E W)
e T4e(k)4 + TSE(k)S + T6e(k)6 + T7e(k)7 + Tge(k)s + O(e(k)g),
where
T, = —-K; — Q;, i=4,...8.
As it can be proven that T; = 0 for 4 < i < 8, we have that GH family has order of
convergence 9. [
3. Numerical Experience

In this section, we are applying the iterative families (3) and (13) to several nonlinear systems
of equations. In particular, the performance of family (3) is checked by solving the Fisher’s partial
differential equation.

3.1. Application of Family (3) to Fisher’s Equation

Fisher’s equation [11]

v(x, t
ve(x, 1) = Doy (x, £) + ro(x, t) <1 - (c)> (15)
represents a model of diffusion in population dynamics, where D > 0 is the diffusion constant, r is
the growth rate of the species, and c is the carrying capacity. In this section, a specific case of Fisher’s
equation is solved using iterative methods. In this case, D = r = ¢ = 1, so (15) gets into

0t (%, 1) = Ve (x, 1) +0(x, 1) — ?(x, t). (16)

The domain of x is the interval [—25,50]. The boundary conditions are v(—25,¢) = 1 and
v(50,t) = 0, for t > 0, while the initial condition is

1, x < —10,

0, —-10 < x <10,
1/4, 10 < x <20,
0, x > 20.

v(x,0) = (17)
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Discretizing (16) and by using divided differences, the problem can be solved as a family of nonlinear
systems. For this purpose, we first have selected a grid of points in the domain, (x;,t;) € [~25,50] x
[0, Tyax], where x; represents the node in the spatial variable, set as x; = —25+ih,i =0,1,...,nx, j
is the index of the time variable, set as ti=0+ jk,j = 0,1,...,nt, h and k are the spatial and time
steps, respectively, and nx and nt are the number of subintervals for variables x and ¢, respectively.
Then, an approximation of the solution at each point (x;, ;) of the mesh will be obtained, that is,
v R v(x;, t])

Applying backward differences to the time derivative and central differences to the spacial one,
that is

v(x, t) —o(x,t —k)

vi(x,t) = p ,

o(x+h,t) —2v(x,t) +v(x —h,t)
h? ’

Uax(X,t) =
the scheme in finite differences for the approximated problem is

Vij —Vij-1  Vig1j — 20i;
k h?

+0i1,
L (18)

i,j’
fori=1,...,nx—1,j=1,...,nt. After some algebraic manipulations, (18) results in
(142A— k)vi,j — /\(Ui-‘rl,j + Ui—l,j) + kUlZ,] = Vi1, (19)

where A = k/h?. Depending on the number of subintervals used in the discretization of the variable
x, a nonlinear system of size (nx — 1) x (nx — 1) can be found by solving (19). The nonlinear system
defined for a fixed j is the following:

2

U1, vé,j v1,j-1 o,
Uy i 05 Upi-1 0
(O S I { Al | =0, (20)
Unx—1,j v%lel,j Unx—1,j—1 Unx,j
where matrix A is
1421 —k —A o - 0 0
—A 1+2A—k —A .- 0 0
: : : . : : (21)
0 0 0 -+ 1+4+21—k —A
0 0 o - —A 1+2A—k

Each system gives an approximated solution for the problem in a time step ¢; from the obtained
in the instant t;_1, so we begin to solve the systems using the solution at ¢ provided by (17).

Using iterative methods for solving nonlinear systems, such as family (3), system (20) can be
solved. In order to compare the numerical results, another iterative scheme with the same order of
convergence as family (3) has been chosen. In this case, the Sharma et al. [12] method, denoted in this
work by 54, is fourth-order convergent and has the iterative expression

yk = x(k)_%[p(x(k))]fllc(x(k))
xk+1) = x(k)f%Lk[FI(X(k))]—lp(X(k)),

where L = —I + §[F'(y®)] 1P/ (x9) + §[F/(x9)] P (y9).
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On the other hand, to check the numerical behavior of family (3), it is necessary to select a weight
function satisfying conditions of Theorem 2, so it will be obtained a method of this family. Several
functions satisfy the conditions of the theorem, some of them being:

(a) Glm) =1+ me+ 213,

(b) Glp) = [T—2m " (I =g, (22)
() = [+ 17" (=272 + 1).

—
o

NLD
O

An efficiency comparison between the proposed schemes is given in terms of the computational
cost and the number of functional evaluations. This comparison helps to choose the more efficient
method of family (3). For this purpose, we can use the efficiency index defined by Ostrowski [13] as
I = p'/4, where p is the order of the method and d is the number of new functional evaluations per
iteration required by the method. The computational cost for solving a linear system of equations
depends on its size. As the proposed methods can be used for solving large systems of equations,
this cost must be taken into account. Thus, we compare the performance of the methods with the
computational efficiency index introduced in [7] as CE = p!/{@+%P) where op is the number of
operations (products and quotients) per iteration.

Table 1 summarizes the results for the computational efficiency index and number of functional
evaluations for each method, where G4, G4;, and G43 denote the resulting iterative schemes when
family (3) is applied using the weight functions (22), respectively.

For each method, Table 1 shows the number of different evaluations of the function (F),
the Jacobian matrix (F’), and the number of different divided differences used by the method in
each iteration (nDD). All the methods need n and n? evaluations to compute F and F’, respectively,
and @ for each divided difference operator.

Regarding the operational cost, the value of Mv is the number of matrix-vector products, with 12
operations for each product. To compute an inverse linear operator, one may solve a n X # linear
system of equations, where an LU decomposition is performed and two triangular systems must be
solved, with a total cost of 3n® + n% — Ln operations. However, for solving r linear systems with the
same matrix of coefficients, the LU decomposition is computed only once, so the computational cost is
only %n?’ +rn? — %n. The values of s1 and s2 are the number of linear systems that each scheme solves
per iteration with matrix of coefficients F’ (x%)) or another matrix, respectively.

Table 1. Funtional evaluations and computational efficiency index of methods G4;, G4,, G43, and 54.

Method F F' nDD d s1 s2 Mv op Order CE
G4 1 1 1 o3 g o Ipgs2_lp o4 gV/GrEPetgn
GeH 1 1 1 ") 3 a1 Zpdyen?—dn 4 4V/GTEEEm)
G4y 1 1 1 M) 33 0 234822y 4 4V/GreEegn
S4 1 2 0 2%4nm 2 1 1 Ind4dn?-3n 4 4VGPHer5m)

As the results of Table 1 show, among the methods belonging to family (3), the most efficient
is method G4;. Then, the numerical performance of the family is carried out with this method.
In addition, method S4 requires more functional evaluations than the other ones as it computes two
Jacobian matrices in each iteration.

The results obtained in Table 1 can be observed in Figure 1, where the value of log, (CE) for the
four methods by varying the size of the system (1) has been represented. As we can see, for small
values of n, the indices of G4; and 54 show similar performance; meanwhile, when the value of n
increases, the computational efficiency index of all methods decreases, but the index of method G4; is
greater than the rest.
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01

(a) Sizes from 1 to 5 (b) Sizes from 10 to 50 with a step of 10

Figure 1. log, (CE) from Table 1 for methods G4;, G4, G43, and 54 and different sizes of the system.

We have solved system (20) using methods 54 and G4; for nx = 20. For the numerical
performance, we use software Matlab R2017b with variable precision arithmetics of 1000 digits of
mantissa.The results of the application of the methods for solving the nonlinear system are collected in
Table 2 varying the value of nt and Tj;,x. For every performance, the iteration procedure stops when
|F(x* +1))|| < 107° or the number of iterations reaches the number 50. The value of iter represents
the mean number of iterations needed when all the columns have been calculated and the terms a(b)
represent the value a - 100, Moreover, the elapsed time in seconds to obtain the solution for the problem
after 10 (consecutive) executions is shown.

Table 2. Numerical results for nx = 20 and different values of T}, and nt.

Tmax = 0.5 Method nt iter |F(x+D)| e-time
54 100 16.0 9.6054 (—7) 397.1095
e 20 9233(-19)  93.5890
54 200 15.0 7.8637 (—7) 781.0227
G44 2.0 7.2024 (—21) 152.5548
54 500 13.0 8.4237 (—7)  1.6520(03)
G4y 20  1179(-23) 5155332
Tymax =1  Method nt iter | F (2D e-time
54 100 17.96 8.1801 (—7) 838.7530
G4 20 1.6217(~16)  205.8390
54 200 16.37 6.6969 (—7) 880.8873
G4, 20 12656 (~18)  211.5296
S4 500 14592 7.1745(—7)  1.9021(03)
G4y 20  2.0725(-21) 518.8443
Tpax =2  Method nt  iter  ||[F(x(ktD)||  e-time
5S4 100 19.5 7.2062 (—7) 529.8552
G4y 20 24203 (~14)  106.0159
5S4 200 17.98 9.6415 (—7) 965.8759
Gdy 20  1.8728(—16)  209.1218
S4 500 1611  63074(—7)  2.0914(03)
Gdy 20  3.0515(-19) 513.5127
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The results in Table 2 show the good performance of method G4; for solving the Fisher’s problem.
Method G4 only needs two iterations to calculate a solution for the system, the mean number of
iterations always being lower than that of method S4. For a fixed value of Ty, when nt increases,
so does the elapsed time, but the approximation to the solution is better since ||F(x*1)|| is smaller.
In addition, the e-time is lower for method G4, so it reaches the solution with more computational
efficiency and arithmetical precision than the other scheme.

3.2. Application of Family GH to Nonlinear Test Systems

According to the results obtained in Table 1 for methods G4 ; 3, the numerical experiments for
family (13) are developed by using the following weight functions:

O
~—~
=
=
T

|

I+ + 272 + 512,

23
I+ T4+ +7, )

ay

—~

=

~
|

which satisfy conditions of Theorem 3.

To compare the features of our method with other schemes of the literature, the numerical tests are
also performed on two iterative schemes of order 8 that can be found in [5,14]. The method is named
GHO9, for our iterative family using functions (23), NLMS for [5], and SLBS, for [14]. The computational
efficiency index and the number of functional evaluations of these methods are collected in Table 3.

Table 3. Funtional evaluations and computational efficiency index of methods NLM8, SLB8 and GHO.

Method F F nDD d s1 s2 Mv op Order CE
NLM8 3 2 0 22243z 7 0 2 l@d41m?-%n 8 gl/Grilin)
SLB8 3 0 22431 2 9 6 Fmd+17a—3in 8 g/
GHY 2 1 2 2¢%4n 8 0 6 ind414n?—1n 9  oU/Gr+1er+in

Method GH9 requires few functional evaluations, as low operational cost and has a competitive
computational efficiency index (see Figure 2). We will see now that the numerical experiments confirm
these results. For this purpose, methods NLMS8, SLB8, and GH9 are applied to solve the following
nonlinear systems:

@@ F(xy) = (fll(x/]/)/flz(x,y))T = 0, where

fu(xy) =x*—y—19,
fr(xy) =ty —x2+y—17,

b)  B(xy,z) = (fu(xy,2), f22(x,v,2), fr3(x,v,2))" =0, such that
f21(x, y,z) = sin(x) + yz + log(z) —7
fo(x,y,z) =3x+2V — 5 +1,
fa3(x,y,2) =x+y—z—5,

©  Bxyz) = (Fny2), foy2), f5xy,2)" =0, where

fai(x,y,2) =2x+y —z—4,

fa(x,y,z) =2y+z+x—4,
f3(x,y,2) = xyz - 1.
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Figure 2. CE from Table 3 for methods NLMS8, SLB8, and GH9 for different sizes of the system.

The results obtained from applying the methods for solving the nonlinear systems are collected in
Tables 4-6. The stopping criteria now is a difference between two consecutive iterates lower than
1029 or the condition ||F(xk+1))|| < 10729 with a maximum number of iterations of 50. The results
have been calculated using Matlab R2017b with variable precision arithmetics of 2000 digits of
mantissa. In this way, the numerical noise is far enough to not affect the final result. The approximated
computational order of convergence [15] represents an approximation of the order of convergence of

each method.

Table 4. Numerical results for F; (x, y).

Method x(0) Iter ||[F(x(k*D)|| AcOC
NLMS8 [77] 3 1.929 (—201) 6.9500
SLB8 3 1.433 (—378) 7.8627
GH9 3 4.151 (—343) 8.2992
NLMS8 [4 —4.5] 47 1.255 (—865) 6.0711
SLB8 36 3.522 (—203)  7.7505
GH9 20 1.164 (—1218) 7.9956
NLM8 [-10-75] 20 3.371(—=501)  6.4336
SLB8 5 6.248 (—1248)  8.0000
GH9 4 1.722 (—416) 8.1830
Table 5. Numerical results for F,(x,y, z).
Method x(0) Iter ||F(x(xt1)|| ACOC
NLMS8 [-15—-15 —1.5] 4 7.484 (—633) 6.3006
SLBS8 4 3.902 (—1402) 7.9274
GH9 4 7.286 (—1127) 8.0749
NLMS [0-1-15] 5 9291 (—1174)  5.892
SLBS8 4 2.557 (—1318) 7.9291
GH9 4 1.064 (—425) 8.5315
NLMS8 [345] 5 1.200 (—958) 5.9817
SLB8 5 1.306 (—839) 8.0606
GH9 4 3.982 (—350) 8.3187
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Table 6. Numerical results for F5(x,y, z).

Method x(© Iter ||[F(x(+1)|| AcOC
NLMS8 [—112] 4 2587(—412) 7.8793
SLBS 13 2419(—854)  7.9973
GH9 4  6575(—616) 8.0173
NLM8  [-0.60.827] 34 1393(—290) 7.7554
SLBS 14 7.066 (—785)  7.9959
GH9 4  2445(-511)  8.0092
NLM8  [-25-11] 15  1.667(—420) 7.9179
SLB8 5 7361 (—1165) 7.9992
GH9 4  2522(—325) 8.3981

The ACOC [15] is the approximated computational order of convergence defined as

In (|[x40) — x| /||x® — 1))

~ ACOC = .
! In (|[x® — xE=D][/][x*-D — <&

It is a computational approximation of the theoretical order.

For every nonlinear system, the higher value of the ACOC is for the GH family, as expected.
In general, our proposed scheme converges in less iterations than the other tested methods with very
competitive error estimates.

4. Conclusions

Two families of iterative methods for solving nonlinear systems of equations have been introduced,
the first one being a multidimensional extension of a previous scalar class of iterative methods.
Both schemes are designed via the matrix weight functions procedure with only one evaluation of
the Jacobian and its estimation using divided differences for systems. Two more steps are added to
the fourth-order class, holding the Jacobian matrix evaluated in the same step, allowing us to reach
order of convergence 9 for the GH family. The numerical tests confirm the quality of the iterative
schemes for solving systems of equations of non-small size, improving the results of several methods
in the literature.
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