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Prediction models have become essential for the improvement of decision-making processes in public management and,
particularly, for water supply utilities. Accurate estimation often needs to solve multimeasurement, mixed-mode, and space-time
problems, typical of many engineering applications. As a result, accurate estimation of real world variables is still one of the major
problems in mathematical approximation. Several individual techniques have shown very good estimation abilities. However, none
of them are free from drawbacks. This paper faces the challenge of creating accurate water demand predictive models at urban scale
by using so-called committee machines, which are ensemble frameworks of single machine learning models. The proposal is able
to combine models of varied nature. Specifically, this paper analyzes combinations of such techniques as multilayer perceptrons,
support vector machines, extreme learning machines, random forests, adaptive neural fuzzy inference systems, and the group
method for data handling. Analyses are checked on two water demand datasets from Franca (Brazil). As an ensemble tool, the

combined response of a committee machine outperforms any single constituent model.

1. Introduction

More than half of the world’s current population live in cities,
with a growth of 1,500 million people in the last 20 years,
and the United Nations predicts that this trend will continue.
This population size scenario, together with the continuously
under-stress natural resources, makes it paramount to count
on accurate and efficient methods for estimating urban water
demand [1]. This is nowadays possible as there are a huge
quantity of available data and suitable big data tools to deal
with it. However, there are still several open challenges re-
garding the study and analysis of big data. Not only may new
mathematical techniques and machine learning paradigms
improve the quality of estimation techniques but also efforts
to obtain a better understanding of what the methods do
in detail and which effects are caused by changing their
parameters can give an insight into how several models

could work together. Among them, approaches related to
optimal and automatic tuning processes for the models’
hyperparameters [2, 3] should be highlighted. For short-
term water demand forecasting processes, machine learning
techniques such as artificial neural networks (ANNs) and
support vector machines (SVMs) are widely applied [4].
Machine learning methods are able to map highly non-
linear spaces and to accurately estimate the ensuing output
space. The results tend to be strongly linked to the preestab-
lished definitions of their architectures (hyperparameters for
each method), which are usually defined by the users. In this
sense, models may require much time to be built with no
guarantees of being optimal. Another interesting paradigm
investigates the so-called ensemble learning [5] of several
individual methodologies (machine learning methods or,
plainly, machines) to generate a single combined model or
committee machine. The latter, an approach not enough
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explored yet, should reach better predictive performance
than that obtained from any of the constituent algorithms by
themselves [6].

Water demand forecasting has been explored through
machine learning techniques. For the short and long term [8]
proposed a model of water demand forecasting for summer
peak consumption, using and comparing multiple linear
regression, time series analysis, and ANNs. Prediction of
water demand using a dynamic ANN model was proposed
by Ghiassi et al. [9]. The authors modeled water demand data
using the DAN2 method, reaching good results and showing
that predictions do not depend on the explicit inclusion of
weather variables. The study was applied in monthly, weekly,
and daily models, obtaining a prediction accuracy of 99%,
and for the hourly models obtained a precision above 97%.
The model was also compared with autoregressive integrated
moving average models and traditional ANN models.

This paper proposes the use of committee machines for
the creation of predictive models for urban water demand.
A committee machine mixes different-nature methodologies.
The aim is to take advantage of each component’s strengths,
while avoiding its weaknesses when combined with other
machine learning methods not necessarily based on the
same algorithm [10]. For instance, a committee machine
can reduce the influence of an accurate but not robust
model by boosting the influence of a more robust algorithm
for certain model scenarios. A combination of individual
methods was proposed by Huang et al. [11]. The authors
combined models, including wavelet transform and mean
least squares partial-autoregressive moving average (KPLS-
ARMA) to analyze the nonstationary behaviour of an annual
urban series of water demand. The combined method pro-
posed by the authors obtained improved accurate forecast
of the city’s urban water demand. Arandia et al. [12], also
combined methods to predict short-term water demands; in
this case, the authors combined seasonally integrated, self-
correcting seasonal moving average (SARIMA) models with
data assimilation. In their case study, forecasts were compared
with actual volumes of water produced by the local utility.

The present paper compares several combinations of
models that have already shown good performance by
themselves on forecasting urban water demand. This is
the case of multilayer perceptrons (MLPs) [13], support
vector machines (SVMs) [14], extreme learning machines
(ELMs) [15], random forests (RFs) [16], adaptive neural fuzzy
inference systems (ANFIS) [17], and the group method for
data handling (GMDH) [18]. For each combination, the
committee machine integrates independent tuned machines
together with some predefined ensemble rules to build the
final model. After training, the performance of the models is
analyzed through error indices, such as the mean square root
error (RMSE) and the mean absolute error (MAE).

To justify the use of the previously mentioned machine
learning techniques, let us mention that techniques such as
ANFIS have already been used for online identification in
control systems and for predicting future values in chaotic
time series [17]. RFs have also been used, for example by
Cheng et al. [19], in a demand prediction study focused on
the energy sector; the authors use an ensemble method based
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on the RF technique. Still within the scope of demand forecast
in energy systems, Majumder et al. [20] proposed a study of
solar energy forecast, through a decomposition in a hybrid
empirical mode (EMD) and ELM. For the forecasting study
of the demand, it is also possible to use the method for data
handling (GMDH) [21]. The GMDH provided better results
and performance than the obtained by applying SVMs.

There are a number of antecedents of proposals similar
to committee machines on the creation of predictive models
for various water engineering applications. This is the case
of Barzegar et al. [22], which compares the accuracy of
three neural computing techniques, such as MLPs, radial
basis function neural networks (RBFNNs), and generalized
regression neural networks (GRNNs) in the prediction of
the groundwater salinity of the simple confined aquifer of
Tabriz. The committee machine created by combining MLPs,
RBFNNs, and GRNNSs is showed to perform better than any
of the individual techniques alone for predicting groundwater
salinity. Lima et al. [23] generate a final committee machine
by grouping a set of SVMs. Nadiri et al. [24] use supervised
intelligent committee machines (SICMs) by combining sev-
eral SVM models and neurodiftuse (NF) and gene expression
programming (GEP) methods. Their aim was to evaluate
groundwater vulnerability indexes of an aquifer. On urban
water demand, Candelieri [25] uses SVMs in two stages,
one for clustering and the other for forecasting short-term
water demand. Brentan et al. [26] use a hybrid methodology
combining SVMs with Fourier time series to approach near
real-time urban water demand models. Combinations of self-
organizing maps and RFs are also investigated in Brentan et
al. [27].

In addition to the most used ANNS, other forms can
also be used to predict water demand, as done by Guo et al.
[28]. The authors proposed a comparison between a gated
recurrent unit network (GRUN), a conventional ANN model,
and a SARIMA model. The models aimed at predicting water
demand for 24 hour horizon with a time interval of 15
min. In the case studied, the GRUN model obtained better
performance compared to ANN and SARIMA. This type of
approach shows the importance of studying not only models
working individually but also together, as in the case of the
ensemble methods.

Ensemble methods have been as well applied out to
engineering related topics. To mention just a few, Johansson
et al. [29] propose the use of a parallel model combination
for predicting consumption of heating systems. Oliveira et
al. [30] present a combination of ten MLP networks with
different architectures and parameters. Polikar [31] shows
that cluster-based systems may be more beneficial than their
individual classifier counterparts. Ensemble methods are also
used to predict nonstationary time series. This is the case of
the work by Castro et al. [32], in which ANNGs are trained
with various parameter configurations and then grouped to
provide a single solution.

The paper is organized as follows. After the Introduction,
next section presents the methodological aspects. Then, a
new section describes the case study followed by a section
thoroughly describing the obtained results. Finally, the paper
is closed by the section of conclusions and the references.
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The current paper presents an important step ahead
for the implementation of cutting-edge machine learning
developments to improve water distribution systems control
and management. On the other way round, the work is
of interest on expanding the ways and topics on which
novel machine learning and data-driven models are applied.
The paper creates ensemble models for committee machines
based on six machine learning techniques. The paper shows
a simple but theoretically sound way of how estimation
problems can be solved with an efficient multiresolution
technique. Each model is applied to investigate the demand
on two water supply areas of a medium-size city in the
State of Sdo Paulo in Brazil. Apart from the superior results
produced by the committee machines when compared with
single models, the paper also opens an in-depth discussion
about the influences, limitations, and applicability of each
technique and model combination rule.

2. Materials and Methods

Machine learning techniques are able to learn patterns and
solve complex problems just by processing (very often) large-
size databases. Probably, the most classical machine learning
approach is constituted by the artificial neural network
(ANN) paradigm, especially MLPs. Over the years, ANNs
have evolved towards other approaches for example, SVMs. A
SVM maps the model input onto a high-dimensional feature
space to ease further computations. ANN structures have also
been adapted to new configurations. This is the case of ELMs
in which some parameters do not need to be tuned. ANFIS,
in its turn, is a variant of ANNs that uses fuzzy inference,
which is powerful in approaching hybrid methodologies for
parameter tuning. GMDH methods split a problem into
manageable pieces where to apply regression techniques to
thus produce simpler problems than the original. In a natural
way, some versions of GMDH can be considered as variations
of ANNE.

This section briefly introduces MLPs, SVMs, ELMs,
ANFIS, and GMDH. RFs are also introduced for further
combination within committee machines.

2.1. Multilayer Perceptron (MLP). MLPs have been exten-
sively studied in the literature and applied in several areas,
in particular in studies on water supply systems and demand
forecasting [33, 34]. These networks are based on inter-
connections of their calculation units, called perceptrons,
organized in various layers. MLPs count on an input layer,
and the input data is available to all its nodes. They also have
an output layer providing the outcome of the process. Then,
one or more hidden (or inner) layers facilitate the internal
computations required for reaching optimal estimation for
the problem to solve. The outputs of the neurons of one layer
are distributed to only the inputs of the neurons of the next
layer. Thus, the input signal propagates through the network
in a progressive (feedforward) way.

The information processing in a MLP flows in two modes.
One is related to its (forward) propagation through the
network, layer by layer, until the corresponding output is

produced. This stage is directly related to the network perfor-
mance. The other mode regards the network adaptation. The
MLP connection weights are modified using the backprop-
agation algorithm, which is based on the observed error at
comparing the estimated output and the real value available.
The error is propagated backwards from the output layer to
the input layer, and the connection weights at the hidden
layer(s) can be consequently adjusted so as to minimize the
difference between the estimated and the real value [35].

Considering a simple MLP with one inner layer with M
neurons, and N neurons in the input layer, the output, y;, can
be written in terms of the input vector, x;, as

f(x;) = f(quf<prwi>> =i ¢))
gq=1 p=1

In (1) w, are the input weights, and w, the weights of
the hidden layer. Each linear combination is processed by
an activation function, f, responsible for further nonlinear
transformations. The sigmoid function is the most popular
activation function for MLPs.

2.2. Support Vector Machine (SVM). Support vector ma-
chines (SVMs) were developed focusing on nonlinear sep-
arable data problems [36, 37]. To achieve this separation, a
SVM finds the ideal hyperplane that maximizes the distance
between two groups, thereby minimizing the margin error. To
do this, the input data is projected onto a higher dimensional
space where the SVM is able to linearly separate the nonlin-
early separable data in the original space. The transformation
of dimension and data separation is schematized in Figure 1.
Figure 1(a) represents a set of nonlinearly separable data.
To achieve the separation of these data, the input space
is projected onto a higher dimension space (Figure 1(b)).
This transformation may be hard, mainly to find the correct
dimension where the data are separable. For this purpose, it
is used the so-called kernel trick, which applies a nonlinear
transformation on the input space [38]. According to Rizk et
al. [39], the kernel trick is used to reduce the computational
complexity of the prediction demonstrated by the SVM.
Support vector regression (SVR) uses the same principles
as SVM for classification. However, there are some differ-
ences, as the main objective is not to find the best hyperplane
to separate the data, but the best data regression hyperplane.

2.3. Extreme Learning Machine (ELM). An ELM is based
on a feedforward ANN with a single hidden layer [40]. For
ELMs the input and hidden hyperparameters are randomly
determined, and the proper learning process takes place
on the output layer. ELM networks have some advantages
over other networks such as MLPs. Among them, faster
learning speed and less human interference on the network’s
architecture design must be highlighted.

Considering an N-dimensional input dataset processed
by an ELM with M neurons in the hidden layer, the output
of the network can be written as in (1). However, taking
into account the random approach, this equation can be
interpreted as a linear combination of (processed) input data
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FIGURE 1: Representation of (a) a nonlinearly separable data set in a low dimension space and (b) the dimension transformation turning data

separable.

(2), thus becoming close to a least-square problem where the
parameters to be adjusted are the weights of the output layer.

£(x) =§ L(xip) = y; )

Here, L(x; ,) is the nonlinear function, processed at the
input and hidden layers. According to Huang et al. [34], the
main advantage of ELMs is on creating a bridge between the
ANN universal approximation theory and the SVM tuning
process.

2.4. Random Forest (RF). The random forest is a classification
technique directly related to tree-like models [41]. To classify
the data, the method combines the results of a number of
decision trees through a voting mechanism. The voting for
the classes is given by each tree, and the final classification
corresponds to the class that receives the biggest number of
votes among all the trees [16].

During an RF process, a new set is created from the initial
training set, with which a tree, based on this new subset,
which will be built with a random selection of attributes. At
each node of the tree, a subset of m attributes is randomly
selected and subsequently evaluated. The attribute that has
the best performance is chosen to split the node. The value of
m is set for all the nodes. An RF defines a margin function
that measures the extent to which the average number of
votes for the correct class exceeds the average of votes for
any other class present in the dependent variable. The result
of this measure aids to solve forecasting problems and also
constitutes a way of associating a measure of confidence with
these forecasts. RFs consider the average of the predictions of
the trees to perform inference.

RFs are used for regression purposes and are made up
by the growth of simple trees, each of which is capable
of producing a numerical response value. In this case, the
predictor set is randomly selected from the same distribution
and for all the trees.

2.5. Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS
is a hybrid technique of artificial intelligence that uses fuzzy
logic and ANN learning processes. The ANFIS associated
network has architecture with six layers interconnected by

unit weights (Figure 2). Each layer is responsible for a specific
operation resulting into a single output [17].

The first layer is responsible for reading the input data.
The second layer processes these input values by a member-
ship function aiming to identify the compatibility degree of
each input with its respective fuzzy input sets. The interaction
operation between the input membership functions occurs
on the third layer. The fourth layer normalizes the previous
layer outputs for their consequent transformation through
activation functions, according to

w;
fi (w) = Z;il w; (3)

in which w; is the output of neuron i from the previous
layer. The fifth layer is responsible for the calculation of
the values of the consequences of the rules. In this layer,
the function responsible for the activation of the neurons is
the Sugeno function, a p-th order combination of the input
signals. The sixth layer sums through the obtained results,
resulting into a single output for the network.

2.6. Group Method for Data Handling (GMDH). The GMDH
technique uses networks that perform nonlinear processing
through a polynomial combination; in this combination, the
adjustment of the polynomial coefficients occurs through
training in batches [42]. Thus, the technique is applied when
the separation method is applied to multiparametric models
[18].

This polynomial support function is given by the Kolmog-
orov-Gabor polynomial. The function is represented by

—aO+Zax +ZZaxx ZZZka (4)

i=1 j=1

in which xy,x,,...,x,, are the input vectors of the
variables and a,, a,, .. ., a,, are the method coeflicients. From
(4), it can be seen that the complexity of the relations between
variables increases as a function of the number of terms.

The GMDH network is considered a constructive net-
work; that is, it is a network which exhibits good organization,
and this characteristic becomes an advantage over the most
common neural networks.
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FIGURE 2: Architecture of an ANFIS network: Brentan [7].

2.7. Committee Machine-Ensemble Method. Committee ma-
chines attempt to minimize the errors of individual learning
algorithms or machines by grouping them and making them
to work synergistically. The ensemble is a more robust model
than the model represented by any individual machine.

This paper proposes three merging rules to produce
ensembles: arithmetic mean, geometric mean, and linear
combination techniques (based on minimum least squares).

In addition, two other approaches for committee ma-
chines are introduced. Firstly, committee machine made of
MLPs and ELMs with different architectures is proposed. This
is not a mix of machines. Indeed, the MLPs and the ELMs are
combined using the previous rules. This first strategy is used
for two reasons: the first reason is to scrutinize the structure of
the model (input variables) in the estimation process, which
must be analyzed to know which variables influence most the
system; and second, we intend to make comparisons with the
second strategy, which eventually will provide the best results,
namely, the one that combines a larger number of machines,
specifically, MLP, ELM, SVM, GMDH, ANFIS, and RE This
combination process is represented by Figure 3.

Selection of Model Structures and Committees of Single
Machines. Correlation analyses presented in the literature
point out the strong link between weather and hourly water

TABLE 1: Model structure in terms of input variables.

Model Input Variables

Model A Time, weekday, holiday, temperature, humidity
Model B Time, weekday, holiday, temperature
Model C Time, weekday, holiday, humidity
Model D Time, weekday, holidays

demand. This clearly advises the use of these variables
as an essential part of the input for predictive models of
water demand. In addition, machine learning approaches can
correlate some time series demand anomalies with specific
weather conditions, thus helping improve the reproduction
of some scenarios in the future. Nevertheless, using weather
inputs might be at risk of providing not reliable results if the
nonpredictable nature of the weather is taken into account.
In this sense, committee machines make it possible to obtain
reliable models, while simultaneously using all the available
information.

A variable selection process for ELM and MLP networks
is first used to build four different models, in order to verify,
which model will perform better. Details are presented in
Table 1.
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FIGURE 3: Representation of the ensemble methods for a committee machine.

For each proposed model, 50 architectures with two
hidden layers were trained for the MLP and ELM networks.
The final results were combined by using three rules, namely,
arithmetic and geometric means and linear regression.

Database is divided into three parts: training dataset,
ensemble dataset, and validation dataset. The training dataset
is used for the learning process of each machine, while
the ensemble dataset is used to obtain the linear regression
coeflicients. Finally, the validation data set is used to evaluate
the performance of each model structure and the different
combinations of single committee machines.

The performance of each method is evaluated by using the
RMSE and the MAE, represented by (5) and (6), respectively,

1¢ _
RMSE = ;Z (i =) ®)
i1
1|y — J7il
MAE=-Y |22 6)
”i; Yi

where y; is the measured demand and %; is the estimated
demand at time step i.

3. Case Study

The experimental evaluation developed in this paper, to
obtain accurate water demand predictive models for two
district metered areas (DMAs) of the water distribution
system of Franca (State of Sdo Paulo, Brazil), shows that our
method yields excellent results.

Let us first pinpoint that this municipality is of major
economic importance for the state. Franca population is
approximately 318,640 strong (IBGE, 2010) and is distributed
in an area of 3,439 km (IBGE, 2010). The DMAs of the
municipality of Franca that are studied in this work are

Airport ZA
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FIGURE 4: Typical demand patterns for each studied DMA.

TABLE 2: Statistical parameters of the time series.

Leporace DMA AirportZA DMA
Mean (I/s) 18.18 15.83
Standard deviation (I/s) 6.48 6.71

known as AirportZA and Leporace. Both are residential
areas, each of them counting on 2,168 and 2,728 household
connections, respectively. For the Leporace DMA a time
series with 18166 data points is available, and the time series
for AirportZA DMA includes 12576 data points. The data
used for the study were provided by SABESP (Basic Sanitation
Company of the State of Sdo Paulo), the agency responsible
for water supply in the municipality. Figure 4 presents a
typical demand curve for each DMA.

Table 2 presents the mean and standard deviation for each
DMA. As observed, the standard deviations correspond to
35% or more of the mean values.
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TaBLE 3: RMSE for validation of MLP applied to the AirportZA DMA (L/s).
Method Model A Model B Model C Model D
Arithmetic mean 4.57 3.22 3.23 3.66
Geometric mean 4.92 3.23 3.20 3.70
Linear regression 5.00 3.40 6.37 4.08
TaBLE 4: MAE for validation of MLP applied to the AirportZA DMA (%).
Method Model A Model B Model C Model D
Arithmetic mean 157 1.20 122 1.35
Geometric mean 1.64 1.21 1.22 1.36
Linear regression 1.58 1.21 1.42 1.33
S 3 Temperature data, and validation dataset with 12.5% of the data [35]. First,
s 25 each machine is trained by using the training dataset; then,
g 20 regression coeflicients are obtained by using the ensemble
& ig T dataset; and, finally, the performance of each model structure
£ 2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 and the different combinations of single committee machines
Time step (h) is evaluated by using the validation data.
= 100 Air Humidity To show the performance of each proposed model and for
. 80 the sake of brevity, we just present the AirportZA DMA study,
Z‘g Zg since the Leporace DMA results provide much identical
£ 20 ; R S outcomes and interpretations.

2450 2500 2550 2600 2650 2700 2750 2800 2850 2900 2950
Time step (h)

FIGURE 5: Representation of weather variables (for both DMAs).

Social/calendar and weather inputs enhance the historical
time series of hourly water demand. As shown by Tian et al.
[43], who propose a study using an analogue approach with a
developed reforecast of a numerical weather forecast (NWP),
this may improve forecasting of urban water demand in the
short term. The authors claim that short-term urban water
demands are influenced by climatic conditions.

For this study hourly data, from April 2013 to December
2015, was used. The advantages of using these covariables have
been widely explored in the literature, as done by Bakker et al.
[44] and Praskievicz et al. [45], in which the authors analyze
the influence of climatic and social variables in the prediction
studies of water demand. Brentan et al. [26] recently studied
the possible correlations between water demand and climatic
and social variables. The social/calendar inputs taken for
the models herein are day of the month, day of the week,
time of the day, year, and holidays. The weather inputs
are temperature and relative humidity. Weather variables
were collected from the National Institute of Meteorology
(INMET) database and arranged hourly (see Figure 5).

4. Results

In this section we perform a thorough presentation of results,
with clear discussion on the model structure and the machine
selection.

The database is split into three parts: training dataset
with 75% of the data, ensemble dataset with 12.5% of the

The results for the MLP committee machine applied to
the AirportZA DMA are presented in Tables 3 and 4.

Several MLP architectures varying the number of hidden
layers from 5 up to 100 nodes have been used. As can be easily
seen, the arithmetic mean, coupled with the use of model B,
presents the smallest error.

As seen in Table 1, model B uses the variables time of
day, day of week, holidays, and temperature. Model B clearly
presents the best results for all the combination rules (look at
the rows of Tables 3 and 4). However, in terms of committee
machine rules (columns of each table), it is not possible to
verify large differences in the results.

Now, the results for ELMs and the AirportZA DMA are
in Tables 5 and 6.

The ELMs are built in a grid search process, by varying
the number of hidden nodes from 50 to 2500. By analyzing
the errors obtained in each combination performed from
the ELMs, it can be seen that, again, the combination using
arithmetic mean and model B presents the smallest error.

In both cases, it is important to highlight the difference
between the RMSE magnitudes for the MLP and ELM mod-
els, pointing towards better accuracy of the ELM method.

Committee of Multiple Machines. Among other combinations,
a more complex committee machine has also been created
from the blend of MLP, SVM, ELM, RE, ANFIS, and GMDH.
For the MLP and ELM cases, whose architectures have shown
higher influence on the final results, due to their complexities,
the configurations that provide the best performance have
been selected. Both DMA data are used for the application
of this committee machine, using the three given rules. Three
rule-different committee machines, noted here as MA, MG,
and MLR, have thus been considered. The results are again
evaluated in terms of RMSE and MAE.



8 Mathematical Problems in Engineering
TaBLE 5: RMSE for validation of ELM applied to the AirportZA DMA (L/s).
Method Model A Model B Model C Model D
Arithmetic mean 2,67 1,75 2,07 2,73
Geometric mean 2,73 1,75 1,89 2,78
Linear regression 2,53 1,87 1,93 2,52
TABLE 6: MAE for validation of ELM applied to the AirportZA DMA (%).
Method Model A Model B Model C Model D
Arithmetic mean 1.97 116 1.24 1.96
Geometric mean 2.01 117 1.22 1.99
Linear regression 1.85 1.24 1.21 1.83
TABLE 7: Linear regression coefficients for each DMA.
DMA/Method MLP SVM ELM RF ANFIS GMDH
AirportZA -0.1715 0.9525 -0.0346 -0.0142 0.0961 0.2065
Leporace 0.3587 0.3148 0.0356 -0.0312 0.0851 0.2013
TABLE 8: Error parameter for the committee machines applied to AirportZA DMA-RMSE in L/s and MAE in %.

MLP SVM ELM RF ANFIS GMDH MA MG MLR
RMSE 3.74 3.67 1.73 4.72 5.84 5.65 3.16 3.22 1.61
MAE 1.33 1.38 2.70 2.16 1.81 2.41 1.22 1.23 1.06

Each machine learning methodology is tuned and used 45 g g g g g g g
to assess the demand individually. After this step, a linear awol ]
regression process is applied to the data set in order to : : : : : : :
combine the values predicted by the individual machines, 35 : o : : R : : N
thus obtaining the real average value. The linear regression 30l : : : : : : : |
coefficients for each method are shown in Table 7. g :

For the AirportZA DMA, Table 8 shows the error param- = ‘ bl
eters RMSE and MAE for each individual machine and for the § | ! i \. |
three rule-based committee machines MA, MG, and MLR. A kY ‘ IR
These three committee machines are able to find a good trade- | | 1
off between the most and the less accurate models. Above ‘ W
all, the committee machine using linear regression, which ’
exhibits the lowest RMSE and MAE, stands out. Comparing 1
the same data estimation, using ELMs or MLPs previously 0 i ; i i ; ; ;
presented in Tables 3-6, it becomes clear that combining 0 200 400 600 _800 1000 1200 1400 1600
various machines improves the results in terms of error Time (h)
analysis. —— Measured

Figure 6 shows the water demand for the validation
dataset together with the estimated demand for each rule-
based complex committee machine. It is worth highlighting
the robustness of these committee machine models when an
anomaly happens in the system. Typically, dynamic models,
which are models using external input and sliding windows,
such as recurrent networks (NARX), are able to predict water
demand with high accuracy in normal conditions. However,
they may be affected by anomalies, since the most common
dynamic models work online using incoming new measure-
ments. In contrast, the linear regression committee machine
is able to estimate water demand with good accuracy, while
not using dynamic components.

——— Arithmetic mean
—— Geometric mean
—— Linear Regression

FIGURE 6: Demand estimation for the three complex committee
machines for the validation data set of the AirportZA DMA.

To enhance the previous ideas, we also provide now the
results for the Leporace DMA.

Table 9 shows the error parameter for each individual
machine and for the three committee machines in this DMA.
The relation of trade-off between good and not so good
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TABLE 9: Error parameter for the committee machine applied to Leporace DMA-RMSE in L/s and MAE in %.

MLP SVM ELM RF ANFIS GMDH MA MG MLR

RMSE 1.47 2.26 1.48 6.23 3.97 5.47 2.70 2.69 1.42
MAE 0.68 0.87 2.57 1.24 1.23 1.85 1.06 1.06 0.67
50 - - - - city. In a first stage, it has been determined the best model
45 1 structure in terms of the input variables. MLP and ELM
40 1 algorithms are used in this stage, in which various archi-
S i tectures for both algorithms were trained. Both algorithms
El Z(S) \ H | allow a similar conclusion about the input model structure.
£ [HHEAAAIN | For this dataset, the model using time of day, day of week
o 20 Mt 1 ” 4 . d g . s y >
B s [ll‘ (T ! il ‘ | _ holidays, and temperature results in the lowest values of
10 I | | It - RMSE and MAE. The second step of the proposal applied

5 - - - - six (individually trained) machine learning methods and

0 500 1000 1500 2000 2500 combined their estimations to obtain the final demand using
Time (h) three rules. In this case, the linear regression combination

Measured

Arithmetic mean
Geometric mean
Linear Regression

FIGURE 7: Demand estimation for the three complex committee
machines for the validation data set of the Leporace DMA.

models is found again. The linear regression is also the most
accurate committee machine for this DMA.

Figure 7 shows, now for the Leporace DMA, the val-
idation dataset and the respective estimations using the
three proposed rule-based committee machines. It is worth
mentioning that the best performance of the linear regression
is mainly at the consumption peaks, where averaged combi-
nations usually do not have good enough performance.

5. Conclusions

Increased monitoring in water distribution systems allows
the application of data mining and machine learning tech-
niques to better understand the system and estimate future
hydraulic states. Optimization algorithms aid to find good
architectures for various forecasting techniques. This is the
case of the number of hidden layers for ANNs, or the best
set of hyperparameters for kernel-based functions (SVR).
However, the robustness of the current machine learning
methods could be exposed to extrapolation problems. For
instance, models for water demand forecasting using weather
variables, which can hardly predict the demand. In this case,
machine learning algorithms lose their estimation abilities
and the results are poor if not invalid. This paper presents
the use of committee machines as a way to reduce failures
in the estimation process for input data at the extrapolation
boundaries and to improve the robustness of the models by
combining several algorithms. Committee machines maxi-
mize the good performance of their individual machines,
minimizing negative contributions, and, ultimately, reaching
more accurate and stable estimations.

In this work, various committee machines are applied to
predict the demand of a real water medium-size Brazilian

results in better results for the two analyzed DMAs.

Machine learning methods can bring forward powerful
tools for water distribution companies, aiding them in the
operation and management of their systems. The evaluation
of the best model structure in terms of the error can help
reduce the number of inputs; it also reduces the algorithm
execution computational time and last but not least the
instabilities at the extrapolation bounds. The combination of
various machine learning techniques can be useful to reduce
the optimal architecture search process, which can be useful
for further automation of various processes.

The aim is to keep on working on enhancing this research
avenue on forecasting model development by ensemble
methods. Other combination rules, such as the cascade
combination process, where the output of a model is the input
for another algorithm, should also be studied in future works.
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