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Abstract 
In the present world exits a tendency to the optimization of the different functions of a system 

in order to make the most of the expended energy and save resources. The project developed 

by the department of Mechanical Engineering of the Nagoya Institute of Technology consist of 

using an innovative multi-directional Schlieren quantitative system to understand the 

performance of flow fields with density gradients. The objective is to develop a trustworthy 

method to measure complex flows structure which are impossible to study analytically and to 

verify numerical methods.  

The experimental method consists of two different phases. The first part is the measurement of 

the target using the multi-directional quantitative Schlieren system. 20 measurements are done 

simultaneously, each one at a different direction. Secondly, the “density thickness images” can 

be obtained and used in 3D-CT reconstruction to obtain the 3D density field. 

The present project is focused on the measurement of exhaust gases of a supersonic 

axisymmetric micro-nozzle with circular cross-section working at slightly underexpanded 

condition (𝐽𝑃𝑅 > 1). Three measurements at different initial conditions are analyzed 

(𝑁𝑃𝑅 4, 4.5 𝑎𝑛𝑑 5).  

A well-known numerical method who solve Euler equations have been implemented to verify 

the validity of the present experimental procedure. Euler equations are a set of hyperbolic 

equations which govern adiabatic and inviscid flow. Therefore, they can be used to solve the 

flow of a micro-nozzle working at underexpanded condition. The numerical method uses the 

high-order weighted essentially non-oscillatory (WENO) finite differences scheme with fifth-

order-accurate for spatial discretization and fourth-order-accurate Runge-Kutta scheme for time 

integration. The validity of this method has been checked with the experimental data provided 

by (Seiner & Norum, 1979). Afterward, the numerical method is solved using our initial 

conditions and a comparation of the results are done.   
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Nomenclature 
 
ºC   Celsius degrees 
a   Displacement at the cut-off 
𝑎𝑠𝑝   Sonic speed 

𝐴∗    Area at the nozzle throat 
𝐴𝑒   Area at the nozzle exist 
𝐵𝑛   Brightness without knife 
c    Speed of the light in vacuum  
DBP   Distributed back projection 
𝐷𝑗   Fully expanded jet diameter 

EM   Expectation Maximization 
𝑓𝑐   Focal length of the focusing lens 
fps   Frames per second 
jpg   Joint Photographic Experts Group 
JPR   Jet Pressure Ratio 
K   Kelvin 
Kg   Kilograms 
𝐾𝐺𝐷   Gladstone-Dale constant 
kPa   Kilopascals 
MAP   Maximum a posteriori 
𝑀𝑑   Nozzle design Mach number 
𝑀𝑗    Fully expended Mach 

ML   Maximum Likelihood 
ML-EM   Maximum Likelihood-Expectation Maximization  
mm   Millimeters 
MPa   Megapascals  
ms   Milliseconds  
n   Refractive index 
NPR   Nozzle Pressure Ratio 
𝑃0   Absolute (stagnation) pressure 
𝑃𝐺   Gauge pressure 
𝑃𝑏   Back (ambient) pressure 
𝑃𝑒   Exit pressure 
png   Portable Network Graphics 
RGB   Red, green and blue 
s   Path of the light ray 
𝑇0    Absolute (stagnation) temperature 
𝑇𝑏   Ambient temperature 
𝑢𝑒    Jet exit axial velocity 
v   Velocity of the light in the medium 
 
 
 
𝜆𝑚   Bessel zeros 
𝜌0   Absolute (stagnation) density 
𝜌𝑏   Back (ambient) density 
𝜌𝑒   Jet exit density 
𝜌𝑗    Fully expanded et density 

Δ𝐵   Deviation brightness on Schlieren image 
Δ𝑎   The resulting displacement at the cut-off 

https://es.wikipedia.org/wiki/Joint_Photographic_Experts_Group
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𝐷   Nozzle exit diameter 
𝐷𝑡   Density thickness 
𝐽    Bessel function 
𝑀   Mach number 
𝛾   Specific heat ratio 
𝜃    Incidence angle  
𝜇𝑚   Micrometers 
𝜇𝑠   Microseconds 
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1. Introduction 

1.1. Motivation 
In daily life, we usually face with flows where the density is not uniform. This can be observed 

in combustion and in some compressible flow movements, such as flows working at supersonic 

condition. The physical equations which define these phenomena are partial differential 

equations system (Navier-Stokes equations for Newtonian flows) which are impossible to solve 

analytically with the present mathematic techniques. For this reason, these physical phenomena 

are described using experimental techniques and numerical method. 

Experimental techniques and numerical approaches for solving physical phenomena always 

work together. On the one hand, using exclusively experimental techniques to solve all the cases 

of the study could be extremely expensive. Therefore, some numerical model is needed to 

reduce the expenses. On the other hand, in order to create a numerical method, many 

simplifications are done to the real equations which can affect to the final solution. For that, 

some experimental results are needed to contrast the solution of the numerical model with real 

data.  

An innovative quantitative Schlieren system with 20 cameras at 20 different direction is used to 

measure combustion flames at (Ishino, et al., 2016), (Ishino, et al., 2015), (Ishino, Horimoto, 

Kato, Ishiguro, & Saiki, 2013) and (Nazari A. Z., et al., 2017). Schlieren technique have been 

proved to be a versatile tool to see the density variation of flow at combustion and supersonic 

condition. (Nazari A. , 2017) and (Nazari A. Z., et al., 2017) used this innovative system to 

measure the exhaust gases of a supersonic micro-nozzle working at supersonic condition. The 

goal is to characterize the flow of different micro-nozzles with different cross-sections, which 

can operate in different auxiliary system, such as in satellites or missile orientation systems.  

1.2. Objective 
The main objective of the present project is to create a model which can predict the 

performance of an underexpanded supersonic jet. The model will be based on Euler equations 

which will be solved using a numerical method based on WENO for spatial discretization and 

Runge-Kutta 4 step for time integration. Software used in the present study are MATLAB® and 

FORTRAN® to implement the code, and PAINTSHOP® to process the different data obtained with 

the Schlieren system. The present study is divided in 3 different Section: 

• Section 2: in this section all the background knowledge needed to understand the 

present project is explained. It is divided in 3 different subsections. The first subsection 

contains the information related to the characterization of a nozzle flow and the basic 

scheme of the numerical approach used to simulate the flow. The second subsection 

includes the basic physic of the Schlieren method. Finally, the last subsection explains 

the ML-EM method used in computer tomography (3D-CT) reconstruction, used to 

obtain 3D data of the jet. 

• Section 3: the experimental method carried out to measure the supersonic micro-jet is 

fully explained in this section, as well as the process to obtain the 3D-CT reconstruction 

of the experimental data. 

• Section 4: the results of the numerical model and the experimental measurements are 

presented. Firstly, the numerical method is validated with data from (Cheng & Lee, 

2005). After that, the experimental results are compared with the measurements in 

radial and axial direction. 
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1.3. Methodology 
The present project was created due to the need of developing a model which was able to 

characterize the supersonic flow of a jet working at underexpanded condition. Several 

experiments have been carried out to measure the performance of a supersonic micro-nozzle 

with circular cross-section. However, it is impossible to study all the cross-section shape and all 

the experimental setting. For all that, a model has been implemented with the objective to 

reduce the expenses and the time of the experimental procedure, and for the ability to remove 

not promising experimental setting.   

The present study is focused on the implementation of a numerical method which will be able 

to simulate the circular nozzle presented in Section 3.1. Several numerical method are proposed 

to solve the present problem: TAM model by (Jackson & Tam, 1985), k𝜖 by (Dash, Wolf, & Seiner, 

1985), (Chen, 1998) and WENO method (Cheng & Lee, 2005). The numerical method which our 

software and hardware tools allow us to compute is (Cheng & Lee, 2005). Therefore, this is the 

method developed in the following sections.  

Before applying the WENO method to our experimental data, the model is validated using three 

different approach: Prandtl model explained by (Jackson & Tam, 1985), the nozzle simulation 

presented by (Cheng & Lee, 2005) and the experimental measures carried out by (Seiner & 

Norum, 1979). Once the model is validated we can process to compare the results with our 

experimental results. 

Regarding the experimental results, three different measurements have been obtained for 

underexpanded condition with NPR equal to 4, 4.5 and 5. All the data have been processed and 

the density is obtained. At that point, both experimental and numerical solutions can be 

compared and conclusion of the results can be exposed.  
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2. Theoretical background 

2.1. Nozzle flow 
The flow which goes through the nozzle is compressible, hence the density value change in the 

different points of the flow structure. The consequence of working with compressible flow is 

that density is variable and requires more elaboration (Bernoulli’s equation (Eq. 2.1) cannot be 

used since density is not constant). 

𝑝 +
1

2
𝜌𝑉2 = 𝑐𝑜𝑛𝑠𝑡 

Eq. 2.1 

2.1.1. Isentropic relations 
Since it is not possible to use Eq. 2.1 to analyze a compressible flow, it is needed to use another 

approach. Isentropic relations are frequently used in the analysis of compressible flows. They 

relate pressure, density and temperature (Eq. 2.2)1. 

𝑃2

𝑃1
= (

𝜌2

𝜌1
)
𝛾

= (
𝑇2

𝑇1
)

𝛾
𝛾−1

 

Eq. 2.2 

Where 𝑝𝑖  is the pressure at one fluid point, 𝑇𝑖 is the temperature and 𝜌𝑖 is the density. 𝛾 is 

defined as the specific heat ratio which can be considered 1.4 in the air. 

An isentropic process is defined as adiabatic and reversible. For an adiabatic process, the heat 

transfer is null (𝛿𝑞 = 0), and for a reversible process, the entropy is also null (𝛿𝑠 = 0) (Anderson, 

1982). Even though Eq. 2.2 seems very restrictive (adiabatic and reversible), the fluid elements 

outside the boundary layer are experiencing this process. At these points, dissipative effects are 

negligible.   

The present study is focused on the study of micro-nozzles with circular cross-section. These 

nozzles are axisymmetric and have a convergent-divergent (Laval) shape. Figure 2.1 represent a 

convergent-divergent nozzle scheme, where the flows move from left to right. As the flow moves 

forward inside the nozzle, its speed increases whereas its pressure and temperature decrease.  

The convergent-divergent nozzle can be divided in three parts. The Mach number (𝑀 = 𝑢𝑒/𝑎𝑠𝑝) 

is the parameter which define this process and it can be defined as the velocity of the flow over 

it sonic speed. 

• Convergent: in this section of the nozzle, the flow moves at subsonic speed (𝑀 < 1) and 

it is accelerated until sonic speed. At subsonic condition, when the area is reduced, the 

speed of the flow rise up.  

• Throat: the flow meets sonic condition (𝑀 = 1). At this point, the area of the cross-

section is the smallest of the nozzle. 

• Divergent: in this section of the nozzle, the flows move at supersonic speed (𝑀 > 1). At 

supersonic condition when the area is augmented, the speed of the flow rise.  

                                                           
1 Eq. 2.2 is calculated from the 1st and 2nd laws of the thermodynamic. The development of this equation 
is fully detailed in Section 1.4 of (Anderson, 1982). 
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Figure 2.1. Convergent-divergent nozzle diagram.  

Making use of the energy equation2 and Eq. 2.2 it is possible to obtain the pressure, temperature 

and density at any point of the nozzle as a function of the Mach and the stagnation condition. 

The subscript 0 represent the stagnation condition.  

𝑃0

𝑃
= [1 +

1

2
(𝛾 − 1)𝑀2]

𝛾
𝛾−1

 

Eq. 2.3 

𝜌0

𝜌
= [1 +

1

2
(𝛾 − 1)𝑀2]

1
𝛾−1

 

Eq. 2.4 

𝑇0

𝑇
= [1 +

1

2
(𝛾 − 1)𝑀2]

𝛾
𝛾−1

 

Eq. 2.5 

The design Mach number (𝑀𝑑)  at the exit is related with the ratio of the exit area (𝐴𝑒) over the 

throat area (𝐴∗). Eq. 2.6 shows this relation.  

𝐴𝑒

𝐴∗
=

1

𝑀𝑑
(
1 +

1
2

(𝛾 − 1)𝑀𝑑
2

1
2

(𝛾 + 1)
)

𝛾+1
2(𝛾−1)

 

Eq. 2.6 

If the 𝑀𝑑 is replaced by the fully expanded jet Mach number (𝑀𝑗) the ratio obtained in Eq. 2.7 is 

the fully expanded jet cross-section (𝐴𝑗) over 𝐴∗. 

                                                           
2 The calculation of Eq. 2.3 Eq. 2.4 and Eq. 2.5 is detailed in Section 3.5 of (Anderson, 1982). 
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𝐴𝑗

𝐴∗
=

1

𝑀𝑗
(
1 +

1
2

(𝛾 − 1)𝑀𝑗
2

1
2

(𝛾 + 1)
)

𝛾+1
2(𝛾−1)

 

Eq. 2.7 

Each nozzle is designed to operate at designed condition, at a specific Mach. The parameter 

which define the working condition is named nozzle pressure ratio (NPR). NPR depends on the 

ratio of the stagnation pressure (𝑃0) over the ambient pressure (𝑃𝑏) (Eq. 2.8). 

𝑁𝑃𝑅 =
𝑃0

𝑃𝑏
= [1 +

1

2
(𝛾 − 1)𝑀𝑗

2]

𝛾
𝛾−1

 

Eq. 2.8 

The designed nozzle pressure ratio (DNPR) is the NPR when the designed conditions are met (Eq. 

2.9). 

𝐷𝑁𝑃𝑅 =
𝑃0

𝑃𝑒
= [1 +

1

2
(𝛾 − 1)𝑀𝑑

2]

𝛾
𝛾−1

 

Eq. 2.9 

2.1.2. Supersonic jets  
Supersonic jets can operate at three different regimens, depending on the value of the jet 

pressure ratio (JPR). JPR can be defined as the ratio of the exit pressure (𝑃𝑒) over the ambient 

pressure. JPR is defined by Eq. 2.10 which can be obtained dividing Eq. 2.8 into Eq. 2.9. 

𝐽𝑃𝑅 =
𝑃𝑒

𝑃𝑏
= [

1 +
1
2

(𝛾 − 1)𝑀𝑗
2

1 +
1
2

(𝛾 − 1)𝑀𝑑
2
]

𝛾
𝛾−1

 

Eq. 2.10 

In addition, an explicit formula of the fully expanded jet diameter (𝐷𝑗) can be calculated dividing 

Eq. 2.7 over Eq. 2.6, where 𝐷𝑒 is the design diameter of the nozzle. 

𝐷𝑗

𝐷𝑒
= (

𝑀𝑑

𝑀𝑗
)

1
2

(
1 +

1
2

(𝛾 − 1)𝑀𝑗
2

1 +
1
2

(𝛾 − 1)𝑀𝑑
2
)

𝛾+1
4(𝛾−1)

 

Eq. 2.11 

Figure 2.2 shows the three different regimens in which a nozzle can be operated. The pictures 

have been obtained using 20-directional quantitative Schlieren photography explained in 

Section 3. 

• JPR<1 and 𝑀𝑗 < 𝑀𝑑 (overexpanded). Off-design operation.  

• JPR=1 and 𝑀𝑗 = 𝑀𝑑 (perfectly-expanded). On-design operation. 

• JPR>1 and 𝑀𝑗 > 𝑀𝑑 (underexpanded). Off-design-operation. 

When a nozzle is operating at off-design condition, two different shock patterns in the core 

region can be observed, which are referred to as overexpanded and underexpanded patterns. 
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Figure 2.2. Quantitative Schlieren images of overexpanded, perfectly-expanded and underexpanded (from left to 
right) of supersonic micro-jets (Nazari A. , 2017).  

2.1.2.1. Underexpanded supersonic jet 

When a nozzle is working at underexpanded condition, a characteristic structure appear at the 

nozzle exit. Figure 2.3 shows a schematic diagram of this characteristic structure in the left, and 

on the right, it shows a Schlieren photograph of a real nozzle working at the referred condition. 

This axisymmetric structure has several remarkable features. First, the jet boundary oscillates as 

the jet gas periodically overexpands and compresses in its attempt to match the ambient 

pressure. The boundary arc communicates to the interior of the jet by sound waves, which, by 

definition, travel slower than supersonic flow. The characteristic paths of the sound waves 

converge to form the second remarkable feature of the jet, the network of crisscrossed shock 

waves, or shock diamonds. These standing shocks alternate with rarefaction fans. The gas in the 

jet interior expands and cools as it flows through the expansion waves and is compressed and 

heats as it passes through the shock diamonds. The sequential reflections of the expansion 

waves and shocks develop shock-cell structure. The positions of greatest gas compression do 

not coincide with the positions of minimum jet diameter. The streamlines in the figure indicate 

the flow paths of the gas. The gas bends out toward the boundary as it passes through 

rarefaction fans and bends back toward the axis as it passes through shock fronts. 
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Figure 2.3. Schematic diagram of shock-cell structure (left) and quantitative Schlieren image (right) of supersonic 
underexpanded jet (Nazari A. , 2017). 

2.1.2.2. Prandtl Model 

As starting point for the numerical approach, we are going to introduce an analytical solution 

for underexpanded jet obtained by Prandtl (Jackson & Tam, 1985). In this treatment, shocks are 

considered to be small perturbation of a fully expanded supersonic jet. The jet itself is modeled 

as a uniform column of flow bounded by a vortex sheet. Assuming a small variation of pressure 

at the nozzle exit (𝛿𝑃), the governing equations are shown in Eq. 2.12. 

𝜌𝑗∇ · 𝑉𝑠 + 𝑈𝑗

𝜕𝜌𝑠

𝜕𝑥
= 0 

𝜌𝑗𝑈𝑗

𝜕𝑉𝑠
𝜕𝑥

= −∇𝑃𝑠 

𝑃𝑠 = 𝑎𝐽
2𝜌𝑠 

Eq. 2.12 

Eq. 2.12 represents the linearized continuity, momentum and energy equations for a 

compressible, inviscid and axisymmetric jet.  

The initial conditions are given by: 

𝑉𝑠 = 0, 𝑃𝑠 = 𝛿𝑃 𝑓𝑜𝑟 𝑟 < 𝑅𝑑; 𝑃𝑠 = 0 𝑓𝑜𝑟 𝑟 ≥ 𝑅𝑑 

𝑉𝑠 can be eliminated from Eq. 2.12 and the equation left can be solved by eigenfunction 

expansion to yield the following solution in the expansion case3: 

𝑃𝑠 = ∑ 𝐴𝑚𝐽0 (
𝜆𝑚𝑟

𝑅𝑗
)𝐶𝑜𝑠 (

𝜆𝑚𝑥

𝑅𝑗(𝑀𝑗
2 − 1)

1
2

)

∞

𝑚=1

 

Eq. 2.13 

Where 

                                                           
3 In Appendix 3 the code used to simulate Prandtl’s model can be found with an example. 
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𝐴𝑚 =

2 𝛿𝑃 
𝑅𝑑
𝑅𝑗

 𝐽1 (
𝜆𝑚𝑅𝑑

𝑅𝑗
)

𝜆𝑚 𝐽1
2(𝜆𝑚)

 

Eq. 2.14 

𝐽 represents the Bessel function, and 𝜆𝑚are the increasingly ordered zeros of 𝐽0. 

The physical interpretation is that an initial pressure mismatch at the nozzle exit generates a 

disturbance, which is selectively decomposed into various radial eigenmodes of the jet. The jet 

then acts as a waveguide directing each component as it propagates downstream within the 

mean flow.  

The two mean limitations of this model are explained below. 

1. Prandtl model works accurately only in the immediate vicinity of the nozzle exit where 

the mixing layer is thin.  

2. It does not take into account the turbulence in the mixing layer which trend to decrease 

the amplitude of the solution. 

Moreover, Prandtl took the dominant first term of the Bessel series solution (Powell, 2009), as 

yielding the fundamental wavelength of the observed periodicity, namely the cell length (Eq. 

2.15): 

𝐿𝑐 = 1.306 √𝑀𝑗
2 − 1 

Eq. 2.15 

 

Figure 2.4. Prandtl wavelength representation (Powell, 2009).  

Where the constant 1.306 is given as a minor error as it should have been 𝜋/2.40483 = 1.306 

as written here, the denominator been the first root of the Bessel function. 

Figure 2.4 shows a graphic representation of the definition of cell length. It coincides with the 

shock cell represented in Figure 2.3 but with a simpler representation since rarefaction fans are 

not displayed. The shock length includes a rarefaction fan, an incident shock and a reflection 

shock.  

𝛼 is defined as the shock wave angle which will emanate from the nozzle exit. According to 

Mach, it is defined as:  
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𝛼 = arcsin (
1

𝑀
) 

Eq. 2.16 

2.1.3. Numerical approach (WENO algorithm) 
In the present study, a numerical simulation has been implemented in order to verify the micro-

nozzle experimental measurements. The numerical method created uses the high-order 

weighted essentially non-oscillatory (WENO) finite differences schemes with fifth-order-

accurate for spatial discretization and the fourth-order-accurate Runge-Kutta scheme for time 

integration. This numerical method is called the Lui, Osher and Chan WENO schemes, it is fully 

explained by (Jiang & Shu, 1996) and it is applied to the supersonic jet in (Cheng & Lee, 2005). 

2.1.3.1. Governing equation 

The equations which define the behavior of a supersonic jet without body forces and external 

heat addition for an inviscid and compressible flow field are the time dependent Euler equations 

(Eq. 2.17). 

𝜕𝑊

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
+ 𝛼𝑆 = 0 

Eq. 2.17 

Where 𝛼 = 0 represents 2D planar flow and 𝛼 = 1 represents 2D axisymmetric flow. The flux 

vectors of Eq. 2.17 are shown in Eq. 2.18. 

𝑊 = [

𝜌
𝜌𝑢
𝜌𝑣
𝑒

] , 𝐹 = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢

] , 𝐺 = [

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
(𝑒 + 𝑝)𝑣

] , 𝑆 =
1

𝑦
[

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
(𝑒 + 𝑝)𝑣

] 

Eq. 2.18 

The above governing equations represent the conservation of mass, momentum and total 

energy for inviscid fluid motion. The variables 𝜌, 𝑢, 𝑣, 𝑝, 𝑒 𝑎𝑛𝑑 𝑡 fully define the state of the fluid 

at a specific location. These variables are density, axial-velocity, radial-velocity, pressure, total 

energy per mass unit and time respectively. For an ideal gas, the pressure is related by the 

equation of state (Eq. 2.19): 

𝑝 = (𝛾 − 1)(𝑒 − 0.5𝜌(𝑢2 + 𝑣2) 

Eq. 2.19 

𝛾 = 1.4 is the ratio of specific heats for air.  

The equations Eq. 2.17 and Eq. 2.18 has been transformed in term of dimensionless variables 

using the following scales: 

• Spatial scale: diameter (𝐷) 

• Velocity scale: axial-velocity at the nozzle exit (𝑢𝑒) 

• Density scale: jet exit density (𝜌𝑒) 

• Pressure and energy scale: 𝜌𝑒𝑢𝑒
2 

• Time scale: 𝐷/𝑢𝑒 
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2.1.3.2. Temporal integration (Runge-Kutta) 

For the temporal integration using the fourth-order-accurate Runge Kutta (RK4), Eq. 2.17 must 

be written as Eq. 2.20: 

𝑑𝑊

𝑑𝑡
= 𝐿(𝑊) = −(𝐹(𝑊)𝑥 + 𝐺(𝑊)𝑦 + 𝛼𝑆(𝑊)) 

Eq. 2.20 

𝐿(𝑊) is defined as a discretization of the spatial operator. Let assume the dependence of 

𝑊,𝑥 𝑎𝑛𝑑 𝑦 is known; therefore, Eq. 2.20 can be solved using RK4 as a regular time dependent 

differential equation. RK4 method can be written as: 

• 𝑊(1) = 𝑊𝑛 +
1

2
Δ𝑡𝑛𝐿(𝑊𝑛) 

• 𝑊(2) = 𝑊𝑛 +
1

2
Δ𝑡𝑛𝐿(𝑊(1)) 

• 𝑊(3) = 𝑊𝑛 + Δ𝑡𝑛𝐿(𝑊(2)) 

• 𝑊𝑛+1 =
1

3
(−𝑊𝑛 + 𝑊(1) + 2𝑊(2) + 𝑊(3)) +

1

6
Δ𝑡𝑛𝐿(𝑊(3)) 

The superscript 𝑛 denotes the time step, 𝑊(𝑖) is the intermediate vector and Δ𝑡𝑛 is the time 

increment which is defined as: 

Δ𝑡𝑛 =
𝐶𝐹𝐿

max(|𝑢𝑛|)
𝑑𝑥

+
max(|𝑣𝑛|)

𝑑𝑦

 

Eq. 2.21 

It is possible to observe in Eq. 2.21 that the time increment is not constant and it depend on the 

previous velocity field. CFL is defined as the Courant–Friedrichs–Lewy (CFL) condition for 

convergence while solving certain partial differential equations. Time step must be less than a 

certain time, otherwise the simulation produces incorrect results. The CFL number is defined 

between a range of 0.2 and 0.4. 

2.1.3.3. Spatial discretization  

In order to solve Eq. 2.20 using RK4, 𝐿(𝑊) must be calculated in each step. It is defined as a 

discretization of the spatial operator and its expression for each cell of the mesh is shown in Eq. 

2.22. The space is divided into uniform interval of size Δ𝑥 and Δ𝑦 with 𝑥𝑖 = 𝑖 Δ𝑥 and 𝑦𝑗 = 𝑗 Δ𝑦. 

𝐿𝑖,𝑗(𝑊) = −𝛼𝑆𝑖,𝑗 − [
1

Δ𝑥
(𝐹̃

𝑖+
1
2
,𝑗

− 𝐹̃
𝑖−

1
2
,𝑗
) +

1

Δ𝑦
(𝐺̃

𝑖,𝑗+
1
2
− 𝐺̃

𝑖,𝑗−
1
2
)] 

Eq. 2.22 

𝐹̃ and 𝐺̃ denote the interface fluxes in the 𝑥 and 𝑦 direction respectively and 𝑆𝑖,𝑗 is the source 

term at the grid point. Figure 2.5 shows a scheme of the interface fluxes at a generic cell (𝑖, 𝑗) of 

the mesh. In the scheme, the arrows indicate the positive direction of the fluxes. 
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Figure 2.5. Interface fluxes at one cell (𝑖, 𝑗) of the spatial discretization. 

High-order accuracy distribution is achieved with high-order approximation of the fluxes 

function at cell interfaces. The flux distribution is going to be developed only for the flux at the 

𝑥-axis (𝐹̃(𝑊)), but flux at 𝑦-axis (𝐺̃(𝑊)) can be computed similarly. The distribution of 

interpolation points (stencil) is chosen according with the Lax-Friedrichs scheme (Eq. 2.23). 

𝐹̃(𝑊) = 𝐹+(𝑊) + 𝐹−(𝑊) 

Eq. 2.23 

Therefore, the flux distribution can be defined as the summation of the positive and negative 

fluxes interacting with the cells interfaces. These fluxes must satisfy: 

• 
𝑑𝐹+

𝑑𝑊
≥ 0 for all 𝐹+(𝑊). 

• 
𝑑𝐹−

𝑑𝑊
≤ 0 for all 𝐹−(𝑊). 

One solution to meet the requirements is to use the global Lax-Friedrichs flux splitting (Eq. 2.24) 

𝐹̃±(𝑊) =
1

2
(𝐹(𝑊) ± 𝛽𝑊) 

Eq. 2.24 

Where 𝛽 is defined as the maximum value of the Jacobian matrix of the flux4.  

                                                           
4 The development of the Jacobian matrix is fully explained in Appendix I. 
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𝛽 = max (|𝐽𝐹(𝑊)|) 

Eq. 2.25 

Therefore, the flux in the interface can be divided into two numerical fluxes: 

𝐹̃
𝑖+

1
2
,𝑗
(𝑊) = 𝐹̃

𝑖+
1
2
,𝑗

+ (𝑊) + 𝐹̃
𝑖+

1
2
,𝑗

− (𝑊) 

Eq. 2.26 

The following explanation is the particularization of WENO method for 5th-order accuracy with 

𝑟 = 3, being 𝑟 the stencil candidates. The generalization of this method can be found in (Jiang 

& Shu, 1996).  Here, we will explain the computation for 𝐹̃
𝑖+

1

2
,𝑗

+  since the formulas of 𝐹̃
𝑖+

1

2
,𝑗

−  are 

symmetric with 𝑥
𝑖+

1

2
,𝑗

.  

Let’s denote the 𝑟 = 3 candidates stencils by 𝑆𝑘 , 𝑘 = 0, 1, 2. 

𝑆𝑘 = 𝑆(𝑥𝑗+𝑘−𝑟+1, 𝑥𝑗+𝑘−𝑟+2, 𝑥𝑗+𝑘−𝑟+3) 

Eq. 2.27 

The 3 stencils used to obtain the flux at the cell interface are: 

𝑆0 =
(2 𝐹𝑖−2,𝑗 − 7 𝐹𝑖−1,𝑗 + 11 𝐹𝑖,𝑗)

6
 

𝑆1 =
(− 𝐹𝑖−1,𝑗 + 5 𝐹𝑖,𝑗 + 2 𝐹𝑖+1,𝑗)

6
 

𝑆2 =
(2 𝐹𝑖,𝑗 + 5 𝐹𝑖+1,𝑗 − 𝐹𝑖+2,𝑗)

6
 

Eq. 2.28 

WENO method use a weighted average of the stencils to obtain the numerical value of the 

parameters in a cell. With this propose, the method set a comparation of a hierarchy of 

undivided differences, which can be used to measure the smoothness of the numerical flux. The 

interpolation stencil is defined as a function of  𝑆𝑘. For 𝑟 = 3 these interpolations are: 

𝐼𝑆0 =
13

12
(𝐹𝑖−2,𝑗 − 2 𝐹𝑖−1,𝑗 + 𝐹𝑖,𝑗)

2
+

1

4
(𝐹𝑖−2,𝑗 − 4𝐹𝑖−1,𝑗 + 3𝐹𝑖,𝑗)

2
 

𝐼𝑆1 =
13

12
(𝐹𝑖−1,𝑗 − 2 𝐹𝑖,𝑗 + 𝐹𝑖+1,𝑗)

2
+

1

4
(𝐹𝑖−1,𝑗 − 𝐹𝑖+1,𝑗)

2
 

𝐼𝑆2 =
13

12
(𝐹𝑖,𝑗 − 2 𝐹𝑖+1,𝑗 + 𝐹𝑖+2,𝑗)

2
+

1

4
(3 𝐹𝑖,𝑗 − 4 𝐹𝑖+1,𝑗 + 𝐹𝑖+2,𝑗)

2
 

Eq. 2.29 

The weight of each function in Eq. 2.28 are shown in Eq. 2.30. 

𝜓0 =
1/10

(𝜖 + 𝐼𝑆0)
3

 

𝜓1 =
6/10

(𝜖 + 𝐼𝑆1)
3
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𝜓2 =
3/10

(𝜖 + 𝐼𝑆2)
3

 

𝜓𝑡𝑜𝑡𝑎𝑙 = 𝜓0 + 𝜓1 + 𝜓2 

Eq. 2.30 

Where 𝜖 = 10−6. Therefore: 

𝜔𝑘 =
𝜓𝑘

𝜓𝑡𝑜𝑡𝑎𝑙
 

Eq. 2.31 

Finally, the numerical flux at the interface is the weighted average presented in Eq. 2.32. 

𝐹̃
𝑖+

1
2
,𝑗

+ = 𝜔0 𝑆0 + 𝜔1 𝑆1 + 𝜔2 𝑆2 

Eq. 2.32 

Repeating the process for 𝐹̃
𝑖+

1

2
,𝑗

− , 𝐹̃
𝑖−

1

2
,𝑗

+  and 𝐹̃
𝑖−

1

2
,𝑗

−  the numerical flux can be obtained as: 

𝐹𝑥̃ =
1

Δ𝑥
((𝐹̃

𝑖+
1
2
,𝑗

+ + 𝐹̃
𝑖+

1
2
,𝑗

− ) − (𝐹̃
𝑖−

1
2
,𝑗

+ + 𝐹̃
𝑖−

1
2
,𝑗

− )) 

Eq. 2.33 

2.1.3.4. Boundary condition 

The computational domain for an underexpanded jet is schematically represented in Figure 2.6. 

The size of the domain covers 31𝐷 𝑥 5𝐷, extending 30𝐷 from the nozzle exit and 5𝐷 from the 

jet centerline (𝐷 is the diameter of the nozzle exit). It has been assumed that at these distances 

the jet does not have any influence in the domain. The primitive variables (𝜌, 𝑢, 𝑣, 𝑝) must be 

defined in all the boundaries of the domain (𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5 𝑎𝑛𝑑 𝐵6) since they are involved 

in the flux vector. As it can be observed in Figure 2.6, only half of the nozzle is simulated to 

reduce the mesh size in a half and the calculation time. The condition imposed in the boundaries 

are: 

• B1: nozzle exit condition. 

• B2 (wall of nozzle): non-reflecting boundary condition. 

• B3: atmosphere conditions. 

• B4: atmosphere conditions. 

• B5 (centerline): symmetric condition with 𝑣 = 0.  

• B6: atmosphere conditions. 
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Figure 2.6. Schematic diagram of the computational domain for supersonic jet (Cheng & Lee, 2005). 

Four set of uniform mesh (310 𝑥 10, 500 𝑥 110, 625 𝑥 140 𝑎𝑛𝑑 730 𝑥 160) have been analyzed 

by (Cheng & Lee, 2005) for the mesh independence study. The solution for the meshes 

625 𝑥 140 𝑎𝑛𝑑 730 𝑥 160 is the same. Therefore, the mesh independence is reached for the 

mesh 625 𝑥 140 and this is the mesh size used in the jet simulations. 

All statistical data presented for supersonic jet are obtained by averaging over an appropriate 

period of time (100 ≤ 𝑡/(𝐷/𝑢𝑒) ≤ 125). 

2.2. Schlieren Systems 

2.2.1. Digital image basic concepts 
An image may be defined as a two-dimensional function, 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are spatial 

(plane) coordinates, and the amplitude of 𝑓 at any pair of coordinates (𝑥, 𝑦) is called the 

intensity or gray level of the image at that point (Gonzalez & Woods, 2008). When 𝑥, 𝑦, and the 

intensity values of 𝑓 are all finite, discrete quantities, we call the image a digital image. The field 

of digital image processing refers to processing digital images by means of a digital computer. 

Note that a digital image is composed of a finite number of elements, each of which has a 

particular location and value. These elements are called pixels.  

Images can be divided in two different groups regarding the information which is saved inside a 

pixel. An image can be chromatic or monochromatic. In a chromatic image (color) the basic 

components are red, green and blue (RGB), as the light seen by the eye, by film and by the photo 

sensor in a digital camera. The others color can be expressed as a function of the three-main 

color, varying its values between 0-255. 

𝑐𝑜𝑙𝑜𝑟 = 𝑔(𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒) 

Eq. 2.34 

Applying Eq. 2.34: 

𝑔𝑟𝑒𝑒𝑛 = 𝑔(0,255,0); 𝑦𝑒𝑙𝑙𝑜𝑤 = 𝑔(255,255,0);𝑤ℎ𝑖𝑡𝑒 = 𝑔(255,255,255); 𝑏𝑙𝑎𝑐𝑘 = 𝑔(0,0,0) 

Eq. 2.35 

From the solution in Eq. 2.35, if all the RGB values reach their maximum the color obtained is 

white, whereas if all values are 0 the color obtained is black. Therefore, a gray scale is defined 

when the values of RGB are the same (𝑟𝑒𝑑 = 𝑔𝑟𝑒𝑒𝑛 = 𝑏𝑙𝑢𝑒). This colorless light is called 

monochromatic light. The main characteristic of the monochromatic light is its intensity or 

brightness. Because the intensity of monochromatic light is perceived to vary from black to grays 

and finally to white, the term gray level is used commonly to denote monochromatic intensity. 
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The range of measured values of monochromatic light from black to white is usually called the 

gray scale and the brightness can change from 0 to 255. 

𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙 = 𝑔(𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠) 

Eq. 2.36 

If the brightness is 0 the color obtained is black, whilst if it is 255 white is obtained. All 

intermediate values represent a gray amount in between black and white. 

Another interesting concept related with digital image: 

• Spatial resolution: measure of the smallest discernible detail in an image. Quantitatively, 

spatial resolution can be stated as pixels per unit. In the U.S.A., this measure usually is 

expressed as dots per inch (dpi). To give you an idea of quality, newspapers are printed 

with a resolution of 75 dpi, magazines at 133 dpi and glossy brochures at 175 dpi 

(Gonzalez & Woods, 2008). 

Photographic quality requires that print resolution should be not less than 300 dpi. In 

the present project, a resolution of 600 dpi is being used in the image processing system 

(25.4 mm / 0.04 mm/pixel = 600 dpi (ppi3)). 

• Intensity resolution: refers to the smallest discernible change in intensity level. Based 

on hardware considerations, the number of intensity levels usually is an integer power 

of two. The most common number is 8 bits, with 16 bits being used in some applications 

in which enhancement of specific intensity ranges is necessary. Unlike spatial resolution, 

which must be based on a per unit of distance basis to be meaningful, it is common 

practice to refer to the number of bits used to quantize intensity as the intensity 

resolution. For example, it is common to say that an image whose intensity is quantized 

into 256 levels has 8 bits of intensity resolution.  

2.2.2. Refractive Behavior of Fluids 

2.2.2.1. Relation between Fluid Density and Refractive Index 

The refractive index (n) can be defined as how much the path of the light is bent when it changes 

the medium in which spread. The index can be defined as: 

𝑛 =
𝑐

𝑣
 

Eq. 2.37 

Where c is the speed of the light in vacuum and v is the velocity of the light in the medium. It is 

a dimensionless number. For the following study, it is necessary to obtain a relationship between 

the density of the medium and its refractive index. The equation Gladstone-Dale (Eq. 2.38) is an 

empirical equation which relates refractive index and density as follow: 

𝑛 − 1 = 𝐾𝐺𝐷  𝜌 

Eq. 2.38 

Where 𝑛 is the refractive index, 𝐾𝐺𝐷 the Gladstone-Dale constant [𝑚3/𝑘𝑔] and 𝜌 the density. 

Taking derivatives over the displacement, the variation of the refractive index can be calculated 

as: 
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𝜕𝑛

𝜕𝑥
= 𝐾𝐺𝐷

𝜕𝜌

𝜕𝑥
 

Eq. 2.39 

2.2.2.2. Angle of refraction 

The variation of the trajectory of the light ray is an important parameter in order to obtain 

quantitative information using Schlieren System. Figure 2.7 shows a scheme of a light ray moving 

from a medium with a refractive index 𝑛 to a different medium with a refraction idex of 𝑛 + Δ𝑛. 

The incidence angle 𝜃 change to a new incidence angle 𝜃 + Δ𝜃. Therefore, the angle of 

refraction can be defined as Δ𝜃 and can be calculates using the Snell’s law (Eq. 2.40) as follows. 

𝑛 + Δ𝑛

𝑛
=

sin(𝜃)

sin(𝜃 + 𝛥𝜃)
 

Eq. 2.40 

From the trigonometric addition formula of the sine (sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) +

cos(𝛼) sin(𝛽)) and assuming Δ𝜃 is very small (cos(𝛥𝜃) ≃ 1 𝑎𝑛𝑑 sin (Δ𝜃) ≃ Δ𝜃), 

1 +
Δ𝑛

𝑛
=

1

1 + Δ𝜃 
cos(Δ𝜃)
sin(𝛥𝜃)

 

Eq. 2.41 

Therefore, developing Eq. 2.41: 

1 +
Δ𝜃 cos(Δ𝜃)

sin(𝛥𝜃)
+

Δ𝑛

𝑛
+

Δ𝑛

𝑛

Δ𝜃 cos(Δ𝜃)

sin(𝛥𝜃)
= 1 

Eq. 2.42 

 

Figure 2.7. Schematic diagram of refraction of light beam. 
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For small values of Δ𝜃 and Δ𝑛, the last term in the left-hand of the Eq. 2.42 is approximated 

zero. Therefore: 

Δ𝜃 = −
sin(𝜃)

cos(𝜃)

Δ𝑛

𝑛
  

Eq. 2.43 

From Figure 2.7, and assuming small variation of 𝜃, it is straightforward to derive the following 

equations: 

Δ𝑛

Δ𝑥
=

𝑑𝑛

𝑑𝑥
 

Eq. 2.44 

Δ𝑥 = Δ𝑠 cos(𝜃) 

Eq. 2.45 

Δ𝑛 =
𝑑𝑛

𝑑𝑥
 Δ𝑛 cos (𝜃) 

Eq. 2.46 

Combining Eq. 2.43 with Eq. 2.46 the angle variation can be found as a function of the path 

variation (Δ𝑠), the refractive index (𝑛) and its variation over 𝑥, and the incidence angle. 

Δ𝜃 = −
1

𝑛
(
𝑑𝑥

𝑑𝑛
)Δ𝑠 sin(𝜃) 

Eq. 2.47 

However, the refractive index is not constant along a medium. The general solution can be 

expressed as an integration as following: 

Δ𝜃 = ∫
1

𝑛
(
𝜕𝑛

𝜕𝑥
)𝑑𝑠 

Eq. 2.48 

Assuming 𝑛 ≃ 1 for air and combining Eq. 2.48 with Eq. 2.39 the variation of the angle can be 

expressed as function of the variation of density.  

Δ𝜃 = ∫(
𝜕𝜌

𝜕𝑥
) 𝑑𝑠 

Eq. 2.49 

Eq. 2.49 will be used in Section 2.2.4 to obtain quantitative values of the Schlieren methods. This 

equation will allow to relate the brightness obtained in the experiments with the density 

variation of the target.  

2.2.3. Basic principles 
Schlieren systems are used to measure the amount of light deflection generated by a 

transparent optical phase object.  In the fundamental arrangement, mostly referred to as the 

Toepler system (Marton & Marton, 1981), a parallel light beam traverses the test object and is 

focused thereafter by means of lens named Schlieren Lens. An image of the light source is formed 
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in the focal point of the Schlieren lens. A knife-edge is placed in the plane of the light source 

image to cut off part of the transmitted light. The light beams which cross the targets might be 

deflected, changing their path and their focal point. The camera placed after the focusing lens 

receive a reduced intensity of light due to the knife located at the focal point. Figure 2.8 shows 

a target of a Schlieren experiment and a simplified scheme. The dashed lines represent the 

deflected beam. As we can see, one of the beam is blocked by the knife; therefore, the light 

intensity which reach the camera is reduced. 

 

Figure 2.8. Schlieren setup in simplified schematic (top) with 𝛥𝜃 denoting the angle of refraction of a light ray and 
𝛥𝑎 the resulting displacement at the cut-off. Bird’s eye view of the actual setup (bottom), from left to right: light 

source, lens, variable slit, collimating lens, test object, Schlieren lens, cut-off and camera (Lekholm, 2012). 

The key element of the Schlieren method is the knife mentioned above. The deflected light is 

blocked by the knife edge and the screen is darkened. Therefore, the knife serves as a cut-off 

filter of intensity. The term that quantify the phenomenon is called contrast, which can be 

obtained as the ratio between the variance of the brightness (Δ𝐵) over the measured of the 

brightness without knife (𝐵𝑛). The change in the contrast depends on the initial intensity 

distribution on the screen.  

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
Δ𝐵

𝐵𝑛
 

Eq. 2.50 

The direction of the knife edge provokes differences in the density gradients recorded. The light 

blocked is not recorded by the camera, so this part is darkened. Observing the recorded 

Schlieren image, it discriminates relative changes rather than absolute values. 

2.2.4. Quantitative Schlieren system 
Once the basic concepts of Schlieren system has been introduced, it will be evaluated 

quantitatively. In Figure 2.9, the image of the light source is a small square and only certain 

height (Δa) is allowed to pass over the knife. The knife edge is located at the focal distance (𝑓𝑠) 

of the Schlieren lens. With a homogeneous test field, the recording plane is evenly illuminated 

with an intensity or brightness (𝐵𝑛) equal to constant, which is dependent of the height 𝑎 and 

the focal distance 𝑓𝑓 of the focusing lens. 

Δ𝜃 
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𝐵𝑛 =
𝑎𝑛

𝑎0
𝐵0 

Eq. 2.51 

Where 𝐵0 is the illumination when no know is presented in the system. Eq. 2.51 is held only if 

geometrical aberration of the optical system, e.g., coma and astigmatism, can be neglected. 

 

Figure 2.9. Image of the light source in the plane of the knife edge (Nazari A. , 2017). 

Light rays deflected by an angle 𝛥𝜃 due to a disturbance in the test field cause a vertical shift of 
the light source image by an amount 𝛥𝑎 (Figure 2.8). 

Δ𝑎 = 𝑓𝑠 tan(Δ𝜃) ≃ 𝑓𝑠Δ𝜃 

Eq. 2.52 

Where 𝑓𝑠 is the focal length of the Schlieren length. The light intensity is modified by the same 
factor as Eq. 2.15. 

𝛥𝐵 = 𝐵 − 𝐵𝑛 

Eq. 2.53 

Δ𝐵 can be defined as the brightness deviation on the Schlieren screen, using as reference the 

brightness (𝐵𝑛) when there is not disturbance in the medium. Therefore, with Eq. 2.49, Eq. 2.51 

and Eq. 2.53, the relative brightness change produced by the disturbed test object in a point of 

the recording plane is given by: 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
Δ𝐵

𝐵𝑛
=

Δ𝑎

𝑎
= Δ𝜃

𝑓𝑠
𝑎

 

Eq. 2.54 

And from the respective optical analysis (Eq. 2.49), which relates the deflection angle to the 

refractive index variation in the test field, it follows that: 
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Δ𝐵

𝐵𝑛
=

𝑓𝑠
𝑎

𝐾𝐺𝐷 ∫(
𝜕𝜌

𝜕𝑥
) 𝑑𝑠 

Eq. 2.55 

If the knife is rotated 90º, the deflection angle on 𝑦-axis will be measured, then, 

Δ𝐵

𝐵𝑛
=

𝑓𝑠
𝑎

𝐾𝐺𝐷 ∫(
𝜕𝜌

𝜕𝑦
) 𝑑𝑠 

Eq. 2.56 

Eq. 2.56 shows that the Schlieren photograph taking with the Toepler system exhibit changes in 

the relative brightness which can be represented as variation of the refractive index or density 

gradient in the normal direction to the knife edge. 

2.3. 3D-CT method 
3D-CT (Three-dimensional computer tomography) method makes use of measurement of a 

target taking from different direction (𝜃𝑖) to obtain different cross-section of it and create a 3D 

volume representation. 3D-CT process requires 2D distributions (images) of the deviation 

density thickness (𝐷𝑡(𝜃)) called “projection”, which is defined by the line-of-sight- integration 

of density deviation from ambient gas density, to obtain deviation density distribution (Δ𝜌(𝑥, 𝑦)) 

in each point of the cross-sections. The calculation of  𝐷𝑡(𝜃) based on brightness of photographs 

is fully development in section 3.3. 

The reconstructed Δ𝜌(𝑥, 𝑦) is converted in 2D density distribution 𝜌(𝑥, 𝑦) as follows. 

𝜌(𝑥, 𝑦) = Δ𝜌(𝑥, 𝑦) + 𝜌𝑎
∗  

Eq. 2.57 

The 2D distribution 𝜌(𝑥, 𝑦) is accumulated in layers to form 3D-CT distribution 𝜌(𝑥, 𝑦, 𝑧).  

The CT is performed in 2 steps: 

• Data acquisition: deviation density thickness values obtained using 20-directional 

quantitative Schlieren photography (Section 3) 

• Image reconstruction from projection (𝐷𝑡(𝜃)): in this study, a method named 

Distributed Back Projection (DBP) is used an image reconstruction. This method uses an 

algorithm based on a simpler processing method called Maximum Likelihood-

Expectation Maximization (ML-EM). 

2.3.1. ML-EM method 
ML-EM method is the combination of two different method. 

• Maximum likelihood method (ML): is a method of estimating the parameters of a 

statistical model, given observations. 

• Expectation maximization method (EM): is an iterative method to find maximum 

likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, 

where the model depends on unobserved latent variables. 

Firstly, we introduce the ML method. We assume a discrete cross-section of 𝑚 pixels, each of 

them has a reconstructed value (𝜆𝑗) which is the brightness of the corresponded pixel. Let be 𝑥 

the real brightness measured by the camera and 𝐶 the measurement probability. The probability 
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makes reference to the likelihood of the measuring instrument to be reached by the photon 

emitted by the pixel.  

Assuming that the number of measurement is 𝑛, the ML of 𝜆𝑗 is expressed as 

𝜆𝑗 =
∑ 𝑥𝑖

𝑛
𝑖=1

∑ 𝐶𝑖
𝑛
𝑖=1

 

Eq. 2.58 

Nevertheless, brightness in one pixel cannot be isolated from the surround pixels. Therefore, 

the value measured by the camera is the brightness of all the peripheral pixels. In Figure 2.10, it 

is shown a model of ML-EM to calculate the brightness of the pixel of a cross-section, knowing 

the brightness measured of the different device (𝑦𝑖𝑗). 𝑖 refers to the device which has made the 

measurement and 𝑗 is the detector or pixel in the detector group.   

 

Figure 2.10. EM estimation (Nazari A. , 2017). 

𝑦𝑖𝑗  is defined as the summation of all the 𝜆𝑗 in the same direction over the probability 𝐶𝑖𝑗. For 

example: 

𝑦11 =
𝜆1 + 𝜆4 + 𝜆7

𝐶11
 

𝑦23 =
𝜆7 + 𝜆8 + 𝜆9

𝐶21
 

Eq. 2.59 

In this way, 𝑥𝑖𝑗  is set as the brightness value detected by the 𝑗 detector (pixel) of the group 𝑖 

only by 𝜆𝑗. 𝑥𝑖𝑗  can be expressed as: 

𝑥𝑖𝑗 =
𝑦𝑖𝑗  𝐶𝑖𝑗 𝜆𝑗

∑ 𝐶𝑖𝑗 𝜆𝑗
𝑛
𝑗=1

  

Eq. 2.60 

Therefore, the numerical value (𝜆) of the pixels can be obtained using Eq. 2.61 which is a 

combination of Eq. 2.58 and Eq. 2.60 (Ishino, et al., 2015). 
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𝜆𝑗 =
𝜆𝑗

∑ 𝐶𝑖𝑗
𝑛
𝑗=1

∑
𝑦𝑖𝑗  𝐶𝑖𝑗 

∑ 𝐶𝑖𝑗 𝜆𝑗
𝑛
𝑗=1

𝑚

𝑖=1

 

Eq. 2.61 

As 𝜆𝑗 is in both side of Eq. 2.61, an iterative method is required to solve the equation, since it is 

impossible to solve analytically. The EM is the method used to solve it (Eq. 2.62): 

𝜆𝑗
𝑘+1 =

𝜆𝑗
𝑘

∑ 𝐶𝑖𝑗
𝑛
𝑗=1

∑
𝑦𝑖𝑗  𝐶𝑖𝑗 

∑ 𝐶𝑖𝑗 𝜆𝑗
𝑘𝑛

𝑗=1

𝑚

𝑖=1

 

Eq. 2.62 

Where 𝑘 is the iteration number. The algorithm converges to the maximum likelihood estimate 

of a probability distribution function from the observed data. All projection data (𝑦𝑖𝑗) are 

distributed along the projection beam at the back-projection progress. It is, therefore, 

recommended that this CT method should be referred to as Distributed Back-Projection (DBP) 

method.  
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3. Experimental method (20-directional quantitative Schlieren 

photography) 
The concept of 20-directional quantitative Schlieren photography is represented in the Figure 

3.1 which was created using the concept explained in Section 2.2 of a single quantitative 

Schlieren photography. 

 

Figure 3.1. 20-directional Schlieren photography scheme (Ishino, et al., 2016). 

The single unit is composed of two achromatic lenses of 50 mm in diameter and 300 mm in focal 

length, a light source unit, a vertical knife edge or Schlieren stop, and a digital camera. The 

Schlieren system is located in a place where the ambient density can be considered as 𝜌𝑎
∗ =

1.2 𝑘𝑔/𝑚3. 

 

Figure 3.2. Single unit of quantitative Schlieren optical system of the multi-directional Schlieren camera (Nazari A. Z., 
et al., 2017). 

Figure 3.3 shows the custom-made 20-directional Schlieren camera, which consist of 20-single 

system. The 20-single system are equispaced 9º starting from 𝜃1 = −85.5º and finishing in 

𝜃20 = 85.5º. The angle 𝜃𝑖 represents the camera direction and is defined as the horizontal angle 

from 𝑥-axis. In this study, the horizontal configuration is used. 

 

Figure 3.3. The 20-directional Schlieren camera. The horizontal position is shown on the left and the vertical position 
on the right (Ishino, et al., 2016). 
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The 𝑥𝑦𝑧-coordinated system of the 20-directional Schlieren system has its origin in the micro-

nozzle exit. As shown in Figure 3.4, the 𝑧-axis is set normal to the nozzle exit and the 𝑥-axis is 

located between camera 10 (𝜃10 = −4.5º) and 11 (𝜃11 = 4.5º). 

 

Figure 3.4. Coordinated system of 20-directional Schlieren photography (Nazari A. , 2017). 

3.1. Apparatus 
In this section, the specifications of the different devices used in the multi-directional 

quantitative Schlieren system are explained. From points 1-7, the devices correspond to the 

Schlieren system; and points 8 and 9 are related with the target. 

1. Flashlight 

The light unit is the element which illuminate the target. It has to provide a uniform luminance. 

The intensity of the light as well as the shape of the unit must be defined and are vital for the 

successful of the experiment. Ahead of the light unit, a slit is attached to control the size and the 

lightning area. The specification of the light unit used in the 20-directional quantitative Schlieren 

system are the following: 

• Type: xenon flash lamp. 

• Condenser capacity: 3.3 𝜇𝐹. 

• Luminance time: 35 𝜇𝑠. 

• Charging time: 30 s. 

• Light source size (slit): 1x2 mm (width x height). 

• Light source shape (slit): rectangle. 

The luminance time is short enough to measure un-steady phenomenon such us turbulent 

flames or transition flow (not fully developed).  

The emission time and intensity must be the same for each camera of the system. For it, the 

light emission is made with a constant charging time, as well as the battery should have sufficient 

charge which use in switchbox. Accordingly, the procedure of 20-directional quantitative 

Schlieren photography is briefly shown: 

1. Discharge the flash lamp and wait 30 seconds. 

2. Perform the measurement. 
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2. The first and second lens 

Both, Collimating lens and Convergent lens (Schlieren lens) have the same characteristics. Their 

specifications are: 

• Type: Plano convex achromatic lens. 

• Focal length: 300 mm. 

• Lens diameter: 50 mm. 

 

3. The Schlieren stop 

The purpose of this device is to stop the deflected rays which do not pass through the focal 

point. This Schlieren stop is also called knife. In the Schlieren system of the present study the 

knife is located from left to right. As it has been mentioned before, the orientation of the knife 

edge has influence in the directional density gradient. 

• Type: Simple razor blade. 

• Orientation: Vertical from left to right. 

• Light blocking width: 0.5 mm. 

 

4. Digital camera 

The camera used in the Schlieren system of the present study is a commercial digital mirrorless 

model with a modification in its lens. Figure 3.5 shows the commercial model on the left and the 

modified on the right. The original lenses are removed and substituted with those shown in 

Figure 3.6. Also, the light quantity is adjusted by using stepped ND filter5. The camera 

specifications are: 

• Model: NIKON 1 J1. 

• Focal length: 30 mm. 

• Image sensor type: CMOS. 

• Shutter speed: 33 ms. 

 

Figure 3.5. Digital mirrorless single-eye camera (modified camera (left), commercial camera (right)).  

5. 5 groups – 6 lenses 

Figure 3.6 shows the 5 groups – 6 lenses that are attached to the camera in Figure 3.5. The lens 

specifications are shown below. 

                                                           
5 In photography and optics, a stepped neutral-density filter, or stepped ND filter, is a filter where density 
and transmission vary in equal steps across the surface length. The steps are abrupt changes and no white 
light escapes between them. Spectrally flat neutral density coating. Ideal for applications requiring 
variable densities and known density values. 
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• Lens composition: 5 groups – 6 sheets. 

• Focal length: 30 mm. 

• Front diameter: 10 mm. 

 

Figure 3.6. Camera lens outline (Nazari A. , 2017). 

6. Corresponding circuit 

Figure 3.7 shows the synchronous circuit of flash light and camera implemented in the 20-

directional quantitative Schlieren system. Its main propose is to adjust the flash light and camera 

timing to do the 20 measurements simultaneously.  

 

Figure 3.7. Synchronous circuit (Nazari A. , 2017). 

7. High-speed camera 

For pre-investigation work and also for time analysis there is an extra camera installed in the 

Schlieren system which can work simultaneously with the others cameras of the system. This 

high-speed digital camera can capture high resolution images, as well as record movies. 

Moreover, this camera has the option of slow motion playback. The specifications of the high-

speed camera are shown below. 

• Model: Photron made FASTCAM-512 PCI 2K. 

• Frame rate at full pixel resolution: 2000 frames per second (fps). 

• Frame rate at reduced pixel resolution: 32000 frames per second (fps). 

• Image sensor type: CMOS. 

• Shutter speed: 16.7 ms to 4 𝜇𝑠. 

• Full element resolution: 512x512 Pixel. 

• Monochrome tone density: 10-bits (1024 steps). 

• Color tone density: 32-bits. 



27 
 

The Schlieren system used for the high-speed camera is display in Figure 3.8. It has the typical 

devices used by a Schlieren system (2 achromatic lenses, a continuous light source and a 

Schlieren stop). The camera is installed with an elevation angle of 6.6º, and as it can be seen in 

Figure 3.9, it is placed between cameras number 13 and 14 with a direction of 27º. For 

photographing, a Nikon single-lens reflex (focal length 50 mm, F value 1.4) is attached to the 

high-speed camera, and a white LED pinhole type light source with a diameter of 0.75 mm is 

used. 

 

Figure 3.8. Schematic diagram of high-speed Schlieren optical system (Nazari A. , 2017). 

 

Figure 3.9. High-speed camera installation position (Nazari A. , 2017). 

8. Convergent-Divergent (Laval) micro nozzles 

The Figure 3.10 shows the general nozzle used in the present study. Its characteristics are shown 

in detail ahead.  

 

Figure 3.10. Micro nozzle (Fukuda, et al., 2016). 
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This circular axisymmetric convergent-divergent nozzle is designed to work at a Mach number 

of 𝑀𝑑 = 1.5. Its main geometrical features are the throat diameter of 922 𝜇𝑚, the exit diameter 

of 1000 𝜇𝑚 and the expansion area ratio of 1.18. Further details are illustrated in Figure 3.11. 

The center of the micro nozzle exit has been selected as origin of 𝑥𝑦𝑧-coordinated system.   

 

Figure 3.11. Circular micro nozzle (units: mm) (Fukuda, et al., 2016). 

Figure 3.12 shows the functions which control the design of the micro nozzle walls. Until the 

throat (A-B), the wall shape is controlled by the function represented Figure 3.12. From the 

throat (B-C) the wall contour is designed using the axisymmetric method of characteristic6 to 

provide uniform and parallel flow at the downstream of the micro nozzle exit (Foelsch, 1949). 

 

Figure 3.12. Internal detail of circular micro nozzle (units: 𝜇𝑚) (Fukuda, et al., 2016). 

 

                                                           
6 The method of characteristics is a technique for solving partial differential equations. Further 
information can be found in (Foelsch, 1949). 
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9. Air supply system 

The nozzle is supplied with air by an air delivery system. A pressure gauge and a flowmeter from 

SMC Co. are used as measuring instrument. A scheme of the air supply system is represented in 

Figure 3.13. 

 

Figure 3.13. Air supply system scheme (Nazari A. , 2017).  

The specifications of the air supply components of Figure 3.13 are shown below. 

• Pressure gauge specification: 

‒ Model: SMC ISE30A. 

‒ Rated pressure range: -0.1 to 1.0 MPa. 

‒ Withstand pressure: 1.5 MPa. 

‒ Display/Minimum unit setting: 0.001 MPa. 

‒ Power supply voltage: 12 to 24 VDC ± 10% 

‒ Operating temperature range: Operating: 0 to 50 ºC, Stored: -10 to 60 ºC 

(no freezing or condensation). 

• Flow meter specifications: 

‒ Model: SMC PFM750. 

‒ Flow rate range: 1 to 50 L/min. 

‒ Rated pressure range: -70 to 750 kPa. 

‒ Minimum unit setting: 0.1 L/min. 

‒ Power supply voltage: 24 VDC ± 10%. 

‒ Operating fluid temperature: 0 to 20 ºC (with no freezing and condensation) 

• Air compressor specifications: 

‒ Model: PAOCK UD-1010 II. 

‒ Maximum working pressure: 0.8 MPa. 

‒ Tank capacity: 10 L. 

‒ Flow rate: 90 L/min. 

3.2. Flow condition 
The present study is tasting a supersonic micro nozzle with circular cross-section working at 

underexpanded condition. This means that the working condition must meet a jet pressure ratio 

(JPR) bigger than one or the exit Mach number greater than the design Mach number: 

𝑃𝑒/𝑃𝑏 > 1.0 ;  𝑀𝑗 > 𝑀𝑑 

Eq. 3.1 

In order to meet this condition, the nozzle pressure ratio (NPR) imposed in the nozzle must be 

beyond the design condition, 𝐷𝑁𝑃𝑅 = 3.67. Flow condition for underexpanded supersonic 

micro-jets are summarized in Table 3.1 and Table 3.2. 



30 
 

 

Ambient Temperature  𝑻𝒃  300.35 K (27.2 ºC) 

Back (ambient) pressure  𝑃𝑏  0.101 MPa 

Nozzle design Mach number  𝑀𝑑  1.5 

Nozzle exist diameter   𝐷  1000 𝜇𝑚 (1 mm) 
Table 3.1. Ambient and micro nozzle condition (circular nozzle). 

Nozzle pressure ratio (NPR) 𝑷𝟎/𝑷𝒃 4.0 4.5 5.0 

Absolute (Stagnation) pressure 𝑃0 0.404 MPa 0.455 MPa 0.505 MPa 

Gauge pressure 𝑃𝐺 0.303 MPa 0.354 MPa 0.404 MPa 

Jet pressure ratio (JPR) 𝑃𝑒/𝑃𝑏 1.090 1.226 1.362 

Exit pressure 𝑃𝑒 0.110 MPa 0.124 MPa 0.138 MPa 

Fully expanded jet Mach number 𝑀𝑗 1.559 1.638 1.709 

Fully expanded jet density 𝜌𝑗  1.74 𝑘𝑔/𝑚3 1.80 𝑘𝑔/𝑚3 1.86 𝑘𝑔/𝑚3 

Fully expanded jet diameter 𝐷𝑗 1018 𝜇𝑚 1044 𝜇𝑚 1070 𝜇𝑚 
Table 3.2. Underexpanded supersonic micro-jets flow conditions (circular nozzle). 

3.3. Measurements 
In this section we are going to introduce the different pictures which must be taken in order to 

obtain an accurate 3D-CT reconstruction of the supersonic jet. All pictures are transformed from 

.jpg extension to .pgm, since we want to work with gray scale. 

The first objective is to set the same reference system for all the pictures, since they will be used 

simultaneously in CT-reconstruction. A circular cross-section rod is placed in the working 

environment (Figure 3.14 (left)), so a reference system can be set for each camera taking as 

reference the rod. Pictures are rotated so the rod is perfectly vertical and are trimmed, deleting 

useless data ((Figure 3.14 (right)). 

    

Figure 3.14. Rod picture (camera 11).  

Figure 3.15 shows the working environment where the nozzle is placed (no-jet condition). This 

will set the reference value for the brightness, so the value of the contrast of the quantitative 

Schlieren system can be calculated (Section 2.2.4).  
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Figure 3.15. Working environment picture (camera 11). 

Finally, the jet picture is done. In Figure 3.16 a sample of a jet operating at NPR 5 can be 

observed. Using Figure 3.15 and Figure 3.16 deviation density thickness can be calculated 

(Section 3.4) 

 

Figure 3.16. Supersonic jet picture working at NPR 5 (camera 11). 

Additionally, a picture of a gray scale which is used to measure the range of brightness and to 

stablish the density range. 
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Figure 3.17. Gray scale (camera 11). 

3.4. Deviation density thickness calculation 
In Section 2.3 it was said that deviation density thickness (𝐷𝑡(𝑋(𝜃))) is needed for CT-

reconstruction. Deviation density thickness is called in CT-reconstruction “projection”, which is 

defined by the line-of sight-integration of density deviation from ambient gas density (𝜌𝑎
∗ ). 

𝐷𝑡(𝑋(𝜃)) is calculated for each direction of the 20-directional quantitative Schlieren system 

using the brightness of the images taken by the 20 cameras. 

Figure 3.18 indicates the conversion process of image data. The used variables in Figure 3.18 are 

summarized in Table 3.3. Figure 3.18 (a) depicts density distribution 𝝆∗(𝑥, 𝑦) of target flow 

having an ambient gas (air) region of constant density 𝝆𝒂
∗  on a peripheral range of radius 𝑅.  

𝒇 The focal length of convergent lens (second lens) 

𝑲𝑮𝑫 Gladstone-Dale constant for air (𝐾𝐺𝐷 = 2.2587 · 10−4 𝑚3/𝑘𝑔) 

𝑩(𝑿) Brightness of Schlieren image 

𝑩𝒏𝒋(𝑿) Brightness of Schlieren image in no-jet condition 
(without any disturbance in the test section) 

𝚫𝑩(𝑿) Deviation brightness in Schlieren image 

𝝆 Density (𝑘𝑔/𝑚3); derived value, (𝜌 = Δ𝜌 + 𝜌𝑎
∗ ) 

𝝆∗ Density (𝑘𝑔/𝑚3); actual value 

𝝆𝒓𝒆𝒇 Density of reference (𝑘𝑔/𝑚3) 

𝝆𝒂
∗  Density of ambient air (𝑘𝑔/𝑚3); actual value 

𝚫𝝆 Deviation density (𝑘𝑔/𝑚3); derived value 

𝚫𝝆∗ Deviation density (𝑘𝑔/𝑚3); actual value, (Δ𝜌∗ = 𝜌∗ − 𝜌𝑎
∗ ) 

𝑫𝒕 Density thickness of deviation density (𝑚 · 𝑘𝑔/𝑚3); derived value 

𝑫𝒕∗ Density thickness of deviation density (𝑚 · 𝑘𝑔/𝑚3); actual value 

𝑫𝒕′ Density thickness of deviation density plus thickness of Density  
thickness of deviation density (𝑚 · 𝑘𝑔/𝑚3); actual value (𝑚 · 𝑘𝑔/𝑚3) 

𝚫𝒔 Transparent width of light source image on Schlieren stop location 

Table 3.3. Used expression in Figure 3.2. 

Figure 3.18 (b)-(k) show observation in the direction of 𝜃 from 𝑥-axis. The inclined coordinated 

are denoted by 𝑋(𝜃) and 𝑌(𝜃) as indicated in Figure 3.18 (a). For reference, Figure 3.18 (c) gives 

the deviation density in the line of 𝑌 (Eq. 3.2). 



33 
 

 

Figure 3.18. Processes of formation of Schlieren brightness and conversion to projections of Dt (Nazari A. Z., et al., 
2017). 

Δ𝜌∗(𝑋(𝜃), 𝑌) = 𝜌𝑎
∗ − 𝜌∗(𝑋(𝜃), 𝑌) 

Eq. 3.2 

𝐷𝑡∗(𝑋(𝜃)) is obtained applying a spatially-integration of Δ𝜌∗(𝑋(𝜃), 𝑌) along the line of sight in 

Schlieren observation, given as a result Figure 3.18 (d). It can be observed that some values of 

𝐷𝑡∗(𝑋(𝜃)) are smaller than 0. This is because there is some part of the target flow where the 

density is smaller than the ambient, which is used as reference. 

Brightness of Schlieren image 𝐵(𝑋) (Figure 3.16) is given as 𝑥-directional gradient value of 

density thickness 𝐷𝑡∗(𝑋(𝜃)) shifted by brightness of Schlieren image in no-jet condition 𝐵𝑛𝑗(𝑋) 

(Figure 3.15), indicated in Figure 3.18 (e).  

Schlieren observation only present 𝐵(𝑋) and 𝐵𝑛𝑗(𝑋). To obtain the density thickness 𝐷𝑡(𝑋(𝜃)) 

from 𝐵(𝑋) and 𝐵𝑛𝑗(𝑋), both are processed in the following manners of Figure 3.18 (f)-(h). As 

indicated in Figure 3.18 (f), deviation brightness in Schlieren image Δ𝐵(𝑋) is given by Eq. 3.3 and 

results are shown in Figure 3.19 for each camera. 

Δ𝐵(𝑋) = 𝐵(𝑋) − 𝐵𝑛𝑗(𝑋) 

Eq. 3.3 
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Figure 3.19. Deviation brightness in Schlieren image (Eq. 3.3) NPR 5 (Figure 3.18 (e)). 
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The number inserted in each image express the camera number and the shooting angle. Each 

image is 2.4mm x 10.6mm in size. A gray scale level showing the brightness value of quantitative 

Schlieren image is displayed below the image. 

Eq. 3.3 is scaled to 𝑑(𝐷𝑡)/𝑑𝑋 by Eq. 3.4. (Figure 3.18 (g)): 

𝑑(𝐷𝑡)

𝑑𝑋
=

1

𝐾

Δ𝑠

𝑓

Δ𝐵(𝑋)

𝐵𝑛𝑗(𝑋)
 

Eq. 3.4 

Derived density thickness of deviation density thickness (𝐷𝑡(𝑋(𝜃))) is, therefore, reproduced 

by transverse-integration of 𝑑(𝐷𝑡)/𝑑𝑋 from Schlieren images, as shown in Figure 3.18 (h). 

𝐷𝑡(𝑋(𝜃)) can be expressed using Eq. 3.5. Images of 𝐷𝑡(𝑋(𝜃)) are presented in Figure 3.20. 

𝐷𝑡(𝑋(𝜃)) = ∫
1

𝐾

Δ𝑠

𝑓

Δ𝐵(𝑋)

𝐵𝑛𝑗(𝑋)

𝑥

0

𝑑𝑥 

Eq. 3.5 

Due to the presence of negative values that could appear in the CT-reconstruction 𝐷𝑡(𝑋(𝜃)) is 

shifted using Eq. 3.6 (Figure 3.18 (i)). 

𝐷𝑡′(𝑋(𝜃)) = 𝐷𝑡(𝑋(𝜃)) + 2 √𝑅2 − 𝑋2(𝜃) · (𝜌𝑟𝑒𝑓 − 𝜌𝑎
∗) 

Eq. 3.6 

The negative values of 𝐷𝑡(𝑋(𝜃)) during the CT-reconstruction are shifted to 0, since the code 

used in the CT-reconstruction cannot manage them. Therefore, with Eq. 3.6 this is avoided 

adding the thickness of (𝜌𝑟𝑒𝑓 − 𝜌𝑎
∗) to 𝐷𝑡(𝑋(𝜃)). 

Figure 3.21 shows the derived density thickness (𝐷𝑡′(𝑋(𝜃))). Those are the data which are used 

in CT-reconstruction. The number inserted in each image express the camera number and the 

shooting angle. Each image is 2.4mm x 10.6mm in size. A gray scale level showing the deviation 

density thickness is displayed below the image. 
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Figure 3.20. Derived density thickness of deviation density thickness (Eq. 3.5) images NPR 5 (Figure 3.18 (h)). 
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Figure 3.21. Derived density thickness (Eq. 3.6) images NPR 5 (Figure 3.18 (i)). 
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3.5. CT-reconstruction 
Once the derived density thickness is obtained, the ML-EM method for CT-reconstruction can 

be applied. This reconstruction method is an iterative algorithm, where the projections (or 

derived density thickness) taken by the 20 cameras of the Schlieren system are used to 

reconstruct the different cross-section of the target. Projection data values are distributed and 

arranged in the beam path direction with respect to all reconstructed pixels. 

Figure 3.22 shows the notation and coordinated system using in this algorithm which is the same 

explained in Section 2.3.1. The cross-section is divided in 𝑚 pixels, whose voxel value is defined 

as 𝜆𝑗
𝑘 where 𝑗 is the number of the voxel and 𝑘 is the number of iteration taken. 𝑦𝑖  is the 

measured projection data at the 𝑖-th pixel which correspond with the derived density thickness 

𝐷𝑡′(𝑋(𝜃)) obtained in Section 3.3. Finally, 𝐶𝑖𝑗 represents the detection probability which is 

defined as the overlapped volume between 𝑖-th ray and the voxel 𝑗. In Figure 3.22 (right) there 

is a representation of the meaning of 𝐶𝑖𝑗.  

 

Figure 3.22. Notation and coordinate system for ML-EM reconstruction for 3D volume (Ishino, et al., 2015). 

Eq. 3.7, which is the same as Eq. 2.62, is used as iteration method for the calculation of 𝜆𝑗 values. 

𝜆𝑗
𝑘+1 =

𝜆𝑗
𝑘

∑ 𝐶𝑖𝑗
𝑛
𝑗=1

∑
𝑦𝑖𝑗  𝐶𝑖𝑗 

∑ 𝐶𝑖𝑗 𝜆𝑗
𝑘𝑛

𝑗=1

𝑚

𝑖=1

 

Eq. 3.7 

The CT algorithm is run in each horizontal plane of 𝑧-axis for the reconstruction of deviation 

density distribution 𝛥𝜌(𝑥, 𝑦) from linear data set of density thickness. Since the values used as 

projection are 𝐷𝑡′(𝑋(𝜃)), the result obtained is (Δ𝜌(𝑥, 𝑦) + (𝜌𝑟𝑒𝑓 − 𝜌𝑎
∗)) and it is represented 

in Figure 3.18 (j). It can be observed that 𝛥𝜌(𝑥, 𝑦) distribution obtained in Figure 3.18 (c) and (j) 

is the same. The only different is that Figure 3.18 (j) is shifted (𝜌𝑟𝑒𝑓 − 𝜌𝑎
∗) from (c). 

Finally, 2D density distribution is obtained as follow. 

𝜌(𝑥, 𝑦) = 𝜌𝑟𝑒𝑓 − [Δ𝜌(𝑥, 𝑦) + (𝜌𝑟𝑒𝑓 − 𝜌𝑎
∗)] = 𝜌𝑎

∗ − Δ𝜌(𝑥, 𝑦) 

Eq. 3.8 

𝜌(𝑥, 𝑦) is represented in Figure 3.18 (k) and its values are the same than in Figure 3.18 (b). 

Density 2D distributions are accumulated in layers to form 3D-CT density distribution 
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(𝜌(𝑥, 𝑦, 𝑧)). Figure 3.23, Figure 3.24 and Figure 3.25 show the solution of the CT-reconstruction 

for the planes YZ, XZ and XY respectively.  

 

 

Figure 3.23. YZ plane results of CT-reconstruction for NPR 5. 

 

 

Figure 3.24. XZ plane results of CT-reconstruction for NPR 5. 
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As it can be observed, the solutions in planes YZ and XY are very similar since the nozzle has a 

circular shape. The solutions at 𝑥 = 0 and 𝑦 = 0 are very clear and the diamond structure can 

be observed. As we move away from the centerline and due to the increasing of the mixing layer, 

the diamond structures start to disappear. Images at 4.8 mm from the centerline are far enough 

to represent exclusively the mixing layer.   

 

 

Figure 3.25. XY plane results of CT-reconstruction for NPR 5. 

In the results of the XY plane, the jet boundaries can be observed. The jet is surround by a shock 

wave which change the supersonic flow condition to atmosphere condition. At 𝑧 = 0.12 𝑚𝑚 a 

cross-section of the incident shock is represented.  
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4. Results 

4.1. Model Validation 
Before applying the numerical method implemented in the present study to our experimental 

data, it is needed to probe if the code works properly. Comparisons are done with the numerical 

method presented by (Cheng & Lee, 2005), the analytical solution of (Jackson & Tam, 1985) and 

the experimental data of (Seiner & Norum, 1979). Initial conditions are summarized in Table 4.1. 

Ambient Temperature 𝑻𝒃 288 K (15 ºC) 

Back (ambient) pressure 𝑃𝑏 0.101325 MPa 

Back (ambient) density 𝜌𝑏 1.2 𝑘𝑔/𝑚3 

Nozzle design Mach number 𝑀𝑑 1.73 

Nozzle exit Mach number 𝑀𝑒 2 

Nozzle exit diameter  𝐷 50 mm 

Exit pressure 𝑃𝑒 0.146920 MPa 

Exit density 𝜌𝑒 3.2 𝑘𝑔/𝑚3 

Exit axial-velocity 𝑢𝑒 507 𝑚/𝑠 

Exit radial-velocity 𝑣𝑒 0 𝑚/𝑠 
Table 4.1. Initial condition of (Seiner & Norum, 1979) experimental data. 

The results of instantaneous pressure, density and Mach number at a representative 

dimensionless time, 𝑡𝑑 = 𝑡/(𝐷/𝑢𝑒) = 125, are shown Figure 4.1. The structure observed is 

similar to what can be expected in an underexpanded jet, explained in Section 2.1.2.1.  

In density and pressure fields (Figure 4.1 (left) and (center)) the characteristic diamond-shape 

shocks cell can be clearly observed. Prandtl-Mayer expansion fans are formed at the nozzle exit, 

reflecting the flow forth the centerline. Afterward, oblique shocks are generated from the free 

shear layer to direct the flow back to the center line. This structure is repeated until 𝑧/𝐷 = 17, 

where the ambient air enters into the jet. At that point, there is not enough energy to keep the 

structures and the phenomenon die out. Regarding the Mach (Figure 4.1 (right)), no normal 

shock can be observed in the near field of shock containing region. Subsonic Mach numbers are 

represented with cold colors, whereas supersonic Mach number with hot. 

The mean streamwise pressure variations along the 𝑥-axis in the underexpanded jet of the 

present study is compared with three diferent approaches to verify the method accuracy. Figure 

4.2 shows the comparation beteween the numerical method implemented in this study and the 

Prandtl model explained in Section 2.1.2.2. We can observe there is a good agreement in the 

period but not in the value of the pressure away from the first cycles. However, this is what can 

be expected, due to the two main drawbacks of the model. Firstly, the model only works close 

to the nozzle exit, and secondly, since deadening due to turbulence is not considered, the 

amplitude is constant. 

The numerical method implemented by (Cheng & Lee, 2005) is represented in Figure 4.3. I great 

agreement between the two numerical method can be observed. Both methods exhibit a 

decaying oscillatory static pressure caused by the interaction between the shock cells and the 

mixing layer near the edge of the flow. 
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Figure 4.1. Instantaneous Flow pictures for underexpanded jet at dimensionless time 𝑡𝑑 = 125: (left) density 
(contour lines from 0.6 to 2.6), (center) pressure (contour lines from 0.3 to 1.6), (right) Mach number (contour lines 

from 0 to 3). 
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Figure 4.2. Comparation of the present numerical method with Prandtl model of Section 2.1.2.2. 

 

Figure 4.3. Comparation of the present numerical method with the numerical method developed by (Cheng & Lee, 
2005). 
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The present calculation agrees quite well in the first 5 diamond-shape structures with the 

experiment of (Seiner & Norum, 1979) represented in Figure 4.4, even though the method 

underestimate the pressure. At this range, the flow can be considered inviscid. Farther 

downstream, there are differences in the predicted data with the experimental. The present 

method also underestimates the rate of mixing between the jet and the ambient fluid. 

 

Figure 4.4. Comparation of the present numerical method with the measurements of (Seiner & Norum, 1979). 

A radial study of Mach number has been carried out in order to compare the present method 

along the 𝑥-axis with (Seiner & Norum, 1979) and (Cheng & Lee, 2005) results. Figure 4.5 shows 

the radial solution at different values of 𝑧/𝐷. I great agreement can be observed in general for 

the three approaches. The locations of the discontinuities in the flow are properly captured. 

Nevertheless, mismatches around the jet center-line and boundaries can be observed between 

the predicted and the experimental data. The nozzle measured by (Seiner & Norum, 1979) had 

a converging-diverging shape. However, in the numerical method implemented, the flow is 

assumed to be parallel. The converging-diverging nozzle expands jet plume to an outer radial 

region than does a tube nozzle, thus it causes a slower decaying rate of Mach number in the jet 

boundary. The consequence is an underprediction of the Mach number in the mentioned 

regions.    
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Figure 4.5. Comparation of present prediction, (Cheng & Lee, 2005) prediction and (Seiner & Norum, 1979) 
measurement of the radial distribution of Mach number at various axial positions in the underexpanded jet. 

4.2. Comparation of numerical and experimental results 
In this section we are going to compare the results of the numerical method implemented in the 

present study with the experimental measurements obtained using the multi-directional 

quantitative Schlieren system. We are going to display the solution for NPR 5, 4.5 and 4. The 

values of JPR of each condition are 1.362, 1.226 and 1.09 respectively. Initial conditions of the 

three different study are summarized in Section 3.2.  

4.2.1. Flow images  
In order to achieve a better understanding of the flow characteristics of the three initial 

conditions, density fields are displayed in Figure 4.6. These results are calculated averaging the 

instantaneous results among the interval [100 < td < 125]. The scale used in the three images 

is the same (contour lines from 0.4 to 1.7). 

In the images, the values where the instabilities appear can be clearly observed. For NPR 5 this 

value is 𝑧/𝐷 = 18, for NPR 4.5 is 𝑧/𝐷 = 16 and for NPR 4 is 𝑧/𝐷 = 11. Until this point, the 

characteristic diamond structures of the underexpanded flows are clearly observed. Beyond 

these points, the mixing layer start developing. The present numerical method works properly 

in areas where the flow is largely inviscid, so it will predict the results accurately close to the 

nozzle exit. However, it underestimates the development of the mixing layer; therefore, far from 

the nozzle exit numerical results will differ from experimental data. 
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Figure 4.6. Density flow images for underexpanded jet averaging between 100 < 𝑡𝑑 < 125 (contour lines from 0.4 
to 1.7): (left) NPR 5, (center) NPR 4.5, (right) NPR 4. 
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It can be observed there is not flow mixing between the jet and the ambient flow until the 

instability point is reached. This would impede its applications to supersonic combustion in 

which mixing of fuel and oxidizer is extremely important.  

Finally, Figure 4.7 shows simultaneously the solution of the numerical method and an image of 

the supersonic jet at NPR 5 obtained with CT-reconstruction at 𝑦 = 0. A good agreement can be 

observed between both solution in the cells close to nozzle exit, but solutions differ further 

downstream.  

 

Figure 4.7. Comparation of CT-reconstruction solution image at 𝑦 = 0 with numerical prediction (NPR 5). 

4.2.2. Comparation with Prandtl model 
Prandtl model is going to be use with the objective to verify the validity of the numerical method 

before applying it to the experimental results. In Section 4.1, we saw that Prandtl model agrees 

in the period and in the first pressure values.  

 

Figure 4.8. Prandtl model: (left) NPR 5, (right) NPR 4.5 and (down) NPR 4. 
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Figure 4.8 shows the Prandtl model for NPR 5, 4.5 and 4 respectively. As it was expected, there 

are good agreements within the periods and the first values of pressure. However, whilst NPR 5 

solution fit quite well, NPR 4 is not as accurate. This can be explained regarding the drawbacks 

of Prandtl model, since it is expected for the mixing layer in NPR 4 to develop earlier and Prandtl 

model makes accurate prediction with thin mixing layer.  

4.2.3. Axial comparation 
In this section we are going to display the axial results of the numerical method, comparing them 

with the experimental measurements (Figure 4.9). We can observe a poor agreement in terms 

of amplitude among the solutions of both studies. However, there is a good agreement in the 

period, especially in cells close to the nozzle exit.  

 

Figure 4.9. Axial comparation: (left) NPR 5, (right) NPR 4.5 and (down) NPR 4. 

In Section 4.1, it has been proved the numerical method underestimate the peaks and valleys 

values. However, the absolute difference between numerical data and CT-reconstruction is too 

high. One possible explanation to this inconsistence is that CT-reconstruction use a gray-scale 

(Figure 3.17) where the limits of this scale are imposed manually and may be overestimated. 

The solution of this inconsistence involves a review of the FORTRAN® code used in CT-

reconstruction to adjust the density values of the gray-scale. However, this goes beyond the 

objectives of the present study and it is proposed as future work.  

4.2.4. Radial comparation 
The radial results for 𝑧/𝐷 = 1, 1.5 𝑎𝑛𝑑 2 are represented for the three initial conditions in 

Figure 4.10, Figure 4.11 and Figure 4.12 respectively. We can observe measured density values 

differs from the calculated. However, the tendency that density follows in each case is the same. 

This is consequence of the gray-scale used as it was commented before.  
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Figure 4.10. Radial comparation for NPR 5: (left) 𝑧/𝐷 = 1, (center) 𝑧/𝐷 = 1.5 and (right) 𝑧/𝐷 = 2. 

 

Figure 4.11. Radial comparation for NPR 4.5: (left) 𝑧/𝐷 = 1, (center) 𝑧/𝐷 = 1.5 and (right) 𝑧/𝐷 = 2. 

   

Figure 4.12. Radial comparation for NPR 4: (left) 𝑧/𝐷 = 1, (center) 𝑧/𝐷 = 1.5 and (right) 𝑧/𝐷 = 2. 

The peaks which appear in all the images at 𝑥/𝐷 = 0 is consequence of the symmetric condition 

imposed at that point.  

4.2.5. Cell spacing 
We are going to compare the cell length of the first shock using Prandtl’s formula (Eq. 2.15) with 

the images obtained with CT-reconstruction and the numerical simulation. Figure 4.13 shows 

the Schlieren images for NPR 4, 4.5 and 5 respectively. In these images the first cell length is 

indicated with a black line.  

In order to make a comparation, numerical values are needed. The first shock cell of the different 

jet covers the interval between the origin and the first maximum of Figure 4.9. The length cell 

values of the experimental measurements are obtained counting the number of pixels present 

among the interval and multiplying it times 0.04 𝑚𝑚/𝑝𝑖𝑥𝑒𝑙 (in dimensionless unit 0.04 𝑝𝑖𝑥𝑒𝑙−1 

since the diameter is 1 𝑚𝑚). 

Results are presented in Table 4.2. It can be observed when NPR is higher the cell length 

increases. This relation can be observed in Eq. 2.15. NPR is a direct function of the Mach number 

(Eq. 2.8) and the Mach number is proportional to the cell length. Therefore, the next statement 

can be done: 
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𝐿𝑠 ∝ 𝑀 

Eq. 4.1 

 

Figure 4.13. Cell length of Schlieren images of the underexpanded supersonic micro-jet: (left) NPR 4, (center) NPR 
4.5, (right) NPR 5.  

Nozzle pressure ratio (NPR) 5.0 4.5 4.0 

Prandtl’s formula (Eq. 2.15) 1.81 1.69 1.56 

Schlieren images 
Nº Pixels 45 38 34 

𝐿𝑐 1.80 1.52 1.36 

Numerical method 1.93 1.63 1.51 
Table 4.2. First shock cell length. 

The difference between the numerical method and the measurement over the Schlieren images 

is around 10%, which is a very reasonable error giving the simplification imposed.    
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5. Conclusions 
In the present project we have implemented a numerical method using WENO schemes with 

fifth-order-accurate for spatial discretization and fourth-order-accurate Runge-Kutta scheme for 

time integration. The code can predict the flow structure of a supersonic jet working at 

underexpanded condition. The validity of the present method has been proved using an 

analytical solution known as Prandtl model (Jackson & Tam, 1985), (Seiner & Norum, 1979) data 

and (Cheng & Lee, 2005) prediction. 

Prandtl solution’s drawback is overcome using the present method, since the objective was to 

create a method which takes into account the expansion of the mixing layer and the reduction 

of the amplitude. However, the present method still does not work accuracy enough far from 

the nozzle exit as it is shown in Figure 4.4 and Figure 4.7 where the predicted density 

concentration does not fit with the measured. The present method underestimates the mixing 

layer development since Euler equations (Eq. 2.17 and Eq. 2.18) are an inviscid solution for the 

problem.  

Other methods used in Computational Fluid Dynamic such as 𝑘-𝜖 could enhance the solution. 𝑘-

𝜖 method is a turbulent model which could make a better estimation of the mixing layer. 

However, the implementation of this method is quite more difficult, the time required to obtain 

an accurate solution is much higher and a computer with a better processing speed is needed.  

The present numerical method is compared with the measurement of a circular supersonic jet 

using a multi-directional quantitative Schlieren system. The measurements were expected to fit 

relatively well with the calculation. However, Figure 4.9 shows that there is a great difference 

between the two solutions. Prandtl model as well as the validation process show in Section 4.1 

make possible to rely on the numerical method solutions. The period of oscillations in Figure 4.9 

coincide, the main difference resides in the amplitude of the oscillation. The conclusion of this 

phenomenon is that the values of the limits given to the gray-scale used in CT-reconstruction 

might be overestimated. Therefore, a re-adjustment it is needed to be done in CT-reconstruction 

code. 

The present study was focused on the simulation of a circular supersonic micro-jet working at 

underexpanded condition. However, some experimental data have been obtained using a 

rectangular cross-section nozzle. The present numerical method can be modified to simulate 

this cross-section by giving to the vector 𝑆 in Eq. 2.18 a value which simulate the rectangular 

cross-section.  
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Appendix 1. Jacobian Matrix 
The development of the Jacobian Matrix used in Eq. 2.25 is explained in this section. A Jacobian 

matrix is a matrix of all first-order partial derivatives of a vector-valued function (𝐹(𝑊)). We 

want to calculate the Jacobian matrix of 𝐹(𝑊) with the variables in 𝑊 (the process to calculate 

the Jacobian matrix of the flux 𝐺(𝑊) is similar). 

𝑊 = [

𝜌
𝜌𝑢
𝜌𝑣
𝑒

] , 𝐹(𝑊) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢

] 

For that, 𝑊 is going to be redefined as: 

𝑊 = [

𝜌
𝜌𝑢
𝜌𝑣
𝑒

] = [

 𝜆1 
𝜆2

𝜆3

𝜆4

] 

Eq. 0.1 

And the equation of state (Eq. 2.19) as: 

𝑝 = (𝛾 − 1)(𝜆4 − 0.5 (
𝜆2
2

𝜆1
+

𝜆3
2

𝜆1
)) 

Eq. 0.2 

Therefore, we can rewrite the flux in terms of  Eq. 0.1 and Eq. 0.2. 

𝐹(𝑊) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝑒 + 𝑝)𝑢

] =

[
 
 
 
 
 
 
 

𝜆2

(1.5 − 0.5𝛾)
𝜆2

2

𝜆1
+ (𝛾 − 1)𝜆4 − 0.5(𝛾 − 1)

𝜆3
2

𝜆1

𝜆2𝜆3

 𝜆1

𝛾
𝜆4𝜆2

𝜆1
− 0.5(𝛾 − 1)

𝜆2
3

𝜆1
2 − 0.5(𝛾 − 1)

𝜆3
2𝜆2

𝜆1
2 ]

 
 
 
 
 
 
 

 

The Jacobian matrix to solve is the following. 

𝐽𝐹(𝑊) =

[
 
 
 
 
𝜕𝐹1

𝜕𝜆1
⋯

𝜕𝐹1

𝜕𝜆4

⋮ ⋱ ⋮
𝜕𝐹4

𝜕𝜆1
⋯

𝜕𝐹4

𝜕𝜆4]
 
 
 
 

 

The solution in terms of 𝜆 is presented below. 



55 
 

𝐽𝐹(𝑊)

=

[
 
 
 
 
 
 
 

0 1 0 0

−(1.5 − 0.5𝛾)
𝜆2

2

𝜆1
2 + 0.5(𝛾 − 1)

𝜆3
2

𝜆1
2

(3 − 𝛾)
𝜆2

𝜆1
−(𝛾 − 1)

𝜆3

𝜆1

(𝛾 − 1)

−
𝜆2𝜆3

 𝜆1
2

𝜆3

 𝜆1

𝜆2

 𝜆1
0

−𝛾
𝜆4𝜆2

𝜆1
2 + (𝛾 − 1)

𝜆2
3

𝜆1
3 + (𝛾 − 1)

𝜆3
2𝜆2

𝜆1
3 −1.5(𝛾 − 1)

𝜆2
2

𝜆1
2 − 0.5(𝛾 − 1)

𝜆3
2

𝜆1
2 −(𝛾 − 1)

𝜆3𝜆2

𝜆1
2 𝛾

𝜆2

𝜆1 ]
 
 
 
 
 
 
 

 

Finally, the solution in terms of the flux variables. 

𝐽𝐹(𝑊)

=

[
 
 
 
 

0 1 0 0
−(1.5 − 0.5𝛾)𝑢2 + 0.5(𝛾 − 1)𝑣2 (3 − 𝛾)𝑢 −(𝛾 − 1)𝑣 (𝛾 − 1)

−𝑢𝑣 𝑣 𝑢 0

−𝛾
𝑒𝑢

𝜌
+ (𝛾 − 1)𝑢3 + (𝛾 − 1)𝑢2𝑣 −1.5(𝛾 − 1)𝑢2 − 0.5(𝛾 − 1)𝑣2 −(𝛾 − 1)𝑢𝑣 𝛾𝑢

]
 
 
 
 

 

Eq. 0.3 

Eq. 0.3 is used to calculate the value of 𝛽 which appears in Eq. 2.24. 
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Appendix 2. WENO code 
In this appendix the code implemented to simulate the supersonic jet using the WENO algorithm 

is shown below. This code consists of the following functions: 

1. main_WENO.m: it is the main program and the one which must be run to start the 

calculation. Runge Kutta 4 step is implemented in the while loop. All the initial condition 

and the saving file path must be changed here. 

2. initial_condition.m: this function set the initial condition in the domain. 

3. boundary_condition.m: this function controls that the boundary conditions imposed in 

the domain remain univariant.  

4. source_term.m: it contains the source term (𝑆) of the Euler equation (Eq. 2.17). 

5. WENO5LF2d_sim.m: in this function WENO numerical method is implemented with 5th 

order scheme, Lax-Friedrichs flux splitting, 2 dimension and symmetric. 

1. main_WENO.m 

%% WENO (Weighted Essentially Non-Oscillatory) 

% This is the main program to solve the supersonic jet of a micro-nozzle 

% using a numerical approach based in WENO and Runge-Kutta 4 step (time 

% depended). This program with all the function will solve the Euler 

% equation: dW/dt + dF/dx + dG/dy + alpha*S = 0  

% where alpha = 0 for 2D and alpha = 1 for axisymmetric nozzle 

%     |   rho  |     |    rho * u    |     |    rho * v    |      |    rho * v    | 

%     |rho * u |     | rho * u^2 + p |     |  rho * u * v  |      |  rho * u * v  | 

% W = |rho * v | F = |  rho * u * v  | G = | rho * v^2 + p | S=1/y|   rho * v^2   | 

%     |    e   |     |   (e + p)*u   |     |   (e + p)*v   |      |   (e + p)*v   | 

% The program is going to be solved dimensionlessly taking as reference the 

% exit values. The meaning of the index are : a: atmosphere, e: nozzle  

% exist, d: dimensionless 

clc; clear; close all; 

global gamma ue rhoe pe rhoa pa D 

%% Data 

% Parameters 

alpha    = 1;   % Alpha = 0 (2D). Alpha = 1 (axisymmetric) 

gamma    = 1.4; % Heat constant 

CFL      = 0.4; % CFL number 0.2-0.4 (Courant-Friedrichs-Levy number) 

tFinal   = 125; % Final time 

nEx      = 650; % Number of cells in x 

nEy      = 150; % Number of cells in y 

  

% Variables 

%Dimensionless variables will be calculate using ue,rhoe and D.  

rhoe = 1.86;   %Exit density 

pe   = 138000; %110300; % Exist pressure 

rhoa = 1.2;    % Atmosphere density 

pa   = 101300; % Atmosphere pressure 

D    = 1000e-6;% Diameter [m] 

ue   = 1.709*sqrt(gamma*pe/rhoe); %538.65; %Exit axial velocity 1.709*sqrt(gamma*pe/rhoe) 

  

%% Discretize spatial domain (dimensionless) 

% The x domain must be at least 30 times the diameter. 

% The y domain must be at leas 5 times the diameter. 

a=0; b=30; dx=(b-a)/nEx; nx=nEx+1; x=linspace(a,b,nx); 

c=0; d=5; dy=(d-c)/nEy; ny=nEy+1; y=linspace(c,d,ny); 

[Y,X] = meshgrid(y,x); 

  

%% Initial condition 

[q0,aref,bref1,bref2] = initial_condition(X,Y); 

t    = 0; % Time of the calculation 

it   = 0; % Iteration number 

cont = 1; % Counter (number of data saved) 

cont2= 1; % Counter 2 *number of data saved over time = 100 

%Matrix inicialization 

jacF     = zeros(nx,ny,7); 

jacG     = jacF; 

Sy       = zeros(nx,ny,4); 

% If we want to start the calculation from a prior calculation change the 

% number 0 for 1. 

if 0 == 1 

    load('AS_NPR5_it_20.mat','q','t'); 

    q = boundary_condition(q,q0,aref,bref1,bref2); 

    q0=q; 

    cont  = 1; 

    cont2 = 1; 

end 
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%% Time domain 

lambda=ue/ue+sqrt(gamma*(pe/(rhoe*ue^2))/(rhoe/rhoe)); % Maximum of the values 

dt=CFL*dx/lambda;  % using the system's largest eigenvalue 

q = q0; 

lambdaF = lambda; 

lambdaG = lambda; 

  

%% Solver loop 

%Representation of the initial condition 

figure; 

cla;contourf(X,Y, q0(:,:,1),20);title(['t/(D/ue) =' num2str(t)]); colorbar; 
xlabel('x/D') 

ylabel('y/D') 

pause(0.0001) 

  

while t<tFinal 

    % Runge-Kutta 4 step, time calculation 

    qo = q; 

    % 1st step 

    dF = WENO5LF2d_sim(lambdaF,qo,dx,1); %Fx 

    dG = WENO5LF2d_sim(lambdaG,qo,dy,2); %Gy 

    if alpha == 1 

        Sy = source_term(qo, Y); %S 

    end 

    LW = dF+dG+Sy; 

    q1 = qo-0.5*dt*LW; 

     

    q1 = boundary_condition(q1,q0,aref,bref1,bref2); 

  

    % 2nd Step 

    dF = WENO5LF2d_sim(lambdaF,q1,dx,1); 

    dG = WENO5LF2d_sim(lambdaG,q1,dy,2); 

    if alpha == 1 

        Sy = source_term(q1, Y); 

    end 

    LW = dF+dG+Sy; 

    q2 = qo-0.5*dt*LW; 

     

    q2 = boundary_condition(q2,q0,aref,bref1,bref2); 

     

    % 3rd Step 

    dF = WENO5LF2d_sim(lambdaF,q2,dx,1); 

    dG = WENO5LF2d_sim(lambdaG,q2,dy,2); 

    if alpha == 1 

        Sy = source_term(q2, Y); 

    end 

    LW = dF+dG+Sy; 

    q3 = qo-dt*LW; 

  

    q3 = boundary_condition(q3,q0,aref,bref1,bref2); 

  

    % 4th stage 

    dF = WENO5LF2d_sim(lambdaF,q3,dx,1); 

    dG = WENO5LF2d_sim(lambdaG,q3,dy,2); 

    if alpha == 1 

        Sy = source_term(q3, Y); 

    end 

    LW = dF+dG+Sy; 

    q  = 1/3*(-qo+q1+2*q2+q3)-1/6*dt*LW; 

  

    q  = boundary_condition(q,q0,aref,bref1,bref2); 

     

    % Compute primary dimensionless properties 

    rhod =   q(:,:,1);       % Dimensionless density 

    ud   =   q(:,:,2)./rhod; % Dimensionless axial velocity 

    vd   =   q(:,:,3)./rhod; % Dimensionless radial velocity 

    ed   =   q(:,:,4);       % Dimensionless energy 

    pd   =   (gamma-1)*(ed-0.5*rhod.*(ud.^2+vd.^2)); %Dimensionless pressure 

  

    % Jacobian matrix calculation for F and G 

    ud2 = ud.^2; 

    vd2 = vd.^2; 

    jacF(:,:,1) = 1.6*ud2-0.4*vd2; 

    jacF(:,:,2) = 1.6*ud; 

    jacF(:,:,3) = 1.6*vd; 

    jacF(:,:,4) = 2*ud.*vd; 

    jacF(:,:,5) = 2*gamma*ed.*ud./rhod-ud2.*ud-ud2.*vd; 

    jacF(:,:,6) = gamma*ed./rhod-1.5*ud2-ud.*vd; 

    jacF(:,:,7) = 0.5*ud2; 

     

    jacG(:,:,1) = 1.6*vd2-0.4*ud.^2; 

    jacG(:,:,2) = jacF(:,:,3); 

    jacG(:,:,3) = jacF(:,:,2); 

    jacG(:,:,4) = jacF(:,:,4); 

    jacG(:,:,5) = 2*gamma*ed.*vd./rhod-vd2.*vd-vd2.*ud; 

    jacG(:,:,6) = gamma*ed./rhod-1.5*vd2-vd.*ud; 

    jacG(:,:,7) = 0.5*vd2; 

    lambdaF = max(max(max(jacF))); 
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    lambdaG = max(max(max(jacG))); 

     

    %Time update and counter 

    dt = real(CFL/(max(max(ud))/dx+max(max(vd))/dy)); 

    t  = t+dt;  

    it = it+1; 

  

    %Plotting and saving 

    if mod(it,50)==0 

        cla;contourf(X,Y, q(:,:,1),20);title(['t/(D/ue) =' num2str(t)]); colorbar; 
        pause(0.00001) 

    end 

     

    if mod(it,200)==0 && t < 100 

        conts = num2str(cont); 

        file = strcat('AS_NPR5_it_',conts); 

        save(file,'q','t'); 

        cont = cont+1 

         

    elseif mod(it,50)==0 && t >= 100 

         

        conts2 = num2str(cont2); 

        file = strcat('AS_NPR5_t100_it_',conts2); 

        save(file,'q','t'); 

        cont2 = cont2+1 

         

    end 

     

end % t<tFinal 

 

2. initial_condition.m 

function [q0,aref,bref1,bref2] = initial_condition(X,Y) 
% This function will create the initial condition q0 of the flux. Also, it 
% will obtain the parameters aref, bref1 and bref2 for reference in the 
% boundary condition. 

  
%INPUT 
%X -> x values of the mesh 
%Y -> y values of the mesh 
%OUTPUT 
%q0   -> initial value of the flow field 
%aref -> x cell where the nozzle end 
%bref1-> y cell where the nozzle start 
%bref2-> y cell where the nozzle end 

  
global gamma ue rhoe pe rhoa pa D 

     
[m,n] = size(X); 
q0    = zeros(m,n,4); 

     
a    = find(X(:,1)  <= D/D );   
b    = find(Y(1,:)  <= (D/D)/2); 
aref = a(end); 
bref2= b(end); 
bref1= 1;%round(n/2 -(bref2-n/2)); 

     
% Atmosphere condition 
q0(:,:,1) = rhoa/rhoe;  
q0(:,:,4) = (pa/(gamma-1))/(rhoe*ue^2); 

     
% Exit condition 
q0(1:aref,bref1:bref2,1) = rhoe/rhoe; %rho 
q0(1:aref,bref1:bref2,2) = rhoe*ue/(rhoe*ue); %rho * u  
q0(1:aref,bref1:bref2,4) = (pe/(gamma-1)+0.5*rhoe*(ue^2))/(rhoe*ue^2); %e 

    
end 

 

3. boundary_condition.m 

function q = boundary_condition(q,q0,aref,bref1,bref2) 
% This function will imposse the boundary condition to the flow field. 
% The matrix q contain the last flow field calculated and the q0 
% contains the condition which must be impossed in the flow field 
%INPUT 
%q    -> flow field 
%q0   -> initial value of the flow field 
%aref -> x cell where the nozzle end 
%bref1-> y cell where the nozzle start 
%bref2-> y cell where the nozzle end 
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%OUTPUT 
%q    -> corrected flow field 

  
q(1:aref,bref1:bref2,:)   = q0(1:aref,bref1:bref2,:);   %B1 
q(1:aref,bref2:bref2+1,:) = q0(1:aref,bref2:bref2+1,:); %B2 
q(1,bref2:end,:)          = q0(1,bref2:end,:);          %B3 
q(:,end,:)                = q0(:,end,:);                %B4 
q(:,1,3)                  = q0(:,1,3);                  %B5 
q(end,:,:)                = q0(end,:,:);                %B6 
end 

 

4. source_term.m 

function Sy = source_term(q, Y) 
% This function calculate the source term of the Euler equation 
% INPUT 
% q  -> flow field 
% Y  -> y values of the mesh 
% OUTPUT 
% Sy -> Source term 
    global gamma 

  
    [m,n,~] = size(q); 

     
    invY = (1./Y); 

  
    Sy = zeros(m,n,4); 
    Sy(:,:,1) = invY.*q(:,:,3); 

     
    rho=q(:,:,1); u=q(:,:,2)./rho; v=q(:,:,3)./rho;  
    e=q(:,:,4); p=(gamma-1)*(e-0.5*rho.*(u.^2+v.^2)); 

     
    Sy(:,:,2) = invY.*rho.*u.*v; 
    Sy(:,:,3) = invY.*rho.*v.^2; 
    Sy(:,:,4) = invY.*(e+p).*v; 

     
    if mod(n,2)~=0 
        Sy(:,1,:) = 0; 
    end 

      
end 

 

5. WENO5LF2d_sim.m 

function dFx = WENO5LF2d_sim(lambda,q,dx,dir) 

% This function will solve a flux field step using the WENO numerical 

% method. The function solve symmetric field over the x-axis in 2D. 

% INPUT 

% a  -> Lax-Friedrich splitting flux constant 

% q  -> flow parameters 

% dx ->  

% dir-> diraction of the method. dir = 1 is for dF and dir = 2 is for dG. 

% OUTPUT 

% dFx-> d(flux)/dx 

% 

% Domain cells (I{i}) reference: 

% 

%                |           |   u(i)    |           | 

%                |  u(i-1)   |___________|           | 

%                |___________|           |   u(i+1)  | 

%                |           |           |___________| 

%             ...|-----0-----|-----0-----|-----0-----|... 

%                |    i-1    |     i     |    i+1    | 

%                |-         +|-         +|-         +| 

%              i-3/2       i-1/2       i+1/2       i+3/2 

% 

% Stencils (S{r}) reference: 

%  

% 

%                               |___________S2__________| 

%                               |                       | 

%                       |___________S1__________|       | 

%                       |                       |       | 

%               |___________S0__________|       |       | 

%             ..|---o---|---o---|---o---|---o---|---o---|... 

%               | I{i-2}| I{i-1}|  I{i} | I{i+1}| I{i+2}| 

%                                      -| 

%                                     i+1/2 

% 

% 
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%               |___________S0__________| 

%               |                       | 

%               |       |___________S1__________| 

%               |       |                       | 

%               |       |       |___________S2__________| 

%             ..|---o---|---o---|---o---|---o---|---o---|... 

%               | I{i-2}| I{i-1}|  I{i} | I{i+1}| I{i+2}| 

%                               |+ 

%                             i-1/2 

% 

%% Flux calculation 

global gamma 

% primary properties 

rho=q(:,:,1); u=q(:,:,2)./rho; v=q(:,:,3)./rho; e=q(:,:,4)./rho; 

p=(gamma-1)*rho.*(e-0.5*(u.^2 + v.^2)); 

flux = zeros(size(q)); 

% Flux vector of conserved properties 

if dir == 1 

    flux(:,:,1)= rho.*u; 

    flux(:,:,2)= rho.*u.^2+p; 

    flux(:,:,3)= rho.*u.*v; 

    flux(:,:,4)= u.*(rho.*e+p); 

    turn=[1 0 0]; 

elseif dir == 2 

    flux(:,:,1)= rho.*v; 

    flux(:,:,2)= rho.*u.*v; 

    flux(:,:,3)= rho.*v.^2+p; 

    flux(:,:,4)= v.*(rho.*e+p); 

    turn=[0 1 0]; 

end 

  

%% Lax-Friedrich splitting flux separation (right) 

fr=0.5*(flux+lambda*q); 

  

% Right Flux 

% Shift of the flux to place the variables of the Stencils in the same cell 

frm2 = circshift(fr, 2*turn); %flux_right_minus_2 

frm1 = circshift(fr,   turn); %flux_right_minus_1 

frp1 = circshift(fr,-1*turn); %flux_right_plus_1 

frp2 = circshift(fr,-2*turn); %flux_right_plus_2 

  

if dir == 2 %Symmetry condition imposed only for y direction 

   frm2(:,2,:)     = frm2(:,4,:);     frm2(:,1,:)   = frm2(:,5,:); 

   frm1(:,1,:)     = frm1(:,3,:); 

   frp1(:,end,:)   = frp1(:,end-1,:); 

   frp2(:,end-1,:) = frp2(:,end-2,:); frp2(:,end,:) = frp2(:,end-3,:); 

   % Radial speed must have the oposite sign 

   frm2(:,2,3) = -frm2(:,4,3); frm2(:,1,3) = -frm2(:,5,3); 

   frm1(:,1,3) = -frm1(:,3,3); 

end 

  

% Stencils 

S0r = (2*frm2 - 7*frm1 + 11*fr)/6; 

S1r = ( -frm1 + 5*fr   + 2*frp1)/6; 

S2r = (2*fr   + 5*frp1 - frp2 )/6; 

% Smooth Indicators (Stencil interpolation) 

IS0r = 13/12*(frm2 - 2*frm1 + fr  ).^2 + 1/4*(frm2 - 4*frm1 + 3*fr).^2; 

IS1r = 13/12*(frm1 - 2*fr   + frp1).^2 + 1/4*(frm1 - frp1   ).^2; 

IS2r = 13/12*(fr   - 2*frp1 + frp2).^2 + 1/4*(3*fr - 4*frp1 + frp2).^2; 

% Optimal weight 

C0r = 1/10; C1r = 6/10; C2r = 3/10;  

epsilon = 1e-6; %Small number to avoid /0 

% omega weights 

w0r = C0r./(epsilon + IS0r).^2; 

w1r = C1r./(epsilon + IS1r).^2; 

w2r = C2r./(epsilon + IS2r).^2; 

wsumr = w0r + w1r + w2r; 

% stencils weigths 

sw0l = w0r./wsumr; 

sw1l = w1r./wsumr; 

sw2l = w2r./wsumr; 

  

% Numerical Flux at cell boundary 

hr = sw0l.*S0r + sw1l.*S1r + sw2l.*S2r; %flux_(i+1/2)^[+] 

  

%% Lax-Friedrich splitting flux separation (left) 

%fl=0.5*(flux-lambda*q); 

flm1 = 0.5* (flux-lambda*q); %flux_left_minus_1 

  

flm2 = circshift(flm1,   turn); %flux_left_minus_2 

fl   = circshift(flm1,-1*turn); %Lax-Friedrich splitting flux separation (left) 

flp1 = circshift(flm1,-2*turn); %flux_left_plus_1 

flp2 = circshift(flm1,-3*turn); %flux_left_plus_1 

  

if dir == 2 %Symmetry condition imposed only for y direction 

    flm2(:,1,:) = flm2(:,3,:); 

    fl(:,end,:) = fl(:,end-1,:); 

    flp1(:,end-1,:) = flp1(:,end-2,:); flp1(:,end,:)   = flp1(:,end-3,:); 
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    flp2(:,end-2,:) = flp2(:,end-3,:); flp2(:,end-1,:) = flp2(:,end-4,:); flp2(:,end,:) = flp2(:,end-

5,:); 

    %Radial speed must have the oposite sign 

    flm2(:,1,3) = -flm2(:,3,3); 

end 

  

% Stencils 

S0l = (  -flm2 + 5*flm1 + 2*fl  )/6; 

S1l = ( 2*flm1 + 5*fl   - flp1  )/6; 

S2l = (11*fl   - 7*flp1 + 2*flp2)/6; 

% Smooth Indicators (Stencil interpolation) 

IS0l = 13/12*(flm2 - 2*flm1 + fl  ).^2 + 1/4*(flm2 - 4*flm1 + 3*fl).^2; 

IS1l = 13/12*(flm1 - 2*fl   + flp1).^2 + 1/4*(flm1 -   flp1 ).^2; 

IS2l = 13/12*(fl   - 2*flp1 + flp2).^2 + 1/4*(3*fl - 4*flp1 + flp2).^2; 

% Optimal weight 

C0l = 3/10; C1l = 6/10; C2l = 1/10;  

% omega weights 

w0l = C0l./(epsilon + IS0l).^2; 

w1l = C1l./(epsilon + IS1l).^2; 

w2l = C2l./(epsilon + IS2l).^2; 

wsuml = w0l + w1l + w2l; 

% ENO stencils weigths 

sw0l = w0l./wsuml; 

sw1l = w1l./wsuml; 

sw2l = w2l./wsuml; 

  

% Numerical Flux at cell boundary 

hl = sw0l.*S0l + sw1l.*S1l + sw2l.*S2l; %flux_(i+1/2)^[-] 

  

%% Compute finite volume residual term, df/dx. 

hll = circshift(hl,turn); %flux_(i-1/2)^[-] 

hrr = circshift(hr,turn); %flux_(i-1/2)^[+] 

  

if dir == 2 %Symmetry condition imposed only for y direction 

    hll(:,1,:) = hll(:,3,:); 

    hrr(:,1,:) = hrr(:,3,:); 

    % Radial speed must have the oposite sign 

    hll(:,1,3) = -hll(:,3,3); 

    hrr(:,1,3) = -hrr(:,3,3); 

end 

  

dFx = ((hr+hl)-(hrr+hll))/dx; %dF/dx 

end 
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Appendix 3. Prandtl model code 
The code implemented to simulate the Prandtl’s model is displayed below. The pressure of the 

jet can be obtained as follow: 

𝑝(𝑥) = 𝑝𝑏 + ∑ 𝑝𝑠(𝑚𝑜𝑑𝑒𝑖)

𝑛_𝑚𝑜𝑑𝑒𝑠

𝑖=1

 

Eq. 0.1 

Where 𝑝𝑏 is the atmosphere pressure and 𝑛_𝑚𝑜𝑑𝑒𝑠 is the number of modes obtained.  

In Figure 0.1 the first 6 oscillation modes of the Prandtl’s model are calculated. We can observe 

when the mode is higher the amplitude is smaller; and therefore, its contribution to the solution.    

 

Figure 0.1. 6 oscillation modes of Prandtl model.  

Figure 0.2. shows the solution of the Prandtl model when 6 modes are used in the 

representation. This solution is compared with the first mode. We can see the 1st mode has the 

bigger contribution to the solution, so the trend of the solution can be observed using exclusively 

this mode. Even though the whole solution is given by the summation of the modes, in Section 

4 only the 1st mode is represented since the objective is to observe the trend of the pressure. 

 

Figure 0.2. Representation of the Prandtl model using 6 oscillation modes. 
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Three different function are used: 

1. ps.m: which contain the Prandtl’s model and calculate the value of ps. 

2. besselzero.m: finds the roots of the Bessel functions. 

3. findzero.m: Halley's method. 

1. ps.m 

function [modes,x] = ps(n_modes, n_values, number_diameter, r, D, Dj, Md, Mj, rhoj, gamma, R, Pb) 
%  The objective of this function is to calculate the pressure Ps using the 
%  mathematical model of Prandtl. A multiple-scales model of the shock-cell 
%  structure of imperfectly expanded supersonic jets.  
%  The solution is a matrix which each column represent a mode. 
% INPUT 
% n_modes         -> Number of modes to be calculated 
% n_values        -> Number of values to be obtained per mode 
% number_diameter -> Number of diameter in x-axis which want to be represented 
% r               -> Radial position 
% D               -> Diameter 
% Dj              -> Fully expanded diameter 
% Md              -> Design Mach  
% Mj              -> Fully expanded Mach  
% rhoj            -> Fully expanded density 
% gamma           -> Heat capacity ratio 
% R               -> Gas constant 
% Pb              -> Atmosphere pressure 
% OUTPUT 
% mode            -> Matrix which contain in each column a vibration mode 
% x               -> x discretitation 

  
x = linspace(0, number_diameter*D, n_values); %x discretitation  
modes = zeros(n_modes, n_values); %matrix initialization  
Pj = Pb; %Assuming fully expanded pressure is ambient pressure 
Tj = Pj/(rhoj*R); %Perfect gas equation 
Uj=Mj*sqrt(gamma*R*Tj); % Mach and sonic speed definition 

  
DP=(rhoj*Uj^2)*1/(gamma*Mj^2)*(((1+1/2*(gamma-1)*Mj^2)/(1+1/2*(gamma-1)*Md^2))^(gamma/(gamma-1))-1); 

%Prandtl 

  
Bessel_roots=besselzero(0,n_modes,1); %Function which obtain the Bessel roots. 

  
for i = 1:n_modes 

     
    Ai = 2* DP*D/Dj*besselj(1,Bessel_roots(i)*D/Dj)/(Bessel_roots(i)*besselj(1,Bessel_roots(i))^2); 

%Prandtl 

     
    modes(i,:) = Ai * besselj(0,2*Bessel_roots(i)*r/Dj) * cos(2*Bessel_roots(i)*x/(Dj*sqrt(Mj^2-1))); 

%Prandtl 

     
end 
%end Ps 

 

2. besselzero.m 

function vector_zeros=besselzero(n,k,kind) 
% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)  
% using Halley's method. 

  
k3=3*k; 

  
vector_zeros=zeros(k3,1); 

  
for j=1:k3 

     
    % Initial guess of zeros  
    x0=1+sqrt(2)+(j-1)*pi+n+n^0.4; 

     
    % Do Halley's method 
    vector_zeros(j)=findzero(n,x0,kind); 

     
end 

  
vector_zeros=sort(vector_zeros); 
dx=[1;abs(diff(vector_zeros))]; 
vector_zeros=vector_zeros(dx>1e-8); 

  
vector_zeros=vector_zeros(1:k); 
%end besselzero 
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3. findzero.m 

function x=findzero(n,x0,kind) 

  
n1=n+1; 

  
% Tolerance 
tol=1e-12; 

  
% Maximum number of times to iterate 
MAXIT=100; 

  
% Initial error 
err=1; 

  
iter=0; 

  
while abs(err)>tol && iter<MAXIT 

     
    switch kind 
        case 1 
            a=besselj(n,x0);     
            b=besselj(n1,x0);    
        case 2 
            a=bessely(n,x0); 
            b=bessely(n1,x0); 
    end 

             
    x02=x0*x0; 

     
    err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a); 

     
    x=x0-err; 
    x0=x; 
    iter=iter+1; 

     
end 
%end findzero 


