
Universidad Politécnica de Valencia

Departamento de Sistemas Informáticos y Computación

Máster en Ingenieŕıa del Software, Métodos Formales y Sistemas
de Información

Master Thesis

Evaluation of Datalog queries and its
application to the static analysis of Java

code

Candidate:

Marco A. Feliú

Supervisors:

Maŕıa Alpuente

Christophe Joubert

Alicia Villanueva

Academic Year 2010/2011

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia

España

Contents

Introduction iii

1 Preliminaries 1

1.1 Datalog . 1

1.2 Static analysis . 3

1.2.1 Datalog-based static analysis . 4

1.3 Parameterised Boolean Equation Systems . 5

1.4 Rewriting Logic . 7

1.4.1 Maude . 8

2 The Bes-based Datalog evaluation approach 15

2.1 From Datalog to Bes. 15

2.2 A complete Datalog to Bes transformation . 17

2.2.1 Instantiation to parameterless BES . 20

2.2.2 Solution extraction . 26

2.3 The prototype Datalog Solve . 26

2.4 Experimental results . 28

2.5 Related Work. 32

2.6 Conclusions . 33

3 The Rwl-based Datalog evaluation approach 35

3.1 From Datalog to Rwl. 35

3.2 A complete Datalog to Rwl transformation 40

3.3 Dealing with Java reflection . 58

3.4 The prototype Datalaude . 63

3.5 Experimental results . 65

ii CONTENTS

3.5.1 Comparison w.r.t. a previous rewriting-based implementation 66

3.5.2 Comparison w.r.t. other Datalog solvers 67

3.6 Related Work. 67

3.7 Conclusions . 68

Conclusions and future work 69

Bibliography 71

Introduction

In the transition from an industrial economy to a knowledge-based global economy, computer

technologies have become a determining factor in productivity advances and, as a result, in

economic growth. Works like [JV05] are conclusive regarding the fact that, starting from the

second half of the nineties, computer technologies have played a progressively important role

in the productivity advances of the G7 countries [VT06]. Moreover, they have become crucial

for our lives, and they are present in everyday objects (mobile devices, cars) and in strategic

areas (health, transportation), frequently in a critical way w.r.t. safety, economy or security.

The main problem in the development of software systems is the higher and higher com-

plexity of analyzing and guaranteeing the reliability of their behaviour. Defects in these

–more and more complex and heterogeneous– software systems cause enormous personal, en-

vironmental and economic damage, and also make software development and maintenance

extremely expensive. Formal methods have the potential to guarantee the absence of defects,

but today they do not meet software industry needs like cost effectiveness, time-to-market,

reusability, or versatility. The common feature of formal methods is that those techniques

are all based on logical methods.

Logical methods in computer science

Logic-based theory, techniques and tools are having an increasingly big impact on different

computer science areas, as well as on finding solutions to numerous computational problems

that arise in industry and other sciences like Biology. There are several reasons for explaining

this boom in logic-based methods. One reason is that, since computer science is still a

young science, its numerous ad hoc techniques are still evolving into more general and better-

studied common foundations that usually turn out to be based on logics. Another reason is a

theoretical one: most formalisms (automata, languages, complexity classes, etc.) have their

logical counterparts, and there exist correspondences between computational mechanisms

and logics, like the ones established by the Curry-Howard isomorphism. But, above all those

reasons we have to highlight their practical repercussions, as Alan Turing already predicted:

iv INTRODUCTION

“I expect that digital computing machines will eventually stimulate a considerable

interest in symbolic logic (...). The language in which one communicates with these

machines (...) forms a sort of symbolic logic.”

Similarly, McCarthy wrote, back in the sixties, that logics would have an importance in

computer science similar to the importance that mathematical analysis had in Physics in

the XIX century. Along the same lines, Manna and Waldinger [MW85] called logics “The

Calculus of Computer Science”, since its role in computer science, both at the theoretical and

practical level, is similar to the one of Mathematics in Physics and, in particular, to the one

of calculus in engineering.

Architects and engineers analyze the mathematical properties of their constructions, and

similarly, computer scientists can analyze the logical properties of their systems while design-

ing, developing, verifying or maintaining them, especially when it comes to deal with systems

that are critical in terms of economy, security or privacy. But this is also the case for systems

whose efficiency is critical, since logical analysis might be revealing. More generally in all

sorts of systems, it is widely accepted that methods and tools based on logics are able to

improve their quality and reduce their cost.

This view is widely documented in the paper “On the Unusual Effectiveness of Logic

in Computer Science” [HHI+01], where the crucial role of logics in areas like databases,

programming languages, complexity, agent systems and verification is exposed by worldwide

experts in each of these areas; see also http://www.cs.rice.edu/~vardi/logic/.

Analogously, logics is playing a central role in several important recent applications. A

perfect example is the so-called semantic web, that provides Internet (and intranet) web pages

with semantic information that allows one to use semantically-based search criteria, deductive

mechanisms, consistency or integrity constraints, etc. All these ideas are tightly related to

the study of description logics, that correspond to certain decidable subclasses of first-order

logic[BCM+03]. One last present-day example is the use of logics for cryptographic protocol

verification, for applications like authentication or anonymous electronic money.

Static analysis

Static (program) analysis in computer science is the field of study that deals with the analysis

of programs without executing them. Static analysis provides static compile-time techniques

for predicting safe and computable approximations of the set of values or behaviours arising

dynamically at run-time when executing a program on a computer. Its formal foundations lie

in the theory of Abstract Interpretation [CC77], which is a a theory of sound approximation

v

of the semantics of computer programs, based on monotonic functions over ordered sets,

especially lattices.

One branch of logic-based methods lies on logic programming languages. Recently, the

logic language Datalog has been used to specify many computer-intensive static analyses.

One of the benefits of this approach are the succinctness and the understandability of the

specification, which benefits the development of progressively more sophisticated analysis.

The other great benefit of the Datalog-based static analysis is that it clearly separates the

analysis specification from its efficient execution. As an immediate consequence, a broad set

of static analyses (those that can be expressed as Datalog programs) can be directly endowed

with an efficient implementation, thanks to the techniques for efficiently executing Datalog

programs. Due to this fact, many members of the static analysis community have focused

their interest in the development of progressively more efficient methods for solving Datalog

queries.

Our solution

We propose two different Datalog query answering techniques that are specially-tailored to

object-oriented program analysis. Our techniques essentially consist of transforming the orig-

inal Datalog program into a suitable set of rules which are then executed under an optimized

top-down strategy that caches and reuses “rewrites” in the target language.

We use two different formalisms for transforming any given set of definite Datalog clauses

into an efficient implementation, namely Boolean Equation Systems (Bes) [And94a] and

Rewriting Logic (Rwl) [Mes92], a very general logical and semantical framework that is effi-

ciently implemented in the high-level executable specification language Maude [CDE+07a].

In the Bes-based program analysis methodology, the Datalog clauses that encode a par-

ticular analysis, together with a set of Datalog facts that are automatically extracted from

program source code, are dynamically transformed into a Bes whose local resolution corre-

sponds to the demand-driven evaluation of the program analysis. This approach allows us

to reuse existing general purpose analysis and verification toolboxes such as Cadp, which

provides local Bes resolution with linear-time complexity. Similarly to the Query/Subquery

technique [Vie86], computation proceeds with a set of tuples at a time. This can be a great

advantage for large datasets since it makes disk access more efficient.

Our motivation for developing our second, Rwl-based query answering technique for

Datalog was to provide purely declarative yet efficient program analyses that overcome the

difficulty of handling meta-programming features such as reflection in traditional analysis

frameworks [LWL05]. Tracking reflective method invocations requires not just tracking object

vi INTRODUCTION

references through variables but actually tracking method values and method name strings.

The interaction of static analysis with meta-programming frameworks is non-trivial, and anal-

ysis tools risk losing correctness and completeness, particularly when reflective calls are im-

properly interpreted during the computation. By transforming Datalog programs into Maude

programs, we take advantage of the flexibility and versatility of Maude in order to achieve

meta-programming capabilities, and we make significant progress towards scalability without

losing the declarative nature of specifying complex program analyses in Datalog. The current

version of Maude can do more than 3 million rewritings per second on standard PCs, so it

can be used as an implementation language [RH05]. Also, as a means to scale up towards

handling real programs, we wanted to determine to what extent Maude is able to process a

sizable number of constraints that arise in real-life problems, like the static analysis of Java

programs. After exploring the impact of different implementation choices (equations vs rules,

unraveling vs conditional term rewriting systems, explicit vs implicit consistency check, etc.)

in our working scenario (i.e., sets of hundreds of facts and a few clauses that encode the anal-

ysis), we elaborate on an equation-based transformation that leads to efficient transformed

Maude-programs.

Original contributions

The contributions presented in this thesis have given birth to some publications that we

enumerate below:

• “Using Datalog and Boolean Equation Systems for Program Analysis” [AFJV09c] and

“DATALOG SOLVE: A Datalog-Based Demand-Driven Program Analyzer” [AFJV09a]

present how to transform Datalog programs into Bes, and how to solve them in the

context of static analysis with our prototype Datalog Solve.

• “Implementing Datalog in Maude” [AFJV09b] illustrates the iterative process, aimed at

optimizing the running time, that we followed for transforming Datalog programs into

Rwl theories.

• “Defining Datalog in Rewriting Logic” [AFJV10] formally presents our transformation

from Datalog into Rwl.

• “Datalog-based program analysis with BES and RWL” [?] is an overview of the two

approaches and their current state of development.

This thesis provides a comprehensive view of these techniques, which are fully automatable.

vii

Plan of the thesis

This document progressively introduces the necessary notions for the comprehension of the

work done.

The present introduction serves as a motivation and as a general view of the work done

for the fulfillment of this thesis. The first Chapter introduces the theoretical background nec-

essary to understand our contribution: Datalog, static analyses, Boolean Equation Systems,

and Rewriting Logic. In Chapter 2 we explain the transformation into Bes for executing

Datalog programs, as well as our prototype Datalog Solve and the experimental results

that we obtained with it. Chapter 3 presents the Rwl approach for executing Datalog pro-

grams and its application to the analysis of Java reflective programs, as well as our prototype

Datalaude together with the experimental results obtained with it. Finally, in the conclu-

sions we summarize the work presented in this thesis and give further ideas to explore as

future work.

viii INTRODUCTION

Chapter 1

Preliminaries

This Chapter introduces the background knowledge necessary to understand the work pre-

sented in this thesis. We will present concepts related to the Datalog logic language, Boolean

Equation Systems (Bess), rewriting logic (Rwl) as implemented in Maude, and static anal-

ysis, specifically, pointer analysis.

1.1 Datalog

Datalog [Ull85] is a relational language that uses declarative clauses to both describe and

query a deductive database. It is a language that uses a Prolog-like notation, but whose

semantics is far simpler than that of Prolog.

Predicates, atoms and literals. The basic elements of Datalog are atoms of the form

p(X1, X2, ..., Xn) where:

1. p is a predicate symbol — a symbol that represents an assertion concerning the arguments

given between parenthesis at its right.

2. X1, X2, ..., Xn are terms (i.e., variables or constants) that act as arguments of the pred-

icate.

A ground atom is an atom with only constants as arguments. Every ground atom asserts

a particular fact, and its value is either true or false. It is often convenient to represent a

predicate by a relation, or table of its true ground atoms. Each ground atom is represented

by a single row, or tuples, of the relation. The columns of the relation are its attributes, and

each tuple has a component for each attribute. The attributes correspond to the argument

positions of the predicate represented by the relation. Any ground atom present in the relation

is true and we will call it a fact, whereas ground atoms not in the relation are false. From

now on, we will use relation p and predicate p interchangeably.

2 CHAPTER 1. PRELIMINARIES

Rules. Rules (also called clauses) are a way of expressing logical inferences, and suggest

how a computation of the true facts should be carried out. The form of a rule is:

H : − B1 , B2 , . . . , Bn. (1.1.1)

The components are as follows:

• H, B1, B2, ..., Bn are literals, i.e., either atoms or negated atoms.

• H is the head and B1 , B2 . . . , Bn form the body of the clause.

• Each of the Bi’s is called a subgoal or hypothesis of the rule.

We should read the : − symbol as “if”. The “,” operators separating each subgoal of the

body is a logical and operator. Thus, the meaning of a rule is “the head is true if the body

is true”. More precisely, a rule is applied to a given set of ground atoms as follows. Consider

all possible substitutions of constants for the variables of the rule. If a certain substitution

makes every subgoal of the body true, i.e., each subgoal is in the given set of ground atoms

— which are supposed to be true —, then we can infer that the head with this substitution

applied is a true fact.

Programs. A Datalog program is a collection of rules together with the “data”, in the form

of an initial set of facts for some of the predicates. The semantics of the program is the set of

ground atoms inferred by using the facts and applying the rules until no more inferences can be

made. The initial set of facts of a Datalog program is called the extensional database, whereas

the set of facts inferred by means of clauses with non-empty bodies is called the intensional

database. In this way a predicate defined in the extensional or intensional databases is called

extensional or intensional predicate, respectively.

Queries. In a demand-driven context, that is, under the assumption that we are not inter-

ested in everything that can be inferred, queries allow us to restrict the information we want

to compute. By restricting the information to be inferred, the execution improves in terms

of (execution) time and (memory) space.

A Datalog goal has this form:

: − B1 , B2 , . . . , Bn. (1.1.2)

The structure of a goal is analogous to the one of a rule body, but each of the Bi’s is called a

subgoal. We can read a query as a question “there exists a substitution of the variables used

in the goal that make true all the subgoals?”.

1.2. STATIC ANALYSIS 3

There are many approaches for the evaluation of Datalog programs. The two basic ones

are the top-down and the bottom-up strategies. The top-down approach solves queries by

reasoning backwards, whereas the bottom-up approach blindly infers all the program facts

and then checks if the query has been previously inferred.

In this thesis we use the top-down approach, and we introduce some more detailed notions

about it in Chapters 2 and 3.

1.2 Static analysis

Static (program) analysis in computer science is the field of study that deals with the analysis

of programs without executing them. Static analysis provides static compile-time techniques

for predicting safe and computable approximations of the set of values or behaviours arising

dynamically at run-time when executing a program on a computer. Its formal foundations lie

in the theory of Abstract Interpretation [CC77], which is a a theory of sound approximation

of the semantics of computer programs, based on monotonic functions over ordered sets,

especially lattices.

Static analyses have a very wide field of applications. In fact, any property of interest that

a computer program may have is a possible target for static analysis. The verification of these

properties and, in particular, safety and security properties are one of the most important

domains of application.

Traditionally, static analysis have been defined by providing an abstract interpreter, or by

transforming the program into an abstract one. The idea is to mimic an abstract execution

of the program, which can be seen as a superset of the possible behaviours of the original

programs.

Static analysis deals with real programs, implemented in complex programming languages,

making more difficult their specification. However, when someone wants to analyze a program

he usually is interested only on a specific aspect of the program semantics, thus, ignoring many

other of its dimensions.

A recent proposal [WACL05] for analyzing programs consists in extracting the analysis

relevant information from the program, and specifying the analysis logic by using more natural

formalism, in this case, Datalog. This approach partially overcomes the problem of the high

complexity of static analysis implementations. However, it is necessary the existence of highly

efficient solvers for the formalism, in order for the approach to be competitive. Hence the

interest in new optimizations for Datalog solvers.

4 CHAPTER 1. PRELIMINARIES

1.2.1 Datalog-based static analysis

The Datalog approach to static program analysis [WACL05] can be summarized as follows.

On one hand, each program element, namely variables, types, and code locations are grouped

in their respective domains. Thus, each argument of a predicate symbol is typed by a domain

of values. Each program statement is decomposed into basic program operations such as load,

store, and assignment operations. Each kind of basic operation is described by a relation in a

Datalog program. By considering only finite program domains, and applying standard loop-

checking techniques, Datalog program execution is ensured to terminate. On the other hand,

the static analysis logic (algorithm) can be declaratively expressed in the form of Datalog

clauses. These Datalog clauses infer relations that represents the information of interest

resulting from the execution of the analysis.

Pointer-analysis. Pointer analysis is a family of static analysis focused on answering the

question “which things can point to which things?”. In an object oriented programming

language like Java, the “things” that are able to point to something are variables and fields

inside objects; whereas the “things” can be pointed to are objects located in the heap. So,

in this case, pointer analysis on Java approximates all possible flow through variables and

objects of object references. In order to describe the transformations from Datalog programs

into Bes and Rwl, let us introduce our running example: a version of Andersen’s [And94b]

points-to analysis, which is a context-insensitive points-to analysis borrowed from [WACL05].

Example 1.2.1 The upper left side of Figure 1.1 shows a simple Java program where o1

and o2 are heap allocations (extracted by a Java compiler from the corresponding bytecode).

The Datalog pointer analysis approach consists in first extracting Datalog facts (relations at

the upper right side of the figure) from the program. For instance, the relation vP0 represents

the direct points-to information of a program, i.e., vP0(v,h) holds if there exists a direct

assignment of heap (abstraction) object reference h to program variable v. Other Datalog

relations such as store, load and assign relations are inferred similarly from the code.

Using these extracted facts, the analysis deduces further pointer-related information, like

points-to relations from local variables and method parameters to heap objects (vP(V1,H1)

in Figure 1.1) as well as points-to relations between heap objects through field identifiers

(hP(H1,F,H2) in Figure 1.1).

A Datalog query consists of a goal over the relations defined in the Datalog program, e.g.,

:- vP(X,Y). This goal aims at computing the complete set of program variables in the domain

of X that may point to any heap object Y during program execution. In the example above,

the query computes the following answers: {X/p,Y/o1}, {X/q,Y/o2}, and {X/r,Y/o2}.

1.3. PARAMETERISED BOOLEAN EQUATION SYSTEMS 5

public A foo { ... p = new Object(); /* o1 */

q = new Object(); /* o2 */

p.f = q;

r = p.f; ... }

vP0(p,o1).

vP0(q,o2).

store(p,f,q).

load(p,f,r).

vP(V1,H1) :- vP0(V1,H1).

vP(V1,H1) :- assign(V1,V2), vP(V2,H1).

hP(H1,F,H2) :- store(V1,F,V2), vP(V1,H1), vP(V2,H2).

vP(V1,H1) :- load(V2,F,V1), vP(V2,H2), hP(H2,F,H1).

Figure 1.1: Datalog specification of a context-insensitive points-to analysis.

1.3 Parameterised Boolean Equation Systems

Parameterised Boolean Equation Systems (Pbess) are a low-level formalism that has been

largely studied in the context of formal verification. There exist very efficient tools for solving

Pbes in an industrial setting [GMLS07]. In the following, we present the basic notions for

working with Pbes.

Given X a set of boolean variables and D a set of data terms, a Parameterised Boolean

Equation System [Mat98] (Pbes) B = (x0,M1, ...,Mn) is a set of n blocks Mi, each one

containing pi ∈ N fixpoint equations of the form

xi,j(~di,j : ~Di,j)
σi= φi,j

with j ∈ [1..pi] and σi ∈ {µ, ν}, also called sign of equation i, the least (µ) or greatest

(ν) fixpoint operator. Each xi,j is a boolean variable from X that binds zero or more data

terms di,j of type Di,j
1 which may occur in the boolean formula φi,j (from a set Φ of boolean

formulae). x0 ∈ X , defined in block M1, is a boolean variable whose value is of interest in

the context of the local resolution methodology. Boolean formulae φi,j are formally defined

as follows.

Definition 1.3.1 (Boolean Formula) A boolean formula φ, defined over an alphabet of

(parameterised) boolean variables X ⊆ X and data terms D ⊆ D, has the following syntax

given in positive form:

φ, φ1, φ2 ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | X(e) | ∀d ∈ D. φ | ∃d ∈ D. φ

where boolean constants and operators have their usual definition, e is a data term (constant

or variable of type D), X(e) denotes the call of a boolean variable X with parameter e, and

d is a term of type D.

1To simplify our description in the rest of the paper, we intentionally restrict to one the maximum number
of data term parameter d : D.

6 CHAPTER 1. PRELIMINARIES

A boolean environment δ ∈ ∆ is a partial function mapping each (parameterised) boolean

variable x(d : D) to a predicate δ(x) : X → (D → B), with B = {true, false}. Boolean

constants true and false abbreviate the empty conjunction ∧∅ and the empty disjunction ∨∅
respectively. A data environment ε ∈ E is a partial function mapping each data term e of

type D to a value ε(e) : D → D, which forms the so-called support of ε, noted supp(ε).

Note that ε(e) = e when e is a constant data term. The overriding of ε1 by ε2 is defined

as (ε1 � ε2)(x) = if x ∈ supp(ε2) then ε2(x) else ε1(x). The interpretation function [[φ]]δε,

where [[.]] : Φ → ∆ → E → B, gives the truth value of boolean formula φ in the context of δ

and ε, where all free boolean variables x are evaluated by δ(x), and all free data terms d are

evaluated by E(d).

Definition 1.3.2 (Semantics of Boolean Formula) Let δ : X → (D → B) be a boolean

environment and ε : D → D be a data environment. The semantics of a boolean formula φ is

inductively defined by the following interpretation function:

[[true]]δε = true
[[false]]δε = false

[[φ1 ∧ φ2]]δε = [[φ1]]δε ∧ [[φ2]]δε
[[φ1 ∨ φ2]]δε = [[φ1]]δε ∨ [[φ2]]δε

[[x(e)]]δε = (δ(x))(ε(e))
[[∀d ∈ D. φ]]δε = ∀ v ∈ D, [[φ]]δ(ε� [v/d])
[[∃d ∈ D. φ]]δε = ∃ v ∈ D, [[φ]]δ(ε� [v/d])

Definition 1.3.3 (Semantics of Equation Block) Given a Pbes B = (x0,M1, ...,Mn)

and a boolean environment δ, the solution [[Mi]]δ to a block Mi = {xi,j(di,j : Di,j)
σi= φi,j}j∈[1,pi]

(i ∈ [1..n]) is defined as follows:

[[{xi,j(di,j : Di,j)
σi= φi,j}j∈[1,pi]]]δ = σiΨiδ

where Ψiδ : (Di,1 → B)× . . . × (Di,pi → B)→ (Di,1 → B)× . . . × (Di,pi → B) is a vectorial

functional defined as

Ψiδ(g1, ..., gpi) = (λvi,j : Di,j .[[φi,j]](δ � [g1/xi,1, ..., gpi/xi,pi])[vi,j/di,j])j∈[1,pi]

where gi : Di → B, i ∈ [1..pi].

A Pbes is alternation-free if there are no mutual recursion between boolean variables

defined by least (σi = µ) and greatest (σi = ν) fixpoint boolean equations. In this case,

equation blocks can be sorted topologically such that the resolution of a block Mi only depends

upon variables defined in a block Mk with i < k. A block Mi is closed when the resolution of

all its boolean formulae φi,j only depends upon boolean variables xi,k from Mi.

1.4. REWRITING LOGIC 7

Definition 1.3.4 (Semantics of alternation-free PBES) Given an alternation-free

Pbes B = (x0,M1, ...,Mn) and a boolean environment δ, the semantics [[B]]δ to B is the

value of its main variable x0 given by the semantics of M1, i.e., δ1(x0), where the contexts δi

are calculated as follows:

δn = [[Mn]][] (the context is empty because Mn is closed)
δi = ([[Mi]]δi+1)� δi+1 for i ∈ [1, n− 1]

where each block Mi is interpreted in the context of all blocks

1.4 Rewriting Logic

Rewriting logic is a powerful logical framework that allows us to formally represent a wide

range of systems [Mes92], including models of concurrency, distributed algorithms, network

protocols, semantics of programming languages, and models of cell biology. Rewriting logic

is also an expressive universal logic, thus being flexible logical framework in which many

different logics and inference systems can be represented and mechanized.

A rewrite theory is a tuple R = (σ,E,R), with:

• (σ,E) an equational theory with function symbols σ and equations E; and

• R a set of labeled rewrite rules of the general form

r : t −→ t′ (1.4.1)

with t, t′, σ-terms which may contain variables in a countable set X of variables.

Intuitively, R specifies a concurrent system, whose states are elements of the initial algebra

Tσ/E specified by (σ,E), and whose concurrent transitions are specified by the rules R. The

equations E may be decomposes as a union E = E0 ∪ A, where A is a (possibly empty) set

of structural axioms (such as associativity, commutativity, and identity axioms).

Rewriting logic expresses an equivalence between logic and computation in a particularly

simple way. Namely, system states are in bijective correspondence with formulas (modulo

whatever structural axioms are satisfied by such formulas: for example, modulo the associa-

tivity and commutativity of a certain operator) and concurrent computations in a system are

in bijective correspondence with proofs (modulo appropriate notions of equivalence among

computations and among proofs).

Given this equivalence between computation and logic, a rewriting logic axiom of the

form:

8 CHAPTER 1. PRELIMINARIES

t → t′

has two readings. Computationally, it means that a fragment of a system’s state that is an

instance of the pattern t can change to the corresponding instance of t′ concurrently with

any other state changes; that is, the computational reading is that of a local concurrent

transition. Logically, it just means that we can derive the formula t′ from the formula t; that

is, the logical reading is that of an inference rule.

Rewriting logic is entirely neutral about the structure and properties of the formulas/states

t. They are entirely user definable as an algebraic data type satisfying certain equational ax-

ioms, so that rewriting deduction takes place modulo such axioms. Because of this neutrality,

rewriting logic has good properties: as a logical framework, many other logics can be nat-

urally represented in it; as a semantic framework, many different system styles, models of

concurrent computation, and languages can be naturally expressed.

1.4.1 Maude

Maude2 [CDE+07b] is a very efficient implementation of rewriting logic. As it will be pre-

sented in this section, Maude is a programming language that uses rewriting rules, similarly

to the so-called functional languages like Haskell, ML, Scheme, or Lisp. In the following

we briefly present some of the features of this language that have been used in our work.

A Maude program is made up of different modules. Each module can include:

• sort (or type) declarations;

• variable declarations;

• operator declarations;

• rules and/or equations describing the behaviour of the system operators, i.e., the func-

tions.

Maude, mainly distinguishes two kinds of modules depending on the constructions they

define and on their expected behaviour. Functional modules do not contain rules and the

behaviour of their equations is expected to be confluent and terminating. On the contrary,

system modules can contain both equations and rules and, though the behaviour of their

equations is also expected to be confluent and terminating, the behaviour of its rules may be

non-confluent and non-terminating. A functional module is limited by the reserved keywords

fmod and endfm, whereas a system module is defined in between mod and endm.

2http://maude.cs.uiuc.edu/

http://maude.cs.uiuc.edu/

1.4. REWRITING LOGIC 9

Sorts. A sort declaration looks like:

sort T .

where T is the identifier of the newly introduced sort T. Maude identifiers are sequences of

ASCII characters without white spaces, nor the special characters ‘{’’,‘}’,‘(’,‘)’,‘[’, and ‘]’

unless they are escaped with the back-quote character ‘‘’. If we want to introduce many sorts

T1 T2 ... Tn at the same time, we write:

sorts T1 T2 ... Tn .

After having declare the sorts, we can define operators on them.

Operators. Operators are declared as follows:

op C : T1 T2 ... Tn -> T .

where T1 T2 ... Tn are the sorts of the arguments for operator C, and T is the resulting

sort for the operator. We can also declare at the same time many operators C1 C2 ... Cn

having the same signature (i.e., arguments and resulting sorts) at the same time:

op C1 C2 ... Cn : T1 T2 ... Tm -> T .

Operators can represent two kinds of objects: constructors and defined symbols. Constructors

constitute the ground terms or data associated to a sort, whereas defined symbols represent

functions whose behaviour will be specified by means of equations or rules. The rewriting

engine of Maude does not distinguish between constructors or defined symbols, so there

is no real syntactic difference between them. However, for documentation (and debugging)

purposes operators that are used as constructors can be labeled with the attribute ctor.

Operator attributes. Operator attributes are labels associated to an operator which pro-

vide additional information about the operator: semantic, syntactic, pragmatic, etc. All such

attributes are declared within a single pair of enclosing square brackets “[” and “]”:

op C1 C2 ... Cn : T1 T2 ... Tm -> T [A1 ... Ao] .

where the Ai are attribute identifiers.

10 CHAPTER 1. PRELIMINARIES

Mix-fix notation. Another interesting feature of operators in Maude is mix-fix notation.

Every operator defined as above is declared in prefix notation, that is, its arguments are given

separated by commas, and enclosed in parenthesis, following the operator symbol, as in:

C(t1, t2, ... , tn)

where t1, t2,. . . , and tn are, respectively, terms of sorts T1, T2,. . . , and Tn. Nevertheless,

Maude provides a powerful and tunable syntax analyzer that allows us to declare operators

composed of different identifiers separated by its arguments. The arguments can be set in any

position, in any order, and even separated by white spaces. Mix-fix operators are identified

by the sequence of its component identifiers, with characters ‘ ’ inserted in the place each

argument is expected to be, as in:

op if then else fi : Bool Exp Exp -> Exp .

op : Element List -> List .

The first line above defines and if-then-else operator, while the second one defines Lists of

juxtaposed (i.e., separated by white spaces) Elements.

Sort orders. Sorts can be organized into hierarchies with subsort declarations. In:

subsort T1 < T2 .

we state that each element in T1 is also in T2. For example, we can define natural numbers

by considering their classification as positives or as the zero number in this way:

sorts Nat Zero NonZeroNat .

subsort Zero < Nat .

subsort NonZeroNat < Nat .

op 0 : -> Zero [ctor] .

op s : Nat -> NonZeroNat [ctor].

Maude also provides operator overloading. For example, if we add:

sort Binary .

op 0 : -> Binary [ctor] .

op 1 : -> Binary [ctor] .

to the previous declarations, the operator 0 is used to construct values both for the Nat and

for the Binary sorts.

1.4. REWRITING LOGIC 11

Structural axioms. The language allows the specification of structural axioms over oper-

ators, i.e., certain algebraic properties like associativity, commutativity and identity element

that operators may satisfy. Structural axioms serve to perform the computation on equiva-

lence classes of expressions, instead of on concrete expressions. In order to carry out computa-

tions on equivalence classes, Maude chooses a canonical representative of each class and uses

it for the computation. Thanks to the structural information given as operator attributes,

Maude can also choose specific data structures to give an efficient low-level representation

of expressions.

For example, let us define a list of natural numbers separated by colons:

sorts NatList EmptyNatList NonEmptyNatList .

subsort EmptyNatList < NatList .

op nil : -> EmptyNatList [ctor] .

subsort Nat < NonEmptyNatList .

subsort NzNat < NatList .

op : : NatList NatList -> NonEmptyNatList [assoc] .

The operator “ : ” is declared as associative by means of its attribute assoc. Associativity

means that the value of an expression is not dependent on the subexpression grouping con-

sidered, that is, the places where the parenthesis are inserted. Thus, if “ : ” is associative

Maude will consider the following expressions as equivalent:

s(0) : s(s(0)) : nil

(s(0) : s(s(0))) : nil

s(0) : (s(s(0)) : nil)

As another example, let us define an associative list with nil as its identity element:

sort NatList .

subsort Nat < NatList .

op nil : -> NatList [ctor] .

op : : NatList NatList -> NatList [assoc id: nil] .

The operator “ : ” is declared as having nil as its identity element by means of its attribute

id: nil. Having an identity element e means that the value of an expression is not dependent

on the presence of e’s as subexpressions, that is, it is possible to insert e’s without changing

the meaning of the expression. Thus, if “ : ” is associative and has nil as its identity element,

Maude will consider the following expressions (and an infinite number of similar ones) as

equivalent:

12 CHAPTER 1. PRELIMINARIES

s(0) : s(s(0))

nil : s(0) : s(s(0))

s(0) : nil : s(s(0))

s(0) : s(s(0)) : nil

nil : s(0) : nil : s(s(0)) : nil
...

For that reason, in the canonical representative Maude deletes nil, unless if it appears alone

as an expression. As the last example, let us introduce how we define a multi-set, that is, an

associative and commutative list with nil as its identity element:

sort NatMultiSet .

subsort Nat < NatMultiSet .

op nil : -> NatMultiSet [ctor] .

op : : NatList NatList -> NatList [assoc comm id: nil] .

The operator “ : ” is declared as commutative by means of the attribute comm. Commutativity

means that the value of an expression is not dependent on the order of its subexpressions, that

is, it is possible to change the order of subexpressions without changing the meaning of the

expression. Thus, if “ : ” is a commutative and associative operator, Maude will consider

the following expressions equivalent:

s(0) : s(s(0)) : s(s(0))

s(s(0)) : s(0) : s(s(0))

s(s(0)) : s(s(0)) : s(0)

The structural properties presented are efficiently built in Maude. Additional structural

properties can be defined by means of equations, as we will see further forward.

Rules and equations. In Maude, rules or equations characterize the behaviour of certain

operators, the defined symbols. Both language constructions have a similar structure:

rl l => r .

eq l = r .

l and r are terms, i.e.., expressions recursively built by nesting correctly typed operators and

variables inside an operator’s arguments. l is called the left-hand side of a rule or equation,

whereas r is its right-hand side. Variables can be declared on-the-fly when they are used in

an expression with the structure name:sort, or in variable declarations:

1.4. REWRITING LOGIC 13

var N1 N2 ... Nm : S .

where N1, N2, . . . , and Nm are variables names, and S is a sort. Terms form patterns which may

represent many ground terms (terms without variables). The pattern nature of terms allows

them to be matched with other terms. The pattern-matching process between a (pattern)

term p and another term t consisting of finding the substitution θ from variables in p to terms

such that pθ = t, i.e., substitution θ applied to p makes the result equal to t.

Definition 1.4.1 (Rewriting semantics) The semantics of rewriting a certain term t with

a rule or an equation in a rewriting system P is that of replacing a subterm tsub that matches

a left-hand side l with substitution θ by rθ, that is, the respective right-hand side r with

substitution θ applied. Thus, after rewriting subterm tsub inside term t we get another term

t′ equal to t except for the rewritten subterm:

t →P t′

If a term to be rewritten does not match the left-hand side of any rule or equation, then the

term cannot be further rewritten and is called a canonical form.

In Maude, it can be specified that an equation should only be used for rewriting if none

of the rest can. To do that, we label (with the same syntax of operators) the equation of

interest with the reserved keyword owise.

As an example, let us define an equation that represents the idempotency structural prop-

erty of sets:

eq X:Nat : X:Nat = X:Nat .

If : is declared as a commutative and associative operator, each time that two identical

elements are found in the set, only one is kept.

14 CHAPTER 1. PRELIMINARIES

Chapter 2

The Bes-based Datalog evaluation
approach

This chapter summarizes how Datalog queries can be solved by means of Boolean Equation

System [And94a] (Bes) resolution. The key idea of our approach is to translate the Datalog

specification representing a specific analysis into an implicit Bes, whose resolution corre-

sponds to the execution of the analysis [AFJV09c]. This technique has been implemented in

the Datalog solver Datalog Solve1 [AFJV09a] that is based on the well-established verifi-

cation toolbox Cadp [GMLS07], which provides a generic library for local Bes resolution.

A Boolean Equation System is a set of equations defining boolean variables that can be

solved with linear-time complexity. Parameterised Boolean Equation System [Mat98] (Pbes)

are defined as Bes with typed parameters. Since Pbes are a more compact representation

than Bess for a system, we first present an elegant and natural intermediate representation of

a Datalog program as a Pbes. Then, we establish a precise correspondence between Datalog

query evaluation and Pbes resolution, which is formalized as a linear-time transformation

from Datalog to Pbes, and vice-versa.

2.1 From Datalog to Bes.

In the following, we informally illustrate how a Pbes can be obtained from a Datalog program

in an automatic way. In Figure 2.1 we introduce a simplified version of the Andersen points-to

analysis, previously given in Figure 1.1, that contains four facts and the first two clauses that

define the predicate vP:

Given the query :- vP(V,o2). and the Datalog program shown in Figure 2.1, our trans-

formation constructs the Pbes shown in Figure 2.2, where the boolean variable x0 and three

1http://www.dsic.upv.es/users/elp/datalog_solve

http://www.dsic.upv.es/users/elp/datalog_solve

16 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

Figure 2.1: Datalog (partial) context-insensitive points-to analysis.

parameterised boolean variables (xvP0 , xassign and xvP) are defined. Parameters of these

boolean variables are defined on a specific domain and may be either variables or constants.

The domains in the example are the heap domain (Dh = {o1, o2}) and the source program

variable domain (Dv = {p, q, r, w}). Pbes are evaluated by a least fixpoint computation (µ)

that sets the variable x0 to true if there exists a value for V that makes the parameterised

variable xvP (V, o2) true. Logical connectives are interpreted as usual.

x0
µ
= ∃V ∈ Dv . xvP (V, o2)

xvP0(p, o1)
µ
= true

xvP0(q , o2)
µ
= true

xassign(r , q)
µ
= true

xassign(w , r)
µ
= true

xvP (V : Dv, H : Dh)
µ
= xvP0(V,H) ∨ ∃V 2 ∈ Dv.(xassign(V, V 2) ∧ xvP (V 2, H))

Figure 2.2: Pbes representing the points-to analysis in Figure 2.1.

Intuitively, the Datalog query is transformed into the relevant variable x0, i.e., the variable

that will guide the Pbes resolution. Each Datalog fact is transformed into an instantiated pa-

rameterised boolean variable (no variables appear in the parameters), whereas each predicate

symbol defined by Datalog clauses (different from facts) is transformed into a parameterised

boolean variable (in the example xvP (V : Dv, H : Dh)). This parameterised boolean variable

is defined as the disjunction of the boolean variables that represent the bodies of the cor-

responding Datalog clauses. Variables that do not appear in the parameters of the boolean

variable are existentially quantified on the specific domain (in the example ∃V ∈ Dv and

∃V 2 ∈ Dv).

Among the different known techniques for solving a Pbes (see [DPW08] and the refer-

ences therein), we consider the resolution method based on transforming the Pbes into an

alternation-free parameterless boolean equation system (Bes) that can be solved by linear

time and memory algorithms when data domains are finite [Mat98].

The first step towards the resolution of the analysis is to write the Pbes in a simpler

2.2. A COMPLETE DATALOG TO BES TRANSFORMATION 17

format. This simplification step consists of introducing new variables so that each formula

at the right-hand side of a boolean equation contains at most one operator. Hence, boolean

formulae are restricted to pure disjunctive or conjunctive formulae.

Then, by applying the instantiation algorithm of Mateescu [Mat98], we obtain a param-

eterless Bes where all possible values of each typed data term have been enumerated over

their corresponding finite data domains. Actually, we do not explicitly construct the param-

eterless Bes. Instead, an implicit representation of the instantiated Bes is defined. This

implicit representation is then used by the Cadp toolbox to generate the explicit parameter-

less Bes on-the-fly. Intuitively, the construction of the Bes can be seen as the resolution of

the analysis.

2.2 A complete Datalog to Bes transformation

We propose a transformation of the Datalog query into a related logical query, naturally

expressed as a parameterised boolean variable of interest and a Pbes, which is subsequently

evaluated using traditional Pbes evaluation techniques. To simplify our description, in the

rest of the chapter we intentionally restrict to one both the maximum number of data term

parameters d : D that a boolean variable x ∈ X can have, and the arity of predicate symbols.

Firstly, let us formalize the syntax and semantics of Datalog in an appropriate way for our

setting.

Definition 2.2.1 (Syntax of Rules) Let P be a set of predicate symbols, V be a finite set

of variable symbols, and C a set of constant symbols. A Datalog rule r, also called clause,

defined over a finite alphabet P ⊆ P and arguments from V ∪ C, V ⊆ V, C ⊆ C, has the

following syntax:

p0(a0,1, . . . , a0,n0) : − p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm).

where each pi is a predicate symbol of arity ni with arguments ai,j ∈ V ∪ C (j ∈ [1..ni]).

The Herbrand Universe of a Datalog program R defined over P , V and C, denoted UR, is

the finite set of all ground arguments, i.e., constants of C. The Herbrand Base of R, denoted

BR, is the finite set of all ground atoms that can be built by assigning elements of UR to the

predicate symbols in P . A Herbrand Interpretation of R, denoted I (from a set I of Herbrand

interpretations, I ⊆ BR), is a set of ground atoms.

Definition 2.2.2 (Fixed point semantics) Let R be a Datalog program. The least Her-

brand model of R is a Herbrand interpretation I of R defined as the least fixed point of a

18 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

monotonic, continuous operator TR : I → I known as the immediate consequences operator

and defined by:

TR(I) = {h ∈ BR | h : −b1, ..., bm is a ground instance of a rule in R,
with bi ∈ I, i = 1..m,m ≥ 0}

The number of Herbrand models being finite for a Datalog program R, there always exists

a least fixed point for TR, denoted µTR, which is the least Herbrand model of R. In practice,

one is generally interested in the computation of some specific atoms, called queries, and not

in the whole database of atoms. Hence, queries may be used to prevent the computation of

facts that are irrelevant for the atoms of interest, i.e., facts that are not derived from the

query.

Definition 2.2.3 (Query Evaluation) A Datalog query q is a pair 〈G,R〉 where:

• R is a Datalog program defined over P , V and C,

• G is a set of goals.

Given a query q, its evaluation consists in computing µT{q}, {q} being the extension of the

Datalog program R with the Datalog rules in G.

The evaluation of a Datalog program augmented with a set of goals deduces all the different

constant combinations that, when assigned to the variables in the goals, can make one of the

goal clauses true,i.e., all atoms bi in its body are satisfied.

Proposition 2.2.4 Let q = 〈G,R〉 be a Datalog query, defined over P , V and C, and Bq =

(x0,M1), with σ1 = µ, be a Pbes defined over a set X of boolean variables xp in one-to-one

correspondence with predicate symbols p of P plus a special variable x0, a set D of data terms

in one-to-one correspondence with variable and constant symbols of V ∪C, and M1 the block

containing exactly the following equations, where fresh variables are existentially quantified

after the transformation:

x0
µ
=

∨
:− q1(d1), ..., qm(dm). ∈G

m∧
i:=1

xqi(di) (2.2.1)

{xp(d : D)
µ
=

∨
p(d) :− p1(d1),... pm(dm). ∈R

m∧
i:=1

xpi(di) | p ∈ P} (2.2.2)

Then q is satisfiable if and only if [[Bq]]δ(x0) = true.

2.2. A COMPLETE DATALOG TO BES TRANSFORMATION 19

The boolean variable x0 encodes the set of Datalog goals G, whereas the (parameterized)

boolean variables xp(d : D) represent the set of Datalog rules R modulo renaming.

In our framework, the reverse direction of reducibility consists in the transformation of a

parameterised boolean variable of interest, defined in a Pbes, into a related relation of interest

expressed as a Datalog query, which could be evaluated using traditional Datalog evaluation

techniques.

Proposition 2.2.5 Let B = (x0,M1), with σ1 = µ, be a Pbes defined over a set X of boolean

variables and a set D of data terms, and qB = 〈G,R〉 be a Datalog query defined over a set

P of predicate symbols p in one-to-one correspondence with boolean variables xp of X \ {x0},
a set V ∪ C of variable and constant symbols in one-to-one correspondence with data terms

of D, and 〈G,R〉 containing exactly the following Datalog rules:

G =


: − q1,1(d1,1), . . . , q1,n1(d1,n1).,

...
: − qm0,1(dm0,1), . . . , qm0,nm0

(dm0,nm0
).

∣∣∣∣∣∣∣ x0
µ
=

m0∨
i=1

ni∧
j=1

xqi,j (di,j) ∈M1


R =


p(d) : − p1,1(d1,1), . . . , p1,n1(d1,n1).,

...
p(d) : − pmp,1(dmp,1), . . . , pmp,nmp

(dmp,nmp
).

∣∣∣∣∣∣∣ xp(d)
µ
=

mp∨
i=1

ni∧
j=1

xpi,j (di,j) ∈M1


Then [[B]]δ(x0) = true if and only if qB = 〈G,R〉 is satisfiable.

Example 2.2.6 We illustrate the reduction method from Datalog to Pbes by means of our

running example. Let q = 〈G,R〉 be the following Datalog query with domains Dh = {o1, o2})
and Dv = {p, q, r, w}:

:- vP (V, o2).

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

By using Proposition 2.2.4, we obtain the following Pbes:

x0
µ
= ∃V ∈ Dv . xvP (V, o2)

xvP0(p, o1)
µ
= true

xvP0(q , o2)
µ
= true

xassign(r , q)
µ
= true

xassign(w , r)
µ
= true

xvP (V : Dv, H : Dh)
µ
= xvP0(V,H) ∨ ∃V 2 ∈ Dv.(xassign(V, V 2) ∧ xvP (V 2, H))

20 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

In the rest of the chapter, we will develop our methodology for using Pbess in order to

solve Datalog queries.

2.2.1 Instantiation to parameterless BES

Among the different known techniques for solving a Pbes [DPW08], such as Gauss elimination

with symbolic approximation, and use of patterns, under/over approximations, or invariants,

we consider the resolution method based on transforming the Pbes into an alternation-free

parameterless boolean equation system (Bes) that can be solved by linear time and memory

algorithms [Mat98, DPW08] when data domains are finite.

Definition 2.2.7 (Boolean Equation System) A Boolean Equation System (Bes) B =

(x0,M1, ...,Mn) is a Pbes where data domains are removed and boolean variables, being

independent from data parameters, are considered to be propositional.

To obtain a direct transformation into a parameterless Bes, we first described the Pbes

in a simpler format. This simplification step consists in introducing new variables, such that

each formula at the right-hand side of a boolean equation only contains at most one operator.

Hence, boolean formulae are restricted to pure disjunctive or conjunctive formulae.

Given a Datalog query q = 〈G,R〉, by applying this simplification to the Pbes of Propo-

sition 2.2.4, we obtain the following Pbes:

x0
µ
=

∨
:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm)

gq1(d1),...,qm(dm)
µ
=

m∧
i:=1

xqi(di)

xp(d : D)
µ
=

∨
p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm)

rp1(d1),...,pm(dm)
µ
=

m∧
i:=1

xpi(di)

By applying the instantiation algorithm of Mateescu [Mat98], we eventually obtain a

parameterless Bes, where all possible values of each typed data terms have been enumerated

over their corresponding finite data domains.

The resulting implicit parameterless Bes is defined as follows, where � is the standard

preorder of relative generality (instantiation ordering).

2.2. A COMPLETE DATALOG TO BES TRANSFORMATION 21

x0
µ
=

∨
:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (2.2.3)

gq1(d1),...,qm(dm)
µ
=

∨
1≤i≤m, ei∈Di∧ di�ei

giq1(e1),...,qm(em) (2.2.4)

giq1(e1),...,qm(em)

µ
=

m∧
i:=1

xqi(ei) (2.2.5)

xp(d)
µ
=

∨
p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (2.2.6)

rp1(d1),...,pm(dm)
µ
=

∨
1≤i≤m, ei∈Di∧ di�ei

rip1(e1),...,pm(em) (2.2.7)

rip1(e1),...,pm(em)

µ
=

m∧
i:=1

xpi(ei) (2.2.8)

Observe that Equation 2.2.1 is transformed into a set of parameterless equations

(2.2.3, 2.2.4, 2.2.5). First, Equation 2.2.3 describes the set of parameterised goals

gq1(d1),...,qm(dm) of the query. Then, Equation 2.2.4 represents the instantiation of each variable

parameter di to the possible values ei from the domain. Finally, Equation 2.2.5 states that

each instantiated goal giq1(e1),...,qm(em) is satisfied whenever the values ei make all predicates

qi of the goal true. Similarly, Equation 2.2.2 (describing Datalog rules) is encoded into a set

of parameterless equations (2.2.6, 2.2.7, 2.2.8).

Example 2.2.8 Let us instantiate the Pbes obtained in Example 2.2.6. By applying Ma-

teescu instantiation algorithm, we obtain the following Bes:

x0
µ
= gvP (V,o2)

gvP (V,o2)
µ
=

∨
givP (p, o2) ∨ givP (q, o2) ∨ givP (r, o2) (2.2.9)

∨ givP (w, o2)

givP (p, o2)
µ
= xvP (p,o2)

xvP (p,o2)
µ
=

∨
rvP0(p,o2) ∨ rassign(p,V 2),vP (V 2,o2)

rvP0(p,o2)
µ
= rivP0(p,o2)

rivP0(p,o2)

µ
= xvP0(p,o2)

xvP0(p,o2)
µ
= false

rassign(p,V 2),vP (V 2,o2)
µ
=

∨
riassign(p,p),vP (p,o2) ∨ riassign(p,q),vP (q,o2)

∨ riassign(p,r),vP (r,o2) ∨ riassign(p,w),vP (w,o2)

22 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

riassign(p,p),vP (p,o2)

µ
=

∧
xassign(p,p) ∧ xvP (p,o2)

xassign(p,p)
µ
= false

riassign(p,q),vP (q,o2)

µ
=

∧
xassign(p,q) ∧ xvP (q,o2)

xassign(p,q)
µ
= false

riassign(p,r),vP (r,o2)

µ
=

∧
xassign(p,r) ∧ xvP (r,o2)

xassign(p,r)
µ
= false

riassign(p,w),vP (w,o2)

µ
=

∧
xassign(p,w) ∧ xvP (w,o2)

xassign(p,w)
µ
= false

givP (q, o2)
µ
= xvP (q,o2)

xvP (q,o2)
µ
=

∨
rvP0(q,o2) ∨ rassign(q,V 2),vP (V 2,o2)

rvP0(q,o2)
µ
= rivP0(q,o2)

rivP0(q,o2)

µ
= xvP0(q,o2)

xvP0(q,o2)
µ
= r∅

r∅
µ
= true

givP (r, o2)
µ
= xvP (r,o2)

xvP (r,o2)
µ
=

∨
rvP0(r,o2) ∨ rassign(r,V 2),vP (V 2,o2)

rvP0(r,o2)
µ
= rivP0(r,o2)

rivP0(r,o2)

µ
= xvP0(r,o2)

xvP0(r,o2)
µ
= false

rassign(r,V 2),vP (V 2,o2)
µ
=

∨
riassign(r,p),vP (p,o2) ∨ riassign(r,q),vP (q,o2)

∨ riassign(r,r),vP (r,o2) ∨ riassign(r,w),vP (w,o2)

riassign(r,p),vP (p,o2)

µ
=

∧
xassign(r,p) ∧ xvP (p,o2)

xassign(r,p)
µ
= false

riassign(r,q),vP (q,o2)

µ
=

∧
xassign(r,q) ∧ xvP (q,o2)

xassign(r,q)
µ
= r∅

givP (w, o2)
µ
= . . .

...

Optimizations. The parameterless Bes described above is rather inefficient since it adopts

a brute-force approach that, at the very first steps of the computation (Equation 2.2.4),

2.2. A COMPLETE DATALOG TO BES TRANSFORMATION 23

enumerates all possible tuples of the query (see Equation 2.2.9 in Example 2.2.8). It is well-

known that a general Datalog program runs in O(nk) time, where k is the largest number of

variables in any single rule, and n is the number of constants in the facts and rules. Similarly,

for a simple query like :- vP(V,H)., with V and H respectively being elements of domains Dv

and Dh, each one of size 10 000, Equation 2.2.4 will generate D2, i.e., 108, boolean variables

representing all possible combinations of values V and H in the relation vP. Usually, for each

atom in a Datalog program, the number of facts that are given or inferred by the Datalog rules

is much lower than the product of the domain′s sizes of its corresponding arguments. Ideally,

the Datalog query evaluation should enumerate (given or inferred) facts only on-demand.

Among the existing optimizations for top-down evaluation of Datalog queries, the so-called

Query-Sub-Query [Vie86] technique consists in minimizing the number of tuples derived by a

rewriting of the program based on the propagation of bindings. Basically, the method aims

at keeping the bindings of variables between atoms p(a) in a rule. In our Datalog evaluation

technique based on Bes, we adopt a similar approach: two boolean equations (Equations 2.2.4

and 2.2.7 slightly modified) only enumerate the values of variable arguments that appear

more than once in the body of the corresponding Datalog rule; otherwise, arguments are

kept unchanged. Moreover, if the atom p(a) is part of the extensional database, the only

possible values of its variable arguments are values that reproduce a given fact of the Datalog

program. We denote as Dp
i the subdomain of D that contains all possible values of the

ith variable argument of p if p is in the extensional database, otherwise Dp
i = D. Hence,

the resulting Bes resolution is likely to process fewer facts and be more efficient than the

brute-force approach.

Following this optimization technique, a parameterless Bes can directly be derived from

the previous Bes representation which we define as follows:

x0
µ
=

∨
:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (2.2.10)

gq1(d1),...,qm(dm)
µ
=

∨
{a1, ..., am}∈({V ∪Dq1

1 }×...×{V ∪D
qm
1 }) |

gpiq1(a1),...,qm(am)

if (∃ j ∈ [1..m], j 6= i | di = dj ∧ di ∈ V)

then ai ∈ Dqi
1 ∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (2.2.11)

gpiq1(a1),...,qm(am)

µ
=

m∧
i:=1

xqi(ai) (2.2.12)

xq(a)
µ
= xfq(a) ∨ x

c
q(a) (2.2.13)

xfq(a)

µ
=

∨
(e:=a ∧ a∈C) ∨ (e∈Dq

1 ∧ a∈V) | q(e).∈R

xiq(e) (2.2.14)

24 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

xiq(e)
µ
= true (2.2.15)

xcp(a)

µ
=

∨
p(a) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (2.2.16)

rp1(d1),...,pm(dm)
µ
=

∨
{a1, ..., am}∈({V ∪Dp1

1 }×...×{V ∪D
pm
1 }) |

rpip1(a1),...,pm(am)

if (∃ j ∈ [1..m], j 6= i | di = dj ∧ di ∈ V)

then ai ∈ Dpi
1 ∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (2.2.17)

rpip1(a1),...,pm(am)

µ
=

m∧
i:=1

xpi(ai) (2.2.18)

Boolean variables whose name starts with x are those that correspond to the goal and

subgoals of the original program and we will call them original variables, whereas boolean

variables starting with r or g are auxiliary variables that are defined during unfolding and

instantiation of (sub)goals. Observe that Equations 2.2.10, 2.2.12, 2.2.16 and 2.2.17 respec-

tively correspond to Equations 2.2.3, 2.2.5, 2.2.6 and 2.2.8 of the previous Bes definition

with only a slight renaming of generated boolean variables. The important novelty is that,

instead of enumerating all possible values of the domain, as it is done in Equation 2.2.4,

the corresponding new Equation 2.2.11 only enumerates the values of variable arguments

that are repeated in the body of a rule; otherwise, variable arguments are kept unchanged

i.e., ai := di. Actually, the generated boolean variables gpiq1(a1),...,qm(am), where pi stands for

partially instantiated, may still refer to atoms containing variable arguments. Thus, the com-

binatorial explosion of possible tuples is avoided at this point and delayed to future steps.

Equation 2.2.13 generates two boolean successors for variable xq(a): x
f
q(a) when q is a relation

that is part of the extensional database, and xcq(a) when q is defined by Datalog clauses. In

Equation 2.2.14, each value of a variable or constant that leads to a given fact q(e) of the

program generates a new boolean variable xiq(e), where i stands for (fully) instantiated, that is

true by definition of a fact. Equation 2.2.16 infers Datalog rules whose head is pa. Note that

Equations 2.2.11, 2.2.14, and 2.2.17 enumerate possible values of subdomains Dpi
1 instead of

full domain D. For the Datalog program described in Figure 2.1, this restriction would consist

in using four new subdomains Dv
vP0
1 = {p, q}, Dh

vP0
2 = {o1 , o2}, Dv

assign
1 = {r ,w}, and

Dv
assign
2 = {q , r}, instead of full domains Dh and Dv for the values of each variable argument

in relations vP0 and assign.

Example 2.2.9 To illustrate the idea behind this optimized version of the generated Bes

we show (a part of) the Bes that results from our running example.

2.2. A COMPLETE DATALOG TO BES TRANSFORMATION 25

x0
µ
= gvP(V,o2)

gvp(V,o2)
µ
= gpivP(V,o2)

gpivP(V,o2)

µ
= xvP(V,o2)

xvP(V,o2)
µ
= xfvP(V,o2) ∨ x

c
vP(V,o2)

...

xcvP(V,H)

µ
= rvP0 (V,H) ∨ rassign(V,V2),vP(V2 ,H)

rvP0 (V,H)
µ
= rpivP0 (V,H)
...

rpivP0 (V ,H)

µ
= xvP0V,H

xvP0V,H

µ
= xfvP0V,H

∨ xrvP0V,H

xfvP0V,H

µ
= xcvP0p,o1

∨ xcvP0 q,o2

xcvP0p,o1

µ
= true

xcvP0 q,o2

µ
= true

rassign(V,V2),vP(V2 ,H)
µ
= rpiassign(V,q),vP(q,H) ∨ r

pi
assign(V,r),vP(r,H)

rpiassign(V,q),vP(q,H)

µ
= xassign(V,q) ∧ xvP(q,H)

xassign(V,q)
µ
= xfassign(V,q) ∨ x

c
assign(V,q)

xfassign(V,q)

µ
= xiassign(r,q)

xiassign(r,q)

µ
= true
...

Each original variable is defined as the disjunction of r (or g) boolean variables that rep-

resent the body of one of the clauses that define the corresponding predicate (see equation

for variable xcvP (V,H)). Then, each r (or g) variable is defined as the disjunction of the dif-

ferent possible instantiations of the query on the shared variables (see equation for variable

rassign(V,V2),vP(V2 ,H)). These partial instantiations are represented by rpi (or gpi) boolean

variables. The rpi variables are defined as the conjunction of the subqueries, which are repre-

sented by (original) x variables. Finally, the original variables x are defined as the disjunction

of the boolean variables that correspond to querying the facts xf and querying the clauses

xc (see equation for xassign(V,q)).

As stated above, when the rpi variables are generated, only variables that are shared by

two or more subgoals in the body of the Datalog program are instantiated, and only values

that appear in the corresponding parameters of the program facts are used. In other words,

we do not generate spurious variables, such as rpiassign(V,w),vP(w,H), which can never be true.

26 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

2.2.2 Solution extraction

Considering the optimized parameterless Bes defined above, the query satisfiability problem

is reduced to the local resolution of boolean variable x0. The value (true or false) computed

for x0 indicates whether there exists at least one satisfiable goal in G. We can remark that

the Bes representing the evaluation of a Datalog query is only composed of one equation

block that contains alternating dependencies between disjunctive and conjunctive variables.

Hence, it can be solved by optimized depth-first search (DFS) for such a type of equation

block. However, since the DFS strategy can only conclude the existence of a solution to

the query by computing a minimal number of boolean variables, it is necessary to use a

breadth-first search (BFS) strategy to compute all the different solutions to a Datalog query.

Such a strategy will ”force” the resolution of all boolean variables that have been put in

the BFS queue, even if the satisfiability of the query has been computed in the meantime.

Consequently, the solver will compute all possible boolean variables xiq(e), which are potential

solutions for the query. Upon termination of the Bes resolution (ensured by finite data

domains and table-based exploration), query solutions, i.e., combinations of variable values

{e1, . . . , em}, one for each atom of the query that lead to a satisfied query, are extracted from

all boolean variables xiq(e) that are reachable from boolean variable x0 through a path of true

boolean variables.

2.3 The prototype Datalog Solve

We implemented the Datalog query transformation to Bes in a powerful, fully automated

Datalog solver tool, called Datalog Solve, developed within the Cadp verification toolbox.

Without loss of generality, in this section, we describe the Datalog Solve tool focusing on

Java program analysis. Other source languages and classes of problems can be specified in

Datalog and solved by our tool as well.

Datalog Solve takes three different inputs (see Figure 2.3): the (optional) domain

definitions (.map), the Datalog constraints or facts (.tuples), and a Datalog query q = 〈G,R〉
(.datalog, e.g. pa.datalog in Figure 2.4). The domain definitions state the possible values

for each predicate’s argument of the query. These are meaningful names for the numerical

values that are used to efficiently described the Datalog constraints. For example, in the

context of pointer analyses, variable names (var.map) and heap locations (heap.map) are

two domains of interest. Each line of a .map file represents a different domain element.

For efficiency reasons, a domain element is identified by its line number, thus its human-

readable description is provided by the content of its .map file’s associated line. The Datalog

2.3. THE PROTOTYPE DATALOG SOLVE 27

: input/output

(.tuples) (.tuples)

vP hP

Y/N (query satisfiability)

Output tuples (query answers)

finite domains

Datalog facts : provides

(+
 d

ia
g

n
o
st

ic
)

re
so

lu
ti

o
n

im
p

li
ci

t
B

E
S

(.map)

heap

(.map)

var

(.tuples)

vP0

(.tuples)

hP0

(.tuples)

assign

Datalog Solve

(.class)

Java program Joeq compiler

(.datalog)

analysis
specification

Cæsar Solve

(Cadp)

library

Figure 2.3: Java program analysis using the Datalog Solve tool.

constraints represent information relevant for the analysis. For instance, vP0.tuples gives

all direct references from variables to heap objects in a given program. These combinations

are described by numerical values in the range 0..(domain size−1), which represents domain

elements identifiers thanks to the use of the .map files.

Domains

V 262144 variable.map

H 65536 heap.map

F 16384 field.map

Relations

vP 0 (variable : V, heap : H) inputtuples

store (base : V, field : F, source : V) inputtuples

load (base : V, field : F, dest : V) inputtuples

assign (dest : V, source : V) inputtuples

vP (variable : V, heap : H) outputtuples

hP (base : H, field : F, target : H) outputtuples

Rules

vP (V1, H1) :- vP 0(V1, H1).

vP (V1, H1) :- assign(V1, V2), vP(V2, H2).

hP (H1, F1, H2) :- store(V1, F1, V2), vP(V1, H1), vP(V2, H2).

vP (V2, H2) :- load (V1, F1, V2), vP(V1, H1), hP(H1, F1, H2).

Figure 2.4: Datalog Solve input file specifying Andersen’s points-to analysis.

Both, domain definitions and facts are specified in the .datalog input file (see Figure 2.4)

and they are automatically extracted from program source code by using the Joeq compiler

framework [Wha03] that we slightly modified to generate tuple-based instead of Bdd-based

28 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

input relations. The .datalog input file has three sections separated by its corresponding

headers:

Domains Declares a domain on each line by means of three consecutive fields: the domain

identifier, the domain size, and the domain .map file.

Relations Declares the predicate symbols used in the program by means of their identifiers,

the association of their arguments to previously declared domains, and stating whether

they are part of the extensional (inputtuples) or the intensional (outputtuples)

databases. If a predicate p is declared as extensional, a file named p.tuples will be

used to load the facts associated with p.

Rules States the rules which specify the analysis to be performed.

Datalog Solve 1.0 (120 lines of Lex, 380 lines of Bison and 3 500 lines of C code)

proceeds in two steps:

1. The front-end of Datalog Solve constructs the optimized implicit Bes representation

given by Equations 2.2.10-2.2.18 from the inputs.

2. The back-end of our tool carries out the demand-driven generation, resolution and

interpretation of the Bes by means of the generic Cæsar Solve library of Cadp,

devised for local Bes resolution and diagnostic generation.

This architecture clearly separates the implementation of Datalog-based static analyses from

the resolution engine, which can be extended and optimized independently. We will further

discuss some optimizations in Section 2.4.

Upon termination (ensured by safe input Datalog programs), Datalog Solve returns

both the query’s satisfiability and the computed answers represented in various output files

(.tuples files) numerically. The tool takes as a default query the computation of the least set

of facts that contains all the facts that can be inferred using the given rules. This represents

the worst case of a demand-driven evaluation and computes all the information derivable from

the considered Datalog program.

2.4 Experimental results

The Datalog Solve tool was applied to a number of Java programs by computing the

context-insensitive pointer analysis described in Figure 2.4.

2.4. EXPERIMENTAL RESULTS 29

Table 2.1: Description of the Java projects used as benchmarks.

Name Description Classes Methods Vars Allocs

freetts (1.2.1) speech synthesis system 215 723 8K 3K
nfcchat (1.1.0) scalable, distributed chat client 283 993 11K 3K
jetty (6.1.10) server and servlet container 309 1160 12K 3K
joone (2.0.0) Java neural net framework 375 1531 17K 4K

To test the scalability and applicability of the transformation, we applied our technique

to four of the most popular 100% Java projects on Sourceforge that could compile di-

rectly as standalone applications and were previously used as benchmarks for the Bddbddb

tool [WACL05]. They are all real applications with tens of thousands of users each. Projects

vary in the number of classes, methods, variables, and heap allocations. The information

details, shown on Table 2.1, are calculated on the basis of a context-insensitive callgraph

precomputed by the Joeq2 compiler. All experiments were conducted using Java JRE 1.5,

Joeq version 20030812, on a Intel Core 2 T5500 1.66GHz with 3 Gigabytes of RAM, running

Linux Kubuntu 8.04.

Table 2.2: Times (in seconds) and peak memory usages (in megabytes) for each benchmark
and context-insensitive pointer analysis.

Name time (sec.) memory (Mb.)

freetts (1.2.1) 10 61
nfcchat (1.1.0) 8 59
jetty (6.1.10) 73 70
joone (2.0.0) 4 58

The analysis time and memory usage of our context insensitive pointer analysis, shown on

Table 2.2, illustrate the scalability of our Bes resolution and validate our theoretical results

on real examples. Datalog Solve solves the (default) query for all benchmarks in a few

seconds. The computed results were verified by comparing them with the solutions computed

by the Bddbddb tool on the same benchmark of Java programs and analysis.

Further Improvements. Recently, a new Bes-based approach for the resolution of Datalog

programs has been developed by the author, in joint work with Christophe Joubert and

Fernando Taŕın [FJT10b, FJT10a]. Our contribution is a novel bottom-up evaluation strategy

2http://joeq.sourceforge.net/

http://joeq.sourceforge.net/

30 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

specially tailored for Datalog-based program analysis. Our work is based on the evaluation

strategy presented by Liu and Stoller in their PPDP’2003 paper, and further detailed in

their TOPLAS article [LS09]. Their strategy is a generalization of the systematic algorithm

development method of Paige et al. [PK82], which transforms extensive set computations like

set union, intersection, and difference into incremental operations. Incremental operations

are supported by sophisticated data structures with constant access time. They derive an

imperative resolution algorithm, which computes a fixpoint over all (preformatted) rules from

an input Datalog program by first considering input predicates, then considering rules with

one subgoal, and finally considering rules with two subgoals.

Our novel proposal is to enhance this evaluation strategy by means of the following:

1. A declarative description of the bottom-up resolution strategy that is separate from the

fixpoint computation. This is achieved by transforming Datalog programs to Boolean

Equation Systems (Bess) and evaluating the resulting Bess by standard solvers.

2. A predicate order that is employed to simplify the Bes by removing various set opera-

tions. This order is determined by the dependency between predicate symbols and the

number of times that rules are fired.

3. A sophisticated data-structure with quicker access time and lower memory consumption.

This efficient data-structure is based on a complex representation of a trie. Tries, also

called prefix trees, are ordered tree data structures where each node position in the tree

is the key that is associated to this node. This structure has faster look-up keys than

binary search trees and imperfect hash tables.

We endowed the Datalog Solve prototype with the new evaluation strategy applied to

the evaluation of Andersen’s points-to analysis encoded as a Bes. Datalog Solve 2.0 does

not depend on Cadp, and uses a simple and fast specific Bes solver. Facts are extracted by

an extended version of Soot 3 from the Java programs of the Dacapo 4 benchmark with

JDK 1.6. We tested the efficiency and feasibility of our implementation by comparing it to

two state-of-the-art Datalog solvers Xsb 3.25 and the prototype of Liu and Stoller6, which in

the rest of the chapter we will call Toplas. In Figures 2.5 and 2.6, performance results are

presented in terms of evaluation user time and peak memory consumption. All experiments

were performed on an Intel Core 2 duo E4500 2.2 GHz, with 2048 KB cache, 4 GB of RAM,

and running Linux Ubuntu 10.04. Datalog Solve and Xsb solver were compiled using gcc

3http://www.sable.mcgill.ca/soot
4http://voxel.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10-MR2-xdeps.zip
5http://xsb.sourceforge.net
6Provided by the authors of [LS09]

http://www.sable.mcgill.ca/soot
http://voxel.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10-MR2-xdeps.zip
http://xsb.sourceforge.net

2.4. EXPERIMENTAL RESULTS 31

4.4.1. Python 2.6.4 was used for the Toplas solver. The measures do not include the time

needed by Xsb and Toplas to precompile the facts. The analysis results were verified by

comparing the outputs of all solvers.

 0

 100

 200

 300

 400

 500

 600

antlr
bloat

chart
eclipse

hsqldb

jython

luindex

lusearch

pm
d

xalan

DATALOG_SOLVE
XSB

TOPLAS

Figure 2.5: Dacapo analysis times (sec.) of various datalog implementations.

 0

 200

 400

 600

 800

 1000

 1200

antlr
bloat

chart
eclipse

hsqldb

jython

luindex

lusearch

pm
d

xalan

DATALOG_SOLVE
XSB

TOPLAS

Figure 2.6: Dacapo memory usage (MB.) of various datalog implementations.

32 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

Datalog Solve 2.0 evaluates the whole benchmark in only 3 seconds with a mean-time

of 0.3 seconds per program. This explains why the time measures for Datalog Solve are

hardly visible in Figure 2.5. Our experiments demonstrate that Xsb is much slower than

Toplas, which is in turn an order of magnitude slower than Datalog Solve. For the pmd

example, Xsb evaluated the points-to analysis in 501 seconds, Toplas solved it in 15 seconds,

and Datalog Solve took 0.391 seconds to solve it. With respect to memory consumption,

Toplas consumes significantly more than Xsb and Datalog Solve. For the pmd example,

Toplas required 1.1 GB of memory, while Xsb consumed 70 MB, and Datalog Solve

consumed 15 MB. These performance results show that the Bes-based evaluation strategy

together with an optimized data-structure scales really well for very large programs regarding

Andersen’s points-to analysis.

2.5 Related Work.

Recently, Bess with typed parameters [Mat98], called Pbes, have been successfully used

to encode several hard verification problems such as the first-order value-based modal µ-

calculus model-checking problem [MT08], and the equivalence checking of various bisimula-

tions [CPvW07] on (possibly infinite) labeled transition systems. However, Pbess were not

used to compute complex interprocedural program analyses involving dynamically created

objects until our work in [AFJV09c]. The work that is most closely related to the Bes-based

analysis approach of ours is [LS98], where Dependency Graphs (DGs) are used to represent

satisfaction problems, including propositional Horn Clauses satisfaction and Bes resolution.

A linear time algorithm for propositional Horn Clause satisfiability is described in terms of

the least solution of a DG equation system. This corresponds to an alternation-free Bes,

which can only deal with propositional logic problems. The extension of Liu and Smolka’s

work [LS98] to Datalog query evaluation is not straightforward. This is testified by the encod-

ing of data-based temporal logics in equation systems with parameters in [MT08], where each

boolean variable may depend on multiple data terms. Dgs are not sufficiently expressive to

represent such data dependencies on each vertex. Hence, it is necessary to work at a higher

level, on the Pbes representation.

A very efficient Datalog program analysis technique based on binary decision diagrams

(Bdds) is available in the Bddbddb system [WACL05], which scales to large programs and

is competitive w.r.t. the traditional (imperative) approach. The computation is achieved by

a fixpoint computation starting from the everywhere false predicate (or some initial approxi-

mation based on Datalog facts). Datalog rules are then applied in a bottom-up manner until

saturation is reached so that all the solutions that satisfy each relation of a Datalog program

2.6. CONCLUSIONS 33

are exhaustively computed. These sets of solutions are then used to answer complex formulas.

In contrast, our approach focuses on demand-driven techniques to solve the considered query

with no a priori computation of the derivable atoms. In the context of program analysis, note

that all program updates, like pointer updates, might potentially be inter-related, leading to

an exhaustive computation of all results. Therefore, improvements to top-down evaluation are

particularly important for program analysis applications. Recently, Zheng and Rugina [ZR08]

showed that demand-driven Cfl-reachability with worklist algorithm compares favorably with

an exhaustive solution. Our technique to solve Datalog programs based on local Bes reso-

lution goes in the same direction and provides a novel approach to demand-driven program

analyses almost for free.

2.6 Conclusions

We have presented a transformation from Datalog to Bes in the context of Datalog-based

static analysis. The transformation carries Datalog to a powerful framework such as Bess,

which have been widely used for verification of industrial critical systems, and for which many

efficient resolution algorithms exists.

We have presented some experimental results which show that the presented transforma-

tion is quite efficient. We have also briefly discussed how we have improved this transformation

as future work, thus showing the progress reached by our approximation.

34 CHAPTER 2. THE BES-BASED DATALOG EVALUATION APPROACH

Chapter 3

The Rwl-based Datalog evaluation
approach

With the aim to achieve higher expressiveness for static-analysis specification, in this chapter

we present a translation of Datalog into a powerful and highly extensible framework, namely,

rewriting logic (Rwl). Due to the high level of expressiveness of Rwl, many ways for trans-

lating Datalog into Rwl can be considered. Because efficiency does matter in the context of

Datalog-based program analysis, our proposed transformation is the result of an iterative pro-

cess that is aimed at optimizing the running time of the transformed program. The basic idea

of the translation is to automatically compile Datalog clauses into deterministic equations,

having queries and answers consistently represented as terms so that the query is evaluated

by reducing its term representation into a constraint set that represents the answers. This

chapter summarizes how Datalog queries can be solved by means of Rwl rewriting.

3.1 From Datalog to Rwl.

In the following, we informally illustrate how a Rwl term rewriting system can be obtained

from a Datalog program in an automatic way. Let us recall the simplified version of the

Andersen points-to analysis that we introduced in Figure 2.1 (Chapter 2):

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

In the following, we illustrate the transformation by means of this example. We first show

values, variables and answers are represented in Maude. Then, the resulting Maude program

36 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

is presented by showing how each datalog clause in the example is transformed.

Datalog answers are expressed as equational constraints that relate the variables of the

queries to values. Values are represented as ground terms of sort Constant that are con-

structed by means of Maude Quoted Identifiers (Qids). Since logical variables cannot be

represented with rewriting rule variables because of their dual input-output nature, we give

a representation for them as ground terms of sort Variable by means of the overloaded vrbl

constructor. A Term is either a Constant or a Variable. These elements are represented in

Maude as follows:

sorts Variable Constant Term .

subsort Variable Constant < Term .

subsort Qid < Constant .

op vrbl : Term -> Variable [ctor] .

In our formulation, answers are recorded within the term that represents the ongoing par-

tial computation of the Maude program. Thus, we represent a (partial) answer for the

original Datalog query as a conjunction of equational constraints (called answer constraints)

that represent the substitution of (logical) variables by (logical) constants that are incremen-

tally computed during the program execution. We define the sort Constraint whose values

represent single answers for a Datalog query as follows:

sort Constraint .

op = : Term Constant -> Constraint .

op T : -> Constraint .

op F : -> Constraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

eq F, C:Constraint = F . --- Zero element

Constraints are constructed by the conjunction (,) of solved equations of the form

T:Term = C:Constant, the false constraint F, or the true constraint T.1 Note that the con-

junction operator , obeys the laws of associativity and commutativity.2 T is defined as the

identity of , , and F is used as the zero element.

Unification of expressions is performed by combining the corresponding answer constraints

and checking the satisfiability of the compound. Simplification equations are introduced

in order to simplify trivial constraints by reducing them to T, or to detect inconsistencies

(unification failure) so that the whole conjunction can be drastically replaced by F, as shown

in the following code excerpt:

1The actual transformation defines a more complex hierarchy of sorts in order to obtain simpler equations
and improve performance that will be presented in Section 3.2.

2Associativity, commutativity, and identity are easily expressed by using ACI attributes in Maude, thus
simplifying the equational specification and also achieving a more efficient implementation.

3.1. FROM DATALOG TO RWL. 37

var Cst Cst1 Cst2 : Constant . var V : Variable .

eq (V = Cst) , (V = Cst) = (V = Cst) , T . --- Idempotence

eq (V = Cst1) , (V = Cst2) = F [owise] . --- Unsatisfiability

In our setting, a failing computation occurs when a query is reduced to F. If a query is reduced

to T, then the original (ground) query is proven to be satisfiable. On the contrary, if the query

is reduced to a set of solved equations, then the computed answer is given by a substitution

{x1/t1, . . . , xn/tn} that is expressed as an equation set in solved form by the computed normal

form x1 = t1 , ... , xn = tn.

Since equations in Maude are run deterministically, all the non-determinism of the origi-

nal Datalog program has to be embedded into the term under reduction. This means that we

need to carry all the possible (partial) answers at a given execution point. To this end, we in-

troduce the notion of set of answer constraints, and we define a new sort called ConstraintSet

as follows:

sorts ConstraintSet .

subsort Constraint < ConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

The set of constraints is constructed as the (possibly empty) disjunction ; of accumulated

constraints. The disjunction operator ; obeys the laws of associativity and commutativity

and is also given the identity element F.

Now we are ready to show how the predicates are transformed. Predicates are naturally

expressed as functions (with the same arity) whose codomain is the ConstraintSet sort.

They will be reduced to the set of constraints that represent the satisfiable instantiations of

the original query. The three predicates of our running example are represented in Maude

as follows:

op vP vP0 assign : Term Term -> ConstraintSet .

In order to incrementally add new constraints throughout the program execution, we define

the composition operator x for constraint sets as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

The composition operator x allows us to combine (partial) solutions of the subgoals in a clause

body.

Example 3.1.1 Let us illustrate the transformation by evaluating different queries in our

running example. For instance, by executing the Datalog query :- vP0(p,Y) on the program

in Figure 2.1, we obtain the solution {Y/o1}. Here, vP0 is a predicate defined only by facts, so

38 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

the answers to the query represent the variable instantiations as given by the existing facts.

Thus, we would expect the query’s Rwl representation vP0(’p, vrbl(’Y)) to be reduced

to the ConstraintSet (with just one constraint) vrbl(’Y) = ’o1. This is accomplished by

representing facts according to the following equation pattern:

var T0 T1 : Term .

eq vP0(T0,T1) = (T0 = ’p , T1 = ’o1) ; (T0 = ’q , T1 = ’o2) .

eq assign(T0,T1) = (T0 = ’r , T1 = ’q) ; (T0 = ’w , T1 = ’r) .

The right-hand side of the Rwl equation that is used to represent the facts that define a given

predicate (in the example vP0 and assign) consists of the set of constraints that express the

satisfiable instantiations of the original predicate. As it can be observed, arguments are

propagated to the constraints, thus allowing the already mentioned equational unification

and simplification process on the constraints to happen.

For the considered goal, the reduction of the transformed Datalog query vP0(’p,

vrbl(’Y)) proceeds as follows:

vP0(’p,vrbl(’Y))

→ (’p = ’p , vrbl(’Y) = ’o1) ; (’p = ’q , vrbl(’Y) = ’o2)
∗→ (T , vrbl(’Y) = ’o1) ; (F , vrbl(’Y) = ’o2)
∗→ vrbl(’Y) = ’o1 ; F

→ vrbl(’Y) = ’o1

Example 3.1.2 Another example of Datalog query is :- vP(V,o2), whose execu-

tion for the leading example delivers the solutions {V/q,V/r,V/w}. Thus, we ex-

pect vP(vrbl(’V),’o2) to be reduced to the set of constraints (vrbl(’V) = ’q) ;

(vrbl(’V) = ’r) ; (vrbl(’V) = ’w). In this case, vP is a predicate defined by clauses,

so the answers to the query are the disjunction of the answers provided by all the clauses

defining it. This is represented in Rwl by introducing auxiliary functions to separately com-

pute the answers for each clause, and the equation to join them, which is defined as follows:

op vP-clause-1 vP-clause-2 : Term Term -> ConstraintSet .

var V H : Term .

eq vP(V,H) = vP-clause-1(V , H) ; vP-clause-2(V , H) .

In order to compute the answers delivered by a clause, we look for the satisfiable instantiations

of its body’s subgoals. In our translation, we explore the possible instantiations from the

leftmost subgoal to the rightmost one. In order to impose this left-to-right exploration, we

create a different (auxiliary) unraveling function for each subgoal. Each of these auxiliary

functions computes the partial answer depending on the corresponding and previous subgoals

3.1. FROM DATALOG TO RWL. 39

and propagates it to the subsequent unraveling function3. Additionally, existential variables

that occur only in the body of original Datalog clauses, e.g., V2, are introduced by using a

ground representation that is parameterised with the corresponding call pattern in order to

generate fresh variables (in the example below vrbl-V2(V,H)).

As shown in the following code excerpt, in our example, the first Datalog clause can be

transformed without using unraveling functions. For the second Datalog clause (with two

subgoals) only one unraveling function is needed in order to force the reduction of the first

subgoal.

op vrbl-V2 : Term Term -> Variable .

op unrav : ConstraintSet TermList -> ConstraintSet .

eq vP-clause-1(V,H) = vP0(V,H) .

eq vP-clause-2(V,H) = unrav(assign(V, vrbl-V2(V,H)) , V H) .

The unrav function has two arguments: a ConstraintSet, which is the first (reduced) subgoal

(the original subgoal assign(V,V2) in this case); and the V H call pattern. This function is

defined as follows:

var Cnt : Constant . var TS : TermList .

var C : Constraint . var CS : ConstraintSet .

eq unrav(((vrbl-V2(V,H) = Cnt , C) ; CS) , V H) =

(vP(Cnt,H) x (vrbl-V2(V,H) = Cnt , C)) ; unrav(CS , V H) .

eq unrav(F , TS) = F .

The unraveling function (in the example unrav) takes a set of partial answers as its first

argument. It requires the partial answers to be in solved equation form by pattern matching,

thus ensuring the left-to-right execution of the goals. The second argument is the call pattern

of the translated clause and serves to reference the introduced existential variables. The

propagated call pattern is represented as a TermList, that is, a juxtaposition (operator) of

Terms. The two unrav equations (recursively) combine each (partial) answer obtained from

the first subgoal with every (partial) answer computed from the (instantiated) subsequent

subgoal.

Consider again the Datalog query :- vP(V,o2). We undertake each possible query re-

duction by using the equations above. Given the size of the execution trace, we will use

the following abbreviations: V stands for vrbl(’V), vPci for vP-clause-i, and V2-V-H for

vrbl-V2(V,H).

3Conditional equations could also be used to impose left-to-right evaluation, but in practice they suffer
from poor performance as our experiments revealed.

40 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

vP(V,’o2)

→ vPc1(V,’o2) ; vPc2(V,’o2)
∗→ vP0(V,’o2) ; unrav(assign(V,V2-V-o2) , V ’o2)
∗→ ((V = ’p , ’o2 = ’o1) ; (V = ’q , ’o2 = ’o2))

; unrav(((V = ’r , V2-V-o2 = ’q) ; (V = ’w , V2-V-o2 = ’r)) , V ’o2)
∗→ (F ; (V = ’q , T)) ; (vP(’q,’o2) x (V = ’r , V2-V-o2 = ’q))

; unrav((V = ’w , V2-V-o2 = ’r) , V ’o2)
∗→ (V = ’q) ; ((vPc1(’q,’o2) ; vPc2(’q,’o2)) x (V = ’r , V2-V-o2 = ’q))

; (vP(’r,’o2) x (V = ’w , V2-V-o2 = ’r)) ; unrav(F , V ’o2)

...

∗→ (V = ’q) ; (V = ’r) ; (V = ’w)

As it can be seen, the evaluation of a Datalog query is naturally transformed to the process

of reducing that query into its solutions.

3.2 A complete Datalog to Rwl transformation

As explained above, we are interested in computing all answers for a given query by term

rewriting. A näıve approach is to translate Datalog clauses into Maude rules, and then use

the search4 command of Maude in order to mimic all possible executions of the original

Datalog program. However, in the context of program analysis with a huge number of facts,

this approach results in poor performance [AFJV09b]. This is because rules are handled

non-deterministically in Maude whereas equations are applied deterministically [CDE+07a].

In the following, given a Datalog program R and a query q, we assume a top-down ap-

proach and use SLD-resolution to compute the set of answers of q in R. Given the successful

derivation D ≡ q ⇒θ1
SLD q1 ⇒θ2

SLD . . . ⇒θn
SLD �, the answer computed by D is θ1θ2 . . . θn

restricted to the variables occurring in q.

In this section, we formulate a complete representation in Maude of the Datalog computed

answers, and then, we give a formal description of our equation-based transformation together

with its correctness and completeness results.

Answer representation. Let us first introduce our representation of variables and con-

stants of a Datalog program as ground terms of a given sort in Maude. We define the sorts

Variable and Constant to specifically represent the variables and constants of the original

Datalog program in Maude, whereas the sort Term (resp. TermList) represents Datalog terms

(resp. lists of terms that are built by simple juxtaposition):

4Intuitively, search t → t′ explores the whole rewriting space from the term t to any other terms that
match t′ [CDE+07a].

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 41

sorts Variable Constant Term TermList .

subsort Variable Constant < Term .

subsort Term < TermList .

op : TermList TermList -> TermList [assoc] .

op nil : -> TermList .

For instance, T1 T2 represents the list of terms T1 and T2. In order to construct the elements

of the Variable and Constant sorts, we introduce two constructor symbols: Datalog constants

are represented as Maude Quoted Identifiers (Qids), whereas logical variables are encoded in

Maude by means of the constructor symbol vrbl. These constructor symbols are specified

in Maude as follows:

subsort Qid < Constant . --- Every Qid is a Constant

op vrbl : Qid -> Variable [ctor] . --- vrbl(q) is a Variable if q is a Qid

op vrbl : Term Term -> Variable [ctor] .

The last line of the above code excerpt allows us to build variable terms of the form

vrbl(T1,T2) where both T1 and T2 are Terms. This is used to ensure that the ground

representation in Maude for existentially quantified variables that appear in the body of

Datalog clauses is unique to the whole Maude program5.

With ground terms representing variables, we still lack a way to collect the answers for

an output variable. In our formulation, answers are stored within the term representing the

ongoing partial computation of the Maude program. Thus, we represent a (partial) answer

for the original Datalog query as a sequence of equations (called answer constraint) that

represents the substitution of (logical) variables by (logical) constants computed during the

program execution. We define the sort Constraint representing a single answer for a Datalog

query, but we also define a hierarchy of subsorts (e.g., the sort FConstraint at the bottom

of the hierarchy represents inconsistent solutions) that allows us to identify the inconsistent

as well as the trivial constraints (Cte = Cte) whenever possible. This hierarchy allows us to

simplify constraints as soon as possible and to improve performance. The Maude code that

implements these features is as follows:

5Actually, the definition of vrbl is a bit more complicated to ensure freshness. The interested reader may
access the code in the prototype website.

42 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

sorts Constraint EmptyConstraint NonEmptyConstraint TConstraint FConstraint .

subsort EmptyConstraint NonEmptyConstraint < Constraint .

subsort TConstraint FConstraint < EmptyConstraint .

op = : Term Constant -> NonEmptyConstraint .

op T : -> TConstraint .

op F : -> FConstraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

op , : FConstraint Constraint -> FConstraint [ditto] .

op , : TConstraint TConstraint -> TConstraint [ditto] .

op , : NonEmptyConstraint TConstraint -> NonEmptyConstraint [ditto] .

op , : NonEmptyConstraint FConstraint -> FConstraint [ditto] .

op , : NonEmptyConstraint NonEmptyConstraint -> NonEmptyConstraint [ditto] .

As we have said before, a query reduced to T represents a successful computation, whereas

a failing computation is represented by a final F term. Note that the conjunction opera-

tor , has identity element T and obeys the laws of associativity and commutativity. The

properties of associativity, commutativity and identity element can be easily expressed by

using ACU attributes in Maude, thus simplifying the equational specification and achieving

better efficiency. Other properties of the constraint-builder operators must be expressed with

equations: for example, we express the idempotency property of the operator by a specific

equation on variables from the NonEmptyConstraint subsort NEC. Moreover, in order to keep

information consistent and without redundancy, additional simplification equations are au-

tomatically applied. These equations make every inconsistent constraint collapse into an F

value, and simplify every redundant or trivial constraint. The Maude code implementing

this features is:

var Cte Cte1 Cte2 : Constant . var NEC : NonEmptyConstraint .

var V : Variable .

eq (Cte = Cte) = T . --- Simplification

eq (Cte1 = Cte2) = F [owise] . --- Unsatisfiability

eq NEC,NEC = NEC . --- Idempotence

eq F,NEC = F . --- Zero element

eq F,F = F . --- Simplification

eq (V = Cte1),(V = Cte2) = F [owise] .--- Unsatisfiability

Since equations in Maude are run deterministically, all the non-determinism of the origi-

nal Datalog program has to be embedded into the carried constraints themselves. This means

that we need to carry on not only a single answer, but all the possible (partial) answers at a

given execution point. To this end, we introduce the notion of set of answer constraints, and

we implement a new sort called ConstraintSet:

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 43

sorts ConstraintSet EmptyConstraintSet NonEmptyConstraintSet .

subsort EmptyConstraintSet NonEmptyConstraintSet < ConstraintSet .

subsort NonEmptyConstraint TConstraint < NonEmptyConstraintSet .

subsort FConstraint < EmptyConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

op ; : NonEmptyConstraintSet ConstraintSet -> NonEmptyConstraintSet [assoc comm id: F] .

var NECS : NonEmptyConstraintSet .

eq NECS ; NECS = NECS . --- Idempotence

It is easy to grasp the intuition behind the different sorts and the subsort relations in the

above fragment of Maude code. The operator ; represents the disjunction of constraints.

It is an associative and commutative operator that has F as its identity element. We express

the idempotency property of the operator ; by a specific equation on variables from the

NonEmptyConstraintSet subsort.

In order to incrementally add new constraints throughout the program execution, we

define the composition operator x as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var CS : ConstraintSet .

var NECS1 NECS2 : NonEmptyConstraintSet .

var NEC NEC1 NEC2 : NonEmptyConstraint .

eq F x CS = F . --- L-Zero element

eq CS x F = F . --- R-Zero element

eq F x F = F . --- Double-Zero

eq NEC1 x (NEC2 ; CS) = (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Distributive

eq (NEC ; NECS1) x NECS2 = (NEC x NECS2) ; (NECS1 x NECS2) . --- R-Distributive

The transformation of clauses. Let P be a Datalog program defining predicate symbols

p1 . . . pn. Before describing the transformation process, we introduce some auxiliary notations.

|pi| is the number of facts or clauses defining the predicate symbol pi. Following the Datalog

standard, we assume without loss of generality that a predicate pi is defined only by facts, or

only by clauses [Lee90]. The arity of pi is ari.

Let us start by describing the case when predicates are defined by facts. We transform

the whole set of facts defining a given predicate symbol pi into a single equation by means of

a disjunction of answer constraints. Formally, for each pi with 1 ≤ i ≤ n that is defined in

the Datalog program only by facts, we write the following snippet of Maude code, where the

symbol ci,j,k is the k-th argument of the j-th fact defining the predicate symbol pi:

var Ti,1 ... Ti,ar i : Term .

eq pi(Ti,1, ... ,Ti,ar i) = (Ti,1 = ci,1,1, ... , Ti,ar i = ci,1,ar i) ; ...

; (Ti,1 = ci,|pi|,1, ... , Ti,ar i = ci,|pi|,ar i) .

44 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

Similarly, our transformation for Datalog clauses with non-empty body combines in a single

equation the disjunction of the calls to all functions representing the different clauses for the

considered predicate symbol pi. For each pi with 1≤ i≤n defined only by clauses with non

empty body, we have the following piece of code:

var Ti,1 ... Ti,ar i : Term .

eq pi(Ti,1, ... ,Ti,ar i) = pi,1(Ti,1, ... ,Ti,ar i) ; ...

; pi,|pi|(Ti,1,...,Ti,ar i) .

Each call to a function pi,j with 1 ≤ j ≤ |pi| produces the answers computed by the j-th clause

of the predicate symbol. Now we need to define how each of these clauses is transformed.

Notation τai,j,s,k denotes the name of the variable or constant symbol appearing in the k-th

argument of the s-th subgoal in the j-th clause defining the i-th predicate of the original

Datalog program. When s = 0, then the function refers to the arguments in the head of the

clause.

Let us start by considering the case of just one subgoal in the body. We define the

function τpi,j,s, which returns the predicate symbol that appears in the s-th subgoal of the j-th

clause that defines the i-th predicate in the Datalog program. For each clause having just one

subgoal, we get the following transformation:

eq pi,j(τ
a
i,j,0,1,...,τ

a
i,j,0,ar i

) = τpi,j,1(τ
a
i,j,1,1, . . . , τ

a
i,j,1,r) .

In our formalization, r is used to denote the arity of the predicate in whose arguments appears

(e.g. τpi,j,1).

In the case where more than one subgoal appears in the body of a clause, we want to

impose a left-to-right evaluation strategy. We use auxiliary functions defined with specific

patterns to force such an execution order. Specifically, we impose that a subgoal cannot be

invoked until the variables in its arguments that also occur in previous subgoals have been

instantiated. We call these variables linked variables. Let us first formalize the auxiliary

notions that we need for our transformation.

Definition 3.2.1 (linked variable) A variable is called linked variable if and only if (iff)

it occurs in two or more subgoals of the clause’s body.

Definition 3.2.2 (function linked) Let C be a Datalog clause. Then the function linked(C)

is the function that returns the list of pairs containing a linked variable in the first component,

and the list of positions where such a variable occurs in the body of the clause in the second

component6.

6Positions extend to goals in the natural way.

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 45

Example 3.2.3 For example, given the Datalog clause

C = p(X1,X2) :- p1(X1,X3), p2(X1,X3,X4), p3(X4,X2).

we have that linked(C) = [(X1,[1.1,2.1]),(X3,[1.2,2.2]),(X4,[2.3,3.1])]

Now we define the notion of relevant linked variables for a given subgoal, namely the

linked variables of a subgoal that also appear in a previous subgoal.

Definition 3.2.4 (Relevant linked variables) Given a clause C and an integer number

n, we define the function relevant that returns the variables that are common for the n-th

subgoal and some previous subgoal:

relevant(n,C)={X|(X,LX)∈ linked(C),∃i, j,m /n.i∈LX,m.j∈LX,m<n}

Note that, similarly to [SKGST07], we are not marking the input/output positions of

predicates, as required in more traditional transformations. We are just identifying the vari-

ables whose values must be propagated in order to evaluate the subsequent subgoals following

the evaluation strategy.

Now we are ready to address the problem of transforming a clause with more than one

subgoal (and maybe existentially quantified variables) into a set of equations. Intuitively, the

main function initially calls to an auxiliary function that undertakes the execution of the first

subgoal. We have as many auxiliary functions as subgoals in the original clause minus one.

Also, in the right-hand side (rhss) of the auxiliary functions definitions, the execution order

of the successive subgoals is implicitly controlled by passing the results of each subgoal as a

parameter to the subsequent function call.

Let the function pi,j generate the solutions calculated by the j-th clause of the predicate

symbol pi. We state that psi,j,s represents the auxiliary function corresponding to the s-

th subgoal of the j-th clause defining the predicate pi. Then, for each clause, we have the

following translation, where the variables X1...XN of each equation are calculated by the

function relevant(s,clause(i,j))7 and transformed into the corresponding Maude terms.

The equation for pi,j below calls the first auxiliary function (psi,j,2) that calculates the

(partial) answers for the second subgoal by first computing the answers from the first subgoal

τpi,j,1 in its first argument. The second argument of the call to psi,j,2 represents the list of terms

in the initial predicate call that, together with the information retrieved from Definitions 3.2.2

and 3.2.4, allow us to correctly build the patterns and function calls during the transformation.

7The notation clause(i,j) represents the j-th Datalog clause defining the predicate symbol pi.

46 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

eq pi,j(τ
a
i,j,0,1,...,τ

a
i,j,0,ari

) = psi,j,2(τ
p
i,j,1(τ

a
i,j,1,1,...,τ

a
i,j,1,r), τai,j,0,1 ... τai,j,0,ari

) .

Then, for each auxiliary (unraveling) function, we declare as many constants as there are

relevant variables in the corresponding subgoal. The left hand side of the equation for this

auxiliary function is defined with patterns that adjust the relevant variables to the values

already computed by the execution of a previous subgoal. Note that we may have more

assignments in the constraint, which is represented by C, and that we may have more possible

solutions in CS. The auxiliary equation ps’i,j,s takes each possible (partial) solution and

combines it with the solutions given by the s-th subgoal in the clause (whose predicate symbol

is τpi,j,s). Note that we propagate the instantiation of the relevant variables by means of a

substitution.

var C1 ...CN : Constant .

var NECS : NonEmptyConstraintSet .

eq psi,j,s(NECS, T1...Tari
) = psi,j,s+1(ps’i,j,s(NECS, T1...Tari

), T1...Tari
) .

eq psi,j,s(F , LL) = F .

eq ps’i,j,s(((X1=C1,...,XN=CN, C) ; CS), T1...Tari
) =

((τpi,j,s(τ
v
i,j,s,1,...,τ

v
i,j,s,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s((T ; CS), T1...Tari
) =

τpi,j,s(τ
v
i,j,s,1,...,τ

v
i,j,s,r) ; ps’i,j,s(CS, T1...Tari

) .

eq ps’i,j,s(F , LL) = F .

The equation for the last subgoal in the clause is slightly different, since we do not need

to recursively invoke the auxiliary equation ps’i,j,s. Assuming that g denotes the number of

subgoals in a clause, we define

eq psi,j,g(((X1=C1,...,XN=CN, C) ; CS) , T1...Tari) =

((τpi,j,g(τ
v
i,j,g,1,...,τ

v
i,j,g,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C)) ;

psi,j,g(CS , T1...Tari
) .

eq psi,j,g((T ; CS) , T1...Tari) =

τpi,j,g(τ
v
i,j,g,1,...,τ

v
i,j,g,r) ; psi,j,g(CS , T1...Tari) .

eq psi,j,g(F , LL) = F .

Query representation. Finally, we define the transformation for the Datalog query

q(X1, . . . , Xn) (where Xi, 1≤i≤n are Datalog variables or constants) as the Maude code

q(τ q1,...,τ
q
n), where τ qi , 1≤i≤n is the transformation of the corresponding Xi.

Correctness of the transformation.

We have defined a transformation from Datalog programs into Maude programs in such a

way that the normal form computed for a term of the ConstraintSet sort represents the set

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 47

of computed answers for a query of the original Datalog program. Below we show that the

transformation is sound and complete w.r.t. the observable of computed answers.

We first introduce some notation. Let CS be a ConstraintSet of the form C1 ; C2 ;

...; Cn where each Ci, i ≥ 1 is a Constraint in normal form (C1 = Cte1,...,Cm = Ctem),

and let V be a list of variables. We write Ci|V to the restriction of the constraint Ci to the

variables in V . We extend the notion to sets of constraints in the natural way, and denote it

as CS|V . Given two terms t and t′, we write t →∗S t′ when there exists a rewriting sequence

from t to t′ in the Maude program S. Also, var(t) is the set of variables occurring in t.

Now we define a suitable notion of (rewriting) answer constraint :

Definition 3.2.5 (Answer Constraint Set) Given a Maude program S as described in

this work and an input term t, we say that the answer constraint set computed by t→∗S CS is

CS|var(t).

There is a natural isomorphism between the equational constraint C and an idem-

potent substitution θ = {X1/C1, X2/C2, . . . , Xn/Cn}, which is given by the following:

C is equivalent to θ iff (C⇔ θ̂), where θ̂ is the equational representation of θ. By abuse, given

a disjunction CS of equational constraints and a set of idempotent substitutions (Θ = ∪ni=1θi),

we define Θ ≡ CS iff CS⇔
∨n
i=1 θ̂i.

Next, we prove that, for a given query and Datalog program, each answer constraint set

computed for the corresponding input term in the transformed Maude program is equivalent

to the set of computed answers of the original Datalog program.

Theorem 3.2.6 (Correctness and completeness) Consider a Datalog program P to-

gether with a query q. Let T (P) be the corresponding transformed Maude program, and

let Tg(q) be the corresponding transformed input term. Let Θ be the set of computed an-

swers of P for the query q, and let CS|var(Tg(q)) be the answer constraint set computed by

Tg(q)→∗T (P) CS. Then, Θ ≡ CS|var(Tg(q)).

Proof of Theorem 3.2.6

(⇐) We proceed by induction on both the structure of the clauses and the length of the

computations.

We should prove that if Tg(q)→!
T (P) CS, then for every C in the answer constraint set CS,

there exists a computed answer θ for q and P such that C|var(Tg(q)) ≡ θ.

Let us first consider the case when q is defined only by facts.

48 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

By the definition of our transformation, when the predicate symbol (of arity m) of the

query q is defined by facts8, there exists an equation in T (P), whose left hand side is of the

form q(T1,..., Tm), that rewrites to an answer constraint set that contains as many answer

constraints as facts define the predicate in the Datalog program. Again by definition, each

answer constraint corresponds to one (ground) fact in the Datalog program instantiating each

argument of the predicate to the appropriate constant.

In this case, the rewriting sequence for the initial term Tg(q) is

Tg(q)→T (P) C1; . . . ; Cn →!
T (P) Cv; . . . ; Cw

where n is the number of facts defining the Datalog predicate and v, . . . , w ∈ {1, . . . , n}.
Each answer constraint in C1; . . . ; Cn comes up from one Datalog fact. The second part of

the sequence is the simplification for the union operator ; and constraint constructors. The

simplification consists in removing duplicate elements and collapsing inconsistent constraints

to F. The inconsistent constraints appear when a single variable is equaled to two different

values or when two different constants are equaled. This case may occur when a query

is partially (or totally) instantiated and/or when it has a variable that appears multiple

times. In this case, all the answer constraints that are incompatible with the passed value are

collapsed to F. In the Datalog setting, this corresponds with failing to unify the query with

the facts generating these answers. It is easy to observe that the Datalog resolution is able to

compute each of these consistent solutions.

Now we consider the case when q is defined by n clauses with non-empty bodies. By

definition of our transformation, the initial term rewrites as follows.

Tg(q)→T (P) q1(T1, . . . , Tm); . . . ; qn(T1, . . . , Tm)

Again by definition, each function qi can be defined in our transformation in two different

ways, depending on the number of subgoals in the clause represented by qi.

Let us consider the case of a clause having a single subgoal. Let the equation defining the

function symbol qi be

eq qi(U1, . . . ,Um) = p(V1, . . . ,Vz)

where U1, . . . ,Um and V1, . . . ,Vz are the terms in the Datalog clause. Therefore, many of them

may coincide, and the set of variables in V1, . . . ,Vz subsumes the set of variables in U1, . . . ,Um

(we are considering safe Datalog programs).

Hence, the rewriting sequence given by the equation shown above is as follows:

qi(T1, . . . ,Tm)→T (P) p(W1, . . . ,Wz)

Notice that p is a predicate symbol in the Datalog program that is also transformed. By

induction hypothesis, p(W1, . . . ,Wz) rewrites to the set of its correct answer constraints

8Remember that, in Datalog, predicates are defined by facts or by clauses but not by both.

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 49

C′1; . . . ; C′w|var(p(W1,...,Wz)). Since we are considering safe Datalog programs, we know that

all the variables T1, . . . , Tm occur in the arguments of the body subgoals and are thus in

the set of variables {W1, . . . ,Wz}. Therefore, the correct answer constraint for the query is

C′1; . . . ; C′w|var(q(T1,...,Tm)).

Let us now proceed with the general case when the clause body contains more than one

subgoal. In this case, the rewriting sequence starts by rewriting to an auxiliary function s2

which represents the execution of the second subgoal, after having reduced the first one (on

the first argument of s2). This is ensured by the operational semantics of Maude and the

patterns in the definition of that auxiliary function (and of those of successive subgoals). The

second part of the sequence below corresponds to the computation of the first subgoal:

qi(T1, . . . ,Tm)→T (P) s2(p(W1, . . . ,Wz), T1. . .Tm)→∗T (P) s2(C1; . . . ; Cw, T1. . .Tm)

By induction hypothesis, the set C1; . . . ; Cw contains correct answer constraints for

p(W1, . . . ,Wz). At this execution point, following the definition of our transformation there

are two possibilities, depending on whether or not there are more subgoals (Case 2), and

(Case 1), respectively. Let us assume that we are dealing with the i-th subgoal (function

symbol si).

Case 1 In this case, the computation may proceed in two different ways:

1. There is no solution for p(W1, . . . ,Wz); thus, the answer constraint set is F. In this

case, the rewriting sequence is:

si(C1; . . . ; Cw, T1. . .Tm)→T (P) F

Therefore, there exists no solution for the first subgoal and the computation of the

query trivially fails, which corresponds with the Datalog resolution.

2. Consider the case when there are w different answer constraints for p(W1, . . . ,Wz).

The rewriting sequence following the definition of our transformation is:

si(C1 ; . . . ; Cw, T1. . .Tm)→T (P) si+1(s′i(C1 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

Note that to compute the answer constraints for the third subgoal (si+1), we first

have to rewrite the second one by reducing the redex s′i that contains the partially

accumulated answer constraint set. Depending on the form of this constraint set,

we have three possible rewritings:

(a) The first answer constraint (C1) is T (which is an EmptyConstraint); thus, the

computation of the previous subgoal (which is ground) performed no substi-

tution of variables:

si+1(s′i(T ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

50 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

→T (P) si+1(q(Q1, . . . ,Qz); (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→∗T (P) si+1(C′1; . . . ; C
′
w′ ; (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

By induction hypothesis, C′1, . . . , C
′
w′ are correct answer constraints for the i-th

subgoal (whose function symbol is q, given by the function τp of our transfor-

mation). Intuitively, this rewriting step represents the propagation of variable

assignments to the following subgoals. The recursive call of s′i propagates not

only the information from the set of answer constraints for the first subgoal,

but also the call pattern. We will come back to this point of the proof after

introducing the rest of cases.

(b) The first answer constraint is not T, generating the following rewriting se-

quence:

si+1(s′i(C1 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→T (P) si+1(q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk]) x C1;

(s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→∗T (P) si+1((C′1; . . . ; C
′
w′) x C1; (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

Note that, by definition, the substitution q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk]

replaces each relevant variable Xj of q by its computed value, captured in

the pattern of the lhs of the corresponding transformation equation. The

constraints for these values are also in the computed answer C1. By in-

duction hypothesis, C′1, . . . , C
′
w′ are correct answer constraints for the term

q((Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk]). Then, the x operator combines each so-

lution of the second subgoal with the information in C1. Since we have passed

the shared information with the applied substitution before the subsequent

reduction step, we know that the shared variables have the same value; thus,

the new combined solutions are consistent for the conjunction of the two (or

more) subgoals. Note that the only case when inconsistencies may arise (and

be simplified) by the x operator is when both sets of answers contain an output

variable and each one computes a different value for it. This inconsistent case

is reduced to false, so no inconsistent answer constraint is carried on.

(c) There are no answer constraints to proceed; thus, the first argument is F and

the rewriting sequence is:

si+1(s′i(F, T1. . .Tm)), T1. . .Tm)→T (P) si+1(F, T1. . .Tm)

This last case is the base case for the recursion appearing in the two previous ones.

By induction on the number of elements in the answer constraint set C1 ; . . . ; Cw,

we can see that the subterm (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm) in the cases (a)

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 51

and (b) is a smaller recursive call.

Hence, we are at the point in which we have computed all the accumulated answer

constraints up to the i-th subgoal:

si+1(C1; . . . ; Cn, T1. . .Tm)

Case 2 In this case, si is the last subgoal, so no propagation of information is performed.

Let us recall the term that had to be reduced

si(C1 ; . . . ; Cw, T1. . .Tm)

Also in this case, there are three possible paths:

1. The first answer constraint (C1) is T (which is an EmptyConstraint), thus the

computation of the previous subgoal (which is ground) performed no substitution

of variables:

si(T ; . . . ; Cw, T1. . .Tm)

→T (P) q(Q1, . . . , Qn) ; si(C2 ; . . . ; Cw, T1. . .Tm)

→∗T (P) C
′
1 ; . . . ; C′w′ ; si(C2 ; . . . ; Cw, T1. . .Tm)

By induction hypothesis, C′1 ; . . . ; C′w′ are the correct answer constraints of

q(Q1, . . . , Qn). For the recursive call, the proof is perfectly analogous to the one

for the other cases.

2. The first answer constraint is not T, generating the following rewriting sequence:

si(C1 ; . . . ; Cw, T1. . .Tm)

→T (P) (q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk])) x C1; si(C2 ; . . . ; Cw, T1. . .Tm)

→∗T (P) (C′1; . . . ; C
′
w′) x C1; (si(C2 ; . . . ; Cw, T1. . .Tm))

Similarly to Case (1.2.b) above, the Xj are the linked variables that have already

been instantiated, and their value is propagated to the corresponding Qj . The

Xj variables are computed in C1. By induction hypothesis, C′1, . . . , C
′
w′ are correct

answer constraints for the term q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk]. Then, the x

operator combines each solution of the second subgoal with the information in C1.

Since we have passed the shared information with the substitution before reduc-

tion, we know that the shared variables have the same value; thus, no inconsistency

comes up due to these. The only case when inconsistencies may arise (and be sim-

plified) by the x operator is when both sets of answers contain an output variable

and each one computes a different value for it. This inconsistent case is reduced

to false, so no inconsistent answer constraint is carried on.

52 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

As in the previous case, we will consider the recursive call after having presented

the three cases.

3. There are no answer constraints to proceed; thus, the first argument is F and the

rewriting sequence is:

si(F, T1. . .Tm)→T (P) F

This last case is the base case for the recursion appearing in the two previous ones. By

induction on the cardinality of the set of answer constraints C1 ; . . . ; Cw, we can see

that the subterm (si(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm) is a smaller recursive call, thus

at some point will reach the base case.

Hence, we are at the point in which we have computed all the accumulated answer

constraints up to the last i-th subgoal:

C1; . . . ; Cn

(⇒) We proceed by induction on both the structure of the clauses and the length of the

computations.

We must prove that for each computed answer θ for q and P , then after the reduction

Tg(q)→!
T (P) CS, there exists a C in the answer constraint set CS such that C|var(Tg(q)) ≡ θ.

Let us first consider the case when q is defined by facts. For each fact defining the predicate

of the query in the Datalog program, there are two cases:

1. It is possible to unify the query with the fact, getting a computed answer given by the

substitution θ.

2. The query does not unify with the fact, so there is no computed answer for this execution

branch.

The second case may occur (1) when a query is partially (or totally) instantiated and the

given values do not coincide with those in the corresponding facts; or (2) when a query has a

variable that appears multiple times in its arguments and a single fact assigns two different

values to such variable at the same time.

By definition, our transformation generates an answer constraint for each fact. Assume

that the query has the form q(A1,...,Am) where each Ai, 1 ≤ i ≤ m is a variable or a

constant. Given a fact q(t1,...,tm), by definition in our transformation, there exists a C in

CS of the form,
∧

1≤i≤mAi = ti. For the first case above, clearly θ is equal to C in normal form

(i.e., after having simplified the constraints of the form Cte = Cte when some argument in

the query is instantiated). Now consider the second case above; then there exists an equality

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 53

constraint Cte = Cte’ for two different constants, or two equality constraints V = Cte , V

= Cte’ with Cte 6= Cte’; therefore, after normalization the answer constraint reduces to F

(correctness).

The rewriting sequence for the initial term Tg(q) is

Tg(q)→T (P) C1; . . . ; Cn →!
T (P) Cv; . . . ; Cw

where n is the number of facts defining the Datalog predicate and v, . . . , w ∈ {1, . . . , n}.
Each answer constraint in C1; . . . ; Cn comes up from one Datalog fact. The second part of the

sequence is the simplification for the union operator and constraint constructors.

Now we consider the case when q is defined by n clauses with non-empty bodies. We

must ensure that each of these solutions is included in CS, the set of answer constraints. By

definition of our transformation, the set of answer constraints for q is the disjunction of the

sets of answer constraints generated for each clause. Let us consider the solutions computed

by each clause independently.

We recall the first step of the initial Maude term rewriting sequence:

Tg(q)→T (P) q1(T1, . . . , Tm); . . . ; qn(T1, . . . , Tm)

Next we prove that the solutions computed from the i-th clause are included in the set

of answer constraints computed by the function qi(T1, . . . , Tm). By definition, each function

qi can be defined in our transformation in two different ways, depending on the number of

subgoals in the clause represented by qi.

Let us consider the case of a clause having a single subgoal. Assume that the term on the

rhs of that clause is a predicate call with predicate symbol p and z arguments: p(V1, . . . , Vz).

By definition of our transformation, the equation for this clause is the following one, where p

is now a defined function symbol:

eq qi(U1, . . . ,Um) = p(V1, . . . ,Vz)

where U1, . . . ,Um and V1, . . . ,Vz are the terms in the Datalog clause. Therefore, many of them

may coincide, and the set of variables in V1, . . . ,Vz subsumes the set of variables in U1, . . . ,Um

(recall we are considering safe Datalog programs).

The rewriting sequence given by the equation shown above is as follows:

qi(T1, . . . ,Tm)→T (P) p(W1, . . . ,Wz)→!
T (P) C

′
1; . . . ; C′w

By induction hypothesis, for each computed answer θ for the query p(W1, . . . ,Wz), there

exists an answer constraint C′i, 1 ≤ i ≤ w such that θ ≡ C′i. Since the names of arguments in

the Datalog program are preserved in the Maude code, the computed answers restricted to

the variables of the initial query form the answers for the Maude query. It is clear that if the

same restriction is applied to the answer constraint, the Datalog answers are still equivalent

to the restricted answer constraint.

54 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

Let us now proceed with the general case when the clause body contains more than

one subgoal. In this case, the chosen top-down left-to-right Datalog strategy states that for

computing the answers for the query, the answers for the first subgoal must be computed first.

Then, the rest of the body with the corresponding substitutions (from the resolution of the

first subgoal) must be resolved. As in the above case, we prove that each computed answer

for this specific clause has an equivalent answer constraint computed by the corresponding qi

function.

Following our transformation, the rewriting sequence starts by rewriting to an auxiliary

function s2. This function represents the execution of the second subgoal after having reduced

the first subgoal (on the first argument of s2). This is ensured by the operational semantics of

Maude, the definition of linked and relevant variables, and the patterns in the definition of

that auxiliary function (and of those of successive subgoals). The second part of the sequence

below corresponds to the computation of that first subgoal:

qi(T1, . . . ,Tm)→T (P) s2(p(W1, . . . ,Wz), T1. . .Tm)→∗T (P) s2(C1; . . . ;Cw, T1. . .Tm)

By induction hypothesis, for each computed answer θ of the Datalog query p(W1, . . . ,Wz),

there exists an answer constraint Ci in the set C1; . . . ;Cw such that θ ≡ Ci. At this execution

point, following the definition of our transformation there are two possibilities, depending on

whether or not there are more subgoals (Case 2), and (Case 1), respectively. Let us assume

that we are dealing with the i-th subgoal (function symbol si).

Case 1 In this case, the computation may proceed in two different ways:

1. There is no solution for p(W1, . . . ,Wz). Therefore, the answer constraint set is of

the form F. In this case, the rewriting sequence is:

si(C1; . . . ; Cw, T1. . .Tm)→T (P) F

This means that there is no solution for the first subgoal, so this case is trivially

proved.

2. Consider the case when there are w different answer constraints for p(W1, . . . ,Wz)

(that by induction hypothesis include the equivalent answer constraints for each

Datalog computed answer). The rewriting sequence following the definition of our

transformation is:

si(C1 ; . . . ; Cw, T1. . .Tm)→T (P) si+1(s′i(C1 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

Note that, in order to compute the answer constraints for the third subgoal (si+1),

we first have to rewrite the second one by reducing the redex s′i that contains

the partially accumulated answer constraint set. Depending on the form of this

constraint set, we have three possible rewritings:

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 55

(a) The first answer constraint for the previous subgoal (C1) is T (which is

an EmptyConstraint). Therefore, the computation of the previous subgoal

(which is ground) performed no substitution of variables:

si+1(s′i(T ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→T (P) si+1(q(Q1, . . . ,Qz); (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→∗T si+1(C ′1; . . . ;C ′w′ ; (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

By induction hypothesis, for each computed answer θ for the call q(Q1, . . . ,Qz),

there exists an answer constraint Ci in the set C ′1, . . . , C
′
w′ such that θ ≡ Ci.

These are all answers for the i-th subgoal (whose function symbol is q, given

by the function τp of our transformation). Intuitively, this rewriting step

represents the propagation of variable assignments to the following subgoals.

It can be seen that, since no substitution needed to be propagated, all the

answer constraints are also answer constraints for the query consisting of the

conjunction of the previous subgoal(s) and the present one. Therefore, no

solution is lost.

The recursive call of s′i propagates not only the information from the first

answer constraint, but also the information needed to proceed with the com-

putation of the rest of the solutions. We will come back to this point of the

proof after introducing the rest of the cases in order to prove that answers are

also preserved for them.

(b) The first answer constraint is not T but a set C1 ; . . . ; Cw, which by hypothesis

includes the equivalent answer constraints for the computed answers of the i-th

subgoal. The rewriting sequence is:

si+1(s′i(C1 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→T (P) si+1((q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk])) x C1;

(s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

→∗T (P) si+1((C ′1; . . . ;C ′w′) x C1; (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm)

where the Xj are the linked variables that have already been instantiated,

and their value is propagated to the corresponding Qj . The Xj variables are

computed in C1. By induction hypothesis, for each computed answer θ for

q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk], there exists a C ′i in C ′1, . . . , C
′
w′ such that

θ ≡ C ′i. Then, the x operator combines each solution of the second subgoal

with the information in C1. Since we have passed the shared information

with the applied substitution before the subsequent reduction step, we know

that the shared variables have the same value. Therefore, the new combined

56 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

solutions are consistent for the conjunction of the two (or more) subgoals.

Note that the only case when inconsistencies may arise (and be simplified) by

the x operator is when both sets of answers contain an output variable and

each one computes a different value for it. This inconsistent case is reduced

to false, so no consistent answer constraint is deleted.

(c) There are no answer constraints to proceed, so the first argument is F and the

rewriting sequence is:

si+1(s′i(F, T1. . .Tm)), T1. . .Tm)→T (P) si+1(F, T1. . .Tm)

This last case is the base case for the recursion appearing in the two previous ones.

By induction on the number of elements in the answer constraint set C1 ; . . . ; Cw,

it can be observed that the subterm (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm) in the

cases (a) and (b) is a smaller recursive call. Therefore, at some point the sequence

will reach the base case.

Hence, we are at the point in which we have computed all the accumulated an-

swer constraints up to the i-th subgoal and they include the equivalent answer

constraints to the computed answers of the Datalog query:

si+1(C1; . . . ;Cn, T1. . .Tm)

Case 2 In this case, si is the last subgoal, so no propagation of information must be per-

formed. We now also prove that, in this case, for each computed answer of the query,

there exists an equivalent answer constraint as the result of the rewriting until normal-

ization of the corresponding transformed query.

Remember that the term that had to be reduced at this point and that should generate

the answer constraints for the considered Datalog clause is

si(C1 ; . . . ; Cw, T1. . .Tm),

where C1 ; . . . ; Cw include the equivalent answer constraints for the computed answers

of p(W1, . . . ,Wz). Similarly to Case 1, in this case, there are also three possible paths:

1. The first answer constraint for the previous subgoal (C1) is T (which is an

EmptyConstraint); thus, the computation of the previous subgoal (which is

ground) performed no substitution of variables:

si(T ; . . . ; Cw, T1. . .Tm)

→T (P) q(Q1, . . . , Qn) ; si(C2 ; . . . ; Cw, T1. . .Tm)

→∗T (P) C
′
1 ; . . . ; C ′w′ ; si(C2 ; . . . ; Cw, T1. . .Tm)

3.2. A COMPLETE DATALOG TO RWL TRANSFORMATION 57

By induction hypothesis, for each computed answer θ for the call q(Q1, . . . ,Qz),

there exists an answer constraint Ci in the set C ′1, . . . , C
′
w′ such that θ ≡ Ci. These

are all answers for the i-th subgoal (whose function symbol is q, given by the

function τp of our transformation).

For the recursive call, we will come back to this point of the proof after introducing

the rest of the cases to prove that answers are also preserved for them.

2. The first answer constraint is not T but a set C1 ; . . . ; Cw that by hypothesis

includes the equivalent answer constraints for the computed answers of the i-th

subgoal. The rewriting sequence is:

si(C1 ; . . . ; Cw, T1. . .Tm)

→T (P) (q(Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk])) x C1; si(C2 ; . . . ; Cw, T1. . .Tm)

→∗T (P) (C′1; . . . ; C
′
w′) x C1; (si(C2 ; . . . ; Cw, T1. . .Tm))

Similarly to Case (1.2.b) above, the Xj are the linked variables that have already

been instantiated, and their value is propagated to the corresponding Qj . The

Xj variables are computed in C1. By induction hypothesis, for each computed

answer θ for q((Q1, . . . ,Qz)[Qj\Xj , . . . , Qk\Xk]), there exists a C ′i in C ′1, . . . , C
′
w′

such that θ ≡ C ′i. Then, the x operator combines each solution of the second

subgoal with the information in C1. Since we have passed the shared information

with the applied substitution before the subsequent reduction step, we know that

the shared variables have the same value, thus the new combined solutions are

consistent for the conjunction of the two (or more) subgoals. We note that the

only case when inconsistencies may arise (and be simplified) by the x operator is

when both sets of answers contain an output variable and each one computes a

different value for it. This inconsistent case is reduced to false, so no consistent

answer constraint is deleted.

As in the previous case, we will consider the recursive call after having presented

the three cases.

3. There are no answer constraints to proceed, thus the first argument is F and the

rewriting sequence is:

si(F, T1. . .Tm)→T (P) F

This last case is the base case for the recursion appearing in the two previous ones. By

induction on the cardinality of the set of answer constraints C1 ; . . . ; Cw, it can be

observed that the subterm (s′i(C2 ; . . . ; Cw, T1. . .Tm)), T1. . .Tm) in the cases (a) and

58 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

(b) is a smaller recursive call. Therefore, at some point the sequence will reach the base

case.

Finally, we are at the point in which we have computed all the accumulated answer con-

straints up to the (last) i-th subgoal and they include the equivalent answer constraints

to the computed answers of the Datalog query:

C1; . . . ; Cn

This concludes the proof.

3.3 Dealing with Java reflection

Addressing reflection is considered a difficult problem in the static analysis of Java programs,

which is generally handled in an unsound or ad-hoc manner [LWL05]. Reflection in Java is

a powerful technique that is used when a program needs to examine or modify the runtime

behavior of applications running in the Java virtual machine. For example, by using reflec-

tion, it is possible to write to object fields and invoke methods that are not known at compile

time. Java provides a set of methods to handle reflection. These methods are found in the

package java.lang.reflect.

In Figure 3.1 we show a simple example. We define a class PO with two fields: c1 and c2.

In the Main class, an object u of class PO is created by using the constructor method new,

which assigns the empty string to the two fields of u. Then, r is defined as a field of a class,

specifically, as the field c1 of an object of class PO since v stores the value "c1". The sentence

r.set(u, w) states that r is the field object c1 of u, and its value is that of w, i.e., "c2".

Finally, the last instruction sets the new value of v to the value of u.c1, i.e., "c2".

class PO {
PO (String c1, String c2) {

this.c1 = c1;

this.c2 = c2;

}
public String c1;

public String c2;

}

public class Main {
public static void main(String[] args) {
PO u = new PO("","");

String v = "c1";

String w = "c2";

java.lang.reflect.Field r = PO.class.getField(v);

r.set(u, w);

v = u.c1;

} }

Figure 3.1: Java reflection example.

A pointer flow-insensitive analysis of this program would tell us that r may point not

only to the field object u.c1, but also u.c2 since v in the argument of the reflective method

getField may be assigned both to string "c1" and "c2".

The key point for the reflective analysis is the fact that we do not have all the basic

information for the points-to analysis at the beginning of the computation. In fact, the

3.3. DEALING WITH JAVA REFLECTION 59

variables that occur in the methods handling reflection may generate new basic information.

A sound proposal for handling Java reflection is proposed in [LWL05], which is essentially

achieved by first annotating the Datalog program so that it is subsequently transformed by

means of an external (to Datalog) engine. As in [LWL05], we assume we know the name of

the methods and objects that may be used in the invocations. In our approach, we use the

Maude reflection capability to automatically generate the rules that represent new deduced

information without resorting to any ad-hoc notation or external artifact.

Let us start by showing which pointer-analysis information Joeq would extract from our

example. We enforce the fact that we work at the bytecode level, so some Java instructions

are converted into more than one bytecode instructions and some new auxiliary variables —in

the example $0— are introduced.

Java Code Extracted Information

PO u = new PO("",""); vP0(u,0).

vT(u,PO).

String v = "c1"; vP0(v,12).

vT(v,string).

String w = "c2"; vP0(w,15).

vT(w,string).

java.lang.reflect.Field r vP0($0,18).

= PO.class.getField(v); vT($0,ClassPO).

vT(r,field).

mI(main,21,getField).

iRet(21,r).

actual(21,0,$0).

actual(21,1,v).

r.set(u, w); mI(main,30,set).

actual(30,0,r).

actual(30,1,u).

actual(30,2,w).

v = u.c1; l(u,c1,v).

The following predicates state properties or actions performed to references and heap

objects.

vP0(V,H): A new object H is created —where H is the position of the call to the object’s

constructor in the code— and is referenced by the variable V.

vT(V,T): The declared type of variable V is T.

hT(H,T): The object H has type T.

60 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

actual(I,N,V): The variable V is used as the actual parameter number N at the invocation

point9 I.

mI(M,I,N): At invocation point I of method M there is a method call to be resolved with the

name N.

iRet(I,V): The variable V will receive the return value of the invocation at point I.

l(V1,F,V2): The value of the field F of variable V1 is assigned to variable V2.

s(V1,F,V2): The value of variable V2 is assigned to the field F of variable V1.

With this kind of information, it is easy to specify a non-reflective pointer analysis by means of

Datalog clauses as in [WACL05]. The analysis would then mimic any possible flow of pointers

in the code. Nevertheless, the analysis would be missing some hidden flow of pointers related

to the use of reflection. Following the code execution with the semantics of the reflection

API of Java in mind, v is the name of the field represented by the reflective object r. Then,

the instruction r.set(u,w) stores the value of w in the field c1 (represented by r) of the

object pointed by u, and this would be resumed in the Datalog fact s(u,c1,w). However, this

behaviour is dynamic because it depends on the runtime values of the variable v, and so we

have no way to know what objects v can point to at compile time. For example, if v points

to the string "c1", as it does in the example, a new reflective object which represents a "c1"

field of objects of class PO would be created and assigned to the variable r. Any call to the

method set on the previous object would store within the field "c1" of the first parameter

the content of the second parameter. Because v could potentially point to many other strings

representing fields, r could point to many reflective objects representing correspondent fields,

and so calls to method set on r could mean many different kinds of stores s(V1,F,V2).

The reflective analysis proposed by [LWL05] uses additional information (extracted by

the Joeq compiler) regarding which calls are done to the reflective API. This enriches the

analysis allowing us to deduce new “on-the-fly” (at analysis time) facts that in the basic, non-

reflective analysis were considered static information. For example, store facts s(V1,F,V2)

can also be deduced by the clause:

s(V1,F,V2) :- iE(I,’Field.set’) , actual(I,0,V) , vP(V,H) ,

fieldObject(H,F) , actual(I,1,V1), actual(I,2,V2) .

Let us present the new predicates that appear in this rule:

9An invocation point is either a method call, a static call or a special call at the bytecode level.

3.3. DEALING WITH JAVA REFLECTION 61

iE(I,M): There is a call to the resolved method10 M at the invocation point I. This predicate

represents an approximation to the program’s call-graph.

fieldObject(H,F): The object H is a reflective object representing the field F.

These predicates are also derived from other facts. The meaning of the clause is straight-

forward: we state that V2 is stored in the field F of V1 if there is call to Field.set over a

reflective object representing field F (fieldObject(H,F)) and the first and second parameters

of that call are V1 and V2, respectively.

In our reflective setting, we have followed the direct approach of translating Datalog clauses

into Maude rules as in [AFJV09b] in order to ease the manipulation of modules at the

metalevel. In this approach, each Datalog clause is translated into a Maude conditional rule.

Therefore, checking that the clause body is satisfiable equals to checking if the condition of

that rule holds. Following this idea, facts are translated into non-conditional rules in one-

to-one correspondence. Consequently, deducing information equals to rewriting queries into

assignments to its arguments. The rule above is translated into Maude as:

crl s(V1,F,V2) => V1 -> CteV1 , F -> CteF , V2 -> CteV2

if iE(I,’Field.set) => I -> CteI , ’Field.set -> ’Field.set

/\ isConsistent I -> CteI

/\ actual(CteI,’0,V) => CteI -> CteI , ’0 -> ’0 , V -> CteV

/\ isConsistent V -> CteV

/\ vP(CteV,H) => CteV -> CteV , H -> CteH

/\ isConsistent H -> CteH

/\ fieldObject(CteH,F) => CteH -> CteH , F -> CteF

/\ isConsistent F -> CteF

/\ actual(CteI,’1,V1) => CteI -> CteI , ’1 -> ’1 , V1 -> CteV1

/\ isConsistent V1 -> CteV1

/\ actual(CteI,’2,V2) => CteI -> CteI , ’2 -> ’2 , V2 -> CteV2

/\ isConsistent V2 -> CteV2 .

With this transformation, it can be seen that the structure of the resulting Maude code

is very close to the original Datalog program. The novelty in the reflective analysis is in the

need for new information to support the analysis, such as identifiers of reflective methods and

string constants representing names of reflective objects. In our proof-of-concept prototype,

we have considered field-reflection analysis. This implies that Joeq must recover facts for

the following two predicates:

10A resolved method refers to specific code from a certain class.

62 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

stringToField(H,F): The object H is a string representation of field F.

getField(M): The method M is a reflective method which returns a reflective object repre-

senting a field.

From our example, the following field-reflection information would be extracted:

stringToField(12,c1).

stringToField(15,c2).

getField(Class.getField).

Adding these extra information to the basic, non-reflective analysis we can deduce new reflec-

tive information which enriches the basic analysis. Then, the enriched basic analysis allows us

to deduce new reflective information starting an iterative process until a fixpoint is reached.

Rewriting logic is reflective in a precise mathematical way: there is a finitely presented

rewrite theory U that is universal in the sense that we can represent (as data) any finitely

presented rewrite theory R in U (including U itself), and then mimic the behavior of R in U .

The fact that rewriting logic is a reflective logic and the fact that Maude effectively supports

reflective rewriting logic computation make reflective design (in which theories become data

at the metalevel) ideally suited for manipulation tasks in Maude.

Maude’s reflection is systematically exploited in our tool. On one hand, we can easily

define new rules to be included in the specification by manipulating term meta-representations

of rules and modules. On the other hand, by virtue of our reflective design, our metatheory

of program analysis (which includes a common fixpoint infrastructure) is made accessible to

the user who writes a particular analysis in a clear and principled way.

We have endowed our prototype implementation with the capability to carrying on re-

flection analysis for Java. The extension essentially consists of a module at the Maude

meta–level that implements a generic infrastructure to deal with reflection. Figure 3.2 shows

the structure of a typical reflection analysis to be run in our tool.

The static analysis is specified in two object-level modules, a basic module and a reflective

module, that can be written in either Datalog or Maude, since Datalog analyses are auto-

matically compiled into Maude code. The basic program analysis (PA) module contains the

rules for the classical analysis (that neglects reflection) whereas the reflective program analysis

module contains the part of the analysis dealing with the reflective components of the con-

sidered Java program. For example, the rule representing the reflective clause s(V1,F,V2)

would be included in the reflective program analysis module.

The module called solver deals with the program analysis modules at the meta-level. It

consists of a generic fixpoint algorithm that feds the reflective module with the information

3.4. THE PROTOTYPE DATALAUDE 63

OBJECT-LEVEL BASIC PA
module

BASIC PA
module

REFLECTIVE PA
module

REFLECTIVE PA
module

META-LEVEL

SOLVERSOLVER

reflective information

basic information

fixpointfixpoint

Figure 3.2: The structure of the reflective analysis.

that can be inferred by the basic analysis and vice versa. Our implementation of the fixpoint

is the following:

op fixpoint : Module Module -> Module .

var M1 M2 M3 : Module .

ceq fixpoint(M1,M2) = fixpoint(M3,M1)

if M3 := closure(M1,M2)

/\ M3 =/= M2 .

eq fixpoint(M1,M2) = closure(M1,M2) [owise] .

The closure function infers all the information from the module given as its first parameter

and adds it to the module given as its second parameter, returning the modified module. In

order to do that, closure queries the first module, translates the solutions into rules, and

finally adds them to the second module.

For the points-to analysis with field reflection, the reflective and basic modules contain 11

rules each, whereas the generic solver is written in just 50 rules (including those that generate

rules from the new computed information). The fact of separating the specification of the

analysis into several modules enhances its comprehension and allows us to easily compose

analysis on demand.

3.4 The prototype Datalaude

Datalaude11 is a Haskell program that implements the Datalog transformation to Rwl we

have presented in this chapter.

11Datalaude is accessible via a web interface in http://www.dsic.upv.es/users/elp/datalaude.

64 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

solutions

(constraints)

: input/output

finite domains

Datalog facts

(.map)

heap

(.map)

var

(.tuples)

vP0

(.tuples)

hP0

(.tuples)

assign

Datalaude

Maude

analysis
specification

Rwl

(.maude)

(.class)

Java program Joeq compiler

(.datalog)

Figure 3.3: Java program analysis using Datalaude.

3.5. EXPERIMENTAL RESULTS 65

As can be seen in Figure 3.3 Datalaude takes the same input files as Datalog Solve

(as explained in Section 2.3), but its output is a Maude program. This program can subse-

quently be used by the Maude interpreter to reduce Datalog queries into sets of constraints

representing the corresponding solutions to the original Datalog query. To do so, first the

user should load the .maude file obtained from Datalaude into the interpreter, and then ask

Maude to reduce the necessary queries.

Example 3.4.1 If Datalaude is fed with the classical Andersen points-to analysis, we ob-

tain a file called andersen.maude. From the Maude interpreter we should load the transfor-

mation with the command:

load andersen.maude .

To execute the query :- vP(V,o2)., which is naturally written in Maude as

vP(vrbl(’V),’o2), we would write the following:

reduce vP(vrbl(’V),’o2) .

The output of Maude is shown below. The first part specifies the term that has been

reduced (first line). The second part shows the number of rewrites and the execution time

that Maude invested to perform the reduction (second line). The last part, which is written

in several lines for the sake of readability, shows the result of the reduction (i.e., the set of

answer constraints) together with its sort.

reduce in ANALYSIS : vP(vrbl(’v), ’o2) .

rewrites: 39 in 0ms cpu5 (0ms real) (rewrites/second)

result NonEmptyConstraintSet:

vrbl(’v) = ’q ;

vrbl(’v) = ’r , vrbl(vrbl(’v) , ’o2) = ’q ;

vrbl(’v) = ’v1, vrbl(vrbl(’v) , ’o2) = ’q , vrbl(’q , ’o2) = ’r)

Notice that the constraints obtained reference not only the variables present in the query,

but also the existential variables used to infer the solutions.

3.5 Experimental results

This section reports on the performance of our prototype, Datalaude, implementing the

transformation. First, we compare the efficiency of our implementation with respect to a

näıve transformation to rewriting logic documented in [AFJV09b] and shown in Section 3.3;

then, we evaluate the performance of our prototype by comparing it to three public Datalog

66 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

solvers. All the experiments were conducted using Java JRE 1.6.0, Joeq version 20030812,

on a Mobile AMD Athlon XP2000+ (1.66GHz) with 700 Megabytes of RAM, running Ubuntu

Linux 8.04.

3.5.1 Comparison w.r.t. a previous rewriting-based implementation

We implemented several transformations from Datalog programs to Maude programs before

developing the one presented in this thesis [AFJV09b]. The first attempt consisted of a one-

to-one mapping from Datalog rules into Maude conditional rules. Then, in order to get rid of

all the non-determinism caused by conditional equations and rules in Maude, we restricted

our transformation to produce only unconditional equations as defined in the previous section.

In the following, we present the results obtained by using the rule-based approach, the

equational-based approach, and the equational-based approach improved by using the memo-

ization capability of Maude [CDE+07a]. Maude is able to store each call to a given function

(in the running example vP(V,H)) together with its normal form. Thus, when Maude finds

a memoized call it does not reduce it but it just replaces it with its normal form, saving a

great number of rewrites.

Table 3.1 shows the resolution times of the three selected versions. The sets of initial

Datalog facts (a/2 and vP0/2) are extracted by the Joeq compiler from a Java program (with

374 lines of code) implementing a tree visitor. The Datalog clauses are those of our running

example: the Andersen points-to analysis. The evaluated query is ?- vP(Var,Heap)., i.e.,

all possible answers that satisfy the predicate vP/2.

Table 3.1: Number of initial facts (a/2 and vP0/2) and computed answers (vP/2), and
resolution time (in seconds) for the three implementations.

a/2 vP0/2 VP/2 rule-based equational equational+memoization

100 100 144 6.00 0.67 0.02
150 150 222 20.59 2.23 0.04
200 200 297 48.48 6.11 0.10
403 399 602 382.16 77.33 0.47
807 1669 2042 4715.77 1098.64 3.52

The results obtained with the equational implementation are an order of magnitude better

than those obtained by the näıve transformation based on rules. These results are due to the

fact that the backtracking associated to the non-deterministic evaluation penalizes the näıve

version. It can also be observed that using memoization allows us to gain another order of

magnitude in execution time with respect to the basic equational implementation.

3.6. RELATED WORK. 67

3.5.2 Comparison w.r.t. other Datalog solvers

The same sets of initial facts were used to compare our prototype (the equational-based

version with memoization) with three state-of-the-art Datalog solvers, namely Xsb 3.2 12,

Datalog 1.4 13, and Iris 0.58 14. Average resolution times of three runs for each solver are

shown in Figure 3.4.

Figure 3.4: Average resolution times of four Datalog solvers (logarithmic time).

In order to evaluate the performance of our implementation with respect to the other

Datalog solvers, only resolution times are presented in Figure 3.4 since the compared im-

plementations are quite different in nature. This means that initialization operations, like

loading and compilation, are not taken into account in the results. Our experiments conclude

that Datalaude performs similarly to optimized deductive database systems like Datalog

1.4, which is implemented in C, although it is slower than Xsb or Iris. These results confirm

that the equational implementation fits our program analysis purposes better, and provides

a versatile and competitive Datalog solver as compared to other implementations of Datalog.

3.6 Related Work.

The Rwl-based approach to Datalog evaluation essentially consists of a suitable trans-

formation from Datalog into Maude. Since the operational principles of logic program-

ming (resolution) and functional programming (term rewriting) share some similarities

[Han94], many proposals exist for transforming logic programs into term rewriting systems

12http://xsb.sourceforge.net
13http://datalog.sourceforge.net
14http://iris-reasoner.sourceforge.net

68 CHAPTER 3. THE RWL-BASED DATALOG EVALUATION APPROACH

[Mar94, Red84, SKGST07]. These transformations aim at reusing the term rewriting infras-

tructure to run the (transformed) logic program while preserving the intended observable

behavior (e.g., termination, success set, computed answers, etc.) Traditionally, translations

of logic programs into functional programs are based on imposing an input/output relation

(mode) on the parameters of the original program [Red84]. However, one distinguished fea-

ture of Datalog programs that burdens the transformation is that predicate arguments are

not moded, meaning that they can be used both as input or output parameters. One recent

transformation that does not impose modes on parameters was presented in [SKGST07]. The

authors defined a transformation from definite logic programs into (infinitary) term rewriting

for the termination analysis of logic programs. Contrary to our approach, the transformation

of [SKGST07] is not concerned with preserving the computed answers, but only the termina-

tion behavior. Moreover, [SKGST07] does not tackle the problem of efficiently encoding logic

(Datalog) programs containing a huge amount of facts in a rewriting-based infrastructure such

as Maude.

3.7 Conclusions

We have presented a transformation from Datalog to Rwl in the context of Datalog-based

static analysis. The transformation carries Datalog to a powerful framework such as Rwl

preserving its declarative nature. Reflection is a key capability of Rwl specially suited to

implement the evolution of systems. We have applied reflection to formalize a way of imple-

menting static analyses that deal with Java reflection in a declarative way.

We have also presented some experimental results which show that, under a suitable

transformation scheme (such as the equational implementation extended with memoization),

Maude can process a large number of equations extracted from statically analyzed, real

Java programs. Our purpose has not been to produce the faster Datalog solver ever, but to

provide a tool that supports sophisticated analyses with reasonable performance in a purely

declarative way.

Conclusions and future work

In this thesis, we have presented two different Datalog query answering techniques that are

specially-tailored to object-oriented program analysis. These techniques essentially consist

in transforming the original Datalog program into a suitable set of rules which are then

executed under an optimized top-down strategy that caches and reuses “rewrites” in the

target language.

We have formalized the transformation of any given set of definite Datalog clauses into two

efficient implementations, namely Boolean Equation Systems (Bes) [And94a] and Rewriting

Logic (Rwl) [Mes92].

In the Bes-based program analysis methodology, the Datalog clauses that encode a par-

ticular analysis, together with a set of Datalog facts that are automatically extracted from

program source code, are dynamically transformed into a Bes whose local resolution corre-

sponds to the demand-driven evaluation of the program analysis. This approach has allowed

us to reuse existing general purpose analysis and verification toolboxes such as Cadp, which

provides local Bes resolution with linear-time complexity. We have implemented this tech-

nique into a prototype called Datalog Solve that shows a good performance on our setting.

As future work on the Bes approach we envisage two directions. First, it would be interesting

to optimize the transformation, as we have already done in [FJT10b]. The other direction

consists in distributing the resolution of the Bes between different machines. The distribution

of the resolution could be done at the Bes level [JM06] or at the Datalog level [AU10].

The second, Rwl-based, query answering technique for Datalog was developed in or-

der to provide purely declarative yet efficient program analyses that overcome the diffi-

culty of handling meta-programming features such as reflection in traditional analysis frame-

works [LWL05]. By transforming Datalog programs into Maude programs, we take advantage

of the flexibility and versatility of Maude in order to achieve meta-programming capabilities,

and we make significant progress towards scalability without losing the declarative nature of

specifying complex program analyses in Datalog. We have implemented this technique into

a prototype called Datalaude, and we have concluded that it is competitive w.r.t. other

70 CONCLUSIONS AND FUTURE WORK

optimized deductive database systems. Without being one of the fastest Datalog solvers, we

have provided a tool that supports sophisticated analyses with reasonable performance in a

clean way. As future work on the Rwl approach we envisage two directions. First, just as

before, the transformation can surely be optimized since there is still literature on rewriting

techniques to cover. Second, the use of the Maude meta-level endows us with a fine-grained

control of the Rwl execution, thus making possible the implementation of resolution strategies

with cost guarantees [LS09], or even compositional reasoning over Datalog programs [BJ03].

Bibliography

[AFJV09a] M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva. Datalog solve: A

datalog-based demand-driven program analyzer. Electronic Notes in Theorertical

Computer Science, 248:57–66, 2009.

[AFJV09b] M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva. Implementing Datalog

in Maude. In R. Peña, editor, Proceedings of the IX Jornadas sobre Programación

y Lenguajes (PROLE’09) and I Taller de Programación Funcional (TPF’09),

pages 15–22, September 2009.

[AFJV09c] M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva. Using Datalog and

Boolean Equation Systems for Program Analysis. In D. Cofer and A. Fantechi,

editors, Proceedings of the 13th International Workshop on Formal Methods for

Industrial Critical Systems (FMICS’08), volume 5596 of Lecture Notes in Com-

puter Science, pages 215–231. Springer-Verlag, 2009.

[AFJV10a] M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva. Defining Datalog

in Rewriting Logic. In D. De Schreye, editor, 19th International Symposium

on Logic-based Program Synthesis and Transformation (LOPSTR 2009). Revised

Selected Papers, volume 6037 of Lecture Notes in Computer Science, pages 188–

204. Springer-Verlag, 2010.

[AFJV10b] M. Alpuente, M. A. Feliú, C. Joubert, and A. Villanueva. Datalog-based Program

Analysis with BES and RWL. In Proceedings of the Workshop on Datalog 2.0,

to appear in Lecture Notes in Computer Science. Springer-Verlag, 2010.

[And94a] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer

Science, 126(1):3–30, 1994.

[And94b] L. O. Andersen. Program Analysis and Specialization for the C Programming

Language. Ph.D thesis, DIKU, Unversity of Copenhagen, 1994.

72 APPENDIX C. BIBLIOGRAPHY

[AU10] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment.

In I. Manolescu, S. Spaccapietra, J. Teubner, M. Kitsuregawa, A. Léger, F. Nau-

mann, A. Ailamaki, and F. Özcan, editors, EDBT, volume 426 of ACM Interna-

tional Conference Proceeding Series, pages 99–110. ACM, 2010.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press, 2003.

[BJ03] F. Besson and T. Jensen. Modular class analysis with datalog. In SAS’03:

Proceedings of the 10th international conference on Static analysis, volume 2694

of Lecture Notes in Computer Science, pages 19–36, Springer-Verlag, 2003.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In

Proceedings of the 4th ACM Symposium on ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages (POPL), pages 238–252, 1977.

[CDE+07a] M. Clavel, F. Durán, S. Ejer, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-

cott. All About Maude – A High-Performance Logical Framework, volume 4350

of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[CDE+07b] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

C.Talcott. All About Maude: A High-Performance Logical Framework, How to

Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture

Notes in Computer Science. Springer-Verlag, 2007.

[CPvW07] T. Chen, B. Ploeger, J. van de Pol, and T. A. C. Willemse. Equivalence Checking

for Infinite Systems Using Parameterized Boolean Equation Systems. In Proceed-

ings 18th International Conference on Concurrency Theory CONCUR’07, volume

4703 of Lecture Notes in Computer Science, pages 120–135. Springer-Verlag, 2007.

[DPW08] A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for Parameterised

Boolean Equation Systems. In Proceedings 5th International Colloquium on The-

oretical Aspects of Computing ICTAC’08, volume 5160 of Lecture Notes in Com-

puter Science. Springer-Verlag, 2008.

[FJT10a] M. A. Feliú, C. Joubert, and F. Taŕın. Efficient BES-based Bottom-Up Evaluation

of Datalog Programs. In Proceedings of the X Jornadas sobre Programación y

Lenguajes (PROLE’10), pages 165–176, 2010.

C.0. BIBLIOGRAPHY 73

[FJT10b] M. A. Feliú, C. Joubert, and F. Taŕın. Evaluation strategies for datalog-based

points-to analyses. In Proceedings of the 10th Workshop on Automated Verifica-

tion of Critical Systems (AVoCS’2010), page To appear, 2010.

[GMLS07] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox

for the Construction and Analysis of Distributed Processes. In Proceedings 19th

International Conference on Computer Aided Verification CAV’07, volume 4590

of Lecture Notes in Computer Science, pages 158–163. Springer-Verlag, 2007.

[Han94] M. Hanus. The Integration of Functions into Logic Programming: From Theory

to Practice. Journal on Logic Programming, 19&20:583–628, 1994.

[HHI+01] J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V.

Vianu. On the unusual effectiveness of logic in computer science. Bulletin of

Symbolic Logic, 7(2):213–236, 2001.

[JM06] C. Joubert and R. Mateescu. Distributed On-the-Fly Model Checking and Test

Case Generation. In Proceedings 13th International SPIN Workshop on Model

Checking of Software SPIN’06, volume 3925 of Lecture Notes in Computer Sci-

ence, pages 126–145. Springer-Verlag, 2006.

[JV05] D. W. Jorgenson and K. Vu. Information technology and the world economy.

Scandinavian Journal of Economics, 107:631–650, Dec 2005.

[Lee90] J. van Leeuwen, editor. Formal Models and Semantics, volume B. Elsevier, The

MIT Press, 1990.

[LS98] X. Liu and S. A. Smolka. Simple Linear-Time Algorithms for Minimal Fixed

Points. In Proceedings 25th International Colloquium on Automata, Languages,

and Programming ICALP’98, volume 1443 of Lecture Notes in Computer Science,

pages 53–66. Springer-Verlag, 1998.

[LS09] Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs with time

and space guarantees. ACM Trans. Program. Lang. Syst., 31(6), 2009.

[LWL05] B. Livshits, J. Whaley, and M.S. Lam. Reflection Analysis for Java. In Pro-

ceedings of the Third Asian Symposium on Programming Languages and Systems

(APLAS’05), pages 139–160, 2005.

[Mar94] M. Marchiori. Logic Programs as Term Rewriting Systems. In Proceedings of

the 4th International Conference on Algebraic and Logic Programming (ALP’94,

74 APPENDIX C. BIBLIOGRAPHY

volume 850 of Lecture Notes In Computer Science, pages 223– 241. Springer-

Verlag, 1994.

[Mat98] R. Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal

Mu-Calculus. In Proceedings 2nd International Workshop on Verication, Model

Checking and Abstract Interpretation VMCAI’98, 1998.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.

Theoretical Computer Science, 96(1):73–155, 1992.

[MMW85] Z. Manna, and R. Waldinger. The Logical Basis for Computer Programming.

Addison-Wesley, 1985.

[MT08] R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-

Passing Systems. In Proceedings 15th International Symposium on Formal Meth-

ods FM’08, volume 5014 of Lecture Notes in Computer Science. Springer-Verlag,

2008.

[PK82] R. Paige and S. Koenig. Finite differencing of computable expressions. ACM

Transactions on Programming Languages and Systems, 4(3):402–454, 1982.

[Red84] U. S. Reddy. Transformation of Logic Programs into Functional Programs. In

Proceedings of the Symposium on Logic Programming (SLP’84), pages 187–197.

IEEE Computer Society Press, 1984.

[RH05] G. Rosu and K. Havelund. Rewriting-Based Techniques for Runtime Verification.

Automated Software Engineering, 12(2):151–197, 2005.

[SKGST07] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Ter-

mination Analysis for Logic Programs by Term Rewriting. In Proceedings of the

16th International Symposium on Logic-Based Program Synthesis and Transfor-

mation (LOPSTR’06), volume 4407 of Lecture Notes in Computer Science, pages

177–193. Springer-Verlag, 2007.

[Ull85] J. D. Ullman. Implementation of logical query languages for databases. ACM

Transactions on Database Systems, 10(3):289–321, 1985.

[Vie86] L. Vieille. Recursive Axioms in Deductive Databases: The Query/Subquery Ap-

proach. In Proceedings 1st International Conference on Expert Database Systems

EDS’86, pages 253–267, 1986.

C.0. BIBLIOGRAPHY 75

[VT06] J. Vilaseca i Requena and J. Torrent i Sellens. Tic, conocimiento y crecimiento

economico: Un análisis emṕırico, agregado e internacional sobre las fuentes de la

productividad. Economı́a Industrial, 360:41–60, 2006.

[WACL05] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with Binary

Decision Diagrams for Program Analysis. In Proceedings of the Third Asian

Symposium on Programming Languages and Systems APLAS’05, volume 3780 of

Lecture Notes in Computer Science, pages 97–118. Springer-Verlag, 2005.

[Wha03] J. Whaley. Joeq: a Virtual Machine and Compiler Infrastructure. In Proceedings

Workshop on Interpreters, Virtual Machines and Emulators IVME’03, pages 58–

66. ACM Press, 2003.

[ZR08] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In Proceedings

of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages POPL’08, pages 197–208. ACM Press, 2008.

	Introduction
	Preliminaries
	Datalog
	Static analysis
	Datalog-based static analysis

	Parameterised Boolean Equation Systems
	Rewriting Logic
	Maude

	The Bes-based Datalog evaluation approach
	From Datalog to Bes.
	A complete Datalog to Bes transformation
	Instantiation to parameterless BES
	Solution extraction

	The prototype Datalog_Solve
	Experimental results
	Related Work.
	Conclusions

	The Rwl-based Datalog evaluation approach
	From Datalog to Rwl.
	A complete Datalog to Rwl transformation
	Dealing with Java reflection
	The prototype Datalaude
	Experimental results
	Comparison w.r.t. a previous rewriting-based implementation
	Comparison w.r.t. other Datalog solvers

	Related Work.
	Conclusions

	Conclusions and future work
	Bibliography

