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Abstract. We solve the problem of determining the Weierstrass structure of a regular matrix
pencil obtained by a low rank perturbation of another regular matrix pencil. We apply the result
to find necessary and sufficient conditions for the existence of a low rank perturbation such that the
perturbed pencil has prescribed eigenvalues and algebraic multiplicities. The results hold over fields
with sufficient number of elements.
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1. Introduction. In the last few decades the problem of low rank perturbation
has been widely studied by different authors from different points of view. Given a
matrix A, the problem consists of characterizing the invariants of A+P with respect
to a given equivalence relation, where P is a matrix of bounded rank. As pointed
out in [6], the problem is equivalent to the rank distance problem, i.e., the problem of
finding two matrices with prescribed invariants, such that their difference has bounded
rank.

Different requirements on the matrices A,P and a matrix B equivalent to A+P ,
on their domain and on the equivalence relation, lead to different types of problems.
Additionally, in many contributions in the area the problem is addressed generically,
i.e., the perturbation P belongs to an open and dense subset of the set of matrices
with rank less than or equal to r, for a given integer r (see, for instance, [1, 2, 3, 4, 5,
14, 15, 17, 18] and the references therein). In other cases, the matrix P is an arbitrary
perturbation belonging to the whole set of matrices of rank less than or equal to r. In
this paper we follow the second approach. Some results related to the problem from
this point of view can be found in [6, 9, 11, 13, 19, 20, 21, 22]. We next analyze most
of them.

For matrices over a principal ideal domain the problem of characterizing the in-
variant factors of A + P , where P is a matrix with rank(P ) \leq r, has been solved in
[21] for r = 1 and in [13] for the general case (see Lemma 4.1). For square matri-
ces over a field and the similarity relation, a solution is given in [20] and [22] (see
Proposition 4.9). For r = 1 the problem was already solved in [21]. The case where
the perturbation P has fixed rank (rank(P ) = r) has been solved in [20] for square
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matrices over algebraically closed fields, and for matrices over principal ideal domains
in [19]. More recently, in [6], the low rank perturbation problem is solved for pairs of
matrices and the feedback equivalence relation.

It is well known that two matrices A,B \in \BbbF n\times n, \BbbF a field, are similar if and
only if their characteristic matrices sIn - A and sIn - B are equivalent as polynomial
matrices (see, for instance, [7, Chap. 2], [8, Chap. 6]). Therefore, the results in
[20, 21, 22] hold for regular pencils having only finite invariant factors; hence they
give a solution to the low rank perturbation problem for this type of pencils and for a
constant perturbation. In the same way, given a matrix pair (A1, A2) with A1 \in \BbbF n\times n,
A2 \in \BbbF n\times m, we can associate to (A1, A2) the singular matrix pencil

\bigl[ 
sIn  - A1 A2

\bigr] 
.

Two matrix pairs are feedback equivalent if and only if the associated pencils are
strictly equivalent (see, for instance, [10, Chap. IX]). Then, the result in [6] holds for
singular matrix pencils of the form

\bigl[ 
sIn  - A1 A2

\bigr] 
and the strict equivalence relation

of matrix pencils, when the perturbation matrix is constant.
In this paper we solve the low rank perturbation problem for regular matrix

pencils and the strict equivalence relation, when the perturbation matrix is allowed
to be a pencil (pencil perturbation problem). The general pencil perturbation problem
for arbitrary singular pencils remains open.

A complete system of invariants for the strict equivalence of regular matrix pen-
cils is formed by the invariant factors (equivalently, the finite elementary divisors)
and the infinite elementary divisors. We refer to them as the Weierstrass structure
of the pencil. Given a regular matrix pencil A(s), we obtain necessary conditions
for the Weierstrass structure of the pencil A(s) + P (s), when P (s) is a pencil with
rank(P (s)) \leq r and A(s)+P (s) is regular, which hold for arbitrary fields. Conversely,
we prove that the necessary conditions obtained are sufficient, but in this case we need
to impose a condition on the field: we need the field to have a sufficient number of
elements (see Remark 4.15).

As mentioned above, the solutions to the perturbation problem provided in [20,
21, 22] are also solutions to our problem in the case where the pencils do not have
infinite elementary divisors. Notice that the perturbation matrix P is required there
to be constant. In the more general statement of perturbation of polynomial matrices
of [13, 19, 21], the only invariants involved in the equivalence relation are the (finite)
invariant factors, and the perturbation matrix can be a polynomial matrix of any
degree. In this paper, the perturbation problem is solved for arbitrary regular pencils,
therefore including the case where they have infinite elementary divisors, and the
perturbation matrix is allowed to be a polynomial matrix of degree at most one.

Moreover, the result we obtain allows us to generalize the solution given in [9]
to the eigenvalue placement problem. Namely, given a regular matrix pencil A(s),
we obtain necessary and sufficient conditions for the existence of a pencil P (s) with
rank(P (s)) \leq r such that A(s) + P (s) is regular with prescribed eigenvalues and
algebraic multiplicities. In [9] the solution to this problem is obtained for r = 1 and
for complex or real pencils.

For complex regular matrix pencils, generic low rank perturbations have been
studied, for instance, in [4, 5]. There, an eigenvalue of the pencil A(s) is fixed and the
spectral behavior of the eigenvalue after perturbation is generically characterized. In
our result all of the possible achievable partial multiplicities of all of the eigenvalues
are characterized, therefore including those of the generic behavior. The same type
of problem for singular matrix pencils was studied in [3] and for structured regular
pencils, for example, in [1, 2]. In both cases, the problem is addressed generically.

The paper is organized as follows. In section 2 we introduce the notation, basic
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definitions, and preliminary results. In section 3 the problems to be studied in the
paper are established. In section 4 we provide in Theorem 4.13 a solution to the
stated low rank perturbation problem. Section 5 is devoted to solving the eigenvalue
placement problem, and the solution is given in Theorem 5.4. Finally, in section 6 we
summarize the main contributions of the paper.

2. Preliminaries. Let \BbbF be a field. \BbbF [s] denotes the ring of polynomials in the
indeterminate s with coefficients in \BbbF , and \BbbF [s, t] denotes the ring of polynomials in
two variables s, t with coefficients in \BbbF . We denote by \BbbF m\times n, \BbbF [s]m\times n, and \BbbF [s, t]m\times n

the vector spaces of m\times n matrices with elements in \BbbF , \BbbF [s], and \BbbF [s, t], respectively.
Gln(\BbbF ) will be the general linear group of invertible matrices in \BbbF n\times n. A matrix
U(s) \in \BbbF [s]n\times n is unimodular if 0 \not = det(U(s)) \in \BbbF , i.e., it is a unit in the ring
\BbbF [s]n\times n.

Given a polynomial matrix G(s) \in \BbbF [s]m\times n, the degree of G(s), denoted by
deg(G(s)), is the maximum of the degrees of its entries. The normal rank of G(s),
denoted by rank(G(s)), is the order of the largest nonidentically zero minor of G(s),
i.e., it is the rank of G(s) considered as a matrix on the field of fractions of \BbbF [s]. The
determinantal divisor of order k of G(s), denoted by Dk(s), is the monic greatest
common divisor of the minors of order k of G(s), 1 \leq k \leq rank(G(s)).

Two polynomial matrices G(s), H(s) \in \BbbF [s]m\times n are equivalent to (G(s) \sim H(s))
if there exist unimodular matrices U(s) \in \BbbF [s]m\times m, V (s) \in \BbbF [s]n\times n such that G(s) =
U(s)H(s)V (s). If G(s) \in \BbbF [s]m\times n and rank(G(s)) = \rho , it is well known (see, for
example, [8, Chap. 6]) that G(s) is equivalent to a unique matrix of the form

S(s) =

\biggl[ 
diag(\gamma 1(s), . . . , \gamma \rho (s)) 0

0 0

\biggr] 
,

where \gamma 1(s), . . . , \gamma \rho (s) are monic polynomials and \gamma 1(s) | \cdot \cdot \cdot | \gamma \rho (s). Moreover,

Dk(s) = \gamma 1(s), . . . , \gamma k(s), 1 \leq k \leq \rho ,

which means that

\gamma k(s) =
Dk(s)

Dk - 1(s)
, 1 \leq k \leq \rho (D0(s) = 1).

The matrix S(s) is the Smith form of G(s) and the polynomials \gamma 1(s), . . . , \gamma \rho (s) are
the invariant factors of G(s). We will take \gamma i(s) := 1 for i < 1 and \gamma i(s) := 0 for
i > \rho .

The invariant factors form a complete system of invariants for the equivalence of
polynomial matrices, i.e., two polynomial matrices G(s), H(s) \in \BbbF [s]m\times n are equiva-
lent if and only if they have the same invariant factors.

A matrix pencil is a polynomial matrix G(s) \in \BbbF [s]m\times n such that deg(G(s)) \leq 1.
The pencil is regular if m = n and det(G(s)) is not the zero polynomial. Otherwise,
it is singular.

Two matrix pencils G(s) = G0 + sG1, H(s) = H0 + sH1 \in \BbbF [s]m\times n are strictly

equivalent (G(s)
s.e.\sim H(s)) if there exist invertible matrices Q \in Glm(\BbbF ), R \in Gln(\BbbF )

such that G(s) = QH(s)R. Equivalently, G0 = QH0R, G1 = QH1R.

It is immediate that if G(s)
s.e.\sim H(s), then G(s) \sim H(s). Moreover, if n = m,

det(G1) \not = 0 and det(H1) \not = 0, then G(s)
s.e.\sim H(s) if and only if G(s) \sim H(s) (see, for

instance, [8, Chap. 12, Theorem 1]).
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If \gamma 1(s) | \cdot \cdot \cdot | \gamma \rho (s) are the invariant factors of G(s) = G0 + sG1 \in \BbbF [s]m\times n, then
the invariant factors of the matrix pencil \=G(t) = tG0+G1 \in \BbbF [t]m\times n can be expressed
as

\=\gamma i(t) = kit
qitdeg(\gamma i)\gamma i

\Bigl( 1
t

\Bigr) 
, 1 \leq i \leq \rho ,

for some integers qi \geq 0, where 0 \not = ki \in \BbbF are scalars such that \=\gamma i(t) are monic.
If qi > 0, then tqi is an infinite elementary divisor of G(s). The infinite elementary
divisors of G(s) exist if and only if rank(G1) < rank(G(s)).

The exponents qi are the partial multiplicities at infinity of G(s) and we will
denote them by mi(\infty , G(s)) := qi. Then, m1(\infty , G(s)) \leq \cdot \cdot \cdot \leq m\rho (\infty , G(s)).

Given G(s) = G0+ sG1 \in \BbbF [s]m\times n, with rank(G(s)) = \rho , the homogeneous pencil
associated to G(s) is

G(s, t) = tG0 + sG1 \in \BbbF [s, t]m\times n,

and the homogeneous determinantal divisor of order k of G(s), denoted by \Delta k(s, t),
is the greatest common divisor of the minors of order k of G(s, t), 1 \leq k \leq \rho . We
will assume that \Delta k(s, t) is monic with respect to s. The homogeneous determinantal
divisors of G(s) are homogeneous polynomials and \Delta k - 1(s, t) | \Delta k(s, t), 1 \leq k \leq \rho .
Defining

\Gamma k(s, t) =
\Delta k(s, t)

\Delta k - 1(s, t)
, 1 \leq k \leq \rho (\Delta 0(s, t) = 1),

if \gamma 1(s) | \cdot \cdot \cdot | \gamma \rho (s) and \=\gamma 1(t) | \cdot \cdot \cdot | \=\gamma \rho (t) are the invariant factors of G(s) and
\=G(t) = tG0 +G1, respectively, then

\gamma i(s) = \Gamma i(s, 1), \=\gamma i(t) = ki\Gamma i(1, t), 1 \leq i \leq \rho (0 \not = ki \in \BbbF ),

and
\Gamma i(s, t) = tmi(\infty ,G(s))tdeg(\gamma i)\gamma i

\Bigl( s
t

\Bigr) 
, 1 \leq i \leq \rho .

As a consequence, \Gamma 1(s, t) | \cdot \cdot \cdot | \Gamma \rho (s, t). The polynomials \Gamma 1(s, t), . . . ,\Gamma \rho (s, t) are
called the homogeneous invariant factors of G(s). For details, see [7, Chap. 2], [8,
Chap. 12]. We will take \Gamma i(s, t) := 1 for i < 1 and \Gamma i(s, t) := 0 for i > \rho . Observe that
the homogeneous invariant factors of \=G(t) = tG0 + G1 are \=\Gamma i(t, s) = ki\Gamma i(s, t), 0 \not =
ki \in \BbbF .

The homogeneous invariant factors form a complete system of invariants for the
strict equivalence of regular pencils. A proof of the following theorem can be found,
for instance, in [8, Chap. 12] for infinite fields and in [16, Chap. 2] for arbitrary fields.

Theorem 2.1 (Weierstrass). Two regular matrix pencils are strictly equivalent if
and only if they have the same homogeneous invariant factors.

Notice that the invariant factors and the infinite elementary divisors determine
the homogeneous invariant factors. As a consequence, two regular matrix pencils are
strictly equivalent if and only if they have the same invariant factors and the same
infinite elementary divisors.

We denote by \BbbF the algebraic clousure of \BbbF . The finite spectrum of a regular
pencil G(s) = G0 + sG1 \in \BbbF [s]n\times n is defined as

\Lambda f (G(s)) = \{ \lambda \in \BbbF : det(G(\lambda )) = 0\} .

If \gamma 1(s) | \cdot \cdot \cdot | \gamma n(s) are the invariant factors of G(s), then we can write

\gamma i(s) =
\prod 

\lambda \in \Lambda f (G(s))

(s - \lambda )mi(\lambda ,G(s)),
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where 0 \leq m1(\lambda ,G(s)) \leq \cdot \cdot \cdot \leq mn(\lambda ,G(s)) are called the partial multiplicities at \lambda 
of G(s). The spectrum of G(s) is \Lambda (G(s)) = \Lambda f (G(s)) if det(G1) \not = 0 and \Lambda (G(s)) =
\Lambda f (G(s)) \cup \{ \infty \} if det(G1) = 0. The elements \lambda \in \Lambda (G(s)) are the eigenvalues of
G(s).

If \lambda \in \BbbF \setminus \Lambda (G(s)), we putm1(\lambda ,G(s)) = \cdot \cdot \cdot = mn(\lambda ,G(s)) = 0. For \lambda \in \BbbF \cup \{ \infty \} ,
we will agree that mi(\lambda ,G(s)) = 0 for i < 1 and mi(\lambda ,G(s)) = \infty for i > n.
We denote by (w1(\lambda ,G(s)), . . . , wn(\lambda ,G(s))) the conjugate partition of the partition
(mn(\lambda ,G(s)), . . . ,m1(\lambda ,G(s))), i.e.,

wi(\lambda ,G(s)) = \#\{ j \in \{ 1, . . . , n\} : mj(\lambda ,G(s)) \geq i\} , 1 \leq i \leq n.

The algebraic multiplicity of \lambda in G(s) is \mu a(\lambda ,G(s)) :=
\sum n

i=1mi(\lambda ,G(s)), and the
geometric multiplicity is \mu g(\lambda ,G(s)) := \#\{ i \in \{ 1, . . . , n\} : mi(\lambda ,G(s)) > 0\} , i.e.,
\mu g(\lambda ,G(s)) = w1(\lambda ,G(s)).

The following technical result characterizes some inequality relations between
the elements of two partitions of nonnegative integers and those of their conjugate
partitions.

Lemma 2.2 (see [12, Lemma 3.2]). Let p1 \geq p2 \geq \cdot \cdot \cdot \geq 0 and p\prime 1 \geq p\prime 2 \geq \cdot \cdot \cdot \geq 0
be partitions of n and n\prime with conjugate partitions q1 \geq q2 \geq \cdot \cdot \cdot \geq 0 and q\prime 1 \geq q\prime 2 \geq 
\cdot \cdot \cdot \geq 0. Let r \in \BbbN . Then q\prime i \geq qi+r and qi \geq q\prime i+r for all i > 0 if and only if
| pi  - p\prime i | \leq r for all i > 0.

In the next lemma, whose proof is straightforward, we show that conditions of
divisibility between homogeneous invariant factors can be expressed in terms of divis-
ibility between invariant factors and infinite elementary divisors.

Lemma 2.3. Let \gamma (s), \omega (s) \in \BbbF [s] be monic polynomials, and let m,m\prime be non-
negative integers. If \Gamma (s, t) = tmtdeg(\gamma )\gamma ( st ) and \Omega (s, t) = tm

\prime 
tdeg(\omega )\omega ( st ), then

\Gamma (s, t) | \Omega (s, t) if and only if

\biggl\{ 
\gamma (s) | \omega (s),
m \leq m\prime .

3. Statement of the problems. The first problem we deal with in this paper
is the following one.

Problem 3.1 (low rank perturbation for regular matrix pencils). Given two reg-
ular matrix pencils A(s), B(s) \in \BbbF [s]n\times n and a nonnegative integer r, find necessary
and sufficient conditions for the existence of a matrix pencil P (s) \in \BbbF [s]n\times n such that

rank(P (s)) \leq r and A(s) + P (s)
s.e.\sim B(s).

The next lemma shows that the pencil A(s) can be substituted by any other pencil
strictly equivalent to A(s).

Lemma 3.2. Let A(s), B(s), P (s) \in \BbbF [s]n\times n be matrix pencils. Let Q,R \in Gln(\BbbF )
and A\prime (s) = QA(s)R. If A(s) + P (s)

s.e.\sim B(s), then A\prime (s) +QP (s)R
s.e.\sim B(s).

Proof. If B(s)
s.e.\sim A(s)+P (s), then B(s)

s.e.\sim Q(A(s)+P (s))R = A\prime (s)+QP (s)R.

In the next lemma we see that the roles of the pencils A(s) and B(s) can be
interchanged.

Lemma 3.3. Let A(s), B(s), P (s) \in \BbbF [s]n\times n be matrix pencils such that A(s) +

P (s)
s.e.\sim B(s). Then there exists a matrix pencil P \prime (s) \in \BbbF [s]n\times n such that B(s) +

P \prime (s)
s.e.\sim A(s) and rank(P \prime (s)) = rank(P (s)).

Proof. There exist Q,R \in Gln(\BbbF ) such that Q(A(s) + P (s))R = B(s). Hence,

B(s) - QP (s)R = QA(s)R
s.e.\sim A(s) and the lemma follows with P \prime (s) =  - QP (s)R.
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The solution to Problem 3.1 will allow us to also solve the following one.

Problem 3.4 (eigenvalue placement for regular matrix pencils under low rank per-
turbations). Given a regular matrix pencil A(s) \in \BbbF [s]n\times n, a nonnegative integer
r and a monic polynomial 0 \not = p(s) \in \BbbF [s] with deg(p(s)) \leq n, find necessary and
sufficient conditions for the existence of a matrix pencil P (s) \in \BbbF [s]n\times n such that
rank(P (s)) \leq r and det(A(s) + P (s)) = kp(s), with k \in \BbbF .

Notice that in this problem we prescribe the spectrum \Lambda (A(s) + P (s)) and the
algebraic multiplicities of every \lambda \in \Lambda (A(s) + P (s)). For r = 1 and \BbbF = \BbbC or \BbbF = \BbbR ,
a solution to Problem 3.4 is given in [9].

4. Low rank perturbation for regular matrix pencils. In this section we
give a solution to Problem 3.1.

4.1. Necessary conditions. The next lemma was obtained in [13]. The result
can also be found in [19, Theorem 1].

Lemma 4.1 (see [13, Theorem 6.1]). Let G(s), H(s) \in \BbbF [s]m\times n, n \leq m, be poly-
nomial matrices with invariant factors \gamma 1(s) | \cdot \cdot \cdot | \gamma n(s) and \delta 1(s) | \cdot \cdot \cdot | \delta n(s), re-
spectively. Let r be a nonnegative integer. There exist matrices \^G(s), \^H(s) \in \BbbF [s]m\times n

equivalent to G(s) and H(s), respectively, such that

rank( \^H(s) - \^G(s)) \leq r

if and only if

(4.1) \delta i(s) | \gamma i+r(s), \gamma i(s) | \delta i+r(s), 1 \leq i \leq n - r.

Remark 4.2. Condition (4.1) is equivalent to

\gamma i - r(s) | \delta i(s) | \gamma i+r(s), 1 \leq i \leq n,

and to
\delta i - r(s) | \gamma i(s) | \delta i+r(s), 1 \leq i \leq n.

Taking advantage of the above result, we obtain desired necessary conditions for
solving Problem 3.1 in the next proposition.

Proposition 4.3. Let A(s) = A0 + sA1, B(s) = B0 + sB1 \in \BbbF [s]n\times n be regular
matrix pencils. Let P (s) = P0+sP1 \in \BbbF [s]n\times n be a matrix pencil with rank(P (s)) = r

such that A(s) + P (s)
s.e.\sim B(s). Let \phi 1(s, t) | \cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | \psi n(s, t)

be the homogeneous invariant factors of A(s) and B(s), respectively. Then

(4.2) \phi i - r(s, t) | \psi i(s, t) | \phi i+r(s, t), 1 \leq i \leq n.

Proof. Let \=A(t) = tA0 +A1, \=B(t) = tB0 +B1, and \=P (t) = tP0 + P1.

Since A(s) + P (s)
s.e.\sim B(s), we have that A(s) + P (s) \sim B(s) and \=A(t) + \=P (t) \sim 

\=B(t).
Let \alpha 1(s) | \cdot \cdot \cdot | \alpha n(s) and \beta 1(s) | \cdot \cdot \cdot | \beta n(s) be the invariant factors of A(s) and

B(s), respectively. The invariant factors of \=A(t) = tA0 + A1 and \=B(t) = tB0 + B1

are, respectively,

\=\alpha i(t) = kit
mi(\infty ,A(s))tdeg(\alpha i)\alpha i

\Bigl( 1
t

\Bigr) 
, 1 \leq i \leq n (0 \not = ki \in \BbbF ),

\=\beta i(t) = k\prime it
mi(\infty ,B(s))tdeg(\beta i)\beta i

\Bigl( 1
t

\Bigr) 
, 1 \leq i \leq n (0 \not = k\prime i \in \BbbF ).
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By Lemma 4.1,

(4.3) \alpha i - r(s) | \beta i(s) | \alpha i+r(s), 1 \leq i \leq n,

and

(4.4) \=\alpha i - r(t) | \=\beta i(t) | \=\alpha i+r(t), 1 \leq i \leq n.

It follows from (4.4) that

(4.5) mi - r(\infty , A(s)) \leq mi(\infty , B(s)) \leq mi+r(\infty , A(s)), 1 \leq i \leq n.

By Lemma 2.3, conditions (4.3) and (4.5) are equivalent to (4.2).

Remark 4.4. If rank(P (s)) = r1 \leq r, this proposition tells us that

\phi i - r1(s, t) | \psi i(s, t) | \phi i+r1(s, t), 1 \leq i \leq n;

therefore,

\phi i - r(s, t) | \phi i - r1(s, t) | \psi i(s, t) | \phi i+r1(s, t) | \phi i+r(s, t), 1 \leq i \leq n,

hence, condition (4.2) is necessary for Problem 3.1.

Remark 4.5. Condition (4.2) is also equivalent to

\psi i - r(s, t) | \phi i(s, t) | \psi i+r(s, t), 1 \leq i \leq n.

Condition (4.2) can be stated in terms of the partial multiplicities of the elements
of \Lambda (A(s)) \cup \Lambda (B(s)).

Corollary 4.6. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Let P (s) \in 
\BbbF [s]n\times n be a matrix pencil with rank(P (s)) = r such that A(s)+P (s)

s.e.\sim B(s). Then

(4.6) mi - r(\lambda ,A(s)) \leq mi(\lambda ,B(s)) \leq mi+r(\lambda ,A(s)), 1 \leq i \leq n, \lambda \in \BbbF \cup \{ \infty \} .

Equivalently,

mi - r(\lambda ,B(s)) \leq mi(\lambda ,A(s)) \leq mi+r(\lambda ,B(s)), 1 \leq i \leq n, \lambda \in \BbbF \cup \{ \infty \} .

From Lemma 2.2 we conclude the following result (Corollary 4.7 for r = 1 is
proved in Proposition 4.2 of [9]).

Corollary 4.7. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Let P (s) \in 
\BbbF [s]n\times n be a matrix pencil with rank(P (s)) = r such that A(s)+P (s)

s.e.\sim B(s). Then

(4.7) wi(\lambda ,A(s)) - r \leq wi(\lambda ,B(s)) \leq wi(\lambda ,A(s)) + r, 1 \leq i \leq n, \lambda \in \BbbF \cup \{ \infty \} .

Equivalently,

wi(\lambda ,B(s)) - r \leq wi(\lambda ,A(s)) \leq wi(\lambda ,B(s)) + r, 1 \leq i \leq n, \lambda \in \BbbF \cup \{ \infty \} .

Corollary 4.8. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Let P (s) \in 
\BbbF [s]n\times n be a matrix pencil with rank(P (s)) = r such that A(s)+P (s)

s.e.\sim B(s). Then

\mu g(\lambda ,A(s)) - r \leq \mu g(\lambda ,B(s)) \leq \mu g(\lambda ,A(s)) + r, \lambda \in \BbbF \cup \{ \infty \} .
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4.2. Sufficiency of the conditions. For the case when A(s) = sIn - A, B(s) =
sIn  - B, with A,B \in \BbbF n\times n, a solution to Problem 3.1 is given in [21] for r = 1 and
in [20] and [22] for the general case. Taking advantage of this result (see Proposition
4.9) we prove in Corollary 4.10 the sufficiency of conditions (4.2) for pencils without
infinite elementary divisors.

Proposition 4.9 (see [20, Theorem 1], [22, Theorem 3]). Let G \in \BbbF n\times n and
\gamma 1(s) | \cdot \cdot \cdot | \gamma n(s) be its invariant factors. Let \delta 1(s) | \cdot \cdot \cdot | \delta n(s) be monic polynomials
such that

\sum n
i=1 deg(\delta i(s)) = n. Let r be a nonnegative integer. Then there exists a

matrix P \in \BbbF n\times n such that rank(P ) \leq r and G+P has \delta 1(s) | \cdot \cdot \cdot | \delta n(s) as invariant
factors if and only if

\delta i - r(s) | \gamma i(s) | \delta i+r(s), 1 \leq i \leq n.

Corollary 4.10. Let A(s) = A0 + sA1, B(s) = B0 + sB1 \in \BbbF [s]n\times n be such
that det(A1) \not = 0 and det(B1) \not = 0. Let \phi 1(s, t) | \cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | 
\psi n(s, t) be the homogeneous invariant factors of A(s) and B(s), respectively. Let r
be a nonnegative integer. If (4.2) is satisfied, then there exists P0 \in \BbbF n\times n such that

rank(P0) \leq r and A(s) + P0
s.e.\sim B(s).

Proof. Recall that two square matrices G,H \in \BbbF n\times n are similar if and only if
(sIn  - G) \sim (sIn  - H) and that the invariant factors of G \in \BbbF n\times n are those of
sIn  - G.

Let \alpha 1(s) | \cdot \cdot \cdot | \alpha n(s) and \beta 1(s), | \cdot \cdot \cdot | \beta n(s) be the invariant factors of A(s) and
B(s), respectively. Since det(A1) \not = 0 and det(B1) \not = 0, these pencils do not have
infinite elementary divisors; therefore,

m1(\infty , A(s)) = \cdot \cdot \cdot = mn(\infty , A(s)) = 0, m1(\infty , B(s)) = \cdot \cdot \cdot = mn(\infty , B(s)) = 0.

As a consequence, (4.2) is equivalent to

(4.8) \alpha i - r(s) | \beta i(s) | \alpha i+r(s), 1 \leq i \leq n.

We have that A(s)
s.e.\sim A - 1

1 (A0 + A1s) = A - 1
1 A0 + sIn and B(s)

s.e.\sim B - 1
1 (B0 +

B1s) = B - 1
1 B0+sIn, hence the invariant factors of  - A - 1

1 A0 and  - B - 1
1 B0 are \alpha 1(s) | 

\cdot \cdot \cdot | \alpha n(s) and \beta 1(s), | \cdot \cdot \cdot | \beta n(s), respectively. By Proposition 4.9, there exists
P \in \BbbF n\times n such that rank(P ) \leq r and P + A - 1

1 A0 + sIn \sim B - 1
1 B0 + sIn, hence

P + A - 1
1 A0 + sIn

s.e.\sim B(s). Setting P0 = A1P , we have that rank(P0) \leq r and by

Lemma 3.2, A(s) + P0
s.e.\sim B(s).

As an immediate consequence of Corollary 4.10, we obtain in Corollary 4.11 the
sufficiency of conditions (4.2) for pencils not having the eigenvalue zero.

Corollary 4.11. Let A(s) = A0 + sA1, B(s) = B0 + sB1 \in \BbbF [s]n\times n be such
that det(A0) \not = 0 and det(B0) \not = 0. Let \phi 1(s, t) | \cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | 
\psi n(s, t) be the homogeneous invariant factors of A(s) and B(s), respectively. Let r
be a nonnegative integer. If (4.2) is satisfied, then there exists P1 \in \BbbF n\times n such that

rank(P1) \leq r and A(s) + sP1
s.e.\sim B(s).

Proof. The homogeneous invariant factors of the pencils \=A(t) = tA0 + A1 and
\=B(t) = tB0 + B1 are k1\phi 1(s, t), . . . , kn\phi n(s, t) and k\prime 1\psi 1(s, t), . . . , k

\prime 
n\psi n(s, t), respec-

tively, for some nonzero scalars k1, . . . , kn, k
\prime 
1, . . . , k

\prime 
n \in \BbbF .

By Corollary 4.10, there exists P1 \in \BbbF n\times n such that rank(P1) \leq r and \=A(t)+P1 =

A1 + P1 + tA0
s.e.\sim \=B(t) = B1 + tB0. Therefore, A(s) + sP1 = s(A1 + P1) + A0

s.e.\sim 
sB1 +B0 = B(s).
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The restriction on the field \BbbF introduced in the next corollary allows us to perform
a change of variable over an arbitrary regular pencil, which turns it into a new pencil
without the zero eigenvalue.

Corollary 4.12. Let A(s) = A0 + sA1, B(s) = B0 + sB1 \in \BbbF [s]n\times n be regular
pencils, and assume that there exists c \in \BbbF such that c \not \in \Lambda f (A(s)) \cup \Lambda f (B(s)). Let
\phi 1(s, t) | \cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | \psi n(s, t) be the homogeneous invariant factors
of A(s) and B(s), respectively. Let r be a nonnegative integer. If (4.2) is satisfied,

then there exists P \in \BbbF n\times n such that rank(P ) \leq r and A(s) + (s - c)P
s.e.\sim B(s).

Proof. As c \not \in \Lambda f (A(s)) and c \not \in \Lambda f (B(s)), we have that det(A0 + cA1) \not = 0 and
det(B0 + cB1) \not = 0.

Let us consider the regular matrix pencils

A\prime (y) := (A0 + cA1) + yA1 = A0 + (y + c)A1 = A(y + c) \in \BbbF [y]n\times n,

B\prime (y) := (B0 + cB1) + yB1 = B0 + (y + c)B1 = B(y + c) \in \BbbF [y]n\times n.

The associated homogeneous pencils are

A\prime (y, z) = z(A0 + cA1) + yA1 = zA0 + (cz + y)A1 \in \BbbF [z, y]n\times n,

B\prime (y, z) = z(B0 + cB1) + yB1 = zB0 + (cz + y)B1 \in \BbbF [z, y]n\times n.

Therefore, the homogeneous invariant factors of A\prime (y) and B\prime (y) are

\phi \prime i(y, z) = \phi i(cz + y, z), 1 \leq i \leq n,

and
\psi \prime 
i(y, z) = \psi i(cz + y, z), 1 \leq i \leq n,

respectively. Then, condition (4.2) implies

\phi \prime i - r(y, z) | \psi \prime 
i(y, z) | \phi \prime i+r(y, z), 1 \leq i \leq n.

By Corollary 4.11, there exists P \in \BbbF n\times n such that rank(P ) \leq r and A\prime (y) + yP
s.e.\sim 

B\prime (y). Then A(s) + (s - c)P = A\prime (s - c) + (s - c)P
s.e.\sim B\prime (s - c) = B(s).

The next theorem gives a complete solution to Problem 3.1 under a restriction
on the field \BbbF .

Theorem 4.13. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Let \phi 1(s, t) | 
\cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | \psi n(s, t) be the homogeneous invariant factors of
A(s) and B(s), respectively, and assume that \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s)) \cup \Lambda (B(s)). Let
r be a nonnegative integer. There exists a matrix pencil P (s) \in \BbbF [s]n\times n such that

rank(P (s)) \leq r and A(s) + P (s)
s.e.\sim B(s) if and only if (4.2) holds.

Proof. The necessity follows from Proposition 4.3 and Remark 4.4.
Assume that (4.2) holds. As \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s))\cup \Lambda (B(s)), there exists c \in \BbbF \cup \{ \infty \} 

such that c \not \in \Lambda (A(s))\cup \Lambda (B(s)). If c = \infty , then we apply Corollary 4.10, and if c \not = \infty ,
then we apply Corollary 4.12.

In Corollary 4.14 we restate Theorem 4.13 in terms of the partial multiplicities of
the elements of \Lambda (A(s)) \cup \Lambda (B(s)).

Corollary 4.14. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Assume
that \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s)) \cup \Lambda (B(s)). Let r be a nonnegative integer. There exists a

matrix pencil P (s) \in \BbbF [s]n\times n such that rank(P (s)) \leq r and A(s) + P (s)
s.e.\sim B(s) if

and only if (4.6) (equivalently, (4.7)) holds.
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Remark 4.15. In Theorem 4.13, the condition on the field \BbbF means that there
exists an element c \in \BbbF \cup \{ \infty \} which is neither an eigenvalue of A(s) nor of B(s).
Observe that if \#\BbbF > 2n, this condition is automatically satisfied. In the case that
\#\BbbF \leq 2n, Theorem 4.13 can still be applied, as we show in Example 4.16. Moreover,
the condition \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s))\cup \Lambda (B(s)) is not always necessary. In Theorem 4.17
below we prove that even in the case that \BbbF \cup \{ \infty \} \subseteq \Lambda (A(s)) \cup \Lambda (B(s)), for certain
special structures of A(s) and B(s), condition (4.2) is sufficient. We illustrate the
case in Example 4.18.

Example 4.16. This example is valid for any field \BbbF , including \BbbF = \BbbZ 2.
Let

A(s) =

\left[  s 0 0
0 s 1
0 0 s

\right]  , B(s) =

\left[  1 s 0
0 1 0
0 0 s

\right]  .
The homogeneous invariant factors of A(s) and B(s) are \phi 1(s, t) = 1, \phi 2(s, t) =
s, \phi 3(s, t) = s2 and \psi 1(s, t) = \psi 2(s, t) = 1, \psi 3(s, t) = t2s, respectively. We have
that 1 \not \in \{ 0,\infty \} = \Lambda (A(s)) \cup \Lambda (B(s)) and

\phi i - 1(s, t) | \psi i(s, t) | \phi i+1(s, t), i = 1, 2, 3.

Therefore, there exists a matrix pencil P (s) \in \BbbF [s]3\times 3 such that rankP (s) \leq 1 and

A(s) + P (s)
s.e.\sim B(s). In fact,

A(s) +

\left[  0 0 0
0 0 0
0 1  - s

\right]  =

\left[  s 0 0
0 s 1
0 1 0

\right]  s.e.\sim B(s).

Theorem 4.17. Let A(s), B(s) \in \BbbF [s]n\times n be regular matrix pencils. Let \phi 1(s, t) | 
\cdot \cdot \cdot | \phi n(s, t) and \psi 1(s, t) | \cdot \cdot \cdot | \psi n(s, t) be the homogeneous invariant factors of A(s)
and B(s), respectively, and assume that for some \lambda 0 \in \BbbF \cup \{ \infty \} ,

mi(\lambda 0, A(s)) = mi(\lambda 0, B(s)), 1 \leq i \leq n.

Let r be a nonnegative integer. There exists a matrix pencil P (s) \in \BbbF [s]n\times n such that

rank(P (s)) \leq r and A(s) + P (s)
s.e.\sim B(s) if and only if (4.2) holds.

Proof. If

(4.9) mi(\lambda 0, A(s)) = mi(\lambda 0, B(s)) = 0, 1 \leq i \leq n,

then \lambda 0 \not \in \Lambda (A(s))\cup \Lambda (B(s)) and we can apply Theorem 4.13. In fact, condition (4.9)
implies the condition \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s)) \cup \Lambda (B(s)) of Theorem 4.13.

In any other case, let \mu a(\lambda 0, A(s)) = \mu a(\lambda 0, B(s)) := n1. Then

A(s)
s.e.\sim A\prime (s) =

\biggl[ 
A11(s) 0

0 A22(s)

\biggr] 
, B(s)

s.e.\sim B\prime (s) =

\biggl[ 
A11(s) 0

0 B22(s)

\biggr] 
,

where A11(s) \in \BbbF [s]n1\times n1 , A22(s), B22(s) \in \BbbF [s](n - n1)\times (n - n1) are regular pencils such
that \Lambda (A11(s)) = \{ \lambda 0\} , mi(\lambda 0, A11(s)) = mn - n1+i(\lambda 0, A(s)) = mn - n1+i(\lambda 0, B(s)) for
1 \leq i \leq n1 and the homogeneous invariant factors of A22(s) and B22(s) are \phi 

\prime 
i(s, t) =

\phi n1+i(s, t)/(s  - \lambda 0t)
n1+i and \psi \prime 

i(s, t) = \psi n1+i(s, t)/(s  - \lambda 0t)
n1+i, 1 \leq i \leq n  - n1,

respectively. From (4.2),

\phi \prime i - r(s, t) | \psi \prime 
i(s, t) | \phi \prime i+r(s, t), 1 \leq i \leq n - n1.
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By Theorem 4.13, there exists a matrix pencil P22(s) \in \BbbF [s](n - n1)\times (n - n1) such that

rankP22(s) \leq r and A22(s) + P22(s)
s.e.\sim B22(s). Taking

P (s) =

\biggl[ 
0 0
0 P22(s)

\biggr] 
\in \BbbF [s]n\times n,

we have that A\prime (s) + P (s)
s.e.\sim B(s) and rankP (s) \leq r.

Example 4.18. Assume that \BbbF = \BbbZ 2, n = 5, and the homogeneous invariant
factors of A(s) and B(s) are \phi 1(s, t) = \phi 2(s, t) = \phi 3(s, t) = 1, \phi 4(s, t) = s(s  - 
t), \phi 5(s, t) = s2(s - t) and \psi 1(s, t) = \psi 2(s, t) = \psi 3(s, t) = 1, \psi 4(s, t) = (s - t), \psi 5(s, t) =
t2s(s - t), respectively. Then

\Lambda (A(s)) = \{ 0, 1\} , \Lambda (B(s)) = \{ 0, 1,\infty \} ,

and \BbbF \cup \{ \infty \} = \Lambda (A(s)) \cup \Lambda (B(s)) = \{ 0, 1,\infty \} . But

(m1(1, A(s)), . . . ,m5(1, A(s))) = (m1(1, B(s)), . . . ,m5(1, B(s))) = (0, 0, 0, 1, 1).

Then,

A(s)
s.e.\sim A\prime (s) =

\biggl[ 
A11(s) 0

0 A22(s)

\biggr] 
, B(s)

s.e.\sim B\prime (s) =

\biggl[ 
A11(s) 0

0 B22(s)

\biggr] 
,

where

A11(s) =

\biggl[ 
s - 1 0
0 s - 1

\biggr] 
.

A22(s), B22(s) \in \BbbF [s]3\times 3, and the homogeneous invariant factors of A22(s) and B22(s)
are \phi \prime 1(s, t) = 1, \phi \prime 2(s, t) = s, \phi \prime 3(s, t) = s2 and \psi \prime 

1(s, t) = \psi \prime 
2(s, t) = 1, \psi \prime 

3(s, t) = t2s,
respectively. Hence (see Example 4.16), there exists a matrix pencil P22(s) \in \BbbF [s]3\times 3

such that rankP22(s) \leq 1 and A22(s) + P22(s)
s.e.\sim B22(s). Taking

P (s) =

\biggl[ 
0 0
0 P22(s)

\biggr] 
\in \BbbF [s](2+3)\times (2+3),

we have that A\prime (s) + P (s)
s.e.\sim B(s) and rankP (s) \leq 1.

5. Eigenvalue placement for regular matrix pencils under low rank per-
turbations. In this section we solve Problem 3.4.

For \lambda \in \BbbF \cup \{ \infty \} , we will denote Mr(\lambda ,A(s)) :=
\sum n

i=n - r+1mi(\lambda ,A(s)) and
Mr(A(s)) :=

\sum 
\lambda \in \Lambda (A(s))Mr(\lambda ,A(s)).

Proposition 5.1. Let A(s), P (s) \in \BbbF [s]n\times n be matrix pencils with rank(P (s)) =
r. Assume that A(s) and A(s) + P (s) are regular. Let \alpha 1(s) | \cdot \cdot \cdot | \alpha n(s) be the
invariant factors of A(s) and p(s) = det(A(s) + P (s)). Then

(5.1)
\alpha 1(s) . . . \alpha n - r(s) | p(s),
\mu a(\infty , A(s)) - Mr(\infty , A(s)) \leq n - deg(p(s)).

Proof. Let B(s) = A(s) +P (s), and let \beta 1(s) | \cdot \cdot \cdot | \beta n(s) be its invariant factors.
By Proposition 4.3 and Lemma 2.3, condition (4.8) and

(5.2) mi - r(\infty , A(s)) \leq mi(\infty , B(s)) \leq mi+r(\infty , A(s)), 1 \leq i \leq n,
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hold. As p(s) = k\beta 1(s) . . . \beta n(s), with 0 \not = k \in \BbbF , we have that

\alpha 1(s) . . . \alpha n - r(s) | p(s),\sum n
i=1mi - r(\infty , A(s)) \leq 

\sum n
i=1mi(\infty , B(s)).

But
\sum n

i=1mi - r(\infty , A(s)) = \mu a(\infty , A(s))  - Mr(\infty , A(s)) and
\sum n

i=1mi(\infty , B(s)) =
\mu a(\infty , B(s)) = n - deg(p(s)).

From Proposition 5.1 we derive in Corollary 5.2 a lower bound for the algebraic
multiplicity of the eigenvalues of the perturbed pencil.

Corollary 5.2. Let A(s), P (s) \in \BbbF [s]n\times n be matrix pencils with rank(P (s)) = r.
Assume that A(s) and A(s) + P (s) are regular. Then

(5.3) \mu a(\lambda ,A(s)) - Mr(\lambda ,A(s)) \leq \mu a(\lambda ,A(s) + P (s)), \lambda \in \BbbF \cup \{ \infty \} .

Remark 5.3. Under the conditions of Corollary 5.2, if for \lambda \in \BbbF \cup \{ \infty \} we take
d(\lambda ) = \mu a(\lambda ,A(s) + P (s))  - \mu a(\lambda ,A(s)) +Mr(\lambda ,A(s)) and denote \scrF = \Lambda (A(s)) \cup 
\Lambda (A(s) + P (s)) \cup \{ \infty \} , then\sum 

\lambda \in \scrF 

d(\lambda ) = n - n+
\sum 

\lambda \in \Lambda (A(s))

Mr(\lambda ,A(s)) =Mr(A(s)).

Condition (5.3) implies d(\lambda ) \geq 0 for all \lambda \in \BbbF \cup \{ \infty \} . Hence,

d(\lambda ) \leq Mr(A(s)), \lambda \in \BbbF \cup \{ \infty \} .

Therefore, (5.3) implies

(5.4) \mu a(\lambda ,A(s) + P (s)) \leq \mu a(\lambda ,A(s)) - Mr(\lambda ,A(s)) +Mr(A(s)), \lambda \in \BbbF \cup \{ \infty \} .

We notice that conditions (5.3) and (5.4) for r = 1 are those of [9, Theorem 4.4].

The next theorem gives a solution to Problem 3.4 under a restriction on the field
\BbbF . We will use the following notation for a given p(s) \in \BbbF [s] with deg(p(s)) \leq n:

\Lambda (p(s)) := \{ \lambda \in \BbbF : p(\lambda ) = 0\} if deg(p(s)) = n,

\Lambda (p(s)) := \{ \lambda \in \BbbF : p(\lambda ) = 0\} \cup \{ \infty \} if deg(p(s)) < n.

Theorem 5.4. Let A(s) \in \BbbF [s]n\times n be a regular matrix pencil and \alpha 1(s) | \cdot \cdot \cdot | 
\alpha n(s) be its invariant factors. Let p(s) \in \BbbF [s] be a nonzero monic polynomial with
deg(p(s)) \leq n. Assume that \BbbF \cup \{ \infty \} \not \subseteq \Lambda (A(s)) \cup \Lambda (p(s)). Let r be a nonnegative
integer. There exists a matrix pencil P (s) \in \BbbF [s]n\times n such that rank(P (s)) \leq r and
det(A(s) + P (s)) = kp(s) with 0 \not = k \in \BbbF if and only if (5.1) holds.

Proof. The necessity follows from Proposition 5.1.
Assume now that (5.1) holds. Then there exists \gamma (s) \in \BbbF [s] such that

p(s) = \alpha 1(s) . . . \alpha n - r(s)\gamma (s)

and
d = n - deg(p(s)) - \mu a(\infty , A(s)) +Mr(\infty , A(s)) \geq 0.

Let us define

\beta i(s) := \alpha i - r(s), 1 \leq i \leq n - 1, \beta n(s) := \alpha n - r(s)\gamma (s),
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m\prime 
i := mi - r(\infty , A(s)), 1 \leq i \leq n - 1, m\prime 

n := mn - r(\infty , A(s)) + d.

Then

\beta 1(s) | \cdot \cdot \cdot | \beta n(s), m\prime 
1 \leq \cdot \cdot \cdot \leq m\prime 

n,

n\sum 
i=1

deg(\beta i(s)) +

n\sum 
i=1

m\prime 
i = deg(p(s)) + \mu a(\infty , A(s)) - Mr(\infty , A(s)) + d = n.

Let B(s) be a pencil with invariant factors \beta 1(s) | \cdot \cdot \cdot | \beta n(s) and mi(\infty , B(s)) =
m\prime 

i, 1 \leq i \leq n. Then, B(s) is regular and satisfies (4.8) and (5.2).
By Theorem 4.13, there exists a pencil P (s) \in \BbbF [s]n\times n such that rank(P (s)) \leq r

and A(s) + P (s)
s.e.\sim B(s). Then there exist 0 \not = k1, k2 \in \BbbF such that

det(A(s) + P (s)) = k1 det(B(s)) = k1k2\beta 1(s) . . . \beta n(s) = k1k2\alpha 1(s) . . . \alpha n - r(s)\gamma (s)

= k1k2p(s), 0 \not = k1k2 \in \BbbF .

6. Conclusions. Given a regular matrix pencil, we have completely character-
ized the Weierstrass structure of a regular pencil obtained by a low rank perturbation
of it. The conditions obtained are expressed both in terms of the homogeneous invari-
ant factors and in terms of the partial multiplicities of the eigenvalues. The necessity
of the conditions holds over arbitrary fields and the sufficiency over fields with a
sufficient number of elements.

We also determine the possible eigenvalues and their algebraic multiplicities of a
regular matrix pencil obtained by a low rank perturbation of another regular one. An
open problem related to this study is to develop efficient methods for constructing
the pencils P (s) whose existence is established in Theorem 5.4.

For singular matrix pencils, the general case remains open. As mentioned in the
introduction, for a particular kind of pencil the problem is solved in [6] and the generic
behavior is described in [3].

Acknowledgment. We would like to thank the reviewers for their remarks and
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