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Abstract: Usually, the nodes’ interactions in many complex networks need a more accurate mapping
than simple links. For instance, in social networks, it may be possible to consider different
relationships between people. This implies the use of different layers where the nodes are preserved
and the relationships are diverse, that is, multiplex networks or biplex networks, for two layers. One
major issue in complex networks is the centrality, which aims to classify the most relevant elements
in a given system. One of these classic measures of centrality is based on the PageRank classification
vector used initially in the Google search engine to order web pages. The PageRank model may be
understood as a two-layer network where one layer represents the topology of the network and the
other layer is related to teleportation between the nodes. This approach may be extended to define a
centrality index for multiplex networks based on the PageRank vector concept. On the other hand,
the adapted PageRank algorithm (APA) centrality constitutes a model to obtain the importance of
the nodes in a spatial network with the presence of data (both real and virtual). Following the idea
of the two-layer approach for PageRank centrality, we can consider the APA centrality under the
perspective of a two-layer network where, on the one hand, we keep maintaining the layer of the
topological connections of the nodes and, on the other hand, we consider a data layer associated with
the network. Following a similar reasoning, we are able to extend the APA model to spatial networks
with different layers. The aim of this paper is to propose a centrality measure for biplex networks that
extends the adapted PageRank algorithm centrality for spatial networks with data to the PageRank
two-layer approach. Finally, we show an example where the ability to analyze data referring to a
group of people from different aspects and using different sets of independent data are revealed.

Keywords: adapted PageRank algorithm; PageRank vector; networks centrality; multiplex networks;
biplex networks

1. Introduction

1.1. Literature Review

Network theory is an important tool for describing and analyzing complex systems throughout the
social, biological, physical, information and engineering sciences [1]. Originally, almost all studies of
networks employed an abstraction in which systems are represented as ordinary graphs [2]. Although
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this approach is naive in many respects, it has been extremely successful. For instance, it has been
used to illustrate that many real networks possess a heavy-tailed degree distribution [3], exhibit the
small-world property [4], contain nodes that play central roles [5] and/or have modular structures [6].

It has been recently recognized [7–9] that most complex systems are not simply formed by a
simple network, but they are instead formed by multilayer networks. Multilayer networks include not
just one but several layers (networks) characterizing interactions of different nature and connotation.
Multiplex networks [10,11] are a special type of multilayer networks. They are formed by a set of nodes
connected by different types of interactions. The term multiplex was defined to indicate the presence of
more than one relationship between the same actors of a social network [12]. Each set of interactions of
the same type determines a distinct layer (network) of the multiplex. Examples of multiplex networks
are ubiquitous. Other major examples of multiplex networks range from transportation networks [13]
to social [14], financial [15] and biological networks [16]. In transportation networks, different layers
can represent different means of transportation while in scientific collaboration networks the different
layers can represent several topics of the collaboration. Given the surge of interest in multiplex
networks, recently several algorithms [17,18] have been proposed to assess the centrality of nodes in
these multilayer structures.

On the other hand, when pairs of nodes can be connected through multiple links and in multiple
layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well
as their importance in other interdependent layers. Our world is increasingly dependent on efficient
ranking algorithms [19–21]. Currently the ranking of nodes in complex networks is used in a variety of
different contexts [22], from finance to social, urban and biological networks. For instance, in the context
of economical trade networks, formed by networks of countries and products, ranking algorithms [23]
are recognized as an important tool to evaluate the economic development of countries.

Within the general problem of centrality in urban networks [24], the adapted PageRank algorithm
(APA) proposed by [25] provides us a model to establish a ranking of nodes in spatial networks
according to their importance in it. This centrality was originally proposed for urban networks,
although it may be generalized to spatial networks or networks with data. It constitutes a centrality
measure in urban networks with the main characteristic that it is able to consider the importance of
data obtained from any source in the whole process of computing the centrality of the individual
nodes. Starting from the basic idea of the PageRank vector concept [26], the matrix used for obtaining
the classification of the nodes is constructed in a slightly different way as we will see later.

Centrality measures originally defined on single networks have been used extensively in some
types of networks, as social, technological or biological. In multiplex networks these measures can
be extended in different ways [27]. Generalizing centrality measures from monoplex networks to
multilayer networks is not trivial. When ranking nodes in a multilayer or multiplex network, the key
question to be addressed is how one should take into consideration all the different types of edges,
not all of which have the same importance [17].

The Multiplex PageRank [28] evaluates the centrality of the nodes of multiplex networks and is
based on the idea of biased random walks to define the Multiplex PageRank centrality measure in
which the effects of the interplay between networks on the centrality of nodes are directly taken into
account. Other centrality measures associate a different influence with the links of different layers
that weights their contribution to the centrality of the nodes, as for example Multiplex Eigenvector
Centralities [17], or Functional Multiplex PageRank [18], which takes into account the fact that different
multilinks contribute differently to the centrality of each node and associates with each node a function.
In [29], Solé–Ribalta et al. re-define the betweenness centrality measure to account for the inherent
structure of multiplex networks and propose an algorithm to calculate it efficiently.

1.2. Main Contribution

The main objective of this paper is to propose a centrality measure for biplex networks that adapts
the APA centrality for spatial networks with data to the PageRank two-layer approach.
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The multiplex PageRank algorithm proposed by Halu et al. [28] measures the centrality of a
node in a layer β with the corresponding adjacency matrix using a random walker as in the usual
PageRank biased by the PageRank of the nodes in the layer alpha. So, Multiplex PageRank can be
described in terms of the bias that one layer exerts on the random jumps that a surfer makes in another
layer. Four versions of the centrality are presented depending on how layers affect each other or,
alternatively, exert a bias upon the random walk.

The advantage of the model proposed for biplex networks is that since it is based on the APA
centrality, the randomness in the jumps of the surfer is replaced by the influence of the data present in
the network. Therefore, the model is able to study and analyze several relationships of a set of nodes
by different layers, but it is also capable of measuring the influence of the data in the different layers of
the network. Thus, it is not only taken into account the topology of the networks but also the data.
In addition, the α parameter initially associated to the PageRank model and exported to APA centrality
can be used to assign the importance that each of these data layers has in the calculation of centrality.
These characteristics summarizes the novelty and potential of this research work.

The potential of the applications to which this centrality can be applied should also be highlighted.
Nowadays multilayers and multiplex networks are investigated in many fields, as were enumerated in
Section 1.1. However, there are other potential applications not so well known but equally interesting
where the centrality measure proposed in this research can be applied. One of these topics is the
improvement in the recommender systems [30,31]. These systems were initially based on demographic,
content-based and collaborative filtering although actually are incorporating social information.
Another unknown topic of application is in Public Safety Networks [32,33] which have emerged
as the key solution to a successful response to emergency and disaster events. In these systems each
user is associated with some social, physical and mobility-related characteristics and attributes in a
public safety network.

1.3. Structure of the Paper

This paper is organized as follows: Section 2 summarizes the methodology used in the paper:
the basic characteristics of the APA centrality, as well as the biplex approach to the PageRank vector.
Once these models are described, the new centrality is presented combining the APA centrality (based
on data) and the biplex approach of PageRank vector. In Section 3, some results are presented with
their interpretation. The discussion of the experimental results are performed in Section 4 and, finally,
some conclusions are summarized.

2. Methodology

In practical applications, the computation of a global index to measure the importance to each
node is a main task. If the system studied contains several types of relations between actors it is
expected that the measures, in some way, consider the importance obtained from the different layers.
A simple choice could be to combine the centrality of the nodes computed from the different layers
independently according to some heuristic choice.

In this section, both the well-established methods and the proposed centrality for multiplex
networks with data are described in detail.

2.1. The Adapted PageRank Algorithm (APA) Model

Let us establish some notation that will be used in the following. Let G = (N , E) be a graph
where N = {1, 2, . . . , n} and n ∈ N. The link (i, j) belongs to the set E if and only if there exists a link
connecting node i to j. The adjacency matrix of G is an n× n matrix A =

(
aij
)
, where

aij =

{
1 if (i, j) is a link,
0 otherwise.
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The adapted PageRank algorithm (APA) proposed by Agryzkov et al. [25] provides us a model
to establish a ranking of nodes in an urban network taking into account the data presented in it.
This centrality was originally proposed for urban networks, although it may be generalized to spatial
networks or networks with data. It constitutes a centrality measure for networks with the main
characteristic being that it is able to consider the importance of data obtained from any source in the
whole process of computing the centrality of the individual nodes. Starting from the basic idea of the
PageRank vector concept, the construction of the matrix used for obtaining the classification of the
nodes is modified.

In its original approach, PageRank was based on a model of a web surfer that probabilistically
browses the web graph, starting at a node chosen at random according to a personalization vector
whose components give us the probability of starting at node v. At each step, if the current node
had outgoing links to other nodes, the surfer next browsed with probability α one of those nodes
(chosen uniformly at random), and with probability 1− α a node chosen at random according to
the personalized vector. For the web graph, the most popular value of the dumping factor was 0.85.
If the current node was a sink with no outgoing links, the surfer automatically chose the next node at
random according to the personalized vector.

In the APA model, the data matrix was constructed following a similar reasoning from the original
idea of the PageRank vector; a random walker can jump between connecting nodes following the
local link given by the network or can jump between nodes (not directly connected) with the same
probability, regardless the topological distance between them (number of nodes in the walk).

In the algorithm implemented to calculate the APA centrality (see [25], p. 2190), a new matrix
A∗ =

(
pij
)
∈ Rn×n is constructed from the adjacency matrix A, as

pij =

{
1
cj

if aij 6= 0,

0 otherwise,
1 ≤ i, j ≤ n, (1)

where cj represents the sum of the j-th column of the adjacency matrix.
Algebraically, A∗ may be obtained as

A∗ = A∆−1, (2)

where ∆ =
(
δij
)
∈ Rn×n is the degree matrix of the graph, that is, δij = c−1

j , for i = j and δij = 0,
for i 6= j. We refer to A∗ as the transition matrix, and it represents, by columns, the probability to
navigate from a page to other. In the literature related to this topic the matrix A∗ is also denoted as P or
PA, so A∗, P or PA are the same matrix. Following the notation of Pedroche et al. [34] it will preferably
be used P.

The transition matrix, P = A∗ has the following characteristics (see [25]):

1. It is nonnegative.
2. It is stochastic by columns.
3. The highest eigenvalue of P is λ = 1.

The key point of the model is the construction of the so-called data matrix D of size n× k, with its
n rows representing the n nodes of the network, and each of its k columns representing the attributes
of the data object of the study. Specifically, an element dij ∈ D is the value we attach to the data class k j
at node i.

However, not all the characteristics of data may have the same relevance or influence in the
question object of the analysis. Therefore, a vector v0 ∈ Rk×1 is constructed, where the element that
occupies the row i is the multiplicative factor associated with the property or characteristic ki. With this
vector v0 a weighting factor of the data is introduced, in order to work with the entire data set or a
part of it.
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Then, multiplying D and v0, v may be obtained as

v = D · v0,

with v ∈ Rn×1.
The construction of vector v allows us to associate to each node a value that represents the amount

of data assigned to it. Thus, two different values are associated with every node; on the one hand,
its degree, related to the topology and, on the other hand, the value of the data associated to it. For a
more detailed description of how the data are associated to the nodes, see [25,35].

After normalizing v, denoted as v∗, it is possible to define the matrix MAPA as

MAPA = (1− α)P + αV, (3)

where V ∈ Rn×n is a matrix in which all of its components in the i-th row are equal to v∗
i .

The parameter α is fixed and it is related to the teleportation idea. The value that is traditionally
used is α = 0.15.

In practice, vector v∗ is repeated (n times) in every column of the matrix V.
The matrix MAPA was used to compute the ranking vector for the network.
With these considerations, the APA algorithm proposed in [25] may be summarized by the

Algorithm 1:

Algorithm 1: (Adapted PageRank algorithm (APA)). Let G = (V, E) be a primary graph
representing a network with n nodes.

1 Compute the matrix P from the graph G.
2 Construct the data matrix D.
3 Construct the weighted vector v0.
4 Compute v as Dv0 = v.
5 Normalize v, and denote it as v∗.
6 Construct V as V = v∗eT .
7 Construct the matrix MAPA as MAPA = (1− α) P + αV.
8 Compute the eigenvector x of the matrix MAPA associated to eigenvalue λ = 1. The components of the

resulting eigenvector x represent the ranking of the nodes in the graph G.

The main feature of this algorithm is the construction of the data matrix D and the weighted
vector v0. The matrix D allows us to represent numerically the dataset. Vector v0 determines the
importance of each of the factors or characteristics that have been measured by means of D.

The Perron–Frobenius theorem is of great importance in this problem, since it constitutes the
theoretical base that ensures that there exists an eigenvector x associated with the dominant eigenvalue
λ = 1, so that all its components are positive, which allows establishing an order or classification of
these elements. In our case, due to the way in which P and V have been constructed, it can be seen
that MAPA is a stochastic matrix by columns, which assures us of the spectral properties necessary for
the Perron–Frobenius theorem to be fulfilled. Therefore, the existence and uniqueness of a dominant
eigenvector with all its components positive is guaranteed. See [36,37] for further study of spectral
and algebraic properties of the models based on PageRank.

Vector x constitutes the adapted PageRank vector and provides a classification or ranking of the
pages according to the connectivity criterion between them and the presence of data.

2.2. The Biplex Approach for Classic PageRank

Pedroche et al. [34] propose a two-layer approach for the classic PageRank classification vector
based on the idea that we now briefly expose. The two-layer approach is to consider the PageRank
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classification of the nodes as a process divided into two clearly differentiated parts. The first part is
related to the topology of the network, where the connections of the nodes are basically taken into
account by means of their adjacency matrix. There is a second part regarding to the teleportation from
one node to another, following a criterion of equiprobability.

They affirm that the PageRank classification for a graph G with personalized vector v can be
understood as the stationary distribution of a Markov chain that occurs in a network with two layers,
which are:

l1, physical layer , it is the network G.
l2, teleportation layer , it is an all-to-all network, with weights given by the personalized vector.

Under this perspective, it is easy to construct a block matrix MA based on these two layers where
each of the diagonal blocks is associated to a given layer. Therefore, we can construct

MA =

(
αPA (1− α)I
2αI (1− α)evT

)
∈ R2n×2n, (4)

where MA defines a Markov chain in a network with two layers.
Due to the good spectral characteristics of MA (it is irreducible and primitive), they arrive to the

conclusion that given a network with n nodes, whose adjacency matrix is A, the two-layer approach
PageRank of A is the vector

π̂A = πu + πd ∈ Rn,

where
[
πT

u πT
d
]T ∈ R2n is the unique normalized and positive eigenvector of matrix MA given by the

expression (4).
In [38], the authors propose a new centrality measure for complex networks with geo-located data

based on the application of the two-layer PageRank approach to the APA centrality measure for spatial
networks with data. They design an algorithm to evaluate this centrality and show the coherence of
this measure regarding the original APA by calculating the correlation and the quantitative difference
of both centralities using different network models. This coherence in the results obtained for the APA
and the proposed centrality using the two-layer approach is absolutely mandatory in our objective to
extend the two-layer approach for multiplex networks with data.

Therefore, the two-layer approach may be extended to the case of multiplex networks, where we
have several networks with the same nodes and with different topologies and connections between
nodes. Following the notation used by Pedroche et al. [34], let us consider a multiplex network
M = (N , E ,S) with layers S = (l1, l2, . . . , lk). Given a multiplex networkM with several layers,
a multiplex PageRank centrality can be defined by associating to each layer li a two-layer random
walker with one the physical layer and a teleportation layer. In addition, transition between these
layers must be allowed. The idea behind this process is the application of the two-layer approach to
each layer of the multiplex network.

For now, let us consider our problem restricted to biplex networksM = (N , E ,S), with layers
S = (l1, l2) whose adjacency matrices are A1, A2 ∈ Rn×n, respectively. For convenience in the notation
we will write PA, P1 and P2 instead of A∗, A∗1 and A∗2 , respectively.

The authors (see, [34]) construct a general matrix M2 as a new block matrix by associating to each
layer li a two-layer multiplex defined, for i = 1, 2, as:

Mi,i =

(
αPA (1− α)I
2αI (1− α)evT

)
∈ R2n×2n.
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Reordering the blocks in such a way that the physical layers appear in the first block, the final
matrix is

M2 =
1
2


αP1 I (1− α)I 0

I αP2 0 (1− α)I
2αI 0 (1− α)evT

1 (1− α)evT
2

0 2αI (1− α)evT
1 (1− α)evT

2 ,

 (5)

with Pi, for i = 1, 2 row stochastic matrices and vi, for i = 1, 2 the personalized vectors.
It is straightforward to check that all the spectral properties of M2 are essentially the same as the

Google matrix in the PageRank model. Then, there exists an eigenvector

π̂2 = (πu1 , πu2 , πd1 , πd2) ∈ R4n

associated to the dominant eigenvalue λ = 1. This vector is the key to obtain the classification vector
representing the nodes centrality.

Consequently, summarizing the main characteristic of the biplex PageRank approach, considering
a biplex networkM with n nodes, with two layers S = (l1, l2), and whose adjacency matrices are
A1, A2 ∈ Rn, it can be affirmed that the PageRank vector that classifies the nodes of this biplex network
is the unique vector π2 such as

π2 =
1
2
(πu1 + πu2 + πd1 + πd2) ∈ Rn,

with π2 normalized.

2.3. Constructing the APABI Centrality by Applying the Two-Layer Approach

The idea of the treatment of the PageRank concept by means of two layers has a great sense within
the idea of APA centrality, since the influence of the data in the network is measured separately in the
original algorithm. Paying attention to the construction of MAPA given by (3), note that V is the matrix
summarizing all the data information. But not only the application of this concept is interesting for our
centrality, since may be also interesting to analyze the differences that occur between both techniques
of calculating the importance of the nodes.

In this section, we describe how to adapt the APA centrality taking as a reference the two-layers
technique, where a block matrix is used to distinguish the topology and the personalized vector.

The original APA centrality model, described in Section 2, presents some differences from the
model described and implemented by Pedroche et al. [34], where the final matrix involved in the
eigenvector computation is stochastic by rows. In our approach, the basis of the original APA model
consists of the construction of a stochastic matrix by columns, where we reflect the topology of the
network by the probability matrix P and the influence of the data, through the matrix V.

In order to build a 2× 2 block matrix, the same approach used in [34] may be reproduced. The first
upper diagonal block contains the information referring to the network topology, while the lower
diagonal block is associated to the collected data in the network and assigned to each node of it.

Taking as a reference the APA algorithm, the matrix used to compute the eigenvector associated
to the dominant eigenvalue λ = 1 is given by

MAPA = (1− α)P + αV.

A new 2× 2 block matrix is constructed as

MAPA2 =

(
αPA (1− α)I
αI αV

)
∈ R2n×2n. (6)

The idea that underlies the construction of the matrix by blocks given by (6) is to maintain
the spectral properties of the original matrix MAPA, with the aim that the numerical algorithms for
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determining dominant eigenvalue and eigenvector are stable and fast. Note that we have doubled the
size of the original matrix.

Following the same reasoning used in Section 3 to construct a model for biplex networks taking as
a basis the classical PageRank vector, it is necessary to extend the two-layers APA approach given by
the block matrix (6). Using the same notation, let us considerM = (N , E ,S), with layers S = (l1, l2)
be a biplex network.

Reordering the blocks in such a way that the physical layers appear in the first block, the final
matrix is given by

MBI =
1
2


(1− α)P1 I 2(1− α)I 0

I (1− α)P2 0 2(1− α)I
I 0 αV1 αV2

0 I αV1 αV2,

 (7)

with Pi, for i = 1, 2 column stochastic matrices and Vi, for i = 1, 2, the matrices containing the
data information.

Note the differences between matrices M2 (5) and MBI (7). The matrix M2 is stochastic by rows,
however, in the APA centrality the basic matrix MAPA is stochastic by columns, so the definition of the
matrix MBI is determined by the need to maintain the spectral properties suitable for obtaining the
proper vector of the centrality. These desirable spectral properties are ensured by the way in which
MBI has been built, being stochastic by columns, as well as irreducible.

Then, there exists an eigenvector

π̂BI = (πu1 , πu2 , πd1 , πd2) ∈ R4n (8)

associated to the dominant eigenvalue λ = 1. This vector is the key to obtain the classification vector
representing the nodes centrality. Therefore, it can be obtained a unique vector

x =
1
2
(πu1 + πu2 + πd1 + πd2) ∈ Rn, (9)

with x a normalized vector.
In Figure 1, a schematic representation of the extended APA model for biplex networks has been

represented. All the graphs share the same n nodes, although the relationships between them in the
two layers l1 and l2 are different, which produces two different adjacency matrices A1 and A2. Data
are also different in each layer; consequently, two data matrices are constructed D1 and D2.

Figure 1. Scheme of the adapted PageRank algorithm (APA) extended model for biplex networks.
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The existence of the weighted vectors v01 and v02 allows us to determine those data that are the
object of our interest, being able to discard those that do not present real interest for the study that is
carried out.

The model presented in this section may be summarized by the Algorithm 2.

Algorithm 2: (Adapted PageRank algorithm biplex (APABI)). LetM = (N , E ,S), with layers
S = (l1, l2) and adjacency matrices A1, A2 be a biplex network with n nodes.

1 For the layers li, with i = 1, 2, construct the probability matrices Pi, for i = 1, 2, respectively.
2 From data, construct the matrices Di, for i = 1, 2, respectively.
3 Define the weighted vectors vi, for each layer.
4 For the layers li, for i = 1, 2, compute vi as Div0i, respectively.
5 Normalize vi, for i = 1, 2, and denote them as v∗i .
6 For the layers li, for i = 1, 2, construct Vi as Vi = vi

∗eT , respectively.
7 From Pi, Vi, for i = 1, 2, and the parameter α, construct MBI using the expression (7).
8 Compute the eigenvector π̂BI using the expression (8).
9 The components of the resulting eigenvector x, given by the expression (9), represent the ranking of the

nodes in the biplex network.

Algorithm 2 summarizes the steps necessary to calculate a centrality measure that will be denoted
as the adapted PageRank algorithm biplex (APABI). This measure provides us with a vector for
classifying the nodes of the network according to their importance within a biplex network. This
classification is obtained from the importance of the nodes in two networks where what changes are
the associations between the nodes and the data associated with them. This classification is obtained
from the importance of the nodes in two layers where the nodes are the same and what changes are
the associations (links) between the nodes and the data associated with them.

Note that the MBI matrix is built for biplex networks. However, it can be easily extended the
same reasoning for a multiplex network with k layers {l1, l2, . . . , lk}, defining the adjacency matrices
{A1, A2, . . . Alk} and a set of k data matrices {D1, D2, . . . , Dk}. The matrix MBI is extended to a
multiplex network with k layers as

Mmulti =
1
k

(
M1,1 M1,2

M2,1 M2,2

)

with

M1,1 =


(1− α)P1 I · · · I

I (1− α)P2 · · · I
· · · · · · · · · · · ·
I I · · · (1− α)Pk

 , (10)

M2,2 =


αV1 αV2 · · · αVk
αV1 αV2 · · · αVk
· · · · · · · · · · · ·
αV1 αV2 · · · αVk

 , (11)

where M1,2, M2,1 are diagonal matrices. More exactly, M1,2 is formed by k blocks 2(1− α)I and M2,1 is
formed by k identity blocks I.

In the approach made so far in this section, we have considered the same value for the parameter
α in all the layers that make up the network. However, it could happen that the α value was different in
the different layers, as a consequence of the need to differentiate the importance that must be assigned
to the data in each of the layers. That leads us to consider various αi, for each layer i. Note that this
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variant does not imply in any way modify the spectral properties of the matrices involved in the
calculation of centrality. Consequently, matrix MBI should be written now as

MBI =
1
2


(1− α1)P1 I 2(1− α1)I 0

I (1− α2)P2 0 2(1− α2)I
I 0 α1V1 α2V2

0 I α1V1 α2V2

 (12)

The generalization of the matrix MBI to k layers with k parameters αi consists simply of replacing
each α in the expressions (10) and (11) with its corresponding αi in the i-th row.

2.4. A Note About the Computational Cost

We discuss certain general aspects of the computational cost of the proposed model. It should
be noted that if we look closely at Algorithm 2, the most expensive algebraic operations that are
carried out are the product of a scalar by a matrix, the matrix-vector product and the calculation of the
dominant eigenpair (λ, x) of matrix MBI , given by the expression (8).

As it is well-known and can be seen in any linear algebra textbook, the product of a scalar by
a square matrix of size n requires n× n multiplications, while the product of two square matrices
of size n requires a computational cost of O(n2). In our case, we need to make the product D · vi,
for i = 1, 2, where D is the data matrix of size n× k and vi is a column vector of size n. Therefore,
the computational cost of D · v0 is of O(nk).

However, the most expensive part from the computational point of view is found in step
8 of the algorithm, in which, once the MBI matrix is constructed, it is necessary to obtain its
dominant eigenpair (λ, x). The numerical problem of calculating the eigenvalues and eigenvectors
of any matrix is very expensive, in general, if the matrix in question does not have a structure
that simplifies its calculation in some way. In general, for matrices of low dimension (such as
N < 150), there are efficient methods for finding all the eigenvalues and eigenvectors. For example,
the Householder–QL–Wilkinson modification of the given method is built into the EISPACK routines
and is routinely used. The computation time for any of these methods grows as N3 and the memory
requirement grows as N2. For large matrices, a very commonly used algorithm is Lanczos, that is
an adaptation of power methods to find the m most useful eigenvalues and eigenvectors of an n× n
Hermitian matrix. For a more detailed description of the numerical matrix eigenvalue problems,
see [39].

Due to the way we have built the MBI matrix following the original idea of the Google matrix used
in the original PageRank combined with the two-layer PageRank approach, we have ensured that this
matrix inherits the spectral properties of the original Google matrix in the original PageRank model.
It is a stochastic matrix by columns of which we can affirm, using a variant of the Perron–Frobenius
theorem, that its own dominant eigenvector associated to eigenvalue λ = 1 corresponds to the
stationary distribution of the Markov chain by the column normalized matrix MBI . This stationary
vector π̂BI verifies that

MBIπ̂BI = π̂BI

and may be obtained by using the well-known power iteration method, applying it until the
convergence of the iterative process

π̂k = MBIπk−1
πk = π̂k/ max(π̂k),

for k = 1, 2, . . ..
In addition, it should be noted that the use of the power method for the calculation of the dominant

eigenvector is especially useful when applied to sparse matrices.



Symmetry 2019, 11, 284 11 of 17

3. Results

In this section, an example of a biplex network is analyzed in detail in order to highlight the
possibilities offered by disposing of a centrality measure that establishes a classification of the nodes in
order of importance.

For this purpose, let us consider a graph of 20 nodes, where each node represents a physical
person; specifically, a player from a football team. Around this group the example is developed.

With these 20 nodes, let us proceed to construct a network with two layers that relate the nodes in
a different way, taking two datasets (one for each of the layers). The calculation of the APABI centrality
on this biplex network will allow us to determine the importance of each member of the team and
obtain a classification of them in order of importance.

First, a layer l1 is constructed with the 20 nodes where the relationships between the members of
the team are analyzed from the point of view of social or virtual relationships. Thus, an undirected
graph is constructed with an adjacency matrix A1 in which two nodes are joined by an edge if they are
related or linked through a social network. The graph of social relations between the nodes is shown
in Figure 2. The data that are considered in this layer associated with each node are related to the
number of messages that each person receives from their teammates in a period of time.

Figure 2. Graphs of the first layer (left) and the second one (right).

Secondly, a second layer l2 is constituted from the same 20 nodes of layer l1, but analyzing in
l2 how the players relate to each other within the game, that is, if they associate with each other
in the game. Thus, two players who combine with each other or pass the ball with some assiduity
during a match are connected by an edge. From these links, it is possible to build a new adjacency
matrix associated with this layer, which we denote by A2. In most team sports with a ball, each player
occupies a specific position in the field of play, covering a certain area. Players (nodes) that occupy
closer positions associate or relate more easily with each other than with those who are further away.
For example, a defender is associated more with a midfielder than with a forward. The graph of game
relations between the nodes is shown in Figure 2.

Both the links and the data associated to each of the 20 nodes of the graph are summarized in
Table 1. There, the second column specifies the social links of every node while in the four column the
game links between them are detailed. So, for example, the table shows that node 1 (player labeled
as 1) has social interactions with the nodes {2, 5, 7, 9, 16, 17, 19, 20} while presents strong interactions
within the game with the nodes {2, 4, 5, 6, 9, 12, 13, 14, 18, 19}.
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Table 1. Data associated to the biplex network constructed from the team.

Node Social Networks Links Messages Game Links Games

1 {2, 5, 7, 9, 16, 17, 19, 20} 15 {2, 4, 5, 6, 9, 12, 13, 14, 18, 19} 33
2 {1, 5, 7, 9, 20} 9 {1, 4, 8, 10, 13, 18, 19} 26
3 {7, 9, 11, 13, 14, 15, 17} 12 {4, 5, 6, 12, 14, 15, 17, 20} 18
4 {5, 9, 11, 14, 15, 16, 18, 20} 19 {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20} 32
5 {1, 2, 4, 6, 7, 11, 12, 14, 18, 20} 28 {1, 3, 4, 6, 7, 8, 11, 14, 17, 19, 20} 20
6 {5, 7, 10, 20} 7 {1, 3, 4, 5, 8, 11, 12, 19} 12
7 {1, 2, 3, 5, 6, 8, 9, 18, 20} 20 {4, 5, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20} 32
8 {7, 10, 12, 17, 18} 7 {2, 4, 5, 6, 9, 12, 13, 14, 18, 19} 6
9 {1, 2, 3, 4, 7, 10, 15, 18, 20} 16 {1, 4, 8, 10, 13, 16, 18, 19} 18

10 {6, 8, 9, 11, 13, 14, 15, 16, 18, 20} 21 {2, 4, 7, 9, 13, 15, 18, 19, 20} 25
11 {3, 4, ,5, 10, 13, 18, 19, 20} 14 {4, 5, 6, 7, 12, 14, 15, 17, 20} 24
12 {5, 8, 14, 17, 20} 8 {1, 3, 4, 6, 7, 8, 11, 14, 19, 20} 18
13 {3, 10, 11, 15, 19, 20} 11 {1, 2, 4, 7, 8, 9, 10, 16, 17, 19, 20} 6
14 {3, 4, , 5, 10, 12, 16, 18, 19} 13 {1, 3, 4, 5, 8, 11, 12, 19} 26
15 {3, 4, 9, 10, 13, 17, 20} 11 {3, 7, 10, 11, 16, 17, 20} 38
16 {1, 4, 10, 14, 17, 18, 19} 14 {4, 7, 9, 13, 15, 18, 19, 20} 6
17 {1, 3, 8, 12, 15, 16, 20} 12 {3, 4, 5, 7, 11, 13, 15, 18, 19} 12
18 {4, 5, 7, 8, 9, 10, 11, 14, 16, 19, 20} 35 {1, 2, 4, 7, 8, 9, 10, 16, 17, 19, 20} 30
19 {1, 11, 13, 14, 16, 18, 20} 15 {1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20} 8
20 {1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17, 18, 19} 27 {3, 4, 5, 7, 10, 11, 12, 13, 15, 16, 18, 19} 25

Datasets about the number of messages received during one day through social networks and the
number of games that have played along the season are detailed in columns three and five, respectively.
So, node 1 has received 15 messages in a day and has played 33 games in the season.

In this example, one of the advantages of working with biplex networks becomes manifest,
such as the possibility of studying different relationships between the same set of nodes, analyzing
the correlation between them. This example shows the advantage offered by adding what we can
call a data layer in each of the multilayers of the network. We can assign the data that we consider
appropriate to the specific relationships that we are representing by means of the corresponding graph.
Thus, as can be seen in this example, in the layer where the social relations between the nodes are
considered, we introduce the data corresponding to the number of received messages. However,
in the second layer where game relations are represented, data are completely different, since now the
number of games played are considered. Thus, each layer allows us to introduce one or more data sets
related to the relationships of the nodes. This leads us to affirm that the inclusion of data in each of the
layers enriches the nature of the problems that can be analyzed.

The objective in this example is to determine the most important or influential players within
the team. For this task, two different aspects may be evaluated; on the one hand, the importance of
the nodes from the point of view of the social relations that are established between them through
messages, social networks, or any other virtual means. The nodes that have an intense social activity
in the group create a very important union within the group, being very influential for other nodes.
On the other hand, the importance of the nodes from the point of view of the game may be also
evaluated, that is, which players are more important in the game, for their participation or quality.
In other words, it is decisive to look for the leaders of the group, analyzing their importance from the
social and technical point of view.

In order to determine the importance of the nodes of the biplex network of this example,
the APABI centrality described in Section 2.3 has been calculated. Algorithm 2 has been executed using
the information shown in Table 1. The numerical results shown in Table 2 are graphically displayed in
Figure 3. This calculation gives us the importance of the nodes relating both layers. Figure 4 shows the
final graph considering the information of two layers and the final result of the APABI centrality for
each node, representing the size of each node according to its importance.
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Table 2. Adapted PageBreak algorithm (APA) centrality for layers l1 and l2 and APA biplex (APABI)
centrality for biplex network.

Node APA Layer l1 APA Layer l2 APABI

Centrality Ranking Centrality Ranking Centrality Ranking

1 0.05025 7 0.06394 3 0.05581 7
2 0.03110 17 0.04635 13 0.03777 16
3 0.04063 13 0.04330 14 0.04193 13
4 0.04891 9 0.08152 1 0.06517 3
5 0.07731 3 0.05134 9 0.06440 5
6 0.02494 20 0.03356 18 0.02862 20
7 0.06157 5 0.06867 2 0.06477 4
8 0.02791 19 0.03133 19 0.03071 19
9 0.05481 6 0.03965 15 0.04836 11

10 0.06530 4 0.05433 7 0.05902 6
11 0.04936 8 0.05341 8 0.05013 9
12 0.02852 18 0.04671 12 0.03727 17
13 0.03626 16 0.03407 17 0.03684 18
14 0.04776 10 0.05047 10 0.04820 12
15 0.03902 15 0.06387 4 0.05085 8
16 0.04550 12 0.02807 20 0.03781 15
17 0.04020 14 0.03830 16 0.04033 14
18 0.09182 2 0.06305 5 0.07590 2
19 0.04700 11 0.04686 11 0.04838 10
20 0.09186 1 0.06111 6 0.07775 1

Figure 3. Centralities shown in Table 2.
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Figure 4. Adapted PageRank algorithm biplex (APABI) centrality for the example object of this study.

The APABI centrality shows that the nodes that can be classified as the most important, the leaders
within the group, are nodes 20 and 18, respectively. Note that node 20, which is the most important,
is not the node that receives the most messages from its colleagues, being the node 18 is the one that
receives the most messages from his teammates, but is second in the ranking.

Finally, it should be noted that, as discussed in Section 2.4, the use of the power method to
calculate the stationary vector of the Markov chain that forms the stochastic matrix MBI provides the
numerical stability needed in the implemented algorithm.

We have performed several tests with randomly generated adjacency matrices of different
sizes in a range from 10 to 10,000 and we have obtained stable results. Matrices of dimension
exceeding 105 cannot be stored in the central memory of most computers, except for sparse matrices.
Consequently, the only matrix-arithmetic operation that is easily performed is a matrix-vector
product. This makes possible to use this centrality algorithm for large matrices. In the scope
of our research with urban network matrices, the sizes of the case studies are relatively large,
with 2000–5000 nodes, approximately.

4. Discussion

In the discussion of the model presented and evaluated in the previous sections, let us pay
attention to the example studied, the network of football team components. Results have been
presented related to the proposed centrality measure APABI for a biplex network like this one.

We also consider that it may be relevant to calculate the nodes centrality in each of the layers, that
is, separately and independently. In this way, it is possible to analyze the differences in the calculation
of centrality in a single or multiplex networks, respectively, verifying if there is a certain correlation
between the results obtained. We have calculated the APA centrality of the nodes in each of the layers.
The numerical results obtained are shown in Table 2, where the numerical values of the centrality and
the position of the nodes in the classification or ranking can be seen.

It should be noted that all the calculations have been made taking the value of the alpha parameter
equal to 0.5. This means that we assign the same importance in the centrality computation to the
connections of the nodes as to the data associated with them.

As it was already mentioned, the APABI centrality provides a classification of the nodes according
to their importance in the biplex network studied. So, nodes 20 and 18 were the most important in the
team. This can also be analyzed when the layers are considered independently.

The comparison between the APABI centrality and the APA centrality by independent layers
offers us some remarkable facts. For instance, the most active nodes from the point of view of social
networks are 20, 18, 10 and 5. The most important nodes from the point of view of the game are 4, 7, 1,
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15. It is evident that there is no correlation between both relationships; leaders from the social point of
view are not necessarily the most decisive players in the team’s game. Thus, the most participative
player of the team, the one who most relates to the game with his teammates, is not socially the most
active nor will he be the most influential individual within the group.

We appreciate that the most important nodes in a biplex network are nodes that maintain high
positions in the two rankings obtained in each of the layers. The node 20 is the one that presents a
greater importance from the social point of view, however, it is not among the first three nodes that
have a greater participation in the team game. On the other hand, node 18 is not as socially active as
node 20, although it has a greater degree of association with its teammates in the team game than the
first one and has had a greater presence in the team games, specifically participating in more than
5 games. The numerical results show that this positive rating does not compensate the high social
importance of node 20, although it should be highlighted that the difference in the centrality between
both nodes is very small. It can be concluded that both nodes are the team leaders.

5. Conclusions

A measure of centrality for biplex networks (APABI) based on the APA centrality for spatial
networks with data has been designed and implemented following the two-layers approach for
PageRank model. The advantage of having a measure of centrality of this type is twofold; on the one
hand, we can determine the importance of the nodes of a network when we study various relationships
between the nodes. On the other hand, we can work with several data sets associated with the nodes
themselves, without any connection or relationship between them.

This measure, initially proposed for two layers of topological relationships and data, can be easily
extended to any set of layers and thus add the relationships between the nodes. Its use in the study of
social networks can allow us to relate various aspects of the actors, as well as their interactions. These
possibilities are shown in the example studied, where the social and professional relationships of a
group of people that are part of a sports group are analyzed. The importance of each node (player)
is analyzed both from the social and game aspects, respectively. From the proposed centrality we
determine the most influential players in the team. It is observed how the most relevant nodes in each
of the layers do not have to be the most important when analyzing the related data.
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