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Abstract: Let A be an n × n complex matrix. The (B, C)-inverse A‖(B,C) of A was introduced by
Drazin in 2012. For given matrices A and B, several rank equalities related to A‖(B1,C1) and B‖(B2,C2)

of A and B are presented. As applications, several rank equalities related to the inverse along an
element, the Moore-Penrose inverse, the Drazin inverse, the group inverse and the core inverse
are obtained.
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1. Introduction

The set of all m × n matrices over the complex field C will be denoted by Cm×n. Let A∗,
R(A), N (A) and rank(A) denote the conjugate transpose, column space, null space and rank of
A ∈ Cm×n, respectively.

For A ∈ Cm×n, if X ∈ Cn×m satisfies AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA,
then X is called a Moore-Penrose inverse of A [1,2]. This matrix X always exists, is unique and will be
denoted by A†.

Let A ∈ Cn×n. It can be easily proved that exists a non-negative integer k for which
rank(Ak) = rank(Ak+1) holds. The Drazin index of A is the smallest non-negative k such that
rank(Ak) = rank(Ak+1), and denoted by ind(A). A matrix X ∈ Cn×n such that XAk+1 = Ak,
XAX = X and AX = XA hold, where k = ind(A), is called a Drazin inverse of A. It can be proved,
(see, e.g., [3] Chapter 4), that the Drazin inverse of any square matrix A exists, is unique, and will be
denoted by AD. If ind(A) ≤ 1, then the Drazin inverse of A is called the group inverse and denoted
by A#.

The core inverse of a complex matrix was introduced by Baksalary and Trenkler in [4]. Let
A ∈ Cn×n, a matrix X ∈ Cn×n is called a core inverse of A, if it satisfies AX = PR(A) and R(X) ⊆ R(A),
where PR(A) denotes the orthogonal projector onto R(A). If such a matrix X exists, then it is unique
and denoted by A #©. In [4] it was proved that a square matrix A is core invertible if and only if
ind(A) ≤ 1.

In [5], Mary introduced a new type of generalized inverse, namely, the inverse along an element.
Let A, D ∈ Cn×n. We say that A is invertible along D if there exists Y ∈ Cn×n such that

YAD = D = DAY, R(Y) ⊆ R(D) and N (D) ⊆ N (Y). (1)
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If such Y exists, then it is unique and denoted by A‖D. The inverse along an element extends
some known generalized inverses, for example, the group inverse, the Drazin inverse and the
Moore-Penrose inverse.

In ([6] Definition 4.1), Benítez et al. gave the following definition extending simultaneously the
notion of the (B, C)-inverse from elements in rings [7] to rectangular matrices and the invertibility
along an element. Let A ∈ Cm×n and B, C ∈ Cn×m, the matrix A is said to be (B, C)-invertible, if there
exists a matrix Y ∈ Cn×m such that

YAB = B, CAY = C, R(Y) ⊆ R(B) and N (C) ⊆ N (Y). (2)

If such a matrix Y exists, then it is unique and denoted by A‖(B,C). Many existence criteria
and properties of the (B, C)-inverse can be found in, for example, [6,8–14]. From the definition of
the (B, C)-inverse, it is evident that R(Y) = R(B) and N (C) = N (Y). The (B, C)-inverse of A is a
generalization of some well-known generalized inverses. By ([7] p. 1910), the Moore-Penrose inverse of
A coincides with the (A∗, A∗)-inverse of A. A‖D is the (D, D)-inverse of A, AD is the (Ak, Ak)-inverse
of A, where k = ind(A) and A# is the (A, A)-inverse of A. By ([15] Theorem 4.4), we have that the
(A, A∗)-inverse is the core inverse of A.

Let A ∈ Cm×n be a matrix of rank r, let T be a subspace of Cn of dimension s ≤ r and let S be
a subspace of Cm of dimension m− s. The matrix A has a {2}-inverse X such that R(X) = T and
N (X) = S if and only if AT⊕S = Cn (see, e.g., [3] Section 2.6). In this case, X is unique and is denoted
by A(2)

T,S. Many properties of A(2)
T,S can be found in, for example,[3,16–19].

The theory of the generalized inverses has many applications, as one can see in [3]. Another
important application is the study of singular systems of differential equations (see, e.g., [20,21]).

The main purpose of the manuscript is twofold: to research the rank of the difference AA‖(B1,C1)−
DD‖(B2,C2) and to apply this study to characterize when AA‖(B1,C1) = DD‖(B2,C2). These results are
contained in Sections 3 and 4. The paper finishes by particularizing the previous results to some
standard generalized inverses.

2. Preliminaries

The following lemmas about the partitioned matrices [A, B] and

[
A
B

]
will be useful in the sequel.

Lemma 1. Let A ∈ Cm×n and B ∈ Cm×k.

(1) ([22] Theorem 5) For any A− ∈ A{1} and B− ∈ B{1}, we have

rank([A, B]) = rank(A) + rank([Im − AA−]B) = rank([Im − BB−]A) + rank(B);

(2) rank([A, B]) = rank(B) if and only if R(A) ⊆ R(B).

Proof. Since (1) was proved in ([22] Theorem 5), we only give the proof of (2). Observe that
rank([A, B]) = dim[R(A) + R(B)] = dim R(A) + dim R(B) − dim[R(A) ∩ R(B)], which leads
to rank([A, B]) = rank(B)⇔ dim R(A) = dim[R(A) ∩R(B)]⇔ R(A) ⊆ R(B).

Lemma 2. Let A ∈ Cm×n and B ∈ Ck×n.

(1) ([22] Theorem 5) For any A− ∈ A{1} and B− ∈ B{1}, we have

rank

([
A
B

])
= rank(A) + rank(B[In − A−A]) = rank(A[In − B−B]) + rank(B);
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(2) rank

([
A
B

])
= rank(B) if and only if N (B) ⊆ N (A).

Proof. Again, only the the proof of (2) will be given. Since rank

([
A
B

])
= rank([A∗, B∗]),

by employing item (2) of Lemma 1 we get

rank

([
A
B

])
= rank(B)⇔ rank([A∗, B∗]) = rank(B∗)⇔ R(A∗) ⊆ R(B∗).

The proof finishes by recalling the equality R(X∗) = N (X)⊥ valid for any matrix X, where the
superscript ⊥ denotes the orthogonal complement.

Lemma 3. ([22], Theorem 5) Let A ∈ Cm×n and B ∈ Cm×k.

(1) If there is a matrix Q ∈ Cn×t such that R(A) ⊆ R(AQ), then

rank([AQ, B]) = rank([A, B]);

(2) If there is a matrix P ∈ Ck×s such that R(B) ⊆ R(BP), then

rank([A, BP]) = rank([A, B]).

Proof. We only prove (1) since (2) is analogous. Observe that R(A) ⊆ R(AQ) and R(A) = R(AQ)

are equivalent. Now, (1) is evident from the expression rank([X, Y]) = dim R(X) + dim R(Y) −
dim[R(X) ∩R(Y)] valid for any pair of matrices X and Y with the same number of rows.

Lemma 4. ([22], Theorem 5) Let A ∈ Cm×n and B ∈ Ck×n.

(1) If there is a matrix Q ∈ Ct×m such that N (QA) ⊆ N (A), then

rank

([
QA
B

])
= rank

([
A
B

])
;

(2) If there is a matrix P ∈ Cs×k such that N (PB) ⊆ N (B), then

rank

([
A

PB

])
= rank

([
A
B

])
.

Proof. The proof is similar than the proof of Lemma 2, item (2).

From Lemma 3 and Lemma 4, we have the following two lemmas.

Lemma 5. Let A ∈ Cm×n and B ∈ Cm×k. If there are matrices Q ∈ Cn×t and P ∈ Ck×s such that
R(A) ⊆ R(AQ) and R(B) ⊆ R(BP), then

rank([AQ, BP]) = rank([A, B]).

Lemma 6. Let A ∈ Cm×n and B ∈ Ck×n. If there are matrices Q ∈ Ct×m and P ∈ Cs×k such that
N (QA) ⊆ N (A) and N (PB) ⊆ N (B), then

rank

([
QA
PB

])
= rank

([
A
B

])
.
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Lemma 7. ([23] Theorem 2.1) Let P, Q ∈ Cn×n be any two idempotent matrices. The difference P − Q
satisfies the following rank equality:

rank(P−Q) = rank

([
P
Q

])
+ rank([P, Q])− rank(P)− rank(Q).

The following lemma gives the calculation and the characterization of the existence of the
(B, C)-inverse of a matrix A.

Lemma 8 ([6] Theorem 4.4). Let A ∈ Cm×n and B, C ∈ Cn×m. The following statements are equivalent:

(1) the (B, C)-inverse of A exists;
(2) rank(B) = rank(C) = rank(CAB).

In this case, A‖(B,C) = B(CAB)†C.

Lemma 9 ([6] Corollary 7.2). Let A ∈ Cn×m and G ∈ Cm×n. The following statements are equivalent:

(1) the matrix A is invertible along G;
(2) the outer inverse A(2)

R(G),N (G)
exists.

3. Main Theorem

In this section, several rank equalities related to the generalized inverse A‖(B1,C1) and D‖(B2,C2) of
A and D are derived, where A, D ∈ Cn×m and B1, B2, C1, C2 ∈ Cm×n.

Theorem 1. Let A, D ∈ Cn×m, B1, B2, C1, C2 ∈ Cm×n. If A is (B1, C1) invertible and D is (B2, C2) invertible
with A‖(B1,C1) is the (B1, C1)-inverse of A and D‖(B2,C2) is the (B2, C2)-inverse of D, then

rank(AA‖(B1,C1) − DD‖(B2,C2))

= rank

([
C1

C2

])
+ rank([AB1, DB2])− rank(B1)− rank(B2)

= rank

([
C1

C2

])
+ rank([AB1, DB2])− rank(C1)− rank(C2).

Proof. Since A‖(B1,C1) and D‖(B2,C2) are outer inverse of A and D we have have that AA‖(B1,C1) and
DD‖(B2,C2) are idempotents. By Lemma 7, we have

rank(AA‖(B1,C1) − DD‖(B2,C2)) = rank

([
AA‖(B1,C1)

DD‖(B2,C2)

])
+

rank([AA‖(B1,C1), DD‖(B2,C2)])− rank(AA‖(B1,C1))− rank(DD‖(B2,C2)).

(3)

Since A‖(B1,C1)AB1 = B1 and R(A‖(B1,C1)) = R(B1), thus

rank(B1) ≤ rank(A‖(B1,C1)A) ≤ rank(A‖(B1,C1)) = rank(B1). (4)

Similarly, the expressions C1 AA‖(B1,C1) = C1 and N (A‖(B1,C1)) = N (C1) imply

rank(C1) ≤ rank(AA‖(B1,C1)) ≤ rank(A‖(B1,C1)) = rank(C1). (5)

From (4) and (5), we have

rank(AA‖(B1,C1)) = rank(A‖(B1,C1)A) = rank(B1) = rank(C1). (6)
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In an analogous manner, for the (B2, C2)-invertible matrix D, we have

rank(DD‖(B2,C2)) = rank(D‖(B2,C2)D) = rank(B2) = rank(C2). (7)

By Lemma 8, we have A‖(B1,C1) = B1(C1 AB1)
†C1 and D‖(B2,C2) = B2(C2DB2)

†C2. Thus

rank

([
AA‖(B1,C1)

DD‖(B2,C2)

])
= rank

([
AB1(C1 AB1)

†C1

DB2(C2DB2)
†C2

])
(8)

rank([AA‖(B1,C1), DD‖(B2,C2)]) = rank([AB1(C1 AB1)
†C1, DB2(C2DB2)

†C2]). (9)

By ([6] Theorem 3.4), we have R(C1) = R(C1 AB1) and N (B1) = N (C1 AB1). Then we have

C1 = C1 AB1(C1 AB1)
†C1 and B1 = B1(C1 AB1)

†C1 AB1. (10)

In a analogous manner, for the (B2, C2)-invertible matrix D, we have

C2 = C2DB2(C2DB2)
†C2 and B2 = B2(C2DB2)

†C2DB2. (11)

Since the conditions in (10) and (11) imply that N (AB1(C1 AB1)
†C1) ⊆ N (C1) and

N (DB2(C2DB2)
†C2) ⊆ N (C2), respectively. Thus, Lemma 6 and the condition in (8) imply

rank

([
AA‖(B1,C1)

DD‖(B2,C2)

])
= rank

([
C1

C2

])
. (12)

By (10) and (11), we have

AB1 = AB1(C1 AB1)
†C1 AB1 and DB2 = DB2(C2DB2)

†C2DB2. (13)

The expressions in (13) imply that R(AB1) ⊆ R(AB1(C1 AB1)
†C1) and R(DB2) ⊆

R(DB2(C2DB2)
†C2). Thus, Lemma 5 and the expression in (9) imply

rank([AA‖(B1,C1), DD‖(B2,C2)]) = rank([AB1, DB2]). (14)

The proof is completed by using (3), (6), (7), (13) and (14).

Example 1. Let

A =

[
1 0
0 0

]
, B1 =

[
1 1
1 1

]
, C1 =

[
0 0
1 1

]
and

D =

[
0 0
0 1

]
, B2 =

[
1 2
2 4

]
, C2 =

[
1 1
1 1

]
.

By using Lemma 8 we get that A is (B1, C1)-invertible, D is (B2, C2)-invertible, and

A‖(B1,C1) =

[
1 1
1 1

]
, D‖(B2,C2) =

[
1/2 1/2

1 1

]
.

These latter computations can be easily performed by a numerical software, e.g., Octave. Now,

rank
(

AA‖(B1,C1) − DD‖(B2,C2)
)
= rank

([
1 1
−1 −1

])
= 1.
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Evidently, rank

([
C1

C2

])
= 1, rank(B1) = rank(B2) = 1, and

rank ([AB1, DB2]) = rank

([
1 1 0 0
0 0 2 4

])
= 2,

which exemplifies Theorem 1.

4. Applications

In this section, as an application of the preceding section, we will characterize when AA‖(B1,C1) =

DD‖(B2,C2) holds. Also, several rank equalities for the Moore-Penrose inverse, the Drazin inverse,
the group inverse, the core inverse and the inverse along an element will be presented in view of the
rank equalities for the (B, C)-inverse presented in Theorem 1.

Theorem 2. Let A, D ∈ Cn×m, B1, B2, C1, C2 ∈ Cm×n. If A is (B1, C1) invertible and D is (B2, C2) invertible,
then the following statements are equivalent:

(1) AA‖(B1,C1) = DD‖(B2,C2);
(2) R(AB1) ⊆ R(DB2) and N (C1) ⊆ N (C2);
(3) R(DB2) ⊆ R(AB1) and N (C2) ⊆ N (C1);
(4) N (A‖(B1,C1)) ⊆ N (DD‖(B2,C2)) and R(AA‖(B1,C1)) ⊆ R(DB2);
(5) N (D‖(B2,C2)) ⊆ N (AA‖(B2,C2)) and R(DD‖(B2,C2)) ⊆ R(AB1).

Proof. By B1 = A‖(B1,C1)AB1, we have rank(AB1) ≤ rank(B1) = rank(A‖(B1,C1)AB1) ≤ rank(AB1),
that is rank(AB1) = rank(B1). Similarly, we have rank(DB2) = rank(B2). By Lemma 2, we have

rank

([
C1

C2

])
= rank(C1) + rank(C2[In − C−1 C1]). (15)

By Lemma 1, we have

rank([AB1, DB2]) = rank(DB2) + rank([In − DB2(DB2)
−]AB1), (16)

where (DB2)
− is any inner inverse of DB2.

Assume that (1) holds. By Theorem 1 we have

rank

([
C1

C2

])
+ rank([AB1, DB2])− rank(B1)− rank(B2) = 0. (17)

By employing rank(DB2) = rank(B2) and Lemma 8, the equality in (17) can be written as

rank

([
C1

C2

])
+ rank([AB1, DB2])− rank(C1)− rank(DB2) = 0. (18)

Having in mind (18), (15), and (16), we have that rank(C2[In − C−1 C1]) = 0 and rank([In −
DB2(DB2)

−]AB1) = 0. That is R(AB1) ⊆ R(DB2) and N (C1) ⊆ N (C2), we have just obtained (2).
By using rank(AB1) = rank(B1), Lemma 8 and (17) we get

rank

([
C1

C2

])
+ rank([AB1, DB2])− rank(AB1)− rank(C2) = 0.

The proof of (1)⇒ (3) finishes as the proof of (1)⇒ (2).
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(2)⇒ (1). The hypotheses are clearly equivalent to AB1 = DB2(DB2)
−AB1 and C2 = C2C−1 C1,

which in view of (15), (16), and Theorem 1 lead to (1).
(3)⇒ (1). The proof is similar than the proof of (2)⇒ (1).
(1)⇔ (4). From the proof of Theorem 1 and rank(DB2) = rank(B2), we have

rank(AA‖(B1,C1) − DD‖(B2,C2)) = rank

([
AA‖(B1,C1)

DD‖(B2,C2)

])
+

rank([AA‖(B1,C1), DB2])− rank(AA‖(B1,C1))− rank(DB2).

(19)

By A‖(B1,C1)AA‖(B1,C1) = A‖(B1,C1), we have N (A‖(B1,C1)A) ⊆ N (A‖(B1,C1)). Thus, by Lemma 2,
the expression (19) can be written as

rank(AA‖(B1,C1) − DD‖(B2,C2)) = rank

([
A‖(B1,C1)

DD‖(B2,C2)

])
+

rank([AA‖(B1,C1), DB2])− rank(AA‖(B1,C1))− rank(DB2).

(20)

By Lemma 1 and Lemma 2, we have

rank

([
A‖(B1,C1)

DD‖(B2,C2)

])
= rank(A‖(B1,C1)) + rank(DD‖(B2,C2)[In − (A‖(B1,C1))−A‖(B1,C1)])

and
rank([AA‖(B1,C1), DB2]) = rank(DB2) + rank([In − DB2(DB2)

−]AA‖(B1,C1)).

By (6) and R(B1) = R(A‖(B1,C1)), we have

rank(AA‖(B1,C1)) = rank(A‖(B1,C1)). (21)

Thus by (20) and (21), we have that AA‖(B1,C1) = DD‖(B2,C2) if and only if both

rank(DD‖(B2,C2)[In − (A‖(B1,C1))−A‖(B1,C1)]) = 0 (22)

and
rank([In − DB2(DB2)

−]AA‖(B1,C1)) = 0 (23)

hold. It is easy to see that rank(DD‖(B2,C2)[In − (A‖(B1,C1))−A‖(B1,C1)]) = 0 is equivalent to
N (A‖(B1,C1)) ⊆ N (DD‖(B2,C2)) and rank([In − DB2(DB2)

−]AA‖(B1,C1)) = 0 is equivalent to
R(AA‖(B1,C1)) ⊆ R(DB2).

The proof of (1)⇔ (5) is similar to the proof of (1)⇔ (4).

Since the inverse of a matrix A along D coincides with the (D, D)-inverse of A, Theorem 1 and
Theorem 2 lead to the following corollaries.

Corollary 1. Let A, B, D1, D2 ∈ Cn×n. If A is invertible along D1 and B is invertible along D2, then

rank(AA‖D1 − BB‖D2)

= rank

([
D1

D2

])
+ rank([AD1, BD2])− rank(D1)− rank(D2)

= rank

([
D1

D2

])
+ rank([AD1, BD2])− rank(D1)− rank(D2).
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Corollary 2. Let A, B, D1, D2 ∈ Cn×n. If A is invertible along D1 and B is invertible along D2, then the
following statements are equivalent:

(1) AA‖D1 = BB‖D2 ;
(2) R(AD1) ⊆ R(BD2) and N (D1) ⊆ N (D2);
(3) R(BD2) ⊆ R(AD1) and N (D2) ⊆ N (D1);
(4) N (A‖D1) ⊆ N (BB‖D2) and R(AA‖D1) ⊆ R(BD2);
(5) N (B‖D2) ⊆ N (AA‖D1) and R(BB‖D2) ⊆ R(AD1).

Let A ∈ Cn×n. By ([7] p. 1910), we have that the Moore-Penrose inverse of A coincides with
the (A∗, A∗)-inverse of A, the Drazin inverse of A coincides with the (Ak, Ak)-inverse of A for some
integer k and A is group invertible if and only if A is (A, A)-invertible. By ([15] Theorem 4.4), we
have that the (A, A∗)-inverse coincides with the core inverse of A. We have that the (A∗, A)-inverse
coincides with the dual core inverse of A. Thus, by Theorem 1 and Theorem 2, more results of the
inverse along an element, the Moore-Penrose inverse, Drazin inverse, core inverse and dual core
inverse can be obtained. We give some characterizations of these results as follows, and leaving the
remaining parts to the reader to research. Also, some rank characterizations of the EP elements can be
got by the following Corollary 3.

Corollary 3. Let A, B ∈ Cn×n. Then

(1) Let A† and B† be the Moore-Penrose inverse of A and B, respectively. We have

rank(AA† − BB†) = rank

([
A∗

B∗

])
+ rank([A, B])− rank(A)− rank(B);

(2) Let ind(A) = k, ind(B) = l and AD, BD be the Drazin inverse of A and B, respectively. We have

rank(AAD − BBD) = rank

([
Ak

Bl

])
+ rank([Ak+1, Bl+1])− rank(Ak)− rank(Bl);

(3) Let ind(A) = ind(B) = 1 and A#, B# be the group inverse of A and B, respectively. We have

rank(AA# − BB#) = rank

([
A
B

])
+ rank([A2, B2])− rank(A)− rank(B);

(4) Let ind(A) = ind(B) = 1 and A #©, B #© be the core inverse of A and B, respectively. We have

rank(AA #© − BB #©) = rank

([
A∗

B∗

])
+ rank([A2, B2])− rank(A)− rank(B).

Proof. (1). Since A† coincides with the (A∗, A∗)-inverse of A and B† coincides with the (B∗, B∗)-inverse
of B, by Theorem 1, we have

rank(AA† − BB†) = rank

([
A∗

B∗

])
+ rank([AA∗, BB∗])− rank(A∗)− rank(B∗).

That is

rank(AA† − BB†) = rank

([
A∗

B∗

])
+ rank([A, B])− rank(A)− rank(B),

by the following obvious facts rank([AA∗, BB∗]) = rank([A, B]), rank(A∗) = rank(A), rank(B∗) =
rank(B).
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(2), (3), (4) are obvious.

Some particular cases can be obtained from the previous corollary by setting the matrix B to
some concrete generalized inverses. For example, when B = A† we have rank(AA† − A† A) =

2[rank(A, A†)− rank(A)], which can be used to get a characterization of the EP matrices (AA† = A† A)
or the co-EP matrices (AA† − A† A is nonsingular, see [24]).
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12. Rakić, D.S. A note on Rao and Mitra’s constrained inverse and Drazin’s (b, c) inverse. Linear Algebra Appl.

2017, 523, 102–108. [CrossRef]
13. Wang, L.; Castro-González, N.; Chen, J.L. Characterizations of the outer generalized inverses. Can. Math. Bull.

2017, 60, 861–871. [CrossRef]
14. Xu, S.Z.; Benítez, J. Existence criteria and expressions of the (b, c)-inverse in rings and its applications.

Mediterr. J. Math. 2018, 15, 14. [CrossRef]
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