* water m\py

Article

Enhanced Water Demand Analysis via Symbolic
Approximation within an Epidemiology-Based
Forecasting Framework

2(2, Bruno M. Brentan 30, Edevar Luvizotto Jr 3

Claudia Navarrete-Lépez 107, Manuel Herrera
and Joaquin Izquierdo **

1 Faculty of Environmental Engineering, Universidad Santo Tomas, Bogota 110231, Colombia;

claudianavarrete@usantotomas.edu.co

Institute for Manufacturing—Department of Engineering, University of Cambridge,

Cambridge CB3 0FS, UK; amh226@cam.ac.uk

LHC—Faculty of Civil Engineering, Universidade Estadual de Campinas, Campinas 13083-970, Brazil;
brunocivil08@gmail.com (B.M.B.); edevar@fec.unicamp.br (E.L.J.)

Fluing—Institute for Multidisciplinary Mathematics, Universitat Politecnica de Valencia,

46022 Valencia, Spain

*  Correspondence: jizquier@upv.es; Tel.: +34-628-028-804

check for
Received: 28 December 2018; Accepted: 26 January 2019; Published: 31 January 2019 updates

Abstract: Epidemiology-based models have shown to have successful adaptations to deal with
challenges coming from various areas of Engineering, such as those related to energy use or
asset management. This paper deals with urban water demand, and data analysis is based on
an Epidemiology tool-set herein developed. This combination represents a novel framework in
urban hydraulics. Specifically, various reduction tools for time series analyses based on a symbolic
approximate (SAX) coding technique able to deal with simple versions of data sets are presented.
Then, a neural-network-based model that uses SAX-based knowledge-generation from various
time series is shown to improve forecasting abilities. This knowledge is produced by identifying
water distribution district metered areas of high similarity to a given target area and sharing
demand patterns with the latter. The proposal has been tested with databases from a Brazilian
water utility, providing key knowledge for improving water management and hydraulic operation of
the distribution system. This novel analysis framework shows several benefits in terms of accuracy
and performance of neural network models for water demand.

Keywords: water distribution systems; epidemiology; time series analysis; pattern recognition;
dimension reduction

1. Introduction

Water demand forecasting is of paramount importance for water supply planning and operation,
to ensure continuous service at suitable levels of quantity and pressure. Accurate water demand
models are thereby key for approaching intelligent asset management of such physical assets as
pumps, valves and water-meters [1-3]. Also, thanks to deeper understanding of water demand,
it is possible to better propose near real-time operation of urban water supply. As other forecasting
problems, water demand forecasting is essentially a regression problem and has been approache by
both single and multivariate regression models [4] and by classical time-series models [5]. These last
models often consider time and calendar variables since users demand water usually at the same
hours. However, they behave differently in weekends or holidays than in weekdays. The application
of innovative techniques for short-term forecasting has gained force in the recent years to beat the
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accuracy of classical short-term forecasting models [6]. This has been mainly due to the growth of the
computer capacity and the development of efficient machine learning tools, within which artificial
neural networks (ANNSs) can be highlighted as an important approach to forecast water demand [7].
The use of extreme learning machines [8], adaptive neuro-fuzzy inference systems [9], and hybrid
machine learning and optimisation techniques [10] can be presently considered state-of-the-art research
in water demand. However, as the new techniques for demand forecasting evolve, the available data
also grows exponentially. New challenges to address are, then, how to deal with big-size time series
databases and how to get near real-time response from the predictive models, keeping the highest
accuracy levels. Hybrid algorithms can improve the accuracy of forecasting tools, by better matching
the climatic and social effects with the time-series trends [11,12]. In this direction, several authors
have proposed hybrid methods highlighting the use of ANN and ARIMA models [13-15] or the use of
machine learning methods linked to various transformation models, such as wavelets [16] or Fourier
series [17].

This paper proposes the development of a novel approach on top of the previously mentioned
plethora of possible methodologies to analyse water demand. The building blocks are tool-sets and
methods adapted from epidemiological data analysis approaches (EDAAs). Our hypothesis is that
Epidemiology-based forecasting methods, which consider spatio-temporal data to analyse a disease
spread in a population, are suitable to provide useful knowledge in water supply. Working at different
temporal and spatial scales for analysing the water demand of a water distribution system (WDS)
makes it possible better control of the system [18,19]. This naturally considers the behaviour of the
different types of consumers within each district metered area (DMA) [20]. In addition, taking into
account the wide variability and spatial distribution of WDS areas, the analysis can be expanded
further towards an integral analysis taking into account other urban utilities such as gas or electricity
networks. Still, considering spatial relationships in water demand analysis benefits the provision
of more accurate water balances, as the analysis can focus now on each of the DMA encompassing
the WDS [21]. At the same time, it eases asset management and control of the system components
and leak location and quantification, as well [22]. Water supply asset performance, which must meet
users’ demand behaviours, may take advantage of water demand patterns of customers with similar
features or those who are under similar environmental conditions [23]. This provides a clear advantage
regarding other methodologies for analysing water demand, as EDAAs provide a multidisciplinary
framework to investigate customer water demand behaviour. EDAAs are not only an alternative
to ARIMA approaches for water demand forecasting, but also to clustering and probability-based
models for water demand modelling [24]. In addition, EDA As naturally have the potential to host new
capabilities to analyse various risks and vulnerabilities related to water distribution [25]. Reasonably,
epidemiology-based models, given its all-encompassing nature, are susceptible to be extended to other
various complex processes in urban hydraulics affecting water supply and drainage either individually
or jointly [26].

Traditional approaches on Epidemiology are connected with health-related issues over
populations and control of the various problems that arise in such a context [27]. Most of the key
developments in the area of Epidemiology have been based on using different models and methods
for data analysis [28]. Within these tools, network-based models provide a proper way to study a
population and how the individuals are interrelated [29,30]. The nodes of the network represent
individuals, and the links represent the interactions between individuals or the disease contagion,
within this framework. It is interesting to note that similar network representations can be used
in several contexts, such as transport and utility networks [31,32], communication networks [33],
and social networks [34].

Data analysis methodologies and tools adapted from Epidemiology have shown to be useful in
various Engineering applications. This is the case of energy and buildings [35], hydraulics [36,37],
and communication systems [38], among others. In energy related issues [39], Epidemiology provides
a holistic approach involving professionals in various areas: physicists, engineers, sociologists and
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economists, in an interdisciplinary work that leads to consider trends and patterns of energy demand.
This takes to strengthening the evidence base for policy makers and to assessing the impact of
regulatory actions regarding consumption. The application of methodologies and tools inherited from
data analysis in Epidemiology into hydraulics is a hardly investigated approach. However, Bardet and
Little [36] pioneered this idea by establishing a parallelism between outbreaks of clustered pipe breaks
and human mortality observed during extreme climatic events, such as heat waves [40].

The aim of this work is to provide a suitable framework for urban water distribution system
(WDS) management by considering simultaneously multiple network areas within a feature-sharing
framework. One of the main advantages of this proposal is to support further methodologies to analyse
water demand at several supply areas, and to provide a way of comparison of water use and costumer
behaviour depending on the characteristics of each zone [41].

This  paper proposes to address the necessary computations through
Symbolic-Aggregate-approXimation (SAX) [42] of the individual values of each of the target
time series using sequences of symbols. SAX was initially developed to reduce the dense, lengthy
information in a time series into chains of characters built to be shorter than the original time
series. SAX has also been found useful for various data mining tasks, in particular, indexing [43],
clustering [44,45], and classification [46]. The main vocation of SAX-based methods is to provide a
suitable avenue for pattern recognition models associated with time series [47].

The SAX output is a string of characters or “word” approximating the time series [48]. It is thereby
essential to work with appropriate methods to capture patterns formed by words characterising and
representing the time series data. Suffix trees [42,49] have been widely used for this purpose, and,
thus, provide a way to organise sub-strings of SAX words, which eases pattern extraction processes.
Suffix trees have various applications [42,49], because of their ability to provide linear-time solutions to
complex string configurations [50]. One of the most important problems approached by suffix trees are
those related to DNA contamination issues [51] supporting the finding of unexpected patterns in large
DNA chains. The compression capability of suffix trees is so efficient that enables to effectively map
even the human genome, which is composed by an order of 20,000 protein-coding genes [52,53] and
supports searching procedures within millions of nucleotides present in human genome studies [54].

The proposed EDAA working framework, which uses a joint SAX-suffix tree methodology,
has been tested using the WDS utility of Franca, in Brazil, to improve demand forecasting. The database
under study comes from four sectors of Franca’s water network. By adapting EDAAs to analyse
these four time series of water demand, better insight of the underlying relationships between their
corresponding supply areas is provided. This is useful to develop enhanced forecasting analysis
methods, and to speed up operation and control of the water system through better detection of
anomalies. In addition, this eases the study on how the different parts of a system respond in front of
undesirable events, something obtained by analysing the relationships between exposure and outcome,
within a holistic urban water management context. The new framework has shown great suitability
for improving water demand predictive models. This is achieved by reinforcing the predictive ability
for a WDS area using the feedback from another areas that have shown similarities in terms of their
respective demands.

The structure of the paper is the following: Section 2, a fully methodological section, introduces
epidemiology-based forecast methods, which are consequently adapted to analyse urban water
demand; SAX is also proposed as a useful tool for this aim; the resulting SAX word strings are
analysed through a pattern discovery process based on suffix trees. Section 3 presents the case-study
of a utility network from which water demand of various sectors is analysed. After presenting the
main results for this case-study, Section 4 provides a discussion on the main findings of the current
research. Finally, Section 5 closes the paper putting forward conclusions and further work.
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2. Epidemiology-Based Data Analysis for Water Demand

Predictive models based on Epidemiology data analysis often include the evaluation of multiple
relationships between two or more time series. This is the case of understanding how data changes over
time and how to suitable apply forecasting methods. When working with multiple time series models
it is usual to establish associations between exposure to a threat and health outcome. For example,
from the study of associations between exposure to such elements as air pollution, weather variables
or pollen, important results regarding ways to show disease symptoms and consequences may be
derived [55,56]. In water supply, similar associations show, for instance, how high temperatures
impact on progressively producing higher levels of water demand for a certain population [57]. As a
consequence, it is useful to investigate cause-effect relationships between exogenous variables and
levels of water demand.

The databases for carrying out these studies are naturally available at regular time intervals.
This explains why time series analysis plays such an important role in Epidemiology. The main aim
is to explain changes in the main time-dependent variable of the process through changes in the
levels of the other variables under analysis. This makes that Poisson regression and ARIMA models
have been widely used within this research area [58]. However, as the aim of this work is to find
relationships between time series concerning exposure and outcome, other more complex models such
as multivariate ARIMA and dynamic models have also been commonly used [59]. It is also usual
to work with transfer functions and intervention models, whose use and performance is frequently
limited by the complexity of such models [60].

EDAAs ease the approach of multiple water demand analysis when considering the various
district metered areas (DMAs) in which a WDS is often partitioned [21]. As Epidemiology methods
model cause-effect relationships, EDAAs are easily extended to investigate the impact on water
consumption related to the effects of events ranging from valve operations to policies related to extreme
weather conditions. EDAA forecasting models make it possible to disaggregate those previously
mentioned effects for the individual DMAs [61]. This is done by a patient-level data analysis that
allows to develop a different predictive model per DMA. The approach is naturally completed taking
into account the existing correlations between DMAs of the same WDS [62,63]. EDAAs provide, in this
way, a spatial sense of analysis to the common temporal approach when approaching water demand
modelling at urban level. This is the main idea developed in this paper.

2.1. Epidemiology-Based Forecast and SAX

This paper proposes a symbolic aggregate approximation of time series [42] to represent the time
series as a sequence of symbols. SAX is a suitable methodology to work under an epidemiology-based
framework. The reason is that SAX can be used as a tool to compute distances between time series,
to study how various time series are related among themselves (similar patterns), and to ease the
analysis of large time series.

2.2. Introduction to SAX

SAX was primarily developed to reduce the dense, lengthy information of a time series to a
shorter sequence of characters. SAX has also been found suitable for various data mining tasks,
including indexing [43], clustering [44,45], and classification [46]. SAX follows three main steps:

1. Divide a time series with | data into w segments of equal length (number of data), [ /w.
2. Compute the arithmetic average of the time series data for each segment.
3.  Build proxies of these average values using symbols from an alphabet of size m.

In the first step, a Piecewise Aggregate Approximation (PAA) process is performed. Then,
the average for each segment in which the time series splits is obtained - step 2. Finally, SAX associates
these average values with symbols, where each symbol represents a certain grade of the average
value computed per segment - this is step 3. SAX is based on the assumption that time series values
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follow a Normal distribution for each of the segments into which the PAA has divided the series.
On computing the final average values, w — 1 breakpoints, 71, ..., vy—1, that divide the area under
the Normal distribution into w equi-probable areas are considered. For each area the arithmetic mean
value is, then, obtained [42]. In a more formal way, let Q = (43, ..., ;) be a vector of real numbers that
normalizes the time series of size [. The PAA representation of Q is a new vector Q= (q1,...,qw) of
size w whose ith element J; can be computed as in Equation (1):

w il/w

gi = qj- 1)

! j=1+(i—1)1/w
After the third step, a sequence of symbols (sequence of letters from an alphabet, %, of size m > 2)
or “word” is composed. Each symbol or letter represents a grade for the average at each segment of
the original data, i.e. the values obtained in Equation (1). So, using an alphabet, a word has as many
letters as segments in the PAA. One cand note by Q = 41, .. ., 4, the word obtained this way.
Figure 1 presents a simple example of the output of the SAX process representing a 128-long
time series into a word of just 8 characters: baabccbe, which uses and alphabet of three symbols,

Y ={a,b,c}.
—n Symbol
\\lrc / *Te\ =
) j

b »

b / b \
f \ PAA Representation
3 \a/ Original series

1 128

Figure 1. SAX representation of a series adapted from [42].

An important characteristic of SAX is to have associated a metric, a distance between each two
SAX-coded time series, which is a lower bound of the distance between time series when computed in
the original space. The traditionally used distance between two SAX words is the so-called MINDIST,
and entails looking up the distances between each pair of symbols or letters. Given two time series Q
and C of the same length [, Equation (2) shows how MINDIST is defined:

MINDIST(Q,€) = \/Z i (dist(q;,;))?, @)
i=1

where w is the number of segments into which both time series are divided, and Q =41,...,4wand
¢ = ¢1,...,Cyp are the words into which both time series, Q and C, are respectively encoded using
Equation (1). The function dist() can be implemented using a table look-up containing pre-computed
distances between letters of the SAX alphabet in use ¥ = {1, ..., &y }. Those are minimum distances
between letters and so MINDIST also returns the minimum distance between the time series of the
original values through their corresponding words. Specifically, the distance between two symbols

a;,aj € X is calculated by Equation (3),

0, if i —j| <1.

Bmax(i,j)~1 — Pming,j), ©therwise.

dist(a;, Déj) = { (©)]

where B is the value of the standardised Normal at the corresponding break-point of the
PAA configuration.
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Working with SAX opens multiple research avenues on methods such as hashing [64],
Markov models [65,66], and suffix tree methods [49,67], as considered next. In addition, SAX naturally
has an associated sliding window architecture in which every time-frame is encoded by a letter.
This will aid to face further challenges for time series analysis.

2.3. Pattern Recognition in SAX Words

A table containing an entry for each SAX word can be a useful tool to count the number of
occurrences of certain sub-strings. After creating and saving a suitable table, elements of the same size
of the SAX string for which patterns are found out can be easily identified. Observe that any query in
the table takes constant time [50]. A convenient way to organise a directory of sub-strings from a word
is the technique called suffix tree [68]. The suffix tree is a type of digital search that represents a set of
strings over a finite alphabet. Suffix trees are ideal for mining periodic patterns [49] as those commonly
found in urban water demand. In addition, the suffix tree technique supports finding anomalies or
surprising patterns, as well, which can be understood as consequences of operation manoeuvres in
water supply (open/close valves, e.g.,) or the presence of disruptive events (pipe bursts, e.g.,).

A formal definition of the suffix tree, T, associated with a string x of n characters drawn from an
ordered alphabet X is the following. The string x is first noted as x[1 : ], and any sub-string of the form
x[i : n] will be called a suffix of x. Let $ be a special character, matching no character in 2. The character
$ is a right end-marker, and its purpose is to separate in T suffix x[i : n] from suffix x[j : n], fori > j,
whenever the former is a prefix of the latter. This ensures that no suffix is a prefix of another suffix,
and that there will be # leaf nodes, one for each of the suffixes of T. Consequently, each leaf of T is
labelled with a distinct integer j such that the path from the root to the leaf j corresponds to the suffix
x[j : n] [69]. Table 1 provides a summary of the main steps for the suffix tree creation process.

Table 1. Suffix tree construction. An overview.

Let T be a Tree Corresponding to a String x of Length n:

1. T has exactly n leafs, numbered from 1 to n
2. Every edge has a label, which is a sub-string of x
3. Every internal node has at least 2 children
4. Labels of two edges starting at an internal
node do not start with the same character
5. The label of the path from the root to a leaf
numbered i is the suffix of x starting at
position i, ie., x[i,..., n]

There are compact representations for the suffix trees that allow encoding a large number of
different sub-strings, handling at most 2n nodes [70]. This is important as this fact enables indexing
large words through several operations of order O(n).

The decision to take the suffix tree method for pattern extraction form SAX comes from its
computational efficiency, the representativeness of the patterns it manages to find, and its huge
applicability. This have led this technique to play a central role also in a most complex practice of
pattern extraction from strings, such as the case of the human genome [52].

As an example of how the suffix tree process works, the word cabdcabb built using the alphabet
Y = {a,b,c,d} is proposed. Figure 2 shows the process of pattern extraction for this example.

In the example of Figure 2, the first action is to take the smallest suffix b$, starting at the right
of the word. After creating a root, a first branch related to b$ is added to the root and indexed by 8
which is the original position of the suffix in the word. Moving to position 7 of the word one founds
the suffix bb$; as a branch b already exists, another branch starting from the first is added (see step 2 of
Figure 2) and the previous one is split giving rise to another one with the end-marker $. The next suffix
is abb$. There is not branch representing a. A new branch starting from the root is created to represent
the whole suffix, carrying out the index 6 (see step 3 of Figure 2). The process is iterated following the
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theoretical approach explained above until getting each suffix in T conveniently indexed (step 8 of
Figure 2).

cabdcabb$
abb $ 6
G\bés b 5
1 2 38 b$7 3  s$8 b$7
abb $ 6
4 ) b
st dcabb $ 4
s $8 b$7
0
5 &
dcabb $ 4 abb $6

dcabb $ 4

L
")
»?

6
dcabb $ 4 abb $6

Figure 2. Example of a suffix tree.

3. Analysis of Urban Water Demand

This paper computes SAX for several water consumption time series that correspond to various
DMAs composing a utility WDS. The aim of the proposal is to use SAX to extract patterns from those
time series. As already seen, SAX also supports computing distances between time series. This makes it
possible to study different water uses and pattern demands depending on the DMA and the customers’
characteristics. The process brings a practical application for the SAX epidemiology-based forecast
model introduced in Section 2.

3.1. An Epidemiological Framework for Water Demand Analysis

Epidemiology forecasting often works with a spatial analysis to supplement the time series
analysis. In this paper, we claim that based on similarities that can be found among various DMAs,
it is possible to improve water demand background knowledge for a specific target DMA. This is
achieved by considering the information found on those DMAs exhibiting similar demand patterns
to the targeted DMA. These similarities are based on the above described methods regarding SAX
distance and suffix trees. There are several alternative ways to approach distances or (dis)similarities
between time series [71]. In many cases, these alternatives are based on algorithms developed for
whole time series clustering by taking the main characteristics of the static clustering algorithms.
Then the process continues by modifying the similarity definition to a new appropriate one, or by
applying a transformation to the time series so that static features are obtained [72]. The method in
which this paper lies has the advantage of working well with large time series databases since the
dimension of the problem is naturally reduced by the SAX related methods. The overall process is
shown in the flowchart of Figure 3, where DMA; is targeted for improving the predictive accuracy on

its demand.
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Figure 3. Flowchart of the overall process for enhancing DMA-demand predictive models.
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The enhancement prediction process shown in Figure 3 starts by selecting a DMA to be targeted.
Then, each water demand time series is transformed into SAX for all the DMAs. All the pairwise
distances between the target and the other DMAs are evaluated. The closest DMA to the target is
selected to enhance the information of the predictive model on the targeted DMA. This process has a
clear advantage over just one single predictive model and, in addition, shows one way to apply the
knowledge produced by SAX.

An artificial neural network [73] is the model chosen herein to show the water demand
prediction improvement. An ANN is an interconnected group of neurons [74] that execute non-linear
computations based on the input values, and the resulting output is used to fed other neurons.
Neurons are usually arranged as a series of interconnected layers, as in the so-called multi-layer
perceptron neural network used here. Hidden nodes with appropriate nonlinear transfer or activation
functions are used to process the information received by the input nodes, each one associated with
one of the predictors. Usually, a three-layer feed-forward model is used for forecasting purposes.
Based on the data presented to the network a backpropagation error algorithm is used to iteratively
adjust the neuron connection weights in such a way that the predictive performance of the network is
improved. In this case-study, PAA values of the historic water demand time series at various time lags
is the input presented to the ANN.

3.2. Case-Study Description

In this Section, the presented methodology is applied to four DMAs of the Franca WDS. Franca is
Brazilian city located to the West of the country (see left map in Figure 4, and a detail on the right
inset). Franca is a city approximately 315,000-strong.

The study on these four DMAs takes into account spatial distribution and hydraulic properties of
water demand on the whole WDS. Figure 5 shows how Franca WDS is partitioned into several DMAs.
Such a partition was performed considering pressure conditions for the main areas. The grey blocks
in Figure 5 correspond to the DMAs involved in the case-study of this work. In this WDS, water is
supplied from a single water treatment plant to all DMAs by a main pipe line. The most important
tanks for water distribution are highlighted in the Figure, and are responsible to control and regularise
the supply for the DMAs that integrate the entire WDS.

Three out of the four DMAs chosen for analysis are of similar size regarding the number of
demand nodes. Specifically, the number of household connections for SA-3 is 2168, for SL is 2506,
and for SA-ZA is 2728. These three DMAs are urban districts with small businesses, a common
configuration for Brazil’s residential areas. The fourth DMA involved in the case-study is bigger than
the other three. It is called ETA, has 10,439 household connections and also supplies a prison; thus,
it is a sector of particular importance for the city water management. The time series for each DMA
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under study collects 4000 h water demand consumption data metered in litres per second. So, the data
of the case-study covers a period of approximately five months.

Venezuela
gota Guiana
®
»lombia Suriname

Brasil
Franca

Bolivia

Paraguai

Assunco
@

Chile =
y

Cm\ﬂ)ma 500Km / Potreiro 2

Uruguai

Figure 4. Location map of the city of Franca, Brazil.

Airport macro DMA
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Tank2
WTP
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SL

Figure 5. DMA layout of Franca’s WDS.
3.3. Results

The dimension of the time series corresponding to the four DMAs of the case-study is reduced
using SAX. Figure 6 shows the performance of the PAA tuning process. The reduction selection
considers: (a) the accuracy of the PAA, in terms of the sum of squares—SS—computed as the distance
between the arithmetic average for a PAA and the original values of the time series; and (b) the number
reduction, represented by the number of segments. Under both criteria, it is taken 400 as the number of
segments forming the PAA partition, with a dictionary or alphabet of four letters {a,b, c,d}. The letters
are related to the various levels of water demand values in the time series; where a is the lowest level
and d is the highest.
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Figure 6. Number of segments for the PAA configuration; (a) SS vs. number of segments; (b) cumulative
SS vs. number of segments.

The accuracy of the various PAAs is better explained by Figure 7. This Figure shows various
levels of PAA reconstruction of water demand for the case of the district SL: Figure 7a—d show PAAs
for the time series reconstructions into 50, 100, 200 and 400 segments, respectively. This is a good
representative example of how the accuracy level of a PAA depends on the number of segments in
which the time series is divided, ranging from low fidelity time series reconstruction for a PAA with
50 segments (Figure 7a) to the higher PAA fidelity when using 400 segments (Figure 7d).

Table 2 shows the MINDIST distances between the four DMAs when using 400 segments for
computing the PAA, as this is several segments suitable to explain most of the variability found in the
time series under study, according to both Figures 6 and 7. SL, SA-ZA and SA-3 are the DMAs which
are closer according to the MINDIST distance. Furthermore, it is worth noting that the SAX word
for the water demand time series corresponding to SA-ZA can be directly obtained by combining the
other two DMAs.

The sub-string aaddcdbaaddddbaacdddcaa is the longest SAX pattern common to all the series
found through suffix trees applied to the SAX words. Considering that each letter represents values
for 10 water consumption registers, this pattern shows a similar tendency for 230 h of the original
time series (it means over 9 consecutive days with water demands of similar level at all the DMAs).
Other shorter patterns have also been found in the SAX words of the case-study and each one is found
out at least twice within each series. Similar patterns to those found in SL are in both SA-ZA and SA-3.

One of the main hypotheses of this paper is to combine these similarity patterns between DMAs
with those obtained from MINDIST. This would help support further predictive methods based
on available historical data by using information on similar water consumption behaviours in other
areas. Our claim is that this would improve the accuracy of predictive models and, in addition,
managing conditions of similar demand response in different DMAs would ease the detection of
abnormal readings at flow-meters, or even the presence of unexpected water uses or leaks. This idea
(as described by Figure 3) is proposed to improve the predictive model for the DMA SL using some
MINDIST-close DMA. In this case, SA-3 is chosen, instead of SA-ZA (which is at null distance),
for diversity reasons. Please note that using SA-ZA would have led to the use of too similar (almost
identical) features, and this would not have enriched the process. In contrast, SA-3 introduces increased
variability to the process.

The ANN herein considered to work along with SAX has one hidden layer, and neurons use
log-linear activation functions. Several configurations were tested through combination of the typical
ANN parameters: 3, 6 and 9 nodes for the hidden layer; and 0.01 and 0.1 for the learning rate parameter.
The 2250 values per DMA of the data series have been chopped down to 500, 400 and 200 values per
time series in order to retrain the ANN at different samples. This allows to work with the accuracy
average values for the models instead of using just one single value. The input variables for the ANN
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are in all cases measures of water demand 20 min, 40 min, and 1 week ahead of the current time ¢
(output). The databases have been split into partitions of 70% for training and 30% for validation.
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Figure 7. Sensitivity of PAA reductions. Case of SL's DMA. (a) SL DMA—Original water demand
values and PAA computed through 50 segments; (b) SL DMA—Original water demand values and PAA
computed through 100 segments; (c) SL DMA—Original water demand values and PAA computed
through 200 segments; (d) SL DMA—Original water demand values and PAA computed through

400 segments.

Table 2. MINDIST for the 4 DMAs of the case-study.

ETA

ETA 0
SL 4.77
SA-ZA 522
SA-3 4.27

SA-ZA SA-3
0 _
2.13 0

The results obtained from the errors for the DMA SL and the DMA combination SL + SA-3
show a stable behaviour, with prediction errors as expected, namely, the values obtained in the
prediction of the networks combining the two DMAs show consistently lower values in all the
cases. A t-test was performed to compare the error means for each prediction: SL and SL + SA-3
obtaining a p-value = 0.0033, which shows significant differences between the means of the two groups.
The global average error using the single DMA SL is 1.0106 while for the combination of both DMAs it
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is 0.8779. Table 3 summarises these results; t is the test statistic and d f stands for degrees of freedom.
The confidence interval indicates 95% of the sample lying between its bounds.

Table 3. Mean Error of predictive models using DMA SL and DMA combination SL + SA-3. Comparison
by Student’s t-test for equality of means.

Mean Error SL  Mean Error SL + SA-3 t df p-Value Confidence Interval
1.011 0.878 2955 476 0.003 0.044-0.221

Figure 8 shows the error distribution per ANN configuration. Configuration 1 is formed by
4 blocks of 500 values of water demand; Configuration 2 is formed by 8 blocks of 500 values;
Configuration 3 is formed by 20 blocks of 200 values; and Configuration 4 is formed by 8 blocks
of 400 values. The rest of parameters are the same for the four configurations. The minimum average
error is found for Configuration 3.

Configuration1 Configuration2
2.0
10 ' o EE - e
0.5
S
LE Configuration3 Configuration4
2.0 e ' w |
15 I‘-':'.-‘. —
1.0 ’ :
0.5 ; A
SL SL_and_SA-3 SL SL_and_SA-3
DMA

Figure 8. Box-plots of the associated errors by ANN configuration.

Errors computed in Figure 8 come by iteratively run the ANN with new fresh data for training
and validation purposes at each time. By repeating several times the same model with different data,
it is possible to reach more robust computations. The final predictive model is selected on average and
it is not biased by the effect of its dependency from a unique sample. Table 4 shows the results for the
top ANN configuration (configuration 3).

Table 4. Prediction Mean Error (top ANN configuration) for DMA SL and for DMA combination
SL + SA-3.

Learning Rate Nodes in Hidden Layer Mean Error SL  Mean Error SL + SA-3

0.01 3 0.549 0.455
0.01 6 0.533 0.410
0.01 9 0.526 0.425
0.1 3 0.567 0.488
0.1 6 0.529 0.401
0.1 9 0.517 0.399

Two main thoughts come from analysing the error distributions shown in Figure 8. Firstly,
the enhanced model provides more accurate results in all the cases. This means that the strategy of
using several DMAs information for the predictive model at a single DMA is adequate. Secondly,
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there is an upper bound for the optimal length of the information used to make the predictive model
of the water demand. This happens as the minimum error is found by using predictive models of
200 values.

4. Discussion

The paper proposes a novel framework based on adapting Epidemiology data analysis
methodologies to deal with challenges from water utility management. To show the usefulness of the
proposal, an innovative methodology to enhance the predictive models of water demand is developed.
This methodology uses the SAX distance as a basis to find out similar DMAs to the target DMA,
in which the predictive model is developed.

The second proposal of this work is to use SAX for epidemiology-based forecast modelling.
In particular, SAX performs well as a support for finding motifs and surprising patterns in time series
of water demand and for approaching visualisation analytics. All of these features are suitable to work
well for epidemiology issues. However, this is also important in the water demand case, as SAX is
able to:

e  extract regular consumption patterns, useful for planning various operations in drinking water
management and further rehabilitation plans;

e support anomaly detection, an issue able to directly point out causes of pressure transients in
pipelines, or to locate contamination sources and their impact on treatment of effluents;

e  work with long time series and be an accurate framework for computing similarities. In water
demand applications, this enables to approach relationships between consumption patterns in
different sector areas of the water distribution system. As a consequence, also effluents can be
traced back with enhanced accuracy.

The SAX approach for water demand time series is combined with suffix trees, which are also
used by human genome researchers in algorithms to find out the most important structures hidden in
biological sequences. This is possible given the high capability of suffix trees to store and compress a
large amount of symbolic data in linear time. This feature is susceptible to be used to near real-time
applications in shorter time series such as it may be the case of water demand. In the current proposal,
suffix trees support the extraction of consumption patterns and the comparison of water demand at
various DMAs.

With information from various DMAs, the analysis of this paper shows how predictive models
can be enhanced by adding information from time series databases with similar features to the target
DMA. For the sake of clarity, it has been proposed the use of a single ANN as a predictor. However,
any predictive model might be suitable to be embedded in the process.

SAX can be further expanded to also use quantiles or local regressions for each of its
partitions, instead of straightforwardly using the average. This would enhance the current outcomes,
providing better modelling capabilities for peaks of water consumption and for finding even more
accurate demand patterns. Since SAX is also a method to reduce the database dimension, working
with SAX allows to extend the methodology proposed to big-size time series models.

5. Conclusions

The proposal of this work is to tailor an epidemiological data analysis approach as a novel
approach for urban hydraulics. Among the wide scope of applications that EDAAs open to research
further, this paper successfully deals with an epidemiology-based forecasting methodology for water
demand prediction. This suggests EDAAs’ suitability to approach key water supply management
issues. Still, EDAAs need further investigation in urban hydraulics as a promising framework for tasks
related to drinking water network operation and management.
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