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Abstract: In any water utility, a reliable assessment of the service life of the network pipes is a key 
piece within the big puzzle of assets management. This paper presents a new statistical model (basic 
pipes life assessment, BPLA) to assess the service life of pipes, to locate the pipes on the failures bath 
curve and to forecast the expected failures in future years. Its main novelties are the processing of 
pipe information (is that information what is adapted to the classical maintenance engineering and 
not the other way back) and the definition of two different time variables that can be analyzed in 
parallel. The first novelty makes the model less demanding in terms of data and software tools than 
others currently available, and the second one allows to get all the results after one single stage of 
calculation. To show its usability, the BPLA has been applied to a pipe network that supplies water 
to 500,000 citizens for which two years of failure records are available. Procedures and results have 
been compared to the well-known Weibull proportional hazard model (WPHM), with final relative 
errors lower than 10% and 15% on each particular result. 

Keywords: pipes; service life assessment; failure forecasting; asset management; Weibull; bath 
curve 

 

1. Introduction 

If asset management is a key area in any urban water utility, an accurate knowledge of the pipes 
service life is a key aspect within asset management. There are many advantages to knowing the 
current condition of pipes and their remaining life until renovation. From a technical perspective, 
hydraulic operation and maintenance policies may be optimized; from an economic perspective, 
network expenditures and costs may be kept at minimum levels, and from a social perspective, the 
subsequent level of service may be maintained as high as possible. 

One main reference in determining the optimal replacement time of pipes dates back from 1979 
by Shamir and Howard [1]. It consisted of a deterministic model for the economic optimization of 
repair vs. renovation times. Since then, the study of pipe performance and resulting lifetime has 
adopted different approaches—not only deterministic, but also statistical and probabilistic. A good 
general approach to networks maintenance with an insight on failure forecasting was presented by 
Lauer [2]. Rostum [3] provided a comprehensive statistical analysis of the pipe failure process based 
on a non-homogeneous Poisson process. The influence of economies of scale was added to a pipe 
renewal model by Kleiner et al. [4] and Fuchs-Hanusch et al. [5] proposed a correction on the pipes 
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life-cycle equation by including leak detection costs growing with pipes age. A failure model based 
on an exponential-Weibull distribution was developed by Scholten et al. [6]; additionally, it was used 
in a multi-criteria decision analysis to grade potential rehabilitation strategies in the long term. 
Amaitik et al. and others [7–9] proposed the use of neural networks for failure prediction and pipe 
renovation, while Kabir [10] targeted the same goal by using a Bayesian framework. More recently, 
other approaches have been explored: Martinez [11] focused on the cause of failures through 
explanatory variables by means of a Bayesian analysis, Motiee et al. [12] compared four different 
regression models, Di Nardo et al. [13] applied fractal theory to assess the resilience of pipe failures, 
and Kutylowska [14] predicted pipe failure rates through support vector machines. 

In particular, the research on the Weibull proportional hazard model (WPHM), which is the 
bench test for the model presented in this paper, can be followed through the works by Le Gat and 
Eisenbeis and others [15–19]. 

From another perspective, other works have combined different but complementary 
approaches. The interrelations between statistical and physical models were explored by Davis et al. 
and others [20–22], Yoo et al. [23] prioritized rehabilitation by adding normal and emergency 
operation conditions, while D’Ercole et al. [24] connected it with reliability-approach models. 

Over all these years and varieties of studies and approaches, several works [3,25–27] have made 
successive organized classifications of the state of the art, at each moment, in this field of research. 

In parallel with scientific research, several software packages have been developed [28–31], 
either produced by large corporations on utilities management, engineering consultancy companies 
or other organizations. Some of them are currently available in the market. 

In spite of this wide context, according to the authors’ experience, small- and medium-sized 
water utilities still face significant barriers when they try to incorporate these kind of methodologies 
to their own asset management policies. It is due, in general terms, to an imbalance between the 
requirements needed and their limited resources available. The latest models published in scientific 
journals are not in a form that can be directly implementable in practice for a water utility, as scientific 
skills and knowledge, as well as specialized software, are often essential for these models. On the 
other hand, commercial software, apart from the cost itself, might have undesired implications for 
the utility in terms of outsourcing, unknowns on the process behind the results, sensible data, etc. 
Above the particular issues of one or another alternative, the fact is that the latest models rely on a 
large and varied amount of historical data that is not usually available (or reliably available) in the 
case of many small- and medium-sized water utilities. 

Aiming to overcome that barrier, this paper presents a new, simple statistic parametric 
univariate model (Figure 1), named basic pipes life assessment (BPLA). It is an application of concepts 
coming from the industrial maintenance engineering [32,33] (for non-repairable components) to the 
particular case of network pipes (repairable components). Its first novelty is that instead of adapting 
the industrial maintenance theory to the network pipes, the BPLA makes the adaptation the other 
way, i.e., the characteristics of pipes are modified (segmentation) to fit the requirements of the 
components of the industrial maintenance theory they work with. The second novelty is that for each 
failure date, two different time variables are defined (LtF and TtF). This way, though there is only 
one type of analysis to be performed, it can be applied in parallel to both variables and all the results 
are obtained after only one calculation stage. 

The outcome is a model less demanding than the ones referenced above in terms of: 

• Required data, which are only the pipe failure records, as well as the basic pipe characteristics 
(material, length and diameter). Therefore, the model attention is only focused on the failure 
times, not on potential causes, influential factors, costs or physical models. 

• Complexity of analysis, which is reduced to statistical fittings to usual distributions, mainly 
Weibull, but normal, log-normal, etc., can be also used. 

The results obtained for each group of pipes analyzed through BPLA are three: (i) an estimation 
of the average service life, (ii) the location of the pipe group on the bath curve [32] according the time 
evolution of its failures and (iii) a forecast of the future expected failures in the next years. The final 
advantage of the model proposed is the cost-effectiveness of its application. As it will be shown 
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below, notwithstanding this main focus on a direct, practical applicability, the quality level of results 
produced is equivalent to that from other related and more complex model on the same data sets. As 
a conclusion, those are the gaps that BPLA intends to cover either from the literature and the 
engineering sides. 

In order to show the applicability of the BPLA, it has been implemented on a water utility that 
services 500,000 people with two years of available (and reliable) pipe failure records. This is a rather 
limited amount of data for this kind of studies. Yet, such scarcity is not unusual in many small- to 
medium-sized utilities and, at the same time, it has not prevented the sought-after results. The 
implications of this restriction are developed in the Discussion section. 

In order to show the consistency of the results obtained, the WPHM has subsequently been 
applied to the same data. The WPHM is a well-known [15–19] semi-parametric model (Figure 1) that 
implies a significant complexity compared to the BPLA. 

 

Figure 1. Classification of statistical models for pipe survival analysis (based on Kabir [10]). 

The next section of the paper Materials and Methods describes the foundations, equations, 
parameters and results of the BPLA. In addition, a quick summary of the WPHM is included. 
Particular attention has been focused on data processing and other practical aspects in order to ease 
follow-up by the interested reader. The following section, Case Study and Results shows the case 
study analyzed, the information initially available, the statistical fittings performed, and the results 
obtained by both BPLA and WPHM, as well as the interpretation for each one. In the Discussion 
section, a double comparison is made. First, the results obtained are quantitatively analyzed. Then, 
the practical advantages are graphically summarized. Finally, the Conclusions section remarks the 
contributions presented in the paper and the interest of this method, particularly, for water utilities 
at their initial stages in this area of asset management. 

2. Materials and Methods 

Obviously, pipes are not bulbs. A bulb is the classical example of a non-repairable element. It 
works until it fails and then, it must be replaced for a new bulb. Conversely, a pipe can be considered 
as a repairable element, because it can be repaired after the first failure, and again every time, after a 
new failure happens. From the pipe installation moment, its service life keeps increasing, no matter 
the repairs undertaken, until it is finally replaced. Such replacement will probably have a direct 
relationship to the number of repairs occurred, although this does not necessarily have to be always 
the case. In maintenance engineering, the analysis of the service life of non-repairable elements, like 
bulbs, can be posed in simpler terms than that for repairable elements, like mechanical machines or 
electronic devices [32,33]. The complexity of the current statistical models for pipe failure analysis 
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[3,10,17,34] confirm this fact. However, a pipe is essentially different from a complex machine—
though being repairable as a whole, a pipe could be considered as a non-repairable element if only 
the length of the pipe intervened in the reparation (or partial replacement) is focused on. Through an 
assumable simplification, that short length of the pipe has reached the end of its service life. This 
way, by taking advantage of dividing, virtually, each pipe into short segments, which could be 
individually analyzed, the basics of statistical analysis of non-repairable elements may be applied to 
pipe networks. These are the fundamentals of the BPLA model. 

2.1. Development and Application of the BPLA  

Data requirements and organization: The information needed for the BPLA comes from two 
different sections of the infrastructure database: pipes and failure records (Figure 2). For the pipes, 
the only needed characteristics are the length, diameter, material, and installation date, although 
other kind of information might be also welcome; for example, the DMA, which might help later to 
select the groups of pipes.  

 

Figure 2. Data requirements for the basic pipes life assessment (BPLA) model. 

This information may be organized in the so-called pipes table as shown in Table 1—n being the 
total number of pipes, the pipes table will be compounded by n rows. For clarity purposes, four pipes 
(1, i, j and n) will be used in this paper to follow the development of the model. 

Table 1. Structure of the pipes table. 

Pipe Instal. Date Length Diameter Material 

P1 Id1 L1 D1 M1 
… … ... ... ... 
Pi Idi Li Di Mi 
Pj Idj Lj Dj Mj 
… … ... ... ... 
Pn Idn Ln Dn Mn 

As to the failures information, the basic data needed are the date and pipe for each failure 
occurrence. Additionally, the position, in a temporal order, of all the failures occurred in the same 
pipe must be also considered. That information may be structured in the fails table (Table 2), where 
m is the total number of failures.  

In many cases, the way the failure information was recorded in the past by many water utilities 
was not as accurate as required by this kind of analysis. This means that it is not unusual to find large 
gaps of accurate information from the time the pipes were installed. Because of this inequity on the 
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available failure data, it is essential to find the widest possible window of failure data, in which all 
the network pipes are included. These start date and end date (Sd and Ed) of the availability window, 
which are not data information but data restrictions instead, will be key for the time variables of the 
model.  

Once that window is identified, all the failures within are the ones to be displayed in the fails 
table. Unavoidably, the knowledge of failure data is (left) trunked for dates before the window’s 
start—failures might have occurred or not, but it is an unknown past. Furthermore, the failure data 
is (right) censored for dates after the window’s end—pipes are in operation in that moment, but they 
might fail later, which is the potential future [35]. 

Table 2. Structure of the fails table. 

Failure Fail Date Pipe Fail Order in Pipe 
F1 Fd1 Pi Pi_O1 
F2 Fd2 Pj Pj_O1 
F3 Fd3 Pn Pn_O1 
F4 Fd4 Pj Pj_O2 
F5 Fd5 Pj Pj_O3 
… ... … ... 
Fm Fdm Pn Pn_O2 

The common renovation and maintenance operations in the network affect these two tables in 
two different ways. Repairs are considered as works that do not affect significantly the length of a 
pipe. In consequence, the pipe characteristics remain the same after a repair. This kind of intervention 
should be recorded as a failure occurrence and it will enlarge the fails table. Conversely, renovations 
are partial or total physical replacements of a pipe. After a renovation, there is a change in one or 
more components of the pipe database. In accordance, those changes will be reflected on the pipes 
table. 

Pipe groups definition: The BPLA model works on the assumption that the groups of pipes to 
analyze are homogenous enough. Therefore, the first task consists of distributing all the network 
pipes into different groups according to their characteristics. As the case study will show, initial 
criteria rely on material, diameter ranges, or age ranges. 

The most important condition is that each group of pipes must have at least 30 registered 
failures. This is imposed by the statistical fitting method that will be used later (maximum likelihood 
estimation) [36]. 

Data management: Once the pipe groups have been formed, the initial pipes table and fails table, 
must be divided into as many pipe and fail tables as there are pipe groups—one pipes table and one 
fails table containing the information of (only) the pipes that are gathered in each pipe group. 
Calculations will be individually applied to each group. 

For the case of the four pipes taken as examples, Figure 3 shows the pipe data (distribution and 
origin) and Figure 4 shows the way the failure information is considered in the model. 

Regardless the total length of each one, pipe Pଵ had no failures during the time window, pipe  P୧ had only 1 failure, and pipes P୨ and P୬ had 3 and 2 failures, respectively. For the BPLA model, 
each pipe, of length L, is divided into L sub-pipes of 1 meter-length, and each one of the failures 
recorded in the original pipe is assigned to one of the resulting sub-pipes. This way, all the failures 
are considered in the model, all the lengths of each original pipe are properly kept in the model, and 
each sup-pipe can be considered as a non-repairable element. One part of each pipe (the sub-pipes 
with assigned failures) is contributing to the failure function, but not the rest of it. 
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Figure 3. Distribution and origin of the pipe data. 

 

Figure 4. Four pipe examples of the failures modelling approach for BPLA and pre-BPLA models. 

Figure 5 shows the generation of sub-pipes and the way pipe properties are transferred to them. 
The number of failures are distributed to the same number of sub-pipes, the rest remaining with no 
fails assigned. The outcome of this process is the BPLA table (Table 3). Each row in this table 
corresponds to each sub-pipe, so that it is compounded by as many rows as the network length in 
meters—for this purpose, the actual length of each pipe should be rounded to the nearest whole 
number. As all the dates are transferred, the last two columns of the BPLA table can be calculated: 

• LtF (life till failure) is the time elapsed between the installation date (Id) and the fail date (Fd) in 
case the sub-pipe has one failure assigned, or between the installation date (Id) and the end date 
(Ed) of the availability window in case the sub-pipe has not a failure assigned. Later analysis of LtF will provide the estimation for the average service life of the pipe group. 

• TtF (time till failure) is the time elapsed between the start date (Sd) of the availability window 
and the fail date (Fd) in case the sub-pipe has one failure assigned, or between the start date (Sd) 
and the end date (Ed) of the availability window in case the sub-pipe has not a failure assigned. 
Analysis of TtF will provide the location on the bath curve and the hazard rate for future 
failures forecasting. 
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Figure 5. Segmentation and failure assignment to sub-pipes. 

Table 3. Structure of the BPLA table. 

Sub-pipe Length Diam. Mat. Fail Date Instal. Date LtF TtF 

SP1_1 1 D1 M1 - Id1 Ed − Id1 Ed − Sd 
... 1 D1 M1 - Id1 Ed − Id1 Ed − Sd  

SP1_L1 1 D1 M1 - Id1 Ed − Id1  Ed − Sd  
... ... ... ... ... ... ... ... 

SPi_1 1 Di Mi Fd1 Idi Fd1 − Idi  Fd1 − Sd  
SPi_2 1 Di Mi - Idi Ed − Idi  Ed − Sd  

... 1 Di Mi - Idi Ed − Idi  Ed − Sd  
SPi_Li 1 Di Mi - Idi Ed − Idi  Ed − Sd  
SPj_1 1 Dj Mj Fd2 Idj Fd2 − Idj  Fd2 − Sd  
SPj_2 1 Dj Mj Fd4 Idj Fd4 − Idj Fd4 − Sd 
SPj_3 1 Dj Mj Fd5 Idj Fd5 − Idj Fd5 − Sd 
SPj_4 1 Dj Mj - Idj Ed − Idj Ed − Sd 

... 1 Dj Mj - Idj Ed − Idj Ed − Sd 
SPj_Lj 1 Dj Mj - Idj Ed − Idj Ed − Sd 

... ... ... ... ... ... ... ... 
SPn_1 1 Dn Mn Fd3 Idn Fd3 − Idn Fd3 − Sd 
SPn_2 1 Dn Mn Fd6 Idn Fd6 − Idn Fd6 − Sd 
SPn_3 1 Dn Mn - Idn Ed − Idn Ed − Sd 

Pipe Pi

(length = Li)

SPi_1

SPi_2

...
SPi_Li
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...
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...
[length = 1 m, Dj, Mj, Idj, no fail]
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...
SPn_Ln
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...
[length = 1 m, Dn, Mn, Idn, no fail]
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...
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... ... ...

... ... ...
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... 1 Dn Mn - Idn Ed − Idn Ed − Sd 
SPn_Ln 1 Dn Mn - Idn Ed − Idn Ed − Sd 

Finally, Figure 4 also shows the pre-BPLA approach [37], which could be understood as a 
simplified version of the BPLA. Pre-BPLA only takes into account the first failure occurred in each 
pipe, and discard the rest. In fact, this procedure is a straight application of the techniques of 
maintenance engineering to network pipes. It is simpler and faster than the BPLA, and therefore, 
more feasible for novel utilities. At the same time, the simplifications assumed biased the results in a 
greater extent. Results provided by the pre-PBLA model will secondarily be obtained and shown in 
the case study. However, because of the limited data it works with, the pre-BPLA should be kept 
apart in favor of the BPLA. 

Statistical analysis: The BPLA table now contains all the relevant information for all the sub-
pipes, of each pipe group, ready for the statistical analysis. Following a univariate parametric model, 
such analysis consists in finding the distribution that best fits the failure information contained in the 
BPLA table. The Weibull distribution is the first recommended candidate because of its characteristics 
and flexibility, and the one considered in this paper, though there are other possible options. Several 
techniques may be employed to perform the fitting—maximum likelihood estimation method, 
method of moment, least-squares regression method, graphical methods, etc. [38,39]. The outcome of 
the adjustment are the two specific parameters of the Weibull distribution—shape (β) and scale (η)—
thus assuming that the location parameter ( γ ) has no influence in this type of analysis. In 
consequence, t being the failure time for each sub-pipe, Equations (1) to (4) [40] show the failure 
behavior in each pipe group: 𝑓(𝑡) =  𝛽𝜂 ൬𝑡𝜂൰ఉିଵ 𝑒ିቀ௧ఎቁഁ

 (1) 

𝐹(𝑡) =  1 − 𝑒ିቀ௧ఎቁഁ
 (2) 

𝑆(𝑡) = 𝑒ିቀ௧ఎቁഁ
 (3) 

𝜆(𝑡) =  𝛽𝜂 ൬𝑡𝜂൰ఉିଵ
 (4) 

Equation (1) is the failure probability (probability density function), Equation (2) is the failure 
function (cumulative distribution function), Equation (3) is the survival function (complementary 
cumulative distribution function) and Equation (4) is the failure rate (hazard function). 

Each failure time should be accounted since the pipe installation moment (LtF) or since the time 
window onset (TtF). Then, as advanced above, the statistical analysis will be performed 
independently on each of them. In consequence, the results finally obtained will be two sets of 
Equations (1) to (4), one per each time variable considered. 

Once each analysis is completed, and before coming to any first conclusion, the goodness of fit 
must be checked. There are several techniques available—chi-squared, Kolmogorov–Smirnov, etc. 
[38–41]. In case they do not validate the Weibull fitting, other distributions could be tested; for 
example, normal, log-normal, or gamma. 

Interpretation of results: Two Weibull parameters are obtained after each fitting: shape and scale 
for LtF (denoted as β୐୲୊ and η୐୲୊) and, also, shape and scale for TtF (denoted as β୘୲୊ and η୘୲୊). 
Their meanings are quite direct because of the characteristics of the Weibull distribution itself. 

The scale factor, η, is generally called characteristic life. It is not the mean life of the distribution, 
but the life that is reached by the 63.2% of the units. Therefore, for the LtF distribution, the η୐୲୊ 
provides a quick assessment of the age at which each meter of pipe will likely have its first failure. 

In maintenance engineering, the shape factor, β, is closely related to the failure rate, λ, (Figure 6) 
and, in consequence, to the bath curve [32]. Taking advantage of the variable TtF, for which all the 
sub-pipes have been analyzed from the same time onset, the shape parameter β୘୲୊ and the failure 
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rate λ୘୲୊ (Equation (4)) are now known. According to Figure 6, the value of the β୘୲୊ will show the 
location of the pipe group onto the bath curve. This way, the kind of failures that are currently 
occurring on the pipe group can be categorized as early, useful or wearout life, and utility managers 
may set future planning according to this. Secondly, based on the value of λ୘୲୊, a prediction of the 
number of future expected failures can be made for the pipe group. It is assumed that this calculation 
should be limited to the short-term. It will be valid as long as the location on the bath curve does not 
change from one stage to the next one. In case it happens, that would be unveiled by a new value of β୘୲୊, that, in turn, should be the one considered for a new calculation. 

 
Figure 6. Relation between Weibull’s 𝛃 and 𝛌 parameters [12]. 

2.2. Quick Summary of the WPHM  

The WPHM is a well-known semi-parametric model (Figure 1) that is taken as a reference in this 
work for comparison purposes. Only some main features are summarized below. Full information 
on the WPHM is available in the literature [3,10,15–19].  

One main different is that the WPHM does not require the network pipes to be categorized in 
homogeneous groups. Instead, all the pipes may be kept in the same table because the particular 
features of each one are taken by the model as explicative covariates; after the calculation, its influence 
will be assessed through particular coefficients. 

The second difference is the, more complex, way the failure data is organized, combined with 
the pipe data and, processed. As shown in Figure 7, the WPHM focuses on the so-called interarrival 
time (τ). This is, for each failure in each pipe, the time elapsed since the immediately preceding failure 
occurred. For the case of the first recorded failure, it is the time since the onset of the time window. 
After the last recorded failure, one additional interarrival time is considered—the time between the 
last failure and the end of the time window. This last interarrival time is treated as censored (it ends 
at the end of the time window, not at a new failure) while the others are treated as uncensored (they 
end at the next failure) [32]. If all the failures in all the pipes are processed in this way, the final table 
obtained, here called WPHM table, will have the structure shown in Table 4 (consistent with Tables 
1 and 2). Each row contains the information of each interarrival time and, additionally, the additional 
information (covariates) of the pipe in which that failure occurred. 

0 1 1 2 3

Stage 1 Stage 2 Stage 3

Phase 3Phase 1 Phase 2

... β

λ
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Figure 7. Main time variables for failure data of one pipe in the WPHM (according to Alvisi and 
Franchini [16]). 

Table 4. Structure of the Weibull proportional hazard model (WPHM) table. 

𝝉 Fail 
Date 

Pipe 
Fail Order 

in Pipe 
Interarr. 

Time 
AL Length Diam. Mat. 𝜏1 - P1 - Ed − Sd Sd − Id1 L1 D1 M1 

... ... ... ... ... ... ... ... ... 𝜏i Fd1 Pi Pi_O1 Fd1 − Sd Sd − Idi Li Di Mi 𝜏i + 1 - Pi - Ed − Fd1 Fd1 − Idi Li Di Mi 𝜏i + 2 Fd2 Pj Pj_O1 Fd2 − Sd Sd − Idj Lj Dj Mj 𝜏i + 3 Fd4 Pj Pj_O2 Fd4 − Fd2 Fd2 − Idj Lj Dj Mj 𝜏i + 4 Fd5 Pj Pj_O3 Fd5 − Fd4 Fd4 − Idj Lj Dj Mj 𝜏i + 5 - Pj - Ed − Fd5 Fd5 − Idj Lj Dj Mj 

... ... ... ... ... ... ... ... ... 𝜏m + n − 2 Fd3 Pn Pn_O1 Fd3 − Sd Sd − Idn Ln Dn Mn 𝜏m + n − 1 Fdm Pn Pn_O2 Fdm − Fd3 Fd3 − Idn Ln Dn Mn 𝜏m + n - Pn - Ed − Fdm Fdm − Idn Ln Dn Mn 

The population formed by all the interarrival times, organized in the vector T(τଵ, τଶ, … , τ୫ା୬), 
may be described by a Weibull distribution and that vector may be related to the vector of the 
covariates X൫xଵ, xଶ, … , x୯൯ as shown by Equation (5) [15]: ln 𝑇 =  𝛽 × 𝑋 +  𝜎 × 𝑊 (5) 

where β is the vector that contains the covariates coefficients, W is the vector of the random errors 
and σ is a regression parameter. 

Each coefficient β଴, βଵ, βଶ, … , β୯ , shows the influence of each covariate, xଵ, xଶ, … , x୯ , on the 
failure occurrences T. Yet, the more relevant parameters are β଴ and σ, which are called respectively 
intercept and scale. This notation is purposely kept the same as the one usually found in the literature 
[15,16], and therefore, it should be remarked that while both coefficients are not the same as those 
already defined for the BPLA, they are closely related to them. The reason for this is that the Weibull 
distribution lays on the core of both methodologies. In particular the relation between the coefficients 
employed by both models is [42]: 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝛽଴ = ln(𝜂்௧ி) (6) 

TimeFail 1 Fail 2 Fail m 

τ1
(nrc)

τ2
(nrc)

τm+1
(rc)

Installation
year

Observation windowUnknown past

AL1

AL2

(left trunked data) (available data)

Potential future

(right censored data)

AL3

ALm-1

...

...



Water 2020, 12, 667 11 of 23 

 

𝑆𝑐𝑎𝑙𝑒 = 𝜎 =  1𝛽்௧ி (7) 

The number of the future expected failures can also be predicted through the WPHM. However, 
it entails a more complex calculation. It is performed through Equation (8) [15] and a Monte Carlo 
simulation process. In summary, for each pipe, random values (up to 1000) of S  (survival) are 
produced and the corresponding interarrival time, τ, for each value is obtained. With each iteration, 
the β coefficients influence each new τ. Eventually, the end of the simulation period is reached and 
the calculations are performed again for the following pipe of the network.  𝜏 =  ቆln ൬1𝑆൰ 𝑒൬ఉ·௑ఙ ൰ቇఙ

 (8) 

Finally, the results obtained for each pipe are added up to get the final single figure – the total 
failures. Equation (9) shows the total failures during the first year of the simulation for each pipe 
group, m(T଴, Tଵ), where T଴ is the current year, Tଵ is that first year, p is the order number of each 
pipe within the group, m୮ is the number of failures of pipe p and n୮ is the total number of pipes in 
the group. By extending the simulation time one more year and detracting the failures occurred up 
to the year before, the increment of total failures for each successive year can be easily obtained 
through Equations (9) and (10) [16]. 

𝑚(𝑇଴, 𝑇ଵ) = ෍ 𝑚௣(𝑇଴, 𝑇ଵ)௡೛
௣ୀଵ  (9) 

𝑚(𝑇௜ିଵ, 𝑇௜) = ෍ 𝑚௣(𝑇଴, 𝑇௜)௡೛
௣ୀଵ − ෍ 𝑚௣(𝑇଴, 𝑇௜ିଵ)௡೛

௣ୀଵ  (10) 

3. Case Study and Results 

3.1. Basic Description of the System 

The BPLA model has been implemented in a real network located in the eastern part of Spain. It 
is about 1000 km long and supplies water to more than 500,000 people. The authors have been 
collaborating with this particular utility for more than twenty years in different areas such as 
hydraulic modeling, metering and losses management, demand characterization, etc. Although 
failure records have been recorded during several decades, the organization of these data was not 
oriented to be used in these type of modelling. Only recently the information collection has been 
focused towards the here depicted methodology. Therefore, only two years (2017 and 2018) are 
reliably available at the moment, which, on the other hand, is representative of a number of other 
small- and medium-sized utilities the authors also collaborate with, both in Spain and abroad. 
Despite the restriction in data, the results obtained below are consistent and already provide valuable 
information for the planning that managers daily face. As the information from new years is added 
and that from old years is refined, these results will be better, but not more numerous, at least without 
limiting new developments currently under way. 

Table 5 shows the main pipe materials installed in the network as well as the length percentage 
for each one and its average age. Table 6 shows the groups in which the network diameters have been 
classified as well as the length percentage for each group. 
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Table 5. Distribution of network pipe materials. 

Materials Network 
length (%) 

Avg. Age 
(years) 

Asbestos cement (AC) 30.2 41.4 
Ductile iron (DI) 26.0 45.4 

Cast iron (CI) 17.4 62.8 
Polyethylene (PE) 25.5 42.7 

Other (steel, PVC, concrete…) 0.9  55.7 

Table 6. Distribution of network pipe diameters per groups. 

Diameter Groups 
Network Length (%) 

ID Gr. Diameter (mm) 

1 <63 6.0 
2 63–140 47.6 
3 140–200 23.3 
4 200–280 13.5 
5 280–400 4.5 
6 >400 5.1 

The original fails table for all four main materials (“Other” are already excluded here) has 745 
records for both years. Fails distribution can be better understood if all the fails are classified, per 
year, among the four main groups of materials and all six groups of diameters (Table 7). 

Table 7. Pipe failure information. 

Year 
Material Gr.  Diameter Gr. 

AC DI CI PE  1 2 3 4 5 6 
2017 70 27 57 192  61 227 33 25 0 0 
2018 46 52 61 240  131 219 38 9  2 0 
Total 116 79 118 432  193 446 71 34 2 0 

3.2. Application and Results of BPLA 

The BPLA works on pipe groups of homogeneous characteristics. In this case, such groups (Table 
8) have been defined according to three criteria: 

- Homogeneity within each pipe group will be based on the combination of same material and 
same diameter. The age is only being taken into account in case the results are not statistically 
acceptable. 

- All four main materials must be represented in the pipe groups. 
- For each material, the diameter group chosen will be the one with the highest number of 

recorded failures. 

Once the pipe groups have been defined, the particular pipes tables Table 1 and fails tables (Table 
2) for each one must be prepared. Then, the pipes contained in the pipes table are split in 1 m-length 
sup-pipes, and the failures are distributed among them as explained above. The result is the so-called 
PBLA table (Table 3) for each group. It should be noticed that the BPLA table is compounded by as 
many rows as the total length of the pipes in each group (Table 8) in meters, yet only a few of them, 
in comparison, have been assigned one failure. 
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Table 8. Pipe groups selected for the first analysis. 

Pipe 
Group 

Mat. Gr./Diam. Gr. Total 
Pipes 

Total Length 
(km) 

Recorded Failures 
Pipes with 

Failures 
Total 

Failures 
1 AC/2 6149 165.7 62 75 
2 DI/2 8278 121.4 56 58 
3 CI/2 5242 120.1 70 87 
4 PE/2 5382 138.1 166 232 

In this case, the analysis has been performed through the software R [42]. The Weibull 
parameters obtained for each group are shown in Table 9. Before going further, the goodness of the 
fitting was checked by the Kolmogorov–Smirnov (K-S) test [38–41]. As the results of the test show 
(Table 10), the fitting for variable LtF in groups 1 and 3 was not acceptable.  

Table 9. Weibull parameters after the first analysis. 

Pipe Group 
LtF Analysis TtF Analysis 𝛃𝐋𝐭𝐅 𝛈𝐋𝐭𝐅 𝛃𝐓𝐭𝐅 𝛈𝐓𝐭𝐅 

1 8.03 114.2 0.98 8700 
2 9.96 108.8 1.33 635 
3 4.76 197.6 1.27 1123 
4 7.08 115.0 1.18 436 

Table 10. Goodness of fitting test results (K-S) after the first analysis. 

Pipe 
Group 

LtF Analysis TtF Analysis 𝐃𝐌𝐚𝐱 𝐃𝐂𝐫𝐢𝐭 (𝐃𝐌𝐚𝐱 < 𝐃𝐂𝐫𝐢𝐭)? 𝐃𝐌𝐚𝐱 𝐃𝐂𝐫𝐢𝐭 (𝐃𝐌𝐚𝐱 < 𝐃𝐂𝐫𝐢𝐭)? 

1 0.0092 0.0034 No 0.0001 0.0034 Yes 
2 0.0002 0.0038 Yes 0.0001 0.0039 Yes 
3 0.0554 0.0043 No 0.0003 0.0043 Yes 
4 0.0005 0.0036 Yes 0.0001 0.0036 Yes 

Solution came by modifying pipe groups 1 and 3, and adding one more criterion based on the 
age of pipes—only pipes younger than 50 years will be included in group 1, and pipes younger than 
60 years will be included in group 3. Hereon, the two modified groups are denoted as 1* and 3*. Table 
11 shows the data for the new pipe groups. Results of the Weibull parameters and goodness of fitting 
after the second analysis are shown in Tables 12 and 13, respectively. Finally, the K-S test yields 
positive results and the new Weibull distributions can be reliably considered as good descriptions of 
the failures time-evolution for all four groups. Figure 8 shows the comparison between the empirical 
and theoretical cumulative distribution functions [43]. 

Table 11. Pipe groups selected for the second analysis (changes in 1 and 3). 

Pipe 
Group 

Mat. Gr./Diam. 
Gr./Age Gr. 

Total 
Pipes 

Total 
Length (km) 

Recorded Failures 
Pipes with 

Failures 
Total 

Failures 
1* AC/2/<50 156,397 156.4 52 64 
2 DI/2/all 121,443 121.4 56 58 
3* CI/2/<60 84,694 84.7 36 51 
4 PE/2/all 138,141 138.1 166 232 
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Table 12. Weibull parameters after the second analysis. 

Pipe Group 
LtF Analysis TtF Analysis 𝛃𝐋𝐭𝐅 𝛈𝐋𝐭𝐅 𝛃𝐓𝐭𝐅 𝛈𝐓𝐭𝐅 

1* 7.48 126.3 0.90 11,600 
2 9.96 108.8 1.33 635 
3* 16.36 88.9 1.07 2,070 
4 7.08 115.0 1.18 436 

  

  

  

  

Figure 8. Empirical and theoretical cumulative distributions after the second analysis. 
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Table 13. Goodness of fitting test results (K-S) after the second analysis. 

Pipe 
Group 

LtF Analysis TtF Analysis 𝐃𝐌𝐚𝐱 𝐃𝐂𝐫𝐢𝐭 (𝐃𝐌𝐚𝐱 − 𝐃𝐂𝐫𝐢𝐭)? 𝐃𝐌𝐚𝐱 𝐃𝐂𝐫𝐢𝐭 (𝐃𝐌𝐚𝐱 − 𝐃𝐂𝐫𝐢𝐭)? 
1* 0.0004 0.0034 Yes 5 × 10−5 0.0034 Yes 
2 0.0002 0.0038 Yes 0.0001 0.0039 Yes 
3* 0.0005 0.0046 Yes 0.0001 0.0046 Yes 
4 0.0005 0.0036 Yes 0.0001 0.0036 Yes 

Once the Weibull parameters have been obtained, the three sought results for each pipe group 
can be derived from them. The characteristic life and the position on the bath curve come directly 
from η୐୲୊ and β୘୲୊, respectively. In particular, depending on the position spotted by β୘୲୊, a general 
recommendation could be set for the network managers in relation to the kind of actions to be 
planned in the near future (Table 14). 

A comment should be made on group 1*, which shows a much younger appearance than could 
be expected for the pipes that form it. The reason relies on the added condition on age (< 50 years), 
and on the short network information available (only 2 years) – in fact, pipe group 1* is a sub-group 
artificially younger than the original group 1. In any case, it must be reminded that the main aim is 
to compare the new simple method (BPLA) with a complex one (WPHM) by showing that, for the 
same data, the results provided by the first one are equivalent to those provided by the second one.  

Finally, based on β୘୲୊, the hazard rate, λ୘୲୊ , for each year and pipe group is obtained and, 
according to it, the expected number of future failures can be calculated (Table 15). 

Table 14. BPLA results. 

Pipe 
Group 

Characteristic 
Life (Years) 𝜷𝑻𝒕𝑭 

Location on the Bath Curve Recommened 
Action Stage Phase 

1* 126.3 0.90 1 - Corrective 
2 108.8 1.33 3 1 Preventive 
3* 88.9 1.07 3 1 Preventive 
4 115.0 1.18 3 1 Preventive 

Table 15. BPLA failure forecast for the upcoming years. 

Pipe. 
Group 

Year 1 Year 2 Year 3 Year 4 Year 5 𝛌𝐓𝐭𝐅 #Fails 𝛌𝐓𝐭𝐅 Fails 𝛌𝐓𝐭𝐅 Fails 𝛌𝐓𝐭𝐅 Fails 𝛌𝐓𝐭𝐅 Fails 
1* 2.0 × 10−4 31 1.8 × 10−4 29 1.8 × 10−4 28 1.7 × 10−4 27 1.7 × 10−4 26 
2 2.5 × 10−4 30 3.1 × 10−4 38 3.6 × 10−4 43 3.8 × 10−4 48 4.2 × 10−4 51 
3* 3.0 × 10−4 26 3.2 × 10−4 27 3.3 × 10−4 28 3.3 × 10−4 28 3.4 × 10−4 29 
4 9.1 × 10−4 125 1.0 × 10−3 142 1.1 × 10−3 153 1.2 × 10−3 161 1.2 × 10−3 167 

3.3. Application and results of WPHM 

As explained above, when applying the WPHM, the pipes table and the fails table should be 
combined in a specific way, so that each interarrival time is contained in each row of the final WPHM 
table. Four basic strata for four main materials has been kept here, and therefore, all four pipe groups 
have been kept independent for comparison purposes. 

According to the pipe information available, the explanatory covariates considered are the 
following: 

- Logarithm of pipe length (Ln.length): Following Martins [34], the logarithm of the length has 
been considered (instead of the length itself as Alvisi and Franchini do [16,37]) assuming that 
the hazard rate should be proportional to the length of the pipe – which is a suitable assumption 
for the particular network under study. 

- Diameter (Diam.): In all four pipe groups, pipes belong to the diameter group 2 (Table 6). 
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- Total number of failures (Fails): This covariate is constant for each pipe, and, therefore, for all 
the interarrival times derived from it. As explained by Martins [34], this is a much practical way 
of keeping it in the analysis, as opposed to other options, such as neglecting it [16] or taking it 
as a dynamic covariate [15], which could cause convergence problems in the subsequent Monte 
Carlo simulations. 

- Age left (AL): As shown in Figure 7, this is a dynamic covariate that takes a different value for 
each interarrival time on the same pipe. 

Once the WPHM table is ready for each pipe group, the statistical analysis was performed 
through the R software [42]. The results obtained are shown in Table 16. 

The main result for the purpose of this work is the scale (σ) parameter, since it is closely related 
to the results provided by the BPLA method, particularly to the β୘୲୊ paremeter. Table 17 shows the 
value of that parameter for each pipe group once they have been converted to its equivalent under 
the BPLA approach (Equation (7)). 

Table 16. WPHM Results. 

Coefficient 
Pipe Group 1* Pipe Group 2 Pipe Group 3* Pipe Group 4 𝛃 𝐞𝛃 𝛃 𝐞𝛃 𝛃 𝐞𝛃 𝛃 𝐞𝛃 

Intercept (β଴) 5.38 - 8.15 - 20.07 - 3.81 - 
Scale (σ) 1.18 - 0.58 - 1.30 - 0.88 - 

Ln.length (βଵ) −0.206 0.813 −0.287 0.750 −0.174 0.839 −0.236 0.789 
Diam (βଶ) 0.006 1.006 −0.022 0.977 −0.065 0.937 0.016 1.016 
Fails (βଷ) −3.319 0.036 −2.353 0.095 −2.497 0.082 −0.728 0.482 
AL (βସ) 0.041 1.042 −0.025 0.974 −0.109 0.896 −0.024 0.975 

Table 17. WPHM scale parameters converted to the BPLA approach 

Pipe Group Scale 𝛃𝐓𝐭𝐅𝐞𝐪𝐮𝐢𝐯 
1* 1.18 0.847 
2 0.58 1.724 
3* 1.30 0.769 
4 0.88 1.136 

The rest of parameters in Table 16 show the importance and influence of the covariates on the 
interarrival times distribution. The negative values for Ln.length and Fails, in all four groups, are 
quite consistent –they mean an inverse relation between an increment in the covariate and an 
increment in the time between failures. In other words, the longer the pipe or the greater the number 
of failures it had, the shorter the time between failures will become. The exponential of the coefficient 
confirms a much greater influence of #Fails, compared to Ln.length, since the value for the second 
one is closer to 1 (marginal contribution [34]). Coefficients of Diam. seem to be less consistent—two 
of them positive and two negative—but considering that all pipe groups are restricted to a (relatively) 
narrow diameters range (group 2), that apparent fine accuracy within the group is not much relevant. 
The case of AL is more important. Whereas its coefficient turns out to be quite consistent for pipe 
groups 2, 3* and 4. In summary, the older the pipe, the shorter the fail time; this does not seem the 
case for group 1*. That positive sign would indicate that the failures of pipe group 1* would be those 
of young pipes (early kind). Obviously, the original pipe group 1 was not made up by young pipes, 
but it had to be modified to group 1* by removing the oldest pipes (>50 years) for statistical fitting 
purposes, and that has shown an effect on the AL coefficient. This conclusion is very much related to 
the results obtained by the BPLA model and will deserve some further explanation in the next section. 

From the statistical fitting just made, it is possible to undertake the next stage of the WPHM—
the calculation of expected failures in the future years. As summarized in the previous section, 
(Equations (8) to (10)), the procedure is based on a Monte Carlo simulation on each single pipe [15]. 
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By adding the results obtained for all the pipes in each group, final figures obtained are shown in 
Table 18. 

Table 18. WPHM Failure forecast for the upcoming years. 

Pipe Group Year 1 Year 2 Year 3 Year 4 Year 5 
1* 35 30 29 28 26 
2 18 34 44 52 59 
3* 35 30 30 31 34 
4 113 130 138 144 147 

4. Discussion 

The developments and case study presented can be discussed from two perspectives. The first 
one is the quality standard of the results obtained. That would back the utility of the BPLA model for 
the aim it has been devised. The second one is the effectiveness of the procedure in terms of resources 
and means required. That would make the BPLA model the intended convenient tool for the intended 
kind of target users. 

4.1. Comparison of Results 

The use of a new statistical model should be backed by two complementary analyses: sensitivity 
of results and validation of forecasts. However, such analyses could not be undertaken in a proper 
way in this case due to the scarce available data. As explained above, the BPLA is based on groups 
of pipes with homogeneous characteristics or, in real terms, as uniform as possible. At the same time, 
the least amount of recorded failures for each group must be 30. The full data available (two years) 
have been roughly enough to complete the pipes groups with the required number of failures 
(especially for first failures of group 3*, Table 11). Therefore, the balance between data homogeneity 
and data amount for each group has been considered as achieved, but no additional data is left 
available for the mentioned analysis.  

As is often the case, the sensitivity analysis could be performed by making different pipe groups 
within each category (material and diameter range) and then by comparing the analysis performed 
on them. However, all the (failures) data available have been needed for the analysis done, and no 
more data is left to try different groupings. The only possibility would be to extend the range of 
diameters included in each group. However, that will decrease the homogeneity of the characteristics 
of the pipes within the group and it can be expected that the results will be, probably, worse and, 
certainly, less representative. 

In the same way, the validation of forecasts should be done by using only the older data to 
perform the analysis and forecast, and then compare the first years forecasted with the more recent 
failure data. Again, all the failure data recorded for two years have been fully used to solve the model 
and to make the forecasts, so they could not reliably be contrasted until a few of years (two or three 
at least) have passed. 

The problems found for proper sensitivity analysis and validation have driven to an alternative 
procedure. This is the reason why the WPHM has been considered. As a well known and extensively 
used model, the consistency between the results of the WPHM and the BPLA might imply a first-
hand recognition for the reliability of the BPLA. Thus, there would not be such an essential need to 
wait several years before the amount of data available be increased. 

The main comparison should focus on the numerical results obtained by both methodologies, 
and the first significant result is the characterization of the failure rate of each pipe group. In other 
words, its location on the bath curve (Figure 6). Table 19 summarizes such results; those for WPHM 
have been extracted from Table 17, those for BPLA are extracted from Table 14, and the results for 
the pre-PBLA model can be found in Ramirez [37]. In addition, the relative errors for BPLA and pre-
BPLA results with respect to WPHM results are also shown. In average, BPLA and WPHM differ in 
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about 15%. This is can be considered as a positive conclusion, moreover, when considering that the 
location on the bath curve is set by ranges for 𝛽, and not by its exact value.  

Table 19. Summary and comparison of β parameters obtained by each model 

Pipe 
Group 

𝛃 Obtained by Each Model 
Relative Error (%) to 

WPHM 
WPHM BPLA Pre-BPLA BPLA Pre-BPLA 

1* 0.85 0.90 0.87 6 2 
2 1.72 1.33 1.33 23 23 
3* 0.77 1.07 0.93 39 21 
4 1.14 1.18 1.12 4 2 

The second comparison focuses on the failure forecasting for the next five years. Though the 
main model proposed is the BPLA, the results obtained by WPHM are to be compared not only with 
BPLA, but also, again, with pre-BPLA. The reason for this is to notice the small discrepancies between 
the two, especially considering their essential differences, explained above. Table 20 presents a 
summary of such results; those for WPHM have been extracted from Table 18, those for BPLA have 
been extracted from Table 15, and those for pre-BPLA can be found in Ramirez [37]. 

Table 20. Failures forecasted for next five years by each model. 

Pipe 
Gr. 

WPHM BPLA pre-BPLA 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1* 35 30 29 28 26 31 29 28 27 26 25 23 21 21 20 
2 18 34 44 52 59 30 38 43 48 51 31 38 44 48 52 
3* 35 30 30 31 34 26 27 28 28 29 18 17 16 16 16 
4 113 130 138 144 147 125 142 153 161 167 86 94 98 102 104 

The relative errors of BPLA (and pre-BPLA), failure forecasts with respect to those of WPHM 
have been calculated (Table 21). The figures obtained remain at an acceptable level –in average, BPLA 
forecasts differ in about 12% from those of WPHM. In fact, an overview of the table highlights that 
year 1 is a particular case, especially for group 2. If that first year (even only group 2) was neglected, 
the error between both models would fall up to 8% or 9%. Being the failure forecasting a more 
sensitive calculation compared to that for the β parameter, the simplifications assumed for pre-BPLA 
become more visible, and the reliability gap between BPLA and pre-BPLA naturally increases. The 
average error of pre-BPLA compared to WPHM rises up to about 30%. 

Table 21. Relative errors (%) on failure forecasting for BPLA and pre-BPLA compared to WPHM. 

Pipe 
Gr. 

BPLA pre-BPLA 
1 2 3 4 5 1 2 3 4 5 

1* 11 3 3 4 0 32 24 29 26 23 
2 67 12 2 8 14 43 11 0 8 14 
3* 26 10 7 10 15 65 48 50 54 62 
4 11 9 11 12 14 22 25 26 26 26 

4.2. Comparison of Procedures 

In the field of practical implementation, the BPLA model presents two main advantages 
compared to other more complex models currently available. The first one is the requirements in 
terms of software tools and skills of staff. Because of the fact that the calculation employed remains 
within a standard statistical analysis, those requirements are easily accessible to engineering 
personnel. The second one is the shortness of the calculation process. Because of the fact that the two 
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time variables used have been independently defined, they can be analyzed at the same time, and 
therefore all the results of the model are obtained after only one calculation stage. 

Figure 9 depicts the whole procedure for the BPLA model. Data sets, calculations performed, 
results obtained, and also their significance, have been represented in an ordered way. Additionally, 
the numerical values obtained for one of the pipe groups in the case study have also been included 
to ease the follow-up of the process. The shadowed boxes highlight the contributions of the model:  

• The parallel calculations on LtF and TtF make it possible to obtain all the results in a single 
calculation stage. 

• Standard spreadsheets are suitable for the type of variables to be handled and calculations to be 
made –though, as mentioned above, in this case, the R software was combined with 
spreadsheets.  

 
Figure 9. Calculation procedure of the BPLA model. 

Figure 10 depicts the whole process for the WPHM, under the same criteria followed in Figure 9. 
In comparison, the shadow boxes show: 

• The sequential order of the calculations. This involves performing two stages of calculation to 
obtain the last result. 

• The different nature of the calculations themselves. The first one is a multivariate statistical 
fitting, for which more than basic software is required –in this case, it has been the R package. 
The second calculation is a series of simulations (up to 1000 iterations per pipe) for which some 
sort of programming is needed. In this case, it has been performed through VBA for MSExcel®. 
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• steady variables
• spreadsheet-feasible
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Figure 10. Calculation procedure of the WPHM. 

5. Conclusions 

Asset management in general is increasingly becoming more and more relevant in urban water 
utilities. Their technical, economic and environmental implications are both numerous and 
significant. In particular, calculating good estimations for service life of pipes is one key piece within 
the big puzzle of asset management. Several researches have been performed on this issue and, today, 
several advanced and complex models are already published and tested. The backside of the current 
state of the art is that it may be inaccessible to many small- and medium-sized water utilities. Their 
data availability and technical capabilities may not be as high as the ones required by such models.  

For each
PIPE GROUP

from the
pipes table

from the
fails table

# of pipes
[8,278]

# failures
[58]

W
PH

M
 m

od
el

WPHM table
[8,336 records]

Calculation of 
interarr. times τ

Multivariate
regression on

τ

1st. calculation
ADVANCED Weibull fitting
• dynamic variables
• scientitic soft. required

[Example: DI / 2]

Bath curve 
location
indicator

Future
failures
forecast

One result obtained after
the 1st. calculation

intercept𝛽଴
[8.15]

scale𝜎 → 𝛽௅௧ி௘௤௨௜௩
[1.72]

rest of 
coeffients𝛽ଵ, 𝛽ଶ…
[-0.29, ...]

Monte Carlo 
simulation

2nd. calculation
PROGRAMMING
• up to 1000 iterations/pipe
• language prog. required

failures per 
pipe and year෍ 𝑓𝑎𝑖𝑙𝑠

[Table 18]

One result obtained after
the 2nd. calculation
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This paper presents the BPLA model, aimed to get (i) an estimation of the service life of pipes, 
(ii) an assessment of the pipes failure behavior (bath curve location) and (iii) a forecast for the 
expected number of failures in the up-coming future. Its novelties are the way the pipe and failures 
information is processed (by adapting the network data to the maintenance engineering theory and 
not the other way back), which is combined with the definition of two time variables that are analyzed 
in parallel. The resulting model calculates all the three mentioned results in a single calculation stage 
while keeping low requirements on software tools.  

A case study has been solved for a utility that supplies water to 500,000 people, with 1000 km 
pipe network and only two years of available failure records. To apply the model, pipes were 
classified in homogeneous groups per material (asbestos, ductile iron, cast iron and polyethylene) 
and diameters. Four representative groups, one per material, were analyzed by the BPLA model and 
all the results are shown in the case study section. For instance, in the case of pipe group 2 (ductile 
iron, diameters between 63 and 140 mm, taken as an example in Figure 9 and Figure 10), the 
estimation of the average service life is nearly 109 years, location on the bath curve is still on the flat 
intermediate stage and expected future failures will grow from 30 up to 51 in the next five years. As 
a reference for comparison, the same data sets were also analyzed with the WPHM and the results 
obtained from both models have been quantitatively contrasted. In average, the relative errors 
between them were lower than 10%–15%, which means a very good accuracy as the complexity of 
both models are also compared (Figure 9 and Figure 10). In conclusion, such a low errors can be 
considered fully affordable for the front-line purposes of the BPLA model. 

The present research has some novelties over other more complex approximations assessment 
life models: it presents a less demanding methodology in terms of data and software tools than others 
currently available, while it allows to get all the results after one single stage of calculation. A 
compromise between accuracy and simplicity is achieved in this particular case study, considering 
the consistency of the available data and the possibilities for future improvement, once the model is 
tuned for next stages. 
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