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ABSTRACT

Hybrid zones are narrow regions in which species exchange genes, and yet 

remain distinct. This situation represents a clash between two views of species; 

one based on the pattern of gene flow, and the other on the maintenance of a 

cluster of phenotypes that is stable to invasion by foreign genes. The present study 

aims to 1) review the theoretical framework behind the mathematical analysis of 

clines in nature; 2) Implement a simplified version of these theoretical models in 

Mathematica; 3) Design an 'in silico' setting to simulate reproduction while keeping 

track of the resulting pedigrees; and 4) test the efficiency of parentage analysis 

methods implemented in R and estimate a minimum number of molecular markers 

needed to reconstruct parentage in hybrid zones. Our results indicate that, for a 

given level of migration between demes, different levels of selection have a direct 

impact on the cline width, with stronger natural selection causing clines to be 

narrower. On the other hand, selection and recombination also seem to play a 

significant role on the distribution of the level of linkage disequilibrium along the

cline. Finally, it was found that a minimum number of 18 molecular markers (with at 

least 5 alleles each) will be needed in order to obtain a 95% confidence on our 

parentage assignments.
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RESUM

Les zones híbrides són regions estretes en les quals troben espècies  que 

intercanvien gens, i tanmateix romanen diferenciades. Aquesta situació representa 

un enfrontament entre dues visions d'espècie; una basada en el patró de flux 

gènic, i l'altra en el manteniment d'un grup d’individus amb un fenotip estable. 

Aquest treball pretén 1) revisar la teoria en què es basa l'anàlisi matemàtica de 

clines; 2) implementar una versió simplificada d'aquests models teòrics a 

Mathematica; 3) Establir un disseny 'in silico' que permeta simular reproducció 

biològica i alhora registre els pedigrís resultants; i 4) provar el rendiment dels

mètodes d'anàlisi de parentiu implementats a R i calcular un nombre mínim de 

marcadors moleculars necessaris per reconstruir pedigrís en zones híbrides. Els 

nostres resultats indiquen que, per a un nivell donat de migració entre localitats, 

els diferents nivells de selecció tenen un impacte directe en l'amplada de la clina, 

amb una selecció major resultant en clines més estretes. D'altra banda, selecció i 

recombinació també semblen jugar un paper significatiu en la distribució del nivell 

de desequilibri de lligament al llarg de la clina. Finalment, es troba que un mínim 

de 18 marcadors moleculars (amb com >5 al·lels cadascun) són necessaris per 

obtenir un 95% de confiança en les nostres assignacions de parentiu.          
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"It  is  not  clear  how  Templeton's  cohesion  species  differs  from  a  biological  species,  although  I  suspect  a  cohesion
species would possess additional reproductive barriers acquired during the years of deliberation on its status."
(Schemske 2000)

Abstract
A biological species is defined as an "actually or potentially interbreeding group of populations". In practice, any taxa
that can produce viable and fertile F2 generations are regarded as being of the same species. However, hybrid zones are
narrow regions in which genetically distinct populations meet, mate and produce hybrids. Therefore, species exchange
genes, and yet remain distinct. This situation represents a clash between two views of species; one based on the pattern
of gene flow, and the other on the maintenance of a cluster of phenotypes that is stable to invasion by foreign genes. In
order to explain how selection can maintain well-defined species despite gene flow, a diffusion equation approximation
to hybrid zones is  presented  in this report.  Besides  representing the  basis for  a challenging theoretical  model  on gene
flow-selection  equilibrium,  stable  clines  present  an  interesting  situation  for  the  analysis  of  paternity  and  pedigree
reconstruction methods.
The  present  study aims  to  1)  shortly review  the  theoretical  framework  behind  the  mathematical  analysis  of  clines  in
nature,  pointing  out  the  most  relevant  assumptions  made  by  the  models;  2)  Implement  a  simplified  version  of  these
theoretical  models  in Mathematica,  in  order  to  describe  the  quantitative  effect  of  different  levels  of  dispersal  and
selection on the shape  of the  cline;  3) Design an 'in silico' setting to simulate reproduction while keeping track of the
resulting pedigrees; and 4) test the efficiency of parentage analysis methods implemented in R and estimate a minimum
number of molecular markers needed to reconstruct parentage in hybrid zones.
Our results indicate that, for a given level of migration between demes, different levels of selection have a direct impact
on  the  cline  width,  with  stronger  natural  selection  causing  clines  to  be  narrower.  On  the  other  hand,  selection  and
recombination  also seem to play a  significant  role  on the  distribution  of  the  level  of  linkage disequilibrium along the
cline.  Finally,  our simulations indicate  that  a  minimum number of 18 molecular  markers (with at  least  5  alleles each)
will  be  needed  in  order  to obtain a  95% confidence  on our  parentage  assignments.  All  the  analyses described  in  this
paper were performed using a Mathematica 7.0 notebook.
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Introduction

Hybrid Zones : Natural Selection in action
Hybrid zones are examples of stepped clines, which are dramatic geographic gradients in the frequency of a gene or a
trait. One might imagine that hybrid zones are rather rare and hard to find. However, we have many examples of clines
in nature:  differences in skin color  in humans, differences in color pattern in the European fire-bellied toad (Bombina
bombina)  and the yellow-bellied toad (Bombina variegata),  differences in chromosome number in Mus musculus,  and
many others (Barton and Hewitt, 1985; Capanna, 1980). In fact,  the present study is originally motivated by a striking
Antirrhinum hybrid zone located in the Catalonian Pyrenees (Whibley et al., 2006). The snapdragon Antirrhinum shows
two different  flower  colors  in  a  very narrow area,  less  than  10km wide,  near  Planoles.  As  you travel  along the  main
road, flowers shift from being pink on one extreme to yellow in the other, and only a few hybrids (orange flowers) can
be  observed in  between.  In  order  to explain  the  scarcity  of  hybrids  in  this  area,  it  has  been  hypothesized that  orange
flowers (hybrids) are selected against by pollinators (Bumblebees: Bombus terrestris), which will make them less fertile
and impede their expansion. However, several questions arise from these considerations: how strong should be natural
selection  against  hybrids  to  maintain  the  observed  differences?  To  which  extent  does  pollen  dispersal  (gene  flow)
between pink and yellow flowers influence the shape of the cline?

A biological species is defined as an "actually or potentially interbreeding group of populations". In principle, we would
expect  gene flow and dispersal  to homogenize  the genetic composition of the populations in hybrid zones, but instead
they remain distinct. How could it be? This represents a clash between two views of species; one based on the pattern of
gene  flow,  and  the  other  on  the  maintenance  of  a  cluster  of  phenotypes  that  is  stable  to  invasion  by  foreign  genes.
Therefore,  hybrid  zones  offer  us  several  ways  of  understanding  the  nature  and  origin  of  species.  The  wide  range  of
genotypes found in a hybrid zone can be used to analyze the genetic differences and selective forces that separate  the
taxa involved. This may allow some inferences about the way these differences evolved and, by extrapolation, about the
way fully isolated species diverge from each other. As will be shown in the present report, studies of hybrid zones allow
us  to quantify the  genetic  differences  responsible for  speciation,  to measure  the  diffusion of genes between  diverging
taxa, and to understand the spread of alternative adaptations.

A  more  practical  reason  for  developing  a  model  of  gene  flow  and  selection  is  to  increase  our  understanding  of  the
causes  of the observed spatial  patterns of gene frequencies.  In fact,  Haldane (1948) original work on this subject  (see
below) was motivated by the problem of measuring selection in Mus musculus and has been used by others to estimate
the strength of selection in other natural population. Despite being a key concept in the Darwinian theory of evolution,
estimating selection in natural  conditions remains a  challenging task. One of the most accessible ways to estimate the
strength of selection in nature  is to measure the rate  of change in gene frequencies in a cline and compare with those
results expected under a particular model. That is still another reason why studying hybrid zones should be a priority for
evolutionary biologists.

 Overview : Models of clines in continuous habitats

Several models have been proposed in order to account for the existence of clines in natural populations. The available
models  of  clines  in  continuous  habitats  can  be  arranged  into  two  classes.  In  the  first  class,  dispersal  is  negligible.
Selection maintains a  stable  equilibrium at  each  locality (e.g.  through heterozygote  advantage).  In that  case,  the  cline

just mirrors a smooth gradient in selection coefficients and hence in the equilibrium point. We will call these dispersal-

independent  clines;  and  they  include  Moore's  (1977)  "bounded  hybrid  superiority".  In  the  second  class,  the
homogenizing  effect  of  dispersal  is  balanced  against  some  cause  of  spatial  heterogeneity.  Most  theoretical  work  has
been on such models  (Felsenstein, 1976).  They include neutral  clines, in which an initially steep gradient decays with
time;  waves  of  advance  of  an  advantageous  allele  (Fisher,  1937);  and  dispersal-selection  balance,  in  which  either
differences in environment (Haldane, 1948) or selection against intermediate genotypes (heterozygotes or recombinants)
(Bazykin, 1969, 1972) maintains a stable cline. We will refer to the last type as a tension (hybrid) zone.

The distinction between these two classes depends on the characteristic scale of selection, l, where l  

s
, with2  =

dispersal  rate  (more  precisely,  the  variance  in distance  between  parent  and offspring).  The  selection coefficient  (s)  is

proportional to selection or, for a neutral cline, it is the inverse of the time since contact (Slatkin, 1973). Any dispersal-
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dependent cline has a width (w, defined as the inverse of the maximum gradient) of the same order as l. Conversely, if

selection is to maintain a dispersal independent cline, w must be much greater than l. A cline can still be regarded as a
dispersal-selection balance  even if  some hybrid genotypes are  favored, provided they are only favored within a region
much narrower than l.  When many clines coincide, linkage disequilibria will be generated by the dispersal of parental
combinations  of  alleles  into  the  center  (Slatkin,  1975).  If  many genes  are  involved  and  selection  is  comparable  with
recombination,  disequilibria  will induce  a  sharp  step  in each  cline,  flanked by long tails  of introgression (see  below).
The central region of the cline (in which disequilibria are strong) will be distinct from the surrounding tails, and it has
been proposed that its width will depend strongly on the ratio between selection and recombination (Barton, 1983).

 Simulating hybrid zone evolution "in silico" and Parental assignment

In 1991, Barton and Turelli developed recursions to describe the evolution of multilocus systems under arbitrary forms
of  selection.  Later,  Kirkpatrick  et  al.  (2002)  generalized  their  approach  to  allow  for  arbitrary  modes  of  inheritance,
including diploidy, polyploidy, sex linkage, cytoplasmic inheritance,  and genomic imprinting. The framework was also
extended  to allow for  other deterministic evolutionary forces,  including migration and mutation.  Exact  recursions  that
fully  describe  the  state  of  the  population  were  presented  and  implemented  in  a  computer  algebra  package  called
MULTILOCUS. The present study builds up on that work, by extending their approach to the analysis of hybrid zones.
Furthermore, since we are particularly interested in analysing real data from the Antirrhinum hybrid zone, our study will
include further simulations on pedigree construction, therefore increasing the current functionality of the package.

As previously pointed out, selection and dispersal are key factors determining the main traits of the hybrid zone, such as
cline  shape  and  width.  Therefore,  in  order  to  estimate  dispersal  rate  (or  the  variance  in  distance  between  parent  and
offspring) and selection (or reproductive success), we should be able to trace the evolution of a biological system from
generation  to  generation,  describing  which  individuals  are  able  to  produce  viable  offspring  and  how  far  from  their
parents do these descendants get established. This is not an easy task, since tagging and tracking every individual in a
population would be prohibitive. Nevertheless, recent studies indicate that polymorphic genetic markers are potentially
helpful in resolving genealogical relationships among individuals in a natural population (Jones and Ardren, 2003). Our
study  will  further  investigate  which  is  the  minimum  number  of  molecular  markers  needed  in  order  to  have  high
confidence on our paternity estimates.

 Aims

In summary, the present study aims to 1) shortly review the theoretical framework behind the mathematical analysis of
clines in nature, pointing out the most relevant assumptions made by the models; 2) Implement a simplified version of
these theoretical models in Mathematica, in order to describe the quantitative effect of different levels of dispersal and
selection on the shape  of the  cline;  3) Design an 'in silico' setting to simulate reproduction while keeping track of the
resulting pedigrees; and 4) test the efficiency of parentage analysis methods in reconstructing the simulated pedigrees.

Methods: Theoretical Framework

Modelling Hybrid Zones

 Quick introduction to genetics jargon

We  now  give  a  brief  explanation  of  some  of  the  biological  and  genetical  terms  used.  These  definitions  may  not  be
entirely comprehensive, however they are adequate for the purposes of this thesis. Unless stated otherwise, we consider

a diploid population, so that each individual possesses two sets of chromosomes, one set inherited from each parent. We
are  only  interested  in  the  genes  located  at  one  particular locus  (i.e.  the  genes  at  a  particular  place  on  a  particular

chromosome). We consider the situation in which the gene occurs in two different forms, called alleles. The Mendelian
model  of  inheritance  assumes  that  parents  pass  on  discrete  heritable  units  -  genes  -  that  remain  separate  and  can  be
passed on to subsequent generations in undiluted form.

The  genetic  makeup  of  an  individual  is  known  as  its genotype.  A homozygote  possesses  two identical  alleles  for  a
given  trait,  whereas  a  heterozygote  has  two  different  alleles  for  a  given  trait.  The  physical  traits  exhibited  by  an
individual is known as its phenotype. In a heterozygote, the allele that is fully expressed by the phenotype is known as

the dominant allele, whereas if an allele is completely masked in the phenotype, it is known as recessive. A change in
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the gene frequencies in a population is the most elementary step in evolution from a population genetics point of view.
Variation  exists  in  a  population  due  to  the  different  possible  alleles  an  individual  may possess,  and  this  variation  is
heritable.  According to the Darwinian theory of natural selection, individuals with variations that are best suited to the
environment are more likely to survive and pass on their advantageous genes to successive generations.
Biologists  hope to  determine  the  probability of  the  ultimate  success  of  an  advantageous gene  by attempting to model
these  changes  in  allele  frequencies.  In  order  to  do  so,  population  genetics  uses  some  deterministic  models  that  have
great  similarities  with  those  used  in  other  disciplines.  In  this  thesis  we  will  focus  particuarly  on  diffusion  equations
applied to the analysis of hybrid zones.

 The Diffusion equation in population genetics : "Fisher's Wave of Advance".

The origins of the application of a diffusion approximation in population genetics are to be found in the pioneering work
of Fisher (1930, 1937). He considered the case of a population distributed in a linear habitat, such as a shoreline, which
is occupied with uniform density. If at any point of the habitat an advantageous mutation occurred, we would expect the
mutant  gene  to  increase  at  the  expense  of  the  alleles  previously  occupying  the  space  around  the  new  mutant.  This
process will later, as the advantageous gene is diffused into the surrounding population, expand in the adjacent portions
of its range. Supposing the range to be long compared with the distances separating the sites of offspring from those of
their parents, there will be, advancing from the origin, a wave of increase in the gene frequency.

Let p be the frequency of the mutant gene, and q that of its parent allele, which we shall suppose to be the only other
allele present. Let s be the intensity of selection in favour of the mutant gene, supposed independent of p. If we further
suppose that the rate of diffusion per generation across any boundary may be equated to

(1)k
p

x

at that boundary, x being the coordinate measuring position in the linear habitat, then the allele frequency of the mutant
allele p must satisfy the differential equation:

(2)
p

 t
 k

2 p

x2
 spq

where t stands for time in generations.

Notice that we are stating that the rate of change in allele frequency through time equals the sum of the allele frequency
change through space due to diffusion plus the amount due to selection. This will become important later.

The  constant  k  is  a coefficient  of  diffusion  analogous  to that  used  in  physics.  Its  use  should be  appropriate  in many
cases.  Of course, in all real cases we may expect irregularities due to k varying at different points of the range, due to
variations in the density of the population, and to variation in the selective advantage of the mutant at different places.
Further,  the means of diffusion may involve an unequal  drift  in  opposite directions (anisotropy), so that some parts of
the  range  predominate  as  centres  of  production  and  others  as  centres  of  extinction.  Nevertheless,  the  purpose  of
equation (1) is to specify the simplest possible conditions.

If we seek for a solution representing a wave of stationary form advancing with velocity v, we may put

(3)
p

 t
 v

p

x

and obtain the differential equation (2) involving only one independent variable:

(4)k
d2p

dx2
 v

dp

dx
 spq  0

Since the variable x does not appear explicitly, we may define, for the frequency gradient,

(5)g  
dp

dx

which allows us to write

4 MSc Hybrid Zones.nb

- 4 -

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


(6)
d2p

dx2
 

dg

dx
 g

dg

dp

and therefore find the relation between the frequency gradient (g) and the mutant allele frequency (p),

(7)k
dg

dp
 vg spq  0

At the point of inflexion, we will have
dg

dp
 0, and vg = spq; in advance of this point

dg

dp
 0.

If the ratio between the frequency gradient and the mutant allele frequency tends to a limit value when p tends to zero

(8)lim
p0

g

p
 u

then u must satisfy the equation

(9)ku2  vu  s  0

which is a quadratic equation in u that has real roots only if v2 is not less than 4ks. Notice that
g

p
 cannot tend to zero for

vg  >  spq,  and  cannot  tend  to  infinity  because v  k
dg

dp
.  Therefore,  solutions  only  exist  for  which  the  velocity  of

propagation is equal to, or exceeds, 2 ks .

The  most  striking  point  about  equation  (4)  is  that  the  velocity  of  advance  of  the  mutant  factor  appears  to  be
indeterminate.  If, for example, any part  of the range were filled with the mutant form, and the zone of transition were
artificially  given  frequencies  with  the  low  gradient  of  gene  ratio  appropriate  to  a  high  velocity,  the  mutation  would
spread with a higher velocity than if the initial gradient had been higher, and would continue to spread indefinitely with
this higher velocity so long as uniform conditions were encountered.

Ultimately, the velocity of advance would adjust itself so as to be the same irrespective of the initial conditions. If this is
so,  equation  (4)  must  omit  some  essential  element  of  the  problem,  and  it  is  indeed  clear  that  while  a  coefficient  of
diffusion may represent the biological conditions adequately in places where large numbers of individuals of both types
are available, it cannot do so at the extreme front and back of the advancing wave, where the numbers of the mutant and
the parent  gene respectively are  small,  and where their  distribution must be  largely sporadic.  This reasoning indicates
that the diffusion approximation would not be aplicable under boundary conditions.

Fisher further  defined the effect of chance at  the advancing front, which he calculated  by considering an aggregate of
discrete particles, which increase in number with a relative growth rate s, as at the wave front of our original problem,
but are free also to increase in numbers indefinitely in the interior of their range. We shall suppose them to be scattered
at small unit intervals of time so that the displacement of the particles at each scattering are is independent and normally
distributed

(10)Nx,  1

 2 


1
2
 x2

2 dx

where k of our previous notation will correspond to 2

2
.

Finally,  the  indeterminacy of  velocity can  be  resolved by comparison with the properties  of multiplying aggregates  of
particles, constantly subjected to random scattering. It appears that the actual velocity of advance must be the minimum
compatible  with  the  differential  equation.  This  velocity is  proportional  to the  square  root of  the  intensity of  selective
advantage and to the standard deviation of scattering in each generation, or to the square root of the diffusion coefficient
when time is measured in generations.

It may be expressed in the form

(11)v   2s  2 ks
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where, again, s is the selectivc advantage,  the standard deviation of scattering, and k the diffusion coefficient.

The "length" of the wave, or the distance between any two assigned gene ratios, is proportional to   k
s

, wich may

be taken as the unit of length.
In  summary,  Fisher  considered  a  favorable  mutant  arising  in  a  continuously  distributed  population  and  presented  a
partial  differential  equation  for  the  deterministic  change  in  the  geographic  pattern  of  gene  frequencies.  Equation  (2)
predicts a wave front of rising gene frequencies propagating through the population and leaving behind it a region fixed
for  the  favored  allele.  Since  the  allele  was  assumed  to  be  favorable  in  all  parts  of  the  population,  no  stable  cline  is

achieved.  However,  it  has  been  shown that  the  velocity of  advance  of  the  wave will  be  proportional to s ,  and the

length of the wave front to


s
.  Despite there  is  some indeterminacy in the  shape and speed  of the  wave, which can

depend  on  the  initial  conditions,  Fisher  argued  that  his  solution,  would  be  the  ultimate  result  after  initial  condition
effects were lost.

 Mathematical Model of a Hybrid Zone : Theory of a cline

Fisher' s Wave of Advance theoretical framework formed the basis for subsequent modelling of clines (Haldane, 1948)
and  hybrid  zones  (Bazykin,  1969).  Equation  (2)  predicts  a  wave  front  of  increasing  allele  frequency,  propagating
through the population. Only original alleles are present in front of the wave, and behind the wave is an area taken over
by the  mutant allele.  However,  when dealing with clines,  one needs  to consider  that local adaptation might make one
allele (let's say A) favourable in part of the environment while the alternative allele (let's say a) could be favoured in the
other area. Therefore, we are not interested in the propagation of a new mutation along a linear habitat, but rather to the
conditions that make selection and dispersal to remain in stable equilibrium.
Assuming that the population is in Hardy-Weinberg equilibrium and if the frequency of the gene a in adults at a distance
x from the boundary is p, then the frequency of the recessive phenotype aa will be z  p2. When p is plotted against x

we  get a sigmoideal curve (Fig. 1), with p0 as x-, and p1 as x.



5 0 5

0.2

0.4

0.6

0.8

1.0

Figure 1. Standard logistic sigmoid function

When  x  =  0,  i.e.  on  the  boundary  between  the  two  species,  dp/dx  is  continuous,  since  any  discontinuity  would  be

smoothed  out  by migration,  but  note  that
2p

x2
 changes  sign abruptly.  Note  that  the  fitnesses  of  the  genotypes  change

sharply at the border between the regions. In the half plane where x is positive, we are assuming that aa zygotes have a
fitness 1 + s times that of AA and Aa, and therefore they will become more frequent there.  In the other half plane the
fitness is 1 - s, with the selection coefficient being small and positive (0 < s <<1).

We are also assuming that individuals migrate at random. A group of individuals born at distance x breed at distances x
+ t, where t is normally distributed about zero with unit standard deviation. That is, we take as our unit of distance the
root of the mean square of the distances travelled by an animal between birth and breeding in the direction normal to the
boundary.  In  fact,  since  migration  does  not  depend  on  genotypes,  we  can  consider  the  genes,  not  the  zygotes,  as
migrating.
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Now let's f(t) be the frequency distribution function of t, symmetrical about zero. At the point x + t the gene frequency
is obtained from the Taylor Series Expansion of the function:

(12)f x0  t  f x0 
n1

 tn

n 
dnf

dxn

xx0

Note that f() = p.

As a result of 1 year's migration, the frequency at x changes from p to:

(13)






p f t t 

p 
1

2 

d2p

dx2





t2f t t 
1

4 

d4p

dx4





t4f t t  ...  p 
t2

2 

d2p

dx2


t4

4 

d4p

dx4
 ...

And for a normal distribution this is

(14)p 
2

2 

d2p

dx2


34

4 

d4p

dx4


156

6 

d6p

dx6
 ...

Provided  that  the  selection  coefficient  is  sufficiently  small  and  the  distribution  is  not  too  leptokurtic,  we  can  neglect

terms after the second, and since we assume2  1, we have the familiar diffusion expression:

(15)f x  t  1 
1

2

d2p

dx2

As a result of selection the ratios of the genotypes are altered, when x > 0, from:1 p2 ~ AA : 2p1  p ~ Aa : p2 ~ aa

to 1 p2~ AA : 2p1  p2 ~ Aa : 1  sp2 ~ aa

Thus  the  frequency of  a  is  altered  from p  to
psp2

1sp2
,  or  approximately to p sp21 p.  Since  selection  and  migration

(gene flow) are in equilibrium, we get the following equations for both sides of the cline:

(16)
d2p

dx2
 2sp21  p

(17)
d2p

dx2
 sp21  p

To solve this pair of differential equations, we can do as before and replace g 
dp
dx

. Then, for x > 0,

(18)g
dg

dp
 2sp21  p

so

(19)
g2

2
 gg  2s p21  pp  C 2s

p3

3


p4

4

Given that in the limit when x, p1 and g0, we will have that C  s
6
 and

(20)g2 
dp

dx

2


s

3
1 4p3  3p4  s

3
1 p21 2p 3p2.
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Similarly, when x < 0, g2   dp
dx

2
 2C' 4s p3

3


p4

4
. So when x-, p0 and g0, we have C '  0 and

(21)g2 
dp

dx

2


sp3

3
4 3p

Now, in the middle of the cline, when x = 0, p = b and
dp
dx

 has the same value for both branches of the cline. Hence we

get
s
3
1  4b3  3b4  s

3
4b3  3b4,  or  simplifying 3b4  4b3  1

2
 0.  This  equation,  giving  the  value  of

the  allele  frequency on  the  middle  of  the  cline,  has  one  and  only one  root  between  0  and  1,  which can  be  found by
iteration.

 Mathematical Model of a Hybrid Zone : Moving into 2-dimensions

Bazykin (1969) suggested the simplest model of a tension zone, which is similar to the one that we will follow in our
simulations.  In  this  case,  we  assume  that  heterozygotes  have  fitness  1  -  s  relative  to  either  homozygote.  If  the  allele
frequency is p, the change in allele frequency is then (for small s):

(22)
p

 t

2

2

2 p

x2
 spqp q

where p + q = 1.



Figure 2. Change in allele frequency along the cline (-100 < x < 100) at different selection levels (0.001 < s < 0.01).

As stated before, this equation describes the situation in which "the heterozygote is less fit than both homozygotes" and
"homozygote  fitness  is  equal".  Again,  remember  that  the  dispersal  rate   is  defined  as  the  standard  deviation  of  the

distance between parent and offspring along a chosen axis and it has units of distance time12.

 Bazykin' s model is based on a special kind of reaction-diffusion equations, in which attention is centred not on the
spontaneous formation of a pattern from a homogeneous field, but on the interaction between areas which have moved
to different states. This particular equation has the solution:

(23)p 
1

1  e
xx0

l
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where l 
2

2s
is the characteristic distance over which selection changes allele frequencies Fig. 3,

and the cline width is 4l.



Figure 3. Change in characteristic length with dispersal (0 <  < 100) and selection (0.001 < s < 0.01).

In  this  model,  the  environment  is  homogeneous  and  the  homozygotes  have  equal  fitnesses,  so  the  cline  can  form

anywhere (x0), and the equation has a family of neutrally stable solutions that are known as 'topological solitons'.

Topological solitons are solitary waves set up at the boundary between two regions constrained to be in different states.
The  same  phenomenon  (often  the  same  equation)  arises  in  many  other  fields.  Topological  solitons  are  solutions  of
systems of partial  differential equations representing stable structures  which are  localized in space,  with their stability
being due (in part)  to non-trivial topology. Systems admitting such solitons have been known for a long time; the first
examples  were  in  one  space  dimension,  whereas  more  recent  work  has  concentrated  on  structures  in  two  and  three
space  dimensions.  Investigation  of  the  mathematical  properties  of  topological  solitons  has  proceeded  alongside  the
search  for  their  applications  in  the  description  of  numerous  processes  and  phenomena  in  physics  and  biology.
Nevertheless, their application to population genetics is very recent and mostly unexplored.

Statistical theory of paternity inference
Now we move to a completely different topic, but that will be needed in order to get estimates of dispersal to be used in
our  hybrid  zone  model.  Parentage  analysis  is  a  precise  form of  assignment  testing  that  can  be  particularly  useful  for
detecting  ecological  and  evolutionary  patterns  in  systems  with  high  levels  of  gene  flow  (Manel  et  al.,  2005).  Such
systems have limited genetic differentiation, which severely restricts the utility of population-level assignment methods.
Therefore,  parentage  analyses  may  allow  for  the  inference  of  gene  flow  and  dispersal  at  ecologically  relevant
timescales.

A  challenge  to  employing  parentage  analysis  in  natural  populations  is  that  large  population  sizes,  variable  dispersal
distances  and  high  rates  of  mortality  may  severely  constrain  the  number  of  sampled  parent-offspring  pairs.  These
challenges are amplified in systems where patterns of dispersal are unobservable, such as when propagules are too small
to  track  directly  (e.g.  pollen  dispersal).  In  addition,  because  of  a  lack  of  pragmatic  methods,  long-distance  dispersal
events are often ignored or remain undetected in many species of plants (Nathan,  2006), fungi (Kauserud et al., 2006)
and animals that are cryptic or have complex life histories (Derycke et al., 2008). Nevertheless, large genotypic data sets

MSc Hybrid Zones.nb 9

- 9 -

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


may still be used to uncover some of these enigmatic processes, and parentage analysis can be a powerful tool for the
direct detection of patterns of dispersal and population connectivity. As shown in the previous section, dispersal plays a
key role  in  defining  cline  behaviour  and  estimation  of  selection.  Therefore,  being  able  to  assign  parentage  is  critical
when dealing with hybrid zones.

 Methods of parentage analysis

Several  methods  of  parentage  analysis  are  available  in  the  literature. Exclusion  is  based  on  Mendelian  rules  of
inheritance  and  uses  incompatibilities  between  parents  and  offspring  to  reject  particular  parent-offspring  hypotheses.
Categorical and  fractional  likelihood assign progeny to non-excluded parents  based  on likelihood scores  derived from
their  genotypes.  The  categorical  technique  assigns  the  entire  offspring  to  a  particular  male,  whereas  the  fractional
technique splits an offspring among all compatible males.

These  methods are  expected to perform differently from one another when estimating the variances in reproductive or
mating  success  for  one  or  both  sexes  in  a  population.  Thus,  the  categorical  method  overestimates  the  reproductive
success  of  individuals  with  many  homozygous  loci,  the  fractional  technique  requires  the  researcher  to  set  a  prior
probability  of  parentage,  etc.  Moreover,  although  they  might  seem  straightforward  in  principle,  such  analyses  are
usually  complicated  by  several  factors  such  as  incomplete  sampling  of  potential  parents,  individuals  being  related  to
each  other  in  ways  not  explicitly considered  (e.g.  individuals  belonging  to  a  sibship  but  only considered  as  potential
parent  and  offspring),  and  non-Mendelian  transmission  of  genotypes  (through  null  alleles,  mutations  or  genotyping
error).

 LOD Scores

If  we  sample  a  triplet  of  individuals  (A,  B,  C)  with  single  locus  genotypes  gA,  gB  and  gC,  one  can  compare  the
likelihood of the hypothesis (H1)  that the three individuals are  offspring, mother and father,  with the likelihood of the
alternative hypothesis (H2) that the three individuals are unrelated. This comparison is usually expressed as a log-ratio,

which defines the parent-pair LOD score (e.g. Meagher and Thompson, 1986):

(24)LODgA, gB, gC  log
PrgA, gB, gC  H1
PrgA, gB, gC  H2  log

TgA  gB, gC
PrgA

In this notation, the Mendelian transmission probability is denoted by T(·). The likelihood of (H2) is the probability of
observing the  three  genotypes  when  randomly drawn  from a  population  in  Hardy- Weinberg equilibrium. For  diploid
heterozygotes, the probability of a genotype with the alleles a1  and a2  and with the allele frequencies p and q is Pr(a1,
a2) = 2pq; for homozygotes, we have Pr(a1, a1) = p2.

A potential drawback of LOD scores is that if not all individuals of the population are sampled, then the total number of
breeding individuals N in the population must be estimated. In order to solve this issue, Nielsen et al. (2001) proposed a
Bayesian  approach,  extending  the  fractional  paternity  approach  suggested  by  Devlin  et  al.  (1988).  The  posterior
probability that male Fi is the father of O can then be calculated for the case when the mother M is known as

(25)PrFi  GO, GM, GF, A, N  TGO  GM, GFi
 j

nTGO  GM, GF j  N  nTGO  GM, A
where GO, GM, GF are  the offspring, maternal and paternal  genotypes,  A the population allele  frequencies and n the
number  of  sampled  males.  So  (N -  n)  weights  the  case  that  the  true  father  is  unsampled  accordingly.  Ignoring  this
weighting will give many false matches when the sampling rate and the amount of genomic information is low (Nielsen
et al., 2001). Shamefully, in natural populations it is generally impossible to know any parent beforehand, and likelihood
based methods become computationally too demanding.
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 Calculating the probability of a putative parent-offspring pair being false

For  natural  populations  with  few  sampled  parents,  strict  exclusion  or  kinship  techniques  are  the  preferred  analytical
approaches for parentage assignment (Jones and Ardren, 2003). Kinship methods are restrictive because they determine
only  whether  a  data  set  has  more  related  individuals  than  expected  by  chance,  but  often  cannot  identify  which
individuals those are (Queller et al., 2000). When applied correctly, exclusion is a powerful parentage method because it
fully  accounts  for  the  uniqueness  of  the  parent-offspring  relationship  without  any  assumptions  (Milligan,  2003).
However, one must first determine whether their data set has enough polymorphic markers to minimize the occurrence
of false  pairs  (i.e.  adults  that  share  an allele  with a putative offspring by chance).  As a  consequence,  many exclusion
probabilities have been developed for a variety of applications.

Some  approaches  focus  on  data  sets  where  the  genotypes  of  the  mother  and  putative  sire,  or  at  least  one  parent,  are
available (Chakraborty et al.,  1988; Jamieson and Taylor, 1997),  whereas other exclusion methods focus on excluding
only a  handful  of  candidate  parents  (Dodds  et  al.,  1996).  One  exclusion  probability  that  is  appropriate  for  situations
where  neither  parent  is  known  was  first  described  by  Garber  and  Morris  (1983)  and  later  expressed  in  terms  of
homozygotes (Jamieson and Taylor, 1997).

In  the  present  study,  the  probability of  false  parent-offspring pairs  occurring within  a  data  set  is  described  following
Christie (2009). This probability can determine whether the information content of one’s data set is sufficient to accept
all putative parent-offspring pairs with simple Mendelian incompatibility.

In  the  particular  case  of  co-dominant  markers  in  diploid  organisms,  the  probability  of  a  randomly  selected  pair  of
individuals sharing an allele from a particular locus equals

(26)PrZ 
i1

Na 2z1i  z1i
2 2z2i  z2i

2  
i1

Na1 
gi1

Na 2z1iq1g2z2iq2g
where Na is the total number of alleles at  a locus, z1  is the allele  frequency for allele i in the sample of adults and z2

equals the allele frequency for allele i in the sample of juveniles. Thus, z21 and z22  equal the frequency of homozygotes
containing  allele  i  in  samples  of  adults  and  juveniles,  respectively,  assuming  Hardy–Weinberg  Equilibrium  (HWE).
Alleles occurring in only one sample (i.e. adults or juveniles) will not be included in the above expression because the
product equals zero.

Notice  that  the  expected  number  of  homozygotes  for  an  allele  is  subtracted  from the  total  number  of  times  the  same
allele  occurs  to  prevent  pairs  of  individuals  that  are  homozygous  for  the  same  allele  from  being  counted  twice.
Likewise, it is important to count only dyads (pairs of individuals) that are heterozygous for the same alleles only once.
Therefore,  we subtract  a double summation where q equals the frequencies of alleles (i + 1) :  Na and where z1q1  and

z2q2  are  used  to  calculate  the  HWE-expected  genotype  frequencies  of  unique  heterozygotes  in  samples  of  adults  and

juveniles respectively.

Under  some  circumstances,  it  may be  desirable  to use  an  equation that  does  not  employ HWE estimates  of  genotype
frequencies.  One example  would be  if  genotype frequency estimates have high accuracy yet  do not conform to HWE
expectations. The equation that does not assume HWE is :

(27)PrZG 
i1

Na 2z1i  zz1i2z2i  zz2i
i1

Ng zq1izq2i
where zz1  and zz2  equal  the  observed  frequencies  of  homozygotes  containing  allele  i  in  the  samples  of  adults  and
juveniles, respectively, and zq1  and zq2  equal the observed frequencies of all unique heterozygotes, Ng, in the samples

of adults and juveniles respectively. To expand this approach to multiple loci, it was assumed throughout this simulation
study that loci are in linkage equilibrium and are thus independent of one another.
If the assumption of linkage equilibrium is valid, it is possible to multiply probabilities across loci such that :

(28)Pr 
i1

L

PrZi

where L equals the total number of loci.
To  determine  the  approximate  number  of  false  parent-offspring  pairs,  Fpairs,  for  a  given  data  set,  Pr()  should  be
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multiplied by the total number of pairwise comparisons :

(29)Fpairs  Pr n1n2

where n1 equals the number of adults and n2 equals the number of juveniles. It is important to keep in mind that this is a
probability,  and  that  variance  due  to  sampling  will  cause  slight  deviations  from  this  quantity.  However,  on  average,
these equations predict the number of false pairs very accurately (Christie, 2009).

The importance of minimizing the number of false parent-offspring pairs depends on the study, although the utility and
accuracy of any parentage analysis obviously deteriorate as the number of false  parent-offspring pairs increases. If the
expected number of false parent-offspring pairs is negligible (i.e. near 0), then strict exclusion can be safely used.
Here, the probability of any particular putative parent–offspring pair being false, when using strict exclusion, equals:

(30)Pr 
Fpairs

Np

where  Np  equals  the  observed number  of  putative  parent-offspring pairs,  which is  simply calculated  by summing the
number of dyads that share  at least  one allele  at all loci. Np is also equal to the total number of false parent-offspring
pairs plus the total number of true parent-offspring pairs.  Because Pr()  equals the probability of any putative parent-
offspring pair being false, one should strive to minimize this value by employing many polymorphic loci. In the present
study, the probability of any putative parent-offspring pair being false Pr() will be analysed through simulations in R.

Analysis and results

Implementation of theoretical models in Mathematica: Hybrid zone simulations
Exact  recursions  describing  the  hybrid  zone  evolutionary  setting  have  been  implemented  in  a  set  of  Mathematica
functions  (Wolfram  1996)  that  are  available  in  Appendix  I.  The  whole  simulation  setting  is  based  on  a  previously
developed  package  called  MULTILOCUS, which was  recently released  by Kirkpatrick et  al.  (2002).  These  functions
are  appropriate  for  analysing  selection  and  recombination  in  diploids.  In  particular,  hybrid  zones  are  simulated  by
setting  up  a  list  of  populations  or  demes,  which  are  allowed  to  exchange  migrants  every  generation.  The  key
components  of  our  simulations  are  the  number  of  demes,  number  of  chromosomes  per  deme  (so  that  for  N=100,  we
actually have N/2 = 50 diploid individuals), the migration rate between demes, the number of diallelic loci to include as
genotypes, the intensity of selection, and the recombination rate among loci.

 Describing genotypes and populations

The genotype of an individual at position i is represented by the indicator variable Xi. With just two alleles per locus, Xi

can take two values, which has been conveniently set at 0 or 1; for this special case, the frequency of allele 1 at position
i is written pi  and the frequency of allele 0 as qi  = 1 - pi. A fact that is useful later is that under these conventions, the

expected  value  of Xi  (averaging  over  all  individuals  in  the  population)  is  equal  to pi.  When there  are  more  than  two

alleles, we can choose any distinct values to distinguish the alleles.

Several  functions  have  been  developed  in  order  to  describe  the  genetic  content  of  a  population  or  set  of  populations

based on their allele frequencies. Thus, the basic function AlleleFrequencies  represents the different allele frequencies
of  the  population,  and  allows  for  taking  into  account  any  deme  size. MakePopulation  gives  a  haploid  population  at

linkage equilibrium, with allele frequency p; which is represented as HaploidFrequencies  by default,  even though the
NumericalModel  option  can  be  used  to  give  other  representations  (e.g. DiploidFrequencies).  In  any  case,  once  we
have characterized our population of interest, we can easily sample individuals from it by using the MakeIndividuals

function. MakeIndividuals generates n random individuals from the population .  If  represents a diploid population,
the  representation DiploidIndividuals  is  returned  (that  is,  we  get  the  genotype  of  diploid  individuals);  similarly  for
haploids.  This  series  of  functions  dealing  with allele  frequencies,  genotype  frequencies  and  individual  genotypes  will
form the basis of our implementation of a cline. After all, clines can be thought to represent a series of interconnected
populations that share individuals/genes through migration.
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 Including fitness

In our simulation scenario, selection is modelled through a fitness function, W, which gives the relative fitness of each
genotype. Absolute fitness  of a genotype is defined as the ratio between the number of individuals with that genotype
after  selection  to  those  before  selection.  It  is  calculated  for  a  single  generation  and  may be  calculated  from absolute
numbers or from frequencies. When the fitness is larger than 1, the genotype increases in frequency after reproduction;
a  ratio  smaller  than  1  indicates  a  decrease  in  frequency.  The  fitness  function  has  the  form fitness[deme][X,Y].  For
example,  f[11][{0,0,0},{1,1,1}] gives the fitness of an individual heterozygous at all 3 loci, in deme 11. The function
fitness allows to specify multiplicative selection with an intensity +s to the right and -s to the left of the cline. It is worth
mentioning  that  the  efficacy  of  selection  acting  simultaneously  at  linked  sites  (a  codon,  a  nucleotide  or  a  gene,
depending on what contributes to fitness) is reduced compared with the same selection pressure acting at  independent
sites  (Hill  and  Robertson,  1966;  Li,  1987).  This  is  because  linkage  disequilibrium  between  alleles  at  selected  loci,
generated  by  the  stochastic  nature  of  mutation  and  sampling  in  a  finite  population,  "interferes"  with  the  action  of
selection at any one locus (Felsenstein, 1974). Therefore, it would be of interest to define which is the efect of different
levels of linkage on the shape of a cline.

 Linkage Disequilibrium and Recombination

In population genetics, linkage disequilibrium (LD) is the non-random association of alleles at two or more loci. In other
words,  linkage  disequilibrium  describes  a  situation  in  which  some  combinations  of  alleles  or  genetic  markers  occur
more  or  less  frequently  in  a  population  than  would  be  expected  from a  random formation  of  haplotypes  from alleles
based  on  their  frequencies.  Non-random  associations  between  polymorphisms  at  different  loci  are  measured  by  the
degree  of  linkage  disequilibrium  (D).  D  indicates  the  deviation  of  the  observed  frequency  of  a  haplotype  from  that
expected if the alleles at two loci were independent from each other, so that two loci, A and B, are said to be in linkage
(or gametic) disequilibrium if their respective alleles do not associate independently. In the present study, and following
the  MULTILOCUS  implementation,  a  matrix  of  pairwise  linkage  disequilibrium  for  the  population  ()  is  obtained
through  the DisequilibriumTable  function.  It  also  applies  to  a  list  of  demes  or  populations,  representing  a  cline.  It

returns  the  D  between  selected  loci,  and  the  D  between  the  neutral  and  selected  loci.  The DisequilibriumMean
function gives the mean pairwise linkage disequilibrium for the population. Again, it also applies to a list of populations,
representing a cline.

Linkage disequilibrium arises as a consequence of three features of life a) the physical structure of chromosomes; b) the
inherent  mutations that  occur at  random during DNA replication;  c)  the rate  of recombination between any two given
loci.  Taking each  in  turn,  this  means that  markers or genes do not  undergo independent  assortment  if  they are  on the
same  chromosome.  This  means  that  when  a  new  mutation  arises  it  will  be  inherited  along  with  all  of  the  other
markers/polymorphisms  that  occur  on  that  chromosome.  Unless  of  course  a  recombination  event  occurs  between  two
loci  that  serves  to  break  the  pattern  of  mutations  that  are  inherited  on  one  chromosome.  Genetic  recombination  is  a
process by which a molecule of nucleic acid (usually DNA) is broken and then joined to a different DNA molecule. It is
equivalent  to "allele-shuffling",  since it  makes new allele  combinations to appear.  In the present  study,  the amount  of
recombination between markers is defined by the option Linkage, which specifies a linear genetic map.

 Simulating a cline

As previously stated, a Cline can be represented by a series of interconnected populations that share individuals/genes
through  migration.  Individuals  at  opposite  extremes of a  linear  Cline will be  under  different  selection regimes. Those
individual  alleles  which  are  favoured  in  one  part  of  the  cline,  will  be  selected  against  on  the  other  side.  Thus,  the
frequency of different alleles will change gradually while moving along the Cline. In our Mathematica implementation,

the MakeCline function sets up a stepped cline with any number of haploid demes, genes, or  individuals in each deme.
The  user  can  define  a  linear  gradient  for  the  cline,  spanning p,  and can  easily obtain the  cline widths at  each  locus

through the ClineWidth function. Thanks to the IterateExact and StoreExact simulation functions, the user is allowed
to trace the evolution of any number of demes influenced by several selection regimes, different migration rates and the
presence/absence of linkage between markers.
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Simulating a cline: Results

 Setting up a stepped cline across 20 demes, with 3 loci in each:

Each deme is represented by a list of genotype frequencies.  The deme size is arbitrary and does not affect the results.

Fitness  is  given  by a  function  of  the  form f[deme][X,Y].  For  example,  f[11][{0,0,0},{1,1,1}]  gives  the  fitness  of  an
individual heterozygous at all 3 loci, in deme 11.
The function fitness[s,mid,ecotone] specifies multiplicative selection +s to the right, -s to the left

fitnesss, mid, ecotoneiX, Y :

Ifi  mid, 1  sPlusXYLengthX, 1 sPlusXYLengthX;
For example, this tabulates the fitness of genotype {{0,0,0},{0,0,0}} across the cline, for s = 0.1 and with midpoint at
deme 10:

Tablefitness0.1, 10, ecotonei0, 0, 0, 0, 0, 0, i, 201.331, 1.331, 1.331, 1.331, 1.331, 1.331, 1.331, 1.331, 1.331, 1.331, 0.751315, 0.751315,
0.751315, 0.751315, 0.751315, 0.751315, 0.751315, 0.751315, 0.751315, 0.751315

We can easily allow for different selection intensities on different loci by letting s be a list s1, s2, s3:
fitnesssList, mid, ecotoneiX, Y :

Ifi  mid, Times 1 sPlusXYLengthX, Times 1 sPlusXYLengthX;
The fitness changes from 1  s3 to 1 s3

Note: In  the  simulations,  fitnesses  of  each  diploid  genotype  were  calculated  once,  and  then  stored.  This  made
calculations much faster.

 Simulating a cline : Cline shape

This  simulates  the  cline with stepped selection s = 0.01 on the  three unlinked loci,  across 30 demes.  Migration rates
between adjacent demes is m  0.5 and results are stored at t = 0, 20, …500 generations.

fitnesss, mid, ecotoneiX, Y :

Ifi  mid, Times 1 sPlusXYLengthX, Times 1 sPlusXYLengthX;
StoreExactres, MakeCline30, 3, 100, fitness0.01, 15, ecotone, 0.5, 500, 20,

Compiled True, FixedEnds MakePopulation3, 0, 100, MakePopulation3, 1, 100;
CompiledTrue compiles the code, which is much faster, while FixedEnds{pop0,pop1} fixes allele frequencies at the
ends. Note that the end demes have to be the same size as the demes in the main population.

We can  now describe  the  state of the  cline at  t  = 500.  That  is,  after  500 generations.  For example, we can obtain the
allele frequencies for each deme, which, by symmetry, are the same at all three loci.
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AlleleFrequencyTableres500  TableForm

0.0102594 0.0102594 0.0102594

0.020942 0.020942 0.020942

0.032467 0.032467 0.032467

0.0452755 0.0452755 0.0452755

0.0598474 0.0598474 0.0598474

0.0767147 0.0767147 0.0767147

0.0964756 0.0964756 0.0964756

0.119806 0.119806 0.119806

0.147469 0.147469 0.147469

0.180322 0.180322 0.180322

0.219313 0.219313 0.219313

0.265468 0.265468 0.265468

0.319862 0.319862 0.319862

0.383563 0.383563 0.383563

0.457533 0.457533 0.457533

0.542467 0.542467 0.542467

0.616437 0.616437 0.616437

0.680138 0.680138 0.680138

0.734532 0.734532 0.734532

0.780687 0.780687 0.780687

0.819678 0.819678 0.819678

0.852531 0.852531 0.852531

0.880194 0.880194 0.880194

0.903524 0.903524 0.903524

0.923285 0.923285 0.923285

0.940153 0.940153 0.940153

0.954724 0.954724 0.954724

0.967533 0.967533 0.967533

0.979058 0.979058 0.979058

0.989741 0.989741 0.989741

This gives the average:

AlleleFrequencyMeanres5000.0102594, 0.020942, 0.032467, 0.0452755, 0.0598474, 0.0767147,
0.0964756, 0.119806, 0.147469, 0.180322, 0.219313, 0.265468, 0.319862, 0.383563,

0.457533, 0.542467, 0.616437, 0.680138, 0.734532, 0.780687, 0.819678, 0.852531,
0.880194, 0.903524, 0.923285, 0.940153, 0.954724, 0.967533, 0.979058, 0.989741

This shows how the cline changes over time, getting more sigmoideal, thanks to dispersal/gene flow (Fig. 4).

AllCline  TableListPlotAlleleFrequencyMeanrest, Joined True, PlotRange 0, 30, 0, 1,
PlotStyle  RGBColort  150, t  850, t  600, 0.9, t, 0, 500, 100;

ShowAllCline
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

Figure 4. Evolution of the cline shape through time. From t = 0 (black) to t = 500 (purple).

Cline width reaches equilibrium at w = 11.7 for all 3 loci within less than 400 generations

Tablet, ClineWidthrest  Flatten, t, 0, 500, 20  TableForm

0 1 1 1

20 6.77627 6.77627 6.77627

40 8.65734 8.65734 8.65734

60 9.70305 9.70305 9.70305

80 10.354 10.354 10.354

100 10.7833 10.7833 10.7833

120 11.0765 11.0765 11.0765

140 11.2808 11.2808 11.2808

160 11.4247 11.4247 11.4247

180 11.5266 11.5266 11.5266

200 11.5988 11.5988 11.5988

220 11.6501 11.6501 11.6501

240 11.6865 11.6865 11.6865

260 11.7123 11.7123 11.7123

280 11.7306 11.7306 11.7306

300 11.7436 11.7436 11.7436

320 11.7527 11.7527 11.7527

340 11.7592 11.7592 11.7592

360 11.7638 11.7638 11.7638

380 11.767 11.767 11.767

400 11.7693 11.7693 11.7693

420 11.771 11.771 11.771

440 11.7721 11.7721 11.7721

460 11.7729 11.7729 11.7729

480 11.7735 11.7735 11.7735

500 11.7739 11.7739 11.7739

Variations  in  cline  shape  can  be  seen  most  easily  by  plotting  allele  frequency  ratios  on  a logit  scale,

Log p

q
  Log1   1

p
 1. The logit function is the inverse of the "sigmoid", or "logistic" function commonly used in

mathematics (showed in Fig. 1). With the following command, we plot the cline maintained by stepped selection across
an "ecotone" generated in the last section:
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ListLogPlot1 1

AlleleFrequencyMeanres500  1 , Joined  True, Axes  True



5 10 15 20 25 30

0.1

1

10

100

Figure 5. LogPlot showing the cline shape with selection intensity s = 0.01 and migration mig = 0.5.

 Linkage Disequilibrium and Recombination

Again,  linkage  disequilibrium  describes  a  situation  in  which  some  combinations  of  alleles  or  genetic  markers  occur
more  or  less  frequently  in  a  population  than  would  be  expected  from a  random formation  of  haplotypes  from alleles
based  on  their  frequencies.  This  shows  the  pattern  of  linkage  disequilibrium  between  three  unlinked  loci  in  our
simulated cline:

ListPlotDisequilibriumMeanres500, Joined  True


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Figure  6.  Distribution  of  linkage  disequilibrium  between  three  unlinked  loci  along  a  simulated  cline  with  selection
intensity s = 0.01 and migration mig = 0.5.

It is at the center of the cline, where mixing of individuals from different species is more intense, that the strength of the
disequilibrium  is  higher.  In  fact,  the  strength  of  disequilibrium  in  the  centre  is  ~25%  of  the  maximum  possible
disequilibrium, pq:

centercline  DisequilibriumMeanres50015
0.00598569
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pp  AlleleFrequencyMeanres50015;

maxdis 
DisequilibriumMeanres50015

pp1 pp
0.0241168

centercline  maxdis

0.248197

When  loci  are  in  the  same  chromosome,  we  say  that  they  are  linked.  Only  recombination  can  break  down  the  joint
segregation of linked markers. In order to analyze the impact of recombination on the cline, we can set up simulations
for different recombination levels r = {0.05, 0.1, 0.2, 0.5}:StoreExactres3, 0.04, , MakeCline30, 3, 100, fitness0.04, 15, ecotone, 0.5, 500, 20,

Linkage , , Compiled True,

FixedEnds MakePopulation3, 0, MakePopulation3, 1; &  0.05, 0.1, 0.2, 0.5;
And now we show how the pattern of LD is reduced for increasing levels of recombination through a combined plot:

AllCline  TableListPlotDisequilibriumMeanres3, 0.04, t500, Joined  True,

PlotRange 0, 30, 0, 0.12, PlotStyle RGBColor12t^2, 2t^2, 20t^2, 0.9,t, 0.05, 0.1, 0.2, 0.5;
ShowAllCline



Figure 7. Change on levels of linkage disequilibrium with different recombination rates: r = {0.05, 0.1, 0.2, 0.5}.

The value of D at the centre of the cline (deme number 15) for different levels of recombination will be:

DisequilibriumMeanres3, 0.04, 50015 &  0.05, 0.1, 0.2, 0.50.101872, 0.0641421, 0.0378334, 0.0194127
  Simulating clines with different selection coefficients : Cline Width

In this case, results for a cline with selection intensity s = 0.08 are stored in res[3, 0.8][t]

StoreExactres3, 0.08, MakeCline30, 3, 100, fitness0.01, 15, ecotone, 0.5, 500, 20,
Linkage  0.1, 0.1, Compiled True,

FixedEnds MakePopulation3, 0, 100, MakePopulation3, 1, 100;
ListPlotDisequilibriumMeanres3, 0.08500, Joined True
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
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Figure 8. Distribution of linkage disequilibrium between three loci along a simulated cline with selection intensity s =
0.08.

It  can  be  observed  that  the  levels  of  Linkage  Disequilibrium  along  the  cline  are  more  than  3  times  higher  than
previously obtained (Fig. 6)-
We finally simulate the cline under different selection levels, ranging from 0.01 to 0.12:

fitnesss, mid, ecotoneiX, Y :

Ifi  mid, Times 1 sPlusXYLengthX, Times 1 sPlusXYLengthX;StoreExactres3, , ecotone, MakeCline30, 3, 100, fitness, 15, ecotone, 0.5, 500, 20,
Compiled True, FixedEnds MakePopulation3, 0, MakePopulation3, 1; & 0.01, 0.02, 0.04, 0.08, 0.12;

It can be observed that with increasing selection pressure the cline gets steeper, so that the transition between one allele
type to the other is sharper.

AllCline  TableListPlotAlleleFrequencyMeanres3, t, ecotone500, Joined True,

PlotRange 0, 30, 0, 1, PlotStyle RGBColor12t^2, 2t^2, 20t^2, 0.9,t, 0.01, 0.02, 0.04, 0.08, 0.12;
ShowAllCline



Figure 9. Change on cline width at different selection levels.

MSc Hybrid Zones.nb 19

- 19 -

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Flatten, ClineWidthres3, , ecotone500, 60.5

2
 &  0.01, 0.02, 0.04, 0.08, 0.12 

TableForm

0.01 15.0678 15.0678 15.0678 12.2474

0.02 9.15416 9.15416 9.15416 8.66025

0.04 5.75431 5.75431 5.75431 6.12372

0.08 3.55105 3.55105 3.55105 4.33013

0.12 2.61478 2.61478 2.61478 3.53553

The cline widths for the three loci decrease as selection gets stronger, but are still narrower than predicted (5th column)
for  larger  selection  levels  (4-5th  row).  This  may  be  because  the  diffusion  approximation  is  accurate  when  selection
becomes very weak, while in here selection gets fairly strong.

Pedigree simulations in Mathematica and Parentage analysis in R.

 Creating a pedigree

When  building  the  pedigrees,  we  assume  that  each  deme  along  the  cline  corresponds  to  a  population  of N  diploid
individuals.  The  pedigree  spanning t generations  is  represented  by  a  sequence  of N N  matrices, M0, M1, …, Mt;
throughout, we count time back into the past. For the present study we will focus on reconstructing parentage, for which
only one generation will be traced. In any case, the i'th row of Mt specifies the parents of individual i in generation t, so
that  the  matrix Mt  connects  generation t with t  1  (counting  backwards  in  time). If  an  individual  has  two different
parents, then the row has two non-zero elements, set at 1; if it is produced by self-fertilisation, then there is a single non-
zero entry, with value 2 (Fig. 10). The matrix is represented in Mathematica  as a sparse array (Wolfram, 1996), which
allows large populations N  1000  to be handled efficiently, since only 2N  elements are stored, rather than N2.



1 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1



0 0 1 0 0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 1 0 0



Figure  10.  Pedigree matrices for 3 demes with 8 individuals  each under the Island Model (left)  or the Stepping Stone
Model (right) of pollen dispersal.

In  the  most  general  neutral  model  used  in  population  geneteics,  the  Wright-Fisher  model,  each  parent  is  chosen  at
random, with replacement, so that a fraction averaging 1  N  are produced by selfing. Parents are chosen independently,
with  probability  proportional  to  their  individual  fitness.  Once  the  pedigree  is  determined,  genotypes  are  then  chosen
randomly.  With  discrete  unlinked loci,  each  diploid  parent  passes  on one or other of  its  genes with equal  probability,
independently across  loci.  Genes  may be  labelled  0  or 1  to indicate  their  allelic  state,  or they may be  given  a  unique
integer in the first generation, so that identity by descent can be followed ('gene dropping'; Edwards, 1968; McCluer et
al., 1986).

In  the  present  study,  several  new  functions  have  been  developed  in  order  to  deal  with  reproduction  and  pedigree
construction in a simulated cline. First of all, the function SparsePedigreeMatrix  gives a random matrix showing the
mating  pattern  between  all  the  individuals  within  a  deme.  This  function  also  allows  for  selection  according  to  the
infinitesimal  model.  The  infinitesimal  model  assumes  a  very  large  (effectively  infinite)  number  of  loci  each  with
infinitesimal effect. Of course, the infinitesimal model can not be taken as an exact description of biological reality, but
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when a large number of loci underlie a character, the infinitesimal model provides a very satisfactory treatment of short
term response. Under the infinitesimal model, the amount of selection acting on any given locus is expected to be very
small, and hence the expected change in allele frequencies over a few generations is also very small. Once we have the
genotypes from our parental  population (individuals sampled from each deme) and the corresponding pedigree matrix,

we can generate  genotypes for  the offspring using the DropGenes  function. DropGenes  uses  the Mendel  function to
get a random gamete, assuming no linkage. Finally, Parents  returns the indices for the parents of each individual in a
pedigree.

 Estimating Exclusion Probability

The exclusion probability method is included in the present report through an R script that calculates the probability of
any  putative  parent-offspring  pair  being  false  (Appendix  II).  The  R  script  provided  is  a  modified  version of  a  set  of
scripts recently developed by Christie (2009). Before running this script you need to make sure that you set the working
directory  within  the  script  to  a  valid  location  so  that  R  can  read  your  input  files  and  create  output  files  (e.g.,
setwd("C:/EXCLUSION")). This is easily accomplished by creating a folder in your C: drive called "EXCLUSION"-the
default directory used throughout the script. Furthermore, the input files should be placed within this folder.

The  input  files  have  a  simple,  but  obligate  format. They correspond to the  two tab-delimited text  files  created  by our
Mathematica  simulations,  one  for  adults  specifically  named  "adults"  and  the  other  for  juveniles  specifically  named
"juveniles". The input files should be saved as text files within the specified directory folder (e.g. "C:/EXCLUSION")
and have the  first  row with the following headers in each column: ID, Locus1a,  Locus1b,  Locus2a,  Locus2b etc.  It is
important that the diploid data from each locus are side by side starting at column 2. 

Once  input files are  in the correct  format, we can  calculate  the probability of any putative parent-offspring pair  being
false by running our R script. After running this script you will obtain three main types of output files called:

1) "PrZ" provides you with the per locus exclusion probabilities (equation 26).
2) "Fpairs+Prdelta"  provides you with the expected number of false pairs in your data set and Pr() (equations 29 and
28, respectively).
3) "Phi" provides you with Pr() (equation 30)-the probability of any putative parent-offspring pair being false.

Finally,  the  Putative  pairs  can  be  used  to  compare  the  R  script  results  with  the  Pedigree  structure  simulated  using
Mathematica. Please, note that in the R code presented below (Appendix II), both text files are created independently of
Mathematica, in order to simplify the presentation.

Pedigree simulations in Mathematica and Parentage analysis in R: Results

 Pedigree simulations in Mathematica

This simulates a three loci cline with 40 demes and creates genotypes for 50 individuals each. Migration rates between
adjacent demes is m  0.5. Results are stored at t = 0, 20, …500.

The key parameters are:

ndemes  40; Number of demes
nind  100;Number of chromosomes per deme. 100  50 diploid individuals
nloci  3; Number of diallelic loci to include
recomb  0.1;Recombination rate
linkmap  Tablerecomb, nloci 1;We create a list to pass to the Linkage option
mig  0.5 Migration rate between demes

This defines a fitness function and evaluates it for the homozygote [{0, 0, 0}, {0, 0, 0}]. Then it simulates the cline with
stepped selection s = 0.03 on the three loci (nloci defined above), across 40 demes (ndemes defined above).

fitnesss, mid, ecotoneiX, Y :

Ifi  mid, 1  sPlusXYLengthX, 1 sPlusXYLengthX;
Tablefitness0.1, 20, ecotonei0, 0, 0, 0, 0, 0, i, ndemes;
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StoreExactnew, MakeClinendemes, nloci, nind, fitness0.03, 20, ecotone, mig, 50, 2,
Compiled True,

FixedEnds MakePopulationnloci, 0, ndemes, MakePopulationnloci, 1, ndemes;
  new50;

With this function we create a  list containing the genotypes  of 50 individuals from the whole cline sampled after  500
generations. This will form our parental population.

popnews  MakeIndividuals, Tablenind, ndemes;
Now  we  can  define  the  pedigree  matrix  for  any  specific  deme  within  the  cline.  For  example,  this  creates  a
PedigreeMatrix for 50 individuals and genotypes for 50 descendants from deme number 20.

pop1  popnews201;
ped1  SparsePedigreeMatrixnind;
off1  DropGenespop1, ped1;
pop1  HaploidIndividualspop1;
off1  HaploidIndividualsoff1;

This  does  the  same  but  for  the  whole  cline  simultaneously.  Note  that  we  are  calling  Mendel  directly  without  going
through DropGenes:

pop1  Tablepopnewsi1, i, ndemes;
ped1  TableSparsePedigreeMatrixnind, ndemes;
OffsCline  TableMendelpop1i &  Parentsped1i, i, ndemes;
DimensionsOffsCline40, 100, 3

Effectively, we get alleles from 3 different markers in 40 demes with 100 haploid individuals (chromosomes) each.

pop11; OffsCline1; pop121; OffsCline21; pop140; OffsCline40;
pop1  TableHaploidIndividualspop1i, i, ndemes;
off1  TableHaploidIndividualsOffsClinei, i, ndemes;
MakeDiploidpop123;
MakeDiploidoff123;

Finally, we just need to Export our genotype table to a convenient text file, which will be used as input for the Exclusion
Probability R scripts.
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MakeDiploidpop1231;
LengthFlattenMakeDiploidpop1231;
TableFormPartitionFlattenMakeDiploidpop1231, nloci;
Indlabels 

FlattenTransposeTable"Ind"ToStringi, i, nind  2,
Table"Ind"ToStringi, i, nind  2;

Pargenotypes 

TableJoinFlatten"Individual", Table"Locus"ToStringi, i, nloci,
FlattenTransposeIndlabels, PartitionFlattenMakeDiploidpop1j1, nloci,j, ndemes;

Filename  Table"Parents" ToStringi ".txt", i, ndemes;
DoExportToStringFilenamen, TableFormPartitionPargenotypesn, nloci 1,

"Table", n, ndemes;
And we do the same for the Offspring genotypes.

MakeDiploidoff1231;
LengthFlattenMakeDiploidoff1231;
TableFormPartitionFlattenMakeDiploidoff1231, nloci;
Indlabels 

FlattenTransposeTable"Ind"ToStringi, i, nind  2,
Table"Ind"ToStringi, i, nind  2;

Offgenotypes 

TableJoinFlatten"Individual", Table"Locus"ToStringi, i, nloci,
FlattenTransposeIndlabels, PartitionFlattenMakeDiploidoff1j1, nloci,j, ndemes;

Filename  Table"Offspring" ToStringi ".txt", i, ndemes;
DoExportToStringFilenamen, TableFormPartitionOffgenotypesn, nloci 1, "Table",n, ndemes;

Thus,  we  have  a  series  of  genotypes  following  the  allele  freuquencies  imposed  by  the  specific  selection-gene  flow
pattern. Remember, we set up a  cline with stepped selection s = 0.03 on  three loci and with migration rates between
adjacent demes mig  0.5.

 Parentage analysis in R

Despite  being  able  to  simulate  parent-offspring  relationships  within  a  simulated  hybrid  zone,  the  analysis of  parental
exclusion  was  carried  out  in  a  simplified  setting,  given  the  limitations  in  time  and  computational  resources.  The
simplified  setting, which could be used as a  minimum base-line  for the efficiency of molecular  markers, consists of a
single deme with allele frequencies following the Hardy-Weinberg equilibrium conditions.
The number of loci used for this simulation study ranged from 10 to 20 molecular markers, which is within the standard
number used in current paternity studies. Each molecular marker was allowed to be assigned a specific allele frequency
distribution, namely the Bernatchez, the Geometric or the Uniform distribution (Appendix II).

In  the  present  study,  neutral  alleles  were  sampled  from  a  geometric  distribution,  since  this  type  of  distribution  is
commonly found  in  nature.  The geometric  distribution  is  the  distribution  of  the  total  number  of  trials  before  the  first
success occurs, where the probability of success in each trial is p (Fig. 11).

ListPlotTablePDFGeometricDistribution0.3, k, k, 0, 30, PlotRange 0, 30, 0, 0.30,
Filling  Axis, Axes  True
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

Figure 11. A geometric distribution with probability parameter p = 0.3.

This  distribution  of  allele  frequencies  corresponds  to  the  fact  that  only  a  few  alleles  are  present  in  a  significant
proportion of individuals, while most alleles are only present in a few individuals.
Our simulations allowed to define the index of individuals that produce offspring, which will be the ones that contribute
to the next generation. These indices correspond to the pedigree matrices previously described. Finally, a proportion of
the  offspring  population  (False  Offspring)  is  sampled  from  a  new  population,  with  a  different  allele  frequency
distribution.

The  calculation of  Pr(Z)  and  Pr()  as  defined  in equations (26)  and (28)  was  carried out as  indicated  in the  Methods
section. Only the alleles that are found both in the parentals and in the offspring were considered. It is important to note
that alleles occurring in only one sample (i.e. adults or juveniles) do not need to be included in the calculation because
their product equals zero.

Estimates of the probability of any putative parent–offspring pair being false (Phi; equation 30) were obtained through
the R script  included in Appendix II. Moreover,  10 replicates per  parameter combination were carried out, in order to
get a rough estimate of the variability found between different runs.

 

Figure 12. Estimated probability of any putative parent–offspring pair being false using a) 5 to 10 alleles in 10 to 16 loci
or b) 5 to 7 alleles in 10 to 20 loci.

The  red  line  at  0.05  in  figure  12  places  the  limit  at  which  we  would  have  0.95  confidence  in  our  parent-offspring
assignments  (=  0.05  False  pairs).  That  is,  it  would  mean  we  are  accepting  False  parent-offspring  pairs  with  low
probability (which is  what we want when doing parentage  analysis).  In  the  figure 12a,  you can  see 6 groups (5  to 10
alleles)  and  7  boxplots  per  group  (10  to  16  loci).  It  is  observed  that  if  all  markers  had  5  alleles  only (first  group  of
replicates), we would need at least 15 markers to get 0.95 confidence in our parent-offspring assignments (= 0.05 False
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pairs).  In the figure 12b, we can see 3 groups (5 to 7 alleles) and 11 boxplots per group (10 to 20 loci). In this plot it is
highlighted that the rate of decrease in Phi slows down when we get to ~18 markers with 5 alleles each or ~16 markers
with 6 alleles each.

Discussion

Hybrid zone simulations

 Hybrid zone simulations: Discussion of results

Our results indicate that, for a given level of migration between demes, different levels of selection have a direct impact
on the cline width, with stronger natural selection causing clines to be narrower. The analysis of the temporal changes in
cline  shape  shows  how  the  cline  gets  a  typical  sigmoideal  form  over  time  until  reaching  a  gene  flow-selection
equilibrium (Fig. 2). Our results also showed that the intensity and pattern of natural selection along the cline influences
not  only the  shape  of  the  cline,  but  also the  velocity at  which the  stable  equilibrium is  reached.  Even with extremely
high  migration  rates  such  as  those  included  in  the  present  study  (m  =  0.5),  equilibrium  is  reached  in  about  400
generations. It should be considered that neutral alleles will take ~10,000 generations to spread over ~100 by diffusion
alone (see below), for which patterns of selected loci will generally be different to those observed in neutral markers.

Interestingly,  our simulations pointed out  the  fact  that  selection  also plays  a  significant role  on the  distribution  of the
level of linkage disequilibrium along the cline. Much work has been done on the interaction of gene flow with spatially
varying selection on a single locus (see Slatkin, 1973), but not with multiple loci. There is an interesting question which
arises in this problem: How much linkage disequilibrium between loci can be produced by gene flow? The presence of
linkage disequilibrium has been thought to be a sensitive measure of additive epistasis between loci (Lewontin, 1974).
However, our results show that a large amount of linkage disequilibrium can be generated by gene flow in a cline, even
in the absence of epistasis. This same point has been made by Li and Nei (1974) and by Prout (1973) for other models
of gene flow.

Hybridization  introduces  sets  of  alleles,  which  gradually  disperse  through  sucessive  backcrosses,  by  segregation  and
recombination.  Alleles  which  entered  either  population  many  generations  back  should  by  now  have  reached  linkage
equilibrium.  In  principle,  we  could  estimate  the  rate  of  hybridization  over  the  past  few  generations  from the  linkage
disequilibrium,  or  in  other  words,  by  estimating  the  excess  of  individuals  carrying  multiple  introgressed  alleles.  One
approach  would  be  to  classify  each  individual  as  being  a  first,  second,  or  later  generation  backcross,  according  to
whether they carry 1/4, 1/8, … of their genome introgressed (Nason and Ellstrand, 1993; Boecklen and Howard, 1997).
However, this would only be accurate with an extremely large number of loci. Instead, a plausible way forward around
this  problem  would  be  to  first  establish  if  there  is  a  significant  excess  of  'complex'  hybrids,  and  then  use  maximum
likelihood to estimate the rate of introgression and the degree of ancestral polymorphism. Such an interesting approach
remains as an open question for further studies.

 Hybrid zone simulations: Limitations of the model

Despite  the  apparent  complexity of the  diffusion approximation models  in population genetics,  they still show several
limitations, since represent a simplified version of reality. The main limitations of the model of hybrid zones presented
here  are  due  to  the  unrealistic  assumptions  upon  which  the  diffusion  approximation  is  based,  namely  the  uniform
distribution of individuals and random migration following a symmetrical distribution. Since the natural environment is
heterogeneous per se, individuals tend to be present in a non-uniform distribution, and this should be taken into account
in  the  models.  Moreover,  main  wind  direction,  pollinators'  behaviour,  water  rainoff  of  seeds...all  these  would  make
migration not to be symmetrical (unless all these forces act  in oposite directions and cancel out), for which a different
approach is needed.

It  should  be  noticed  that  the  use  of  the  analogy of  physical  diffusion  will  only be  satisfactory when  the  distances  of
dispersion  in  a  single  generation  are  small  compared  with  the  length  of  the  wave.  In  reality  diffusion  is  a  complex
process,  compounded  of  the  diffusion  of  gametes,  larvae,  and  adults;  a  more  exact  treatment  than  that  supplied  by a
simple  coefficient  would involve the interaction of these components,  and the stages at  which the selective advantage
was enjoyed. So far as it is applicable, the analogy of physical diffusion, therefore, greatly simplifies the problem. With
respect  to the  assumed  independence  of  selection  from allele  frequency,  this  is  effectively to assume that  there  is  no
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dominance in respect of the selective advantage enjoyed. Apart from its simplicity this is also the most important case to
consider, in respect  to advantageous mutations occurring in nature. There are,  at least, plausible reasons for supposing
that  the  common recessiveness  of  observed mutations  is  a  characteristic  of  harmful  mutations,  which have  long been
appearing  in  the  species  with  relatively  high  mutation  rates,  whereas  beneficial  mutations  must,  at  the  time  of  their
establishment, occur with exceedingly low mutation rates,  and have rarely appeared before in the recent history of the
species. On these grounds, dominance would be expected to be absent, and its absence is made more likely by the fact
that  in  most  cases  the  quantitative  effect  of  beneficial  mutations  must  be  extremely  small.  For  the  same  reason  the
selective intensity is taken to be a small quantity, so that the allele frequency (p) may be taken to vary continuously with
time, from generation to generation.

Although gene frequency can change abruptly across the centre of a hybrid zone, foreign alleles can still penetrate far
into either  side.  It  is  this  gene flow between  distinct  populations that  binds them together  into one biological  species.
Smooth  sigmoid  clines  are  expected  for  introgressing  alleles  that  are  diffusing  freely  or  are  subject  to  only  weak
selection. A barrier to gene flow, caused for example by a physical obstacle, will produce a step in gene frequency, p,
at the centre of the cline proportional to the gradient (dp/dx) on either side. The strength of this barrier to gene flow can
be estimated from the shape of the cline as B = p/(dp/dx).



Figure  13.  Change  in  barrier  strength depending on step 0  p  1 and gradient 0.001 
p

x
 0.01  in  gene

frequency.

The barrier strength measure has the dimensions of distance (it can be considered as the equivalent unoccupied habitat
that  would  have  a  similar  effect  on  gene  flow  reduction),  and  its  magnitude  relative  to  the  dispersal  rate  (B/)
determines  the  delay to the  spread  of  genes across  the  barrier  (Fig. 14).  Although neutral  alleles  can  suffer  a  lengthy

delay [T  (B/2], alleles with even a slight advantage (s) will hardly be impeded (T  log[(B/2s 2 2s). This is

because  once  a  few  of  them penetrate  the  barrier,  they  will  increase  exponentially and  spread  to  fixation.  In  making
these  comparisons  it  is  important  to  note  that  even  without  barriers,  neutral  alleles  will  take  ~10000  generations  to
spread over ~100 by diffusion alone (Barton, 1979).
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

Figure  14.  Delay  to  the  spread  of  genes  across  the  barrier  depending  on  strength  of  the  barrier B

 5 50  and selection levels s  0.001 0.01.

Because species' ranges are unlikely to remain stable for such long periods, neutral variants are much more likely to be
carried long distances by gross population movements ('convection') than by local diffusion. Therefore, the ability of the
diffusion approximation to explain long-term evolutionary changes is highly compromised.

Parental assignment methods

 Discussion of results

The theoretical predictions for the number of false parent– offspring pairs, as determined by eqn 29, match very closely
to  the  observed  number  of  false  parent–offspring  pairs  from the  simulated  data  sets.  Not  surprisingly,  the  number  of
false parent–offspring pairs decreases as both number of molecular markers and number of alleles increase. The rate of
decrease  in false  parent–offspring  pairs  is  very similar  in data  sets  with different  numbers of  loci,  but  identical  allele
frequency  distributions.  Overall,  the  exclusion  probability  method  presented  here  predicts  the  actual  number  of  false
parent–offspring pairs with high accuracy and precision. However, even small differences in allele frequencies between
adults and juveniles can result in a large overestimation in the number of false parent– offspring pairs when using the
approach  by  Jamieson  and  Taylor  (1997).  As  shown  by  Christie  (2009),  the  bias  in  their  method  increases  with
increasing genetic differentiation, whereas Pr() remains unbiased regardless of the level of genetic differentiation.

In practice, however, there may still be occasions when it is better to use allele frequencies from the combined sample
of  adults  and  juveniles,  such  as  with  small  sample  sizes  or  samples  with  inaccurate  allele  frequency  estimates.  It  is
worthwhile noting that even data sets with 20 loci had some false  parent–offspring pairs  suggesting that many studies
employing strict exclusion may be plagued by false parent–offspring pairs. In fact, this highlights the need for any study
employing Mendelian incompatibility to report  some measure of exclusionary power.  As the theoretical  predictions of
Pr()  and the  simulated  data  match well,  this  approach can  be  used confidently to determine how many false  parent–
offspring pairs are likely to exist in large data sets from natural populations. In particular, our simulations indicate that a
minimum number of 18 average molecular markers (with at least 5 alleles each) will be needed in order to obtain a 95%
confidence on our parentage assignments.

As  pointed  out  in  the  present  study,  parentage  assignment  may allow for  the  inference  of  gene  flow and  dispersal  at
ecologically  relevant  timescales,  which  has  direct  implications  on  the  estimate  of  selection  intensity  in  hybrid  zones.
However,  pedigrees  also have  an  interest  in themselves.  Despite  there  has  been  substantial  work on the  fate  of  genes
within a given pedigree (e.g. Cannings et al., 1978; Thompson et al., 1978), relatively little work has been done on how
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pedigrees themselves evolve. From a genetic point of view, the pedigree constrains what genes can be passed on: with
Mendelian inheritance, selection acts solely through the different contributions made by individuals to the pedigree. The
recent  availability  of  genomic  sequences  may  focus  more  attention  on  pedigrees:  given  sufficient  sequence  data,  we
could infer the pedigree many generations back; and given this pedigree, we could ask what contribution is likely to be
made to future generations by each ancestral genome. These questions are long-standing in evolutionary biology, but it
will become feasible to answer them only in the next few years.

 Parentage Analysis:  Limitations of the method

Exclusion  is  most  powerful  when there  are  few candidate  parents  and  highly polymorphic  genetic  markers  available.
However, several caveats might be raised when the dataset at hand deviates from this ideal. Even high quality datasets
contain errors where at least one allele at a given locus does not match with what we expect from Mendelian laws. Thus
it  is  unwise  to  exclude  a  parent  immediately  when  observing  such  a  mismatch.  There  are  many  reasons  for  such
mismatches,  for  example,  genotyping  errors.  Genotyping  errors  occur  when  the  genotype  determined  by  molecular
analysis does not correspond to the real genotype. For instance, common genotyping errors in microsatellite datasets are
null  alleles,  which  often  result  from a  mutation  in  the  primer  annealing  site.  The  most  conservative  way to  handle  a
locus  with  null  alleles  in  parentage  analysis  is  to  recode  all  homozygous  genotypes  as  heterozygotes  possessing  the
detected allele and the null allele, thus preventing exclusion on the basis of homozygous genotypes.

Another  potential weakness of a strict  exclusion approach is that,  if the ages of the sampled individuals are  unknown,
naïve  application  of  parentage  assignment  methods  can  lead  to  problems  where  illegal  pedigrees  are  proposed.  For
example,  assigning  parentage  to  a  group  of  individuals  from  within  the  same  group  is  likely  to  result  in  proposed
pedigrees where an individual is its own grandparent. It should also be taken into account that, even though we are not
considering  extended  families  (multiple  generations  mixed  together),  nor  variance  in  family  size  (some  individuals
producing  much  more  offspring  than  others),  these  factors  would  have  a  similar  year-to-year  effect  than  the  high
immigration  levels  proposed  in  the  present  study,  so they will  not  modify significantly our  results.  Moreover,  despite
sampling is  done without  replacement  by default  in  R (in  our  simulations we are  allowing each  adult  to produce one
descendant only), we could easily define different levels of variance in family size by using a specific probability vector
for the offspring sampling process. Finally, it is worth noting that there have been few empirical studies comparing and
validating the different approaches, despite  the large variety of methodologies that currently exist for addressing many
of these problems (e.g. Butler et al., 2004; Csillery et al., 2006; Berger-Wolf et al., 2007).

Future studies: Analysing real data from Antirrhinum

 Estimating selection from cline width and shape in a real setting

As  indicated  in  the  Introduction,  the  present  study  was  originally  motivated  by  a  striking Antirrhinum  hybrid  zone
(Whibley et al., 2006). Now we have a theoretical framework that will allow us to answer the questions proposed at the
beginning of this report. We can get estimates of natural selection while taking the effect of pollen dispersal (gene flow)
into account. From previous studies we know that strong selection acts on several genes coding for the flower color such
as SULF, EL and ROS (Whibley et al., 2006). The widths of the clines at these loci, w, relative to the dispersal rate 2,

will  give  us  a  robust  estimate  of  the  strength of  selection  s  acting  to maintain them through  the  formula  w ~ 2

2s
.

Cline width will be determined directly from the genotyping data using EL, ROS and SULF markers. Note that we will
have estimates of dispersal from the parentage studies outlined above.

This is particularly relevant, since estimates of selection derived from cline width are robust because they do not depend
strongly on how selection acts, and because equilibrium is reached quickly. In addition, the detailed pattern of genotype
frequencies across the hybrid zone can tell us about the form of selection. For example, if alleles are recessive in their
effects on fitness, then they will introgress further (Mallet et al., 1990). Similarly, if one recombinant genotype is fitter
than other recombinants, then the clines will shift apart in its favour. This kind of asymmetry is what is predicted under
Dobzhansky-Muller  models  of  speciation,  and  provides  a  route  by  which  populations  can  diverge  to  become
incompatible with each other, without passing through “adaptive valleys”. A good example is found in the burnet moth,
Zygaena  (Barton  et  al.,  2007).  A  further  issue  that  can  be  assessed  is  whether  allele  differences  involve  large  shifts
along an L-shaped path of high fitness (as in the classic Dobzhansky-Muller model) or whether it involves smaller steps
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that  take populations along a  more  diagonal path  (Whibley et  al.,  2006),  but those considerations fall  well outside the
scope of the present study.

Even though so far selection has only been observed for the three flower colour loci, it is possible that other loci are also
subject to selection either via differences in pollination niche, or other components of fitness. In fact, hybrid zones that
are identified by one selected trait usually also prove to have other traits under selection (Barton and Hewitt, 1985), and
one way of inferring selection at  other loci is by measuring the barrier  to gene flow at the zone of contact. It is worth
noting that, although the short scale estimates of gene flow and fitness through parentage analysis have the advantage of
being  direct,  they  may  be  subject  to  environmental  and  population  fluctuations  from  year  to  year,  with  temporal
variation in the magnitude of selection.  If  selection is  less than a  few percent  such studies will be  unable to detect  it.
Therefore,  it  is  important  to  complement  the  above  estimates  with  studies  over  the  medium scale.  Patterns  of  allele
frequency  at  neutral  markers  can  tell  us  about  the  cumulative  effects  of  gene  flow  across  the  whole  genome.  The
variance in allele  frequency over  distance, FST, is widely used to estimate the relative rates of gene flow and random
drift (Slatkin and Barton, 1990). Where populations are divided into discrete demes, FST allows the value of Nm to be
estimated, where N is the deme size and m the number of migrants between demes per generation. Values of FST can
be obtained for the same marker loci used for paternity studies and from these estimates we could then infer dispersal
rates  m. These  values  could  be  then  compared  to  those obtained  from the  short  scale  parentage  studies.  This  type  of
integrative analysis of evolution at different temporal scales has never been carried out so far, and it will surely present
further challenges for the mathematical treatment of evolutionary processes.
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APPENDIX I: CLINE SIMULATION
AND PEDIGREE FUNCTION

DEFINITION
 AlleleFrequencies

AlleleFrequencies::usage 
"AlleleFrequenciesp1,p2,…,n represents allele frequencies,
and deme size n. AlleleFrequenciesp1,p2,… is shorthand
for AlleleFrequenciesp1,p2,…,1";

AlleleFrequenciesList : AlleleFrequencies, 1;
 AlleleFrequencyMean

AlleleFrequencyMean::usage 
"AlleleFrequencyMean gives the average frequency of 1
alleles for the population representation . Also applies
to a list of 's, representing a cline. For representations
SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies, returns p,u, where
u

is the average neutral allele frequency";

AlleleFrequencyMean : PopulationRepresentations,  ...,
optsRule : AlleleFrequencyMean, opts &  ;

AlleleFrequencyMeanz : PopulationRepresentations, , optsRule :
AlleleFrequencyTablez, opts .xList, y  Meanx, y, xList  Meanx;

 AlleleFrequencyTable

AlleleFrequencyTable::usage 
"AlleleFrequencyTable gives the frequency of 1 alleles for
each locus. Also applies to a list of 's, representing
a cline. For representations SymmetricNeutralHaploidFrequencies
or SymmetricNeutralDiploidFrequencies, returns p,p,…,u,
where u


is the average neutral allele frequency.";
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AlleleFrequencyTable : PopulationRepresentations,  ...,
optsRule : AlleleFrequencyTable, opts &  ;

AlleleFrequencyTableAlleleFrequenciesp, , Rule : p;
AlleleFrequencyTable : DiploidRepresentations, , optsRule :
AlleleFrequencyTableMakeHaploid, opts;

AlleleFrequencyTableHaploidFrequencies, , optsRule :
Plus  HaploidTypesLog2, Length, opts;

AlleleFrequencyTableSymmetricHaploidFrequencies, , optsRule :
Modulen  Length  1, p,
Ifn  0, Indeterminate, p  .Range0, 1, 1 n; Tablep, n;

AlleleFrequencyTableSymmetricNeutralHaploidFrequencies, u, ,
optsRule : Modulen  Length  1, pb, ub,
Ifn  0, Indeterminate, Indeterminate, pb  .Range0, 1, 1 n;
ub  .u; Tablepb, n, ub;

AlleleFrequencyTableHaploidIndividuals, n, optsRule :Plus   n;
 BarrierStrength

BarrierStrength::usage 
"BarrierStrengthu gives the barrier strengths uxu,uxu,
based on the list of allele frequencies u1…un. The default
is to assume that u0u1, SubscriptBoxu,n, 1un.
FixedEndsu0,SubscriptBoxu,n, 1 sets the outer demes
to have allele frequencies u0,SubscriptBoxu,n, 1
instead; sensible results are only obtained with this
option set, since otherwise the gradients at the edges
are zero. Also works with pairs p,u, as derived under
SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies. ";

OptionsBarrierStrength  FixedEnds  , ;
BarrierStrengthu, opts :

Moduleuu  u, gr  ClineGradientu, opts, du, ps,
IfTensorRankgr  2,

uu  Transposeuu  Last;
gr  Transposegr  Last;

ps  Positiongr, Maxgr1, 1  0.5;
du  Lastuu  LastgrLengthuu  ps Firstuu  Firstgrps  1;
du Firstgr, Lastgr;

 ClineGradient

ClineGradient::usage 
"ClineGradientp gives the gradient piSubscriptBoxp,i 

1 of the list of allele frequencies p1…pn; returns the
list p1p0, SubscriptBox…p,n, 1pn. The default is
to assume that p0p1, SubscriptBoxp,n, 1pn.
FixedEndsp0,SubscriptBoxp,n, 1 sets the outer demes
to have allele frequencies p0,SubscriptBoxp,n, 1 instead.";
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OptionsClineGradient  FixedEnds  , ;
ClineGradientp, opts :

Modulepp, fe  FixedEnds . opts . OptionsClineGradient,
pp  Iffe  Flatten  Length  0,

PrependAppendp, Lastp, Firstp,
PrependAppendp, Lastfe, Firstfe;

DropRotateLeftpp  pp, 1;
 ClineWidth

ClineWidth::usage 
"ClineWidthp0,… gives the cline width, defined as the
maximum gradient in allele frequencies, pi. ClineWidth,
where  is a list of population representations, lists
the cline widths for each locus. For representations
SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies, ClineWidth returns
the widths of the selected and the neutral clines.";

ClineWidth::badDepth 
"The cline `1` does not have an appropriate structure.";

ClineWidthRawpList : 1  MaxDropp  RotateRightp, 1;
ClineWidth : PopulationRepresentations,  ..., opts :

Modulep  AlleleFrequencyTable, opts,
IfLengthp  2, Indeterminate,
SwitchTensorRankp,
2, ClineWidthRaw  Transposep,
3, ClineWidthRaw  TransposeFirst  p,
ClineWidthRaw  TransposeLast  p,
, MessageClineWidth::badDepth, ; Indeterminate;

 ConstructMutateList

ConstructMutateList::usage 
"ConstructMutateList converts shorthand versions of a
list of mutation rates into the full form, ,,…";

ConstructMutateListml, nInteger : Modulemut,
mut  ml . ?NotListQ &  , ;
IfDepthmut  2, Arraymut &, n, mut;

 ConstructMutateMatrix

ConstructMutateMatrix::usage 
"ConstructMutateMatrix,,…,ngenes,NumericalModel
HaploidFrequencies generates the matrix which
determines the effects of mutation on haploid genotype
frequencies. NumericalModelSymmetricFrequencies or
SymmetricNeutralFrequencies can be used. CompiledTrue
is faster for numerical values.";
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OptionsConstructMutateMatrix Compiled  False, NumericalModel  HaploidFrequencies;
ConstructMutateMatrix::badModel 
"`1` is not a valid setting for NumericalModel in
ConstructMutateMatrix";

ConstructMutateMatrixmrList, nInteger, optsRule :
ConstructMutateMatrixmr, n, opts 
Modulenm  NumericalModel . opts . OptionsConstructMutateMatrix,
tmr, , , ht, i, j, a,
IfCompiled . opts . OptionsConstructMutateMatrix,
Switchnm,
HaploidFrequencies,
ConstructMutateMatrixCompilednmmr, HaploidTypesn, opts,
SymmetricHaploidFrequencies  SymmetricNeutralHaploidFrequencies,
ConstructMutateMatrixCompilednmmr, n,
,

MessageConstructMutateMatrix::badModel, nm;,
Switchnm,
HaploidFrequencies,
tmr  Transposemr; ht  HaploidTypesn, opts;
  tmr1;   tmr2;
OuterTimes  1    11  2  21  211     &,
ht, ht, 1,
SymmetricHaploidFrequencies,

  mr1;   mr2; a 


1  




1  
;

TableIfi  j,
ij1  ni1  jBinomialn  j, n  i
Hypergeometric2F1j, i  n, 1  i  j, a,

Ifi  j,1  nj1  j Hypergeometric2F1j, j  n, 1, a,1  nj1  ijiBinomialj, i
Hypergeometric2F1i, j  n, 1  i  j, a,i, 0, n, j, 0, n,

SymmetricNeutralHaploidFrequencies,
0,
,

MessageConstructMutateMatrix::badModel, nm;;
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 ConstructMutateMatrixCompiled

ConstructMutateMatrixCompiled::usage 
"ConstructMutateMatrixCompiledHaploidFrequencies,,…,0,…,…

gives the mutation matrix; called by
ConstructMutateMatrix…,CompiledTrue.
ConstructMutateMatrixCompiledSymmetricHaploidFrequencies,,
ngenes is also defined, as is
ConstructMutateMatrixCompiledSymmetricHaploidFrequencies,,
ngenes.";

ConstructMutateMatrixCompiledHaploidFrequencies 
Compilemr, Real, 2, ht, Integer, 2,
Moduletmr  Transposemr, j, k,
Table
Times  1  tmr1  htj1  2tmr1 

htk1  2htj1  tmr1  tmr2, j, Lengthht,k, Lengthht,tmr, Real, 2, j, Integer, k, Integer;
ConstructMutateMatrixCompiledSymmetricHaploidFrequencies 
Compilemr, Real, 1, n, Integer,
Modulei, j, a, , ,
  mr1;   mr2; a 



1  




1  
;

TableIfi  j,
ij1  ni1  jBinomialn  j, n  i
Hypergeometric2F1j, i  n, 1  i  j, a,

Ifj  i,1  nj1  j Hypergeometric2F1j, j  n, 1, a,
Binomialj, i1  nj1  iji
Hypergeometric2F1i, j  n, 1  i  j, a,i, 0, n, j, 0, n,a, Real, , Real, , Real, i, Integer, j, Integer,Binomial, , Real;

 DemeSize

DemeSize::usage 
"DemeSize gives the deme size associated with the population
representation ; also applies to a cline.";

DemeSizePopulationRepresentations, n : n;
DemeSize : PopulationRepresentations,  ... : DemeSize  ;
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 DiploidFrequencies

DiploidFrequencies::usage 
"DiploidFrequenciesSubscriptBox,000, 000,…,…,n
represents diploid genotype frequencies, and deme size
n. DiploidFrequenciesSubscriptBox,000, 000,…,…
is shorthand for DiploidFrequenciesSubscriptBox,000,
000,…,…,1";

DiploidFrequenciesList :
DiploidFrequencies, 1;

 DiploidIndividuals

DiploidIndividuals::usage 
"DiploidIndividuals0,0,1…,0,1,1,…,…,n represents
a population of n diploid individuals; n must match the
length of the list, and is added automatically if
DiploidIndividuals0,0,1…,0,1,1,…,… is specified.";

DiploidIndividualsList : DiploidIndividuals, Length;
 DiploidRepresentations

DiploidRepresentations::usage 
"DiploidRepresentations is a pattern which matches any valid
representation of a diploid population.";

DiploidRepresentations  DiploidFrequencies  AlleleFrequencies 
SymmetricDiploidFrequencies  SymmetricNeutralDiploidFrequencies 
DiploidIndividuals;

 DisequilibriumMean

DisequilibriumMean::usage 
"DisequilibriumMean gives the mean pairwise linkage
disequilibrium for the population representation . Also
applies to a list of 's, representing a cline. For
representations SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies, returns the mean D
between selected loci, and the mean D between the neutral
and selected loci. ";

6 MSc thesis - APPENDICES.nb

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


DisequilibriumMean : PopulationRepresentations,  ...,
optsRule :
DisequilibriumMean, opts &  ;

DisequilibriumMeanpr : NonNeutralRepresentations, , optsRule :
Modulen, dt  DisequilibriumTablepr, opts,
n  Lengthdt;
Plus  Plus  Array1 &, n, n  IdentityMatrixndt 1

nn  1;
DisequilibriumMeanpr : NeutralRepresentations, , optsRule :
Modulen, dt  DisequilibriumTablepr, opts,
n  Lengthdt1;Plus  Plus  Array1 &, n, n  IdentityMatrixndt1 1

nn  1,
Meandt2;

 DisequilibriumTable

DisequilibriumTable::usage 
"DisequilibriumTable gives a matrix of pairwise linkage
disequilibrium for the population representation . Also
applies to a list of 's, representing a cline. For
representations SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies, returns the D between
selected loci, and the D between the neutral and selected
loci. DisequilibriumMean gives the mean pairwise linkage
disequilibrium for the population representation . Also
applies to a list of 's, representing a cline. For
representations SymmetricNeutralHaploidFrequencies or
SymmetricNeutralDiploidFrequencies, returns the mean D
between selected loci, and the mean D between the neutral
and selected loci. ";
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DisequilibriumTable : PopulationRepresentations,  ...,
optsRule :
DisequilibriumTable, opts &  ;

DisequilibriumTableAlleleFrequenciesp, , Rule :
DiagonalMatrixp1  p;

DisequilibriumTable : DiploidRepresentations, , optsRule :
DisequilibriumTableMakeHaploid, opts;

DisequilibriumTableHaploidFrequencies, , optsRule :
Modulen  Log2, Length,
p  AlleleFrequencyTableHaploidFrequencies, opts, dk,
dk    p &  HaploidTypesn, opts;
.OuterTimes, ,  &  dk;

DisequilibriumTableSymmetricHaploidFrequencies, nd,
optsRule :
Modulen  Length  1,
p  AlleleFrequencyMeanSymmetricHaploidFrequencies, nd, opts,
d, du,
d 

.Range0, n  n p2  n p1  p
nn  1 ;

IdentityMatrixnp1  p  d  Arrayd &, n, n;
DisequilibriumTableSymmetricNeutralHaploidFrequencies, u, nd,

optsRule :
Modulen  Length  1,
pu  AlleleFrequencyTableSymmetricNeutralHaploidFrequencies, u, nd, opts, p, ub, d, du,
p  pu1, 1; ub  pu2;
d 

n .Range0, 1, 1
n
  p2  p1  pn  1 ;

du  Range0, 1,
1

n
  p  .u  ub;IdentityMatrixnp1  p  d  Arrayd &, n, n,

Arraydu &, n;
DisequilibriumTableHaploidIndividuals, nd, optsRule :

Modulenl  Length1,
p  AlleleFrequencyTableHaploidIndividuals, nd,
Ifnd  2, ArrayIndeterminate &, nl, nl,
Plus  OuterTimes,   p,   p &   nd  1;
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 DoubleCline

DoubleCline::usage 
"DoubleCline,EvenQndemes takes the cline  to represent
the left half of a symmetric cline, and adds the right
half. If the total number of demes is even, then the
second argument is set True, and the extra demes are a
mirror image of . If the total number of demes is odd,
the second argument is set False, and Last is assumed
to be the central deme; it must contain a symmetrical set
of genotype frequencies. ";

DoubleCline : IndividualRepresentations  AlleleFrequencies,  ...,
eQ :
Join,
ReverseIfeQ, , Drop, 1 .pr : PopulationRepresentationsf, n : pr1  f, n;

DoubleCline
 :HaploidFrequencies  DiploidFrequencies 

SymmetricHaploidFrequencies  SymmetricDiploidFrequencies
,  ..., eQ :

Join,
ReverseIfeQ, , Drop, 1 .pr : PopulationRepresentationsf, n : prReversef, n;

DoubleCline : NeutralRepresentations,  ..., eQ :
Join,
ReverseIfeQ, , Drop, 1 .pr : NeutralRepresentationsf, u, n :

prReversef, 1  Reverseu, n;
 DropGenes

DropGenes::usage 
"DropGenesp,P generates random genotypes, given the pedigree
P; uses Mendel. Mendel0,1,…,1,0,… gives a random
gamete, assuming no linkage. DropGenesp0,P1,… does
the same for many generations";

DropGenesp :  ..., PSparseArray : Mendelp &  ParentsP;
DropGenesp :  ..., PSparseArray : Mendelp &  ParentsP;
DropGenesp0 :  ..., Pl : SparseArray :
FoldListDropGenes, p0, Pl;
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 ExponentialF

ExponentialF::usage 

"ExponentialFr,,n,W is the function rnW

Expn.

DemeSizeExponentialFr,, can be passed to compiled
versions of IterateExact and StoreExact.

ExponentialFr,,,n,W represents the generalised

form rSuperscriptBoxn,1  WExpn.
ExponentialFr…jn,W is the same as ExponentialFr…n,W.";

ExponentialFr, , n, wb : rnwbExpn;
ExponentialFr, , , n, wb : rn1wbExpn;
ExponentialFr, , n, wb : rnwbExpn;
ExponentialFr, , , n, wb : rn1wbExpn;

 FitnessTable

FitnessTable::usage 
"FitnessTableW,n gives a table of all possible fitnesses,
using the fitness function W, for n loci. NumericalModel
specifies which representation is used. Useful for
tabulating fitness in order to speed up functions such
as MeanW. Note that fitnesses cannot be tabulated if
AlleleFrequencies are used.";

OptionsFitnessTable  NumericalModel  HaploidFrequencies;
FitnessTable::badOption 
"Fitness cannot be tabulated for AlleleFrequencies. A function
which supplies the mean fitness and the selection
coefficients as a function of allele frequencies must be used.";

FitnessTableW, nInteger, optsRule :
Modulei, j, h, ht, nm  NumericalModel . opts . OptionsFitnessTable,

Switchnm,
HaploidFrequencies  HaploidIndividuals,
W  HaploidTypesn, opts,

DiploidFrequencies  DiploidIndividuals,
ht  HaploidTypesn, opts; OuterW, ht, ht, 1,

SymmetricHaploidFrequencies  SymmetricNeutralHaploidFrequencies,
TableWi, i, 0, n,

SymmetricDiploidFrequencies  SymmetricNeutralDiploidFrequencies,
TableSymmetricMeanWi, j, n, W, i, 0, n, j, 0, n,

AlleleFrequencies,
MessageFitnessTable::badOption; ,

,

MessageNumericalModel::badSetting, nm; ;
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 FixedEnds

FixedEnds::usage 
"FixedEnds is an option for MigrateExact and related functions
which specifies that endpoints should be fixed. FixedEnds
specifies a source population that provides migrants into
a single deme. FixedEnds0,1 fixes genotype frequencies
at 0, 1 at either end of a cline.";

 FrequencyRepresentations

FrequencyRepresentations::usage 
"FrequencyRepresentations is a pattern which matches any valid
representation of a population by allele, class or genotype
frequencies.";

FrequencyRepresentations 
HaploidFrequencies  DiploidFrequencies  AlleleFrequencies 
SymmetricHaploidFrequencies  SymmetricDiploidFrequencies 
SymmetricNeutralHaploidFrequencies 
SymmetricNeutralDiploidFrequencies;

 Gametes

Gametes::usage 
"GametesY,Z gives the full distribution of 2noffspring
genotypes. LligamSubscriptBox\r\,\1,\\\\\
\\\\\\\ \\\\\\\\\ \\\\\ \\\\\\\
\\\\ \\\\\\\ \\\\ \\\\\\\ \\\\\
2\\\\\,SubscriptBox\r\,\2,\\\\\ \\\\\\\
\\\\\\\\\ \\\3\\\\,… specifies a linear
genetic map. GametesX,Y,Z is also defined, and gives
the probability of a specific gamete X from diploid parentY,Z. Gametesi,j,n,NumericalModelSymmetricHaploidFrequencies
gives the distribution of genotypes among gametes from a
parent of genotype i,j.
Gametesi,j,n,W,NumericalModelSymmetricHaploidFrequencies
gives the same, for fitness Wi,j,h. NOT normalised by
MeanW, however.";

OptionsGametes  Lligam  False;
GametesiInteger, jInteger, nInteger : Gametesi, j, n, 1 &;
GametesYList, ZList, optsRule : GametesY, Z, 1 &, opts;
GametesiInteger, jInteger, nInteger, W :

Modulel, k,
2ij

Binomialn, j 
Sum22lTableBinomiali  j  2l, k  l, k, 0, nBinomiali, l
Binomialn  i, j  lWi, j, i  j  2l,l, Max0, i  j  n, Mini, j;
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GametesYList, ZList, W, optsRule :GametesRaw, Y, Z, opts &  HaploidTypesLengthZ, optsWY, Z;
GametesRawXList, YList, ZList, optsRule :

Moduleph, rr, rQ,
r  Lligam . opts . OptionsGametes,
h  Y  Z  2Y Z,
p  1  X  Y  2X Y,

ph  FlattenPositionh, 1;
IfTimes  h  1  hp  0,

0,
Ifr  False  ph  ,
Times  1  h 2,

rr  PrependNetRecombination Taker,  &  DropTransposeph, RotateLeftph  1, 1,
1 2;

rQ  p &  ph;
rQ  AbsrQ  RotateRightrQ;

Times  1  rr  rQ2rr  1;
 GameteTable

GameteTable::usage 
"GameteTablen gives the full distribution of 2n offspring
genotypes. LligamSubscriptBox\r\,\1,\\\\\
\\\\\\\ \\\\\\\\\ \\\\\\\\\
\\\2\\\\,SubscriptBox\r\,\2,\\\\\
\\\\\\\ \\\\\\\\\ \\\\\\\\\
\\\3\\\\,… specifies a linear genetic map.
GameteTablen,NumericalModelSymmetricHaploidFrequencies
stores a matrix showing the distribution of genotypes
among gametes, for each diploid genotype, under the
symmetric model. GameteTablen,W is also defined; it
allows for a fitness function W. Results are stored,
which greatly speeds calculations. However, if fitnesses
continually change, the option StoreResultsFalse must be used.";

OptionsGameteTable  Lligam  False, StoreResults  True,
NumericalModel  HaploidFrequencies;

GameteTable::badOpts  "`1` is not a valid option for GameteTable";

GameteTablenInteger, optsRule : GameteTablen, 1 &, opts;
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GameteTablenInteger, ww, optsRule :
Modulei, j, ht,
nm  NumericalModel . opts . OptionsGameteTable,
srQ  StoreResults . opts . OptionsGameteTable,
IfsrQ,

GameteTablen, ww, opts 
GameteTablen, ww, StoreResults  False, opts,
Switchnm,
SymmetricRepresentations,
TableGametesi, j, n, ww, i, 0, n, j, 0, n,
NonSymmetricRepresentations,
ht  HaploidTypesn, opts;

OuterGametes1, 2, ww, opts &, ht, ht, 1,
,
MessageGameteTable::badOpts, nm;

 HaploidFrequencies

HaploidFrequencies::usage 
"HaploidFrequencies000,…,n represents haploid genotype
frequencies, and deme size n. HaploidFrequencies000,…
is shorthand for HaploidFrequencies000,…,1";

HaploidFrequenciesList :
HaploidFrequencies, 1;

 HaploidIndividuals

HaploidIndividuals::usage 
"HaploidIndividuals0,0,1…,…,n represents a population
of n haploid individuals; n must match the length of the
list, and is added automatically if
HaploidIndividuals0,0,1…,… is specified.";

HaploidIndividualsList : HaploidIndividuals, Length;
 HaploidRepresentations

HaploidRepresentations::usage 
"HaploidRepresentations is a pattern which matches any valid
representation of a haploid population.";

HaploidRepresentations  HaploidFrequencies  AlleleFrequencies 
SymmetricHaploidFrequencies  SymmetricNeutralHaploidFrequencies 
HaploidIndividuals;
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 HaploidTypes[{{a1,b1,..},{a2,b2,..}..}] lists all possible haploid genotypes, based on the
set of alleles {a1,b1,..} at locus 1, etc.  HaploidTypes[{{a,b,..},n}] lists all possible

genotypes, assuming the same set of alleles at n loci.  HaploidTypes[n] assumes n
loci, with two alleles labelled {0,1}. HaploidTypes[n,SortByClassTrue] lists

haplotypes ordered by the # of '1' alleles.

HaploidTypes::usage 
"HaploidTypesa1,b1,..,a2,b2,.... lists all possible
haploid genotypes, based on the set of alleles a1,b1,..
at locus 1, etc. HaploidTypesa,b,..,n lists all
possible genotypes, assuming the same set of alleles at
n loci. HaploidTypesn assumes n loci, with two alleles
labelled 0,1. HaploidTypesn,SortByClassTrue lists
haplotypes ordered by the  of '1' alleles.";

OptionsHaploidTypes  SortByClass  False;
HaploidTypes,  : ;
HaploidTypesgList, opts :
HaploidTypesg, opts 
IfSortByClass . opts . OptionsHaploidTypes,

SortHaploidTypesg,
Modulep1  Plus  1, p2  Plus  2,
Ifp1  p2, True, Ifp1  p2, False, OrderedQ1, 2 &,

FlattenApplyOuter, Prependg, List, Lengthg  1;
HaploidTypesgList, nInteger, opts :
HaploidTypesg, n, opts  HaploidTypesTableg, n, opts;

HaploidTypesnInteger, opts :
HaploidTypesn, opts  HaploidTypes0, 1, n, opts;

 HeterozygoteB

HeterozygoteB::usage 
"HeterozygoteBi,j,n gives the distribution of the  of
heterozygous loci among gametes from a parent of genotypei,j, under the symmetric model. HeterozygoteBn stores
a table of HeterozygoteBi,j,n for i0…n, j0…n.";

HeterozygoteBi, j, n : HeterozygoteBi, j, n 
Modulel, pp  Array0 &, n  1,

Doppi  j  2l  1  Binomiali, lBinomialn  i, j  l ,l, Max0, i  j  n, Mini, j; pp Binomialn, j;
HeterozygoteBn : HeterozygoteBn 

Modulei, j, TableHeterozygoteBi, j, n, i, 0, n,j, 0, n;
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 IndividualRepresentations

IndividualRepresentations::usage 
"IndividualRepresentations is a pattern which matches any
valid representation of a population as a list of individuals.";

IndividualRepresentations  HaploidIndividuals  DiploidIndividuals;
 IterateExact

IterateExact::usage 
"IterateExact,W,0 gives gamete frequencies after one
generation of selection;  may represent a single deme,
or an array of demes, but must represent a haploid
population. IterateExact,W,m allows for migration.
If  contains only a single population, then it iterates
that deme, with immigration from a source of the same
size, fixed for 1,1…; FixedEndss specifies an
arbitrary source population. The fitness is represented
by a function Wi,j,h in the symmetrical model, WX,Y
if all 2n genotypes are iterated, or WpW,s1,… if
only AlleleFrequencies are supplied. If  consists of a
list of demes, migration is at a rate m2 to each neighbour.
The fitness is then represented by a function Wdemei,j,h
in the symmetrical model, or WdemeX,Y if all 2n

genotypes are iterated. CompiledTrue uses compiled code.
The default order is random unionmigrationselectionmeiosis,
which is represented by MigrationOrderUMS. MigrationOrderMUS
represents migrationrandom unionselectionmeiosis.
MigrationOrderUSM represents random
unionselectionmigrationmeiosis. For a cline,
FixedEnds0,1 fixes genotype frequencies at 0, 1
at either end. For SymmetricNeutralHaploidFrequencies,
IterateExact,u,W,m,u includes the frequency of
the neutral marker after one generation of selection
followed by immigration from a source population with
frequency u. DemeSizeF allows deme size to change to

some function Fn,W, where n is the number before
selection. Compiled code can only use a limited set of
F: either n&, where n is a fixed number; or ExponentialFr,,,
which represents rnW


Expn; or PowerFr,,, which

represents rSuperscriptBoxn,1  W. RandomDriftTrue

includes random sampling of a number of haploid gametes
equal to the deme size after selection.";

OptionsIterateExact  Compiled  False, MigrationOrder  UMS,
FixedEnds  , , DemeSize  1 &, RandomDrift  False;

IterateExact::badMigrationOrder 
"`1` is not a valid setting for MigrationOrder";
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 IterateExact  one deme

IterateExactpr : NonNeutralRepresentations, nd, ww, m,
optsRule : Modulei, gg, s, f, cr, gt, dt, ht,
iQ  MatchQpr, HaploidIndividuals,
cQ  Compiled . opts . OptionsIterateExact,
mo  MigrationOrder . opts . OptionsIterateExact,
fe  FixedEnds . opts . OptionsIterateExact,
rd  RandomDrift . opts . OptionsIterateExact,
ng  NumberOfGenespr, nd, spr,
s  Iffe1    fe1  ,
spr  Switchpr,
HaploidIndividuals, HaploidFrequencies,
, pr;

MakePopulationng, 1, nd, NumericalModel  spr,
fe1;

IfcQ,
f  DemeSize . opts . OptionsIterateExact;
f  f . nn?NumberQ &  nn, 0, 1, 0, 1 &  1, 0, 0, 0,

PowerFr, ,   r, , , 0,
ExponentialFr, ,   r, , 0, ,PowerF  ExponentialFr, , ,   r, , , ,
ExponentialFr, ,   r, , 0, ;

cr  Ifpr  AlleleFrequencies,
IterateCompiledww, oneDeme, mo, nd, m, s1, s2, f, rd,
gt  GameteTableng, ww, NumericalModel  pr, opts;
IfiQ,
ht  HaploidTypesLog2, Lengths1, opts;
FlattenOuterList, ht, ht, 1, 1;
IterateCompiledoneDeme, ind, mo, nd, gt, dt, m, s1, s2, f,
IterateCompiledoneDeme, mo, nd, gt, m, s1, s2, f, rd;

prDropcr, 1, Lastcr,
Switchmo,
UMS,
NewGametesMigrateExactMakeDiploidpr, nd, MakeDiploids, m,
ww, opts,
MUS,
NewGametesMakeDiploidMigrateExactpr, nd, s, m, ww, opts,
USM,
2  IfiQ OddQnd, MakeDiploidprDrop, 1, nd  1,

MakeDiploidpr, nd;
MigrateExactNewGametes2, ww, opts, s, m,
, MessageIterateExact::badMigrationOrder, mo; pr, nd;
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 IterateExact  cline

IterateExact : NonNeutralRepresentations,  .., ww, m, opts :
Modulei, gg, nd  Length, cr, gt, 0, 1, n0, n1, pr  Head1,
cQ  Compiled . opts . OptionsIterateExact,
mo  MigrationOrder . opts . OptionsIterateExact,
fe  FixedEnds . opts . OptionsIterateExact,
rd  RandomDrift . opts . OptionsIterateExact,
, nl, dsrl,
ng  NumberOfGenes,
IfcQ,
  First  ; nl  Last  ;
f  DemeSize . opts . OptionsIterateExact;
f  f . nn?NumberQ &  Arraynn, 0, 1, 0 &, nd,1 &  Array1, 0, 0, 0 &, nd,

PowerFr, ,   Arrayr, , , 0 &, nd,
ExponentialFr, ,   Arrayr, , 0,  &, nd,PowerF  ExponentialFr, , ,   Arrayr, , ,  &, nd,
ExponentialFr, ,   Arrayr, , 0,  &, nd;

Iffe1  , 0  ; n0  0, 0  fe1, 1; n0  fe1, 2;
Iffe1  , 1  ; n1  0, 1  fe1, 1; n1  fe1, 2;
cr  Ifpr  AlleleFrequencies,
IterateCompiledww, cline, mo, nl, m, 0, 1, n0, n1, f, rd,
gt  TableGameteTableng, wwi, NumericalModel  Head1, opts,i, nd;
IterateCompiledcline, mo, nl, gt, m, 0, 1, n0, n1, f, rd;

prDrop, 1, Last &  cr,
dsrlj : DemeSize  f?NotListQ &  DemeSize  fj,DemeSize  fList  DemeSize  fj;
Switchmo,
UMS,
gg  MigrateExactMakeDiploid, m, FixedEnds  MakeDiploid  fe;
TableNewGametesggi, wwi,  &  opts . dsrli, i, nd,
MUS,
gg  MakeDiploidMigrateExact, m, FixedEnds  fe;
TableNewGametesggi, wwi,  &  opts . dsrli, i, nd,
USM,
gg  MakeDiploid;
MigrateExactTableNewGametesggi, wwi,  & opts . dsrli, i, nd, m, FixedEnds  fe,
,
MessageIterateExact::badMigrationOrder, mo; pr, n;
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 IterateExact  one deme, compiled

IterateCompiledoneDeme, UMS 
Compile, Real, 1, n, gt, Real, 3, m, s, Real, 1, ns,F, Real, 1, rd, True  False,

Modulett, wb, nm, rnm,
nm  m ns  1  mn;
tt Plus 

Plus gt n1  mOuterTimes, ,   ns m OuterTimes, s, snm;
wb  Plus  tt;

nm  F1 nm1F3wbF2Exp nm F4;
AppendIfrd,
rnm  Max1, Roundnm;
RandomMultinomialrnm, tt

wb
  rnm,

tt

wb
, nm,wb, Real, nm, Real, rnm, Integer, tt, Real, 1,RandomMultinomial, , Integer, 1;

IterateCompiledoneDeme, MUS 
Compile, Real, 1, n, gt, Real, 3, m, s, Real, 1, ns,F, Real, 1, rd, True  False,
Modulett, wb, nm, rnm,
nm  m ns  1  mn;
tt  n1  m  ns m s nm;
tt  Plus  Plus  gt OuterTimes, tt, tt;
wb  Plus  tt;

nm  F1 nm1F3wbF2Exp nm F4;
AppendIfrd,
rnm  Max1, Roundnm;
RandomMultinomialrnm, tt

wb
  rnm,

tt

wb
, nm,wb, Real, nm, Real, rnm, Integer, tt, Real, 1,RandomMultinomial, , Integer, 1;
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IterateCompiledoneDeme, USM 
Compile, Real, 1, n, gt, Real, 3, m, s, Real, 1, ns,F, Real, 1, rd, True  False,
Modulett, wb, nn, nnn, rnm,
tt  Plus  Plus  gt OuterTimes, , ;
wb  Plus  tt; nn  F1 n1F3wbF2Exp n F4;
nnn  1  mnn  ns m;
AppendIfrd,
rnm  Max1, Roundnnn;
RandomMultinomialrnm, nn1  m tt

wb
 ns m s

nnn
  rnm,

nn1  m tt
wb

 ns m s

nnn
, nnn,wb, Real, nn, Real, rnm, Integer, nnn, Real,tt, Real, 1, RandomMultinomial, , Integer, 1;

 IterateExact  one deme, compiled, allele frequencies

IterateCompiledww, oneDeme, UMS :
Modulefw,
fwp : Flattenwwp;
IterateCompiledww, oneDeme, UMS 
Compilep, Real, 1, n, m, ps, Real, 1, ns, F, Real, 1,rd, True  False,
Modulewv, np, wb, nm, rnm,
nm  m ns  1  mn;
np 

n1  mp  ns m ps

nm
;

wv  fwnp; wb  wv1;
np  np 1  1  npDropwv, 1

wb
;

nm  F1 nm1F3wbF2Exp nm F4;
AppendIfrd,
rnm  Max1, Roundnm;FirstRandomMultinomialrnm, , 1   &  np rnm,
np,
nm,wv, Real, 1, np, Real, 1, wb, Real, nm, Real,rnm, Integer, RandomMultinomial, , Integer, 1,fw, Real, 1;

IterateCompiledww, oneDeme, MUS : IterateCompiledww, oneDeme, UMS;
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IterateCompiledww, oneDeme, USM :
Modulefw,
fwp : Flattenwwp;
IterateCompiledww, oneDeme, USM 
Compilep, Real, 1, n, m, ps, Real, 1, ns, F, Real, 1,rd, True  False,
Modulenp, wb, nn, nnn, rnm, wv,
wv  fwp; wb  wv1;
np  p 1  1  pDropwv, 1

wb
;

nn  F1 n1F3wbF2Exp n F4;
nnn  1  mnn  ns m;
AppendIfrd,
rnm  Max1, Roundnnn;
FirstRandomMultinomialrnm, , 1   & 

nn1  mnp  ns m ps
nnn

 rnm,nn1  mnp  ns m ps nnn, nnn,wb, Real, wv, Real, 1, nn, Real, rnm, Integer,nnn, Real, np, Real, 1,RandomMultinomial, , Integer, 1;
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 IterateExact  cline, compiled

IterateCompiledcline, UMS 
Compile, Real, 2, nl, Real, 1, gt, Real, 4, m,fe0, Real, 1, fe1, Real, 1, n0, n1, F, Real, 2,rd, True  False, Module, n, nn, tt, i, nm, wb, rnm, nnm,
  OuterTimes, ,  &  ;
  PrependAppend,

IfLengthfe1  0, Last, OuterTimes, fe1, fe1,
IfLengthfe0  0, First, OuterTimes, fe0, fe0;

nn  PrependAppendnl,
IfLengthfe1  0, Lastnl, n1,

IfLengthfe0  0, Firstnl, n0; n  nn ;

n  DropDrop1  mn  m

2
RotateLeftn  RotateRightn, 1,

1;
nm  DropDrop1  mnn  m

2
RotateLeftnn  RotateRightnn, 1, 1;

Tablett  Plus  Plus  gti ni nmi; wb  Plus  tt;
nnm  Fi, 1 nmi1Fi,3wbFi,2Exp nmi Fi, 4;
rnm  Ifrd, RandomRealPoissonDistributionnnm,

Max1, Roundnnm;
AppendIfrd, RandomMultinomialrnm, tt

wb
  rnm,

tt

wb
, nnm,i, Length,tt, Real, 1, nm, Real, 1, wb, Real, nn, Real, 1,, Real, 3, n, Real, 3, i, Integer,RandomMultinomial, , Integer, 1,RandomRealPoissonDistribution, Integer, rnm, Integer,nnm, Real;
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IterateCompiledcline, MUS 
Compile, Real, 2, nl, Real, 1, gt, Real, 4, m,fe0, Real, 1, fe1, Real, 1, n0, n1, F, Real, 2,rd, True  False, Module, y, ny, nn, nm, nnm, rnm, tt, wb,

y  PrependAppend,
IfLengthfe1  0, Last, fe1,
IfLengthfe0  0, First, fe0;

nn  PrependAppendnl,
IfLengthfe1  0, Lastnl, n1,
IfLengthfe0  0, Firstnl, n0;

ny  nn  y;

ny  DropDrop1  mny  m

2
RotateLeftny  RotateRightny, 1,

1;
nm  DropDrop1  mnn  m

2
RotateLeftnn  RotateRightnn, 1,

1;   OuterTimes, ,  &  ny
nm

;
Tablett  Plus  Plus  gti i; wb  Plus  tt;

nnm  Fi, 1 wbFi,2nmi1Fi,3Exp nmi Fi, 4;
rnm  Ifrd, RandomRealPoissonDistributionnnm,

Max1, Roundnnm;
AppendIfrd, RandomMultinomialrnm, tt

wb
  rnm,

tt

wb
, nnm,i, Length , nn, Real, 1, nm, Real, 1, wb, Real,tt, Real, 1, y, Real, 2, ny, Real, 2, , Real, 3,i, Integer, RandomMultinomial, , Integer, 1,RandomRealPoissonDistribution, Integer, rnm, Integer,nnm, Real;
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IterateCompiledcline, USM 
Compile, Real, 2, nl, Real, 1, gt, Real, 4, m,fe0, Real, 1, fe1, Real, 1, n0, n1, F, Real, 2,rd, True  False,
Module, n, nn, nm, rnm, wb, ny, y, y0, y1, tt, nd  Length, newy,
  OuterTimes, ,  &  ;
y  TablePlus  Plus  gti i, i, nd;
nn  Tablewb  Plus  yi; Fi, 1 nli1Fi,3wbFi,2

Exp nli Fi, 4, i, nd;
y  TableIfrd,

rnm  RandomRealPoissonDistributionnni;
RandomMultinomialrnm, yi

Plus  yi  rnm,

yi
Plus  yi, i, nd;

newy  PrependAppendy, IfLengthfe1  0, Lasty, fe1,
IfLengthfe0  0, Firsty, fe0;

nm  PrependAppendnn, IfLengthfe1  0, Lastnn, n1,
IfLengthfe0  0, Firstnn, n0;

ny  newy nm;

nm  DropDrop1  mnm  m

2
RotateLeftnm  RotateRightnm, 1,

1;
y  DropDrop1  mny  m

2
RotateLeftny  RotateRightny, 1, 1 

nm;

TableAppendyi, nmi, i, nd ,nn, Real, 1, nm, Real, 1, rnm, Integer, wb, Real,y, Real, 2, newy, Real, 2, ny, Real, 2, tt, Real, 1,, Real, 3, n, Real, 3, i, Integer,RandomMultinomial, , Integer, 1,RandomRealPoissonDistribution, Integer, rnm, Integer,nnm, Real;
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 IterateExact  cline, compiled, allele frequencies

IterateCompiledww, cline, UMS : Modulefw,
fwp, d : Flattenwwdp;
IterateCompiledww, cline, UMS 
Compile, Real, 2, nl, Real, 1, m, fe0, Real, 1,fe1, Real, 1, n0, n1, F, Real, 2, rd, True  False,
Modulen, nn, np, tt, i, nm, wb, rnm, nnm, wv, n,
n  PrependAppend,

IfLengthfe1  0, Last, fe1,
IfLengthfe0  0, First, fe0; nn  PrependAppendnl,
IfLengthfe1  0, Lastnl, n1,
IfLengthfe0  0, Firstnl, n0; n  nnn;

n  DropDrop1  mn  m

2
RotateLeftn  RotateRightn, 1,

1;
nm  DropDrop1  mnn  m

2
RotateLeftnn  RotateRightnn, 1,

1; Tablenp  ni
nmi; wv  fwnp, i; wb  wv1;

np  np 1  1  npDropwv, 1
wb

;

nnm  Fi, 1 nmi1Fi,3wbFi,2Exp nmi Fi, 4;
AppendIfrd,
rnm  Max1, Roundnnm;FirstRandomMultinomialrnm, , 1   &  np rnm,
np, nnm, i, Length,n, Real, 2, wv, Real, 1, nm, Real, 1,wb, Real, nn, Real, 1, np, Real, n, Real, 3,i, Integer, RandomMultinomial, , Integer, 1,rnm, Integer, nnm, Real, fw, , Real, 1;

IterateCompiledww, cline, MUS : IterateCompiledww, cline, UMS;
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IterateCompiledww, cline, USM : Modulefw,
fwp, d : Flattenwwdp;
IterateCompiledww, cline, USM 
Compile, Real, 2, nl, Real, 1, m, fe0, Real, 1,fe1, Real, 1, n0, n1, F, Real, 2, rd, True  False,
Modulen, nn, nm, rnm, ny, y, y0, y1, tt, nd  Length, newy, wvl,
wvl  Tablefwi, i, i, nd;
y  Tablei 1  1  iDropwvli, 1

wvli, 1 , i, nd;
nn  TableFi, 1 nli1Fi,3wvli, 1Fi,2Exp nli Fi, 4,i, nd;
y  TableIfrd,

rnm  Max1, Roundnni;FirstRandomMultinomialrnm, , 1   &  yi rnm,
yi, i, nd;

newy  PrependAppendy, IfLengthfe1  0, Lasty, fe1,
IfLengthfe0  0, Firsty, fe0;

nm  PrependAppendnn, IfLengthfe1  0, Lastnn, n1,
IfLengthfe0  0, Firstnn, n0;

ny  newy nm;

nm  DropDrop1  mnm  m

2
RotateLeftnm  RotateRightnm, 1,

1;
y  DropDrop1  mny  m

2
RotateLeftny  RotateRightny, 1,

1  nm;

TableAppendyi, nmi, i, nd ,nn, Real, 1, nm, Real, 1, rnm, Integer, wvl, Real, 2,y, Real, 2, newy, Real, 2, ny, Real, 2, tt, Real, 1,n, Real, 3, i, Integer, RandomMultinomial, , Integer, 1,rnm, Integer, nnm, Real, fw, , Real, 1;
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 IterateExact  one deme, symmetric neutral

IterateExact : SymmetricNeutralHaploidFrequencies, u, nd,
ww, m, optsRule : Modulei, gg, s, f, cr, gt,
cQ  Compiled . opts . OptionsIterateExact,
mo  MigrationOrder . opts . OptionsIterateExact,
fe  FixedEnds . opts . OptionsIterateExact,
ng  NumberOfGenes,
s  Iffe1    fe1  ,

MakePopulationng, 1, 1, nd,
NumericalModel  SymmetricNeutralHaploidFrequencies,
fe1;

IfcQ,
f  DemeSize . opts . OptionsIterateExact;
f  f . nn?NumberQ &  nn, 0, 1, 0, 1 &  1, 0, 0, 0,

PowerFr, ,   r, , , 0,
ExponentialFr, ,   r, , 0, ,PowerF  ExponentialFr, , ,   r, , , ,
ExponentialFr, ,   r, , 0, ;

gt  GameteTableng, ww, NumericalModel  SymmetricHaploidFrequencies,
opts;

cr  IterateCompiledneutral, oneDeme, mo, u, nd, gt, m,
s1, 1, s1, 2, s2, f;

SymmetricNeutralHaploidFrequenciesPartitionDropcr, 1, ng  1,
Lastcr,
Switchmo,
UMS, NewGametesMigrateExactMakeDiploid, MakeDiploids, m,
ww, opts,
MUS, NewGametesMakeDiploidMigrateExact, s, m, ww, opts,
USM, MigrateExactNewGametesMakeDiploid, ww, opts, s, m,
, MessageIterateExact::badMigrationOrder, mo; ;
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 IterateExact  one deme, compiled, symmetric neutral

IterateCompiledneutral, oneDeme, UMS 
Compile, Real, 1, u, Real, 1, n, gt, Real, 3, m,s, Real, 1, us, Real, 1, ns, F, Real, 1,

Modulett, ttu, wb, nm,
nm  m ns  1  mn;
tt Plus 

Plus gt n1  mOuterTimes, ,   ns m OuterTimes, s, snm;
ttu Plus 

Plus gt n1  mOuterTimes, , OuterPlus, u, u 
ns m OuterTimes, s, sOuterPlus, us, us 2nm;

wb  Plus  tt;

nm  F1 nm1F3wbF2Exp nm F4;
AppendJointt

wb
, DivideZerottu, tt, nm,wb, Real, nm, Real, tt, Real, 1, ttu, Real, 1,DivideZero, , Real, 1;

IterateCompiledneutral, oneDeme, MUS 
Compile, Real, 1, u, Real, 1, n, gt, Real, 3, m,s, Real, 1, us, Real, 1, ns, F, Real, 1,
Modulett, ttu, wb, nm, nu, ngt,
nm  m ns  1  mn;
tt  n1  m  ns m s nm;
ttu  n1  m u  ns m s us nm;
nu  DivideZerottu, tt;
ngt  gt OuterTimes, tt, tt;
tt  Plus  Plus  ngt;
ttu  Plus  Plus  ngt OuterPlus, nu, nu 2;
wb  Plus  tt;

nm  F1 nm1F3wbF2Exp nm F4;
AppendJointt

wb
, DivideZerottu, tt, nm,wb, Real, nm, Real, tt, Real, 1, ttu, Real, 1,ngt, Real, 3, nu, Real, 1, DivideZero, , Real, 1;

MSc thesis - APPENDICES.nb 27

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


IterateCompiledneutral, oneDeme, USM 
Compile, Real, 1, u, Real, 1, n, gt, Real, 3, m,s, Real, 1, us, Real, 1, ns, F, Real, 1,
Modulett, ttu, wb, nn, nnn, ttn,
tt  Plus  Plus  gt OuterTimes, , ;
ttu  Plus  Plus  gt OuterTimes, ,  OuterPlus, u, u 2;
wb  Plus  tt;

nn  F1 n1F3wbF2Exp n F4;
nnn  1  mnn  ns m;
ttn  nn1  mtt

wb
 ns m s;

AppendJointtn
nnn

, DivideZeronn1  mttu
wb

 ns m s us, ttn, nnn,wb, Real, nn, Real, nnn, Real, tt, Real, 1,ttn, Real, 1, ttu, Real, 1, DivideZero, , Real, 1;
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 IterateExact  cline, symmetric neutral

IterateExact : SymmetricNeutralHaploidFrequencies, ,  ..,
ww, m, opts :
Modulei, gg, nd  Length, cr, gt, 0, 1, u0, u1, n0, n1,
cQ  Compiled . opts . OptionsIterateExact,
mo  MigrationOrder . opts . OptionsIterateExact,
fe  FixedEnds . opts . OptionsIterateExact,
, u, nl, dsrl,
ng  NumberOfGenes,
IfcQ,
  First  First  ;
u  Last  First  ;
nl  Last  ;
f  DemeSize . opts . OptionsIterateExact;
f  f . nn?NumberQ &  Arraynn, 0, 1, 0 &, nd,1 &  Array1, 0, 0, 0 &, nd,

PowerFr, ,   Arrayr, , , 0 &, nd,
ExponentialFr, ,   Arrayr, , 0,  &, nd,PowerF  ExponentialFr, , ,   Arrayr, , ,  &, nd,
ExponentialFr, ,   Arrayr, , 0,  &, nd;

Iffe1  ,
0  ; u0  ; n0  0,
0  fe1, 1, 1; u0  fe1, 1, 2; n0  fe1, 2;
Iffe1  ,
1  ; u1  ; n1  0,
1  fe1, 1, 1; u1  fe1, 1, 2; n1  fe1, 2;

gt  TableGameteTableng, wwi,
NumericalModel  SymmetricNeutralHaploidFrequencies, opts,i, nd;

cr  IterateCompiledneutral, cline, mo, u, nl, gt, m, 0,
1, u0, u1, n0, n1, f;

SymmetricNeutralHaploidFrequenciesPartitionDrop, 1, ng  1,
Last &  cr,

dsrlj : DemeSize  f?NotListQ &  DemeSize  fj,DemeSize  fList  DemeSize  fj;
Switchmo,
UMS,
gg  MigrateExactMakeDiploid, m, FixedEnds  MakeDiploid  fe;
TableNewGametesggi, wwi,  &  opts . dsrli, i, nd,
MUS,
gg  MakeDiploidMigrateExact, m, FixedEnds  fe;
TableNewGametesggi, wwi,  &  opts . dsrli, i, nd,
USM,
gg  MakeDiploid;
MigrateExactTableNewGametesggi, wwi,  & opts . dsrli, i, nd, m, FixedEnds  fe,
,
MessageIterateExact::badMigrationOrder, mo;
SymmetricNeutralHaploidFrequencies, n;
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 IterateExact  cline, compiled, symmetric neutral

IterateCompiledneutral, cline, UMS 
Compile, Real, 2, u, Real, 2, nl, Real, 1, gt, Real, 4,
m, fe0, Real, 1, fe1, Real, 1, feU0, Real, 1,feU1, Real, 1, n0, n1, F, Real, 2,
Module, u, n, nu, nn, tt, ttu, nu, i, nm, wb, nnm,
  OuterTimes, ,  &  ;
u  MapThreadOuterTimes, 1, 1OuterPlus, 2, 2 &, , u 2;
  PrependAppend,

IfLengthfe1  0, Last, OuterTimes, fe1, fe1,
IfLengthfe0  0, First, OuterTimes, fe0, fe0;

u  PrependAppendu,
IfLengthfe1  0, Lastu,
OuterTimes, fe1, fe1OuterPlus, feU1, feU1 2,

IfLengthfe0  0, Firstu,
OuterTimes, fe0, fe0OuterPlus, feU0, feU0 2;

nn  PrependAppendnl,
IfLengthfe1  0, Lastnl, n1,

IfLengthfe0  0, Firstnl, n0;
n  nn ; nu  nn u;

n  DropDrop1  mn  m

2
RotateLeftn  RotateRightn, 1,

1;
nu  DropDrop1  mnu  m

2
RotateLeftnu  RotateRightnu, 1,

1;
nm  DropDrop1  mnn  m

2
RotateLeftnn  RotateRightnn, 1, 1;

nu  MapThreadDivideZero1, 2 &, nu, n, 2;
Table
tt  Plus  Plus  gti ninmi;
ttu  Plus  Plus  gti ni nui nmi;
wb  Plus  tt;

nnm  Fi, 1 nmi1Fi,3wbFi,2Exp nmi Fi, 4;
AppendJointt

wb
, DivideZerottu, tt, nnm,i, Length,tt, Real, 1, ttu, Real, 1, nm, Real, 1,wb, Real, nn, Real, 1, , Real, 3, u, Real, 3,nu, Real, 3, n, Real, 3, nu, Real, 3, i, Integer,nnm, Real, DivideZero, , Real, 1;
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IterateCompiledneutral, cline, MUS 
Compile, Real, 2, u, Real, 2, nl, Real, 1, gt, Real, 4,
m, fe0, Real, 1, fe1, Real, 1, feU0, Real, 1,feU1, Real, 1, n0, n1, F, Real, 2,
Module, u, y, yu   u, ny, nyu, nn, nm, nnm, tt, ttu, wb,
y  PrependAppend,

IfLengthfe1  0, Last, fe1,
IfLengthfe0  0, First, fe0;

yu  PrependAppendyu,
IfLengthfe1  0, Lastyu, fe1 feU1,
IfLengthfe0  0, Firstyu, fe0 feU0;

nn  PrependAppendnl,
IfLengthfe1  0, Lastnl, n1,
IfLengthfe0  0, Firstnl, n0;

ny  nn  y; nyu  nn yu;

ny  DropDrop1  mny  m

2
RotateLeftny  RotateRightny, 1,

1;
nyu  DropDrop1  mnyu  m

2
RotateLeftnyu  RotateRightnyu, 1,

1;
nm  DropDrop1  mnn  m

2
RotateLeftnn  RotateRightnn, 1,

1; ny  ny nm;
nyu  MapThreadDivideZero1, 2 &, nyu, ny;
  OuterTimes, ,  &  ny;
u  MapThreadOuterTimes, 1, 1OuterPlus, 2, 2

2
&, ny, nyu;

Table
tt  Plus  Plus  gti i;
ttu  Plus  Plus  gti ui;
wb  Plus  tt;

nnm  Fi, 1 wbFi,2nmi1Fi,3Exp nmi Fi, 4;
AppendJointt

wb
, DivideZerottu, tt, nnm, i, Length ,nn, Real, 1, nm, Real, 1, wb, Real, tt, Real, 1,ttu, Real, 1, y, Real, 2, yu, Real, 2, ny, Real, 2,nyu, Real, 2, , Real, 3, u, Real, 3, i, Integer,DivideZero, , Real, 1, nnm, Real;
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IterateCompiledneutral, cline, USM 
Compile, Real, 2, u, Real, 2, nl, Real, 1, gt, Real, 4,
m, fe0, Real, 1, fe1, Real, 1, feU0, Real, 1,feU1, Real, 1, n0, n1, F, Real, 2,
Module, n, nn, nu, nm, rnm, wb, ny, y, yu, nyu, y0, y1, tt,

nd  Length, newy, newyu,
  OuterTimes, ,  &  ; nu  OuterPlus, , 

2
&  u;

y  TablePlus  Plus  gti i, i, nd;
yu  TablePlus  Plus  gti i nui, i, nd;
yu  DivideZeroyu, y;
nn  Table
wb  Plus  yi;
Fi, 1 nli1Fi,3wbFi,2Exp nli Fi, 4, i, nd;

y  Table yi
Plus  yi, i, nd;

newy  PrependAppendy,
IfLengthfe1  0, Lasty, fe1,
IfLengthfe0  0, Firsty, fe0;

newyu  PrependAppendyu,
IfLengthfe1  0, Lastyu, feU1,
IfLengthfe0  0, Firstyu, feU0;

nm  PrependAppendnn,
IfLengthfe1  0, Lastnn, n1,
IfLengthfe0  0, Firstnn, n0;

ny  newy nm; nyu  newy newyu nm;

nm  DropDrop1  mnm  m

2
RotateLeftnm  RotateRightnm, 1,

1;
y  DropDrop1  mny  m

2
RotateLeftny  RotateRightny, 1, 1;

yu  DivideZero
DropDrop1  mnyu  m

2
RotateLeftnyu  RotateRightnyu, 1,

1, y;
y  y nm;
TableAppendJoinyi, yui, nmi, i, nd ,nn, Real, 1, nm, Real, 1, rnm, Integer, wb, Real,y, Real, 2, yu, Real, 2, nyu, Real, 2, newy, Real, 2,newyu, Real, 2, ny, Real, 2, tt, Real, 1, , Real, 3,nu, Real, 3, n, Real, 3, i, Integer,DivideZero, , Real, 2, rnm, Integer, nnm, Real;
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Lligam::usage 
"LligamSubscriptBoxr, 1, \ 2,SubscriptBoxr,2, 3,… is
an option for Gametes, GameteTable and RandomFamily
which specifies the recombination rates in each interval;
assumes no interference and a linear map. The default
LinkageFalse gives unlinked loci. ";

 MakeCline

MakeCline::usage 
"MakeClinendemes,nloci,ninds sets up a stepped cline, with
ninds individuals per deme. MakeClinendemes,nloci,ninds,dp
sets up a linear gradient, with net change dp1.
NumericalModel specifies which representation is to be
used. SymmetricNeutralModel allows for the presence of a
neutral locus under the symmetric model; this is initially
either in a step, or a gradient spanning dp. ";

OptionsMakeCline  NumericalModel  HaploidFrequencies;
MakeClinend, ng, ni, optsRule :
Modulenm  NumericalModel . opts . OptionsMakeCline,

pp  Array1
2
 1  Sign  nd  1

2
 &, nd,

MakePopulationng, , ni, opts & 
Switchnm,
NonNeutralRepresentations, pp,
NeutralRepresentations, Transposepp, pp,
, MessageNumericalModel::badSetting, nm; ;

MakeClinend, ng, ni, dp, optsRule :
Modulenm  NumericalModel . opts . OptionsMakeCline,

pp  Range1  dp
2

,
1  dp

2
,

dp

nd  1
,

MakePopulationng, , ni, opts & 
Switchnm,
NonNeutralRepresentations, pp,
NeutralRepresentations, Transposepp, pp,
, MessageNumericalModel::badSetting, nm; ;

 MakeDiploid

MakeDiploid::usage 
"MakeDiploidHaploidFrequencies… gives the matrix of diploid
genotype frequencies after random mating. Deme size is
halved. Applies to vectors of class, genotype and allele
frequencies; MakeDiploidHaploidIndividuals… generates
a population of diploids by sampling with replacement
from the haploid population; not particularly useful, and
added for completeness only.";
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MakeDiploid::odd 
"MakeDiploidHaploidIndividuals,n only applies when n is
even. Deme size `1` has been reduced by 1.";

MakeDiploid : PopulationRepresentations,  ... : MakeDiploid  ;
MakeDiploid : DiploidRepresentations,  : ;
MakeDiploidHaploidFrequencies, n :
DiploidFrequenciesOuterTimes, , , n 2;

MakeDiploidSymmetricHaploidFrequencies, n :
SymmetricDiploidFrequenciesOuterTimes, , , n 2;

MakeDiploidSymmetricNeutralHaploidFrequencies, u, n :
SymmetricNeutralDiploidFrequenciesOuterTimes, , , MidParentu,
n 2;

MakeDiploidHaploidIndividuals, n?OddQ :MessageMakeDiploid::odd, n;
DiploidIndividualsPartitionDrop, 1, 2, n  1 2;

MakeDiploidHaploidIndividuals, n?EvenQ :
DiploidIndividualsPartition, 2, n 2;

 MakeHaploid

MakeHaploid::usage 
"MakeHaploidDiploidFrequencies… gives the haploid genotype
frequencies, averaged over maternal and paternal genomes.
Deme size is doubled. Applies to vectors of class,
genotype and allele frequencies. Deme size is left
unaltered, except for MakeHaploidDiploidIndividuals…,
for which deme size is doubled. This just flattens the
list: there is no sampling.";

MakeHaploid : DiploidRepresentations,  ... : MakeHaploid  ;
MakeHaploidDiploidFrequencies, n :
HaploidFrequenciesPlus    Plus  Transpose 2, 2n;

MakeHaploidAlleleFrequenciesp, n : AlleleFrequenciesp, 2n;
MakeHaploidSymmetricDiploidFrequencies, n :
SymmetricHaploidFrequenciesPlus    Plus  Transpose 2, 2n;

MakeHaploidSymmetricNeutralDiploidFrequencies, u, n :
Modulem  Plus    Plus  Transpose2, u    u,
SymmetricNeutralHaploidFrequenciesm, Plus  u  Plus  Transposeu 2m, 2n;

MakeHaploidDiploidIndividuals, n :
HaploidIndividualsFlatten, 1, 2n;
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 MakeIndividuals

MakeIndividuals::usage 
"MakeIndividuals,n generates n random individuals from the
population . If  represents a diploid population, the
representation DiploidIndividuals is returned; similarly
for haploids. MakeIndividualsAlleleFrequenciesp,n0,n
returns n haploid individuals, drawn from a population
at linkage equilibrium.
MakeIndividualsSymmetricNeutralHaploidFrequencies,u,n0,n
adds a neutral marker locus at the last position of the
genotype. MakeIndividuals1…,n1,… generates
individuals across a cline. MakeIndividualsj,n returns
a haplotype of n genes, wih j randomly assigned to 1.";

MakeIndividuals : FrequencyRepresentations,  ..., nList,
optsRule :
MapThreadMakeIndividuals1, 2, opts &, , n;

MakeIndividualsAlleleFrequenciesp, , n, optsRule :
HaploidIndividualsTableIfRandomReal  1, 1, 0 &  p, n, n;

MakeIndividualsHaploidFrequencies, , n, optsRule :
HaploidIndividuals
RandomListn, , HaploidTypesLog2, Length, opts, n;

MakeIndividualsDiploidFrequencies, , n, optsRule :
Moduleht  HaploidTypesLog2, Length, opts,
DiploidIndividualsRandomListn, Flatten,
FlattenOuterList, ht, ht, 1, 1, n;

MakeIndividualsSymmetricHaploidFrequencies, , n, optsRule :
Moduleng  Length  1,
HaploidIndividualsMakeIndividuals1, ng & 
RandomListn, , Range0, ng, n;

MakeIndividualsSymmetricDiploidFrequencies, , n, optsRule :
Moduleng  Length  1,
DiploidIndividualsMapMakeIndividuals1, ng &,Quotient1  1, ng  1, Mod1  1, ng  1 & 

RandomListn, Flatten, 2, n;
MakeIndividualsSymmetricNeutralHaploidFrequencies, u, n0,

n, optsRule : Moduleng  Length  1,
HaploidIndividualsAppendMakeIndividuals1, ng, IfRandomReal  u1  1, 1, 0 & 
RandomListn, , Range0, ng, n;

MakeIndividualsSymmetricNeutralDiploidFrequencies, u, n0,
n, optsRule : Moduleng  Length  1, fu  Flattenu,
DiploidIndividualsAppendMakeIndividuals11, ng,

IfRandomReal  fu13, 1, 0,
AppendMakeIndividuals12, ng,
IfRandomReal  fu13, 1, 0 & Quotient1  1, ng  1, Mod1  1, ng  1, fu1 & 

RandomListn, Flatten, n;
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MakeIndividualsjInteger, nInteger :
MuddleJoinArray1 &, j, Array0 &, n  j;

 MakeOptionsHaploid

MakeOptionsHaploid::usage 
"MakeOptionsHaploid is a rule which converts options such as
NumericalModelDiploidFrequencies to their haploid version";

 MakePopulation

MakePopulation::usage 
"MakePopulationnloci,p gives a haploid population at linkage
equilibrium, with allele frequency p; this is represented
as HaploidFrequencies000…. The option NumericalModel
can be used to give other representations. For example,
MakePopulationnloci,p,u,NumericalModel
SymmetricNeutralHaploidFrequencies gives a haploid
population at LE, with selected loci at frequency p, and
a single neutral marker at frequency u.
MakePopulationnloci,p,NumericalModelHaploidIndividuals
gives a single haploid individual, drawn at random.
MakePopulationnloci,p,ndeme,opts allows deme size to
be specified; the default is 1. ";

OptionsMakePopulation NumericalModel  HaploidFrequencies, SortByClass  False;
MakePopulationnlociInteger, p, optsRule :
MakePopulationnloci, p, 1, opts;

36 MSc thesis - APPENDICES.nb

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


MakePopulationnInteger, p, ninds, optsRule :
Modulei, nm  NumericalModel . opts . OptionsMakePopulation,
Switchnm,
HaploidRepresentations,

Switchnm,
HaploidFrequencies,
HaploidFrequencies
HaploidTypesn, opts .aInteger : Times  a2p  1  1  p, ninds,

SymmetricHaploidFrequencies,

SymmetricHaploidFrequencies
Ifp  0,
ReplacePartArray0 &, n  1, 1, 1,
Ifp  1,
ReplacePartArray0 &, n  1, 1, 1,

TableBinomialn, ipi1  pni, i, 0, n, ninds,
SymmetricNeutralHaploidFrequencies,
SymmetricNeutralHaploidFrequenciesMakePopulationn, p1, NumericalModel 

SymmetricHaploidFrequencies1, Arrayp2 &, n  1, ninds,
AlleleFrequencies,
AlleleFrequenciesArray1 &, np, ninds,

HaploidIndividuals,

MakeIndividuals AlleleFrequenciesArray1 &, np, 1, ninds,
DiploidRepresentations,
Switchnm,
DiploidIndividuals,
DiploidIndividualsTranspose

MakePopulationn, p, ninds, NumericalModel  HaploidIndividuals1,
MakePopulationn, p, ninds, NumericalModel  HaploidIndividuals
1, ninds,

,
MakeDiploidMakePopulationn, p, ninds,  & opts . MakeOptionsHaploid,

,MessageNumericalModel::badSetting, nm; ;
 Mendel

Mendel::usage 
"Mendel0,1,…,1,0,… gives a random gamete, assuming
no linkage.";

Mendelpp : ,  : Mendel  Transposepp;
Mendelx, y : IfRandomRealInteger  0, x, y
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 MeanW

MeanW::usage 
"MeanW,W gives the mean fitness of population ; W is the
fitness function. MeanW,SubscriptBoxW,0, 0,
0,… gives the mean fitness, based on an appropriate
table of fitnesses.";

AlleleFrequencies::badW  "Wp`1` does not have the form W,s1…";
MeanW : PopulationRepresentations,  ..., W?NotListQ &,

optsRule :
MapIndexedMeanW1, WFirst2, opts &, ;

MeanW : PopulationRepresentations,  ..., WList, optsRule :
MapIndexedMeanW1, WFirst2, opts &, ;

MeanWSymmetricNeutralHaploidFrequencies, u, n, W,
optsRule :
MeanWSymmetricHaploidFrequencies, n, W, opts;

MeanWSymmetricNeutralDiploidFrequencies, u, , W,
optsRule :
MeanWSymmetricDiploidFrequencies, n, W, opts;

MeanWAlleleFrequenciesp, , W?NotListQ &, optsRule :
Modulewl  Wp,
IfMatchQwl, , List,
Firstwl,
MessageAlleleFrequencies::badW, wl; Indeterminate;

MeanWfr : FrequencyRepresentations, , W?NotListQ &,
optsRule :
Modulen  Switchfr,

SymmetricRepresentations, Length  1,
, Log2, Length,

Plus  Plus    FitnessTableW, n, NumericalModel  fr, opts;
MeanWHaploidIndividuals, , W?NotListQ &, optsRule :
MeanW  ;

MeanWDiploidIndividuals, , W?NotListQ &, optsRule :
MeanW   &  ;
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MeanWAlleleFrequenciesp, , WList, optsRule :MessageFitnessTable::badOption; 1;
MeanWFrequencyRepresentations, , WList, optsRule :
Plus  Plus    W;

MeanWHaploidIndividuals, , WList, optsRule :
Moduleht,
IfLength  0,
Indeterminate,
ht  HaploidTypesLengthFirst, opts;
MeanExtractW,  &  FirstPositionht,  &  ;

MeanWDiploidIndividuals, , WList, optsRule :
Moduleht,
IfLength  0,
Indeterminate,
ht  HaploidTypesLength1, 1, opts;
MeanExtractW,  & FlattenPositionht, 1, Positionht, 2 &  ;

 MidParent

MidParent::usage 
"MidParentu gives the matrix of midparental frequencies, uiuj2";

MidParentu : OuterPlus, u, u 2;
 MigrateExact

MigrateExact::usage 
"MigrateExact,s,m implements migration from a source
population s;  can be any valid representation of a
population. MigrateExact1,…,m implements migration
along a linear cline. The option FixedEnds0, 1 allows
fixed endpoints. Where individuals are involved, each
has an independent probability of migrating; for a single
population, the parameter m is now the number of individuals
immigrating from the source population, and must be an
integer no greater than the population size. FixedEnds
must now specify a source with given HaploidFrequencies
or DiploidFrequencies.";

OptionsMigrateExact  FixedEnds  , ;
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MigrateExactpr : NeutralRepresentations, u, n,pr : NeutralRepresentationss, us, ns, m, optsRule :
prDivideZero1  mn   m ns s, 1  mn  m ns,
DivideZero1  mn u   m ns us s, 1  mn   m ns s,1  mn  m ns;

MigrateExactpr : FrequencyRepresentations, n,pr : PopulationRepresentationss, ns, m, optsRule :
prDivideZero1  mn   mns s, 1  mn  m ns, 1  mn  m ns;

MigrateExactir : IndividualRepresentations, n,fr : FrequencyRepresentationss, ns, NmInteger, optsRule :
ModulenStay  RandomRealBinomialDistributionn, 1 

Nm

n
, np,

np 
irMuddleJoinMakeIndividualsfrs, ns, Nm 1,

RandomSetnStay, , nStay  Nm;
IfMatchQir, HaploidIndividuals  OddQnStay  Nm,
HaploidIndividualsDropnp1, 1, np2  1, np;

MigrateExact : pr : NeutralRepresentations,  .., m,
optsRule :
Modulepp, os,

os  FixedEnds . opts . OptionsMigrateExact;
Ifos 1    os 1  , os 1  First;
Ifos1    os1  , os1  Last;

pp  PrependAppend, Lastos, Firstos;
pp  pp . NeutralRepresentations, u, n  n , n  u, n;
prDivideZero1, 3, DivideZero2, 1, 3 & DropDrop1  mpp  m

2
RotateLeftpp  RotateRightpp, 1, 1;

MigrateExact : pr : FrequencyRepresentations,  .., m,
optsRule :
Modulepp, os,

os  FixedEnds . opts . OptionsMigrateExact;
Ifos 1    os 1  , os 1  First;
Ifos1    os1  , os1  Last;

pp  PrependAppend, Lastos, Firstos;
pp  pp . FrequencyRepresentations, n  n , n;
prDivideZero1, 2, 2 & DropDrop1  mpp  m

2
RotateLeftpp  RotateRightpp, 1, 1;
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MigrateExact : ir : IndividualRepresentations,  .., m,
opts :
Modulepp, os, nd  Length, j, res, mig, migleft, migright,

leftFree, rightFree, leftImm, rightImm, npp, np,
hQ  MatchQir, HaploidIndividuals,
os  FixedEnds . opts . OptionsMigrateExact;
leftFree  os 1    os 1  ;
rightFree  os1    os1  ;
pp   . ir, n  ;
npp  Table

res  RandomSetRandomRealBinomialDistributionLengthppj,1  m, ppj;
mig  TakeAwayppj, res;
migleft 

RandomSetRandomRealBinomialDistributionLengthmig, 1

2
, mig;

migright  TakeAwaymig, migleft;migleft, res, migright, j, nd  Transpose;
leftImm  IfleftFree, npp1, 1,

MakeIndividualsos1, Lengthnpp1, 11;
rightImm  IfrightFree, npp3, 1,

MakeIndividualsos1, Lengthnpp3, 11;
npp  ReplacePartReplacePartnpp, leftImm, 3, 1, rightImm,1, 1;
IfhQ OddQLength, irDropMuddle, 1, Length  1,

irMuddle, Length & 
ApplyJoin, RotateLeftnpp1, npp2, RotateRightnpp3 

Transpose, 1;
 Mutate

Mutate::usage 
"Mutate,,,… mutates with probability  from 0 to 1,
and  from 1 to 0. CompiledTrue is much faster. When
applied to FrequencyRepresentations, uses MutationMatrix
to store the transformation matrix. For the symmetric
model,MutateSymmetricHaploidFrequencies,, should
be used, because mutation rates must be the same across loci.";

OptionsMutate  Compiled  False;
MutategList, mrList, optsRule :
IfCompiled . opts . OptionsMutate,
MutateCompiledHaploidIndividualsg, mr,
MapThreadIfRandomReal  21  1, 1  1, 1 &, g, mr;

MutateHaploidIndividuals, n, mrList, optsRule :
HaploidIndividualsMutate, mr, opts &  , n;
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MutateAlleleFrequenciesp, n, mrList, optsRule :
AlleleFrequencies
IfCompiled . opts . OptionsMutate,
MutateCompiledAlleleFrequenciesp, mr,
Moduletmr  Transposemr,
p1  tmr1  tmr2  tmr1, n;

MutateHaploidFrequencies, n, mrList, optsRule :
HaploidFrequenciesConstructMutateMatrixmr, Log2, Length, opts.
, n;

MutateSymmetricHaploidFrequencies, n, mrList, optsRule :
SymmetricHaploidFrequencies
ConstructMutateMatrixmr, Length  1, opts,
NumericalModel  SymmetricHaploidFrequencies., n;

MutateSymmetricNeutralHaploidFrequencies, n, mrList, optsRule :
0;

 MutateCompiled

MutateCompiled::usage 
"MutateCompiledHaploidFrequenciesSubscriptBoxp,0,
…,…,,,… alters haploid genotype frequencies to
allow for mutation.
MutateCompiledSymmetricHaploidFrequenciesp0,…,,
applies to the symmetric model; similarly for
SymmetricNeutralFrequencies. These versions use
ConstructMutateMatrix to store a large matrix.
MutateCompiledAlleleFrequenciesp1,…,,,… applies
to allele frequencies.
MutateCompiledHaploidIndividuals0,1,…,,,…
mutates a genotype 0,1,… with probability  from 0 to
1, and  from 1 to 0. For short genomes, MutateCompiled
is faster than using Mutate…,CompiledTrue, because
there is no need to check options.";

MutateCompiledHaploidIndividuals 
Compileg, Integer, 1, mr, Real, 2,
Modulej, TableIfRandomReal  mrj, gj  1, 1  gj, gj,j, Lengthg, j, Integer;

MutateCompiledAlleleFrequencies 
Compilep, Real, 1, mr, Real, 2,
Moduletmr  Transposemr,
p1  tmr1  tmr2  tmr1;

MutateCompiledHaploidFrequencies, mr, optsRule :
ConstructMutateMatrixmr, Log2, Length, opts, Compiled  True.;

MutateCompiledSymmetricHaploidFrequencies, mr :
ConstructMutateMatrixmr, Length  1, Compiled  True,
NumericalModel  SymmetricHaploidFrequencies.;
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Mutation

Mutation::usage 
"Mutation,,… is an option for NewGametes which specifies
mutation at rate  from 0 to 1, and  from 1 to 0.
Mutation,… is shorthand for a rate  in each
direction. Mutation, or  specifies the same
rates at all loci.";

 NetRecombinationr1, r2, r3, … gives the
net recombination rate across a linear genetic map

NetRecombination::usage 
"NetRecombinationr1,r2,r3,… gives the net recombination
rate across a linear genetic map";

NetRecombination : 0;
NetRecombinationr, s : s  NetRecombinationr1  2s;

 NeutralRepresentations

NeutralRepresentations::usage 
"NeutralRepresentations is a pattern which matches
SymmetricNeutralHaploidFrequencies
SymmetricNeutralDiploidFrequencies.";

NeutralRepresentations  SymmetricNeutralHaploidFrequencies 
SymmetricNeutralDiploidFrequencies;

 NewGametes

NewGametes::usage 
"NewGametes gives the haploid population after meiosis; 

must represent a diploid population, or a list of diploid
populations. By default, deme size is doubled.
NewGametes,W does the same, but assuming fitness

function W. DemeSize fn,W allows for changes in deme

size, to 2fn,W. LligamSubscriptBox\r\,\1,\\\\\
\\\\\\\ \\\\\\\\\
\\\2\\\\,SubscriptBox\r\,\2,\\\\\
\\\\\\\ \\\\\\\\\ \\\3\\\\,… can
be used to specify a linear genetic map, where appropriate.
RandomDriftTrue samples haploid gametes from the diploid
population; does not apply to symmetric or individual
representations. TruncationSelectionTrue applies with

individual representations, and takes the fn,W individuals
with highest W as parents. Gametes are then sampled
randomly from these parents, so not all the chosen parents
may actually reproduce. Mutation,,… allows for
mutation at rate  from allele 0 to 1, and  from 1 to 0.";

OptionsNewGametes  Lligam  False, Mutation  None, DemeSize  1 &,
RandomDrift  False, TruncationSelection  False;
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NewGametes::badN  "New deme size `1` is greater than original size `2`";

NewGametesAlleleFrequenciesp, n, optsRule :
NewGametesAlleleFrequenciesp, n, 1, Array0 &, Lengthp &, opts;

NewGametespr : DiploidRepresentations, n, optsRule :
NewGametespr, n, 1 &, opts;

NewGametesAlleleFrequenciesp, n, W, optsRule :
Modulef  DemeSize . opts . OptionsNewGametes, ww  Wp,
rd  RandomDrift . opts . OptionsNewGametes, pn,
mut  Mutation . opts . OptionsNewGametes,
f  f . r, , ,   ExponentialFr, , , ;
pn  AlleleFrequenciesp 1  1  p ww2

ww1 , 2fn, ww1;
Ifrd, pn  RandomDriftpn, pn2;
Ifmut  None,
pn,

Mutatepn, ConstructMutateListmut, Lengthpn, opts;
NewGametesDiploidFrequencies, n, W, optsRule :

Modulef  DemeSize . opts . OptionsNewGametes,
wb  MeanWDiploidFrequencies, n, W, opts,
rd  RandomDrift . opts . OptionsNewGametes, hn,
mut  Mutation . opts . OptionsNewGametes,
f  f . r, , ,   ExponentialFr, , , ;
hn  HaploidFrequenciesIfLength  0, ,

If1  ,,
Plus  Plus  GameteTableLog2, Length, W, opts  wb,

2fn, wb;
Ifrd, hn  RandomDrifthn, hn2;
Ifmut  None,
hn,
Mutatehn, ConstructMutateListmut, Log2, Length, opts;
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NewGametesSymmetricDiploidFrequencies, n, W, optsRule :
Modulef  DemeSize . opts . OptionsNewGametes,
wb  MeanWSymmetricDiploidFrequencies, n, W, opts,
mut  Mutation . opts . OptionsNewGametes,
ng, nn,
f  f . r, , ,   ExponentialFr, , , ;
nn  2fn, wb;
IfLength  0,
SymmetricHaploidFrequencies, nn,
If1  ,
SymmetricHaploidFrequencies, nn,
ng  SymmetricHaploidFrequencies
Plus 
Plus  GameteTableLength  1, W,

NumericalModel  SymmetricDiploidFrequencies  wb, nn;
Ifmut  None,
ng,
Mutateng, mut .   , , opts;

NewGametesSymmetricNeutralDiploidFrequencies, u, n, W,
optsRule :
Modulef  DemeSize . opts . OptionsNewGametes,
wb  MeanWSymmetricNeutralDiploidFrequencies, n, W, opts,
gt, n, nu,
f  f . r, , ,   ExponentialFr, , , ;
SymmetricNeutralHaploidFrequenciesIfLength  0, ,
If1  ,,
gt  GameteTableLength  1, W,
NumericalModel  SymmetricNeutralDiploidFrequencies;

n  Plus  Plus  gt ;
nu  Plus  Plus  gt  u;n
wb

, DivideZeronu, n,
2fn, wb;
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NewGametes : DiploidIndividuals, n, W, optsRule :
Modulef  DemeSize . opts . OptionsNewGametes,
wb  MeanW, W, opts, wl, newN, rl, ht, tp, np, ss,
ts  TruncationSelection . opts . OptionsNewGametes,
mut  Mutation . opts . OptionsNewGametes,
wl  IfListQW,
ht  HaploidTypesLength1, 1, opts;ExtractW,  & FlattenPositionht, 1, Positionht, 2 &  ,
W   &  ;

f  f . r, , ,   ExponentialFr, , , ;
newN  2Roundfn, wb;
rl  Ifts,
IfnewN  n,
MessageNewGametes::badN, newN, n; newN  n;

ss  Transposewl, Rangen;
tp  SortwlnewN; np  Selectss, 1  tp &;
np  Joinnp, RandomSetnewN  Lengthnp,

Selectss, 1  tp &;
MuddleLast  np,
RandomListnewN, wl

Plus  wl
;

Ifmut  None,
HaploidIndividualsRandomFamily, opts &  rl, newN,
HaploidIndividuals
MutateCompiledHaploidIndividualsRandomFamily, opts,

ConstructMutateListmut, Length1, 1 &  rl, newN;
 NonNeutralRepresentations

NonNeutralRepresentations::usage 
"NonNeutralRepresentations is a pattern which matches any
valid representation except NeutralRepresentations.";

NonNeutralRepresentations 
HaploidFrequencies  DiploidFrequencies  AlleleFrequencies 
SymmetricHaploidFrequencies  SymmetricDiploidFrequencies 
HaploidIndividuals  DiploidIndividuals;

 NonSymmetricRepresentations

NonSymmetricRepresentations::usage 
"NonSymmetricRepresentations is a pattern which matches any
valid representation except SymmetricRepresentations or
AlleleFrequencies.";

NonSymmetricRepresentations 
HaploidFrequencies  DiploidFrequencies  HaploidIndividuals 
DiploidIndividuals;
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 NumberOfGenes

NumberOfGenes::usage 
"NumberOfGenes gives the number of genes, where  represents
a population. Also applies to a list of 's, representing
a cline.";

NumberOfGenes::noIndividuals  "No individuals in this population";

NumberOfGenespr : PopulationRepresentations, n,  :
NumberOfGenespr, n;

NumberOfGenespr : PopulationRepresentations,  :
Switchpr,
HaploidFrequencies  DiploidFrequencies,
Log2, Length,
AlleleFrequencies,
Length,
SymmetricHaploidFrequencies  SymmetricDiploidFrequencies,
Length  1,
SymmetricNeutralHaploidFrequencies 
SymmetricNeutralDiploidFrequencies,
Length1  1,
HaploidIndividuals,
If  , MessageNumberOfGenes::noIndividuals, Length1,
DiploidIndividuals,
If  , MessageNumberOfGenes::noIndividuals, Length1, 1;

 NumericalModel

NumericalModel::usage 
"NumericalModel is an option which determines how a population
is represented. Possible values are any
PopulationRepresentations";

NumericalModel::badSetting  "Invalid setting `1` for NumericalModel";

 Parents

Parents::usage 

"ParentsP returns the parents of each individual in the
pedigree. P must be a SparseArray.";

ParentsPSparseArray :
Partition
1, 2 & 
DropArrayRulesP . x  2  Sequencex  2, x  2 , 1,

2;
 PopulationRepresentations

PopulationRepresentations::usage 
"PopulationRepresentations is a pattern which matches any
valid representation of a population.";
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PopulationRepresentations 
HaploidFrequencies  DiploidFrequencies  AlleleFrequencies 
SymmetricHaploidFrequencies  SymmetricDiploidFrequencies 
SymmetricNeutralHaploidFrequencies 
SymmetricNeutralDiploidFrequencies  HaploidIndividuals 
DiploidIndividuals;

 PowerF

PowerF::usage 

"PowerFr,,n,W is the function rSuperscriptBoxn,1  
W

. DemeSizePowerFr,, can be passed to compiled

versions of IterateExact and StoreExact. PowerFn,0,1n,W
represents a fixed number n. PowerFr,,,n,W
represents the generalised form rSuperscriptBoxn,1  
W

Expn. PowerFr…jn,W is the same as PowerFr…n,W.";

PowerFr, , n, wb : rn1wb;

PowerFr, , , n, wb : rn1wbExpn;
PowerFr, , n, wb : rn1wb;

PowerFr, , , n, wb : rn1wbExpn;
 MigrationOrder

MigrationOrder::usage 
"MigrationOrder is a option for IterateExact which determines
the order of the life cycle. Can take values UMS, MUS, or USM,";

 UMS

UMS::usage 
"UMS is a setting for MigrationOrder, which represents the
order random unionmigrationselectionmeiosis in IterateExact.";

 MUS

MUS::usage 
"MUS is a setting for MigrationOrder, which represents the
order migrationrandom unionselectionmeiosis in IterateExact.";

 USM

USM::usage 
"USM is a setting for MigrationOrder, which represents the
order random unionselectionmigrationmeiosis in IterateExact.";

 RandomDrift

RandomDrift::usage 
"RandomDrift,n gives the random frequencies generated by
sampling n individuals from the genotype or allele
frequencies . CompiledTrue uses compiled code. Deme
size is changed to n. RandomDrift, makes no change. ";
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RandomDrift::symmetric 
"Random drift is not allowed under the symmetric model";

RandomDrift::individuals 
"RandomDrift does not apply to populations of individuals.";

RandomDrift : PopulationRepresentations,  ..., nList :
MapThreadRandomDrift1, 2 &, , n;

RandomDriftpr : PopulationRepresentations, n,  :
pr, n;

RandomDriftpr : IndividualRepresentations, n,  :MessageRandomDrift::individuals; pr, n;
RandomDriftpr : SymmetricRepresentations, n,  :MessageRandomDrift::symmetric; pr, n;
RandomDriftAlleleFrequenciesp, n, ns :

Modulensr  Max1, Roundns,
AlleleFrequenciesLastRandomMultinomialnsr, 1  , Nnsr &  p,
ns;

RandomDriftHaploidFrequencies, n, ns :
Modulensr  Max1, Roundns,
HaploidFrequenciesRandomMultinomialnsr,  Nnsr, ns;

RandomDriftDiploidFrequencies, n, ns :
Modulensr  Max1, Roundns,
DiploidFrequencies
PartitionRandomMultinomialnsr, Flatten, Length Nnsr, ns;

 RandomFamily[p1,
 p2] gives a random offspring from a cross between genotypes p1, p2.

RandomFamily::usage 
"RandomFamilyp gives a haploid offspring from the diploid
parent p. RandomFamilyp1,p2 gives a random diploid
offspring from a cross between diploid genotypes p1, p2.
RandomFamilyp1,p2,n generates n such offspring.
Linkager12,r23,… allows for linkage.
SegregationRatio0.6,0.7,… allows for a biased segregation
at each locus; the proportion of alleles derived from the
first genome in the diploid is given.";

OptionsRandomFamily  Lligam  False, SegregationRatio  False;
RandomFamilypList, nInteger, optsRule :
TableRandomFamilyp, opts, n;

RandomFamilyp1List, p2List : RandomFamilyp1, RandomFamilyp2;
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RandomFamilyp1List, p2List, optsRule :RandomFamilyp1,
opts . Lligam  xList, yList  Lligam  x,SegregationRatio  xList, yList  SegregationRatio  x,

RandomFamilyp2,
opts . Lligam  xList, yList  Lligam  y,SegregationRatio  xList, yList  SegregationRatio  y;

RandomFamilyh1List, h2List, optsRule :

Module
rl  Lligam . opts . OptionsRandomFamily,
sr  SegregationRatio . opts . OptionsRandomFamily,
x, y, tss  Transposeh1, h2, j,
Ifrl  False,
Ifsr  False, sr  Table1

2
, Lengthh1;

MapThread1IfRandomReal  2, 1, 2 &,Transposeh1, h2, sr,
x  RandomRealInteger, 1, 2; y  tss1, x;
DoIfRandomReal  rlj, x  Ifx  1, 2, 1;
AppendToy, tssj  1, x, j, Lengthrl; y;

 SegregationRatio is an option for RandomFamily that specifies the probability that

the allele from the first genome in the diploid is transmitted. SegregationRatio0.6, 0.7, … specifies different ratios for each locus;

SegregationRatio
1

2
, the default, specifies the same ratio at all loci.

SegregationRatio::usage 
"SegregationRatio is an option for RandomFamily that specifies
the probability that the allele from the first genome in
the diploid is transmitted. SegregationRatio0.6,0.7,…
specifies different ratios for each locus.
SegregationRatio0.6,0.7,…,0.8,… allows different

ratios in the two parents. SegregationRatio
1

2
, the

default, specifies the same ratio at all loci.";

 SortByClass is an option for HaploidTypes[] and Diploid Types[] which determines the
order of the genotypes.

SortByClass::usage 
"SortByClass is an option for HaploidTypes and Diploid
Types which determines the order of the genotypes.";
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 SparsePedigreeMatrix

SparsePedigreeMatrix::usage

"SparsePedigreeMatrixn gives a random matrix. SparsePedigreeMatrixz,Va
allows for selection according to the infinitesimal model; returns P,z
where z are the trait values amongst offspring; the z must be Real.

SparsePedigreeMatrixp,w takes a list of genotypes p each 0,1,…
and generates P,p according to the fitness function w0,0,1,….";

SparsePedigreeMatrixnInteger :Modulej, p1, p2, tt,
tt  Tablep1  RandomRealInteger, 1, n; p2  RandomRealInteger, 1, n;

Ifp1 p2, j, p1 2, j, p1 1, j, p2  1, j, n;
SparseArrayFlattentt, 1, n, n;

SparsePedigreeMatrixz : Real, v :

Modulen  Lengthz, j, tt, ww  Expz, pars, sd  Sqrtv

2
,

pars  PartitionRandomList2n,
ww

Plusww
, Compiled True, 2;

tt  TableIfparsj, 1 parsj, 2, j, parsj, 1 2,j, parsj, 1 1, j, parsj, 2  1, j, n;SparseArrayFlattentt, 1, n, n,
RandomRealNormalDistribution0, sd, n Meanz & pars;

SparsePedigreeMatrixp : Integer ..., w :

Modulen  Lengthp, j, tt, pars, ww w p,
pars  PartitionRandomList2n,

ww

Plusww
, Compiled True, 2;

tt  TableIfparsj, 1 parsj, 2, j, parsj, 1 2,j, parsj, 1 1, j, parsj, 2  1, j, n;SparseArrayFlattentt, 1, n, n, Mendelp & pars;
 SparsePedigreeMatrixDemes

SparsePedigreeMatrixDemes::usage 
"SparsePedigreeMatrixDemesn,d,m gives a random matrix, with
d demes of size n, and island model migration at rate m.";

SparsePedigreeMatrixDemesnInteger, ndInteger, m :
Modulej, d, jd, p1, p2, tt,
tt  Tablejd  j  d  1n;

p1  RandomRealInteger, d  1n  1, n d;
p2  IfRandomReal  m, RandomRealInteger, 1, n nd,
RandomRealInteger, d  1n  1, n d;

Ifp1  p2, jd, p1  2, jd, p1  1, jd, p2  1, d, nd,j, n;
SparseArrayFlattentt, 2, n nd, n nd;
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 SparsePedigreeMatrixSelfed

SparsePedigreeMatrixSelfed::usage 
"SparsePedigreeMatrixSelfedn, gives a random matrix,
allowing for selfing at a rate . Individuals are selfed
with proability .";

SparsePedigreeMatrixSelfednInteger,  : Modulej, p1, p2, tt,
tt  Tablep1  RandomRealInteger, 1, n;

p2  IfRandomReal  , p1, RandomRealInteger, 1, n;
Ifp1  p2, j, p1  2, j, p1  1, j, p2  1, j, n;

SparseArrayFlattentt, 1, n, n;
 SparsePedigreeMatrixStepping(*TO BE DEFINED*)

SparsePedigreeMatrixDemes::usage 
"SparsePedigreeMatrixDemesn,d,m gives a random matrix, with
d demes of size n, and island model migration at rate m.";

SparsePedigreeMatrixDemesnInteger, ndInteger, m :
Modulej, d, jd, p1, p2, tt,
tt  Tablejd  j  d  1n;

p1  RandomRealInteger, d  1n  1, n d;
p2  IfRandomReal  m, RandomRealInteger, 1, n nd,
RandomRealInteger, d  1n  1, n d;

Ifp1  p2, jd, p1  2, jd, p1  1, jd, p2  1, d, nd,j, n;
SparseArrayFlattentt, 2, n nd, n nd;

 StoreExact

StoreExact::usage 
"StoreExact,0,W,m,t,dt stores results at intervals dt
in t, starting with 0. 0 can represent a single
population or a cline. The options Compiled, FixedEnds,
DemeSize, RandomDrift and MigrationOrder can be used, as
for IterateExact. NumericalModel specifies the representation.
SymmetricClineTrue simulates a symmetric cline more efficiently.";

OptionsStoreExact  SymmetricCline  False, FixedEnds  , ;
StoreExact::usage 
"StoreExact,0,W,m,t,dt stores results at intervals dt
in t, starting with 0. 0 can represent a single
population or a cline. The options Compiled, FixedEnds,
DemeSize and MigrationOrder can be used, as for IterateExact.
NumericalModel specifies the representation. SymmetricClineTrue
simulates a symmetric cline more efficiently.";
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StoreExact, 0 : PopulationRepresentations, , ww, m,t, dt, optsRule :
Modulett  0, fe  FixedEnds . opts . OptionsStoreExact,
0  0;
Whilett  dt  t,
tt  dt  NestIterateExact, ww, m, opts &, tt, dt; tt  dt;
t  NestIterateExact, ww, m, opts &, tt, t  tt;

StoreExact, 0 : PopulationRepresentations,  .., ww, m,t, dt, optsRule :
Modulet, ff, tt  0, nd2  Ceilingnd 2, optsNF,
eQ  EvenQLength0,
sQ  SymmetricCline . opts . OptionsStoreExact,
fe  FixedEnds . opts . OptionsStoreExact, nfe,
optsNF  Sequence  opts . a, FixedEnds  , b : a, b;
0  0;

IfsQ,
nfe  IfeQ, t1, t2 .pr : NeutralRepresentationsList, uList, n 

prReverse, Reverseu, n,pr : NonNeutralRepresentationsList, n  prReverse, n;
ffg : t  Takeg, nd2;
DoubleClineIterateExactt, ww, m, optsNF, FixedEnds  fe1, nfe,
eQ,

ffg : IterateExactg, ww, m, opts;
Whilett  dt  t, tt  dt  Nestff, tt, dt; tt  dt;
t  Nestff, tt, t  tt;

StoreNeutral, ww, m, t, dt, nd, ng, dp, opts :
Modulet, ff, tt  0, nd2  Ceilingnd  1 2, optsNF,

eQ  EvenQnd,
sQ  SymmetricCline . opts . OptionsStoreExact,
fe  FixedEnds . opts . OptionsStoreExact,

optsNF  opts . a, FixedEnds  , b : a, b;
0  InitialiseDemesnd, ng, dp, opts, Neutral  True;

IfsQ,
ffg : t  Takeg, nd2;
DoubleClineIterateNeutralt, ww, m, optsNF,
FixedEnds  fe1, Reverse  IfeQ, g1, g2, eQ,

ffg : IterateNeutralg, ww, m, opts;
Whilett  dt  t, tt  dt  Nestff, tt, dt; tt  dt;
t  Nestff, tt, t  tt;

 StoreResults

StoreResults::usage 
"StoreResultsFalse is an option for GameteTable which
prevents results being stored.";
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 SymmetricCline

SymmetricCline::usage 
"SymmetricCline is an option for StoreExact which allows a
symmetrical cline to be simulated more efficiently.";

 SymmetricDiploidFrequencies

SymmetricDiploidFrequencies::usage 
"SymmetricDiploidFrequenciesSubscriptBox,0, 0,…,…,n
represents a diploid population in which haplotypes with
the same  of '1' alleles are equally frequent. This

allows a diploid population to be repesented by n12
variables, rather than 2

2

.

SymmetricDiploidFrequenciesSubscriptBox,0, 0,…,…
is shorthand for SymmetricDiploidFrequenciesSubscriptBox,0,
0,…,…,1";

SymmetricDiploidFrequenciesList : SymmetricDiploidFrequencies, 1;
 SymmetricHaploidFrequencies

SymmetricHaploidFrequencies::usage 
"SymmetricHaploidFrequencies0,…,n represents a haploid
population in which genotypes with the same  of '1'
alleles are equally frequent. This allows a haploid
population to be repesented by n1 variables, rather than
2n. SymmetricHaploidFrequencies0,… is shorthand for
SymmetricHaploidFrequencies0,…,1";

SymmetricHaploidFrequenciesList : SymmetricHaploidFrequencies, 1;
 SymmetricMeanW

SymmetricMeanW::usage 
"SymmetricMeanWi,j,n,W gives the mean fitness of the diploid
combination i,j, averaging over heterozygosities; there
are n genes. Fitness is Wi,j,h. SymmetricMeanWn,W
gives a table of diploid fitnesses.
SymmetricMeanWn,SubscriptBoxW,0, 0, 0,……… gives
the mean fitness of the diploid combination i,j, averaging
over heterozygosities; there are n genes. Fitness is
tabulated in SubscriptBoxW,0, 0, 0,……….";

SymmetricMeanWnInteger, wtList :
ApplyPlus, wt HeterozygoteBn, 2

SymmetricMeanWiInteger, jInteger, nInteger, wtList :
HeterozygoteBi, j, n.wti  1, j  1;
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SymmetricMeanWiInteger, jInteger, nInteger, W?NotListQ & :
Modulel, hh  HeterozygoteBi, j, n,

Sumhhi  j  2l  1Wi, j, i  j  2l,l, Max0, i  j  n, Mini, j;
SymmetricMeanWnInteger, W?NotListQ &, optsRule :
Modulei, j, TableSymmetricMeanWi, j, n, W, i, 0, n, j, 0, n

 SymmetricNeutralHaploidFrequencies

SymmetricNeutralHaploidFrequencies::usage 
"SymmetricNeutralHaploidFrequencies0,…,u0,…,n represents
a population by the frequency of each genotypic class,
i, and the frequency of a neutral marker within that
class, ui. SymmetricNeutralHaploidFrequencies0,…,u0,…
is shorthand for
SymmetricNeutralHaploidFrequencies0,…,u0,…,1.";

SymmetricNeutralHaploidFrequenciesList :
SymmetricNeutralHaploidFrequencies, 1;

 SymmetricNeutralDiploidFrequencies

SymmetricNeutralDiploidFrequencies::usage 
"SymmetricNeutralDiploidFrequenciesSubscriptBox,0,
0,…,…,SubscriptBoxu,0, 0,…,…,n represents a
diploid population by the frequency of each genotypic
class, SubscriptBox,i, j, and the frequency of a neutral
marker within that class, SubscriptBoxu,i, j.
SymmetricNeutralDiploidFrequenciesSubscriptBox,0,
0,…,…,SubscriptBoxu,0, 0,…,… is shorthand for
SymmetricNeutralDiploidFrequenciesSubscriptBox,0,
0,…,…,SubscriptBoxu,0, 0,…,…,1.";

SymmetricNeutralDiploidFrequenciesList :
SymmetricNeutralDiploidFrequencies, 1;

 SymmetricRepresentations

SymmetricRepresentations::usage 
"SymmetricRepresentations is a pattern which matches any
symmetric representation.";

SymmetricRepresentations 
SymmetricHaploidFrequencies  SymmetricDiploidFrequencies 
SymmetricNeutralHaploidFrequencies 
SymmetricNeutralDiploidFrequencies;
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 TruncationSelection

TruncationSelection::usage 
"TruncationSelectionTrue is an option for SelectionExact
and NewGametes which applies when individuals are selected.
Those individuals with highest 'fitness', W, survive; if

fn,W is larger than deme size, or if no f is specified,
then all individuals survive. If TruncationSelectionFalsethe default, then survival or reproduction occurs
independently with probability W.";
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APPENDIX II: R SCRIPT FOR
SIMULATION AND EXCLUSION

PROBABILITY ANALYSIS
## ## ## ## ## ## ## ## ## ## ## ## ## ##

#
# THIS SCRIPT ALLOWS YOU TO CREATE POPULATIONS IN R AND

DEFINE EXCLUSION PROBABILITIES
#

## ## ## ## ## ## ## ## ## ## ## ## ## ##
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rmlistls
for Numbloci in 10:20 

for Numballeles in 5:10 
for M in 1:10 

Numbind1000
NumbOffspring100

xseqfrom100,to1002Numballeles2,by2
 Having this will correspond to sampling dinucleotide microsatellites,
 which is pretty common in nature.

x2seqfrom98,to1002Numballeles,by2
 This is just to get nicer histograms later

 Defining the allele frequency distribution 

indc1:Numballeles
Bernatchezvector
totsumindNumballeles1ind
BernatchezindindNumballeles1indtot
Distributvector"list",3
Distribut1revBernatchezsumBernatchez
 Distribution by BernatchezDuchesne
Distribut2dgeom0:Numballeles1,0.3
 Geometric Distribution

Distribut3rep1Numballeles,Numballeles
 Uniform Distribution

 Creating Adult genotypes from a specific allele frequency distribution 

Adultgenotypesvector
for i in 1:Numbloci 
AdultgenotypescbindAdultgenotypes,samplex,2Numbind,replaceT,
probDistribut1
reproductivesampleseq1,2Numbind,by2,NumbOffspring2
 This allows us to define the index of individuals that will
 produce offspring

Since this is ramdom sampling, there's no selection going on (Just drift!). Moreover, since replacement = F by default in
R, in these simulations we are allowing each adult to produce one descendant only. We could get a specific variance in
family size by using a specific probability vector.
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gametesvector"list",NumbOffspring2
for i in 1:NumbOffspring2 

nourbindAdultgenotypesreproductivei,,
Adultgenotypesreproductivei1,
indexsample1:2,10,replaceT
 This is Binomial sampling of gametes i.e. Linkage Equilibrium

for j in 1:Numbloci 
gametesijnouindexj,j

indexgametsample1:200
Trueoffspringgenotypesvector
Falseoffspringgenotypesvector
 True Offspring comes from the Adult population 

for i in 1:NumbOffspring2 
TrueoffspringgenotypesrbindTrueoffspringgenotypes,
gametesindexgameti
 False Offspring comes from a new population,
 now with a different allele frequency distribution 

for i in 1:Numbloci 
FalseoffspringgenotypescbindFalseoffspringgenotypes,
samplex,2NumbindNumbOffspring,replaceT,probDistribut3
OffspringrbindTrueoffspringgenotypes,Falseoffspringgenotypes
 Like this we place both true and false offspring into one Table

With the following bit of code we create a 2-column genotype table for both parents and adults
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migvector
mig2vector
Offspring1colvector
Adultgenotypes1colvector
for j in seq1,2Numbind,by2 

migOffspringj,
mig2Adultgenotypesj,
for k in 1:Numbloci 

migappendmig,Offspringj1,k,2k1
mig2appendmig2,Adultgenotypesj1,k,2k1

Offspring1colrbindOffspring1col,mig
rownamesOffspring1colpaste"Offspring",
seq1,lengthOffspring1col,1,sep""
colnamesOffspring1colpaste"Locus",
repseq1,Numbloci,each2,sep""
Adultgenotypes1colrbindAdultgenotypes1col,mig2
rownamesAdultgenotypes1colpaste"Adult",
seq1,lengthAdultgenotypes1col,1,sep""
colnamesAdultgenotypes1colpaste"Locus",
repseq1,Numbloci,each2,sep""

resumpaste"Offspring1col",Numbloci,"loci",
Numballeles,"allelesrun",M,".txt",sep""
write.tableOffspring1col, fileresum,sep"\t"
resumpaste"Adultgenotypes1col",Numbloci,"loci",
Numballeles,"allelesrun",M,".txt",sep""
write.tableAdultgenotypes1col, fileresum,sep"\t"
AdultsAdultgenotypes1col
OffspringOffspring1col

Now we begin with the calcualtion of Pr(Z) and Pr(delta)

massivefunctionmassive
AAT40cAdults,a,Adults,a1
locusas.data.frametableAAT40
Frequencylocus,2sumlocus,2
Datacbindlocus, Frequency

 Thus, we have a dataframe with 3 columns that includes:
 AllelesAbs.freqRel.freq

if Data1,10 DataData1, else DataData
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 In case there's null allele  0
n1lengthAAT402

 Total number of individuals sampled  assuming diploidy

A1Data,32n1
A2Data,3^2n1
AAA1A2
AAAcbindData,AA

 Thus, we're adding a column that includes the 2zz2
 Now we do exactly the same for the offspring

AAT402cOffspring,a,Offspring,a1
locus2as.data.frametableAAT402
Frequency2locus2,2sumlocus2,2
Data2cbindlocus2, Frequency2
if Data21,10 Data2Data21, else Data2Data2
n2lengthAAT4022
B1Data2,32n2
B2Data2,3^2n2
BBB1B2
BBBcbindData2,BB

 Now we focus on the alleles that are found both in the parentals
 and in the offspring.
 It is important to note that alleles occurring in only one sample
 i.e. adults or juveniles will not be included in the calculation
 because the product equals zero.

AAA1matchBBB,1,AAA,1
gwhichAAA10
g1AAA1g
AAA1AAAg1,
BBB1matchAAA,1,BBB,1
jwhichBBB10
j1BBB1j
BBB1BBBj1,

 So we take the product and sum it

ABAAA1,4BBB1,4
ABsumAB

 Now we make two columns with the different allele combinations
 and get rid of the 'homozygotes' using the line:
 whichAgenotypes,1Agenotypes,2.
 Please, notice that now we are dealing with the shared alleles
 from parents AAA1 and offspring BB1

yAAA1,1
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Agenotypesexpand.gridy,y
remove2whichAgenotypes,1Agenotypes,2
AgenotypesAgenotypesremove2,
zBBB1,1
Bgenotypesexpand.gridz,z
remove2whichBgenotypes,1Bgenotypes,2
BgenotypesBgenotypesremove2,

 This allows us to calculate the genotype frequencies in Adults
 and Offspring

onematchAgenotypes,1,AAA1,1
twomatchAgenotypes,2,AAA1,1
oneAAA1one,3

 Like this we get a vector that includes allele frequencies instead
 of allele names

twoAAA1two,3
 Like this we get a vector that includes allele frequencies instead
 of allele names, but for the second column

Agfreqonetwon12

onebmatchBgenotypes,1,BBB1,1
twobmatchBgenotypes,2,BBB1,1
onebBBB1oneb,3
twobBBB1twob,3
Ogfreqonebtwobn22

GfreqsAgfreqOgfreq
GfreqsfloorGfreqs
GfreqsumGfreqs2
PrBABGfreqn1n2

 So this is the probability of a randomly selected dyad
 from a particular locus sharing an allele

nompaste"PrZ",Numbloci,"loci",
Numballeles,"allelesrun",M,".txt",sep""
write.tablePrB,filenom,row.namesFALSE,col.namesF,
sep"\t",appendT

alncolAdults
C1fora in seq1,al,2 lapplya,massive
nompaste"PrZ",Numbloci,"loci",

Numballeles,"allelesrun",M,".txt",sep""
PrBs  read.tablenom, headerF, sep"\t",

na.strings"NA", dec".", strip.whiteTRUE

62 MSc thesis - APPENDICES.nb

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


nn1lengthAdults,1
nn2lengthOffspring,1
Prdelta  prodPrBs,1
ExpectedNumberofFalsePairs  Prdeltann1nn2
pvalue1cbindExpectedNumberofFalsePairs,Prdelta
nom2paste"FpairsPrdelta",Numbloci,"loci",

Numballeles,"alleles.txt",sep""
write.tablepvalue1,filenom2,row.namesFALSE,sep"\t",appendT

Begin dyad sorting. Note that allele sizes must be the same order of magnitude

AnamesrownamesAdultgenotypes1col
OnamesrownamesOffspring1col
categoriesncolAdults
AindividslengthAdults,1
OindividslengthOffspring,1
A1:Aindivids
O1:Oindivids
Gexpand.gridA,O
AGG,1
AOG,2
AdsAdultsAG,
OffsOffspringAO,
IdnamesAAnamesAG
IdnamesOOnamesAO
write.tableIdnamesA,file"IdnamesA.txt",

row.namesFALSE,col.namesF,sep"\t",appendF
write.tableIdnamesO,file"IdnamesO.txt",

row.namesFALSE,col.namesF,sep"\t",appendF
IdnamesAread.table"IdnamesA.txt",headerF,

sep"\t",na.strings"NA",dec".",strip.whiteTRUE
IdnamesOread.table"IdnamesO.txt",headerF,

sep"\t",na.strings"NA",dec".",strip.whiteTRUE
NamescbindIdnamesA,IdnamesO
matchesfunctionmatches 
AAds,zOffs,z
BAds,z1Offs,z1
CAds,zOffs,z1
DAds,z1Offs,z
fABCD
ff^2
fcbindz,f
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write.tablef,file"Sort.txt",row.namesFALSE,
col.namesF,sep"\t",appendT
zncolAds
C1forz in 2uniqueround1:z221 lapplyz,matches
Observedread.table"Sort.txt",headerF,sep"\t",

na.strings"NA",dec".",strip.whiteTRUE
auniqueObserved,1
UNULL

for i in a uObservedObserved,1i,2 UcbindU,u
alengthU,1
stuffrowSumsU
SortedcbindNames,stuff
matcheswhichSorted,30
Actualsortstuff
IDSwhichstuff0
PAdultsAdsIDS,
POffspringOffsIDS,
nputlengthmatches
PutativepairsSortedmatches,
PhiExpectedNumberofFalsePairsnput
if Phi1 Phi1
Phicbind"Phi",Phi
nom3paste"Phi",Numbloci,"locirun",M,".txt",sep""
write.tablePhi,filenom3,row.namesFALSE,col.namesF,
sep"\t",appendT
unlink"Sort.txt"
unlink"IdnamesA.txt"
unlink"IdnamesO.txt"

This will end the exclusion probability calculations

Using a Mathematica notebook
Mathematica has a front end and a kernel, which work independently: one handles formatting, the other the calculations.
If the kernel crashes, the calculations are lost; if the front end crashes, the current notebook is lost.  Save regularly!
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To find out about a function, use ?name, and then type [enter].  For example:

? IterateCline

Information::notfound: Symbol IterateCline not found. 

This  also  works  for  inbuilt  functions.  You  can  find  out  more  about  them  using  the  Help...  menu;  packages  are
documented under Add-Ons.

Cells are structured by headings, subheadings etc.  Double click on the right-hand brackets to open & close them.

To find out where do you have to install your add-ons or where is your Base Directory you type:

$UserBaseDirectory This is where you have your Mathematica packages
C:\Documents and Settings\Phyllamphion\Datos de programa\Mathematica

To find out where does Mathematica send the files containing the genotypes from simulated individuals you type:

Directory This is where the files are going to
C:\Documents and Settings\Phyllamphion\Mis documentos
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