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ABSTRACT: Magnetic braking is a long-established application of Lenz’s law. A 

rigorous analysis of the laws governing this problem involves solving Maxwell’s 

equations in a time-dependent situation. Approximate models have been developed to 

describe different experimental results related to this phenomenon. In this paper we 

present a new method for the analysis of the magnetic braking using a magnet fixed to the 

glider of an air track. The forces acting on the glider, a result of the eddy currents, can be 

easily observed and measured. As a consequence of the air track inclination, the glider 

accelerates at the beginning, although it asymptotically tends towards a uniform 

rectilinear movement characterized by a terminal speed. This speed depends on the 

interaction between the magnetic field and the conductivity properties of the air track. 

Compared with previous related approaches, in our experimental setup the magnet fixed 

to the glider produces a magnetic braking force which acts continuously, rather than over 

a short period of time. The experimental results satisfactorily concur with the theoretical 

models adapted to this configuration. 
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I. INTRODUCTION 

When a conductor material is under the effect of a changing magnetic flux, eddy 

currents are induced in the conductor. This change in the flux can be produced either 

because the conductor is moving in a region where there is a magnetic flux or, similarly, 

because the magnet is moving. The action of the magnetic field on the induced currents 

produces a braking force. A rigorous analysis of the laws governing the problem entails 

the solving of the Maxwell equations in a time-dependent situation. This depends on the 

problem geometry and it is usually difficult to solve.  

Widerick et al.1 present a very simple model for the calculation of the magnetic 

drag force on a moving metal disc in the air gap between the rectangular-shaped pole 

pieces of an electromagnet. Likewise, Cadwell2 analyzes the effect of magnetic damping 

on an aluminium plate moving on a horizontal air track as it passes between the poles of a 

horseshoe magnet. In both cases, it is assumed that the induced current density in the 

magnet “footprint” is uniform and equal to )( BvJ  . Both papers present a simple 

model and fail when trying to explain the influence of the magnet size or its position with 

respect to the motion direction. Heald3 replaces the simplification of considering the eddy 

current density as a constant with a more realistic approach which also takes into account 

the contribution of the electric field generated by the charge separation: )( BvEJ  . 

If we select the reference system in such a way that OX is the direction of the motion, 

then the Coulomb sources of E are the surface charges, within the conducting sheet, on 

planes perpendicular to the OX axis. Therefore the magnetic braking force depends on 

the aspect ratio, A=a/b=length/width, of the magnet footprint. Marcuso et al.4,5 apply a 

method of successive approximations to solve the Maxwell equations, in the case of a 
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conducting disk rotating in the externally applied non-uniform magnetic field. The 

experimental results satisfactorily concur with the theory except for the area near the disk 

border. Aguirregabiria et al.6 study the same problem in a quasi-static approximation, 

emphasizing the role played by the charge distributions induced in the disk. In this paper, 

cases of both infinite and finite radii are considered in order to analyse the border effects. 

Similarly, Lee and Park7,8 present the model and experimental results for a rotating disk 

with a rectangular-shaped electromagnet. They consider the boundary conditions of the 

rotating disk by using the mapping and image method techniques. Salzman et al.9, in a 

pedagogical manner, reveal the solution to the problem of a very large plane conducting 

sheet passing between circular magnet poles. They emphasize the importance of 

considering the induced electric field, as is pointed out by Gauthier10. Related studies 

concerning damping forces due to eddy currents on oscillating systems11,12, or those 

forces present when a magnet moves through a pipe13,14 , serve to illustrate different 

aspects of the same main problem. In all the cited papers the conductor passes between 

the poles of a fixed magnet. Subsequently, the effects can only be measured over a short 

period of time which can be repeated periodically in the case where the conductor is a 

rotating disk.  

In this paper we present a new experimental setup where the magnet is fixed to a 

glider sliding on an air track. From the physical point of view, the movement of the 

magnet close to a resting conductor is equivalent to the movement of the conductor close 

to a fixed magnet. Then, the breaking force is produced as a consequence of the regions 

of non-unifrmity of the magnetic field at the edges of the magnet footprint. The materials 

needed (air track, glider, magnet...) are commonplace laboratory materials for first year 
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undergraduate Physics courses. With this configuration, the magnetic damping force does 

not only act over a short period of time, but also acts continuously during the whole 

movement. Moreover, the influence of the aspect ratio of the rectangular magnet footprint 

can be easily analysed by rotating the magnet orientation on the glider. However, one 

drawback of this device, in contrast with the fixed electromagnet, is that the magnetic 

field is not uniform in the footprint. Then it is not possible to obtain an analytical 

expression for the damping force, having to perform the integrals numerically.  

In previous studies, experimental results have been achieved using different 

methods: a commercial Pasco motion sensor1,2, a photoresistor connected to a 

microcomputer5, by taking measurements of the braking torque through reading the 

output voltage of the load cell7,8. Another method has been to use an oscilloscope14 and 

computer to record the voltage pulse11-13. We propose to take measurements of the 

position as a function of time by means of digital image capture which has proved to be 

an effective method15,16,17. This method can be automated by using image recognition 

techniques18 which have been peviously implemented to analyse non-magnetic 

damping19. We used standard linear correlation20 as a basis for the detection technique. 

The experimental results are compared with the theoretical motion equations solved by 

applying the theoretical model. Furthermore, the experimental setup has been designed to 

show the relevance of the induced electric field. 
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II. THEORETICAL ANALYSIS  

According to Faraday’s law, when a magnet fixed to the glider is moving on an 

air track, the changing magnetic flux, , through the aluminium track produces an 

electromotive force, , equal to the time rate of change in the magnetic flux given by 

 


 AB d
dt

d

dt

d
,  (1) 

Figure 1 shows the experimental design. In an initial approximation it can be considered 

that the magnetic field is perpendicular to the conducting plane: zB ˆB . The reference 

system moves with the glider, so that the magnet is at rest and the electromotive force 

produces a current density inside the conducting air track that is represented by 

)( BvEJ  , (2) 

 

               

(a) (b) 

Figure 1. (a) Experimental setup: a magnet is fixed to a glider sliding on an air track. (b) Cross section of 

the air track showing the reference system and the magnetic field pattern. 
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Figure 2. Charge distribution and electric field induced in the conductor. 

 

where  is the conductivity of the air track material, E is the electric field of Coulomb 

charge induced within the conductor, xv ˆv  is the velocity of the conducting sheet 

relative to the glider, and B is the magnetic field measured at rest. Some authors1,2 only 

consider the second term of Eq. (2). However, the magnitude of the first term can be as 

large as the second one and, since these take opposite directions, the net current density 

could even be zero. This would occur in the limiting case of a very long and thin magnet 

(as applied to the motion direction).  

 From the microscopic point of view21, the magnetic field, acting on the moving 

charges of the conductor produces a force )(q BvF   in these. This force causes the 

charges of different signs to separate. This separation of charges will produce an electric 

field pointing upward that will tend to decrease the total force on the given charge 

moving in the conductor material (see Fig. 2). As can be seen in Fig. 3, the magnetic field 

in the footprint region is not uniform. As such, the exact solution would be arrived at 

through solving the Maxwell equations. However, the calculation of the electric field can 

be simplified when taking a uniform magnetic field Bavg, along the OZ axis, which is the 

average magnetic field obtained from the experimental data measured at positions on a 
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hypothetical three-dimensional grid (see Eq. (9) and Fig. 3 for more details). To obtain 

this electric field, let us consider the surface charge density as the product of the 

polarization and the unit outward normal vector3,8   uBv ˆ0s  . Hence, we will have 

avg0s vB  and avg0s vB   at the planes perpendicular to the OY axis and at 

y=+a/2 and y=a/2, respectively.  

 The electric field intensity E is represented by yxE


yx EE  , where Ex and Ey 

are obtained using Coulomb’s law. As pointed out in Refs. 3,7 and 8, although the 

thickness of the conductor (in the z direction in our reference system) is small compared 

with the a, b dimensions, the net result is such that the interior electric field of the 

capacitor-like surface charges avg0s vB    at x=b/2 extend indefinitely in the z 

direction, and from x=b/2 to x=+b/2 in the x direction. On this charged surface, the 

linear infinitesimal element of length d in the OX direction and extended along the OZ 

direction can be assumed. 

 If + 0 avgdρ =-ε vB dξl  and 0 avgdρ =+ε vB dξl  are defined as the line charge densities 

at the points (,a/2) and (,-a/2) respectively, the electric field intensity at the point 

P(x,y,0) takes the form, from Coulomb’s law21, 

+r r l+ +

2 2

0 + 0 0 0+

ˆ ˆdρ dρ dρdρ

2πε r 2πε r 2πε 2πεr r

l l l   

 

      
r r r r

E , (3) 

where r  has coordinates )
2

a
y,x( r  as shown in Fig. 2. By performing the 

corresponding integration, the following is obtained 
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The magnetic braking force is the component in the direction opposite to the 

velocity of the Lorentz force: 

    Bd)BvE(dF avgyxBJ . (5) 

In this expression the current density and the magnetic field are functions of the 

position and the total force is performed by integration. The magnetic field has the OZ 

direction and, although we have considered it as uniform and equal to the average 

magnetic field Bavg, to obtain the current density, we take now into account that it 

depends on position. As the vertical component of the electric field is proportional to the 

velocity and to Bavg, this can be written in the form: )y,x,a,A(fBvE avgy  , where A=b/a 

is the aspect ratio of the magnet footprint. The corresponding reaction force acting on the 

glider is   



  



 









 avg

2/b

2/b

2/a

2/a

2/

2/avg

d))y,x,a,A(f1(BBv

dxdydz))y,x,a,A(f1(BBvF
 (6) 

may be rewritten as 

F mαv  , (7) 

where  is a coefficient that depends on the geometry of the magnet footprint as well as 

on the magnetic field 
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avg
. (8) 

This result is similar to that obtained by Heald2. However, in that article the 

conductor is a rotating disk, but they consider the magnet in the OY axis and then the 

velocity in the OX direction. On the other hand, Lee and Park7,8 take into account the size 

of the magnet footprint, and therefore the x and y components of the velocity, depending 

on the position. As a consequence they have four charged surfaces and the problem takes 

longer to solve, but not more complicated. 

In this approach we have not taken into account the influence of the magnetic 

field created by the induced currents. This can be done if the velocity is small compared 

with some critical velocity, as has been stated by Wiederick1 (with our data vc14 m/s); 

Aguirregabiria 6 find a similar expression. On his hand, Lee and Park7, determine the 

limit through comparison with the experiment, vc25 m/s. All these results are far from 

our values for the velocity that are of the order of 1 m/s. Therefore the simplification is 

justified.  

We have numerically performed the integration given by Eq. (8). For each one of 

the points on the three-dimensional grid where we have measured the magnetic field B, 

we have also calculated the function f(A,a,x,y) given by Eq. (4a). The result of the 

integrand of Eq. (8) has been multiplied by the volume element, and then we have added 

all the terms obtained in this manner. 
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III. EXPERIMENT DESIGN 

To validate the theoretical expectations we have measured the effect of the 

braking force on the movement of a glider that has a magnet fixed to it. The system 

glider-magnet moves on an inclined frictionless air track. Subsequently, the acceleration 

of the system depends on the tangential component of the weight and the braking force 

given by Eq. (7).  

The air track is a commercial PASCO Scientific® that has a length of 2 m, and is 

made of aluminium with a thickness of 3 mm (see Fig. 1). The electric conductivity is  

3.1·107 (m)-1 (supplied by the manufacturer). The glider has a mass of 190 g and the 

magnet is fixed to it in such a way that the magnetic field lines pass through the glider  

(2 mm thick) and arrive at the conducting sheet in a perpendicular manner. The air track 

forms an angle of approximately 0.5º with the horizontal.  

The commercial magnet, made of NdFeB, has a parallelepipedic shape of 

dimensions 420.5 cm3 and a mass of 25 g. The magnetic poles are on the 4x2 cm2 

surfaces. The resultant magnetic field in the conducting sheet (the air track) is not 

homogeneous and tends to zero out of the magnet footprint. It has been measured by 

means of a gauss-meter FW-Bell-4048 at 66 points of the magnet footprint at 3 different 

planes parallel to the magnet surface, 22 points in each plane. These planes are located at 

a distance of 2 mm from the magnet surface (this is the distance at which the outer 

surface of the air track is located), at 3.5 mm (in the middle of the air track) and, at 5 mm 

(the inner part of the air track). In Fig. 3, we can see a three dimensional representation of 

the magnetic field as it has been measured. The average magnetic field has been obtained 

through the expression 
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iiavg B
1

B 


  . (9) 

where  is the total volume of the region of the conducting sheet, under the magnet 

footprint; i represents the volume of each element by which we have divided this 

region. The value of the force given by Eq. (7) depends on  [Eq. (8)], which can be 

numerically obtained using  

 

Figure 3. Magnetic field at three different distances from the magnet pole: (a) 2 mm, (b) 3.5 mm, and  

(b) 5 mm. 

avg

i i

σB
α= B (1-f(A,a,x,y))Δτ

m
 , (10) 

with m the total mass (glider, magnet and the counterweight placed to maintain a 

balanced glider mass). 

The measurements of the glider position were obtained by means of the video-

analysis technique15-19. The digital camera used in the experiments was a Panasonic NV-

DS15EG, with an exposure time of 1/750 s and with a rate of 25 frames/s, providing a 

time resolution of 0.04 s. The camera was placed with its axis perpendicular to the 
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movement direction, at a distance of 1.5 m. The video system was PAL (phase alternation 

by line) which can produce 720x576 pixel images. As most of the image recognition 

techniques require the use of matrices, the dimensions of which are integer powers of 2, 

we have taken 512x512 pixel windows for the information analysis. The conversion 

factor from pixels to cm is obtained from Fig. 1, being 19pixels = 2cm. 

 

IV. RESULTS AND DISCUSSION 

In order to test our theoretical model, we have performed experimental 

measurements of the braking magnetic force by looking at its effect on the movement of 

the glider. Let us consider the glider sliding without friction on an inclined plane that 

makes an angle  with the horizontal under the effect of the braking force given by Eq. 

(7). If we take the OX axis along the movement direction, the motion equation, given by 

Newton’s second law of motion, is 

dt

dx
msinmg

dt

xd
m

2

2

  (11) 

with g being the gravity acceleration. The solution of the above equation can be written in 

the following way  

     tvt exp1vv
1

xx TT00 


  (12) 

where x0 is the initial position, v0 is the initial velocity, and vT is the terminal velocity 

given by  






sin g
vT . (13) 
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From the experimental results of the position as a function of time, the distance 

travelled x=x-x0 was fitted to the theoretical expression 

   tvt exp1Dx T , (14) 

where the fitting parameters are the damping coefficient, , the terminal velocity, vT, and 

parameter D, which is related to the initial velocity, vo= vT+D. The corresponding  

equation for the velocity as a function of time 

Tv)t exp(Dv   , (15) 

Figure 4 displays the experimental results and the corresponding numerical fits to 

Eq. (14) for three different configurations. The  parameter allows us to check the 

theoretical model, by comparing the calculated and experimental fitted results (Table I). 

Graphs in Fig. 4 have been ordered following increasing  values. The same magnet has 

been employed in Fig. 4(a) and (c) for two different aspect ratios of the magnet footprint, 

A=2 (horizontal) and A=0.5 (vertical), respectively. The average magnetic field is B=66 

mT in both cases and the mass m=0.246 kg. As expected, the greater A is, the lower the 

value for the coefficient . Consequently, a lower damping of the movement is obtained. 

In order to verify the importance of the electric field contribution to the drag force 

we have used a longer magnet also made of NdFeB that has a parallelepipedic shape of 

dimensions 820.5 cm3, so its footprint aspect ratio is A=4. Figure 4(b) represents both 

the experimental and the fitted results together. The average magnetic field is  

B=77 mT and the mass m= 0.361 kg. In this case, the magnet footprint is double the size 

of the other footprint represented in Fig. 4(a). However, the expected values for the 

damping coefficient are of the same order. This result is confirmed by the experiment.  
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 Si definimos una constante de tiempo tau=alfa^-1 resulta que tau=(1.610.05)s 

para la fig4a, (1.160.03)s para la nueva fig4b y  (0.900.02)s  para la fig4c. Si 

calculamos 100*v(t=tau)/vT resulta 67.3%, 69.9% y 71.0% para fig4a,b y c, 

respectivamente. Si calculamos 100*v(t=2tau)/vT resulta 87.55%, 88.9% y 89.3%. Para 

100*v(t=3tau)/vT resulta 95.6%, 95.9% y 96.1%. Si nos fijamos en un determinado t, por 

ejemplo para t=2s, entonces 100*v(t=2s)/vT queda 74.2%, 85,4%, 91.4%. Ahora la 

diferencia es mucho más significativa. Para  100*v(t=3s)/vT queda 86.1%, 93.8%, 97.2%. 

Es decir, que en el tercer caso en 3 segundo se alcanza el 97.2% de la velocidad terminal. 

In Table I a summary of the most important parameters entailed in this experience 

can be observed. The experimental parameters E and vT, and their uncertainties, were 

obtained using the standard least-squares method. The comparison between the 

theoretical expectations and the experimental results allow us to state that the proposed 

theoretical model is a good match for this experience. We can compare the velocity at 

time t=3s with the terminal velocity. From Eq. 15, with the results showed  in Table I, we 

obtain that the velocity is 86.1%, 93.8% and 97.2% of the corresponding terminal 

velocity. This can be assessed by visual observation, whereas Fig 4(a) is still non linear, 

Fig. 4(c) shows an almost linear behaviour. From these results we can conclude that the 

used air track is long enough to reach velocities very close to the terminal velocity, as 

least in the b) and c) configurations. 
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Figure 4. Representation of the displacement (x) vs. time for three different configurations:  

(a)  A=2 , (b) A=4, and (c) A=0.5. 

 

A a (m) T (s-1) E (s-1) Discrepance (%)

2 0.02 0.60 0.62 3.33 

4 0.02 0.87 0.86 1.15 

0.5 0.04 1.12 1.11 0.89 

Table I. Numerical results for the configurations analyzed in Fig. 4. The theoretical parameter T is 

obtained from Eq. (10). The experimental parameter E is obtained from the data fit given by  

Eq. (14). 
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V. CONCLUSIONS. 

As we have seen, our experimental setup allows students to investigate magnetic 

damping using the conventional materials found in laboratories for first year 

undergraduate Physics courses. Compared with previous related approaches, in our case a 

magnet is fixed to a glider that slides on an air track, producing a magnetic braking force 

that acts continuously. The results satisfactorily concur with the theoretical predictions. 

Furthermore, the relevance of the electric field induced in the conductor is demonstrated. 

The present study sheds new light on several physics experiences. In particular, we are 

currently designing a new electromagnetically-damped, coupled oscillator system using 

this methodology. 
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