Estudio por envejecimiento acelerado del uso de secativo de cobalto:

Aplicación en la pintura al óleo actual

Alumna: Amparo Torrente Casado.

Directoras y codirectoras:

- -Rosario Llamas Pacheco
- -Marisa Martínez Bazán
- -Eva Pérez Marín.

Tesina de investigación del máster en Ciencia y Restauración del Patrimonio Histórico-

Universidad Politécnica de Valencia.

Diciembre de 2009.

CONTENIDOS

<u>Págs</u>
1Introducción4-5
1.1Objetivos6
1.2Metodología7
2 Breve apunte histórico acerca de los secativos en la aplicación artística
2.1 Caracterización del secativo: propiedades y características
2.2 Interacción con el óleo
2.3 Características y composición de los distintos secativos actuales11
2.4 Uso según fabricantes
3 El contacto con el artista: aproximación a la opinión sobre el secativo
4 Diseño y envejecimiento acelerado de ensayos adaptado al estudio de secativos 14
4.1 Diseño y realización14,15
4.2 Distribución de los ensayos y su justificación
4.3 Documentación fotográfica comparativa 16
4.4 Fechas de aplicación y tiempos de secado17-19
4.5 Espectrofotometría inicial de los ensayos
4.6 Determinación de los ciclos de humedad y temperatura
4.7 Determinación del ciclo de envejecimiento UV
5Sondeo de opinión21-22
5.1 Recogida de datos en tablas
5.2 Recogida de datos en gráficas
6Resultados colorimétricos del envejecimiento de las muestras23
7Valoración de los resultados23
7.1 Resultados del sondeo
7.2 Resultados colorimétricos tras envejecimiento24-29
8Conclusiones
Bibliografía32-33
Anove 24.00

RESUMEN

Palabras clave: Secativo de cobalto, pintura al óleo, radiación UV.

Esta investigación se basa en el estudio de la aplicación de diferentes proporciones de secativo de cobalto en la pintura al óleo. Es un procedimiento especialmente realizado por artistas que participan en concursos de pintura rápida y necesitan el secado rápido de sus obras.

La experimentación que aquí se realiza, tiene la intención de analizar el secativo y sus alteraciones cromáticas y dimensionales a través de una serie de muestras de ensayo elaboradas al óleo, simulando la obra de este tipo de pintores. Además, previamente se ha recogido en encuestas la opinión directa de los artistas.

Así, se ha determinado, que manteniendo constante la cantidad de óleo y variando la proporción de secativo, sin excedernos de 1ml, la pintura no se altera en unas condiciones de envejecimiento acelerado (de exposición a radiación UV durante 900 horas o en unas de temperatura de 10 a 50º C y humedad del 60 al 90% durante 500 horas).

A través de la microfotografía y de los resultados colorimétricos se ha concluido que: la radiación UV decolora, incidiendo más en los azules; y que el envejecimiento por humedad y temperatura oscurece ligeramente las capas pictóricas, provocando estrés en la capa de preparación y en zonas de tensión cercanas a la pintura.

ABSTRACT

Keywords: Cobalt siccative, oil painting, UV radiation.

This research deals with the study of application of different proportions of cobalt siccative in oil paintings. This procedure is specially used by artists that take part in contests of fast painting and need the dried fast of his works.

The experimentation carried out here is intended to analyze the secativo, and the color and dimensional changes through a series of test with the oil painting, simulating the work of such authors. Besides, the direct opinion of the artists has been collected previously in surveys.

Maintaining a stable amount of oil painting and varying the proportion of siccative, not exceeding 1ml, painting is not altered in conditions of exposure to UV radiation for 900 hours or a temperature of 10 to 50 $^{\circ}$ C and humidity of 60 to 90 % for 500 hours.

Microphotography study and color results have concluded that: UV radiation discolor the painting, affecting more to blue, whereas the aging by humidity and temperature darkens slightly the painting, provoking stress in the layer of preparation and near tension zones.

1.-INTRODUCCIÓN

El estudio que aquí tratamos surge a partir de la problemática que supone el empleo inadecuado de secativos catalizadores del secado en obras al óleo, y más concretamente, tras observar personalmente el uso desmesurado de este producto en certámenes de pintura rápida al aire libre.

Los concursos de pintura rápida, tienen la finalidad de como su propio nombre indica, pintar una obra en pocas horas. Gracias a los secativos, los pintores que se han visto cómodos haciendo uso del óleo, pueden conseguir que un cuadro que se secaba en 2-3 semanas al tacto, ahora se seque en cuestión de horas... Los fabricantes realmente no lo dejan totalmente claro en la información del producto, ya que lo único que indican es que se use en muy pequeña proporción, pero habría que cuantificar esa "pequeña proporción".

Lo que en este estudio se plantea, es establecer directamente preguntando a los artistas de hoy en día, cuál o cuáles son los secativos más empleados, para poder así, a partir de la marca o casa comercial y su metodología, poder imitar la técnica y poder ver las repercusiones a corto plazo que tienen estos tipos de catalizadores del secado.

Los ensayos realizados fueron sometidos a envejecimiento por radiación UV, humedad y temperatura, para poder simular qué podía ocurrir atendiendo a proporciones, influencia según color, forma de aplicación...

Es importante destacar que vamos a diferenciar el color al óleo de forma aislada, es decir sin aditivos y en combinación con aditivos (secativo), porque así podremos determinar cuál o cuales son los que más reaccionan en su interacción, cuales son los que más diferencia ofrecen con el envejecimiento acelerado, e intentar razonar el porqué.

Sabemos que el envejecimiento de cada material y de cada obra en la realidad es distinto a lo que podemos simular con la cámara de envejecimiento, pero el tiempo de la investigación no nos permite evidentemente obtener conclusiones con el secado natural.

El estado de la investigación en el que este tema se encuentra, es que poco se sabe acerca de la aplicación al campo artístico del uso de los secativos actuales, ya que principalmente tienen un uso industrial y los artistas lo han llevado a su campo.

Los secativos no sólo se usan en pinturas, sino también en barnices o tintas, con lo que es un campo muy extenso a la hora de estudiar, pero nuestra investigación quedará acotada en torno al empleo exclusivo en la técnica al óleo de 10 años hasta la actualidad.

Se sabe mucho acerca de cómo es el proceso de secado del óleo y la cuantificación de sus componentes a partir de técnicas de identificación de manera aislada como la cromatografía de gases o la microscopía electrónica de transmisión, muy interesante ésta última para estudiar componentes minoritarios como pueden ser los secativos que tratamos en este estudio. Acerca del empleo de esta última técnica, Margarita San Andrés Moya hace una revisión sobre el mismo en la investigación sobre: "Los secativos en la pintura: materiales utilizados. Posibilidades de su estudio por microscopia electrónica de transmisión".

En estas actas se pone de manifiesto uno de los más recientes estudios acerca del tema que aquí tratamos, pero dejando de lado, o al menos sólo mencionando que los secativos que se emplean en la actualidad son los compuestos de cobalto (linoleato de cobalto), el secativo de Haarlem y el de Courtrai, que contienen resinatos de manganeso y plomo.

Ya en 1940, Andersson y Nylen hicieron un estudio comparando la diferencia de habilidad catalizadora entre el plomo, el cobalto y el manganeso²

¹SAN ANDRÉS MOYA, Margarita et al. *Actas del XI Congreso de Conservación y Restauración de bienes culturales* celebrado los días 3, 4 ,5 y 6 de Octubre de 1996. [CD-ROM] Castellón: Diputación Provincial de Castellón, 1996. ISBN 84-86895-79-0.

² Citado en : TUMOSA, Charles S. Y MECKLENGBURG, Marion. "The influence of lead ions on the drying of oils". En: Reviews in conservation. 2005, № 6.

El secativo de Cobalto, que es el más conocido, seca en superficie, y por tanto, en teoría ocasionaría mayores craquelados, arrugas, e incluso amarilleamiento, sobre todo en aquellas capas gruesas en las que la parte del óleo inferior mordiente mueva de abajo a arriba y los secativos con contenido en plomo secan en profundidad, pero son más tóxicos.

Respecto al amarilleamiento de las pinturas de base oleosa, hay una referencia en un artículo de Studies in Conservation de 2001, en el que se describe que "el nivel de amarilleamiento, está relacionado con el secado y parece estar afectado por el incremento de la temperatura, la adición de secativos o linoleatos³.

Pero quizás el estudio más interesante acerca del secativo de cobalto es una patente publicada en inglés en el año 1944, por John Rutherford⁴, que nos da a entender que este producto se vuelve insoluble con el óleo al contactar con el aire y a la vez, al añadirse en grandes cantidades y que cambia de un color violeta hacia un verde y finalmente hacia un marrón en su estado de degradación. La insolubilidad con el óleo tiene por tanto íntima relación con el cambio de color.

Este comentario nos induciría a concluir que es necesario conservar bien cerrado el bote de secativo porque actúa en contacto con el aire desde el primer momento en que lo abrimos y que en cuestión de dos años aproximadamente desde que está abierto, el producto pierde sus propiedades, es decir, caduca.

Con respecto al secado, se podría decir que son los iones metálicos, contenidos en el secativo de cobalto, los que atendiendo a sus reacciones con el oxígeno, permiten que la pintura se convierta en más o menos porosa y permeable al secado. Y por otro lado, aclarar que los tubos al óleo y cada color en concreto, posee una cantidad de aceite, por lo general de linaza, que es el que gracias a los dobles enlaces que desarrollan sus ácidos grasos insaturados, permiten actuar con el medio y secarse.

Lo realmente importante de este tema que nos ocupa, es que desde el punto de vista del restaurador o conservador el secativo una vez incorporado al óleo no es reversible, no se puede recuperar ni siquiera eliminar, no es como un barniz que puedas quitar con disolventes, con lo que la importancia está en ser aplicado correctamente, por lo que habría que informar al artista o aficionado desde el primer momento.

El secativo se incorpora y forma parte definitiva del aglutinante, y del pigmento, al igual que podría actuar la esencia de trementina o aguarrás.

⁴ RUTHERFORD, J. T. Cobalt Siccatives, 1944. Patente (2 hojas). Consultado en: http://www.google.es/patents?hl=es&lr=&vid=USPAT2360283&id=JvNyAAAAEBAJ&oi=fnd&dq=COBALT+SICCATIVES.+Rutherford. Disponible el 09 de Marzo de 2009.

³ MALLÉGOL, Jacky; LEMAIRE, Jacques y GARDETTE Jean-Luc. "Yellowing of oil based paints". En: Studies in conservation. Volumen 46. 2001. № 2.

1.1.-OBJETIVOS

Los objetivos propuestos en esta investigación son:

- -Definir qué es un secativo para pintura al óleo, analizando sus funciones físico-químicas. Sabemos que los tubos comerciales al óleo llevan una proporción de aceites secantes que le ayudan a igualar su tiempo de secado, atendiendo al tipo de pigmento, pero aquí vamos a tratar el secativo entendido como el aditivo que se añade no en su proceso de fabricación, sino a posteriori por el artista.
- -Estudiar el proceso de secado natural del óleo y la incorporación del secativo en dicho proceso, puesto que no sólo es necesario conocer cómo seca el óleo aisladamente, sino también cuando añadimos este aditivo (secativo de cobalto), mientras la pintura está mordiente en la paleta. Estudiaremos tanto el secativo mezclado en la paleta, como aplicado de forma superficial a modo de barniz, sobre una capa mordiente de óleo, para obtener diferentes resultados.
- -Cuantificar el uso de los secativos en el óleo actual. ¿Cuántos artistas lo usan del total de los encuestados y cómo lo usan? De la manera más directa posible nos acercaremos a los artistas, realizando encuestas tanto en directo como a través del e-mail, y a través de unas respuestas comunes se elaborarán las probetas de este estudio. Este objetivo quizás es el punto clave para esta tesina, puesto que de la opinión de los artistas, se reproduce una forma de trabajar y un uso de materiales que nos derivan a unas conclusiones que finalmente pueden resultar útiles para los mismos.
- -Describir los secativos más usados en la actualidad en el campo artístico, en los últimos 10 años (secativo de Cobalto, secativo de Courtrai, secativo de Haarlem). El secativo de Cobalto, y más en concreto el de la casa Titán® es el que más se comercializa en las tiendas de Bellas Artes de España, por tanto es el que nos interesa. Desde el punto de vista de un artista, si tuviéramos que decidirnos por uno otro, elegiríamos en función de factores como si queremos que seque en profundidad o no nuestra pintura, en función del color, porque el propio secativo no es incoloro, sino que aporta una ligera coloración...
- -Estudiar y determinar el efecto del exceso de secativo en la obra, partiendo de un rango de proporciones que son las que nos marca el fabricante como adecuadas, y por otro lado, usaremos una proporción fuera de ese rango para observar lo que ocurre. En un principio, los fabricantes comentan que una cantidad excesiva puede provocar decoloración y craqueladuras.
- -Hacer accesible a los artistas las conclusiones de este estudio para garantizar el empleo correcto de secativos en su obra presente y futura, haciendo llegar a las personas que contestaron a la encuesta un resumen de este estudio, para que lo tengan en cuenta. La difusión es lo más importante en un trabajo de investigación, y más tratándose de un producto más o menos novedoso y de uso casi exclusivo en certámenes de pintura rápida.

1.2.-METODOLOGÍA

En primer lugar, se realizó un exhaustivo rastreo bibliográfico para determinar en qué punto se encontraba la investigación nacional e internacional sobre el tema. Para ello, revisé bibliotecas, hemerotecas, la red, revistas científicas, actas de congresos...

A continuación, se redactó una encuesta sencilla y con preguntas claves, con la finalidad de que a partir de las respuestas que nos aportaran los artistas, se elaborasen los ensayos experimentales. Las encuestas se realizaron vía Internet y en directo.

Las personas encuestadas por Internet se intentó que fuese gente que se presentara a certámenes de pintura rápida, ya que nos podían aportar mayor información respecto al tema puesto que son los que más utilizan el producto. Dichas encuestas recogen principalmente datos sobre la marca comercial de óleo que emplean, marca comercial de secativo que emplean, tipo de secativo, forma de aplicación, proporción, alteraciones... Para facilitar la búsqueda de información de dichas encuestas, se recogió ésta en una base de datos.

A la par se fue investigando acerca del tema de los secativos en la pintura, con el objetivo de sacar datos o aportaciones nuevas para aplicarlo en los ensayos que se llevaron a cabo posteriormente. La mayor información acerca del empleo del producto se encontró en manuales de pintura y curiosamente en la etiqueta del producto no había prácticamente indicaciones.

En el diseño y elaboración de las muestras de ensayo, se vio por tanto más que necesario diseñar unos recuadros, en los que se fuera aumentando en porcentaje la proporción de secativo, por la misma cantidad de óleo, siguiendo una regla de tres, y sobrepasando la que indican los manuales y fabricantes, para comprobar realmente el efecto de la cantidad arbitraria y excesiva que suelen usar los artistas.

Fue necesario preveer de antemano que las pruebas nos cupiesen en las cámaras de envejecimiento y cuales iban a ser los materiales que simularían la obra real, elegimos el soporte sobre lienzo con preparación comercial, además de la marca de óleo de la casa Titán, de la cual se escogió una gama cromática correspondiente a la paleta básica de un pintor (blanco de titanio, negro marfil, tierra de siena natural, azul cobalto, amarillo de cromo medio y rojo escarlata).

Fue necesario repetir el número de ensayos, para que unos sufriesen un envejecimiento natural y otros el artificial (humedad+temperatura y UVA). Nuestra intención era que una vez sometidos a envejecimiento, los ensayos cambiasen o no: craquelaran, amarilleasen, decolorasen, oscureciesen, ganasen o perdiesen brillo... En definitiva, estudiar los cambios físicos, químicos, combinación de ambos, o resultados positivos como otra opción posible que pudieran sufrir dichos ensayos.

El estudio fotográfico y colorimétrico fue clave también, ya que pretendendíamos ver la evolución y dejar constancia de ello, por tanto las mediciones antes, durante y después eran necesarias. Las fotografías fueron realizadas con cámara digital y luz visible, usando lentes de aproximación, ya que se trataba de áreas pequeñas.

El estudio colorimétrico se realizó mediante el espectrofotómetro Minolta CM-2600d. Cada recuadro se medía tres veces y se obtenía la media y desviación estándar, evitando posibles errores. Se compararon los datos de la medición inicial y final tras el proceso de envejecimiento, para estudiar las diferencias, de manera que las mayores diferencias correspondían a los colores más alterados. Los datos numéricos aportados por el aparato en términos de luminosidad, pureza y tono, se tradujeron e interpretaron en una tabla de equivalencias ya existentes.

2.- BREVE APUNTE HISTÓRICO ACERCA DE LOS SECATIVOS EN LA APLICACIÓN ARTÍSTICA.

Se sabe que los orígenes de la pintura al óleo están en torno a los siglos XV y XVI, e incluso antes, y que por tanto el uso de secativos o secantes fue introducido en ese momento como necesidad.

Sobre el uso de secativos en la pintura de base oleosa hay mucho escrito, y diversos tratados antiguos que lo tratan, sobre todo del uso de litargirio (oxido de Pb), minio, verdigrís, vidrio molido, piedra pómez, huesos calcinados, caparrosa blanca o sulfato de zinc...

Ya en los siglos X-XIII, en el manuscrito de Eraclius, *De Coloribus et Artibus romanorum*, se comentaba que se adicionaba al aceite un secativo a base de blanco de plomo y cal.

Entre los posteriores tratados y manuscritos que nombran los ingredientes antes mencionados, son destacables: el manuscrito de Estrasburgo, el manuscrito de Pierre Lebrun, *Recueil des Essaies des Merveilles de la Peinture*, de 1635; en *arte de la pintura* de Pacheco, de 1649, en el tratado de Palomino, el de Cenino Cennini, etc...).

Todos los aditivos que se mencionan en estas obras, eran pigmentos en sí mismos o cargas inertes, que a la vez se añadían a otro pigmento aglutinado con menor poder secativo, y que de esta forma conseguían secar con más rapidez. Pero del secativo que en este estudio nos ocupamos no se lleva empleando mucho tiempo.

En el siglo XX, los secativos con base de Pb que eran los que hasta entonces se venían utilizando, dejaron paso a las combinaciones de metales (zirconio y calcio, por ejemplo). En el año 1980, el límite de proporción de metal de Pb que establecía el Reino Unido era del 0,06% y en 1987, siete años después, fue completamente eliminado como metal para los secativos. La primera utilización de secativos de Co que se conoce, tuvo lugar en Bélgica en 1852, y en América en 1874.

Los secativos tradicionales (llamados también secativos de Haarlem y Courtrai) han sobrevivido hasta nuestros días, aunque la mayoría de los artistas rechazan su uso y emplean el secativo de cobalto.

2.1- Caracterización del secativo: propiedades y características.

Una vez analizado el contexto histórico, es necesario en primer lugar, definir qué es un secativo y su interacción con el óleo en cuanto al secado.

Hay muchas definiciones de <secativos o secantes>, pero quizás la más completa a mi juicio, y en relación con la pintura al óleo es la que define secativo como "Producto químico que reduce considerablemente la duración de secado de los aceites secantes contenidos en pinturas, barnices y tintas. El secado de los aceites se verifica por absorción de oxígeno. La acción de las sustancias secantes se fundamenta por la transmisión de oxígeno, cuyo proceso se denomina también catalización. Por esta razón, es necesario considerar las combinaciones de aquellos metales que pueden formar mayor número de grados de oxidación. Una clasificación de los metales secantes en cuanto a su efecto secante de mayor a menor reacción sería la siguiente: Co, Mn, Pb, Fe, Ca, Zr, Al, Zn. La finalidad de estos secantes es dar el cambio físico de líquido a sólido en un tiempo razonable. Este cambio es realizado por un mecanismo de reticulación oxidativa, el cual es acelerado por la presencia de un ión metálico presente en los secantes

La composición básica de un secativo es:

<u>Ácido sintético</u> (2 etil hexoico, isononanoico, neodecanoico) + <u>sales metálicas</u> (cobalto, manganeso, calcio, plomo, zirconio, zinc). Disueltos en White Spirit.

⁵ Productos químicos Jela. "Los compuestos del cobalto". *Quiminet*, 08 Marzo 2007 [en línea]. Disponible en: http://www.quiminet.com.mx/ar7/ar %25BE%25F1%251A%25B0%2510%25AC%2500%253E.htm. [Consulta el 09 de Junio de 2009].

El White Spirit sería el estabilizador de los efectos degradantes de esas sales. Por esta razón la proporción del White Spirit o petróleo es del 70-75%.

Por otro lado, Ralph Mayer, en su libro *Materiales y técnicas del arte*⁶, apunta aspectos interesantes en cuanto a la aplicación, como que:

"Como regla general, los secantes resultan mas satisfactorios cuando están disueltos y se añade la solución al aceite o medio definitivo, que cuando se añaden al preparar el medio".

"Los fabricantes de pinturas al óleo para artistas añaden secantes a algunos de los pigmentos de secado lento, pero un fabricante cuidadoso y conocedor de su trabajo reducirá al mínimo estas adiciones, ya que el objetivo no es lograr que todos los colores sequen al mismo tiempo, sino acelerar el proceso de secado de los mas lentos para aproximarlos al resto de la paleta".

"Los secantes tienen su principal aplicación en veladuras y capas finas de pintura".

En referencia a la aplicación otro autor, Antoni Pedrola, en su libro *Materials, procediments i tècniques pictóriques*⁷, anota que:

"Ha de usarse de gota en gota sobre la paleta y ayudarse de la espátula con el color que lo necesite".

Finalmente, en la patente publicada en 1944 por John. Rutherford⁸, se nos comenta un poco la antesala del las alteraciones que pueden provocar los secativos, no sólo en pintura, sino en barnices y tintas oleosas, como comentábamos anteriormente.

De manera aislada, hay que destacar que un ingrediente del secativo (nafteato de cobalto) sufre una degradación o cambio de color al contactar con el aire, que se traduce en una evolución de un violeta oscuro, pasando por un verde, hasta llegar al marrón. Esto ya es de por sí un indicativo de que es un ingrediente que se altera, y que por tanto si lo mezclamos con un óleo, éste se modifica ligeramente hacia los azules.

Además, Rutherford nos comenta que el nafteato de cobalto en su estado de degradación con el aire, cada vez se vuelve más insoluble en adelgazantes de petróleo o en aceites secantes. La recomendación es tener el bote lo más cerrado posible. Por todo esto es quizás por lo que la proporción de sales contenidas en disolvente en un bote de secativo son mínimas. Se necesita una cantidad muy pequeña de ingrediente activo para un fuerte efecto secativo.

El white spirit (disolvente mayoritario del secativo de cobalto) deja un residuo coloreado en una superficie un poco más grande donde lo hemos aplicado. Ese residuo, está compuesto por naftenatos o linoleatos de cobalto que son los responsables del cambio de color, en definitiva.

⁷ PEDROLA, Antoni. *Materiales, procedimientos y técnicas pictóricas*. Barcelona: Ariel. Patrimonio Histórico, 1998. pp.156-157.

⁶ MAYER, Ralph. *Materiales y tecnicas del arte*. Madrid: Hermann Blume Ediciones, 1993.

⁸ RUTHERFORD, J. T. Cobalt Siccatives, 1944. Patente (2 hojas). Consultado en: http://www.google.es/patents?hl=es&lr=&vid=USPAT2360283&id=JvNyAAAAEBAJ&oi=fnd&dq=COBALT+SICCATIVES.+Rutherford. Disponible el 09 de Marzo de 2009.

2.2.-Interacción con el óleo

Por un lado es necesario explicar las fases de secado habitual del óleo y por otro lado, su interacción con el secativo, ya que éste formará parte del anterior.

Secado del óleo

Cuando se pinta al óleo, por lo general las primeras capas se pintan más diluidas con aguarrás o esencia de trementina (aunque hay pintores que pintan directamente del tubo). Esta forma de pintar es la habitual, entendida como graso sobre magro y la que permite más garantías de perdurabilidad. A rasgos generales podemos decir que en un estado inicial, la pintura al óleo seca al tacto en un par de días y aumenta considerablemente de peso y volumen durante los cuatro o cinco primeros días y que tras esos días se va estabilizando ese contacto con el oxígeno y que por tanto va perdiendo peso. Pero sin embargo, el esquema sería distinto si de lo que se trata es que hemos añadido en la paleta ese secativo al óleo y lo aplicamos. El secado tendría lugar en cuestión de horas. La película pesaría mucho y gradualmente o rápidamente (dependiendo de la cantidad de secativo) iría reduciendo el peso.

Lo que nos interesa observar son los cambios dimensionales que puedan surgir en la pintura y analizar qué pueden llegar a causar esos cambios y a qué son debidos.

Si una pintura con el tiempo se vuelve quebradiza es que por lo general el aglutinante, en nuestro caso el óleo, ha perdido sus propiedades o también puede ser debido a la composición del pigmento. Si un color ha amarilleado, también sabemos que es lo que ocurre con la oxidación de los aceites habitualmente.

En definitiva, lo que quiero plantear es que podemos llegar a los mismos resultados negativos con un envejecimiento natural de muchos años y con la aplicación de un secativo en cuestión de horas.

Pero centrémonos en el secado del óleo. Los aceites secantes (linaza, adormidera, nuez, etc.) que contienen los óleos, están compuestos de triglicéridos de ácidos grasos fundamentalmente insaturados, de 18 carbonos con uno, con dos o con tres triples enlaces. Los aceites secantes son aquellos que poseen dobles enlaces. Estos aceites son líquidos viscosos a temperatura ambiente.

La capacidad reactiva del doble enlace es causa de tres procesos:

- -Hidrogenación: Adición de hidrógeno, que los transforma en compuestos saturados, estables y de mayor consistencia (grasas).
- -Oxidación: Que los descompone en compuestos oxigenados de bajo peso molecular.
- -Polimerización: Que los transforma en polímeros de consistencia sólida.

De estas tres fases, hay dos destacables:

1) Oxidación

En esta primera fase se forman puentes peróxido, dando lugar a la formación de enlaces transversales entrecruzados que constituyen redes tridimensionales. El polímero formado se llama linoxina. Durante esa formación de retículas, las mallas se retraen y exudan materias fluidas hacia la superficie o hacia el interior, influyendo sobre la planaridad de la superficie y en sus cualidades ópticas.

El envejecimiento se debe a la hidrólisis particularmente en medio básico, ya que son sensibles a los álcalis, y a la oxidación.

El oxígeno presente en la atmósfera actúa sobre el aceite, secando en dos días al tacto, pero este secado continúa durante años.

2) Polimerización

El aglutinante orgánico (aceite) polimeriza por reacción química y origina un compuesto de mayor tamaño molecular. La película amarillea y se hace más dura y frágil con el tiempo.

Tal y como indica Mauro Matteini, en su libro *La química en la restauración*⁹, y de una forma más desarrollada, el proceso de secado de la pintura al óleo, sería el siguiente:

El aceite de linaza expuesto al aire en una capa muy fina, empieza a absorber lentamente relevantes cantidades de oxígeno, aumentando luego la velocidad hasta adquirir una cantidad de oxígeno igual al 20-30 % de su propio peso, lo que da lugar a la primera fase de secado: oxidación.

(Este proceso de auto oxidación se verifica, en condiciones normales y sin la presencia de catalizadores, durante dos o tres días, y provoca la formación de peróxidos que se originan de la adición de una molécula de oxígeno a los dobles enlaces carbono-carbono, presentes en los ácidos grasos del aceite).

Estas modificaciones producen un fuerte aumento de la viscosidad del empaste, un cambio del índice de refracción y de otras propiedades.

Los grupos peróxidos son muy inestables y se rompen fácilmente, dando lugar a radicales muy reactivos, que provocan la segunda fase: polimerización.

En esta nueva fase, se va formando una estructura molecular reticulada entre cuyas mallas quedan atrapadas algunas fracciones de triglicéridos no oxidados que, por no estar oxidadas, continúan en su estado líquido.

El producto resultante de estas dos fases se llama linoxina.

Envejecimiento y productos de descomposición

El óleo se va volviendo cada vez más sensible a la humedad, ya que los procesos de oxidación y de hidrólisis provocan una ruptura parcial de las mallas del reticulado del polímero, dando así lugar a la formación de radicales de dimensiones menores, hidroxilos y carboxilos.

Secado del óleo en la interacción con el secativo

Los secativos actúan como portadores de oxígeno. El proceso tiene lugar hasta la oxidación de los dobles enlaces reactivos de la película de linoxina que caracteriza la técnica al óleo.

En nuestro caso, el secativo se incorpora a la misma vez que la capa de óleo, por tanto, el secado es una acción conjunta.

2.3.- Características y composición de los distintos secativos actuales.

Explicaremos en este apartado, las principales características del secativo de cobalto, del secativo de Courtrai y del secativo de Haarlem.

2.3.1.-) Secativo de Cobalto

Se trata de una sustancia líquida de color azul violeta y con un olor característico similar al petróleo, por su alto contenido en disolvente. Además, no acelera el secado en profundidad, pero sí en superficie y con una efectividad rápida y uniforme, ya que las sales metálicas que posee en su composición son iones iones metálicos (cobalto, zirconio, zinc y calcio) que reaccionan con el oxígeno.

Está compuesto por:

- 16% de sales.
- 73,5 % de hidrocarburos alifáticos (White Spirit)
- 2,1% de xilol.
- 8,4% de 1, 2, 4 trimetilbenzol.

⁹ MATTEINI, Mauro; MOLES Arcángelo. La química en la restauración. Traducido por Emiliano Bruno. Guipúzcoa: Editorial Nerea, 2001.

2.3.2.-) Secativo de Courtrai

Este otro tipo de secativo, acelera el secado en profundidad, a diferencia del de cobalto, ya que en su composición hay iones metálicos de plomo y manganeso, que reaccionan de forma uniforme en toda la pintura, independientemente del grosor de ésta. En otra época, era conocido por: secativo de plomo y manganeso.

Como variantes de secativo de Courtrai, existen:

Secativo de Courtrai blanco: Es menos efectivo que el oscuro. Está compuesto de zirconio.

Secativo de Courtrai oscuro: Está compuesto de Pb y Mn. Es uno de los secativos más activos, siendo a la vez oxidante y promotor de la polimerización, pero tiene el inconveniente de presentar un tono pardo, correspondiente al manganeso. Por tanto, no afecta a los negros, rojos ni amarillos, pero sí a los blancos de Zn y Ti y a los azules. Produce películas duras y brillantes.

2.3.3.-) Secativo de Haarlem (marca SCHMINCKE®)

-Líquido de color amarillo claro y de olor similar al disolvente. Es más inofensivo que los anteriores. Seca en superficie.

Compuesto por:

-60-70% de White Spirit.

-0.5% de 2-butanonoxime

Como otras marcas de secativo de Haarlem, existen:

Médium secativo Harlem Duroziez®.

Médium inventado por el farmacéutico M. Duroziez. Más que de un secativo, se trata de un médium, pues tarda en secar tres días. Compuesto de resina formofenólica, aceite de linaza y esencia de petróleo. Aumenta la transparencia y el brillo y permite la superposición al toque pasadas unas horas, así como la veladura pasados tres días de secado. Se utiliza puro o diluido al 50% con esencia de petróleo o de trementina. Para los colores poco secantes se añaden dos o tres gotas de secativo Courtrai por cada pellizco de color. Toma agarre a los doce días. Seca en tres días con un acabado brillante.

Por otro lado, haciendo referencia a los secativos de Courtrai y Haarlem, Ralph Mayer¹⁰ comenta que debido a que la gran proporción de resinatos de plomo y manganeso que éstos poseen, todos sus ingredientes acaban volviéndose negros con el tiempo.

Además, comenta que éstos son secativos progresivos, es decir, que su acción continúa después de que la pintura parezca seca al tacto, lo cual provoca craquelados y agrietamientos.

Estos secativos, se componen prioritariamente de materiales inertes, con un pequeño porcentaje de sales metálicas. Lo que viene a decir, que se necesita una cantidad muy pequeña de ingrediente activo para un fuerte efecto secativo.

2.4.-Uso según varios fabricantes:

Proporción del secativo de cobalto que recomiendan los fabricantes y la bibliografía específica.

• Entre el 3 y el 6 % de linoleato de Co, según Ralph Mayer.

El linoleato de cobalto, se obtiene cociendo sales de cobalto en aceite de linaza.

- 0,5 al 5% en Titán®, según Ana Calvo¹¹
- **0,3**% como proporción efectiva y **0,5-1**% como proporción comercial, en un artículo de Marion Mecklenburg y Charles Tumosa¹²

_

¹⁰ MAYER, R.,op.cit.pág: 187.

¹¹ CALVO, Ana. Conservación y restauración. Materiales, técnicas y procedimientos. De la A a la Z. Barcelona: Ediciones del Serbal, 2003.

 0,05-2% en peso según la patente de John T. Rutherford "Cobalt siccatives" de Octubre de 1944.

La casa comercial **Lukas®** no nos indica en la ficha de seguridad (ver anexo) del producto ningún dato acerca de la cantidad o rango de proporción en el que hay que usarlo.

3.- EL CONTACTO CON EL ARTISTA: APROXIMACIÓN A LA OPINIÓN SOBRE EL SECATIVO.

La finalidad primera de este sondeo estadístico, es clave para esta investigación, ya que se trata de demostrar cómo en la actualidad vienen usando los pintores el secativo de cobalto, la forma de utilización de dicho producto, y a partir de ahí, poder obtener unas conclusiones por medio de la simulación de obra sometida a envejecimiento.

Esta encuesta, que ha sido pasada a un total de 50 personas, fue diseñada en primer lugar con la intención de ser exclusivamente contestada por Internet, vía e-mail a artistas pintores al óleo, ya fueran autodidactas o con estudios, siendo localizados éstos en páginas exclusivas de peñas de pintores que se dedican a ir de concurso en concurso de pintura rápida los fines de semana.

Debido a la escasa participación de la gente por esta vía, se recurrió a la encuesta en persona, dirigiéndome a estudiantes de Bellas Artes de la Universidad Politécnica de Valencia.

En este estudio, se han incluido tanto los que han usado secativo de Co, como los que no, puesto que también son representativos.

El contacto con el artista ha sido en general bastante aceptable por su parte, ya que la mayor parte de las personas a las que preguntaba para poder realizarle la encuesta, cedían y aceptaban. La mayor parte de los estudiantes eran de los primeros años de la licenciatura y no sabían mucho respecto al tema, pero algunos aportaban alguna información extra, que personalmente desconocía como por ejemplo, el empleo de secativo en las tintas de grabado. En general, comentan que usan más Liquin® que secativo de cobalto, permitiéndoles crear veladuras bastante empastadas y que secan rápido. Al parecer, según la opinión de los alumnos, los profesores no les informan sobre dicho producto, en relación a sus consecuencias negativas, para que lo empleen lo menos posible.

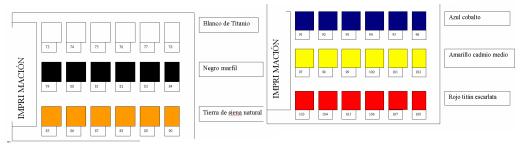
13

¹² TUMOSA, Charles S.; MECKLENGBURG, Marion. "The influence of lead ions on the drying of oils". En:*Reviews in conservation*. №6, 2005. ISSN: 1605-8410.

4.- DISEÑO Y ENVEJECIMIENTO ACELERADO DE ENSAYOS ADAPTADOS AL ESTUDIO DEL SECATIVO DE COBALTO.


4.1.- Diseño y realización de los ensayos.

El objetivo de este ensayo es llegar a obtener una serie de conclusiones acerca de la influencia de distintas proporciones de secativo mezcladas en la misma cantidad de óleo, y en distintos tonos correspondientes a la paleta básica de un pintor, ya que poco se sabe acerca del tema, además de ver de forma aislada la influencia de los tres tipos de envejecimiento (natural, humedad + temperatura y UV), siguiendo el mismo patrón de preparación de los ensayos, para poder comparar dichos envejecimientos.


El proceso de experimentación siguió el siguiente orden: diseño y la realización de los ensayos experimentales, distribución de las proporciones aplicadas y su justificación, documentación fotográfica inicial, espectrofotometría inicial de las probetas, determinación de los ciclos y parámetros de las cámaras de envejecimiento, introducción de las probetas en cámara, extracción de las mismas tras envejecimiento y estudio posterior tras envejecimiento.

Se prepararon un total de 6 lienzos distintos, para tres tipos de envejecimiento:

- -Envejecimiento por estrés climático, con ciclos de humedad y temperatura.
- -Natural. A condiciones normales de temperatura y humedad. Sin someterlo a ninguna alteración.
- -Luz ultravioleta.

Ensayos sometidos a humedad y temperatura

Ensayos sin envejecimiento acelerado

Ensayos sometidos a UV

Fig. 1: Esquema de los distintos ensayos realizados.

Tras realizar los modelos, se contabilizaron un total de 36 recuadros distintos para cada ensayo.. Los lienzos tienen dos tamaños (en los más grandes, los recuadros tienen unas dimensiones de 4x4 cm, y en los lienzos pequeños de 2x2 cm).

Forma de aplicación: En primer lugar, se tomó un pincel plano para óleo de cerdas gruesas, con la intención de aplicar la pintura con un empaste medio y siguiendo una cierta textura en los ensayos que posteriormente fueron sometidos a humedad y temperatura.

Es importante aclarar la idea de que se trata de lienzos comerciales, para que de alguna manera se asemejen a lo que actualmente se emplea. Estos lienzos son de la casa Taker, y son 100% algodón, con una preparación tradicional pintados a mano.

Se dio una primera capa con óleo, pero sin cargar el pincel, a modo de imprimación de la superficie, y posteriormente se cargó el pincel de materia y se extendió hasta la altura de la cinta de carrocero, que sirvió para hacer de tope indicador de hasta dónde quería llegar con el grosor de la pintura, además de reservar la zona de alrededor. El óleo no estaba rebajado con aguarrás ni similar, sino extraído directamente del tubo y mezclado insistentemente con el secativo. La forma de aplicar la pintura en todos los recuadros no fue la misma, ya que los dos lienzos más pequeños destinados a la cámara de envejecimiento por UVA, estaban realizados con una textura lisa, conseguida mediante espátula.

En cada recuadro se utilizó una proporción de secativo (0%, 0,5%, 2,5%,5%,10% a modo de barniz) en 10 ml. de óleo. El secativo, al aplicarlo de forma de barniz, sin control alguno sobre proporción y sobre el óleo lógicamente húmedo (recién aplicado), lo removía y se desdibujaban los surcos del pincel desde el primer momento. Estos recuadros se alteraron más intensamente tras el envejecimiento (nº 6, 12, 18, 24, 30, 36).

La cámara UVA tenía unas dimensiones bastante pequeñas, por lo que me tuve que ajustar en la medida de lo posible a ella. Sus dimensiones eran 70(largo) x 40(ancho) x 31(alto), y es una caja de madera fabricada manualmente, que contiene en su interior los tubos de luz negra.

El tamaño de los lienzos estaba ajustado de manera que los focos de luz incidiesen homogéneamente en todas las probetas. Dichos lienzos tienen unas dimensiones de 3P=27X19cm cada uno. La cámara o caja está pensada para que quepan dos probetas a la vez (una, la que contiene el negro, blanco y tierra, y dos; la que contiene el azul, rojo y amarillo).

4.2.-Distribución de los ensayos y su justificación.

La proporción de secativo/óleo que seguí en cada recuadro, vino determinada por un rango en tanto por ciento que recomienda el fabricante de la casa Titán, entre el 0,5 % y el 5%, y reservando un recuadro para el 10%, dejando así constancia de lo que puede ocurrir en caso de un exceso del mismo.

Los pasos que seguí en todos los patrones, han sido 6 recuadros: el primero; destinado al óleo sin secativo, el segundo; un 0,25% en 10 ml de óleo, el tercero; un 0,5% en 10 ml de óleo, el cuarto; un 5% con la adición de 10 ml de óleo, el quinto; un 10% en 10 ml de óleo y finalmente el óleo con el secativo aplicado superficialmente a modo de barniz y sin control en la proporción de secativo.

Cada recuadro fue realizado con una cantidad nueva de óleo y secativo, para evitar desvirtuar resultados.

Nos ayudamos de una pipeta de plástico graduada en ml para añadir las proporciones tan pequeñas de secativo al óleo y el volumen de óleo en unos vasos graduados también en mililitros, tales como los que se destinan para uso médico.

4.3.-Documentación fotográfica

Para la realización correcta de las fotografías macro, hemos empleado una cámara digital analógica Nikon D40, con unas lentes de aproximación 1, 2, 3 de la casa Kenko Close-up de 52 mm.

El procedimiento consistió en ir fotografiando uno a uno cada recuadro y anotando las condiciones de la toma fotográfica.

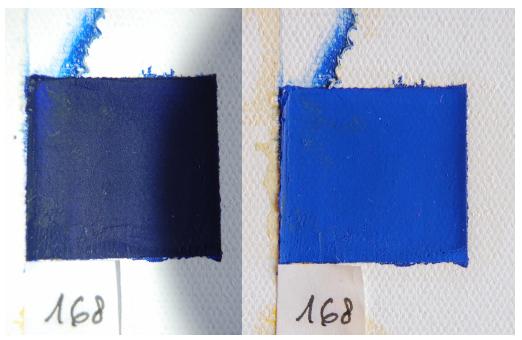


Fig. 2: Fotografías macro con luz visible del ensayo azul de cobalto con secativo aplicado a modo de barniz. Antes y después del envejecimiento UV. Apreciamos la decoloración del color y el aspecto mate en la fotografía de la derecha.

Fig. 3: Fotografías macro con luz visible del ensayo tierra natural al 2,5% de secativo de cobalto. Antes y después del envejecimiento por humedad y temperatura. Se observa, que el recuadro envejecido ha quedado mate.

4.4.-Fechas de aplicación y tiempos de secado

Nº ENSAYO	COMPOSICIÓN	SECADO(AL TACTO)	
1	Capa de blanco de titanio sola. 10 ml de óleo blanco sin aditivos.	Mordiente a los 2 días de su aplicación. <u>Seco al tacto tras 4 días</u> (28 de Marzo), pero un poco pegajoso.	
2	Capa de blanco de titanio (10 ml) al 0,5% (3 gotas de secativo de cobalto).	Seco al tacto pero algo pegajoso, sin llegar a manchar tras 24 horas. <u>A las 48 horas seco</u> sin ser pegajoso.	
3	Capa de blanco de titanio (10 ml) al 2,5% (6-7 gotas de secativo de cobalto).	Secado totalmente a las 24 horas.	
4	Capa de blanco de titanio (10 ml) al 5% (20 gotas de secativo de cobalto).	Secado totalmente a las 24 horas.	
5	Capa de blanco de titanio (10 ml) al 10% (40 gotas de secativo de cobalto).	Secado totalmente a las 24 horas.	
6	Capa de blanco de titanio con secativo de cobalto a modo de barniz.	Secado: Secado totalmente en pocas horas (5-6 horas)	
7	Capa de negro marfil sola. 10 ml de óleo negro marfil sin aditivos.	A las 24 horas está mordiente. Mancha pero <u>casi seco tras 46 horas</u> .	
8	Capa de negro marfil (10 ml) al 0,5 % (3 gotas) de secativo	A las 24 horas sigue mordiente. Mancha pero <u>casi seco tras 46 horas.</u>	
9	Capa de negro marfil (10 ml) al 2,5 % (6 gotas) de secativo.	Mordiente tras 24 horas. Mancha un poco, pero <u>casi</u> totalmente seco tras 46 horas.	
10	Capa de negro marfil (10ml) al 5% (20 gotas) de secativo.	Mordiente tras 24 horas. Seco al tacto tras 46 horas	
11	Capa de negro marfil (10ml) al 10% (40 gotas) de secativo	Casi seco a las 24 horas desde su aplicación, pero mancha aún. Seco completamente tras 46 horas.	
12	Negro con secativo de cobalto superficial a modo de barniz	Secado totalmente en pocas horas (6-7 horas)	
13	Capa de tierra de siena natural (10ml) de óleo sin aditivos.	Seco al tacto en 48 horas.	
14	Seco al tacto en 48 horas.	Seco al tacto en 48 horas.	

15	Capa de tierra de siena natural (10 ml) al 2,5% (6-7 gotas) de secativo.	Seco al tacto en 48 horas.
16	Capa de tierra de siena natural (10 ml) al 5% (20 gotas) de secativo.	Seco al tacto en 48 horas.
17	Capa de tierra de siena natural (10 ml) al 10% (40 gotas) de secativo.	Seco al tacto en 48 horas.
18	Capa de tierra de siena natural con secativo de cobalto superficial a modo de barniz.	Secado totalmente en pocas horas (5 horas aprox.)
19	Capa de azul cobalto (10 ml) de óleo sin aditivos.	Tras 24 horas de su aplicación, el azul cobalto está húmedo, pero tras 72 horas está seco totalmente.
20	Capa de azul cobalto (10 ml) al 0,5% (3 gotas) de secativo.	Tras 24 horas de su aplicación, está pegajoso, pero casi seco. Tras 72 horas está seco totalmente
21	Capa de azul cobalto (10 ml) al 2,5% (6-7 gotas) de secativo.	Tras 24 horas de su aplicación, está mordiente, pegajoso. Tras 72 horas está totalmente seco al tacto.
22	Capa de azul cobalto (10 ml) al 5% (20 gotas) de secativo	Tras <u>24 horas</u> de su aplicación, está seco totalmente
23	Capa de azul cobalto (10 ml) al 10% (40 gotas) de secativo.	Tras <u>24 horas</u> de su aplicación, está seco totalmente.
24	Capa de azul cobalto con secativo de cobalto superficial a modo de barniz.	Seco completamente en pocas horas (6-7 horas)
25	Capa de amarillo cadmio (10 ml) de óleo sin aditivos.	Tras 24 horas de su aplicación, la capa sigue húmeda. <u>Tras 72</u> horas, la capa está seca totalmente.
26	Capa de amarillo cadmio (10 ml) al 0,5% (3 gotas) de secativo.	Tras 24 horas de su aplicación, la capa sigue húmeda-pegajosa. Tras 72 horas, la capa está seca totalmente.
27	Capa de amarillo cadmio (10 ml) al 2,5% (6 -7 gotas) de secativo.	Tras 24 horas, la capa está seca al tacto.
28	Capa de amarillo cadmio (10 ml) al 5% (20 gotas) de secativo.	Tras 24 horas, la capa está seca al tacto.
29	Capa de amarillo cadmio (10 ml) al 10% (40 gotas) de secativo.	Tras 24 horas, la capa está seca al tacto.

30	Capa de amarillo cadmio con secativo de cobalto superficial a modo de barniz.	Secado completamente en pocas horas (5 horas aprox.)
31	Capa de rojo titán escarlata (10 ml) de óleo sin aditivos.	Tras 48 horas de su aplicación, la capa sigue húmeda, mordiente, pegajosa.
32	Capa de rojo titán escarlata (10 ml) al 0,5% (3 gotas) de secativo.	Tras 48 horas de su aplicación, la capa está totalmente seca.
33	Capa de rojo titán escarlata (10 ml) al 2,5 % (6-7 gotas) de secativo.	Tras 48 horas de su aplicación, la capa está totalmente seca.
34	Capa de rojo titán escarlata (10 ml) al 5% (20 gotas) de secativo.	Tras 48 horas de su aplicación, la capa está totalmente seca.
35	Capa de rojo titán escarlata (10 ml) al 10 % (40 gotas) de secativo.	Tras 48 horas de su aplicación, la capa está totalmente seca.
36	Capa de rojo titán escarlata con secativo de cobalto superficial a modo de barniz.	Tras 48 horas de su aplicación, la capa está totalmente seca.

Fig. 4: Tabla que recoge la composición de cada recuadro y el tiempo de secado tras su aplicación.

4.5.-Espectrofotometría inicial de los ensayos.

4.5.1.- Cálculo de media y desviación estándar.

Procedimiento:

En primer lugar se fue procediendo a tomar tres veces el mismo punto con el espectrofotómetro Minolta CM-2600d, con la finalidad de si existía un posible error poder eliminarlo.

El aparato nos permite hacer las mediciones con brillo (SCI), equivalentes a lo que sería con luz natural y sin brillo (SCE), gracias a un filtro que posee para eliminar posibles brillos a modo de luz polarizada.

Ayudándonos de un acetato perforado en el centro de cada una de las probetas, pude obtener mayor precisión a la hora de escoger los puntos y repetir las medidas posteriormente, además de que es necesario para que la máquina no tomase el brillo del acetato.

La media y desviación estándar se calculan a partir de los valores que obtenemos con dicho aparato en una tabla de Microsoft Office Excell® 2003, para facilitar el trabajo de cálculo de operaciones.

Las medias finales, las necesitábamos para comparar los datos iniciales con los envejecidos, y hallar la diferencia. De esta manera sabíamos cuáles eran los colores que más habían variado.

Los datos numéricos no sólo nos iban a mostrar resultados una vez que hubiésemos hecho las diferencias, sino que gracias a unas tablas ya establecidas, nos iban a ayudar a relacionar los datos numéricos con un nombre o denominación del color, y así podíamos ser más precisos en la nominación.

Observaciones: Los negros y los azules cobalto eran problemáticos, ya que a veces daban valores erróneos, debido a la cámara del espectrofotómetro. En los casos de error, se volvían a tomar las medidas, para poder obtener una media.

4.6.-Determinación de los ciclos de humedad y temperatura.

El ciclo escogido es el que va de 10^{9} C a 50^{9} C y de 60% a 90% de HR en 24 horas. Durante 500 Horas=21 días

La justificación de que el ciclo partiera de una temperatura inicial hacia 10º, subiendo a 50º y bajando nuevamente al 10, etc., es porque se han tomado dos temperaturas más o menos extremas tanto en invierno como en verano para provocar intencionadamente estrés en la obra.

Por otro lado, el ciclo que se propuso iba del 60 al 90% de HR, volvía al 60% y así sucesivamente... Esta elección de ciclo de humedad, tenía la intención de producir o no, cambios en los ensayos.

4.6.1.-.-Introducción de las probetas en la cámara de humedad-temperatura.

Los ensayos para someter a humedad y temperatura fueron introducidos en la cámara con la intención de una duración de 500 horas, lo que corresponde desde el 18 de Mayo hasta el 6 de Junio.

La cámara en la que se introdujeron, pertenece al IRP (Instituto de Restauración de Patrimonio), de la Universidad Politécnica de Valencia. Se trata del modelo DI-100, de la casa DYCOMETAL.

4.7.- Determinación del ciclo de envejecimiento en UV.

4.7.1.-Introducción de las probetas en la cámara de radiación UV.

Hay que destacar que esta cámara además de ofrecer el parámetro de luz, se le añade el efecto calor que emiten las propias bombillas. Las probetas fueron introducidas el 6 de Junio de 2009.

Tuvieron un **1er ciclo** de 6 días ó 144 horas: En un período de 144 horas los ensayos apenas presentan cambios notables, por lo que se opta a alargar el tiempo de exposición al envejecimiento de ultravioleta durante un nuevo **2º ciclo** de 14 días, o lo que es lo mismo 336 horas, que añadidas a las anteriores harán un total de 480 horas. Los cambios siguen siendo apenas notables, por lo que finalmente se decide por dejar la exposición a UVA desde el 1 hasta el 22 de Julio, haciendo un total definitivo de 900 horas aprox. acumuladas.

5.-SONDEO DE OPINIÓN

5.1.-Recogida de datos en tablas.

Para la recogida de datos se utilizó el programa Microsoft Office Access 2003®, que me facilitó la agrupación de datos por tablas y la contabilización de cualquier consulta que deseara.

1	pedro mańa	asuar	51	autodidacta
	mari carmen	asuai calviño	71	con estudios artísticos
		irago	0	autodi dacta
	vicky	zafra	0	autodidacta
	angel	cantero	43	con estudios artísticos
	lourdes	ísa	45	con estudios artísticos
	vicente	gimeno	64	autodi dacta
		badosa	65	con estudios artísticos
	jaume	oreju ela	27	VOIT ESBUGIOS BIBSBOOS
		pitarch	50	autodi dacta
	aitor	pitaron	0	con estudios artísticos
	iose luis	pastor	61	con estudios artísticos
		puentes	43	con estudios artísticos
	manuel	romero	0	con estudios artísticos
	marisa	mancilla	38	con estudios artísticos
	celestino	mesa	0	con estudios artísticos
	ignacio	estudillo	24	con estudios artísticos
	-	miró	55	autodi dacta
	juan luis	nexus	43	con estudios artísticos
		valderrama	52	autodi dacta
		recio	57	23.7010000
	francisco javier		0	con estudios artísticos
	hombre		30-50	con estudios artísticos
	mujer		22	con estudios artísticos
	mujer		15-30	con estudios artísticos
	mujer		15-30	con estudios artísticos
	mujer		15-30	con estudios artísticos
	hombre		30-50	con estudios artísticos
	mujer		30-50	con estudios artísticos
	mujer		15-30	con estudios artísticos
	mujer		23	con estudios artísticos
	mujer		15-30	con estudios artísticos
	mujer		15-30	con estudios artísticos
	mujer		15-30	con estudios artísticos
	-	chapa	52	con estudios artísticos
36	hombre	· ·	30-50	con estudios artísticos
37	d'O vidio	simona	25	con estudios artísticos
38	hombre		15-30	con estudios artísticos
39	hombre		15-30	con estudios artísticos
40	hombre		15-30	con estudios artísticos
41	mujer		23	con estudios artísticos
42	mujer		15-30	con estudios artísticos
	mujer		15-30	con estudios artísticos
44	hombre		15-30	con estudios artísticos
45	mujer		30-50	con estudios artísticos
	mujer		15-30	con estudios artísticos
47	mujer		15-30	con estudios artísticos
48	hombre		15-30	con estudios artísticos
49	hombre		15-30	con estudios artísticos
50	mujer		15-30	con estudios artísticos

						ıd	l marca
ld	Secativos	Tipología	Proporción	Superficial		10 1	
1		cobalto			₩—		rembrandt, titan
2	0	cobalto	0		III	3	
3			0		III		van gogh, titan, rembrandt
4		medio talens	0				titan
5			0			6	
6			0		₩—		titan, mir
7			0		III		titan, windsor and newton, rembrandt
8	0	liquin	0		III	9	
9		cobalto	0	☑	III		rembrandt, titan, otros
10			0				
11	0	cobalto	0		III		talens, windsor and newton, goya, titan
12			0		III	13	titan, garvi, goya, pizarro, van gogh
13	2	cobalto	0		Ш	14	
14			0		Ш	15	
15		1	0		Ш	16	
16	0	cobalto	0		Ш	16	
17			0			17	
18			0		III		rembrandt, titan
19					Ⅲ—		
20	0	medio talens	0		Ⅲ—		rembrandt, titan
21			0	☑	III		windsor and newton, griffin
22	0	liquin	0		III		litan litan
23	Ø	liquin	0		III		otan bitan
24		liquin, cobalto	0				
25			0		III		louvre
26			0		III		litan litan
27			0				ptan bitan
28			0				otan bitan
29			0		III		ptan bitan
30	- 0	r ·	0	_ 			otan bitan
31		liquin	0				otan titan
32			0		II		otan titan . amsterdan
33 34		lianda annia de liene	_	$ \vdash$			otan, amsterdan titan, amsterdan
	<u> </u>	liquin, aceite de linaza	0				ntan, amsterdan no marca
35 36		liquin	0	_	Ш		no marca titan, rembrandt
36 37			0	_	Ш		ntan, remorandt maimeri
37		cobalto	0		Ш		maimen titan
38	<u> </u>	cobalto	0		III		otan titan
39 40	9	liguin	0		Ш	39 40	
40		nquiii	0		III		titan
41 42			0		Ш		louvre
42			0		Ш		
43 44	_		0				rembrandt
44 45	- 0	cobalto	0				van gogh
40 46		CODAIRO	0	_	Ш		pizarro de titan titan
46			0				ptan bitan
48	<u> </u>		0		III		
48 49	<u> </u>	cobalto , liquin	0		III		pebeo
		liquin	0		III		louvre
50	Ц		l D		كال	50	litan

Fig. 5: Tabla que recoge las respuestas de las personas encuestadas de forma esquemática.

5.2.-Recogida de datos en gráficas (Ver figuras de la 16 a la 24 en anexo)

Una vez recogidos los datos en una tabla, para visualizarlos mejor se recurrió a la representación gráfica porcentual, mediante gráfica de barras, de sectores, etc., tal y como se muestra en la siguiente ilustración:

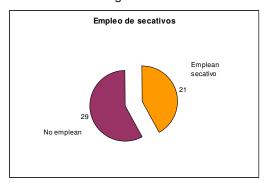


Fig. 6: Diagrama de sectores que muestra el número de personas del total de encuestados que emplean secativos en sus obras.

6.- RESULTADOS COLORIMÉTRICOS DEL ENVEJECIMIENTO DE LAS MUESTRAS (Ver tablas adjuntas en anexo).

En este apartado, se recogen las tablas más importantes del proceso de recogida de datos con el espectrofotómetro.

Con el fin de agilizar información, los datos iniciales que se tomaron no se añaden, pero sí que hemos incluido:

Las medias SCI (con brillo) y SCE (sin brillo) del envejecimiento por UV, en la primera y la segunda tabla. La tercera y cuarta, se refieren al cálculo de la diferencia entre el antes y el después en el envejecimiento por UV en SCE (Sin brillo) y SCI (con brillo). La quinta y sexta contienen la nominación cromática de los datos anteriores en la medición SCE y SCI.

La séptima y octava recogen las medias del envejecimiento por humedad y temperatura en SCE y SCI, respectivamente. La novena y décima tablas, contienen el cálculo de la diferencia entre el antes y el después en el envejecimiento por H y t en SCE y SCI. La undécima hace referencia a la nominación cromática de los datos en SCE.

Finalmente, las cuatro últimas tablas, son tablas-resumen, que contienen datos muy importantes como conclusión de este estudio, ya que en ellos se puede observar los incrementos o diferencias totales de color, de tono, croma y tonalidad en cada uno de los colores de nuestra experimentación con una clasificación de los mismos al final de cada tabla

7.- VALORACIÓN DE LOS RESULTADOS

7.1.-Valoración del sondeo:

A partir de la representación en diagramas circulares y de barras de los datos recogidos, a partir del programa Microsoft Excell 2003®, se obtienen las siguientes conclusiones a considerar:

- -La mayoría de los encuestados (82%) poseen estudios artísticos (figura 15 del anexo).
- -Respecto a la marca de óleo que emplean, la mayoría de los estudiantes mencionan **Titán como primera marca con un 40%,** y un 26% utilizan Titán junto a segundas marcas más baratas como Rembrandt, Van Gogh, Talens.... Los estudiantes de Bellas Artes, sobre todo los de los primeros años de carrera, dicen que compran las marcas más baratas. El 34 % restante lo constituyen esas marcas más baratas (Garvi, Pizarro, Amsterdan...). (*Figura 17 del anexo*).
- De las 50 personas, 21 emplean secativo, y el resto no usan secativo o nunca han oído hablar de dicho producto, y desconocen su utilidad, por tanto. Por lo general, entre los estudiantes de BBAA se utiliza poco o nada y los que lo conocen, lo usan en muy pequeña proporción.

Los que sí emplean secativo, no usan exclusivamente el de Cobalto, usan el medio Liquin con la misma intención, es decir, acelerar el secado en algún empaste puntual, o para hacer la pintura al óleo más fluida. La proporción que usan un producto u otro es más o menos la misma. El 43% de los artistas encuestados usa Liquin; Cobalto, el 47% y Medio Talens el 10% restante.

- -La forma de utilización, es en el 81% de los encuestados, mezclado en la paleta con el óleo. Casi siempre usando una proporción a ojo, lo cual induce a pensar que el artista actual, en la mayoría de los casos, utiliza los productos que le da el mercado sin pensar en las consecuencias futuras de su obra. El 19% restante, lo usan a modo de barniz, es decir, de forma superficial (figura 20 del anexo).
- En cuanto a la efectividad de los secativos que ocupa este estudio, el 47,6 %, es decir, casi la mitad, ofrecen un resultado bueno según los propios artistas. El 19%, una efectividad regular, es decir, ni buena, ni mala y el 33% restante, que es también una gran proporción, contestan que no saben.
- -En cuanto a la alteración de los secativos, el 14,3% contesta que se producen craquelados, el 19% que amarilleamiento, el 57,14% que no saben que efectos ha podido tener, el 4,7% que ha decolorado con el tiempo, y el 4,7% restante que da un aspecto mate al óleo al secar.

7.2.-Valoración de los resultados colorimétricos tras los envejecimientos:

7.2.1.-Envejecimiento por UV. Análisis de los resultados.

a) ANÁLISIS MACROSCÓPICO CON LUZ VISIBLE:

Los ensayos correspondientes al azul de cobalto habían decolorado notablemente. Habían perdido además todo el brillo, es decir, ahora eran mates (recuadros 163-168).

Los ensayos correspondientes al blanco de titanio se habían vuelto más blancos que inicialmente con la exposición UVA (recuadros 109-114).

Los amarillos se habían anaranjado ligeramente (recuadros 169-174).

b) ANÁLISIS MICROSCÓPICO

En los ensayos sometidos a UV, se observó bajo lupa binocular, que había zonas en las que la luz y el calor habían provocado estrés a la tela y craqueladuras en la zona de la imprimación de la tela, no invadiendo la pintura (figura 7)

Por lo general, el aspecto liso inicial de las capas pictóricas seguía manteniéndose intacto (figura 10).

Fig. 7: Fotografía con lupa binocular a 50X. La imagen corresponde al azul cobalto decolorado por envejecimiento UV. Grietas aisladas en la superficie que no afectan a la capa pictórica.

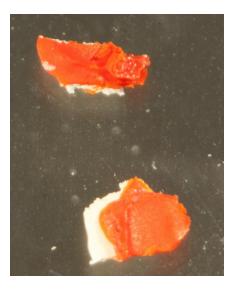


Fig. 8: Fotografía con lupa binocular a 75X. Se observa la comparativa entre la micromuestra rojiza sometida a UV (arriba) y la micromuestra sin envejecimiento acelerado.

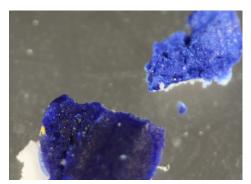


Fig. 9: Fotografía con lupa binocular a 75X. Se muestra la comparativa entre la micromuestra azul cobalto sometida a H y T (izda. abajo) y la sometida a UV, más clara (a la derecha arriba).

Fig. 10: Fotografía con lupa binocular. Podemos observar que la superficie permanece igual de lisa tras el envejecimiento UV en el ensayo tierra natural con 5% de secativo.

c) ANÁLISIS GENERAL DE LOS DATOS OBTENIDOS CON EL ESPECTROFOTÓMETRO:

El mayor incremento de L (Δ L) o lo que es igual, la mayor variación de claridad, la han sufrido de forma considerable los azules, con una media de \cong 35, frente al 0,1 correspondiente a los amarillos o al \cong 2 de los blancos que siguen prácticamente igual (figura 11).

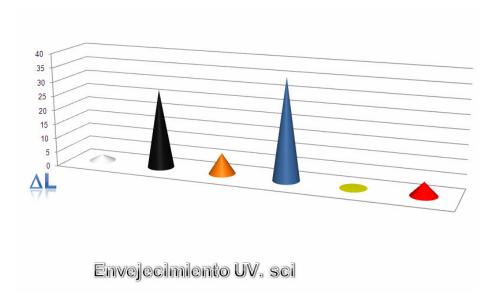
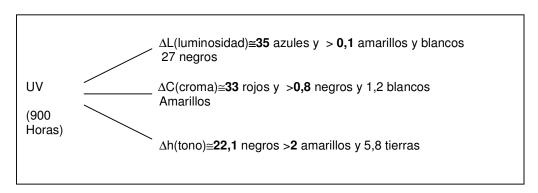



Fig. 11: Gráfica que muestra el incremento o la diferencia de luminosidad tras el envejecimiento UV. Todos los colores se aclaran.

Por otro lado, el incremento de C (Δ C), es decir, la diferencia de croma mayor la han presentado los rojos y amarillos con un valor en torno a \cong 33 y los que menos corresponden a los negros Δ C \cong 8 y blancos Δ C \cong 1,24.

Finalmente, el incremento de h o de tonalidad (Δh) es más notable en los negros con un valor bastante alto $\Delta h \cong 22,1$, frente al 2 de los amarillos.

d) ANÁLISIS INDIVIDUAL (POR COLORES) DE LOS RESULTADOS OBTENIDOS CON EL ESPECTROFOTÓMETRO:

Blancos

Se han hecho un poco más blancos ΔL (2,2). Por otro lado, las únicas probetas que han aclarado son aquellas en las que hemos excedido el secativo en proporción (10% de secativo y a modo de barniz,nº 113 y 114), en las que obtenemos un valor medio de $\Delta L\cong 8$. El resto han oscurecido ligeramente $\Delta L\cong (-1,5)$.

Con el blanco de titanio, podemos usar secativo de cobalto de forma segura en el rango de 0 a 5%, sin que nos varíe prácticamente la luminosidad, croma ni tono.

Negros

Han aclarado notablemente ΔL (27,6). El negro marfil es un negro muy oscuro. En las probetas negras lo más variable es la tonalidad, ya que ofrecen un incremento de Δh (-22,1) en la medición sin brillo (SCE) y Δh (-49) en la medición con brillo (SCI).

Esto no quiere decir que los negros hayan sufrido un cambio tan brutal de tonalidad, sino que son colores muy influyentes a la hora de tomar las mediciones, y por tanto, pueden reflejar casi cualquier tonalidad del espectro.

A diferencia de lo que ocurría en los blancos, las probetas que menos han cambiado han sido las de 10% de secativo (nº 119) y la aplicada a modo de barniz (nº 120), con un cambio total de ΔE 26, mientras que el resto de proporciones presentan $\Delta E \approx 26$.

El secativo de cobalto en la mezcla con el negro de marfil, se conserva estable en el rango de 0 a 10 % de secativo y no parece afectarle el aumento de secativo, por encima de la proporción recomendada por el fabricante (5%).

Tierras

Se aclaran ligeramente ΔL 8. Los tierras se hacen acromáticos, es decir, pierden croma ΔC (-22) con la luz UV.

En cuanto a tonalidad, se hacen más rojizos, ya que al parecer, pierden su tonalidad naranja amarillenta hacia otra más naranja.

El color tierra natural tiene una tendencia naranja-amarillenta en su aplicación. Tras el envejecimiento, ha perdido el brillo del aglutinante y se ha mateado, como si el color se resecara.

El secativo de cobalto en los tubos de óleo de tierra natural da buen resultado ante el envejecimiento y más aún conforme aumentamos la proporción de secativo en óleo, como comentábamos en los negros.

Azules

Se han aclarado considerablemente ΔL 36. Los recuadros en todas sus proporciones (163-168) se han aclarado más o menos y además han perdido todo su brillo, es decir, se han mateado.

A diferencia del resto de colores analizados, los azules han ganado croma y se han hecho más azules Δh (-16).

Con un análisis visual, el azul de cobalto oscuro tiene un componente violáceo, que puede ser efecto del brillo del aglutinante, y tras secarse se pierde esa calidez, haciéndose más azul.

El secativo de cobalto en su mezcla con el azul de cobalto, sirve de "protector" ya que conforme aumentamos la proporción del mismo, menos es el cambio total del color.

Amarillos

No han variado prácticamente su luminosidad ΔL 0,1, ni su tonalidad Δh (-2). Sin embargo, son los colores que más han variado en cuanto a su croma ΔC (-32), junto a los rojos.

En conclusión, el secativo sí afecta a los amarillos de forma considerable y sobre todo afecta a su cromaticidad.

Rojos

Prácticamente tampoco han variado su luminosidad ΔL 6 en SCE y 4,8 en SCI. Partíamos de un rojo anaranjado que es el rojo titán escarlata, que tras el envejecimiento, ha perdido el mismo croma que los amarillos ΔC (-32). Los rojos se han hecho más rojos Δh (-11). El secativo de cobalto, por tanto, sí afecta al rojo escarlata al óleo y más aún a su croma.

7.2.2.-Envejecimiento por humedad y temperatura. Análisis de los resultados.

a) ANÁLISIS MACROSCÓPICO CON LUZ VISIBLE:

En general, y a simple vista los cambios eran apenas notables. Fue necesario comparar los resultados con el espectrofotómetro para apreciar los posibles cambios de tono.

En principio, los blancos y amarillos eran los que más fácilmente ofrecían esos cambios, ofreciendo un ligero oscurecimiento.

Se observó:

- -El traspase de los aceites del óleo por el reverso.
- -Surcos de aceite muy marcados alrededor de toda el área cuadrada de cada uno de los ensayos.
- En los ensayos del 10% de secativo de cobalto y las aplicadas superficialmente (recuadros 5, 6, 11, 12, 17, 18, 23, 24,29, 30, 35, 36), la superficie se había mateado. El resto seguían con su brillo, pero menor que el inicial.
- La preparación del lienzo parecía haber craquelado, pero el film pictórico no. Esto se apreció en los blancos y negros (sobre todo en los de aplicación de secativo superficialmente), mediante luz transmitida. La preparación tenía pequeñas craqueladuras en dirección vertical.
- Los ensayos blancos se veían un poco más amarillentos o anaranjados.
- Los tierras se habían anaranjado y habían perdido brillo en algunas zonas.
- Los azules habían perdido oscuridad y la calidez violácea de la que partían ahora era más azulada.

b) ANÁLISIS MICROSCÓPICO

Como aspecto destacable, se vieron grietas en las dos direcciones de la tela y más importante, invadiendo las capas pictóricas (figuras 9 y 10).

Ya no sólo hay grietas en la imprimación, como se veía en los ensayos de UV, sino que estas grietas tienen mayor importancia y son más abundantes.

Fig. 12: Fotografía realizada con lupa binocular a 25X. Se observan grietas invadiendo a la capa pictórica desde la imprimación. Ensayo 37 sometido a h y t.

Fig. 13: Fotografía realizada con lupa binocular a 100X. Aparecen grietas que han invadido la capa pictórica azul cobalto. Ensayo 19 sin secativo sometido a h y t.

c) ANALISIS GENERAL DE LOS DATOS OBTENIDOS CON EL ESPECTROFOTOMETRO:

Al igual que en el envejecimiento por radiación UV, el color más afectado es nuevamente el azul de cobalto, con un $\Delta E \cong 13$, frente al $\cong 4,5$ del resto.

El mayor incremento de luminosidad o ΔL es sufrido por los amarillos y azules en torno al $\Delta L \cong 2,4$, que son los que ligeramente más han oscurecido. Los que menos han oscurecido han sido negros y tierras en torno a $\Delta L \cong 0,4$ (figura 14).

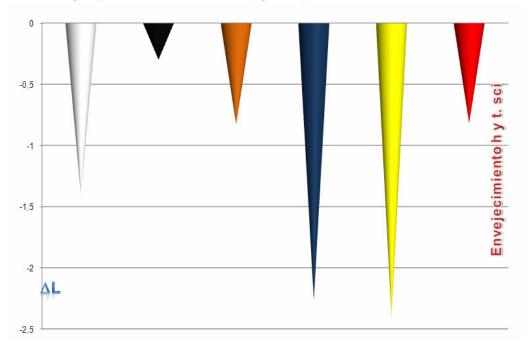
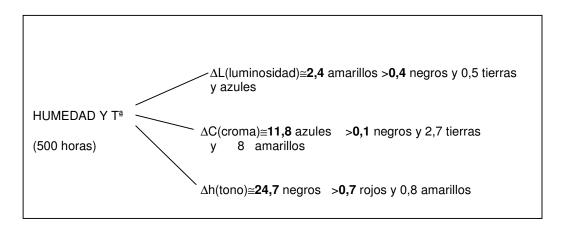



Fig. 14: Gráfica que muestra la diferencia de luminosidad tras el envejecimiento por humedad y temperatura. Todos los colores se oscurecen.

La mayor diferencia de croma la han sufrido los azules con la pérdida de ΔC (-11,8). En otro grupo estarían rojos y blancos con $\Delta C \cong (-4,5)$ y finalmente los que menos varían en cuanto a su croma son los tierra y negros $\Delta C \cong 1,4$.

Finalmente, el incremento de tonalidad es más notable nuevamente en negros $\Delta h \approx 25$, frente al $\Delta h \approx h 0.75$ de rojos y amarillos.

d)ANALISIS INDIVIDUAL (POR COLORES) DE LOS RESULTADOS OBTENIDOS CON EL ESPECTROFOTÓMETRO:

Blancos

Se han oscurecido un poco Δ L 8 (-1,5)

Los blancos sometidos a este tipo de envejecimiento han sido los únicos que han ganado croma ΔC 4.3.

El recuadro en el que el secativo es aplicado a modo de barniz (nº 6) es el que más ha cambiado en cuanto a luminosidad, croma y tono, puesto que ahí no se ha controlado la cantidad de secativo.

El mejor protegido es el que no lleva nada de secativo (nº 1), de lo que se deduce, que es casi mejor no emplear secativo con el blanco de zinc.

Negros

Son los que de forma general se han visto menos alterados.

El recuadro a modo de barniz (nº 12) es el que ha sufrido mayores cambios, por lo que se deduce que la forma de aplicación del secativo influye en el negro marfil.

Tierras

A diferencia de blancos y negros, los recuadros tierra han respondido mejor en el recuadro aplicado a modo de barniz (n^2 18).

Se han oscurecido muy poco ΔL (-0,5); han perdido croma ΔC (-2,7) y han pasado de la tonalidad naranja-amarillenta inicial a otra más naranja Δh (-1,2). Lo mimo que ocurría en el envejecimiento por UV, pero en menor grado.

Azules

Son los que de forma general se han visto más alterados.

Se han oscurecido ligeramente ΔL (-2,2).

El componente violáceo del que partían se pierde y el azul cobalto se hace más azulado Δh (-6).

En cuanto a su croma son los que mas varían ΔC (-11,8), haciéndose más acromáticos, perdiendo viveza por tanto.

El secativo sí que protege al azul de cobalto, ya que la probeta que más ha variado es precisamente la que no tiene nada de secativo (nº 19).

Amarillos

Se han oscurecido ligeramente ΔL (-2,2).

Siguen siendo puros tras el envejecimiento.

Partíamos de un amarillo-anaranjado como tonalidad, que ahora pierde algo de amarillo. Δh (-0,8).

Nuevamente, el secativo sirve de protector en cierta manera, ya que la probeta más alterada es la que no tiene nada de secativo (n^2 25).

Rojos

Se oscurecen muy poco ΔL (-1).

A diferencia de los rojos expuestos a UV, estos rojos-anaranjados se hacen más naranjas Δh 0,7. La forma de aplicación de secativo ha influido en la conservación de color en los rojos de este tipo, dando mejor resultado la aplicada a modo de barniz (nº 36).

8.-CONCLUSIONES

- ⇒ El secativo de cobalto, está compuesto mayoritariamente por un disolvente como el white spirit e iones metálicos de cobalto disueltos en éste, que provocan una reacción catalizadora en los ácidos grasos del óleo, facilitando la entrada de oxígeno en la pintura y por tanto secándose ésta antes.
- ⇒ De las 50 personas encuestadas, una cifra significativa, casi la mitad (21), conoce o ha utilizado alguna vez el secativo de cobalto. De esa población, hay mayor proporción de pintores experimentados que estudiantes de bellas artes.
- ⇒ En el mercado español, existe la casa Titán® que produce para el secativo de cobalto, pero también lo comercializan la marca alemana Lukas y la francesa Lefranc. Internacionalmente, se utilizan más los secativos de Courtrai o el de Harlem. El primero es un secativo de Manganeso, que al presentar un tono pardo, afecta cromáticamente a blancos y azules y que profundiza en el secado. El de Harlem, seca en tres días y equivaldría a lo que hoy en día se utiliza como Liquin® para veladuras. Ambos son secativos progresivos a diferencia del de cobalto, el cual seca en unas horas.
- ⇒ En un análisis macroscópico de los ensayos envejecidos, observamos en el envejecimiento UV, que los ensayos correspondientes al azul de cobalto, tierra natural y rojo escarlata se han mateado casi por completo y que los azules a su vez han aclarado notablemente. Los recuadros de blanco titanio parecen ser ahora más blancos que inicialmente. En los ensayos envejecidos por humedad y temperatura, han resecado únicamente, los recuadros aplicados con un 10% de secativo y los de aplicación a modo de barniz. El efecto mateado que podía provocar el exceso de secativo, realmente es un resultado que desconocen la mayoría de los artistas encuestados. En cuanto a cambios de color, no se aprecia nada a simple vista.
- ⇒ Los fabricantes comentan acerca del exceso de secativo, que provoca craquelados y decoloración. Según los ensayos realizados, los craquelados no tienen lugar ni relación con el aumento de proporción, ni con la textura que le demos a la pintura (espátula o pincel), siempre que actuemos en capas finas. Con un análisis con lupa binocular hasta un máximo de 100 aumentos, hemos llegado a determinar que los ensayos sometidos a humedad y temperatura se empiezan a agrietar, sobre todo en las zonas de secado del aceite, rodeando al recuadro, y en algunos casos se empiezan a ver en la propia pintura. Por tanto, independientemente de que exista mayor o menor proporción de secativo en el recuadro, éstos han agrietado en todos los casos, es decir, sin tener en cuenta que haya o no secativo. Por otro lado, en el envejecimiento por radiación UV, las grietas son de menor importancia y cantidad y aparecen más aisladas.
- ⇒ Según los datos colorimétricos de nuestros ensayos, obtenemos que en relación al cambio total: el color que más ha variado en su totalidad ha sido el azul de cobalto, en los dos tipos de envejecimiento. Le siguen amarillos y rojos.
- ⇒ En relación a la luminosidad, la radiación UV aclara de forma generalizada todos los colores, pero en mayor medida decolora azules y negros. En menor medida a blancos y amarillos. El envejecimiento por humedad y temperatura, sin embargo, oscurece los colores ligeramente.
- ⇒ En cuanto al croma, la exposición a UV, causa mayores cambios en amarillos, rojos y tierras, siendo estos dos últimos además, los que han perdido brillo y quedado por tanto mates en casi todos los ensayos.
- ⇒ En lo que concierne al tono, no se han producido prácticamente cambios.

⇒ Es importante informar a los artistas de que pueden usar el secativo de cobalto con tranquilidad en relación a las grietas (hasta un 10 % de secativo en capas finas de óleo). Sin embargo, el uso en grandes cantidades de este producto puede llegar a matear los colores, afectando en este caso al aspecto final de la obra, por lo que podríamos entrar en un futuro, en contradicciones y discrepancias de tipo conceptual. Por tanto, se puede alterar la superficie pictórica en relación al brillo, y esto suele ser un aspecto muy estudiado y decidido por los artistas en relación al sentido de la obra. A la vez, los artistas suelen seleccionar los acabados de la superficie (mate, brillo, satinado), incluso por zonas, formando parte esta disposición de la intención artística. Así, la transformación o cuarteado no deseado podría afectar a la idea o concepto de la obra.

BIBLIOGRAFÍA

- CALVO, Ana. Conservación y restauración. Materiales, técnicas y procedimientos. De la A a la Z. Barcelona: Ediciones del Serbal, 1997. ISBN: 978-84-7628-194-9.
- ERHARDT, D. et al. "Long term chemical and physical processes in oil paints films".
 En: Studies in conservation. №2, volumen 50, 2005. ISSN 0039-3630.
- GUNN, M. et al. "Chemical reactions beween copper pigments and oleoresinous media". En: *Studies in conservation*. №2, volumen 47, 2002. ISSN 0039-3630.
- LLAMAS, Rosario. Conservar el arte contemporáneo. Un campo abierto a la investigación. Universidad Politécnica de Valencia, 2009.
- MALLÉGOL, J. et al. "Yellowing of oil based paints". En: Studies in conservation. №2, volumen 46, 2001. ISSN 0039-3630.
- MATTEINI, Mauro; MOLES, Arcángelo. La química en la restauración. Traducido por Emiliano Bruno. Guipúzcoa: Editorial Nerea, 2001. ISBN: 978-84-89569-54-6
- MAYER, Ralph. Materiales y técnicas del arte. Madrid: Hermann Blume Ediciones, 1993. ISBN: 978-84-7214-328-9
- MECKLENBURG, Marion F. Estudio de las propiedades mecánicas y dimensionales de los materiales pictóricos. Valencia: Editorial UPV, 2008.
- PEDROLA, Antoni. Materiales, procedimientos y técnicas pictóricas. Barcelona: Ariel. Patrimonio Histórico, 1998.
- SUTHERLAND, Ken. "Solvent-extractable components of linseed oil paint films". En: *Studies in conservation*. Nº2, volumen 48, 2003. ISSN 0039-3630.
- TUMOSA, Charles S.; MECKLENGBURG, Marion. "The influence of lead ions on the drying of oils". En: *Reviews in conservation*. №6, 2005. ISSN: 1605-8410.
- Actas del XI Congreso de Conservación y Restauración de bienes culturales celebrado los días 3, 4 ,5 y 6 de Octubre de 1996. [CD-ROM] Castellón: Diputación Provincial de Castellón, 1996. ISBN 84-86895-79-0.
- STANDARD OIL COMPANY OF CALIFORNIA. Cobalt Siccatives. Inventor: RUTHERFORD, JOHN. Fecha de solicitud: 1938-08-27. Estados Unidos de América. Nº 2.360.238. Patente (2 hojas). 1944-10-10. Disponible en:
 - http://www.google.es/patents?hl=es&lr=&vid=USPAT2360283&id=JvNyAAAAEBAJ&oi=fnd &dq=COBALT+SICCATIVES.+Rutherford. [En línea]. [Consulta 09 de Marzo de 2009].
- DOERNER, Max. Los materiales de pintura y su empleo en el arte. (6ª edición).
 Barcelona: Reverté.__ISBN 13: 978-84-291-1423-2. [en línea] Disponible en: http://books.google.es/books?id=GgKSQ3wOq3MC&printsec=frontcover#PPP1,M1. [Consulta: 08 de Junio de 2009].
- FERNANDEZ FERNANDEZ, Miguel Antonio. "Pintura al óleo. Posibilidades técnicas"
 [en línea]. Disponible en: http://ramonfernandez.revistaperito.com/oleoposibilidades.htm.
 [Consulta el 09 de Junio de 2009].
- INDUSTRIAS TITÁN, S.A. "Secativo de cobalto Titán" [en línea]. El Prat del LLobregat (Barcelona), 2009. Disponible en: http://www.titanlux.com/productos/2022007225310_SECATIVO%20DE%20COBALTO.pdf. [Consulta: 09 de Junio de 2009].

- Productos químicos Jela. "Los carboxilatos metálicos o agentes secantes". En:
 Quiminet,
 27 Noviembre 2006. Disponible en:
 http://www.quiminet.com.mx/ar8/ar %25AEk%25E2%2514a%25D8U%2581.htm. [Consulta: 09 de Junio de 2009].
- Productos químicos Jela. "Los compuestos del cobalto". En: Quiminet, 08 Marzo 2007 [en línea]. Disponible en: http://www.quiminet.com.mx/ar7/ar %25BE%25F1%251A%25B0%2510%25AC%2500%25
 3E.htm. [Consulta el 09 de Junio de 2009].
- Productos químicos Jela. "Todo lo que deseaba saber acerca de secantes". En: Quiminet, 6 diciembre 2005 [en línea]. Disponible en: http://www.quiminet.com.mx/ar3/ar %2526%25D6%257D%25C4%25D0s%25BD%253A.ht
 M. [Consulta: 09 de Junio de 2009].
- SAN ANDRES MOYA, Margarita et al. "Los secativos en la pintura: materiales utilizados. Posibilidades de su estudio por microscopia electrónica de transmisión" [en línea]. XI Congreso de Conservación y restauración de bienes culturales en Castellón, 1996.La Rioja: Universidad de la Rioja, 2001-2009. Disponible en: http://dialnet.unirioja.es/servlet/articulo?codigo=1303037. [Consulta: 08 de Junio de 2009].
- NOGUÉS, Cristóbal. "Sobre los mediums y productos auxiliares para el óleo", 2003 [en línea]. Disponible en http://www.laene.com/consejos_detalle.asp?id=16. [Consulta 08 de Junio de 2009].
- ROXYSURF. "¿Cómo funciona el secante de cobalto?". En: Yahoo España. Respuestas, 2009 [en línea]. Disponible en: http://es.answers.yahoo.com/question/index?qid=20080927064047AAIVyeA. [Consulta el 08 de Junio de 2009].
- Kreidezeit naturfaben Gmbh. "Siccative. Product information", Octubre de 2005[on line]. Disponible en: http://www.mikewye.co.uk/K-Siccative%20435-436.pdf. [Consulta 11 de Junio de 2009]
- TAUBES, Frederic et al. "The art and technique of oil painting: a discussion of traditional oil tecniques for use by the contemporany painter" (edición 14) [on line]. Universidad de Virginia: Dodd, Mead & Company, 1948. Disponible en: <a href="http://books.google.es/books?id=bkkVAAAAIAAJ&pg=PA34&lpg=PA34&dq=cobalt+siccative&source=bl&ots=Cgh-n8wlOJ&sig=J2ijM9oqmB7IG0pzlpzq-FXWNHY&hl=es&ei=qwOcSdCGNYW-OAW8mszaBQ&sa=X&oi=book result&resnum=5&ct=result. [Consulta 11 de Junio de 2009].

ÍNDICE DE FIGURAS Y TABLAS	<u>Págs.</u>
Fig. 1: Esquema de los ensayos realizados	14
Fig. 2: Fotografías macro comparativas del azul cobalto	16
Fig. 3: Fotografías macro comparativas del tierra natural	16
Fig. 4: Tabla de la composición y los tiempos de secado de los ensayos	17,18,19
Fig. 5: Tabla-resumen de las respuestas a la encuesta	21,22
Fig. 6: Diagrama de personas que emplean secativo	22
Fig. 7: Fotografía con lupa binocular. Decoloración azul cobalto	24
Fig. 8: Fotografía con lupa binocular. Comparativa rojo UV y sin envejecimiento	24
Fig. 9: Fotografía con lupa binocular. Comparativa azul h y t y azul UV	24
Fig. 10: Fotografía con lupa binocular. Superficie tierra natural	24
Fig. 11: Gráfica que muestra el incremento de luminosidad en UV	25
Fig. 12: Fotografía con lupa binocular. Grieta en blanco titanio	27
Fig. 13: Fotografía con lupa binocular. Grietas en azul cobalto	27
Fig. 14: Gráfica que muestra el incremento de luminosidad en h y t	28
Fig. 15: Fotografías macro comparativas de ambos envejecimientos	38
Fig. 16: Gráfica porcentual de la edad de los encuestados	40
Fig. 17 y 18: Gráfica porcentual de formación y sexo de los encuestados	40
Fig. 19: Gráfica porcentual de las marcas de óleo usadas	40
Fig. 20, 21 y 22: Gráfica del empleo de secativo, utilización y tipología	41
Fig. 23 y 24: Diagrama de barras de la efectividad del secativo	41
Tabla 1: Medias después de 908 h de UV. SCI	42-43
Tabla 2: Medias después de 908 h de UV. SCE	44
Tabla 3: Diferencias antes-después UV. SCE	45-46
Tabla 4: Diferencia antes-después UV. SCI	47-48
Tabla 5: Nominación ensayos envejecidos UV. SCE	49-50
Tabla 6: Nominación ensayos envejecidos UV. SCI	51-52
Tabla 7: Medias envejecimiento h y t. SCE	53-54
Tabla 8: Medias envejecimiento h y t. SCI	55-56
Tabla 9: Diferencias antes-después h y t. SCE.	57-58
Tabla 10: Diferencias antes-después h y t. SCI	59-60
Tabla 11: Nominación ensayos envejecidos h y t. SCE	61-62
Tabla 12: Tabla resumen UV. SCE	63-64
Tabla 13: Tabla resumen UV. SCI	65-66
Tabla 14: Tabla resumen h y t. SCE	67
Tabla 15: Tabla resumen h y t. SCI	68

ANEXO

Contenidos:

- 1) Fichas técnicas de los productos empleados en las probetas (secativo de cobalto y óleos de la casa Titán®).
- 2) Fotografías macro comparativas.
- 3) Modelo de encuesta.
- 4) Resultados del sondeo en gráficas.
- 5) Resultados colorimétricos en tablas.

1) FICHAS TÉCNICAS DE MATERIALES EMPLEADOS EN LAS PROBETAS:

A continuación, se describen dos fichas técnicas correspondientes al secativo de cobalto y a los óleos empleados en la experimentación de la casa comercial Titán.

SECATIVO DE COBALTO TITAN

DESCRIPCION

Para mezclar con óleos	Acelera el secado	Acción rápida y enérgica
------------------------	-------------------	--------------------------

Características: Acelera el secado de los colores al óleo.

Se usa en pequeñas proporciones (0.5 a 5%), bien mezclado con en el color.

De acción rápida y enérgica.

Utilizado en exceso, puede causar arrugados y agrietamientos.

Puede diluirse con Esencia de Trementina o de Petróleo.

DATOS TÉCNICOS

Uso: Mezclado en colores al óleo (0.5 a 5%)

Aspecto: Líquido oscuro **Aplicación:** Según colores al óleo

Naturaleza: Secante de cobalto y disolvente (destilado de petróleo)

Densidad: 0.78-0.80 grs./cm3

Diluyente: Esencia de Trementina o de Petróleo **Envasado:** En botellas de 1 litro, 250 ml. y 100 ml.

CONSERVACION

En envases perfectamente cerrados, la estabilidad es de 2 a 4 años, según el ambiente en que se hallen almacenados.

PRECAUCIONES

Manténgase fuera del alcance de los niños.

Para más información ver ficha de seguridad.

COLOR AL OLEO EXTRA FINO

DESCRIPCION

Color al óleo a base de aceites vegetales secantes, pigmentos de la máxima calidad, y aglutinantes, todo lo cual con una esmerada formulación y un adecuado método de fabricación, dan como resultado las siguientes características:

- Excepcional viveza de color
- Gran concentración pigmentaria
- Excelente resistencia a la luz
- Absoluta estabilidad

CAMPOS DE APLICACION

Especial para aplicar sobre lienzos de lino, algodón u otros, debidamente preparados.

Formulado con el objetivo de cubrir las necesidades de los artistas mas exigentes.

También puede aplicarse sobre otros soportes, como madera, tablex, cartón, etc., siempre que estén impermeabilizados con una adecuada preparación, para que tengan una buena adherencia.

Mantener siempre las obras en interiores.

DATOS TECNICOS

Aspecto: Consistencia pastosa, dúctil y suave

Acabado: Satinado-brillante Colores: Carta de 82 tonalidades

Densidad (grs/cm³): Según color 1,5 – 2,5

% Sólidos en peso: 98-100

Secado a 23°C: Según color pueden ser "rápidos" = 1-3 días

"normales" = 4-7 días "lentos" = 8-15 días

Los tiempos de secado, se corresponden a una aplicación de un grosor aproximado entre 0,1 y 0,5 mm. Variaciones de temperatura y grosor, pueden variar estos datos.

Punto de inflamación: Aprox. 230ºC.

Envasado: En tubos: 20 ml., 60 ml. y 200 ml. En botes: 500 ml.

MODO DE EMPLEO

Método de aplicación: A pincel, paletina o espátula

Diluyente: Puede aplicarse tal como sale del envase o diluido con Esencia de trementina, Esencia de petróleo, Aceite universal y Aceite de lino purificado, según requerimiento y criterio del artista.

Aplicación: Aplicar mejor en capas delgadas, sobre soportes limpios, secos e imprimados adecuadamente.

Preparación de los soportes: Los soportes deben estar limpios, secos y bien imprimados. La imprimación debe estar completamente seca, antes de aplicar los colores al óleo, de lo contrario podrían aparecer grietas, a medida que éstos vayan secando.

- Sobre telas o lienzos: GESSO Imprimación Universal TITAN.
- Sobre madera, tablex, cartón o similares: GESSO Imprimación Universal TITAN ó Selladora TITAN.

Repintado: Puede repintarse encima, teniendo en cuenta de evitar aplicar MAGRO sobre GRASO, para prevenir agrietamientos y rechupados no deseados.

- Se entiende como magro: fino (poco aceite), delgado, fluido, diluido
- Se entiende como graso: grueso (aceitoso), espeso, viscoso.

Limpieza de utensilios: Titán Codi Cleaner.

PRECAUCIONES

Manténgase fuera del alcance de los niños. Úsese únicamente en lugares bien ventilados

2) FOTOGRAFÍAS MACRO COMPARATIVAS

De arriba hacia abajo y de izquierda a derecha, aparecen en la siguiente página las fotografías correspondientes a los ensayos:

- -Blanco de titanio. 2,5% secativo. Antes y después. Envejecimiento UV
- -Negro marfil con secativo a modo de barniz. Antes y después. Envejecimiento UV.
- -Tierra de siena natural. 5% de secativo. Antes y después. Envejecimiento UV.
- -Azul cobalto con secativo a modo de barniz. Antes y después. Envejecimiento UV.
- -Amarillo de cadmio con secativo a modo de barniz. Antes y después. Envejecimiento UV.
- -Rojo titán escarlata. 0,5% de secativo. Antes y después. Envejecimiento UV.
- -Blanco de titanio. Sin aditivos. Antes y después. Envejecimiento humedad y temperatura.
- -Negro marfil. Sin aditivos. Antes y después. Envejecimiento humedad y temperatura.
- -Tierra de siena natural. Sin aditivos. Antes y después. Envejecimiento humedad y temperatura.
- -Azul cobalto. Sin aditivos. Antes y después. Envejecimiento humedad y temperatura.
- -Rojo titán escarlata. Sin aditivos. Antes y después. Envejecimiento humedad y temperatura.

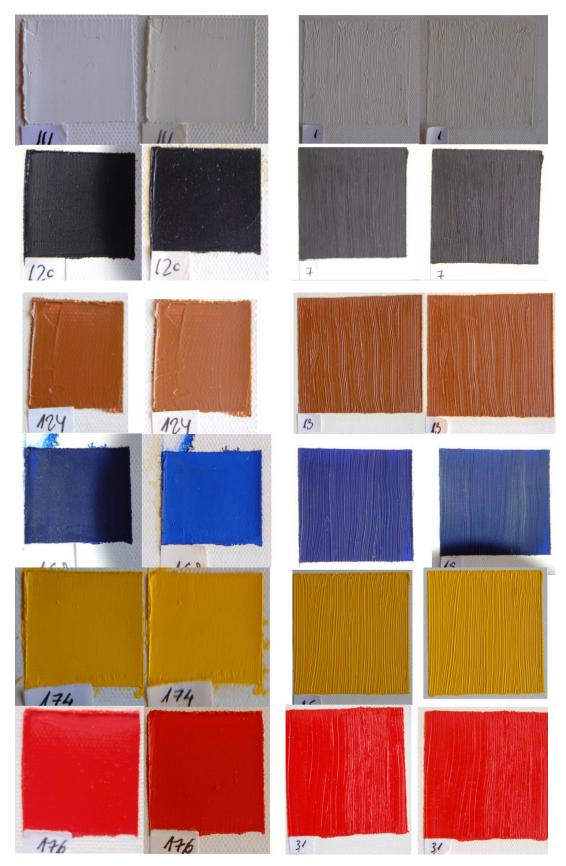


Fig. 15: Fotografías macro con luz visible. Observamos la comparativa entre el antes y después de los ensayos sometidos a UV (izquierda) y los sometidos a humedad y temperatura (derecha).

3) MODELO DE ENCUESTA

ENCUESTA RELA	ATIVA AL EM	IPLEO	DE SEC	ATIVO	S EN E	L ARTE	ACTU	AL	
ARTISTA AUTODIDACTA				CON	ESTUD	IOS ART	ÍSTICO	S	
EDAD: DE O A 15	DE 15 A	\ 30 [MÁS D	 E 75		DE 30	0 A 50			
¿EMPLEAS SECATIVOS SI MARCA DE ÓLEO QUE E	NO 🖂	AS?							
TIPO DE SECATIVOS: COBALTO	LIQUIN			OTRO		cificar:			
PROPORCIÓN DE UTILIZ 1/8 (0,125%) PARTE DE S				1/6 (PARTE	DE S	SECAT	TVO
+RESTO DE ÓLEO					+RES	STO DE (ÓLEO		
1/4 (0,25%) PARTE DE SE SECATIVO +RESTO DE ÓLEO	ECATIVO				½ + RE	(0,5%) STO DE		TE	DE
¿ALGUNA VEZ TE HAS P	ASADO DE F	ROPO	RCIÓN?	'¿QUÉ	É HA OC	CURRIDO	Ο?		
SUPERFICIAL (a modo de BARNIZADO DE LAS OBF				A VEC	CES [
USO DE SECATIVOS EN SI Especificar que tipo:	NO 🗌								
EFECTIVIDAD: BUENA RE	EGULAR		MALA						
RESULTADOS NEGATIVO CRAQUELADOS □					DE	COLORA PIC	ACIÓN [GMENT		
OTROS Especificar:									

4) RESULTADOS DEL SONDEO EN GRÁFICAS:

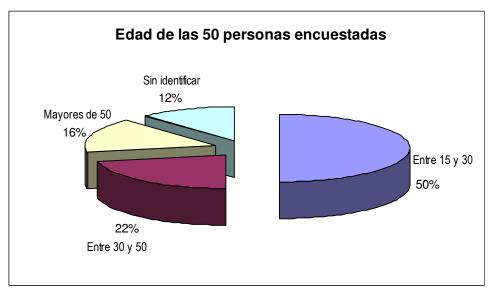
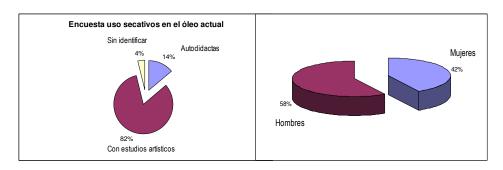



Fig. 16. Gráfica de sectores porcentual que muestra la edad de las personas encuestadas.

Figuras. 17 y 18. Gráficas porcentuales que muestran las personas con estudios artísticos y su sexo.

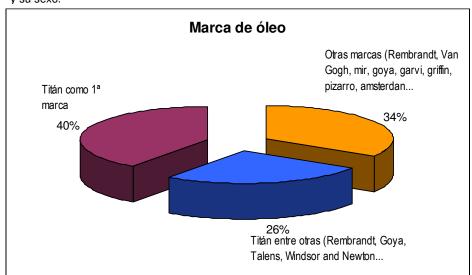
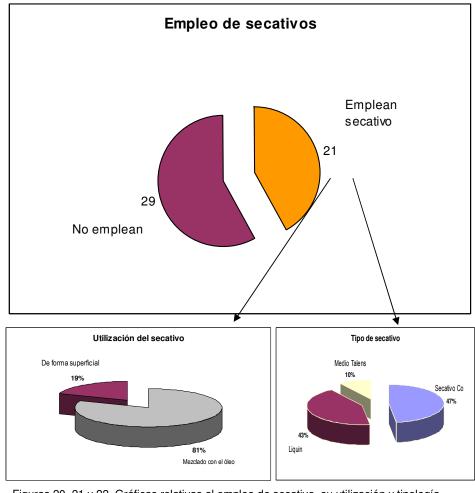
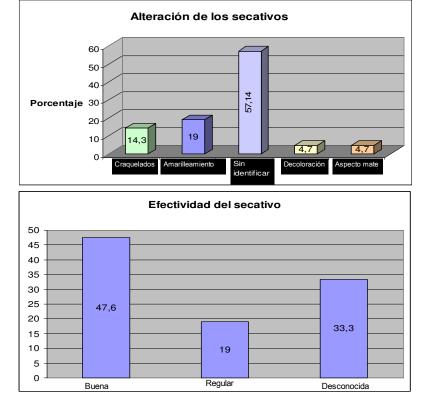




Fig. 19: Gráfica de sectores que indica la marca de óleo y su porcentaje de utilización.

Figuras 20, 21 y 22. Gráficas relativas al empleo de secativo, su utilización y tipología.

Figuras 23 y 24. Diagramas de barras porcentuales con el tipo de alteraciones que presenta el secativo y la efectividad del mismo.

Amparo Torrente		MEDIAS DESPUÉS 908h de UV. SCI								
Fecha toma:	23/07/2009									
	SCI/100	Medias								
	nº probeta	Estado	Υ	X	у	L*	a*	b*	C*	h
	109	media sci	87,22	0,32	0,34	94,83	-0,24	3,23	3,24	94,18
	110	media sci	84,88	0,32	0,34	93,83	-0,17	3,33	3,33	92,96
	111	media sci	82,00	0,32	0,34	92,57	-0,05	3,52	3,52	90,78
	112	media sci	82,55	0,32	0,34	92,82	0,02	3,53	3,53	89,69
	113	media sci	84,34	0,32	0,34	93,60	0,09	3,43	3,43	88,45
	114	media sci	77,80	0,32	0,34	90,69	-0,70	2,71	2,80	104,48
	115	media sci	5,55	0,32	0,34	28,25	0,34	1,44	1,48	76,76
	116	media sci	5,70	0,32	0,34	28,65	0,39	1,93	1,97	78,62
	117	media sci	5,56	0,32	0,34	28,27	0,38	1,76	1,80	77,88
	118	media sci	5,93	0,32	0,34	29,23	0,28	1,44	1,47	78,89
	119	media sci	5,17	0,32	0,34	27,22	0,38	1,24	1,30	72,78
	120	media sci	5,04	0,32	0,34	26,84	0,40	1,34	1,40	73,46
	121	media sci	14,38	0,42	0,38	44,77	14,42	22,21	26,48	57,01
	122	media sci	14,57	0,42	0,38	45,04	14,35	22,39	26,59	57,35
	163	media sci	12,16	0,19	0,17	41,48	14,50	-52,99	54,94	285,30
	164	media sci	9,84	0,19	0,17	37,55	13,61	-48,36	50,24	285,72
	165	media sci	10,17	0,19	0,17	38,14	12,86	-48,32	50,00	284,91
	166	media sci	10,79	0,19	0,17	39,23	12,82	-48,83	50,48	284,71
	.00		,	٠,٠٠	-,	,	,•_	,	, .0	,

167	media sci	10,57	0,19	0,17	38,85	12,09	-47,45	48,97	284,30
168	media sci	8,71	0,20	0,18	35,43	10,88	-42,18	43,56	284,46
169	media sci	59,46	0,48	0,46	81,55	13,98	86,35	87,47	80,81
170	media sci	60,03	0,48	0,46	81,86	13,67	87,12	88,18	81,08
171	media sci	59,94	0,48	0,46	81,80	13,57	86,87	87,92	81,12
172	media sci	59,30	0,48	0,46	81,46	13,97	86,99	88,10	80,87
173	media sci	59,17	0,48	0,46	81,38	13,13	88,37	89,34	81,55
174	media sci	56,56	0,48	0,46	79,93	13,65	85,80	86,88	80,96
175	media sci	14,90	0,53	0,34	45,49	48,44	31,13	57,58	32,72
176	media sci	15,43	0,54	0,34	46,22	49,20	34,34	59,99	34,91
177	media sci	15,63	0,54	0,34	46,49	48,40	33,51	58,87	34,69
178	media sci	15,05	0,55	0,35	45,70	49,55	35,65	61,04	35,73
179	media sci	14,33	0,56	0,34	44,70	52,26	38,40	64,85	36,31
180	media sci	13,86	0,54	0,35	44,04	46,94	33,55	57,70	35,56

Observador: Amparo	Torrente	MEDIAS DESPUÉS 908h de UV. SCE	-							
COND 1 M/I+E/100	10⁰	D65								
Fecha 23/07/09										
color	nº probeta	Estado	Y	X	у	L*	a*	b*	C*	h
b	109	media sce	86,41022	0,31912	0,33706	94,48702	-0,22776	3,19746	3,20558	94,0751
	110	media sce	84,12886	0,31938	0,33724	93,50556	-0,18092	3,26638	3,27144	93,17224
а	111	media sce	81,2956	0,31996	0,3376	92,2622	-0,05662	3,46284	3,4633	90,93802
n	112	media sce	81,77596	0,32006	0,33756	92,47482	0,00648	3,4756	3,4757	89,89648
С	113	media sce	83,69068	0,31994	0,33724	93,31552	0,08564	3,38114	3,38224	88,54964
0	114	media sce	73,80398	0,31792	0,33694	88,80762	-0,73622	2,77212	2,86824	104,8681
n	115	media sce	5,35276	0,3218	0,33782	27,71252	0,2957	1,56682	1,59554	79,20148
е	116	media sce	5,63972	0,32378	0,33976	28,48432	0,32972	2,02352	2,05118	80,69116
g	117	media sce	5,38844	0,32328	0,33922	27,81064	0,32778	1,87938	1,90872	80,0235
r	118	media sce	5,56928	0,32194	0,33822	28,28474	0,25114	1,65296	1,67282	81,17082
0	119	media sce	4,89018	0,3215	0,33718	26,40914	0,34234	1,40326	1,44596	76,07864
S	120	media sce	4,82134	0,3218	0,33746	26,21348	0,35042	1,4598	1,50264	76,35874
t	121	media sce	13,584	0,43056	0,38334	43,61516	14,90722	23,87106	28,146	57,97822
i	122	media sce	13,4239	0,43438	0,38572	43,36326	15,0725	24,80682	29,03158	58,64584
е	123	media sce	13,40746	0,43248	0,38484	43,34242	14,87536	24,34466	28,53386	58,50904
rr	124	media sce	14,06752	0,42608	0,38054	44,32946	14,82586	22,94532	27,31854	57,13062
a	125	media sce	13,63878	0,43092	0,38362	43,69654	14,94168	24,01708	28,28766	58,0813
S	126	media sce	13,37714	0,43178	0,38396	43,3141	14,95966	24,05552	28,32974	58,09402
а	163	media sce	12,16828	0,18736	0,16682	41,48234	14,40302	-52,8955	54,8214	285,2318
Z	164	media sce	9,83808	0,19008	0,16902	37,55022	13,5206	-48,30142	50,15812	285,63798
u	165	media sce	10,1566	0,1899	0,1707	38,12194	12,77348	-48,2457	49,90802	284,82928
I	166	media sce	10,76598	0,19054	0,1719	39,1832	12,71366	-48,71072	50,34256	284,62802
е	167	media sce	10,5658	0,19196	0,1745	38,83928	12,00248	-47,3945	48,8907	284,21108
S	168	media sce	8,7194	0,19746	0,18056	35,43836	10,80978	-42,1443	43,50858	284,38578
a	169	media sce	59,186	0,48226	0,46144	81,39352	13,86084	86,56714	87,66988	80,90308
ma	170	media sce	58,6103	0,48642	0,46578	81,07272	13,70936	90,95042	91,97888	81,41894
ri 	171	media sce	58,2732	0,48702	0,46642	80,88462	13,65186	91,56212	92,57562	81,5069
II	172	media sce	59,04924	0,48276	0,4619	81,31854	13,84666	87,0046	88,09964	80,95728
0	173	media sce	58,9898	0,48262	0,46442	81,28592	13,01516	88,2829	89,23718	81,61358
S	174	media sce	56,39838	0,48264	0,46216	79,83994	13,52652	85,7501	86,81046	81,03586
r	175	media sce	13,659	0,55416	0,34092	43,70394	50,53816	35,19496	61,61124	34,76342
0	176	media sce	15,35712	0,54082	0,34384	46,1194	49,21144	34,41684	60,05238	34,96762
	177	media sce	15,42728	0,5374	0,34384	46,2131	48,6081	33,76162	59,18276	34,7823
0	178	media sce	15,0322	0,54612	0,34512	45,67828	49,49314	35,66118	61,0024	35,7738
S	179	media sce	14,32634	0,56236	0,34382	44,69726	52,15564	38,3526	64,73896	36,32888
	180	media sce	13,85176	0,54008	0,3456	44,01956	46,8966	33,57704	57,67764	35,6019

CÁLCULO DE DIFERENCIAS ENTRE EL ANTES Y DESPUÉS DEL ENVEJECIMIENTO POR UV. SCE

	SCE															
Nº probeta	L(1)	L (2)	ΔL (2-1)	a (1)	a (2)	Δa (2-1)	b (1)	b(2)	Δb (2-1)	ΔE Lab	C(1)	C(2)	ΔC(2-1)	h(1)	h(2)	∆h(2-1)
LISAS 109	95,23	94,49	-0,74	-0,58	-0,23	0,35	3,38	3,2	-0,18	0,84	3,43	3,21	-0,22	99,66	94,08	-5,58
110	93,17	93,51	0,34	-0,73	-0,18	0,55	4,25	3,27	-0,98	1,17	4,31	3,27	-1,04	99,76	93,17	-6,59
111	94,21	92,26	-1,95	-0,99	-0,06	0,93	4,37	3,46	-0,91	2,34	4,48	3,46	-1,02	102,71	90,94	-11,77
112	94,39	92,47	-1,92	-1,12	0,01	1,13	4,62	3,48	-1,14	2,5	4,75	3,48	-1,27	103,59	89,9	-13,69
113	82,78	93,32	10,54	-0,45	0,09	0,54	5,53	3,38	-2,15	10,77	5,55	3,38	-2,17	94,63	88,55	-6,08
114	81,1	88,81	7,71	-1,26	-0,74	0,52	4,42	2,77	-1,65	7,9	4,59	2,87	-1,72	105,89	104,87	-1,02
115	0,52	27,71	27,19	0,99	0,3	-0,69	0,74	1,57	0,83	27,21	1,23	1,6	0,37	36,73	79,2	42,47
116	0,78	28,48	27,7	1,29	0,33	-0,96	1,18	2,02	0,84	27,73	1,75	2,05	0,3	42,42	80,69	38,27
117	1,28	27,81	26,53	0,78	0,33	-0,45	1,85	1,88	0,03	26,53	2,01	1,91	-0,1	67,09	80,02	12,93
118	0,09	28,28	28,19	0	0,25	0,25	0	1,65	1,65	28,24	0	1,67	1,67	207,93	81,17	-126,76
119	0,09	26,41	26,32	0	0,34	0,34	0	1,4	1,4	26,36	0	1,45	1,45	207,93	76,08	-131,85
120	0,09	26,21	26,12	0	0,35	0,35	0	1,46	1,46	26,16	0	1,5	1,5	207,93	76,36	-131,57
121	36,69	43,62	6,93	20,61	14,91	-5,7	46,59	23,87	-22,72	24,43	50,95	28,15	-22,8	66,14	57,98	-8,16
122	36,44	43,36	6,92	20,84	15,07	-5,77	49,35	24,81	-24,54	26,14	53,57	29,03	-24,54	67,1	58,65	-8,45
123	37,44	43,34	5,9	20,2	14,88	-5,32	45,34	24,34	-21	22,45	49,63	28,53	-21,1	65,99	58,51	-7,48
124	36,51	44,33	7,82	20,65	14,83	-5,82	46,39	22,95	-23,44	25,39	50,78	27,32	-23,46	66	57,13	-8,87
125	36,82	43,7	6,88	20,5	14,94	-5,56	47,08	24,02	-23,06	24,7	51,35	28,29	-23,06	66,47	58,08	-8,39
126	29,46	43,31	13,85	18,79	14,96	-3,83	43,18	24,06	-19,12	23,92	47,1	28,33	-18,77	66,48	58,09	-8,39
163	3,65	41,48	37,83	23,25	14,4	-8,85	-37,98	-52,9	-14,92	41,62	44,53	54,82	10,29	301,48	285,23	-16,25
164	1,71	37,55	35,84	18,67	13,52	-5,15	-32,54	-48,3	-15,76	39,49	37,52	50,16	12,64	299,85	285,64	-14,21
165	1,89	38,12	36,23	19,36	12,77	-6,59	-33,47	-48,25	-14,78	39,68	38,67	49,91	11,24	300,04	284,83	-15,21
166	3,49	39,18	35,69	24,53	12,71	-11,82	-39,03	-48,71	-9,68	38,82	46,1	50,34	4,24	302,15	284,63	-17,52
167	2,99	38,84	35,85	26,69	12	-14,69	-40,24	-47,39	-7,15	39,4	48,29	48,89	0,6	303,56	284,21	-19,35

168	2,54	35,44	32,9	16,61	10,81	-5,8	-32,54	-42,14	-9,6	34,76	36,54	43,51	6,97	297,04	284,39	-12,65
169	81,79	81,39	-0,4	14,38	13,86	-0,52	111,99	86,57	-25,42	25,43	112,91	87,67	-25,24	82,68	80,9	-1,78
170	80,71	81,07	0,36	14,47	13,71	-0,76	128,72	90,95	-37,77	37,78	129,53	91,98	-37,55	83,59	81,42	-2,17
171	80,71	80,88	0,17	14,45	13,65	-0,8	129,04	91,56	-37,48	37,49	129,85	92,58	-37,27	83,61	81,51	-2,1
172	81,16	81,32	0,16	14,35	13,85	-0,5	115,14	87	-28,14	28,14	116,04	88,1	-27,94	82,9	80,96	-1,94
173	81,52	81,29	-0,23	14	13,02	-0,98	117,8	88,28	-29,52	29,54	118,63	89,24	-29,39	83,22	81,61	-1,61
174	79,16	79,84	0,68	13,95	13,53	-0,42	120,06	85,75	-34,31	34,32	120,87	86,81	-34,06	83,37	81,04	-2,33
175	37,97	43,7	5,73	64,74	50,54	-14,2	65,3	35,19	-30,11	33,78	91,95	61,61	-30,34	45,25	34,76	-10,49
176	39,69	46,12	6,43	65,56	49,21	-16,35	68,28	34,42	-33,86	38,15	94,66	60,05	-34,61	46,17	34,97	-11,2
177	38,72	46,21	7,49	65,32	48,61	-16,71	66,61	33,76	-32,85	37,61	93,29	59,18	-34,11	45,56	34,78	-10,78
178	39,72	45,68	5,96	64,47	49,49	-14,98	68,32	35,66	-32,66	36,42	93,94	61	-32,94	46,66	35,77	-10,89
179	42,5	44,7	2,2	62,69	52,16	-10,53	72,45	38,35	-34,1	35,76	95,81	64,74	-31,07	49,13	36,33	-12,8
180	37,44	44,02	6,58	61,48	46,9	-14,58	64,39	33,58	-30,81	34,71	89,03	57,68	-31,35	46,33	35,6	-10,73

CÁLCULO DE DIFERENCIAS ENTRE EL ANTES Y DESPUÉS DEL ENVEJECIMIENTO POR UV. SCI

TABLA 4 SCI/100 Nº probeta L(1) L (2) <u>AL (2-1)</u> a (1) a (2) Da (2-1) b (1) b(2) **Db** (2-1) ∆E Lab C(1) C(2) $\Delta C(2-1)$ h(1) h(2) ∆h(2-1) LISAS 109 95,61 94,83 -0,56 -0,240.32 3,49 3,23 -0.26 3,53 3,24 99,12 94,18 -4,94 110 93,94 93,83 -0,11 -0,71 -0,17 0,54 4,27 3,33 -0,94 1,09 4,32 3,33 -0,99 99,46 92,96 -6.5 94,87 92,57 -2,3 -0,95 4,49 3,52 -0,97 4,59 3,52 101,98 90,78 -11,2 111 -0,05 0,9 95.22 92.82 112 -2.4 -1.08 0.02 1.1 4,62 3.53 -1.09 2.86 4.75 3.53 -1.22103.18 89.69 -13.49113 -0,33 0,09 82,82 93,6 0,42 5,6 3,43 -2,17 5,61 3,43 -2,18 93,32 88,45 -4,87 114 82,7 90,69 7,99 -0,99 -0,7 0,29 4,17 2,71 -1,46 8,13 4,28 2,8 -1,48 103,38 104,48 1,1 115 0,83 28,25 0.89 0,34 -0.55 1,26 1,44 0.18 27,43 1,54 1,48 54,97 76,76 116 0,57 28,65 28,08 0,98 0,39 -0,590,82 1,93 1,11 28,11 1,28 1,97 0.69 39,83 78,62 38,79 117 1,25 28,27 0,71 0,38 -0,33 1,66 1,76 0,1 27,02 1,8 1,8 66,95 77,88 118 0.09 29.23 29,14 0.02 0.28 0.26 0.01 1.44 1,43 29,18 0,03 1.47 1.44 13.43 78,89 65,46 119 0,09 27,22 0 0,38 0,38 1,24 1,24 27,16 1,3 207,93 72,78 0 0,09 26,84 26,75 207,93 73,46 120 0 0,4 0,4 0 1,34 1,34 26,79 0 1,4 1,4 -134,4722,21 41,82 26,48 121 38,61 44,77 6,16 19,31 14,42 -4,89 37,1 -14,89 16,84 -15,34 62,51 57,01 122 38,86 45,04 6,18 19,25 14,35 -4,9 37,5 22,39 -15,11 17,04 42,15 26,59 -15,56 62,83 57,35 -5,48123 38,97 44,94 19,23 14,2 37,78 22,12 -15,66 42,39 26,28 63,03 57,29 -5,74 -5,03 124 38,16 44,45 6,29 19.54 14.81 -4.7338.38 22,72 -15,66 17,53 43,06 27,12 -15,94 63.02 56,89 -6.13125 38,09 44,82 6,73 19,33 14,47 -4,86 38,51 22,48 -16,03 43,09 26,74 63,35 57,22 -6,13 126 31,33 44,33 13 17,67 14,53 -3,14 34,9 22,59 -12,31 18,18 39,12 26,86 -12,26 63,15 57,25 -5,9 163 3,42 41,48 23,51 14,5 -9,01 -38,15 -52,99 -14,84 41,83 44,82 54,94 301,64 285,3 -16,34 300,53 285,72 -14,81 164 3,17 37,55 34,38 21,64 13,61 -8,03 -36,68 -48,36 -11,68 37,19 42,59 50,24 7,65 165 3,12 38,14 20.85 12.86 -7.99 -36.13 -48.32 -12,19 41,72 299,99 284,91 50 166 3.59 39.23 35,64 24,65 12,82 -11,83 -39.21 -48.83 -9,62 38,76 46,32 50,48 302,16 284,71 -17,45 4,16

167	2,64	38,85	36,21	26,05	12,09	-13,96	-39,36	-47,45	-8,09	39,64	47,19	48,97	1,78	303,5	284,3	-19,2
168	1,98	35,43	33,45	15,49	10,88	-4,61	-30,61	-42,18	-11,57	35,69	34,31	43,56	9,25	296,84	284,46	-12,38
169	81,87	81,55	-0,32	14,63	13,98	-0,65	112,77	86,35	-26,42	26,43	113,72	87,47	-26,25	82,61	80,81	-1,8
170	82,24	81,86	-0,38	13,85	13,67	-0,18	115,5	87,12	-28,38	28,38	116,33	88,18	-28,15	83,16	81,08	-2,08
171	82,36	81,8	-0,56	13,71	13,57	-0,14	116,38	86,87	-29,51	29,52	117,18	87,92	-29,26	83,28	81,12	-2,16
172	81,48	81,46	-0,02	14,53	13,97	-0,56	112,7	86,99	-25,71	25,72	113,63	88,1	-25,53	82,65	80,87	-1,78
173	81,31	81,38	0,07	14,38	13,13	-1,25	120,15	88,37	-31,78	31,8	121,01	89,34	-31,67	83,18	81,55	-1,63
174	79,27	79,93	0,66	14,26	13,65	-0,61	121,6	85,8	-35,8	35,81	122,44	86,88	-35,56	83,31	80,96	-2,35
175	40,49	45,49	5	62,84	48,44	-14,4	65,66	31,13	-34,53	37,74	90,88	57,58	-33,3	46,26	32,72	-13,54
176	41,16	46,22	5,06	64,23	49,2	-15,03	70,53	34,34	-36,19	39,51	95,39	59,99	-35,4	47,68	34,91	-12,77
177	40,96	46,49	5,53	63,75	48,4	-15,35	69,66	33,51	-36,15	39,66	94,43	58,87	-35,56	47,54	34,69	-12,85
178	40,95	45,7	4,75	63,08	49,55	-13,53	70,23	35,65	-34,58	37,44	94,4	61,04	-33,36	48,07	35,73	-12,34
179	41,42	44,7	3,28	63,25	52,26	-10,99	70,9	38,4	-32,5	34,46	95,01	64,85	-30,16	48,26	36,31	-11,95
180	38,58	44,04	5,46	60,34	46,94	-13,4	65,73	33,55	-32,18	35,28	89,22	57,7	-31,52	47,45	35,56	-11,89

NOMINACIÓN ENSAYOS ENVEJECIDOS UVA. SCE (Sin brillo)

Muestra n°	C*antes	Nominación	C*después	Nominación	h antes		Nominación h después	Nominación	L*antes	Nominación	L*después	Nominación
M M	я С	No	م ڻ	Non	h ar	=	no P d	Non	L*	Non	Ď Ľ	Non
LISAS 109	3,43	grisáceo	3,21	grisá ceo	99,66	blanco-medio	94,08	blanco-medio	95,23	blanco	94,49	blanco
110	4,31	grisáceo	3,27	grisá ceo	99,76	blanco-medio	93,17	blanco-medio	93,17	blanco	93,51	blanco
111	4,48	grisáceo	3,46	grisá ceo	102,7 1	blanco-medio	90,94	blanco-medio	94,21	blanco	92,26	blanco
112	4,75	grisáceo	3,48	grisá ceo	103,5 9	blanco-medio	89,9	blanco-medio	94,39	blanco	92,47	blanco
113	5,55	grisáceo	3,38	grisá ceo	94,63	blanco-medio	88,55	blanco-medio	82,78	muy claro	93,32	blanco
114	4,59	grisáceo	2,87	grisá ceo	105,8 9	blanco-medio	104,87	blanco-medio	81,1	muy claro	88,81	blanco
115	1,23	grisáceo	1,6	grisá ceo	36,73	rojo-cálido	79,2	amarillo-medio	0,52	negro	27,71	oscuro
116	1,75	grisáceo	2,05	grisá ceo	42,42	naranja-cálido	80,69	amarillo-medio	0,78	negro	28,48	oscuro
117	2,01	grisáceo	1,91	grisá ceo	67,09	naranja-cálido	80,02	amarillo-medio	1,28	negro	27,81	oscuro
118	0	gris	1,67	grisá ceo	207,9 3	azul-frío	81,17	amarillo-medio	0,09	negro	28,28	oscuro
119	0	gris	1,45	grisá ceo	207,9	azul-frío	76,08	amarillo-medio	0,09	negro	26,41	oscuro
120	0	gris	1,5	grisá ceo	207,9 3	azul-frío	76,36	amarillo-medio	0,09	negro	26,21	oscuro
121	50,95	vivo	28,15	medi o	66,14	naranja am-cálido	57,98	naranja rojizo-cálido	36,69	medio	43,62	medio
122	53,57	vivo	29,03	medi o	67,1	naranja am-cálido	58,65	naranja-cálido	36,44	medio	43,36	medio
123	49,63	vivo	28,53	medi	65,99	naranja am-cálido	58,51	naranja-cálido	37,44	medio	43,34	medio

				0								
124	50,78	vivo	27,32	medi o	66	naranja am-cálido	57,13	naranja-cálido	36,51	medio	44,33	medio
125	51,35	vivo	28,29	medi o	66,47	naranja am-cálido	58,08	naranja-cálido	36,82	medio	43,7	medio
126	47,1	vivo	28,33	medi o	66,48	naranja am-cálido	58,09	naranja-cálido	29,46	oscuro	43,31	medio
163	44,53	medio	54,82	vivo	301,4 8	violeta-frío	285,23	azul-violeta-frío	3,65	negro	41,48	medio
164	37,52	medio	50,16	vivo	299,8 5	violeta-frío	285,64	azul-violeta-frío	1,71	negro	37,55	medio
165	38,67	medio	49,91	vivo	<i>300,0 4</i>	violeta-frío	284,83	azul-violeta-frío	1,89	negro	38,12	medio
166	46,1	medio	50,34	vivo	302,1 5	violeta-frío	284,63	azul-violeta-frío	3,49	negro	39,18	medio
167	48,29	medio	48,89	vivo	<i>303,5 6</i>	violeta-frío	284,21	azul-violeta-frío	2,99	negro	38,84	medio
168	36,54	medio	43,51	medi o	297,0 4	violeta-frío	284,39	azul-violeta-frío	2,54	negro	35,44	medio
169	112,91	puro	87,67	puro	82,68	amarillo anaranjado- medio	80,9	amarillo anaranjado- medio	81,79	muy claro	81,39	muy claro
170	129,53	puro	91,98	puro	83,59	amarillo anaranjado- medio	81,42	amarillo anaranjado- medio	80,71	muy claro	81,07	muy claro
171	129,85	puro	92,58	puro	83,61	amarillo anaranjado- medio	81,51	amarillo anaranjado- medio	80,71	muy claro	80,88	muy claro
172	116,04	puro	88,1	puro	82,9	amarillo anaranjado- medio	80.96	amarillo anaranjado- medio	81,16	muy claro	81,32	muy claro
173	118,63	puro	89,24	puro	83.22	amarillo anaranjado- medio	81,61	amarillo anaranjado- medio	81,52	muy claro	81,29	muy claro
174	120,87	puro	86,81	puro	83,37	amarillo anaranjado- medio	81,04	amarillo anaranjado- medio	79,16	muy claro	79,84	muy claro
175	91,95	puro	61,61	vivo	45,25	rojo-naranja-cálido	34,76	rojo anaranjado-cálido	37,97	medio	43,7	medio
176	94,66	puro	60,05	vivo	46,17	rojo-naranja-cálido	34,97	rojo anaranjado-cálido	39,69	medio	46,12	medio
177	93,29	puro	59,18	vivo	45,56	rojo-naranja-cálido	34,78	rojo anaranjado-cálido	38,72	medio	46,21	medio
178	93,94	puro	61	vivo	46,66	rojo-naranja-cálido	35,77	rojo anaranjado-cálido	39,72	medio	45,68	medio

NOMINACIÓN ENSAYOS ENVEJECIDOS CON UVA. SCI (Con brillo)

Muestra n°	C*ante	Nominació	C*despué	Nominació	h	Nominación	h	Nominación	L*ante	Nominació	L*despué	Nominació
	S	n	S	n	antes		después		S	n	S	n
LISAS 109	3,53	grisáceo	3,24	grisáceo	99,12	amarillo	94,18	amarillo	95,61	blanco	94,83	blanco
110	4,32	grisáceo	3,33	grisáceo	99,46	amarillo	92,96	amarillo	93,94	blanco	93,83	blanco
111	4,59	grisáceo	3,52	grisáceo	101,98	amarillo	90,78	amarillo	94,87	blanco	92,57	blanco
112	4,75	grisáceo	3,53	grisáceo	103,18	amarillo	89,69	amarillo	95,22	blanco	92,82	blanco
113	5,61	grisáceo	3,43	grisáceo	93,32	amarillo	88,45	amarillo	82,82	blanco	93,6	blanco
114	4,28	grisáceo	2,8	grisáceo	103,38	amarillo	104,48	amarillo	82,7	blanco	90,69	blanco
115	1,54	grisáceo	1,48	grisáceo	54,97	naranja rojizo	76,76	naranja amar	0,83	negro	28,25	oscuro
116	1,28	grisáceo	1,97	grisáceo	39,83	rojo anaranj	78,62	naranja amar	0,57	negro	28,65	oscuro
117	1,8	grisáceo	1,8	grisáceo	66,95	naranja amar	77,88	naranja amar	1,25	negro	28,27	oscuro
118	0,03	gris	1,47	grisáceo	13,43	magenta rojo	78,89	naranja amar	0,09	negro	29,23	oscuro
119	0	gris	1,3	grisáceo	207,93	cyan	72,78	naranja amar	0,09	negro	27,22	oscuro
120	0	gris	1,4	grisáceo	207,93	cyan	73,46	naranja amar	0,09	negro	26,84	oscuro
121	41,82	medio	26,48	medio	62,51	naranja	57,01	naranja	38,61	medio	44,77	medio
122	42,15	medio	26,59	medio	62,83	naranja	57,35	naranja	38,86	medio	45,04	medio
123	42,39	medio	26,28	medio	63,03	naranja	57,29	naranja	38,97	medio	44,94	medio
124	43,06	medio	27,12	medio	63,02	naranja	56,89	naranja	38,16	medio	44,45	medio
125	43,09	medio	26,74	medio	63,35	naranja	57,22	naranja	38,09	medio	44,82	medio
126	39,12	medio	26,86	medio	63,15	naranja	57,25	naranja	31,33	oscuro	44,33	medio
163	44,82	medio	54,94	vivo	301,64	violeta	285,3	azul-violeta	3,42	negro	41,48	medio
164	42,59	medio	50,24	vivo	300,53	violeta	285,72	azul-violeta	3,17	negro	37,55	medio
165	41,72	medio	50	vivo	299,99	violeta	284,91	azul-violeta	3,12	negro	38,14	medio
166	46,32	vivo	50,48	vivo	302,16	violeta	284,71	azul-violeta	3,59	negro	39,23	medio
167	47,19	vivo	48,97	vivo	303,5	violeta	284,3	azul-violeta	2,64	negro	38,85	medio
168	34,31	medio	43,56	medio	296,84	violeta azulado	284,46	azul-violeta	1,98	negro	35,43	medio
169	113,72	puro	87,47	puro	82,61	amarillo anaranjado	80,81	amarillo anaranjado	81,87	muy claro	81,55	muy claro
170	116,33	puro	88,18	puro	83,16	amarillo anaranjado	81,08	amarillo anaranjado	82,24	muy claro	81,86	muy claro
171	117,18	puro	87,92	puro	83,28	amarillo anaranjado		amarillo anaranjado	82,36	muy claro	81,8	muy claro

172	113,63	puro	88,1	puro	,	amarillo anaranjado	,-	amarillo anaranjado	81,48	muy claro	81,46	muy claro
173	121,01	puro	89,34	puro	83,18	amarillo anaranjado	81,55	amarillo anaranjado	81,31	muy claro	81,38	muy claro
174	122,44	puro	86,88	puro	83,31	amarillo anaranjado	80,96	amarillo anaranjado	79,27	muy claro	79,93	muy claro
175	90,88	puro	57,58	vivo		rojo naranja	32,72		40,49	medio	45,49	medio
176	95,39	puro	59,99	vivo		rojo naranja	34,91	rojo anar	41,16	medio	46,22	medio
177	94,43	puro	58,87	vivo	47,54	rojo naranja	34,69	rojo anar	40,96	medio	46,49	medio
178	94,4	puro	61,04	vivo		rojo naranja	-	rojo anar	40,95	medio	45,7	medio
179	95,01	puro	64,85	vivo	48,26	rojo naranja	36,31	rojo anar	41,42	medio	44,7	medio
180	89,22	puro	57,7	vivo		rojo naranja	35,56	rojo anar	38,58	medio	44,04	medio

TABLA 7 Parámetros: Estado del Estándar: CRBIMM Modo Color L*a*b* y CIEYxy Observador 10° 1 Iluminante primario D65 Operadora Amparo Torrente **HUMEDAD Y TEMPERATURA FINAL** SCE/100 Disparo n° **Nombre** Υ L* b* C* nº probeta Estado X a* h У 109,110,111 blanco solo media 59,3352 0,43356667 0,34736667 93,2628333 -0,55376667 7,93406667 7,9534 93,9934 1 2 85,3209667 112,113,114 blanco 0,5 media 0.3276 0,34693333 94,3619333 -0,68393333 8,52403333 8,55143333 94,5874 3 85,0125333 0,3289 0,3484 -0,6747 9.32286667 9.34723333 94,1391333 115 blanco 2,5 media 93,6519667 118 84,3174667 0,32933333 0,34863333 -0,5419 93,3887 4 blanco 5 media 93,5614 9,15153333 9,16756667 121 5 media 82,3776333 0,32996667 0,34906667 92,3292333 -0,4159 9,51776667 9,52686667 92,5021333 blanco 10 6 124 blanco barniz media 81.3431667 0.3307 0.34976667 92.2537 -0.4452 9.8634 9.87346667 92.5843

0.3195

0,3138

0,3138

0.3138

0,3138

0.3138

0,44056667

0.49396667

0,50173333 0,41286667

0,49633333 0,40973333

0,3373

0,331

0,331

0.331

0,331

0.331

0.3856

0,4098

0.49446667 0.40926667 37.3541667

0.0903

0,0903

0,0903

0.0903

0.0903

0.0903

36,2215

36.4282

36,9068667

37,3725333

0

0

0

0

0

0

19,7694333

19.2523667

19,4424667

18,9659

19.5323

0

0

0

0

0

37.8021333

36,5861

27,0875333

0,01

0,01

0.01

0,01

0.01

6,0811

9.1954

9,40806667

9,6601

9.7305

media

MEDIAS ENVEJECIMIENTO HUMEDAD Y TEMPERATURA. SCE.

negro solo

negro 0,5

negro 2,5

negro 5

negro 10

negro barniz

tierra solo

tierra 0.5

tierra 2.5

tierra 5

tierra 10

127

130

133

136

139

142

145

148

151

154

157

7

8

9

10

11

12

13

14

15

16

17

207,93

207,93

207,93

207.93

207,93

207,93

63,0098333

62,5981667

0

0

0

0

0

38,4874333 43,2679333 62,8122333

42.4224

36,1582333 41,0539667 61,7328333

41,2098

36,4685333 41,3698333 61,8268333

160	18	tierra barniz	media	9,1586	0,50153333	0,4119	35,7471667	19,6279	38,4544667	43,1740667	62,9593667
163	19	azul solo	media	3,07776667	0,2673	0,17336667	1,5731	13,0982333	-27,5719333	30,525	295,410333
166	20	azul 0,5	media	0,20393333	0,14753333	0,0563	1,97143333	14,3742	-29,7999333	33,0855667	295,750633
169	21	azul 2,5	media	0,15506667	0,14786667	0,05636667	1,11693333	8,67023333	-21,3335	23,0280333	292,117533
172	22	azul 5	media	0,2058	0,14663333	0,06226667	2,22946667	12,9886667	-29,1075667	31,8740333	294,047833
175	23	azul 10	media	0,20586667	0,14673333	0,061	1,6722	11,7861333	-26,6274667	29,1193667	293,875533
178	24	azul barniz	media	0,22886667	0,14746667	0,05493333	2,269	19,0075667	-34,1555333	39,0882	299,0959
181	25	amarillo solo	media	37,2143	0,38553333	0,3364	79,4087333	14,9695667	111,204767	112,2078	82,3332333
184	26	amarillo 0,5	media	55,0596	0,50566667	0,4788	78,9447333	14,9863	113,850867	114,832933	82,5012
187	27	amarillo 2,5	media	54,7538667	0,5072	0,48016667	78,8525667	15,0394	117,4601	118,419	82,7036333
190	28	amarillo 5	media	53,6034667	0,50866667	0,47993333	77,9354333	15,4967667	116,513833	117,5399	82,4239333
193	29	amarillo 10	media	53,2675333	0,5081	0,47953333	78,0764667	15,1953	114,833267	115,8343	82,4621333
196	30	amarillo barniz	media	52,6594667	0,50846667	0,47946667	77,474	15,4463333	115,4772	116,505633	82,3812667
199	31	rojo solo	media	24,0162	0,60726667	0,38853333	37,5610333	60,9417333	64,5974	88,8073333	46,6678667
202	32	rojo 0,5	media	9,96236667	0,65446667	0,34516667	37,9247333	59,8488667	65,214	88,5141667	47,4564333
205	33	rojo 2,5	media	10,7942667	0,64203333	0,3485	39,8414	58,5501667	62,1893333	85,4144667	46,7264333
208	34	rojo 5	media	10,4179333	0,64813333	0,34693333	37,9380333	60,1745667	65,2391333	88,7531667	47,3125333
211	35	rojo 10	media	10,7814333	0,64936667	0,3493	39,8332	59,6852333	67,8345667	90,3540667	48,6566
214,215,216	36	rojo barniz	media	10,142	0,6539	0,3452	37,1829667	60,8048333	63,9513667	88,244	46,4448

MEDIAS ENVEJECIMIENTO HUMEDAD Y TEMPERATURA. SCI.

			HUMEDAD	IEWIP	ENATURA	4. JUI.						
Estado del Están	dar:		CRBIMM									
			O. E. IVIIVI									
Modo Color			L*a*b* y CIEYxy									
Observador			10º									
1 Iluminante prim	nario		D65									
			Amparo									
Operadora			Torrente									
HUMEDAD Y TE FINAL	MPERA	ATURA		SCI/10 0								
Condición	1											
Disparo n	0	nº probeta	Nombre	Estado	Υ	X	у	L*	a*	b*	C*	h
109,110,111		1	blanco solo	media	59,590233	0,4335333	0,3475666	93,409933	-	7,95146667	7,9727	94,177433
112,113,114		2	blanco 0,5	media	85,6297	0,3275666	0,3469666	94,491166		8,53026667	8,5598	94,7598
	115	3	blanco 2,5	media	85,343033	0,3288	0,3483666	93,800133		9,3136	9,3401666	94,322466
	118	4	blanco 5	media	84,6212	0,3293	0,3486666	93,683333		9,18436667	9,2024333	93,585066
	121	5	blanco 10	media	82,6814	0,33	0,3491	92,479166	-	9,55723333	9,566366 <u>6</u>	92,5015
	124	6	blanco barniz	media	81,837733	0,3307	0,3498	92,498133	-0,4486	9,89446667	9,9046333	92,595966
	127	7	negro solo	media	27,273833	0,3195	0,3373333	0,0903	0	0	0	207,93
	130	8	negro 0,5	media	0,01	0,3138	0,331	0,0903	0	0	0	207,93
	133	9	negro 2,5	media	0,01	0,3138	0,331	0,0903	0	0	0	207,93
	136	10	negro 5	media	0,01	0,3138	0,331	0,0903	0	0	0	207,93
	139	11	negro 10	media	0,01	0,3138	0,331	0,0903	0	0	0	207,93
	142	12	negro barniz	media	0,01	0,3138	0,331	0,0903	0	0	0	207,93
	145	13	tierra solo	media	5,9532333	0,4426333	0,386	35,852833	20,0066333	38,9982333	43,830633	62,841566
	148	14	tierra 0,5	media	9,1439	0,5011	0,4119333	36,463566	19,2021333	36,9615667	41,651966	62,546733
	151	15	tierra 2,5	media	9,1693666	0,5005333	0,4109666	36,2139	19,8795333	37,7169667	42,635266	62,2076
	154	16	tierra 5	media	9,4246333	0,4978333	0,4108333	37,067066	19,1400667	36,8888333	41,5587	62,577133
	157	17	tierra 10	media	9,4905	0,4985666	0,4105333	36,839833	19,8628667	37,5234333	42,456366	62,105666

	160	18	tierra barniz	media	9,0320333	0,5030666	0,4119666	35,646666	19,6725333	38,1358	42,910933	62,7128
	163	19	azul solo	media	3,0414666	0,2679333	0,1707333	1,3179333	12,3314667		28,836833	295,31716
	166	20	azul 0,5	media	0,1735666	0,1484333	0,0525666	1,6899666	13,7964333	<u>-</u>	31,773833	295,73486
	169	21	azul 2,5	media	0,2142333	0,1466	0,0668333	2,0603	9,75023333	-	27,222533	290,9877
	172	22	azul 5	media	0,2133333	0,1462333	0,0647333	1,8592666	12,4886667		30,520233	294,1541 <u>6</u>
	175	23	azul 10	media	0,1734	0,1474666	0,0566333	1,4189666	11,3179	-25,4126	27,819	294,00656
	178	24	azul barniz	media	0,1997	0,1482666	0,0516	1,9976	18,3399	<u>-</u>	37,8847	298,9534
	181	25	amarillo solo	media	37,333066	0,3859666	0,3351	79,525033	15,1782333	111,099333	112,13136	82,220433
	184	26	amarillo 0,5	media	55,306633	0,5056	0,4782	79,091933	15,1744	112,870067	113,88556	82,342966
	187	27	amarillo 2,5	media	55,209466	0,5060666	0,4787	79,176133	15,1895667	113,689933	114,7002	82,390066
	190	28	amarillo 5	media	53,7054	0,5090666	0,4794	77,8594	15,8312667	118,450733	119,504	82,387366
	193	29	amarillo 10	media	53,1618	0,5094666	0,4797	78,021633	15,4968	116,750433	117,7744	82,4391
	196	30	amarillo barniz	media	52,678866	0,5095666	0,4795	77,517633	15,7307333	116,863067	117,91706	82,333566
	199	31	rojo solo	media	24,0545	0,6075333	0,3886	37,605533	60,9553	64,6734	88,8719	46,695166
	202	32	rojo 0,5	media	10,339766	0,6447	0,3456	38,8879	58,5261667	60,6615667	84,291966	46,0264
	205	33	rojo 2,5	media	10,838266	0,6402333	0,3479666	39,500166	59,1849333	63,3497667	86,695133	46,946666
	208	34	rojo 5	media	10,6967	0,643	0,348366 <u>6</u>	38,84956 <u>6</u>	58,9111333	63,5868333	86,6822	47,1859
	211	35	rojo 10	media	10,894033	0,6471	0,3494333	39,6784	60,1005667	67,8140667	90,6136	48,450866
214,215,216		36	rojo barniz	media	10,449266	0,6484666	0,3465	38,102533	59,8016333	62,7472333	86,680166	46,376866

CÁLCULO DE DIFERENCIAS ENTRE EL ANTES Y DESPUÉS DEL ENVEJECIMIENTO EN CÁMARA DE HUMEDAD Y TEMPERATURA (SCE)

Nº probeta	L(1)	L (2)	ΔL (2-1)	a (1)	a (2)	Δa (2-1)	b (1)	b(2)	Δb (2-1)	ΔE Lab	C(1)	C(2)	∆C(2-1)	h(1)	h(2)	Δh(2-1))
1	94,45	93,26	-1,19	-0,5	-0,55	-0,05	3,89	7,93	4,04	4,21	3,92	7,95	4,03	97,27	93,99	-3,28
2	95,57	94,36	-1,21	-0,65	-0,68	-0,03	4,17	8,52	4,35	4,52	4,23	8,55	4,32	98,89	94,59	-4,3
3	95,2	93,65	-1,55	-0,75	-0,67	0,08	4,66	9,32	4,66	4,91	4,72	9,35	4,63	99,17	94,14	-5,03
4	94,94	93,56	-1,38	-0,8	-0,54	0,26	4,84	9,15	4,31	4,53	4,91	9,17	4,26	99,35	93,39	-5,96
5	93,66	92,33	-1,33	-0,78	-0,42	0,36	5,06	9,52	4,46	4,67	5,12	9,53	4,41	98,76	92,5	-6,26
6	94,58	92,25	-2,33	-0,92	-0,45	0,47	4,95	9,86	4,91	5,46	5,03	9,87	4,84	100,49	92,58	-7,91
7	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	142,98	207,93	64,95
8	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	140,68	207,93	67,25
9	0,13	0,09	-0,04	0,42	0	-0,42	-1,03	0	1,03	_1,11_	1,11	0	-1,11	292,37	207,93	-84,44
10	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	207,93	207,93	0
11	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	13,18	207,93	194,75
12	2,35	0,09	-2,26	0,36	0	-0,36	-0,57	0	0,57	2,36	0,68	0	-0,68	302,19	207,93	-94,26
13	37,05	36,22	-0,83	20,24	19,77	-0,47	40,78	38,49	-2,29	2,48	45,52	43,27	-2,25	63,6	62,81	-0,79
14	37,08	36,43	-0,65	19,89	19,25	-0,64	42,39	37,8	-4,59	4,68	46,83	42,42	-4,41	64,86	63	-1,86
15	37,74	36,91	-0,83	19,71	19,44	-0,27	36,94	36,16	-0,78	1,17	41,87	41,05	-0,82	61,92	61,73	-0,19
16	37,61	37,37	-0,24	19,65	18,97	-0,68	41,57	36,59	-4,98	5,03	45,98	41,21	-4,77	64,69	62,6	-2,09
17	37,46	37,35	-0,11	20,11	19,53	-0,58	40,72	36,47	-4,25	4,29	45,41	41,37	-4,04	63,72	61,83	-1,89
18	36,18	35,75	-0,43	19,35	19,63	0,28	38,73	38,45	-0,28	0,58	43,29	43,17	-0,12	63,45	62,96	-0,49
19	4,13	1,57	-2,56	23,95	13,1	-10,85	-39,04	-27,57	11,47	15,99	45,8	30,53	-15,27	301,52	295,41	-6,11
20	3,69	1,97	-1,72	24,55	14,37	-10,18	-38,84	-29,8	9,04	13,72	45,95	33,09	-12,86	302,3	295,75	-6,55
21	1,88	1,12	-0,76	17,87	8,67	-9,2	-32,31	-21,33	10,98	14,34	36,92	23,03	-13,89	298,94	292,12	-6,82
22	8,7	2,23	-6,47	17,3	12,99	-4,31	-30,86	-29,11	1,75	7,97	35,38	31,87	-3,51	299,25	294,05	-5,2
23	2,85	1,67	-1,18	20,66	11,79	-8,87	-36,01	-26,63	9,38	12,96	41,51	29,12	-12,39	299,84	293,88	-5,96

24	3,22	2,27	-0,95	29,71	19,01	-10,7	-42,59	-34,16	8,43	13,65	51,93	39,09	-12,84	304,89	299,1	-5,79
25	80,84	79,41	-1,43	14,54	14,97	0,43	124,85	111,2	-13,65	13,73	125,69	112,21	-13,48	83,36	82,33	-1,03
26	81,47	78,94	-2,53	14,03	14,99	0,96	125,95	113,85	-12,1	12,4	126,73	114,83	-11,9	83,64	82,5	-1,14
27	81,21	78,85	-2,36	13,98	15,04	1,06	125,24	117,46	-7,78	8,2	126,02	118,42	-7,6	83,63	82,7	-0,93
28	80,41	77,94	-2,47	15,01	15,5	0,49	119,94	116,51	-3,43	4,26	120,87	117,54	-3,33	82,87	82,42	-0,45
29	80,74	78,08	-2,66	14,81	15,2	0,39	122,58	114,83	-7,75	8,2	123,47	115,83	-7,64	83,11	82,46	-0,65
30	80,56	77,47	-3,09	14,92	15,45	0,53	119,63	115,48	-4,15	5,2	120,56	116,51	-4,05	82,89	82,38	-0,51
31	39,37	37,56	-1,81	64,16	60,94	-3,22	67,72	64,6	-3,12	4,84	93,29	88,81	-4,48	46,55	46,67	0,12
32	38,8	37,92	-0,88	64,29	59,85	-4,44	66,75	65,21	-1,54	4,78	92,67	88,51	-4,16	46,07	47,46	1,39
33	39,56	39,84	0,28	64,25	58,55	-5,7	68,05	62,19	-5,86	8,18	93,59	85,41	-8,18	46,65	46,73	0,08
34	38,5	37,94	-0,56	63,41	60,17	-3,24	66,23	65,24	-0,99	3,43	91,69	88,75	-2,94	46,25	47,31	1,06
35	40,52	39,83	-0,69	64,44	59,69	-4,75	69,68	67,83	-1,85	5,14	94,91	90,35	-4,56	47,24	48,66	1,42
36	38,64	37,18	-1,46	63,45	60,8	-2,65	66,47	63,95	-2,52	3,94	91,89	88,24	-3,65	46,33	46,44	0,11

CÁLCULO DE DIFERENCIAS ENTRE EL ANTES Y DESPUÉS DEL ENVEJECIMIENTO EN CÁMARA DE HUMEDAD Y TEMPERATURA (SCI)

Nº probeta	L(1)	L (2)	DL (2-1	a (1)	a (2)	Da (2-1)	b (1)	b(2)	Db (1-2)	DE Lab	C(1)	C(2)	C(2-1)	h(1)	h(2)	h(2-1)
1	94,53	93,41	-1,12	-0,51	-0,58	-0,07	3,89	7,95	4,06	4,21	3,92	7,97	4,05	97,43	94,18	-3,25
2	95,68	94,49	-1,19	-0,67	-0,71	-0,04	4,16	8,53	4,37	4,53	4,21	8,56	4,35	99,16	94,76	-4,4
3	95,26	93,8	-1,46	-0,77	-0,7	0,07	4,65	9,31	4,66	4,89	4,71	9,34	4,63	99,43	94,32	-5,11
4	94,98	93,68	-1,3	-0,82	-0,58	0,24	4,85	9,18	4,33	4,53	4,91	9,2	4,29	99,56	93,59	-5,97
5	93,73	92,48	-1,25	-0,8	-0,42	0,38	5,06	9,56	4,5	4,68	5,12	9,57	4,45	98,94	92,5	-6,44
6	94,68	92,5	-2,18	-0,94	-0,45	0,49	4,97	9,89	4,92	5,41	5,06	9,9	4,84	100,67	92,6	-8,07
7	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	168,92	207,93	39,01
8	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	194,94	207,93	12,99
9	0,12	0,09	-0,03	0,37	0	-0,37	-0,89	0	0,89	0,96	0,96	0	-0,96	293,02	207,93	-85,09
10	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	207,93	207,93	0
11	0,09	0,09	0	0	0	0	0	0	0	0	0	0	0	13,07	207,93	194,86
12	1,94	0,09	-1,85	0,36	0	-0,36	-0,55	0	0,55	1,96	0,66	0	-0,66	303,6	207,93	-95,67
13	37,11	35,85	-1,26	20,2	20,01	-0,19	40,1	39	-1,1	1,68	44,9	43,83	-1,07	63,27	62,84	-0,43
14	37,3	36,46	-0,84	19,75	19,2	-0,55	40,99	36,96	-4,03	4,15	45,5	41,65	-3,85	64,26	62,55	-1,71
15	37,59	36,21	-1,38	19,8	19,88	0,08	36,96	37,72	0,76	1,57	41,93	42,64	0,71	61,82	62,21	0,39
16	37,69	37,07	-0,62	19,58	19,14	-0,44	40,75	36,89	-3,86	3,94	45,21	41,56	-3,65	64,33	62,58	-1,75
17	37,42	36,84	-0,58	20,13	19,86	-0,27	40,44	37,52	-2,92	2,99	45,18	42,46	-2,72	63,54	62,11	-1,43
18	35,96	35,65	-0,31	19,26	19,67	0,41	38,17	38,14	-0,03	0,52	42,76	42,91	0,15	63,21	62,71	-0,5
19	43,36	1,32	-42,04	16,25	12,33	-3,92	-24,24	-26,07	-1,83	42,26	29,96	28,84	-1,12	220,72	295,32	74,6
20	3,63	1,69	-1,94	24,59	13,8	-10,79	-38,92	-28,62	10,3	15,04	46,04	31,77	-14,27	302,29	295,73	-6,56
21	3,45	2,06	-1,39	18,17	9,75	-8,42	-32,41	-25,42	6,99	11,03	37,16	27,22	-9,94	299,27	290,99	-8,28
22	7,59	1,86	-5,73	18,56	12,49	-6,07	-32,04	-27,85	4,19	9,34	37,03	30,52	-6,51	300,06	294,15	-5,91
23	2,67	1,42	-1,25	12,22	11,32	-0,9	-20,88	-25,41	-4,53	4,79	24,19	27,82	3,63	280,25	294,01	13,76

24	3	3,07	2	-1,07	29,52	18,34	-11,18	-42,26	-33,15	9,11	14,46	51,55	37,88	-13,67	304,93	298,95	-5,98
25	8	30,97	79,53	-1,44	14,64	15,18	0,54	123,47	111,1	-12,37	12,47	124,34	112,13	-12,21	83,24	82,22	-1,02
	26 8	31,66	79,09	-2,57	14,09	15,17	1,08	123,49	112,87	-10,62	10,98	124,3	113,89	-10,41	83,49	82,34	-1,15
27	8	31,34	79,18	-2,16	14,08	15,19	1,11	123,55	113,69	-9,86	10,16	124,35	114,7	-9,65	83,5	82,39	-1,11
28	8	30,46	77,86	-2,6	15,19	15,83	0,64	120,17	118,45	-1,72	3,18	121,12	119,5	-1,62	82,79	82,39	-0,4
29	8	30,76	78,02	-2,74	15,02	15,5	0,48	122,7	116,75	-5,95	6,57	123,61	117,77	-5,84	83,02	82,44	-0,58
30	8	80,69	77,52	-3,17	15,03	15,73	0,7	117,95	116,86	-1,09	3,43	118,9	117,92	-0,98	82,74	82,33	-0,41
31	3	39,46	37,61	-1,85	64,09	60,96	-3,13	67,88	64,67	-3,21	4,85	93,35	88,87	-4,48	46,65	46,7	0,05
32	3	39,52	38,89	-0,63	63,9	58,53	-5,37	67,86	60,66	-7,2	9,01	93,21	84,29	-8,92	46,72	46,03	-0,69
33	3	89,85	39,5	-0,35	63,94	59,18	-4,76	68,53	63,35	-5,18	7,04	93,73	86,7	-7,03	46,99	46,95	-0,04
34	3	88,92	38,85	-0,07	63,23	58,91	-4,32	66,94	63,59	-3,35	5,47	92,08	86,68	-5,4	46,63	47,19	0,56
35	4	10,9	39,68	-1,22	64	60,1	-3,9	70,25	67,81	-2,44	4,76	95,04	90,61	-4,43	47,66	48,45	0,79
36	3	88,91	38,1	-0,81	63,22	59,8	-3,42	66,92	62,75	-4,17	5,45	92,06	86,68	-5,38	46,63	46,38	-0,25

NOMINACIÓN ENSAYOS ENVEJECIDOS CON HUMEDAD Y TEMPERATURA. SCE (Sin brillo)

Muestra n°	C*antes	Nominación	C*después	Nominación	h antes	Nominación	h después	Nominación	L*antes	Nominación	L*después
1	3,92	grisáceo	7,95	débil	97,27	blanco medio	93,99	blanco medio	94,45	blanco	93,26
2	4,23	grisáceo	8,55	débil	98,89	blanco medio	94,59	blanco medio	95,57	blanco	94,36
3	4,72	grisáceo	9,35	débil	99,17	blanco medio	94,14	blanco medio	95,2	blanco	93,65
4	4,91	grisáceo	9,17	débil	99,35	blanco medio	93,39	blanco medio	94,94	blanco	93,56
5	5,12	grisáceo	9,53	débil	98,76	blanco medio	92,5	blanco medio	93,66	blanco	92,33
6	5,03	grisáceo	9,87	débil	100,49	blanco medio	92,58	blanco medio	94,58	blanco	92,25
7	0	gris	0	gris	142,98	verde limonado	207,93	cyan	0,09	negro	0,09
8	0	gris	0	gris	140,68	verde limonado	207,93	cyan	0,09	negro	0,09
9	1,11	grisáceo	0	gris	292,37	violeta azulado	207,93	cyan	0,13	negro	0,09
10	0	gris	0	gris	207,93	cyan	207,93	cyan	0,09	negro	0,09
11	0	gris	0	gris	13,18	magenta-rojo	207,93	cyan	0,09	negro	0,09
12	0,68	gris	0	gris	302,19	violeta	207,93	cyan	2,35	negro	0,09
13	45,52	vivo	43,27	medio	63,6	naranja	62,81	naranja	37,05	medio	36,22
14	46,83	vivo	42,42	medio	64,86	naranja amarillento	63	naranja	37,08	medio	36,43
15	41,87	medio	41,05	medio	61,92	naranja	61,73	naranja	37,74	medio	36,91
16	45,98	vivo	41,21	medio	64,69	naranja amarillento	62,6	naranja	37,61	medio	37,37
17	45,41	vivo	41,37	medio	63,72	naranja	61,83	naranja	37,46	medio	37,35
18	43,29	medio	43,17	medio	63,45	naranja	62,96	naranja	36,18	medio	35,75
19	45,8	vivo	30,53	medio	301,52	violeta	295,41	violeta	4,13	negro	1,57
20	45,95	vivo	33,09	medio	302,3	violeta	295,75	violeta azulado	3,69	negro	1,97
21	36,92	medio	23,03	débil	298,94	violeta	292,12	violeta azulado	1,88	negro	1,12
22	35,38	medio	31,87	medio	299,25	violeta	294,05	violeta azulado	8,7	negro	2,23
23	41,51	medio	29,12	medio	299,84	violeta	293,88	violeta azulado	2,85	negro	1,67
24	51,93	vivo	39,09	medio	304,89	violeta purpúreo	299,1	violeta azulado	3,22	negro	2,27

25	125,69	puro	112,21	puro	83,36	amarillo anaranjado	82,33	amarillo anaranjado	80,84	muy claro	79,41
26	126,73	puro	114,83	puro	83,64	amarillo anaranjado	82,5	amarillo anaranjado	81,47	muy claro	78,94
27	126,02	puro	118,42	puro	83,63	amarillo anaranjado	82,7	amarillo anaranjado	81,21	muy claro	78,85
28	120,87	puro	117,54	puro	82,87	amarillo anaranjado	82,42	amarillo anaranjado	80,41	muy claro	77,94
29	123,47	puro	115,83	puro	83,11	amarillo anaranjado	82,46	amarillo anaranjado	80,74	muy claro	78,08
30	120,56	puro	116,51	puro	82,89	amarillo anaranjado	82,38	amarillo anaranjado	80,56	muy claro	77,47
31	93,29	puro	88,81	puro	46,55	rojo naranja	46,67	rojo-naranja	39,37	medio	37,56
32	92,67	puro	88,51	puro	46,07	rojo naranja	47,46	rojo naranja	38,8	medio	37,92
33	93,59	puro	85,41	puro	46,65	rojo naranja	46,73	rojo naranja	39,56	medio	39,84
34	91,69	puro	88,75	puro	46,25	rojo naranja	47,31	rojo naranja	38,5	medio	37,94
35	94,91	puro	90,35	puro	47,24	rojo naranja	48,66	rojo naranja	40,52	medio	39,83
36	91,89	puro	88,24	puro	46,33	rojo naranja	46,44	rojo naranja	38,64	medio	37,18

SCE (Sin brillo) UV
TABLA 12

	Comentarios(Comparación proporciones de secativo)	ΔΕ	ΔLCh		Comentarios
	El recuadro que mejor se ha protegido es el que no lleva secativo ninguno.		ΔL	2	No ofrecen gran diferencia de luminosidad entre el antes y el después. Se han convertido en un poco más blancos.
BLANCOS	Aquí el color se ve más alterado, conforme aumentamos el secativo.	~4	Δc	-1,24	De grisáceo a grisáceo.
	Es la excepción.		Δh	-7,5	Permanecen blancos amarillentos.
	El recuadro en el que el secativo es aplicado a modo de barniz es el que mejor se ha protegido.			27	Son los segundos que más han cambiado en luminosidad. Han ganado claridad. Han pasado de negros a oscuros.
NEGROS		~ 72	Δc	0,6	De grisáceo a grisáceo.
			Δh	-49	De tonalidad anaranjada a amarillenta.
	El secativo cumple una función protectora conforme aumentamos su proporción.		ΔL	8	Ofrecen una luminosidad media tanto antes como después.
TIERRAS	Esto es contrario a lo que se pensaba del producto.	~ 5,42	Δc	-22	De vivo a medio.
			Δh	-8	De naranja amarillento a naranja.
	El secativo de cobalto ha protegido al azul de cobalto. El óleo a secativo es el que más ha cambiado.	aislado de		36	Se han aclarado considerablemente y los que en mayor proporción.
AZULES	Ademas es el pigmento mas delicado.	~ 93	Δc	7,6	Se ha hecho cromático. Ha pasado de medio a vivo.
	Es el que mas se ha degradado.		Δh	-16	Se ha hecho más azul. Antes era violáceo.
	El amarillo aislado de secativo es el que mejor se conserva.		ΔL	0,1	Los que menos han cambiado en luminosidad. Se siguen manteniendo muy claros.
AMARILL OS	Al aumentar la proporción de secativo, se protege mejor la capa de óleo.	~ 23	Δc	-32	De puro a puro.
			Δh	-2	Se mantienen en tonalidad amarillo-anaranjada.
	El secativo de cobalto protege conforme aumentamos la proporción.		ΔL	6	Ofrecen una luminosidad media tanto antes como después.
ROJOS	pero sin secativo mejor ¿?	~ 63	Δc	-32	De puro a vivo.
			Δh	-11	De rojo-naranja a rojo anaranjado, es decir, se hace más rojo.
	total	Lumino. idad	s Croma	Tonalidad	
	1º azules	azules	amarillo	s negros	
	2º rojos	negros	rojos	azules	

1	3º	amarillos	tierras	tierras	rojos
١	4⁰	negros	rojos	azules	tierras
	5⁰	tierras	blancos	blancos	blancos
- 1	6⁰	blancos	amarillo	negros	amarillos
- 1			S		

SCI (Con brillo) UV

Comentarios(C	Comparación proporciones de secativo)	ΔE	ΔLCh		Comentarios
	Conforme aumentamos el secativo, la diferencia es mayor,		ΔL	2,2	No ofrecen gran diferencia entre el antes y el después. Se mantienen blancos.
BLANCOS	El recuadro que peor se ha protegido es el que lleva el 10% de secativo,	~ 4,4	Δc	-1,2	De grisáceo a grisáceo.
	y el que mejor el que no lleva nada de secativo.		Δh	-6,6	Se mantienen con una tonalidad amarilla.
	No existe una correlación lógica (ascendente o descendente) entre proporciones.		ΔL	27,6	Ofrecen una gran diferencia de claridad. De negro a oscuro.
NEGROS	El ensayo del 5% de secativo es el que más ha cambiado.	~28	Δc	0,8	De grisáceo a grisáceo.
	El que mejor se ha protegido es el aplicado a modo de barniz.		Δh	-22,1	De una tonalidad rojiza a otra naranja amarillenta.
	Conforme aumentamos el secativo, la diferencia es mayor,		ΔL	7,3	La diferencia apenas es notable. Se mantienen con una claridad media.
TIERRAS	El recuadro que se ha visto menos alterado es el que no lleva	~17,5	Δc	- 15,26	De medio a medio.
	nada de secativo. Ocurre lo mismo que en los blancos.		Δh	-5,8	Se mantienen con una tonalidad naranja.
	El secativo de cobalto protege al azul de cobalto, pero en este caso, conforme aumentamos		ΔL	35,5	Son los que más diferencia de cambio de luminosidad ofrecen. De negro a medio.
AZULES	la proporción de secativo, las diferencias son mayores.	~38,5	Δc	6,8	De medio a vivo.
	Es importante señalar que el recuadro en el que se aplica el secativo a modo de barniz es el que menos se ve alterado.		Δh	-15,8	De una tonalidad violeta a otra azul-violeta.
	El recuadro que lleva el secativo a modo de barniz es el que más se ha visto alterado y el que no lleva nada es el		ΔL	0,09	No cambian apenas. Se mantienen muy claros.
AMARILLOS	que mejor ha conservado su color.	~30	Δc	-24,4	De puro a puro.
	Al aumentar la proporción de secativo, se alteran más los ensayos (DIFERENCIAS SCE Y SCI)		Δh	-2	Se mantienen en una tonalidad amarillo anaranjado.
	El secativo parece actuar de protector conforme aumentamos su proporción.		ΔL	4,8	El cambio de claridad es apenas notable. Se mantienen con una claridad media.
ROJOS	Los que mejor aparecen protegidos son los del 10% y la aplicada a modo de barniz.	~37	Δc	- 33,22	De puro a vivo. Los rojos son los que más varían en cuanto a su croma.
			Δh	-12,5	De rojo naranja a rojo anaranjado, es decir, se hace más rojo.
		total	Lumino	Crom	Tonalidad
	1º	azule s	sidad azules	a rojos	negros
	2º	rojos	negros	amari Ilos	azules
	3º	amari Ilos	tierras	tierra s	rojos
	4º	negro s	rojos	azule s	blancos

5º	tierra	blanco	blanc	tierras
	S	S	os	
6 ⁰	blanc	amarill	negro	amarillos
	os	os	S	

SCE (Sin brillo) HUMEDAD Y TEMPERATURA

	Comentarios(Comparación proporciones de secativo)			ΔΕ	ΔLCh		Comentarios
	El aumento de secativo disminuye la protección del óleo. El que está aplicado a modo de				ΔL	-1,5	Se oscurecen un poco. Permanecen blancos.
BLANCO S				~ 5	Δc	4,3	Pasan de grisáceo a débil, es decir, se hace más cromático¿?
_					Δh	-5,5	Permanecen con una tonalidad amarillenta.
	El recuadro aplicado a modo de barniz	es el que más se ve al	lterado.		ΔL	-0,4	Permanecen casi igual de negros.
NEGROS				~0,6	Δc	-0,1	Permanecen con un croma gris.
					Δh	24,7	De una tonalidad verdosa inicial, pasan a otra cyan.
	A diferencia de los blancos y negro protegidos son los	os, los tierras que r	mejor están		ΔL	-0,5	Permanecen con una claridad media.
TIERRAS	que el secativo ha sido aplicado a modo	o de barniz.		~3	Δc	-2,7	Pasan de vivo a medio, es decir, se vuelven un poco más sucios.
					Δh	-1,2	De una tonalidad naranja-amarillenta pasan a otra naranja.
	El recuadro azul sin secativo es el que que el secativo	e más se ha visto alter	rado, con lo		ΔL	-2,2	Se han oscurecido muy ligeramente. Permanecen con una claridad negra.
AZULES	protege de alguna manera.			~13	Δc	-11,8	Pasan de vivo a medio. Son los que más varían en su croma.
					Δh	-6	De una tonalidad violeta pasan a ser más azulados.
	El recuadro más alterado es nuevamente el que no lleva secativo.				ΔL	-2,4	Han perdido luminosidad. Se han oscurecido, pero aún así permanecen muy claros.
AMARILL OS				~9	Δc	-8	Permanecen puros.
					Δh	-0,8	Permanecen con una tonalidad amarillo-anaranjado.
	El aplicado a modo de barniz es de los que mejor se ha conservado.				ΔL	-1	Permanecen con una claridad media.
ROJOS				~5	Δc	-4,6	Permanecen puros.
					Δh	0,7	Permanecen con una tonalidad rojo-naranja.
			total	Luminosi dad	Croma	Tonalid ad	
		1º	azules	amarillos	azules	negros	
		2 º	amarillos	azules	amarill os	azules	
		3 º	rojos	blancos	rojos	blancos	
		4 º	blancos	rojos	blanco s	tierras	
		5º	tierras	tierras	tierras	amarill os	
		6º	negros	negros	negros	rojos	

	ΛE	ΔLCh		Comentarios
Les valeres con précticamente les mismes en la medición con brille y la cin	ΔC	ΔLCΠ	-1,4	Se oscurecen un poco. Permanecen blancos. I aumento de secativo
Los valores son prácticamente los mismos en la medición con brillo y la sin brillo.		ΔL	-1,4	oscurece los colores mínimamente.
El ensayo barnizado con secativo es el que en mayor proporción se ve afectado.		Δc	4,4	Pasan de grisáceo a débil, es decir, ganan croma.
		Δh	-5,54	Mantienen una tonalidad amarilla.
Prácticamente todos los valores son nulos. Sí podemos indicar que el que mayor		ΔL	-0,3	Permanecen prácticamente igual de negros.
diferencia presenta es el aplicado a modo de barniz.	~0.5	Δc	-0,27	Se mantienen con un croma gris.
		Δh	11,02	Pasa desde tonalidades rojas a azules. Muy variable.
Aquí el recuadro menos alterado es el aplicado a modo de barniz, a diferer blancos y negros.	ncia de los	ΔL	-0,83	Mantienen una claridad media.
No existe una relación lógica entre proporciones de secativo.		Δc	-1,73	Pasan de vivo a medio, es decir, pierden croma.
		Δh	-0,9	Cambian de naranja amarillento a naranja.
Conforme aumentamos la proporción de secativo mezclado en óleo,		ΔL	-2,27	Permanecen con una claridad negra, es decir, igual de oscuros.
la capa se protege más, y por tanto, cambia menos.	~16,1	Δc	-6,98	Se mantienen con una claridad media.
El recuadro más alterado es el que no lleva nada de secativo.		Δh	10,27	Pasan de una tonalidad violeta a otra violeta- azulado.
El recuadro más alterado es el que no lleva nada de secativo y el más protegid	lo el	ΔL	-2,4	Se mantienen muy claros, aún así son los que más varían en este aspecto.
de aplicación del secativo a modo de barniz.	~7,8	Δc	-6,78	Permanecen puros.
		Δh	-0,77	Se mantienen en una tonalidad amarillo- anaranjado.
El aplicado al 10% es el que mejor se ha protegido.		ΔL	-0,82	Permanecen con claridad media.
Hay una relación de disminución en la aplicación de secativo, lo cual	~6,1	Δc	-5,94	Permanecen puros.
quiere decir, que actúa de protector.		Δh	0,07	Se mantienen en una tonalidad rojo- naranja.
		total	Luminosid ad	Croma Tonalidad
	1º	azules	amarillos	azules negros
	2 º	amarill os	azules	amarillos azules
	3º	rojos	blancos	rojos blancos
	4º	blanco s	tierras	blancos tierras
	5º	tierras	rojos	tierras amarillos
	6º	negros	negros	negros rojos