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Earned Schedule min-max:  30 

Two new EVM metrics for monitoring and controlling projects 31 

 32 

Abstract 33 

Earned Value Management (EVM) is a well-known project management technique for 34 

monitoring project progress. Over the last 15 years, many promising EVM metrics have been 35 

proposed to get, among other improvements, betteractual project durationand cost estimates. 36 

Papers comparing the performance of all these metrics are, however,scarce and sometimes 37 

contradictory. 38 

In this paper, asimulation and empirical comparison of 26 deterministic project duration 39 

forecasting techniques under the EVM frameworkis developed. Among them, two new metrics: 40 

Earned Schedule min (ESmin) and Earned Schedule max (ESmax) are proposed.ESminand 41 

ESmaxoffer a new and simpler activity-level calculation approach of the traditional Earned 42 

Schedulemetric. Top performing (most accurate) metrics: Earned Schedule (ES), Earned 43 

Duration (ED) and Effective Earned Schedule (ES(e))with Performance Factor 1 (PF=1), are 44 

slightly outperformed by the new metrics which also offer some interesting applications for 45 

enhanced project control. 46 

 47 

Keywords: Earned Value; Earned Schedule; Earned Duration; project duration; 48 

deterministic techniques. 49 
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1. Introduction 51 

Earned Value Management (EVM) was devised as a financial analysis tool within the 52 

United States Department of Defense in the 1960s. Since then it has become one of the most 53 

prominent techniques for monitoring project progress[1,2]. 54 

The biggest advantages of EVM are its (relative) simplicity and that it just needs the 55 

type of information (mostly activity percentages of completion and actual costs) that is 56 

gatheredfor many other purposes during the project execution stage. 57 

Using the most recent terminology, EVM consists of three metrics named Planned 58 

Value (PV), Actual Cost (AC) and Earned Value (EV). PV represents the planned cumulative 59 

expenditure as the project progresses, that is, the planned cumulative cost. AC represents the 60 

actual cumulative expenditure as the project progresses (activity durations and costs will 61 

usually be different to the planned durations and costs from the PV).Finally, the EV is the 62 

cumulative expenditure of the project assuming that costs correspond to what was ‘planned’, 63 

but spent according to the ‘actual’ activity durations. PV and EV are very similar. They both 64 

represent the cumulative expenditure of the same budget (project planned cost), but the pace of 65 

that expenditure is ‘as planned’ for the PV, and ‘as executed’ for the EV[3]. 66 

Over the last 15 years, many other extensions and partial reformulations of EVM have 67 

been proposed (e.g. the Earned schedule (ES) [4], the p-factor [5], the Earned Duration 68 

Management (EDM) [6]) . Many of them address specific weaknesses or limitations of the 69 

EVM framework generally with the intention of better estimating the actual project duration 70 

and/or taking better proactive/corrective actions during project execution.  71 

Also, despitemany pieces of research in the 2000s paid significant attention to the EVM 72 

cost forecasting accuracy (e.g.[7,8]), nowadays it is accepted that EVM is more accurate in the 73 

cost dimension than in the time dimension[9,10].This is probably to be expected as the project 74 

total cost mostly comes from the addition of its activity costs (whose sum converges to a 75 

Normal distribution). Whereas this is not the case of the project total duration, which is totally 76 



dependent, not just on the activity durations, but on theactivities order of execution. Thismay be 77 

a compelling reason why so many EVM extensions have been proposed over the last years 78 

trying to improve the actual project duration estimates. However, their advantages, even their 79 

actual forecasting accuracy remain uncertain, as many of these extensions have never been 80 

compared with each other and previous scientific studies have sometimes provided 81 

contradicting results. 82 

Apart from deterministic project duration forecasting techniques, other more advanced 83 

techniques have also been proposed over the years (fuzzy logic, neural network analysis, 84 

Bayesian inference, Monte Carlo simulations, statistical learning and artificial intelligence 85 

methods, etc.) [11,12]. Deterministic techniques, despite generally less accurate, offer some 86 

advantages. They are easier to learn, and their results are generally easier to understand and 87 

communicate. The amount of information they require is also lower than non-deterministic 88 

techniques. Finally, calculations are generally quicker or at least much less computer-89 

demanding than other alternative methods. For these reasons, deterministic project duration 90 

forecasting techniques still play a significant role in the project management practice 91 

nowadays. EVM has produced many of these techniques and this is the reason why this study 92 

focuses on those exclusively. 93 

Hence, the main aim of this paper is toprovide numerical evidence on which 94 

deterministic EVMextensions and metrics are more accurate at predicting thereal duration of a 95 

project. For achieving this, we will resort toaset of simulated and real projects.The performance 96 

(accuracy) of the most relevant deterministic EVMextensions and metricspublishedtodate will 97 

be compared at different moments of the projects execution. Among the extensionscompared, 98 

another two new metrics based on the Earned Schedule (ES) metric will alsobe proposed. It will 99 

be shown how these new metrics, besides slightly outperforming the existing ones, are simpler 100 

to calculate and offer someinterestingapplications for enhanced project monitoring and control. 101 

The paper will be structured as follows. In the literature review, the most recent and 102 

noticeable deterministic EVM-based project duration forecasting metrics will be reviewed and 103 



a representative summary of previous performance comparison studies will be provided. The 104 

materials and methods section will describe the simulated and real project datasets used to 105 

compare the forecasting methods, and the mathematical formulation of the new metrics 106 

ESminand ESmax. The results section will detail the analysis and performance results of the 26 107 

forecasting methods. The discussions will go over the weaknesses of most EVM-based 108 

methods, while alsoproposing some potential applications of ESminand ESmax. Finally, the 109 

conclusions will highlight the major results and contributions, state the study limitations, and 110 

propose future research continuations. 111 

2. Literature review 112 

2.1.Project duration forecasting EVM extensions 113 

For easier reference, allproject duration forecasting techniques11compared are presented 114 

upfront in Table 1. Project duration estimates in the EVM context have traditionally been noted 115 

as EAC(t) (project Estimate At Completion in time). The same terminology will be followed 116 

here. Each project duration forecasting technique includes two identifiers stated in the first two 117 

columnsof Table 1: a numerical ID, and a second referring to the metric they are based on. The 118 

mathematical expressions are displayed in the third column. Authors of every forecasting 119 

technique are stated in the fourthcolumn. A brief description of every group of methods is 120 

provided in the last column. The twonew proposed techniques are relayed to the last two rows. 121 

 122 

 123 

 124 

 125 

 126 

                                                           
1The terms techniques and methods are used indistinctly, and they refer to the mathematical expressions that 
produce a project duration estimate (in time units). The word metric refers to the auxiliary magnitudes that 
techniques or methods need to produce estimates. Metrics are generally the magnitudes that express the current 
project progress and can be expressed in either time or cost units. Metrics are just one of the variables in the 
techniques/methods mathematical expressions, but probably the most relevant, as they are generally the ones 
whose information is updated at each tracking period. 



ID Method Expression Author Observations 

1 PV1    1( )PVEAC t PD EV PV PD BAC    

(Anbari, 2004) 

Methods 1 to 3 depend on a metric named Time Variance (TV). TV equals the ratio of 
Schedule Variance (SV) divided by the Planned Value rate (PVrate). For simplification 
purposes, though, methods 1 to 3 have been directly expressed as a function of the 
most basic EVM metrics instead (avoiding the intermediate calculation of TV). 

2 PV2 2( )PVEAC t PD SPI  

3 PV3 3( )PVEAC t PD SCI  

4 ED1    1( ) , 1EDEAC t MAX PD AT AT SPI    

(Jacob, 2003) 

Methods 4 to 6 depend on an intermediate metric named Earned Duration (ED’). ED’ 
is calculated as the multiplication of AT by SPIand has nothing to do with the ED 
metric used later in methods 14 and 15. EAC(t) expressions also skip the use of ED’ 
and are expressed directly as a function of the most basic EVM metrics instead. 

5 ED2  2( ) ,EDEAC t MAX PD AT SPI  

6 ED3     3( ) , 1 1EDEAC t MAX PD AT SCI AT CPI    

7 ES1 1( )ESEAC t AT PD ES    

(Lipke, 2003) 

Methods 7 to 9 follow the generic formula AT+(PD-ES)/PFand completely rely on the 
Earned Schedule (ES) metric. ES, unlike TV and ED’, cannot be expressed explicitly as 
a function of other EVM metrics, therefore this variable has been kept as is. Depending 
on the value of PF we find: method 7 (PF=1), 8 (PF=SPI(t)) or 9 (PF=SCI(t)). 

8 ES2  2( ) ( )ESEAC t AT PD ES SPI t    

9 ES3  3( ) ( )ESEAC t AT PD ES SCI t    

10 EDM1    1( ) ( )EDMEAC t PD TED TPD PD BAC t    

(Khamooshi & Golafshani, 
2014) 

Methods 10 to 15 were developed under the Earned Duration Management (EDM) 
framework. These methods are the counterpart of other EVM forecasting methods 
(namely methods 1,2, 4, 5, 7 and 8, respectively), where planned and actual activity 
costs are replaced by planned and actual activity durations. EDM by itself does not 
allow project cost forecasting unless we complement it with EVM. This is the reason 
why there is no EDM counterpart for EVM methods 3, 6 and 9. 

11 EDM2 2( )EDMEAC t PD EDI  

12 EDM3    3( ) , 1EDMEAC t MAX PD AT AT EDI    

13 EDM4  4( ) ,EDMEAC t MAX PD AT EDI  

14 EDM5 5( )EDMEAC t AT PD ED    

15 EDM6  6( )EDMEAC t AT PD ED DPI    

16 ESM1 1( ) ( )ESMEAC t AT PD ES e    

(Lipke, 2011) 

Methods 16 to 18 are very similar to methods 7 to 9 (from the same author). These 
methods replace ES by the effective Earned Schedule (ES(e)). ES(e) is calculated the 
same way ES is, but from the fraction of EV that is adhered to the original schedule as 
measured by the p-factor (Lipke, 2004), that is, the effective Earned Value (EV(e)).  

17 ESM2  2( ) ( ) ( )( )ESMEAC t AT PD ES e SPI t e    

18 ESM3  3( ) ( ) ( )( )ESMEAC t AT PD ES e SCI t e    

19 ESM4  4( ) ( )ESM CIEAC t AT PD ES SPI t     

(Elshaer, 2013) 

Methods 19 to 21 are very similar to method 8. SPI(t) versions of these methods resort 
to PV and EV activity costs that come from a weighted sum. The weighting factors of 
each activity (planned and actual) cost are their respective Criticality Index (CI), 
Significance Index (SI) and Schedule Sensitivity Index (SSI). 

20 ESM5  5( ) ( )ESM SIEAC t AT PD ES SPI t     

21 ESM6  6( ) ( )ESM SSIEAC t AT PD ES SPI t     

22 XSM1  1 , ( )( )XSM t SPI tEAC t AT PD ES T    (Khamooshi and Abdi, 2017) Methods 22 to 24 are the counterpart of expressions 7 (methods 22 and 23) and 14 
(method 24), but applying exponential smoothing techniques. These methods resort to 
different smoothing factors T. 23 XSM2    2 , ,( )XSM t AT t ESEAC t AT PD ES T T    (Batselier & Vanhoucke, 2017) 

24 XSM3  3 ,( )XSM t EDIEAC t AT PD ED T    (Khamooshi and Abdi, 2017) 

25 ESmin ( )
minES minEAC t AT PD ES    

(This paper) 
Methods 25 and 26 are the ones proposed in this paper and will be detailed in the 
Materials and methods section. 

26 ESmax ( )
maxES maxEAC t AT PD ES    

Table 1. Project Duration forecasting methods (all variable names and mathematical details can be found in the Supplemental online material) 

  



For the sake of clarity, every variable used in Table 1 is described along with its 149 

mathematical expression in Table S1 in the Supplemental online material. All readersare 150 

strongly encouraged to refer to that materialto look up all mathematical details and reproduce 151 

any calculation. 152 

Quick inspection of Table 1 allows observing some evident patterns in the forecasting 153 

formulae. With some exceptions, most of them follow the generic expression AT+(PD-ES)/PF. 154 

ATconfusingly stands for Actual Time and refers to the fraction of the project duration we have 155 

already consumed, that is, the current moment in time (normally associated with the last 156 

tracking period date). PD stands for Planned Duration and corresponds to the initial estimate of 157 

the project duration before the project started. ES stands for Earned Schedule, although this 158 

metric is replaced by Earned Duration metric in forecasting methods 10 to 15. PF is the 159 

Performance Factor that specifies at what pace the rest of the project will be executed. PF can 160 

equal 1 (which meansthe remaining duration of the project will be completed as initially 161 

planned). But it can also equal the SPI (Schedule Performance Index), CPI (Cost Performance 162 

Index), the SCI (Schedule Cost performance Index), and many other. All these possible 163 

PFvalues determine different speeds of execution depending on: the current schedule progress 164 

(PF=SPI), cost expenditure(PF=CPI) or schedule & cost combined (PF=SCI). 165 

A last note is made about methods 19 to 21. These methods resort to the Criticality 166 

Index (CI), the Significance Index (SI) and the Schedule Sensitivity Index (SSI)which are not, 167 

strictly speaking, deterministic variables. They are actually obtained by (Monte Carlo) 168 

simulation in what is called Schedule Risk Analysis (SRA)[1]. Elshaer[14] also proposed using 169 

the Cruciality Factors based on Pearson’s r, Spearman’s and Kendall’s coefficients of 170 

correlation. However, Elshaer himself proved that the performance of those three forecasting 171 

methods was worse than the three presented here. Besides, Elshaer never detailed what to do 172 

when negative values of r, or arise, a common situation when these variables are calculated 173 

by a limited number of simulations. For both reasons, only the three methods displayed as 19 to 174 

21 have been compared here. 175 



 176 

2.2.Previous studies comparing EVM metrics performance 177 

Performance analyses comparing these metrics have been in short supply. The first was 178 

an exhaustive and extensive simulation study whose highlights can be found in Vanhoucke 179 

[17]. This study compared the project time performance of EVM in combination with SRA 180 

metrics, while also considering schedule networks topology. The main aim of this study was to 181 

validate the (by then) current methods to improve the corrective actions decision-making 182 

process during the project control stage considering project duration forecast accuracy. 183 

Methods 1 to 9 were compared being method 7 the top performer. The same set of 4100 184 

network schedules generated for that study will be used here. 185 

Elshaer[14] proposed merging EVM and SRA metrics resulting in the comparison of 186 

methods19 to 21. He used the same 4100 simulated projects dataset for comparison purposes. 187 

This study also included method 7 as benchmark, but apparently,method 19 proved to be more 188 

accurate. 189 

Batselier and Vanhoucke[18] performedanother comparison involving methods 1 to 9, 190 

but this time with 23 real projects data instead of simulated projects. Method 7 was again the 191 

top performer. The same real project dataset will also be used later in this study. 192 

Another study by Batselier and Vanhoucke [19] compared three new project duration 193 

forecasting techniques, separately and in combination with each other with the same simulated 194 

and real project datasets. Particularly, techniques 7, 15, 16 and 19 were compared and, method 195 

7 was the most accurate (when it should have been method 19 according to Elshaer[14]). 196 

Khamooshi and Abdi [15]compared methods 10 to 13, plus methods 22 and 24 on a 197 

different 19-project real dataset; results suggested that techniques 22 and 24, which included 198 

double linear exponential smoothing, were the best. 199 

Batselier and Vanhoucke [16] suggested a new EVM metric with exponential 200 

smoothing (method 23) and compared it against method 7 obtaining a marginal accuracy 201 



improvement. However, the new proposed method came at the expense of adding a new 202 

(subjective) parameter whose calibration may not be possible in all project contexts. 203 

De Andrade and Vanhoucke [20] compared methods 7 and 15, plus a combination of 204 

these, on a 14-project subset of the 23-project real dataset used by Batselier and Vanhoucke 205 

[18]. Results showed that method 7 was again the top performing and the combination of both 206 

methods did not seem to provide substantial advantages. 207 

There have been many other studies suggesting new EVM metrics with interesting 208 

properties but whose benefits are difficult to generalize (or even implement) with the 209 

information that is gathered under the EVM framework. Representative examples of these may 210 

be Earned Incentive (EIM) [21] for projects that use time and/or cost incentives; or the mean 211 

lags metric [22] for a better measurement of the EVM metrics accuracy versus stability 212 

forenhanced project duration and cost forecasting. Also, Picornell et al. [23]proposed a new 213 

formulation focused on projects whose paymentsare based on unit-prices. However, these 214 

variants will not be considered in this study as their purpose substantially differ from the EVM 215 

metrics compared later. 216 

As a conclusion, given the recent proliferation of EVM techniques and metrics it seems 217 

necessary to test all of them with the same benchmark (simulated and real)project datasets to 218 

identify which ones are better or, at least, under what conditions some of them perform better. 219 

This is the first major aim of the present paper. The second aim will be to propose two new 220 

metrics (ESminand ESmax) and discuss their advantages. 221 

 222 

3. Materials and methods 223 

3.1.Simulated projects dataset 224 

The simulated projects dataset consists of 4100 activity-on-node networks with 30 225 

activities each plus two dummy activities (zero duration and cost) signaling the start and end of 226 

each project. This dataset is curated online by the University of Ghent’s Operations Research & 227 



Scheduling Research Group and is accessible here https://bit.ly/2OYl34Q along with other 228 

project datasets. Project information basically comprises the activity (deterministic) durations 229 

and the predecessors information. No resource information was used in this study. 230 

This 4100-project dataset was generated using the RanGen2 algorithm. RanGen2 is a 231 

robust random network generator validated in recent studies [24,25] and capable of generating 232 

a wide range of different network topologies.The same set projects has also been used in many 233 

recent research studies on EVM (e.g. [26–28]). 234 

The projects of this dataset were generated under pre-set values of four topological 235 

indicators:the serial-Parallel (SP), the Activity Distribution (AD), the Length of Arcs (LA), and 236 

the Topological Float (TF).The SP indicator describes how close a network is to a serial or 237 

parallel network. The AD describes the distribution of activities in its different network paths. 238 

TheLA measures the distance between two activities in the project network. The TF measures 239 

the slack or float that each activity has at a topological level, that is, how dense the network is. 240 

All indicators range from 0% to 100%.These four topological indicators were initially proposed 241 

by Vanhoucke et al. [25] and slightly refined in Vanhoucke [17].They are considered 242 

representative and accurate descriptors of a network topology.  243 

Another two network complexity indicator values have been provided for each project 244 

instance for comparison purposes: the Coefficient of Network Complexity (CNC) [29] and the 245 

Order Strength (OS) [30]. The values of all six indicators can be found for all network instances 246 

along with the performance results as Supplemental online material.More precisely, the 4100 247 

project network topologies were generated by setting specific staggered values of the 248 

SPindicator from SP=0 (all project activities are in parallel) to SP=100% (all activities are in 249 

series). While the SP was set, the other indicators (AD, LA and TF) could vary freely when 250 

searching new random network configurations. Namely, the following series of SP values were 251 

used: 13%, 23%, 32%, 42%, 52%, 61%, 71%, 81%, and 90%. Extremes (0% and 100%) were 252 

not included in the analyses as they are not considered representative of real projects.  253 



For the interested reader, this series of values was adopted (instead of a SP series with 254 

constant 10% intervals like 10%, 20%, 30% and so on) becauseof the total number of activities 255 

per project. It was mentioned that each project included 30 activities plus two dummy 256 

activities. In the analyses shown later, however, dummy activities were also given stochastic 257 

durations and costs different from zero. This allowed increasing the number of activities per 258 

project and marginally enhancing their representativity (‘slightly bigger’ projects). Hence, with 259 

32 activities per project,rounded SP values of 10%, 20%, 30%, etc. were just not 260 

mathematically possible. 261 

Another couple of substantial changes were implemented in the default artificial project 262 

dataset. These changes did no longer condition the network topology generation, but the 263 

generation of activity durations and costs. 264 

Concerning the stochastic generation of activity durations, most studies referenced 265 

earlier resorted to triangular distributions. Triangular distributions are upper- and lower-266 

bounded distributions whose limits are somehow subjectively set (normally by multipliers of 267 

the value used as the distribution mode). This approach may be too restraining at times. It is not 268 

uncommon that activities from real projects are significantly shortened, or much more 269 

frequently, lengthened, 2to 10 times their expected (planned) duration. It is also common that 270 

the differences among different (planned) activity durations alsoexceed those proportions. 271 

Capturing thosedifferent orders of magnitude cannot be effectively achieved with triangular 272 

distributions. This, as such spread triangles would end up resembling uniform distributions, 273 

rather than triangular distributions.  274 

Instead, log-Normal distributions have been used here. Log-Normal distributions 275 

automatically exclude the possibility of negative durations, allow (if required) a higher 276 

concentration of values around the mean (or mode) and depend onjust two parameters, instead 277 

of three. Log-Normal distributions are quite simple and are effective at occasionally letting 278 

some activities take significantly higher or lower duration values. Finally, empirical studies 279 



have shown that this distribution models construction activity duration variability quite 280 

satisfactorily in the case of construction projects [31,32]. 281 

Therefore, athree-stage process was adopted for generating the activity durations. First, 282 

the ‘mean’ durationof each activity i (noted here as mdi) was stochastically generated by Monte 283 

Carlo simulation from a Log-Normal distribution with meanμ=0.5 and standard deviation 284 

σ=0.25, that is mdi~10 Normal(μ=0.5, σ=0.25). This, as we used logarithms with base 10 and the log-285 

Normally distributed values are generated by calculating the antilogarithm. Second, the 286 

‘coefficient of variation’(the ratio of the standard deviation and the mean)of each activity 287 

duration (CVdi)was generated by simulation with a Uniform distribution ranging between 0.1 288 

and 0.3, that is, CVdi~Uniform(a=0.1, b=0.3).In the latter expression, a and b are the Uniform 289 

distribution lower and upper bounds, respectively. At this stage, we have already created a 290 

series of mean and standard deviation duration values(mdiand sdi=CVdi · mdi , respectively)for 291 

each activity i. Particularly, the means represent the ‘planed’ durations (di)of each 292 

activityduring the (simulated) project execution, that is, di=mdi. The Third stage consists of 293 

generating a stochastic duration valuefor each activity(d’i)around the previously log-Normally-294 

generated mdi by using the expressiond’i ~Normal(μ=mdi,σ=sdi). Those areconsideredthe ‘actual’ 295 

activity durations during project execution. 296 

The approach taken above allows generating a set of planned durations that sometimes 297 

have significant differences among activities. How often that happens can be easily controlled 298 

with the standard deviation values(sdi)which are constantly changing for each project instance. 299 

The second advantage is that, once we have a set of activity durationswith sufficiently (but not 300 

excessively) spread durations, the actual (d’i)versus the planned(di) durations can also differ 301 

substantially, that is, unlike triangular distributions, those values can be far from the mode at 302 

times. This is more challenging for the project duration forecasting methods compared. 303 

A similar three-stepprocess was alsofollowed for the stochastic generation of activity 304 

costs.First, the Log-Normal distribution for generating the activity cost ‘means’(mci)changed 305 

the prior activity durationmoments from μ=0.5 and σ=0.25to μ=4 and σ=0.5, that is  306 



mci~10 Normal(μ=4, σ=0.5). The bigger μ and σ values herereflect that activity costs (in money units) 307 

are generally bigger magnitudes than activity durations (in time units). Similarly,this set of 308 

‘mean’ costsequaled the ‘planned’ cost of each project activity, that is, ci=mci. The second step 309 

(stochastic cost Coefficient of Variation generation) also followed a Uniform distribution from 310 

0.1 to 0.3, that is, CVci~Uniform(a=0.1, b=0.3). Finally, the set of stochastic ‘actual’costs 311 

(c’i)for each activityiwas generated from the two previous moments(mci and sci =CVci · mci). 312 

However, in this generation step,a correlation coefficientρi between each activity duration and 313 

cost was introduced. Values of ρi were set to vary uniformly for each activity between 0 and 314 

0.25, that is, ρi~Uniform(a=0, b=0.25).With this information, the specific expression for 315 

generating the c’i values was  2'
σ~' 1 μ ,

ii
i

i i i c

i

i

d
c c Normal c s

d
      . 316 

The inclusion of ρi constitutes a significant addition versus previous comparison 317 

analyses too. It is obvious that most activities cost more when they last longer. Furthermore, 318 

among the project duration forecasting methods, there are some (like the Earned Duration 319 

Method (EDM)) which replace activity costs by activity durations. If both sets of values vary 320 

independently from each other, the effectiveness of all EDM-based methods could not be 321 

properly tested.The reader is referred to theSupplemental online material for further 322 

mathematical details. 323 

 324 

  325 



3.2.Real projects dataset 326 

The same research group at Ghent University (Belgium) curates a dataset comprising 327 

125 real projects. The dataset is accessible here https://bit.ly/2Mi8mmE. The dataset was 328 

originally made public in two papers published by Batselier and Vanhoucke [33] and 329 

Vanhoucke et al. [34]. This dataset is also used regularly nowadays by other construction 330 

researchers in the area of scheduling (e.g.[2,32]). Projects encompass building, civil 331 

engineering, industrial and services, but most of them are construction-related. The country of 332 

origin is mostly Belgium (when the non-existence of aconfidentiality agreementallowed this 333 

piece of information to be disclosed). However, there are also projects from the Netherlands, 334 

Italy, USA and Azerbaijan. 335 

Of those 125 projects, unfortunately, only 23 contain tracking informationto allow the 336 

application of EVM techniques. This tracking information includes the baseline schedule, 337 

activity percentages of completion and theactual duration and costs at different project stages. 338 

Those 23 projects are listed with their main characteristics in Table 2. For easier cross-339 

reference, project ID codes on the first column have kept the original database codes. For 340 

further information, the reader is referred to Batselier and Vanhoucke [33]. 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 



ProjectID 
(m) 

Project 
Name 

Project 
Type 

Planned 
Cost (€) 

Actual 
Cost (€) 

Planned 
Dur. (d) 

Actual 
Dur. (d) 

Nºactiv. 
(total) 

Track. 
periods 

SP 
(%) 

AD 
(%) 

LA 
(%) 

TF 
(%) 

C2011-05 Telecom System Agnes Service 180,485.27 180,485.27 43 53 22 5 60 58 38 9 

C2011-07 Patient Transport System Service 180,759.44 191,065.06 389 444 69 23 70 70 7 8 
C2011-12 Claeys-Verhelst Premises Building 3,027,133.19 3,102,395.91 443 453 59 8 41 50 5 43 
C2011-13 Wind Farm Civil Eng. 21,369,835.51 26,077,764.74 525 600 167 120 27 36 0 48 
C2012-13 Pumping Station Jabbeke Industrial 336,410.15 350,511.31 125 140 75 28 64 59 3 27 
C2013-01 Wiedauwkaai Fenders Civil Eng. 1,069,532.42 1,314,584.58 152 152 49 6 48 45 0 68 

C2013-02 Sewage Plant Hove Civil Eng. 1,236,603.66 1,146,444.38 403 408 221 17 12 38 0 62 
C2013-03 Brussels Finance Tower Building 15,440,865.89 16,338,027.20 425 426 63 18 3 82 0 87 

C2013-04 Kitchen Tower Anderlecht Building 2,113,684.00 2,512,524.00 333 453 272 11 47 59 0 63 

C2013-06 Govmnt. Office Building Building 19,429,810.51 21,546,846.18 352 344 300 18 10 36 0 34 
C2013-07 Family Residence Building 180,476.47 175,030.65 170 174 63 11 40 44 3 25 
C2013-08 Timber House Building 501,029.51 576,624.05 216 235 53 13 29 42 0 47 
C2013-09 Urban Develop.Project Civil Eng. 1,537,398.51 1,696,971.79 291 360 72 10 34 51 6 16 
C2013-10 Town Square Civil Eng. 11,421,890.36 15,218,926.38 786 785 273 30 18 36 0 62 
C2013-11 Recreation Complex Building 5,480,518.91 5,451,028.00 359 277 209 20 27 44 0 32 
C2013-12 Young Cattle Barn Building 818,439.99 879,853.17 115 188 30 5 64 77 6 54 
C2013-13 Office Finish. Works (1) Building 1,118,496.59 955,929.22 236 217 12 9 20 49 33 6 
C2013-15 Office Finish. Works (3) Building 341,468.11 308,343.78 171 115 18 3 25 43 21 35 

C2014-04 Compres. Station Zelzate Industrial 62,385,597.58 65,526,930.04 522 844 25 36 95 100 0 100 

C2014-05 Apartment Building (1) Building 532,410.29 591,410.53 228 274 26 13 58 71 35 18 

C2014-06 Apartment Building (2) Building 3,486,375.47 3,599,114.11 547 611 30 19 57 75 46 15 

C2014-07 Apartment Building (3) Building 1,102,536.78 1,289,696.78 353 404 26 14 58 71 35 18 

C2014-08 Apartment Building (4) Building 1,992,222.09 2,380,299.86 233 275 43 13 44 29 11 14 

Table 2.Real projects dataset 

 



Some of these projects required substantial editing before they could be used in later 374 

analyses. Unlike previous project duration forecasting techniques, the two new metrics 375 

proposed in the next subsection, require some basic baseline activity information (mostly 376 

activity planned start dates and slacks). Some of these projects did not reflect the correct 377 

activity slacks as their activities had been partiallyshifted. That meant the plannedactivity start 378 

dates did not correspond to either the as soon as possible (ASAP) schedule, nor the as late as 379 

possible schedule (ALAP). Actual durations and costs, nor the actual start and finish dates were 380 

altered, though. 381 

 382 

3.3.The ESmin and ESmax metrics 383 

Besides comparing 24 deterministic EVM-based project duration forecasting methods, 384 

later analyses also include two new forecasting methods presented in this study for the first 385 

time. These two methods correspond to methods 25 and 26 in Table 1 and rely, respectively, on 386 

two new metrics named Earned Schedule min (ESmin) and Earned Schedule max (ESmax). Their 387 

mathematical expressions are: 388 

( )
minES minEAC t AT PD ES       (1) 389 

( )
maxES maxEAC t AT PD ES       (2) 390 

From expressions (1) and (2), it is easy to appreciate that both methods share the same 391 

forecasting approach and the performance factor equals 1 (the value that would have divided 392 

the ‘PD-ESmin’ or ‘PD-ESmax’ terms). AT, as described earlier, correspond to the Actual Time 393 

(current duration elapsed since the project started, normally assumed as the date of the last 394 

tracking period).PD is the project planned duration (in time units). 395 

Basically, what ESmin and ESmax do is measuring the project progress of its most 396 

advanced and delayed paths, respectively. For calculating ESmin and ESmax, it is necessary to 397 

calculate beforehand the Earned Schedule value of each activity i (noted as ESi) at the current 398 

tracking period AT.ESi differs from the classical Earned Schedule (ES) metric on the fact that 399 



they are calculated at the activity level, not atthe project level. However, this calculation is 400 

quite straightforward: 401 

i i i iES SD PC d        (3) 402 

Where SDi is activity i’s (earliest) planned start date;PCi is activity i’s percentage of 403 

completion at (current) tracking period AT; and di corresponds to activity i’s planned duration. 404 

For expression (3) to work accurately, both SDi and di magnitudes have to be expressed in 405 

working days, not in calendar days. 406 

Known (3) for every activity at a particularAT, ESmin and ESmax can be calculated as 407 

follows from the basic baseline schedule information: 408 

 : [0,1),min i i iES MIN ES s PC i n        (4) 409 

 : (0,1],max i iES MAX ES PC i n       (5) 410 

Where si is activity i’s (baseline) slack, whilen denotes the set of all activities in the project. 411 

Expression (4) denotes that ESmin is calculated as the minimum ESiof allunfinished 412 

activities, that is, those activitieswhose percentage of completion range from 0% (included) to 413 

just below 100% (not included). The inclusion of si in expression (4) means that what 414 

expression (4) is actually doing, is using activities’ latest start dates, that is, the ALAP 415 

schedule. 416 

ESmax is even easier to calculate. Namely, ESmax is calculated as the maximum ESi value 417 

of those activities which have already started. This time, activities that have a percentage of 418 

completion of 0% are not considered.To illustrate the simple calculations that these metrics 419 

require, a simple numerical example is provided in Figure 1. All data is reproduced graphically 420 

at the top and numerically at the bottom. 421 



 422 

 423 

Activity  

(i) 

Predecessors SDi(da

ys) 

di 

(days) 

si 

(days) 

PCi(%) ESi(da

ys) 

ESmin 

(days) 

ESmax 

(days) 

1 - 0 3 0 1.00 3 - 3 

2 FS1 3 3 2 1.00 6 - 6 

3 FS1 3 5 0 0.40 5 5+0 5 

4 FS1+2d 5 2 1 1.00 7 - 7 

5 FS2,FS3,FS4 8 2 0 0.00 8 8+0 - 

       ESmin=5 ESmax=7 

Figure 1.ESmin&ESmax calculation schematic 424 

 425 

Figure 1 depicts a project with 5 activities that was planned to last 10 days (or another 426 

time unit). The current date is AT= 6, that is, six days after the project started. Activity 427 

(planned) durations are represented by grey bars. The actual durations of all activities are 428 

represented by the thick black line inside each activity bar. Additionally, activity 4 had (from 429 

the baseline schedule) a compulsory time lag, which keeps her from starting earlier. As of AT’s 430 

date,we can see in the table below that Activities 1, 2 and 4 are completed (PC1=PC2= 431 

PC4=100%). Activity 3 is completed at 40% (PC3=40%), and activity 5 has not started 432 

yet(PC5=0%). 433 

0           1           2           3           4           5           6           7           8           9          10 

AT 

t 

time lag =2 

ESmin ES
max

 

Activity i=1 

i=2 

i=3 

i=4 

i=5 

PD= 10 days 



With all this information, activity planned start dates (SDi) and slacks (or floats) are 434 

very easy to calculate. The only non-critical activities are activities 2 and 3, whose slacks are 2 435 

and 1 days, respectively. These variables could have also been calculated fromany scheduling 436 

software. 437 

The next step consists of calculating all activities’ ESi values with expression (3). This 438 

is represented in the last but twocolumn. Finally, ESmin is calculated with expression (4) among 439 

those activities which are not complete andincluding those that have not even started 440 

(0%≤PCi<100%). Analogously, ESmax is calculated with expression (5) among those activities 441 

which have started, no matter they are finished or not (0%<PCi≤100%). Both calculations 442 

results in ESmin=5 days and ESmax=7 days. 443 

The reader will have appreciated now that what expressions (4) and (5) areactually 444 

doing isjust calculating the equivalent (planned) date of progress (on the baseline schedule)of 445 

the most delayed and most advanced paths.This may seem not sophisticated at all. However, it 446 

will be seen later how these metrics outperform the rest in almost all project datasets. 447 

 448 

4. Results 449 

The error magnitude chosen to measure the deviations between each method’s 450 

forecasted project duration at tracking period AT (generically referred to for every method as 451 

EAC(t)AT), and the actual projectm’s duration(generically referred as RDm below, or as Real 452 

Duration RD, in the tables) is the Absolute Percentage Error (APEAT). APEATis calculated for 453 

every project mand method at every tracking periodATas: 454 

( )m AT
AT

m

RD EAC t
APE

RD


      (6) 455 

The detailed4100-projectAPEATvalues can be found in the Supplemental online 456 

material.Subsequent tables will only present aggregatedresults, that is, average results either by 457 

tracking periodAT, projectm or both. 458 



In the case of the simulated projects, when averaging the APEATresults for all projects at 459 

the same tracking period, expression (6) will become the Mean Absolute Percentage Error 460 

(MAPE) at AT, that is: 461 

1

( )1 M
m AT

AT
m m

RD EAC t
MAPE

M RD


      (7) 462 

Where m denotes each project (m=1,2,…, 4100 for the simulated dataset)andM denotes 463 

the total number of projects, that is 4100.AT in expression (7) will mean specific homogeneous 464 

times of progress across all projects. In this study, we assume that AT= 0%, 10%, 20%, …, 465 

90% and 100% of RDm (the Real Duration of project m). 466 

Averaging the results at the same AT with expression (7) is not possible in the real 467 

projects dataset due to their occasional extremely low number of tracking periods. For this 468 

dataset, the APEresults are presented averaged by project. When averaging the results for the 469 

same project m for all itsNtracking periods, expression (6) becomes: 470 

0

1 N

m AT
AT

MAPE APE
N 

       (8) 471 

Particularly,AT=0 denotes the moment just before the project starts. Without exception, 472 

all forecasting methods at that moment assume that EAC(t)AT=0=0%RD = PD, that is, the Planned 473 

Duration. On the other hand, AT=Nis assumed here to coincide with RD   (the nearest rounded 474 

down integer of the Real duration of project m). That is the moment of time when there is 475 

exactly less than one day left to complete the project (the project will finish at some point the 476 

day after). This measurement is interesting as it allows detecting those forecasting methods that 477 

are near-sighted, that is, those incapable of providing with good project duration estimates,no 478 

matter the project is about to finish. 479 

Finally, some Figures will also present in their last column the average results for all 480 

projects and tracking periods altogether. We will refer to these generically as the MAPE values: 481 



0 1

1 1N M

AT m
AT m

MAPE MAPE MAPE
N M 

       (9) 482 

4.1.Simulated projects performance results 483 

Hence, for the 4100 different network instances (topologies), stochastic activity 484 

durations and (partially correlated) costs were generated. MAPEAT results are shown first in 485 

Figure 2 for the 26 forecasting methods (by rows) at different moments of project progress (by 486 

columns). Top performing (those with lower overall MAPEAT values) methods are highlighted 487 

in bold text. Among them, we can find method 7, one of the top performing methods in almost 488 

all previous comparison studies. But also method 14 –the equivalent of method 7 in the EDM 489 

framework–which had not been compared to date. 490 

 491 

Figure 2. The 26 deterministic project duration forecasting methods’ MAPEAT values on 4100 492 

simulated projects by percentage of completion (top five performing methods in bold text) 493 

% RD

ID Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Overall

1 PV1 0.053 0.055 0.054 0.053 0.051 0.049 0.046 0.044 0.043 0.040 0.043 0.048

2 PV2 0.053 0.353 0.226 0.164 0.150 0.084 0.076 0.052 0.047 0.042 0.043 0.117

3 PV3 0.053 0.403 0.257 0.189 0.201 0.109 0.100 0.073 0.069 0.064 0.063 0.144

4 ED1 0.053 0.085 0.073 0.059 0.053 0.049 0.048 0.046 0.044 0.040 0.022 0.052

5 ED2 0.053 0.353 0.226 0.164 0.150 0.084 0.076 0.052 0.047 0.040 0.021 0.115

6 ED3 0.053 0.397 0.248 0.177 0.186 0.093 0.082 0.054 0.048 0.040 0.021 0.127

7 ES1 0.053 0.051 0.048 0.046 0.042 0.038 0.034 0.029 0.023 0.014 0.003 0.035

8 ES2 0.053 0.118 0.089 0.074 0.062 0.053 0.043 0.035 0.026 0.015 0.003 0.052

9 ES3 0.053 0.158 0.111 0.089 0.073 0.060 0.049 0.038 0.028 0.015 0.003 0.062

10 EDM1 0.053 0.053 0.050 0.048 0.044 0.040 0.038 0.034 0.031 0.029 0.038 0.042

11 EDM2 0.053 0.182 0.122 0.087 0.065 0.054 0.046 0.038 0.032 0.029 0.038 0.068

12 EDM3 0.053 0.055 0.053 0.048 0.044 0.041 0.038 0.035 0.032 0.028 0.015 0.040

13 EDM4 0.053 0.182 0.122 0.087 0.065 0.054 0.046 0.038 0.032 0.026 0.014 0.065

14 EDM5 0.053 0.051 0.048 0.045 0.042 0.037 0.033 0.028 0.022 0.013 0.003 0.034

15 EDM6 0.053 0.115 0.087 0.071 0.060 0.050 0.042 0.034 0.024 0.014 0.003 0.050

16 ESM1 0.053 0.051 0.048 0.046 0.042 0.038 0.034 0.029 0.023 0.014 0.003 0.035

17 ESM2 0.053 0.119 0.090 0.074 0.063 0.053 0.044 0.035 0.026 0.015 0.003 0.052

18 ESM3 0.053 0.160 0.113 0.090 0.074 0.061 0.049 0.039 0.028 0.015 0.003 0.062

19 ESM4 0.053 0.102 0.088 0.074 0.062 0.052 0.044 0.035 0.026 0.015 0.003 0.050

20 ESM5 0.053 0.059 0.061 0.058 0.054 0.048 0.042 0.035 0.026 0.015 0.003 0.041

21 ESM6 0.053 0.130 0.111 0.086 0.066 0.053 0.042 0.033 0.024 0.013 0.003 0.056

22 XSM1 0.053 0.118 0.090 0.073 0.060 0.050 0.042 0.034 0.025 0.015 0.003 0.051

23 XSM2 0.053 0.117 0.089 0.072 0.061 0.052 0.043 0.035 0.025 0.015 0.003 0.051

24 XSM3 0.053 0.118 0.090 0.072 0.060 0.050 0.042 0.034 0.025 0.014 0.003 0.051

25 ES min 0.053 0.050 0.047 0.043 0.039 0.035 0.031 0.026 0.020 0.012 0.002 0.032

26 ES max 0.053 0.052 0.051 0.049 0.046 0.041 0.036 0.030 0.023 0.013 0.002 0.036



 494 

Methods 22 to 24 in Figure 2resort to exponential smoothing. These three methods can 495 

be adjusted as a function of a single parameter named exponential smoothing constant. 496 

Particularly, method 22’s and 24’s smoothing constant is namedβ(see Table S1in 497 

theSupplemental online material). Its value, following the authors’ recommendation, equaled 498 

0.25. Method 23 resorted to a smoothing constant namedγ in Table S1. On the authors’ 499 

recommendation, γ equaled 0.05 in all instances. Probably it goes without saying that, should 500 

these parameters had been allowed to vary dynamically during the project duration, their 501 

respective methods would have performed better. However, allowing this possibility does not 502 

seem fair to the other methods, mostly when the adjustment (calibration) of these smoothing 503 

constants is not easy (if possible) before the Real project Duration is known.With 504 

thesepremises, the red (denoting higher MAPEAT values) to green (denoting lower MAPEAT 505 

values) color gradient fromFigure 2easily allows identifying the top performing methods. 506 

The difference between the first (method 25 or EAC(t) using ESmin) and second best 507 

(method 14 or EAC(t) using ED) methods seems very small. But is worth noticing how the 508 

former dominates all methods at all stages of project progress (lowest MAPEAT values from 509 

RD=0% up to 100%). This makes us believe that method 25 really performs better than any 510 

other, at least on average. 511 

On the worst performing side of the spectrum, we can find methods 2, 3, 5 and 6, whose 512 

overall performance values (last column of Figure 2)greatly exceedthe default MAPEAT=0%= 513 

0.053 (the same for all methods). This 0.053value is indicative of the average project duration 514 

variability imposed by the distributions and parameter values used in these 515 

simulations.Additionally, methods 1, 2, 3, 10 and 11 are clearly near-sighted, astheir 516 

MAPEAT=100%RD values are comparatively very high. 517 

Another interesting result from Figure 2 is that,with the exception of method 16 (which 518 

resorts to ES(e)), the top five performing methods are actually among the simplest.  This raises 519 

the question about whether all the complexities added recently to the EVM 520 



frameworkwerereally necessary. Agoodexample can befound among the top performing 521 

methods 7 (depending on ES) and 16 (depending on ES(e)). Both methods were proposed by 522 

Lipke in 2003 and 2011, respectively, but despite the latter is mathematically much more 523 

complex than the former, they have performedalmost exactly the same in our dataset. Another 524 

example may be methods 7 and 14, which are the counterparts of the EVM and EDM 525 

frameworks. 526 

Finally, it is worth highlighting that the best (method 25) and fifth best (method 26) 527 

correspond to the new ones proposed in this study. Both methods, as illustrated earlier, are 528 

extremely easy to calculate. Indeed, they may be the easiest of the 26. Also, despite method 26 529 

(depending on ESmax) is the fifth now, it will outperform the rest when comparing real projects. 530 

The same set of 4100 projects were also arranged by their Serial-Parallel (SP) values. 531 

This indicator describes how close a project network is to a project with all activities in parallel 532 

(SP=0%) or in series (SP=100%).Also, from this indicator one can indirectly infer the 533 

minimum number of paths that a project has.Acknowledging this, MAPEresults for the 26 534 

methods performance by SP value are shown in Figure 3. 535 



 536 

Figure 3. The 26 deterministic project duration forecasting methods’ MAPE values on 4100 537 

simulated projects by Serial-Parallel (SP) values (top five performing methods in bold text) 538 

 539 

Figure 3 shows near the topthe values ofSP andM.SP values range, as described earlier 540 

approximately from 0% to 100%, without including the extremes for representativity purposes. 541 

Mrepresentsthe number of projects that were used to compute each column (out of the total 542 

4100 project instances). Despite the obviously uneven distribution of projects in some SP 543 

values, all columns seem to have enough sample size to draw representative average results. 544 

The major differences between Figures 2 and 3 are that the former second, third and 545 

fourth best methods are all even now (with an average MAPE of 0.034). The former best and 546 

fifth best methods (the two new ones proposed) keep their relative positions.Particularly, 547 

method 25 (the best) still dominates all methods in all columns. 548 

SP= 13% 23% 32% 42% 52% 61% 71% 81% 90%

ID Method↓  M = 100 1300 100 100 1300 100 100 900 100 Overall

1 PV1 0.072 0.063 0.055 0.044 0.043 0.040 0.039 0.035 0.034 0.047

2 PV2 0.141 0.196 0.202 0.071 0.086 0.061 0.063 0.060 0.066 0.105

3 PV3 0.160 0.222 0.221 0.093 0.112 0.088 0.092 0.089 0.100 0.131

4 ED1 0.109 0.071 0.055 0.042 0.043 0.049 0.040 0.035 0.034 0.053

5 ED2 0.138 0.193 0.200 0.070 0.084 0.060 0.061 0.058 0.065 0.103

6 ED3 0.145 0.207 0.209 0.079 0.095 0.070 0.073 0.071 0.079 0.114

7 ES1 0.053 0.045 0.042 0.033 0.031 0.029 0.028 0.025 0.024 0.034

8 ES2 0.070 0.065 0.057 0.048 0.048 0.045 0.042 0.040 0.035 0.050

9 ES3 0.076 0.073 0.065 0.056 0.058 0.055 0.053 0.051 0.051 0.060

10 EDM1 0.069 0.057 0.049 0.039 0.036 0.034 0.031 0.027 0.026 0.041

11 EDM2 0.111 0.099 0.080 0.055 0.057 0.050 0.045 0.042 0.037 0.064

12 EDM3 0.071 0.055 0.048 0.038 0.035 0.032 0.030 0.026 0.024 0.040

13 EDM4 0.107 0.095 0.078 0.053 0.055 0.048 0.044 0.040 0.036 0.062

14 EDM5 0.051 0.044 0.041 0.033 0.030 0.029 0.028 0.025 0.024 0.034

15 EDM6 0.066 0.062 0.055 0.047 0.047 0.045 0.042 0.040 0.035 0.049

16 ESM1 0.052 0.045 0.042 0.033 0.031 0.029 0.028 0.025 0.024 0.034

17 ESM2 0.070 0.066 0.058 0.049 0.049 0.046 0.043 0.040 0.035 0.051

18 ESM3 0.076 0.074 0.066 0.057 0.058 0.055 0.054 0.052 0.052 0.060

19 ESM4 0.065 0.061 0.055 0.047 0.048 0.046 0.043 0.040 0.036 0.049

20 ESM5 0.056 0.050 0.046 0.039 0.038 0.036 0.035 0.034 0.031 0.041

21 ESM6 0.078 0.073 0.064 0.049 0.051 0.047 0.044 0.040 0.036 0.054

22 XSM1 0.069 0.063 0.056 0.048 0.048 0.045 0.042 0.040 0.035 0.050

23 XSM2 0.069 0.064 0.056 0.048 0.048 0.045 0.042 0.040 0.035 0.050

24 XSM3 0.069 0.063 0.056 0.048 0.048 0.045 0.042 0.040 0.035 0.050

25 ES min 0.045 0.040 0.039 0.032 0.030 0.029 0.028 0.025 0.023 0.032

26 ES max 0.064 0.049 0.043 0.035 0.031 0.029 0.027 0.025 0.023 0.036

 Parallel networks Serial networks ·



Finally, all methods generally perform better (suffer from lower errors) towards serial 549 

networks, rather than parallel networks. This means that anticipating the duration of projects 550 

with more activities in parallel is more challenging than in serial projects. This is the result of 551 

the ‘merge event bias’phenomenon [35,36] which indirectly describes the increasing possibility 552 

of one path falling behind (underperforming respect to its planned work) as the number of paths 553 

increases. 554 

 555 

4.2.Real projects performance results 556 

All project duration forecasting methods were again compared in the real dataset 557 

consisting of 23 projects. Results are shown in Figure 4. However, as results are displayed in 558 

this occasion by project, for the sake of clarity, only the top performing methodsare displayed. 559 

Coincidentally, these top five performing methods are the same top five performing methods 560 

from the simulated projects (methods 7, 14, 16, 25 and 26). This provides reassurance on the 561 

robustness of these methods. 562 



 563 

Figure 4.MAPEm values over all tracking periods of the most accurate project duration 564 

forecasting techniques in the 23-project real dataset. 565 

 566 

Additionally, method 23 (noted in Figure 4 as XSM2) and a new weighted forecasting 567 

method named ESmin-max (not shown earlier) are included in this last comparison. Method 23 is 568 

one of the exponential smoothing forecasting techniques that depend on a (subjective) 569 

exponential smoothing constant named here as γ (with γ [0, 1]). In the simulated experiments, 570 

this constant took the value of 0.05, not to give it an unfair advantage over the other methods. 571 

However, on comparing real projects, the value of this constant was optimized for each project 572 

to observe how much better othermethods may have got. The specific values of γ for every 573 

project are represented in the first grey shaded column and the MAPEm results of the 574 

XSM2method itself on the left of the latter shaded column. 575 

ESmin-max is just a weighted average from methods ESmin and ESmax at every tracking 576 

period AT, that is: 577 

Project ID (m ) ES1 EDM5 ESM1 XSM2 γ ES min ES max ES min-max δ

C2011-05 0.140 0.137 0.131 0.109 0.995 0.129 0.148 0.129 0.000

C2011-07 0.075 0.064 0.073 0.075 0.000 0.090 0.070 0.070 1.000

C2011-12 0.031 0.031 0.033 0.031 0.000 0.037 0.030 0.016 0.473

C2011-13 0.077 0.076 0.080 0.076 0.015 0.080 0.112 0.080 0.000

C2012-13 0.079 0.080 0.078 0.079 0.000 0.075 0.091 0.091 0.000

C2013-01 0.074 0.049 0.084 0.074 0.000 0.086 0.104 0.086 0.000

C2013-02 0.049 0.081 0.052 0.049 0.000 0.015 0.008 0.008 0.902

C2013-03 0.040 0.057 0.048 0.040 0.000 0.064 0.073 0.002 0.510

C2013-04 0.080 0.388 0.085 0.080 0.000 0.098 0.107 0.098 0.000

C2013-06 0.142 0.234 0.177 0.142 0.000 0.072 0.037 0.036 0.793

C2013-07 0.142 0.234 0.177 0.142 0.000 0.072 0.037 0.036 0.793

C2013-08 0.070 0.338 0.068 0.070 0.000 0.082 0.051 0.051 1.000

C2013-09 0.137 0.346 0.136 0.135 0.058 0.108 0.119 0.108 0.000

C2013-10 0.026 0.164 0.032 0.026 0.000 0.030 0.022 0.022 0.998

C2013-11 0.259 0.423 0.274 0.242 0.208 0.214 0.156 0.098 0.646

C2013-12 0.191 0.541 0.188 0.184 0.050 0.185 0.209 0.181 0.551

C2013-13 0.059 0.510 0.059 0.059 0.000 0.085 0.085 0.081 -

C2013-15 0.288 0.663 0.331 0.152 0.519 0.312 0.237 0.225 0.772

C2014-04 0.267 0.267 0.267 0.203 0.146 0.267 0.267 0.267 -

C2014-05 0.057 0.057 0.057 0.035 0.084 0.057 0.057 0.057 -

C2014-06 0.028 0.027 0.028 0.022 0.026 0.027 0.027 0.027 -

C2014-07 0.050 0.051 0.050 0.036 0.076 0.051 0.051 0.051 -

C2014-08 0.097 0.096 0.096 0.063 0.495 0.053 0.060 0.053 1.000

Avg. 0.107 0.214 0.113 0.092 0.116 0.100 0.094 0.081 0.469



 1min-max min maxES ES ES         (10) 578 

δ is the weighting factor (with δ [0, 1]) such as when δ=0 then ESmin-max=ESmin, and 579 

whenδ=1 then ESmin-max=ESmax. It can be seen as some sort of resource transferability factor. 580 

This, as δ can be understood as the proportion of resources that can be transferred from the 581 

most advanced path (identified with ESmax) to help the most delayed path (identified as ESmin) 582 

catch up. However, the real purpose of ESmin-max method is to allow the comparison of the ESmin 583 

and ESmax metrics with method XSM2 (as both methods have now one adjustable parameter). 584 

Numerical values of the δparameter are specified in the last column of Figure 4, and the 585 

MAPEm values of the ESmin-max method in the penultimate column. 586 

Results are, perhaps, unexpected. Leaving aside the XSM2 and ESmin-max methods for 587 

now, the top performing method is method 26 (depending on metric ESmax), despite not by a 588 

wide margin and not dominating the other methods in all projects either. The second best is 589 

method 25 (depending on ESmin). The third best (method 7 noted as ES1) and fourth best 590 

(method 16 noted as ESM1) remain close, whereas the fifth best (method 14 noted as EDM5) 591 

clearly falls behind (MAPE=0.214). On looking at these results,the additional mathematical 592 

complexity incorporated by methods 14 (EDM5) and 16 (ESM1) may be questioned again. 593 

Also, it is striking that method 26 (relying on ESmax) provides the most accurate project 594 

duration estimates. It is necessary to remember that this metric calculates the project progress 595 

as a function of the most advanced path, whereas ESmin measures the progress as a function of 596 

the most delayed path. The only possible explanations for this result are that, either both 597 

metrics must have a higher stability compared to other metrics (as both depend on maxima and 598 

minima of many activities) and/or the actual project duration tend to remain in between these 599 

two boundaries most of the time. An average resource transferability factor δ of 0.469 may 600 

support the latter conclusion. 601 

Finally, results from the one-variable XSM2 and ESmin-max methods are not surprising. 602 

Despite its extremely simple formulation, ESmin-max performs better while resorting to a 603 



parameter that also has some physical meaning. The latter suggests that its adjustment may be 604 

possible, even subjectively, during project execution. Basically, the project manager may have 605 

to estimate what proportion of resources can be moved from the most advanced paths to the 606 

most delayed at every tracking period. With these estimates, the predictive power of ESmin and 607 

ESmax can be clearly enhanced. More research is necessary, however, to explore the proper 608 

calibration of δ, as well as a more refined reformulation of expression (10). 609 

 610 

5. Discussion 611 

Twenty-six deterministic EVM-based project duration methods that resort to different 612 

metrics have been compared. Results from the present study agree with someprevious studies 613 

on method 7 being the top performer (leaving aside the newones proposed here). However, 614 

method 7 either had not been compared with the latest methods (e.g. methods 10 to 15, 22 and 615 

23) or had evenshown worse results (e.g. against methods 19 to 21 and 23)in recent studies. 616 

After comparing all methods under the same conditions in both simulated and real projects, 617 

method 7 stands out as the most powerful, yet simple, existingproject duration forecasting 618 

method. Only method 23, which resorts to an additional exponential smoothing constant, can 619 

very marginally outperform method 7. However, in the (more than likely) absence of a good 620 

constant calibration, method 23 is highly unlikely to beat method 7’s performance. 621 

Method 7, as can be seen in Table 1, resorts to one of the simplest mathematical 622 

expressions and is based on the Earned Schedule (ES). When it was published by Lipke in 2003 623 

[4], this metric overcame two significant problems the EVM technique had had for a long time. 624 

First, it allowed to express in time, instead of money, the project duration-related performance. 625 

Second, despite probably unintentionally, it also avoided the bias that the two most relevant 626 

duration-related EVM metrics – the Schedule Variance (SV) and the Schedule Performance 627 

Index (SPI) – sufferwhen a late project is near the end[1]. This bias consists of SV and SPI 628 

converging to 0 and 1, respectively, indicating that the project is exactly on time, no matter the 629 

project may already be late (exceeded its Planned Duration PD). 630 



However, two weaknesses remained whichwere inherited from the two metrics the ES is 631 

calculated from: the Planned Value (PV) and the Earned Value (EV). The PV constitutes the 632 

planned cost base line and is generally calculated from a deterministic schedule. However, this 633 

cost baseline constitutes a lower bound of a realistic PV. Nowadays, more realistic PV curves 634 

can obtainedfrom stochastic network analysis (SNA)[3]. SNA hasproven that project 635 

durationsare generally longer than what a deterministic analysis suggests. This means the actual 636 

PV curve should be partially stretched to the right, otherwise it will always produce an 637 

optimistic project completion date. A detailed discussion of this effect can be found in [3]. 638 

Unfortunately, this bias cannot be overcome unless we resort to stochastic techniques, which is 639 

not the case in the methods compared here. 640 

The second weakness of ES comes from the EV metric itself. Broadly speaking, the EV 641 

grows as more activities are executed. This means that when a significant proportion of 642 

activities with high planned costs may be completed ahead of schedule the EV will increase 643 

rapidly. But a higher EV maynot indicatethe existence ofsome (maybe smaller) activities falling 644 

behind and causing eventually a project delay. Fortunately, this is the shortcoming that the two 645 

new proposed metrics have addressed. By being calculated at activity level, ESminfor example, 646 

can identify which paths are falling behind and provide a more accurate forecast of when the 647 

project will actually finish. 648 

In the same vein, but now concerning the limitations of the project datasets used in this 649 

study, Figure 3 evidenced that the most challenging networks for forecasting methods are those 650 

with more activities in parallel. Actually, if it was not for the merge event bias phenomenon 651 

discussed earlier, the 26 deterministic methods might have been more accurate. As it happens 652 

with the ES metric, the challenge of all deterministic EVM-based metrics is to accurately 653 

measure current project progress. As discussed above, this is not easy as, somehow, the work 654 

performed in the most advanced paths is worth less than the work in paths that are causing a 655 

delay (the bottleneck). Dynamically updating this information is, however, not easy, as most 656 

EVM metrics do not discern where the work comes from. The inaccuracy of these metrics is 657 



then translated to the forecasting methods, which eventually produce worse project duration 658 

estimates. 659 

Hence, the most challenging project networks for EVM metrics are predominantly 660 

parallel.The inclusion of more parallel networks in the datasets could have provided a higher 661 

discriminatory power. However, the vast majority of real projects do not resemble perfectly 662 

parallel networks, and if they did, it would be extremely unlikely that all their activity durations 663 

were exactly the same (the hardest scenario for all metrics). Therefore, the fact that real 664 

projects’ Serial-Parallel (SP) values mostly fall between 0.3 and 0.7 (as in Table 2) partially 665 

disguises the limitations of the deterministic metricscompared here.On the other hand,these 666 

comparisonshaveindirectly allowed obtainingmore realistic estimates of the errors that these 667 

metrics and methods maysuffer in real project contexts. 668 

Finally, two new metrics have been proposed in this study that, despite extremely 669 

simple to calculate, slightly outperform the rest. These metrics named ESmin and ESmaxbasically 670 

compute the project progress on the most delayed and most advanced paths at any tracking 671 

period, respectively. Both metrics perform similarly, but ESmin was better in the simulated 672 

projects, whereas ESmax outperformed the rest in the real projects. In the case of simulated 673 

projects, where corrective actions were not possible, the path that fell behind was the most 674 

likely to remain behind. This means that, despite not necessarily always, ESmin (once coupled in 675 

method 25) constitutes an average upper-bound of the project duration. Metric ESmax (once 676 

coupled in method 26) constitutes an average lower-bound of the project duration (the 677 

minimum the project will last). In real life projects, hence, the actual (final) project duration is 678 

likely to remain between these two boundaries most of the time. 679 

Additionally, these two metrics have other practical applications. For example, the 680 

project manager can use them toidentify those bottleneck activities (the ones whose ESi 681 

coincide with the ESmin). If the project needs to be brought back on track or if it just needs to be 682 

accelerated, resources need to be mobilized to these critical activities. Those resources should 683 

primarily come from those activities whose ESi coincide with the ESmax. In other words, metrics 684 



ESmin and ESmax allow identifying which activities are in need and those activities which can 685 

‘donate’ resources. Of course, this assumes that resources are partially transferrable between 686 

delayed and advanced activities. If no transference is possible, the project may have to resort to 687 

other schedule compression techniques such as activity crashing [37]or fast-tracking [38]. 688 

 689 

6. Conclusions 690 

Earned Value Management (EVM) is a prominent technique for monitoring project 691 

progress in both time and cost dimensions. One of the most common EVM applications 692 

involves forecasting the actual project duration. To this end, many EVM-based metrics and 693 

methods have been proposed over the last two decades. However, previous studies hadnot 694 

compared them alland/or had produced contradicting results on which perform better.  695 

In this study, the performance of 26 deterministic EVM-based project duration 696 

forecasting methods has been compared in a set of 4100 simulated projects and 23 real 697 

projects.This set of 26 methods encompasses, to the best of the authors’ knowledge, all 698 

deterministic methods published as of the submission of this paper. 699 

Among the existing metrics, the top performing in both simulated and real project 700 

datasets have been the Earned Schedule (ES) [4] and Effective Earned Schedule (ES(e)) [13] in 701 

forecasting methods with Performance Factor 1 (PF=1). The Earned Duration (ED) metric [6] 702 

also performed very well with PF=1 in the simulated projects dataset, but fell slightly behind in 703 

the real dataset.  704 

Additionally, two new metrics named ESmin and ESmax and their respective forecasting 705 

methods have been proposed. These metrics constitute a partial reformulation of the classical 706 

Earned Schedule (ES) metricproposed by Lipke in 2003 [4]. ESmin and ESmax are calculated at 707 

activity level, instead of project level, and have marginally outperformed all existingmetrics. 708 

Theirmajor advantage is that their calculation is extremely simple, requiring only somebasic 709 

schedule information (the activities planned start dates and slacks, andtheircurrent percentages 710 

of completion). 711 



Finally, it has been discussed how the ESmin and ESmax metrics, apart from its higher 712 

performance results, alsohave the potential to be used aspowerfulproject control tools. This, 713 

asESmin and ESmaxcan be used to make decisions on what activities prioritize and how to 714 

distribute resources to achieve shorter project durations.ESminand ESmax can alsobe completely 715 

decoupled from the EVM framework, as they do not rely on the Planned Value, Actual cost, 716 

nor Earned Value metrics. This significantly lowers the number of calculations to implement 717 

them, but also allows them to be used with any other project management framework (Earned 718 

Duration Management, for instance). Last of all, ESmin and ESmax can also be combined into a 719 

new metric named hereESmin-max, which has been shown to outperform all 26 methods in the 720 

real projects dataset. ESmin-maxhas beenprovisionallyexpressed as a weighted average of ESmin 721 

and ESmaxvia a single parameterδ. Thisparametercan be identified with the (average) potential 722 

transference of resources from those activities progressing faster to those activities currently 723 

delayed. 724 

Study limitations have also been discussed and emphasize the substantial room for 725 

improvement regarding the discriminatory power of the simulated and real project networks 726 

used in this study. Despite both datasets are quite representative of real projects, project 727 

networks with a higher number of parallel activities could have posed more challenging 728 

scenarios for all EVM metrics, and allowed, perhaps, finding more significative differences 729 

among the compared methods.All the same, from a practical point of view, any EVM method 730 

(top performing methods included) must always be applied with a basic understanding of its 731 

underlying assumptions and limitations. Only this way, a project manager, on combining the 732 

metrics outputs with other schedule and contextual information, will be able to make better 733 

decisions and achieve various project objectives.  734 

Future research will explore the capabilities of the two new metrics proposed (ESmin and 735 

ESmax) plus its combination into ESmin-max for enhanced project monitoring and control.For 736 

example, we should be able to analyze how the (time) difference between ESmin and ESmax can 737 

be potentially used to assess how balanced the progress of a project is. This, as theESmin and 738 



ESmax gap should ideally be always zero (meaning all paths are progressing at the same relative 739 

speed). Furthermore, the parameter δcould be used as an indication of how feasible is to bring 740 

back the balance between the different paths progress. This, becauseδrepresents the potential 741 

overall resource transference from the quickest to the slowest paths.All these continuations, 742 

though, are expected to be part of a separate paper. 743 
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