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Abstract Water indicators and indices are useful tools to assess river basin 

performance, that is, to measure whether the basin operates satisfactorily under a 

wide range of possible future demands and hydrological conditions. Spanish 

regulations assess the performance of water demands by using reliability 

indicators (RIs), established by law in 2008. This article raises the possibility of 

updating RIs by comparing them with sustainability indicators (SIs). SIs are 

widely used for the assessment of river basin performance and several policy 

scenarios. We applied a water allocation model to the Guadiana River basin in 

Spain to compare indicators under three scenarios. The study was framed within 

the science of socio-hydrology, combining the physical environment of a water 

system with its influence on social aspects. SIs gave better results than RIs when 

comparing future scenarios. We also propose the introduction of a vulnerability 

indicator into Spanish regulations.  
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1 Introduction  

The science of socio-hydrology aims to understand the dynamics and co-evolution of 

coupled human–water systems, with a focus on the understanding, interpretation and 

scenario development of the flows and water resources in the human–modified water 

cycle, at multiple scales (Sivapalan et al. 2012, 2014, Troy et al. 2015). According to 

Evers et al. (2017) and Sivapalan et al. (2014), the theoretical framework of any socio-

hydrological system is the relationships among three aspects: (a) multiscale water 

system structures and dynamics; (b) water-related human outcomes; and (c) normative 

goals and values of individuals and societies with respect to water use, conservation, 

and sustainability.  

The word sustainability has been widely used in recent years for a variety of water 

management proposals, as well as in socio-hydrological studies (EC 2000, Sandoval-

Solis et al. 2011, Sivapalan 2018). The American Society of Civil Engineers (ASCE 

2019) stated that a water system is sustainable when it is designed and managed to fully 

contribute to the objectives of society, now and in the future, while maintaining 

ecological, environmental, and hydrological integrity. Loucks (1997) studied the 

sustainability of a river basin and proposed the sustainability index as the aggregation of 

reliability (Rel), resilience (Res) and vulnerability (Vul) indicators, i.e. the sustainability 

indicators (SIs). Sandoval-Solis et al. (2011) made an improvement by including other 

indicators and assessing the sustainability of different river basin management policies. 

These Rel, Res and Vul indicators were first developed by Hashimoto et al. (1982a), 

who proposed them to capture water system performance, i.e. to measure the ability of a 
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water resource system to operate satisfactorily under changing demands or hydrological 

conditions. Many authors have studied the performance of water systems by using these 

and others indicators and indices (Sarang et al. 2008, Sandoval-Solis et al. 2011, Pedro-

Monzonís 2014, Loucks and Van Beek 2017, Goharian et al. 2018). Water indicators 

and indices are useful tools for water managers and policymakers to develop effective 

policies for sustainable water system management. Indices are defined as aggregations 

of indicators, whereas indicators are aggregations of variables and reflect the 

characteristics of water resources systems (Lama-Pedrosa 2011) (Fig. 1). River basin 

performance indicators measure the behavioral responses of hydraulic systems, as well 

as different management alternatives, as used in policymaking (Hashimoto et al. 1982b, 

Pedro-Monzonís et al. 2015a). 

[Place Figure 1 near here] 

Performance indicators have been broadly used in the literature and were recently 

reviewed by Pedro-Monzonís et al. (2015b); some are listed below:  

 A sustainability index was proposed by Loucks (1997) to quantify the 

sustainability of water resources systems. This index is based on Res, Rel and 

Vul indicators (Loucks 1997, Sandoval-Solis et al. 2011, Goharian et al. 

2018). 

 To assess the capacity of water resources to meet current and future water 

demands, Milano et al. (2015) used a water allocation index. This index is 

obtained by using water supply and water demand variables for each year of a 

given period.  

 The reliability of annual firm yield (FY) measures the capacity of a part of 

the water system to supply water each year in the planning period, under a 

given monthly distribution and to ensure the supply with a defined reliability 

(Srdjevic and Srdjevic 2017). 
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 The reliability indicator (RI) was established in the Spanish guidelines of 

water planning (IPH by its Spanish acronym) (BOE 2008). It indicates that 

the water supply to urban or agricultural sectors is considered satisfied when 

the frequency of occurrence of a specified deficit is less than a predetermined 

level. 

 

The measurement of the reliability of a water supply has been at the forefront of 

water system design and operation since the early 20th century (Gheisi et al. 2016). 

Gheisi et al. (2016) divided the study of the reliability of water distribution systems into 

three groups: hydraulic failure, mechanical failure and failure in water quality. 

However, in this study, we approached reliability from the perspective of reliability of 

supply of a volume of water. Reliability values using this perspective will depend on the 

way failures of the water system are quantified (Estrada Lorenzo 1993, Lama-Pedrosa 

2011). Thus, there are criteria that represent the failure’s volume, duration and sequence 

and other criteria that represent combinations of these. The RI measures a combination 

of volume and duration of failure, while the Rel indicator measures the duration of 

failure. The Spanish RI for agricultural demands (ADRIx) was first approached by Lall 

and Miller (1988), who applied it the Utah Department of Water Resources. Meanwhile, 

SIs were applied, among others, to the Rio Grande (USA–Mexico) River basin. 

Water management in Spain is implemented through River Basin Management 

Plans (RBMPs), which define the scope of the water balance in a basin for the purpose 

of water resources studies, demands and management rules. The most popular water 

balance software used in the Spanish RBMP is AQUATOOL (Andreu, et al. 1996). 

River Basin Management Plans are currently being updated for the next management 

cycle in 2021–2026 and are being revised in the light of experience acquired since their 
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first publication in 2000. This presents an opportunity to propose a new indicator 

system for water resources. The example of the California Water Plan is noteworthy 

(Shilling and Shilling 2014) with respect to the use of performance indicators. The 

Water SIs Framework in California grew out of regional projects developing indicators 

for water and watershed conditions. River basin authorities decided to incorporate SIs 

into the 2013 Water Plan and developed an indicator catalogue, called the Sustainability 

Indicators Framework, to facilitate the use of indicators to measure progress toward 

water sustainability. Similarly, in Europe, the Water Framework Directive (WFD) (EU 

2000) established the basis for the protection of all water bodies with a sustainable use 

of water resources in RBMPs. It requires water management to be carried out at the 

river basin scale, particularly when this involves transboundary management. Some 

examples of the application of sustainable river basin management have been made in 

countries with similar climate characteristics as Spain, including Italy and Greece (EC 

2015). In Italy, water balance studies are applied by the River Basin Authorities to their 

territory to establish a volumetric reliability of the water supply (EC, 2015). In an 

example of the application of such an approach in Ali–Efenti River Basin, Greece, the 

reliability of the system in supplying the requested demand was examined by assessing 

the results of a water allocation model. Both the Italian and Greek examples used 

WEAP software as a distributed water resources management model to calculate a 

detailed water budget.  

Climate change scenarios were first applied to water policy in Spain during the 

elaboration of the National Plan for Adaptation to Climate Change in 2006 and involved 

the main coordinating bodies on climate change in Spain. In 2011 the Spanish Centre of 

Studies and Experimentation in Civil Engineering (CEDEX by its Spanish acronym) 

published the first national report on Climate Change forecasts (CEDEX 2011). Climate 
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change scenarios were considered in the RBMP of the planning cycle from 2009–2015 

and 2015–2021. In 2017 they published a report on the impact of climate change on 

water resources and droughts in Spain (CEDEX 2017). The reduction in water supplies 

in every RBMP were published by CEDEX and applied in this study to determine the 

responses of indicators to climate change under different scenarios. In addition, 

demographic changes in river basins affect, and are affected by, water distribution. 

Rural–urban migration has been a common process throughout Europe, including Spain, 

in recent decades. Today, this process continues to cause major territorial imbalances 

because it leads to the progressive abandonment of rural areas and massive growth of 

cities (Confederación Hidrográfica del Guadiana 2015a).  

The RI quantifies the reliability of water systems based on the occurrence of 

failures and is the most widespread method used to measure reliability (Lama-Pedrosa 

2011). The RBMPs are being revised for 2021 and therefore we undertook a review of 

the current indicators used in water resource management in Spain. The sustainable 

management of river basins is being widely applied in the regulations of different 

countries, and the use of indicators and water allocation models are the main tools. The 

studies of Sandoval-Solís (2011) and Loucks (1997) suggest that the computation of 

sustainability indices allows the assessment of river basin performance and comparisons 

to be made of different planning policies. Other authors have compared different 

sustainability indicators (Kefayati et al. 2018, Ortega-Gómez et al. 2018), with the 

performance indices and indicators proposed herein sharing the same variables for their 

computation. Moreover, an assessment of performance indicators under different 

scenarios was conducted in this study and has been applied in the studies of Sandoval-

Solis (2011) and Hernández-Bedolla et al. (2017), who compared SIs among different 

climate change and policy scenarios.  
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In this study, we propose the application of performance indices and indicators to 

the water demands of the Guadiana River Basin (GRB) to compare SIs and RIs. We 

examined the information these indicators provide under the reference scenario and 

their behaviours when comparing two future scenarios. We framed the study into the 

three aspects of socio-hydrology: (a) to present a multi-scale water system model (i.e. 

the GRB; (b) to study the water-related human outcomes of the GRB through the 

assessment of its water demands and future scenarios; and (c) to link the results with 

current water management regulations. 

 

2 Study area 

The Guadiana River Basin (GRB) is among the most complex river basins in Europe. It 

is prone to water scarcity, there is a strong competition among users for water and 

surface and groundwater bodies are highly regulated and overexploited.  

The GRB is the fourth largest basin in the Iberian Peninsula (Fig. 2). It lies in 

the southwestern Iberian Peninsula and occupies an area of 67 139 km
2
, of which 

55 528 km
2
 lies within Spain and 11 611 km

2
 within Portugal (CHGn 2015a). For this 

reason, the Albufeira treaty was signed by both countries (BOE 2010) as they must 

coordinate for its management (EU 2000). The basin is characterized by a 

Mediterranean-continental climate with a well-defined dry season and marked seasonal 

oscillations in temperature, which together generate scarce summer rainfall and high 

summer temperatures that entail severe, low-water levels. The GRB periodically 

experiences droughts that challenge water managers in their regulation of water 

demands. Drought periods in the basin from 1980 were recorded in the periods 1980–

1983, 1991–1995, 1999–2000 and 2005–2009 (CHGn 2018).  
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[Figure 2 near here] 

The average altitude of the basin is approximately 550 m a.m.s.l. In the middle 

area of La Mancha plain, the low slope favours the existence of wetlands, located within 

Las Tablas de Daimiel National Park (PNT-Daimiel). The abundance of large karstic 

systems in the upper part of the basin favours the formation of aquifers that give rise to 

complex relationships between surface and sub-surface waters. The aquifer of La 

Mancha Occidental (MO-aquifer) is, by far, the most valuable water resource in the 

upper part of the basin. This aquifer is recognized as being overexploited (EU 2000). In 

the Spanish part of the basin, mean precipitation is 496.41 mm/year (1980/81–2011/12) 

with minimum and maximum rainfalls of 267.17 and 808.01 mm, respectively. Annual 

mean potential evapotranspiration (ETP) is 996.2 mm. Temperatures vary seasonally 

between 6.5 and 26°C. In the Portuguese part, the mean annual precipitation is 566 mm, 

mean temperature is 16.3°C and maximum and minimum temperatures are 22.4 and 

10.3°C, respectively. In Portugal, the mean ETP is 835.3 mm, with minimum and 

maximum values of 758.1 and 956.3 mm, respectively. The Guadiana River is 852 km 

long (mean flow: 107 m
3
/s) and gives its name to the basin. The basin is divided into six 

watersheds or sub-basins with different characteristics (Fig. 2). 

The Spanish part of the basin has a population of 1.5 million, who mainly work 

in the agricultural sector. Most (95%) of the municipalities in the basin are rural, 

according to the Eurostat criterion. The agricultural part of the GRB occupies an area of 

26 000 km
2
, or approximately 47% of the total territory. In the Portuguese part of the 

basin, 55.1% of the lands are arable (4213 km
2
), 36.3% are pastures (2573 km

2
) and 

11.3% are permanent crops (8650 km
2
) (CHGn 2015b). 
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3 Methodology 

In this study, we compare the results of two performance indicators, SI and RI, using 

the results of a decision support system (DSS) model under different scenarios. The 

DSS employed is the AQUATOOL-SIMGES module (Andreu et al. 1996, 2007) that 

provides information about water management in the basin, including supply/deficit, 

reserves, returns, river flows and other variables. We use a socio-hydrology framework 

based on Evers et al. (2017) to integrate all the aspects in the case study of the GRB 

(Fig. 3). 

[Figure 3 near here] 

3.1 Reliability indicators (RI) 

The IPH established that a reliability indicator (RI) for a water supply should be 

considered in the water balance models in every RBMP. The RIs for urban (UD) and 

agricultural demands (AD) are computed differently from each other. Here, we calculate 

RIs for urban (UDRIx) and agricultural (ADRIx) demands. Both indices are binary 

(complies/does not comply) and assess the reliability of the water resource system.  

We define the deficit of water supply when it does not meet the water demand in 

a certain period. The UDRIx is calculated from two indicators: (a) the monthly failure 

indicator (MF), which establishes that the supply of a UD fails when the deficit of water 

supply in one month exceeds 10% of the corresponding monthly demand (Equation 1); 

and (b) the annual failure indicator (AF), which deems that the supply fails to meet the 

UD when in 10 consecutive years, the sum of all deficits exceeds 8% of the annual 

demand (Equation 2).  

MF {
fail if →  Max Def𝑖 > 10% Dem𝑖

no fail if →  Max Def𝑖 < 10% Dem𝑖
   (1) 
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AF fail if → ∑ Def𝑡=10
𝑡=1 > 8% Annual Demand   (2) 

where i represents months and t represents years. Similarly, the ADRIx must fulfil three 

specifications, or indicators, that are summarized as follows: A-RI – the water supply 

deficit in one year cannot exceed 50% of annual demand; B-RI – the sum of water 

supply deficit of two consecutive years cannot exceed 75% of annual water demand; 

and C-RI – the sum of deficits in the water supply of 10 consecutive years cannot 

exceed 100% of annual demand. For data analysis, the number of annual failures in the 

time series is calculated as: 

max(∑ Def𝑡=𝑛
𝑡=1 > 𝑚% Annual Demand)   (3) 

where, if n = 1, m = 50, if n = 2, m = 75 and if n = 10, m = 100. 

3.2 Sustainability indicators (SIs) 

There are numerous successful applications of SIs for the analysis of the sustainability 

of river basins (Sandoval-Solis et al. 2011, Ashofteh et al. 2017, Gohari et al. 2017, 

Hernández-Bedolla, et al. 2017). The SIs used in this study are Rel, Res and Vul (see 

Section 1). It is necessary to compute these SIs to compute the sustainability index 

proposed by Loucks (1997) and Sandoval-Solis et al. (2011). To obtain these indicators, 

we first defined the failure threshold, depending on the use of the demand, and 

established that UD fails when >10% of the demand is not supplied and AD fails when 

>25% of the demand is not supplied. We summarize below the Rel, Res and Vul 

computations and principles. 

3.2.1 Reliability indicator (Rel) 

The supply of water is reliable when the probability of the available water supply meets 
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the demand during the simulation period (Hashimoto et al. 1982). Time-based Rel (Rel
i
) 

is defined (Loucks 1997) as the portion of time that the water demand is fully met when 

𝐷𝑡
𝑖 = 0 in a fixed time period, n – in this case study, the number of months (Equation 

(4)). For each time period t, a deficit (𝐷𝑡
𝑖) appears when demand exceeds supply 

 (𝑋Target,𝑡
𝑖  > 𝑋Supplied,𝑡

𝑖 ) for a specified water user i. If the water supplied is equal to the 

water demand (XSupplied,𝑡
i = 𝑋Target,𝑡

𝑖 ), deficits are zero (i.e. 𝐷𝑡
𝑖 = 0). Values of this 

index vary between one and zero, where one represents the best performance and zero 

the minimum reliability (Equation (5)). 

Rel𝑖 =
nº of times 𝐷𝑡

𝑖=0

𝑛
    (4) 

𝐷𝑡
𝑖 = {

𝑋Target,𝑡
𝑖 − 𝑋Supplied,𝑡

𝑖     if 𝑋Target,𝑡
𝑖 > 𝑋Supplied,𝑡

𝑖

0                                         if 𝑋Target,𝑡
𝑖 = 𝑋Supplied,𝑡

𝑖
    (5) 

3.2.2 Resilience indicator (Res) 

The resilience indicator (Res) is a statistic that assesses the adaptability of water 

management (WHO 2009). Res
i
 is the probability that a successful period (i.e. a period 

with full water supply to meet the demand) follows a failure period (i.e. a period when 

there are deficits in the supply of water with respect to the demand). Values of Res vary 

between one and zero, where one represents the best performance and zero is the 

poorest. The resiliency of a demand is calculated as: 

Res𝑖 =
nº of times 𝐷𝑡

𝑖=0 follows 𝐷𝑡
𝑖> 0

nº of times 𝐷𝑡
𝑖>0 occurred

    (6) 

3.2.3 Vulnerability indicator (Vul) 

The vulnerability indicator (Vul) is a measure of the likely value of deficits, if they 

occur (Hashimoto et al. 1982). The vulnerability of a demand is the sum of its deficits, 
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divided by the number of times deficits has occurred. The dimensionless Vul is 

calculated by dividing the average annual deficit by the annual water demand, for water 

user i (Equation (7)). The inverse of Vul is used in this study to allow for better data 

analysis. This index varies between one and zero, where one represents the best 

performance, meaning demand has low vulnerability, and zero means that demand is 

very vulnerable to stress. 

Vul𝑖 = 1 −
(

∑ 𝐷𝑡
𝑖𝑡=𝑛

𝑡=0

nº of times 𝐷𝑡
𝑖 >0 occurred 

)

nº of water demands𝑖  (7) 

3.2.4 Sustainability index (SusInd) 

To calculate the sustainability index, the geometric average of M performance criteria 

(i.e. SIs in this study) is used – (𝐶𝑚
𝑖 ) for water user i (Sandoval-Solis et al. 2011). To 

obtain the sustainability index for water user i, three criteria (M = 3) are thus taken into 

account: 𝐶1
𝑖 = Rel𝑖, 𝐶2

𝑖 = Res𝑖 and 𝐶3
𝑖 = Vul𝑖 (Equation (8)). The application of this 

methodology allows the scaling of the sustainability index. The higher the value of the 

index, the better the condition of the watershed with regards to supply and demand. The 

sustainability index is classified in five categories as: Very High (1–0.81), High (0.8–

0.61), Moderate (0.6–0.41), Low (0.4–0.21) and Very Low (0.21–0). 

SusInd𝑖 = [Rel𝑖 × Res𝑖 × Vul𝑖]
1

3⁄
   (8) 

3.2.5 Sustainability of different water exploitation sub-basins (SG) 

The values of the reliability indicators (i.e. Rel, Res and Vul) for each water demand of 

the same sub-basin are aggregated, as shown in Equation (9), to show the results of the 

indicators per sub-basin. The objective of this computation is to apply the methodology 

to large river basins having broad exploitation subsystems. A computational method 
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using Matlab
1
 is used to obtain the SIs by sub-basin. The relative importance of each 

demand is reflected in the weight W assigned to each water demand (Equation (10)), 

with the indices being weighted by annual water demand in our case study. 

𝐶𝑚
𝑘 = ∑ 𝑊𝑘

𝑖𝑖=𝑘
𝑖=1∊𝑘 × 𝐶𝑚

𝑖     (9) 

where C is either Rel, Res or Vul, K is the sub-basin and i is one demand (𝑖 ∊ 𝑘), and 

𝑊𝑘
𝑖 =

Water demand𝑖

Water demand𝑘    (10) 

Sustainability by group (SG) is the weighted average of sustainability indices (Loucks, 

1997). It is calculated to compare a group of water users (i.e. a group of water demands 

in the same sub-basin) k, with water users i to j belonging to this group, where W
i
 is a 

relative weight for the ith water user, ranging from zero to one:  

 SG𝑘 = ∑ 𝑊𝑘
𝑖 × SusInd𝑖𝑖∈𝑘

𝑖=1∈𝑘     (11) 

3.3 Performance indicators  

To compute reliability and sustainability indicators, we use the aggregation of the 

deficits in water supply of the water system demands. Thus, it is possible to compare the 

number of years or months that exhibited failure in supply with the values of Rel, Res 

and Vul. We also considered that SusInd and the indices ADRIx and UDRIx have 

similar meanings and come from comparable indicators that are related. If the supply of 

a water demand shows high or low sustainability, its compliance (or not) can be 

compared using ADRIx and UDRIx. Table 1 shows the main differences and 

similarities among these indices and indicators. 

                                                 

1
 https://es.mathworks.com/ 

https://es.mathworks.com/
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[Table 1 near here] 

3.4 Water allocation model 

Once indicators have been selected, they must be supplied with numerical data. In this 

study, numerical values are simulated with a water allocation model. The GRB water 

system was modelled using AQUATOOL-SIMGES (Andreu et al. 1996) software and 

three different scenarios of water resources and demands in the basin were examined 

(Fig. 4). 

[Figure 4 near here] 

The model of the GRB is based on a firm understanding of the basin, including 

demands within the basin. The characteristics of the model are summarized in Table 2. 

To examine the GRB, we established an aggregation of the different water elements, 

depending on their location in each watershed or sub-basin. Each element in the model 

was positioned over a geographical map to locate elements across the basin. The 

required data, including characteristics of surface water resources, aquifers, reservoirs 

volumes and management and water demands and uses, were collected from the GRB 

management plan (GRBMP). These data were input into the AQUATOOL-SIMGES 

model, which was used to simulate 32 years (October 1980 to September 2012; 384 

months). This period of analysis contains multiple historical droughts across the basin. 

Water inputs come from the hydrological model – the integral system for the modelling 

of precipitation and inflow – Sistema Integrado para la Modelación del proceso 

Precipitación (SIMPA; Álvarez et al. 2007). Groundwater flows within the model were 

solved using an eigenvalues method for the MO-aquifer (see Section 2). There are 20 

demands in the Upper Guadiana that pump water from this aquifer. Priority is given to 

UD, followed by AD, while other demands (OD) were assigned the lowest priority. 
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These OD were not considered in the computation of the indicators. The model has 43 

water reservoirs of more than 2 hm
3 

capacity; smaller capacity reservoirs were 

considered as nodes in the model and were not regulated. Environmental flows were 

determined from the 10th percentile on the curve of classified monthly flows (i.e. they 

are not considered as a demand, but as criteria to follow in some channels). Water 

transfers in the model were considered from the Tajo and Guadalquivir river basins. A 

transfer of 50 hm
3 

from the Tajo River (Trasvase Tajo-Segura, ATS) was activated 

when a failure in the UD appeared, with 30 hm
3
 destined to UD and 20 hm

3
 supplied to 

PNT-Daimiel. The water transfer from the Guadalquivir basin was 7.17 hm
3
/year. The 

PNT-Daimiel is in the Upper Guadiana sub-basin and was considered as an 

environmental flow channel with a minimum required flow. In the model, it is supplied 

by the water that flows from the aquifer into the Guadiana River and the ATS. The 

estuary of the Guadiana River was also considered to be an ecological flow in the 

model. The Albufeira treaty was modelled by adding two operational rules for the weir 

at Badajoz. This weir affects 6 reservoirs in the basin, depending on monthly 

pluviometry and is located at the border between the Central and Portuguese sub-basins. 

[Table 2 near here] 

3.5 Future scenarios in the GRB 

To evaluate the possible effects of climate change on the Guadiana basin, we modelled 

two additional scenarios, as summarized in Table . Scenario 1 consists of a 6% 

reduction in water supply. Climate change reduction data were extracted from the 

CEDEX (2017) report, which recommended this percentage reduction as a general 

approach when working with future projections for the Iberian Peninsula. Under 

Scenario 2, we applied the 6% reduction in water supply, but also changes in water 
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demands (Table 3). Increased and decreased water demands were applied because the 

Guadiana water authorities have estimated that changes will occur in UDs and ADs in 

the future planning cycles in the GRBMP arising from population movements into 

urban areas through to 2033 (CHGn 2015a). 

[Table 3 near here] 

4 Results and discussion 

The results are divided into four sections: (1) analysis of the results obtained from the 

reference scenario in the GRB; (2) comparative analyses of performance indicators 

under the reference scenario; (3) analysis of the results under scenarios 2 and 3; and (4) 

comments on the integration of social aspects in the study. 

The results of the AQUATOOL-SIMGES model demonstrate that 29.4% of the 

UDs in the basin show water deficits across the time series. The model has 40 ADs, 

with a total requirement of 1923.44 hm
3
 and 77.5% of all ADs exhibited deficits. 

Analysis of the indicators demonstrated that nine ADs had SIs lower than one. 

4.1 Comparing SIs and RIs 

The general differences and similarities in the two types of indicators are that different 

formulae were used for the RIs, depending on the type of demand examined, while for 

the SIs we used the same formulae for all types of demand. The RIs of UD examine the 

deficit at two timescales, monthly and annual, whereas the SIs examine deficits at a 

monthly time step. Calculations of ADRIx used annual deficits, while the SI used 

monthly time steps. The results of the indicators across different demands and scenarios 

are discussed below. 
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4.1.1 Analysis of urban demands in the reference scenario 

Values of SI less than one were recorded in 10 UD locations (Table 4). Three behavioral 

trends were detected among low values of SI demands:  

(a) Demands that present low and very low values of Res with high and very high Rel 

and Vul (62B, 68B, 43B, 56B, 60B). This behaviour was due to consecutive deficit 

periods that were the consequence of droughts in the historical series. This behaviour 

highlights that the regulation of the system was not able to adapt to low water 

availability. Low Res and low Vul indicate that when failures occurred, the deficit of the 

demand was very high.  

(b) Demands with moderate values of Rel, very low Res and low or very low Vul. In 

these cases, the model did not supply sufficient water to satisfy the demands because of 

structural deficits. Demands 20B and 71P, despite being regulated by large reservoirs, 

did not supply water to the UD. However, Vul performance values indicate that the 

failures did not correspond to the whole volume of the demand. Demand 63B presents 

very low Rel due to long periods of failure.  

(c) Demands with high or very high Vul (25B, 70P). These indicate that supply failures 

did not correspond to the volume of demand. Moderate and low Res values 

demonstrated their poor adaptation to episodes of failure. UDs that do not comply with 

UDRIx exhibited SI values that were less than one.  

[Table 4 near here] 

The Rel indicator and the MF indicator showed similarities at a theoretical level 

(Fig. 5). Rel indicates the number of months with deficits, while MF indicates poor 

system performance when, in one month, the deficit exceeds 10% of the demand. Both 
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indicators reflect the water supplied by the system to meet the demand. Whereas Rel 

gives the relative number of failures in the time series, the MF indicates the number of 

months with failures. However, we observed that when we subtract the number of 

monthly failures of MF from the number of months of the time series (n) and divide the 

value by n, the values obtained were similar to those of Rel. Therefore, both indices are 

mathematically related (see last column of Table 4). 

[Figure 5 near here] 

The indicator Res indicates the number of times a failure period begins and it 

can be compared to the AF (Fig. 6). Mathematically, AF is the sum of deficits in a 10-

year period and differs from the Res formula. However, both indicators show an almost 

direct proportionality, with very low and low values of Res (0.15–0.0) having an AF 

between 32 and 24 and moderate values of Res (0.19–0.49) having an AF between 16 

and 20. 

[Figure 6 near here] 

At a theoretical level, Vul measures the number of times a failure occurs with 

respect to the volume of the water demand. Reliability indicators for UDs do not 

consider the volume of water demand when calculating the fulfilment of the UD. 

Moreover, the results did not show any similarities of the UD with either MF or AF. 

Vul also shows the failure severity of the demand and this should be an indicator used 

in the calculation of UDRIx. It is important to know the amount of the failure in the UD. 

Therefore, the Vul indicator should be incorporated into the study of UD in Spanish 

regulations. 

The results of the UD reliability indicators are not directly related to SIs, 

although high values of AF and MF tend to be associated with low values of SIs. The 
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SIs results reflect the performance of the demand in a more accurate way and they can 

be scaled across different ranges to improve the analyses. When compared, the 

conclusions derived from both indicators are similar, namely, that demand was not fully 

met. However, if the indices are compared, UDRIx demonstrated that demand 25B was 

not met, despite the sustainability index having good values with respect to that demand 

(SusInd: 0.71). The SusInd determines not only whether bad performance is happening, 

but also why. 

4.1.2 Agricultural demand in the reference scenario 

A comparison of Rel with A-RI and B-RI demonstrated that they are very different at a 

theoretical level. No failures in AD in the C-RI indicator were found in the model. 

Consequently, we do not discuss this indicator any further.  

The Rel indicates the number of months with deficits; in contrast, the timescale of A-

RI is annual and measures the number of years annual deficit exceeded 50% of the 

annual demand. Values of Rel between 0.73 and 0.26 demonstrated failures from 21 to 

32 years (Table 5 and Fig. 7). A-RI values were directly related when detecting the 

failures of the water supply to a demand. The Rel indicator shows the supply to the 

demand while A-RI shows the intensity of the failures. B-RI works at a bi-annual scale 

and is less strict than Rel because it does not comply when bi-annual deficit exceeds 

75% of the annual demand. Thus, when Rel is 0.74, the B criterion shows nine years 

when the AD was not satisfied. Values of Rel from 0.61 to 0.26 show annual fails in B-

RI of between 23 and 31. 

[Table 5 near here] 

The indicator Res shows the number of times a failure period begins, whereas B-RI 
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measures failure when deficit exceeds 75% of the demand during two consecutive 

years. However, no numerical relationship was found between the two indicators. 

The indicator Vul measures the number of times a failure occurs with respect to the 

volume of water demand, while RI determines that a demand is not satisfied when the 

sum of deficits exceeds 50% of annual (A-RI) or 75% of bi-annual demand (B-RI). 

High and very high values of Vul (>0.50 and >0.83, respectively) show good 

performance in A and B-RI, but Vul values between 0 and 0.26 are associated with 

failures in A-RI of between 21 and 32 months and those between 31 and 9, fails for B-

RI. Because the Vul indicator assesses the severity of failure in demand and A and B-RI 

measure the intensity and magnitude of the failure, the relationship between these 

results is expected. 

The SI values were almost directly related to compliance of the ADRIx. When SI 

exceeded 0.4 the ADRIx was compliant, whereas when SI was smaller than 0.4 (e.g. 

AD 35B, 2A, 17A,1C, 52P, 68P and Sotavento), the ADRIx was not compliant (Error! 

Reference source not found.). 

[Figures 7 and 8 here] 

4.2 Impacts of climate change in the GRB 

4.2.1 Urban demands in future scenarios 

The results of the application of the indicators under two future scenarios in the 

AQUATOOL-SIMGES model are shown in Fig. 9 and discussed below. The general 

state of the GRB, regarding sustainability of UD, was not as affected by the reduction of 

water incomes (Scenario 1) as it was by the change in water uses in Scenario 2. The Rel 

and Res indicators demonstrated how the performance of the basin was worsened in 
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future scenarios 1 and 2. Because of the changes in water use, very high values of Vul 

were manifest in both future scenarios. The performance in each sub-basin is discussed 

below. With respect to Rel, remarkable impacts were detected in UD in the Central and 

Portuguese sub-basins under Scenario 2 due to a 10% and 0.3% increase in demand, 

respectively. The Central subsystem was less vulnerable under Scenario 2 because 

100% of the UD experienced a supply deficit, but these deficits were lower than the 

value of the demand. The Upper Guadiana subsystem was also expected to increase its 

demand by 12.5%. However, the MO-aquifer and the ATS supply water to UD, thereby 

making this subsystem less vulnerable to failures. The Res indicator performed in two 

different ways. First, the South and Ardila subsystems were not affected by reductions 

in water supply nor by changes in UD. Second, the remaining subsystems were 

negatively affected by the reduction in water inflows, as well as by changes in demand. 

The Vul results demonstrated that the South subsystem exhibited very high Vul, as 

observed in the Upper Guadiana. The Ardila subsystem was not affected by changes in 

future scenarios. The Bullaque subsystem was highly influenced by reductions in water 

supplies and was highly vulnerable in both future scenarios. These results demonstrate 

that Central, Bullaque and Portugal are the most adversely impacted subsystems under 

future scenarios. 

We compared demands that have low sustainability for all three proposed scenarios 

(reference Scenario 0, and scenarios 1 and 2). Under the reference scenario, nine 

demands out of 34 exhibited an SI lower than 0.4. However, under Scenario 1, 16 UDs 

and, under Scenario 2, 23 demands were associated with SusInd lower than 0.4. A 

reduction in water demand by the Ardila subsystem benefited UD under Scenario 2, the 

Central subsystem increased its monthly fails due to increased water demands and the 

Portuguese subsystem was affected by reductions in water supplies as well as by 
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increased volume of UDs.  

Finally, the behaviour of the RI and SIs for the UDs under the different scenarios 

was analysed. Compared to MF, the Rel of the UDs did not change much under each 

scenario. An exception was observed under Scenario 2, where Rel values of demands 

were reduced, even though MF did not exhibit this behaviour of unequal supply. The 

AF indicator exhibited variances in certain demands under Scenario 2 because the 

number of failures increased. Sustainability indicators were found to be a better system 

to show variability across the scenarios. The Res results varied across the scenarios, 

while AF results did not show this variation. The results across different scenarios 

demonstrated that, whereas Vul exhibited a change in some demands of Scenario 2, MF 

and AF did not reflect this variation. Finally, the comparison of the sustainability index 

with the UDRIx demonstrated that UDRIx did not reflect changes in the behaviour of 

the demands, but SI did exhibit some changes among demands.  

4.2.2 Agricultural demand in future scenarios 

The ADs were highly affected by climate change in the GRB. Error! Reference source 

not found.) shows how the GRB system performed according to the SIs under the 

different scenarios. The Central system exhibited low Rel and Res due to the 12.5% 

increase in AD under Scenario 2. In comparison to the reference scenario, a reduction in 

water supplies did not affect the Rel and Res of the subsystem under Scenario 1 and the 

same applied to the Bullaque and Portuguese subsystems. The SIs demonstrated that the 

Central and South subsystems were the most affected under Scenario 2 due to the 

expected increase in ADs. Upper Guadiana was not as affected due to the availability of 

groundwater. The reference scenario presented eight fails in ADRIx and SIs that were 

smaller than 0.4 among 40 ADs in the model. Under Scenario 1, the number of fails did 
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not change; however, under Scenario 2, 33 ADs had SIs smaller than 0.4 and 32 

demands failed in ADRIx. A comparison of SIs and RIs demonstrated that demands that 

did not accomplish ADRIx as the three scenarios all had the same number of fails. This 

means that RIs are not able to show differences in the performance state of the basin 

across scenarios. In contrast, SI results under Scenario 2 exhibited important differences 

compared to the reference scenario and Scenario 1.  

[Figure 9a and 9b here] 

4.3 Integration of the social aspects in the study 

The management of water systems is influenced both by physical and social aspects, 

including hydrology, climate, technological advances, economy and politics (García-

Santos et al. 2018). Our paper examined all three aspects of socio-hydrology. It presents 

a multi-scale water system model that links with the present water management 

regulations and it examines the water-related human outcomes through the assessment 

of water demands and future scenarios. The methodology followed in the study is 

similar to that applied in the Spanish RBMP, consisting of the use of DDS models to 

allow water managers to shape and manage a complex water resources system in an 

optimal way. In this method, the inclusion of social aspects must be interpreted by the 

planner and is something that the DSS does not consider. Even though the RBMP and 

WFD establish the importance of applying economic and social issues in the RBMP, 

these policies are hard to implement and scarce in the literature. 

We observed that hydrology and social science use different languages. 

Hydrologists emphasize the importance of using mathematical models to quantify water 

dynamics, while social scientists highlight the role of social processes, structures and 

governance in decision making, accompanied by a need for knowledge translation to 
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decision makers and end users. Thus, we reiterate here the comment by Xu et al. (2018) 

and propose an interdisciplinary collaboration between both fields. A new approach 

should include water-related human outcomes (well-being), analysis of the economic 

costs of water deficits in the system, as well as the economic costs of climate change 

scenarios. In Spain, the RBMP brings water management closer to the user. Therefore, 

the use of indicators is proposed as an efficient way to share information among both 

parties. Both the reliability and sustainability indices can be compared with socio-

hydrological indicators, as, for example, demographic indicators and crop and water 

productivities. Figure 10 presents a schematic outline of a conceptual model, including 

the reflections and suggestions of the authors of this paper to the Spanish authorities. 

The case study presented herein was approached from the perspective of hydrology. 

The social factors affecting the study basin were considered to a minor extent. However, 

we included demographic information regarding indicators of a decrease in population 

in some parts of the basin. The depopulation of the countryside and the concomitant 

movement of people to the cities were included in Scenario 2. These data were taken 

from the RBMP and the Spanish National Statistics Institute (INE 2019). Other 

environmental problems that have hydrological and social factors include: the 

maintenance of a healthy ecological status of the PNT-Daimiel, the transfer of water 

from the River Tagus and the exploitation of the MO-aquifer. Aguilera et al. (2013) and 

Yustres et al. (2013) studied the influence of surface water–groundwater interactions in 

the PNT-Daimiel using conceptual hydrological modelling. These were considered in 

the physical aspects of the basin. However, it is proposed that there is a need to study 

their societal effects. As for the study of water demands for irrigation and urban 

requirements, these have been studied through the use of indicators, while Ruiz-Pulpón 

(2006) studied the irrigation and sustainable use of water in the GRB from a social 
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perspective. Finally, because it is a transboundary basin, the Albufeira treaty that 

regulates the transboundary waters between Spain and Portugal was considered in the 

modelling, although its direct influence on society requires study in the future. Finally, 

the use of indicators is proposed as an efficient and easy way to share information 

amongst all interested parties.  

[Figure 10 near here] 

5 Summary and conclusions 

This study represents a step toward a better understanding of indicators and indices 

applicable at a river basin level to improve the management of water supply to the meet 

the demands at a river basin level in Spain. We applied a water allocation model to the 

GRB and studied the behaviour of water demands under the current and two future 

scenarios. Finally, we integrated the social aspects into the study by proposing new 

sociological indicators and studying the effects of our results in the socio-hydrological 

context in the GRB. The study of water demands should be approached from the 

perspective of the availability of water resources, not only from the perspective of 

whether the RI is met. Understanding the link between sustainability and water demands 

is essential for water managers. Therefore, the sustainability indicators are a good 

option when it comes to studying the sustainability of demand, because they are based 

on its performance. 

The most important findings of this study are as follows: 

 Direct similarities among Rel and MF were found with respect to UD, and the 

AF indicator exhibited a direct relationship with the Res indicator.  

 The Vul indicator demonstrated the severity of failures of the supply. Because 

this is not measured by RI of UD, this should be included in RI as it is important to 
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know the amount of failure in the UD supply. Therefore, we propose the inclusion of a 

vulnerability indicator in the study of UD in Spanish regulations. 

 The A-RI and B-RI indicators are both related to Rel with respect to AD. Both 

study the behaviour of the demand according to supply. However, agricultural RI 

criteria are stricter than urban ones. There was a relationship between A-RI and B-RI 

indicators for low values of Vul.  

 As noted by Goharian et al. (2018), one of the main challenges concerning SIs is 

that multiple combinations of Rel, Res and Vul can lead to the same value. However, 

this was not observed in the RI indicators studied here. Therefore, SIs are not capable 

of delivering unique information about specific systems. However, RI indices measure 

the behaviour of the demands in terms of magnitude and frequency of failures and 

evaluate them for different time periods and conditions.  

 Overall, SIs allow analysis of the cause of poor performance of UD and this 

allows the application of solutions. This fact may play an important role because, for 

example, if Res is low, water reservoir construction or regulation must be considered. 

If Vul of the demands is high, adaptation to low water supplies by reducing water 

demands, improving efficiencies or new water sources, could be proposed. 

 The application of the indices and indicators used in this study to climate change 

scenarios demonstrated that the use of RI to evaluate different policies or climate 

change conditions has the drawback that the results hardly varied between scenarios, 

making it impossible to observe changes in trends. However, the SIs allowed 

comparisons to be made among different scenarios and these have already been 

applied to different scenarios, with good results (Sandoval-Solis et al. 2011, Collet et 

al. 2015). 
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 Regarding the application of these SIs for the assessment of the performance of 

river basins, the authors suggest the following. On the one hand, due to the long 

tradition in the implementation of RIs in Spanish models and the good results so far 

(CHGn, 2015), their continued use is recommended. On the other hand, new European 

and United States policies aim to evaluate the sustainability of river basins, so it would 

be advisable to introduce SIs into Spanish RBMPs. Therefore, the application of SIs in 

water management policies would be advisable, as has been done, for example, in the 

California Water Plan (State of California 2019). 

 As noted in Pedro-Monzonís (2016), and as is also apparent from our results, the 

authors suggest that new water policies in Europe should provide the methodology to 

determine water availability in a river basin and also the way that the results are 

assessed. Indicators used with the results of the water balance models should give an 

idea of the management needs of water in the basin and be sustainable with the 

environment.  

 There should be no deficit on the demands if water management systems are 

properly designed and exploited and demands are kept within reasonable limits, 

according to the climatic characteristics of the region (Lama-Pedrosa, 2011). 

Therefore, river basin management plans should take into account climate change 

adaptation within agricultural production to reduce water demands in this economic 

sector (Alarcón et al. 2016).  

 As stated by Gunda et al. (2018), this study could inspire and trigger future 

research that relates community dynamics with the responses of the water system and 

sustainable management of water with clear guidance on what socio-hydrology and 

coupled human-water system studies in general can do next.  
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Table 1. Details of the water demand performance indicators used in the methodology. RI: 

reliability indicators; SI: sustainability indicators. 

Indicator  Performance 

indicator 

Variables Definition Index 

RIs Monthly 

failure 

criterion, MF 

Water supply 

deficit, value of 

the water demand 

The water supply deficit in 

one month does not exceed 

10% of the corresponding 

monthly demand 

Urban demand 

reliability index, 

UDRIx 

Annual failure 

criterion, AF 

Water supply 

deficit, value of 

the water demand 

In 10 consecutive years, 

the addition of deficits is 

less than 8% of the annual 

demand 

Agricultural 

demand 

criterion, A-RI 

Deficit of the 

water supply, 

annual value of 

the demand 

Deficit in one year cannot 

exceed 50% of annual 

demand 

Agricultural 

demand 

reliability index, 

ADRIx 

Agricultural 

demand 

criterion, B-RI 

Deficit of two consecutive 

years cannot exceed 75% 

of the annual demand 

Agricultural 

demand 

criterion, C-RI 

The deficit of 10 

consecutive years cannot 

exceed 100% of annual 

demand 

SIs Reliability 

indicator (Rel) 

Water supply 

deficit and water 

demand 

A demand is reliable when 

the probability of available 

water supply meets the 

demand during the 

simulation period 

Sustainability 

index, SusIndex 

Resilience 

Indicator (Res) 

Those months 

with deficit of the 

supply to the 

water demands 

This statistic assesses the 

capacity of the system to 

adapt to changing 

conditions 

Vulnerability 

Indicator (Vul) 

Water supply 

deficits and 

demand 

The vulnerability of a 

demand is the addition of 

the deficits, divided by the 

number of times deficit 

periods have occurred 
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Table 2. AQUATOOL-SIMGES model characteristics of the GRB by sub-basin. Average 

annual values in hm
3. Data used in the reference scenario series 1980/81–2011/12. Sub-

basins: 1 – Upper Guadiana; 2 – Bullaque; 3 – Central; 4 – Ardila; 5 – South; 6 – 

Portugal. 

Guadiana River Basin water allocation model characteristics (Scenario 0) 

 Sub-basin GRB 

1 2 3 4 5 6 

Water 

resources 

Surface resources 653.90 125.01 3138.89 144.27 385.55 1431.20 5,878.82 

Groundwater 

resources 

515.24 – – – – – 515.24 

Water transfers 49.99 – 6.136 – – – 56.13 

Total resources 1219.13 125.01 3145.03 144.27 385.55 1431.20 6,450.18 

Demands Urban 72.41 2.35 90.38 8.80 31.20 51.09 256.23 

Agricultural 317.53 31.69 1334.11 0 136.31 103.80 1,923.44 

Industrial 12.11 – 34.78 2.52 12.27 0 61.67 

Other – – 8.56 4.74 1.59 2.88 17.76 

Total demands 402.05 34.04 1467.83 16.07 181.36 157.76 2259.10 

Elements Reservoirs 204.2 183.4 7636 30.8 973.8 3596.81 12,625.01 

Environmental flows 41.95 57.66 464.08 1.29 20.5 1184.23 1,166.72 

Operational rules Albufeira annual and quarterly rules 
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Table 3. Summary of the differences between scenarios 1 and 2 in the water allocation 

model. Values in hm
3
/year. UD: urban demand, AD: agricultural demand. Sub-basins: 

1: Upper Guadiana; 2: Bullaque; 3: Central; 4: Ardila; 5: South; 6: Portugal. 

Sub-basin 
Scenario 1 Scenario 2 

 
UD  AD  Water resources  UD  AD Water resources  

 
(hm

3
) (hm

3
) (hm

3
) (hm

3
) (hm

3
) (hm

3
) 

1 
72.41 317.53 1145.98 81.46 327.42 1145.98 

2  
2.35 31.69 117.513 2.18 28.20 117.513 

3 
90.38 1334.11 2956.32 99.76 1501.16 2956.32 

4 
8.80 0 135.61 7.92 0.00 135.61 

5 
31.20 136.31 362.42 28.56 140.71 362.42 

6 
51.09 103.80 1345.33 51.25 103.80 1345.33 

GRB 
256.23 1923.44 6063.17 271.13 2101.28 6063.17 
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Table 4. Results of sustainability and reliability indicators and indices for urban 

demands with deficit values in the temporal series under Scenario 0. 

Sub-system UD  Rel Res Vul SI UDRIx MF AF n – MF/n 

Ardila 

62B 0.75 0.14 0.11 0.22 1 95 24 0.75 

63B 0.15 0.08 0.11 0.11 1 324 32 0.16 

68B 0.94 0.33 0.12 0.34 1 24 20 0.94 

Central 

20B 0.5 0.09 0.13 0.18 1 190 28 0.51 

25B 0.88 0.49 0.85 0.71 1 40 17 0.9 

43B 0.93 0.19 0.09 0.25 1 27 16 0.93 

56B 0.74 0.09 0.08 0.18 1 98 25 0.74 

60B 0.78 0.15 0.16 0.27 1 84 30 0.78 

Portugal 
70P 0.48 0.12 0.7 0.34 1 169 29 0.56 

71P 0.48 0.12 0.3 0.26 1 195 29 0.49 

Notes: UDRIx: 0 when it complies with the urban demands RI, 1 when it does not comply. MF: 

monthly failures; AF: annual failures; n: number of months in the time series (=384). 
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Table 5. Results of sustainability and reliability indicators and indices for agricultural 

demands with deficit values in the temporal series under Scenario 0. 

Sub-system AD  Rel Res Vul SI ADRIx A-RI B-RI 

Central 35B 0.61 0.2 0 0 1 30 29 

Upper 
20A 0.98 0.86 0.83 0.89 0 0 0 

2A 0.49 0.16 0.02 0.12 1 32 29 

Bullaque 17A 0.54 0.18 0.01 0.1 1 27 23 

South 
1C 0.28 0.15 0.09 0.15 1 30 27 

3C 0.81 0.16 0.51 0.41 0 0 0 

Portugal 

52P 0.73 0.26 0.26 0.37 1 21 9 

68P 0.26 0.11 0 0 1 32 31 

Sotavento 0.5 0.17 0 0 1 32 31 

Notes: ADRIx: 0 when it complies with agricultural demands RI, 1 when it does not comply. A-

RI: number of times reliability indicator A is not accomplished; B-RI: number of times 

reliability indicator B is not accomplished. 
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Figure captions 

Figure 1. Differences between variables, indicators and index. Source: Pedró-Monzonís 

(2016).  

Figure 2. Location of the Guadiana River Basin in the Iberian Peninsula. 

Figure 3. Conceptual model within socio-hydrology using the pluralistic water research 

framework of Evers et al. (2017). Steps of the methodology are numbered as follows: 1 

– selection of the water demand reliability indicators; 2 – modelling of the Guadiana 

River Basin system with the AQUATOOL decision support system; and 3 –comparison 

of the behaviour of the indicators using the proposed dataset.  

Figure 4. Water allocation model of Guadiana River Basin with the AQUATOOL-

SIMGES graphical interface.  

Figure 5. Comparison between the reliability indicator (Rel) and the monthly failure 

indicator (MF) for those urban demands (UD) that fail in the model under Scenario 0. 

Figure 6. Comparison between the resilience indicator (Res) and the annual failure 

indicator (AF) for the urban demands (UD) that fail in the model under Scenario 0. 

Figure 7. Comparison between the sustainability indicators (SIs) and the A and B 

indicators for the reliability of the agricultural demands (AD) that fail in the model 

under Scenario 0. 

Figure 8. Comparison between the sustainability index (SusInd) and the agricultural 

demands reliability index (ADRIx) for the agricultural demands (AD) that fail in the 

model under Scenario 0.  

Figure 9. Results (in %) of the sustainability index by group under the different 

scenarios: (a) urban demands and (b) agricultural demands. 

Figure 10. Conceptual model with our suggestions to the Spanish authorities within the 

socio-hydrological framework based on Evers et al. (2017). 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 9a 

 

Figure 9b 
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Figure 10 

 

 

Figure 11 

 


