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This paper proposes a fuzzy multi-objective integer linear programming (FMOILP) approach to model a material
requirement planning (MRP) problem with fuzzy lead times. The objective functions minimise the total costs, back-order
quantities and idle times of productive resources. Capacity constraints are included by considering overtime resources.
Into the crisp MRP multi-objective model, we incorporate the possibility of occurrence of each uncertain lead time using
fuzzy numbers. Then FMOILP is transformed into an auxiliary crisp mixed-integer linear programming model by a fuzzy
goal programming approach for each fuzzy lead time combination. In order to defuzzify the set of solutions associated
with each fuzzy lead time combination, a solution method based on the centre of gravity concept is addressed. Model
validation with a numerical example is carried out by a novel rolling horizon procedure where uncertain lead times are
updated during each planning period according to the centre of gravity obtained. For illustration purposes, the proposed
solution approach is satisfactorily compared to a rolling horizon approach in which lead times are allocated when the
possibility of occurrence is established at one.
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1. Introduction

Material requirement planning (MRP) remains the most widely used production planning system in the world, and is
combined with other techniques, such as just-in-time, lean manufacturing, agile manufacturing or quick response manu-
facturing, among others. In manufacturing contexts, there are many forms of uncertainty that could affect MRP plans.
Ho (1989) identifies two main sources of uncertainty: (i) environmental uncertainty, which includes uncertainty in
demand and supply; (ii) system uncertainty, which is related to operation yield uncertainty, production lead time
uncertainty, quality uncertainty, production system failure and changes in the product structure. Generally speaking,
uncertainty in demand is more broadly addressed in the scientific literature (Grabot et al. 2005; Mula et al. 2006; Mula,
Peidro, and Poler 2010; Campuzano, Mula, and Peidro 2010; Guillaume, Thierry, and Grabot 2011; among others).
According to Dolgui and Prodhon (2007), MRP models under uncertainty are adapted to unexpected situations, mainly
through setting safety stocks (Grubbström and Tang 1999; Mula et al. 2014), safety lead times (Wijngaard and
Wortmann 1985) or lot-sizing rules. Other approaches are found in Mula et al. (2006). Regarding MRP models under
uncertainty in lead times, it is necessary to highlight the pioneering works by (Yano 1987a, 1987b, 1987c) based on
stochastic lead times, and also the works by Dolgui and Ould-Louly (2002) and Ould-Louly and Dolgui (2004). Other
approaches are found in Dolgui et al. (2013), Aloulou, Dolgui, and Kovalyov (2013) and Guillaume, Thierry, and
Grabot (2011).

The mathematical programming formulation of MRP problems emerge in the works of Karni (1981) and Billington,
McClain, and Joseph Thomas (1983), conducted to optimise production planning in terms of the total costs subject to
capacity constraints. Subsequently, different uncertain parameters were introduced into these mathematical programming
formulations by stochastic programming (Escudero and Kamesam 1993) and fuzzy programming approaches (Mula,
Poler, and Garcia 2006; Mula, Poler, and Garcia-Sabater 2007, 2008). In this paper, the consideration of fuzzy lead
times in MRP models is addressed through fuzzy modelling. Quite frequently in manufacturing contexts, lead times are
defined by decision-makers in terms of a range of values associated with degree of occurrence; e.g. Supplier A requires
three, four or six days, with a possibility of occurrence of 80, 50 and 20%, respectively, in order to deliver its products.
In order to incorporate fuzzy lead times into MRP mathematical programming models, we propose a novel approach
based on the centre of gravity concept and a rolling horizon validation procedure. The main contributions of this paper
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are twofold: first to provide a tool to develop MRP calculations where lead times are considered fuzzy; second to
present a novel validation procedure based on a rolling horizon framework using a numerical example, where lead times
are periodically updated instead of traditional demand updating (Baker 1977).

The remainder of the paper is organised as follows. Section 2 reviews the scientific literature about uncertainty in
lead times. Section 3 presents a multi-objective formulation of the MRP problem under fuzzy lead times. Section 4 pro-
poses a solution approach for the addressed problem. Section 5 validates and evaluates the results of our proposal with
a numerical example. Section 6 provides the main conclusions, managerial implications and further research of this
paper.

2. Literature review

In real-world MRP systems, input data or parameters are imprecise or uncertain. Initially several authors, such as
Whybark and Williams (1976) identified two sources of uncertainty in such production planning systems. The first cor-
responds to changes or demand variability, while the second is related to scheduled receptions or supply uncertainty.
These variabilities can generate disruptions and unavailability of finished goods, components and raw materials. Several
literature reviews were published to study the effects and modelling approaches of uncertainty in production supply
chain planning models: e.g. Aloulou, Dolgui, and Kovalyov (2013), Ben Ammar et al. (2013), Dolgui and Prodhon
(2007), Dolgui et al. (2013), Mula et al. (2006), Peidro et al. (2009).

Related to uncertainty in lead times from suppliers, Ben Ammar et al. (2013) and Dolgui et al. (2013) classify
models according to the structure of the supply chain (serial or assembly/MRP type) by considering single-level or mul-
ti-level product structures, and single-period or multi-period models.

Dolgui, Portmann, and Proth (1995) and Dolgui (2001) propose a MRP model with constant demand and random
lead times for a lot-for-lot order policy with several finished products, and different components and raw materials. The
same problem is addressed by Proth et al. (1997), who present a heuristic procedure based on priorities to determine
procurement and assembly production planning. Based on the same demand pattern and random lead times for compo-
nents, Louly and Dolgui (2002) and Dolgui and Ould-Louly (2002) present generalised newsboy vendor models with
integer decision variables to determine the optimal values for planned lead times with a Markov modelling approach.
One particular case of this problem, which also considers set-up costs, is addressed by Ould-Louly and Dolgui (2004)
who use the same analytical approach according to the assumption that supply lead times follow the same distribution
probability, and that the holding costs per period for the different components are the same. Louly, Dolgui, and Hnaien
(2008a) also develop an exact algorithm based on a branch-and-bound procedure to solve this problem, which was
enriched by Louly, Dolgui, and Hnaien (2008b) by introducing a service-level constraint.

Louly and Dolgui (2011) present another generalisation of their previous newsboy model for the parameterisation of
MRP systems with periodic order quantity policies, but without the restrictive identical probability distribution assump-
tion for procurement lead times. This algorithm is also adapted to the consider service level constraints by Louly and
Dolgui (2013). A recent approach for the optimisation of planned lead times was proposed by Ben Ammar, Dolgui and
Marian (2014), which is based on genetic algorithms.

All the above contributions consider mono-objective approaches and the uncertainty of lead times using probability
distributions or stochastic approaches. However, according to Díaz-Madroñero, Mula, and Jiménez (2014), an MRP
model operates in an uncertain scenario in which statistical data might not be altogether reliable, or even available. In
this sense, it is quite commonplace that inventory levels are updated in planning systems when products are supplied,
but without calculating the time that has elapsed from order placement to their arrival, i.e. lead times are considered
fixed and poorly updated. In this context, it can scarcely be admitted that the future values of certain parameters take a
frequentistic nature and are, therefore, likely to be treated by a stochastic approach. Therefore, when statistical data are
not that reliable or are unavailable, the determination-based models of these probability distributions may not be the best
option. Hence, fuzzy mathematical programming can prove to be an alternative approach to model the different types of
uncertainty in MRP systems (Mula, Poler, and Garcia 2006; Mula, Poler, and Garcia-Sabater 2007, 2008; Grabot et al.
2005; Li et al. 2009; Mula, Peidro, and Poler 2010; Díaz-Madroñero, Mula, and Jiménez 2014). Another fuzzy mathe-
matical programming approach for production planning with fuzzy lead times is seen in Peidro et al. (2010), who apply
the approach by Jiménez et al. (2007) based on fuzzy ranking numbers in order to manage fuzzy lead times by obtain-
ing a fuzzy solution based on alpha cuts.

After a review process, we highlight the following issues related to MRP models under lead times uncertainty: (1)
shortage of models with a multi-objective approach that allow the simultaneous optimisation of several conflicting
objectives; (2) shortage of models that consider the uncertainty related to supply lead times with fuzzy approaches; (3)
the scarce or null validation of models which periodically update lead times in a rolling horizon context.

.



3. Multi-objective model formulation for MRP

3.1 Assumptions

The following assumptions were considered based on an automotive industry problem that used a simplified data-set
from a real-world company, with some extended variations compared to previous studies in terms of fuzzy lead times
(Mula, Poler, and Garcia 2006; Mula, Poler, and Garcia-Sabater 2007, 2008; Díaz-Madroñero, Mula, and Jiménez
2014).

• A multi-product manufacturing environment. With the term product, we refer to finished goods, components, raw
materials and subassemblies structured in a bill of materials.

• A multi-level production system where subsets of components are assembled independently.
• A multi-period planning horizon that comprises a set of consecutive and integer time periods of the same length.
• The inventory of each product (finished goods, raw materials and components) is the volume available at the end
of a given period.

• The backlog of the demand of a product at the end of a period is defined as the non-negative difference between
the cumulated demand and the volume of available product.

• The master production schedule (MPS), which specifies the quantity to produce of each finished good during each
planning horizon period, and the MRP, which provides the net requirements of raw materials and components for
each planning period, are jointly solved.

• Scheduled receptions are considered.
• Production capacity constraints.
• The lead time of a product is the number of consecutive and integer periods that are required for their finalisation.
• Fuzzy lead time for finished goods, components and raw materials.
• Fuzzy lead times are represented using different discrete values associated with different degrees of possibility for
each one.

• By combining the different possible discrete values of lead times, several instances are obtained, each one with a
possibility of occurrence equal to the minimum between the possibilities of occurrence of its components.

3.2 Models formulation

Three objective functions are considered to minimise: (1) the total costs over the time periods that are computed con-
sider variable production costs, inventory holding costs and overtime costs; (2) the back order quantities over the whole
planning horizon; and (3) the idle time of productive resources. The main reasons for selecting these three objectives to
be minimised are to evaluate the performance of the production planning system in terms of optimising production
capacities by maximising the utilisation of productive resources through minimising idle times and penalising overtime
without increasing inventory levels, but by maximising the service level measured by the number of back orders. Some
relevant works have previously used these criteria in a single-objective cost function (Peidro et al. 2009, 2010). How-
ever, it is sometimes very hard to quantitatively compare or estimate in terms of cost values as idle times or back orders,
which are so subjective to measure, and multi-objective formulations are an adequate approach to address them.

As it is said before, by combining the different possible discrete values of lead times, several instances are obtained,
each with its corresponding possibility of occurrence. For each scenario, the following multi-objective mathematical pro-
gramming model (with the nomenclature indicated in Table 1 based on Díaz-Madroñero, Mula, and Jiménez 2014) is
obtained:

Min z1 ffi
XI

i¼1

XT
t¼1

cpiPit þ ciiINVTitð Þ þ
XR
r¼1

XT
t¼1

ctovrtTovrtð Þ (1)

Min z2 ffi
XI

i¼1

XT
t¼1

Bit (2)

Min z3 ffi
XR
r¼1

XT
t¼1

Tunrt (3)



3.3 Constraints

The following constraints were included.

INVTi;t�1 þ Pi;t�T~Si
þ SRit � INVTi;t � Bi;t�1 �

XI

j¼1

aij Pjt þ SRjt

� �þ Bit ¼ dit 8i8t (4)

XI

i¼1

PitAir þ Tunrt � Tovrt ¼ CAPrt 8r8t (5)

BiT ¼ 0 8i (6)

Pit; INVTit;Bit; Tunrt; Tovrt � 0 8i8r8t (7)

Pit; INVTit;Bit 2 Z 8i8t (8)

Constraint (4) is the inventory balance equation for all the products. Constraint (5) establishes the available capacity for
normal and overtime production. Constraint (6) finishes with the delays in the last planning horizon period (T). Con-
straint (7) contemplates the non-negativity for the decision variables and Constraint (8) establishes the integrity condi-
tions for some decision variables. The solution for each one of these models is associated with a lead times instance
and, therefore, has the same possibility of occurrence, i.e. the minimum between the possibilities of occurrence of lead
times that make up the corresponding instance.

4. Solution methodology

In order to solve all the multi-objective models (1)–(8) obtained for each lead time scenario, we propose the goal pro-
gramming (GP) approach. However, determining a precise aspiration level for each objective in the complex context of
our problem could prove a difficult task. Given this circumstance, decision-makers should find it more convenient if
they can express their preferences through a linguistic expression, like ‘cost should be essentially less than …’.

Table 1. Nomenclature.

Sets of indices
T Number of periods in the planning horizon (t = 1 … T)
I Number of products (i = 1 … I)
J Number of parent products in the bill of materials ( j = 1 … J)
R Number of resources (r = 1 … R)

Decision variables Data
Pit Quantity of product i to be produced during period t dit Demand of product i during period t
INVTit Inventory of product i at the end of period t αij Required quantity of i to produce one

unit of product jBit Backlog of product i at the end of period t
Tunrt Undertime hours of resource r during period t T~Si Lead time of product i
Tovrt Overtime hours of resource r during period t SRit Scheduled receipts of product i during

period t
INVTi0 Inventory of product i during period 0
Bi0 Backlog of product i during period 0

Objective function cost coefficients Technological coefficients
cpit Variable cost of the normal production of a finished good unit or the

purchase of a unit of raw material or component i
ARir Required time of resource r for one unit

of production of product i
ciit Inventory cost of a unit of product i
ctovrt Overtime hour cost of resource r during period t CAPrt Available capacity of resource r during

period t



4.1. A FGP approach

The fuzzy set theory introduced by Zadeh (1965) and Bellman and Zadeh (1970) provides an adequate tool for
modelling problems that contain linguistic terms to describe imprecise targets. Goals with imprecise aspiration levels are
modelled by fuzzy sets, thus the GP model becomes a fuzzy goal programming (FGP) model. Each fuzzy goal is
described by a membership function that reflects the decision-maker’s degree of satisfaction about achieving the target.

For the sake of simplicity, we use linear membership functions to obtain a linear programming problem. In any case,
and as Verdegay (2015) states: ‘It was shown that possible further changes of those membership functions do not affect
the former optimal solution,…. This sensitivity analysis … shows the convenience of using linear functions instead of
other more complicated ones’.

As the three goals are of the minimising type in our case, the three membership functions are non-increasing:

lk ¼
1 zk\zlk

zuk�zk
zuk�zlk

zlk\zk\zuk
0 zk [ zuk

8><
>:

(9)

where μk is the membership function of zk, while zlk and zuk are, respectively, the lower and upper bounds of the fuzzy
aspiration level of zk.

Following the extension principle of Bellman and Zadeh, Zimmermann (1978) and most of the former researchers
used the MAXIMIN convolution to solve an FGP model. Later, the weighted additive approach was incorporated into
FGP problems resolution (Tiwari, Dharmar, and Rao 1987; Yaghoobi and Tamiz 2006).

By adapting the ideas of Romero (2001) in relation to ordinary GP, we state what follows about the FGP case: The
MAXIMIN approach seeks the maximisation of minimum satisfaction; that is to say, it provides the most balanced solu-
tion between satisfactions of different goals (maximum equity), whereas the additive approach provides the maximum
aggregated satisfaction of goals (maximum efficiency). Therefore, it can be stated that they represent opposite poles
between efficiency and equity. For the above reasons, a convex combination between the MAXIMIN approach and the
weighted additive approach could provide a good compromise between the two opposite views of optimising: efficiency
and equity. This hybrid approach was applied by Torabi and Hassini (2008) in a supply chain application. The FGP
approach by Torabi and Hassini (2008), the convex combination of the lower bound for the degree of satisfaction of
objectives plus the weighted sum of these degrees of achievement is adopted as the basis of this solution methodology.
Therefore, FGP models are transformed into a single crisp objective model as follows:

Max k xð Þ ¼ ck0 þ ð1� cÞ
X
k

hklkðxÞ

subject to

hkk0 � lk 8k

x 2 FðxÞ (10)

where μk represents the degree of satisfaction of the k-th objective function, θk is the relative importance of the kth
objective, and parameter γ ∈ [0,1] is a coefficient of compensation between efficiency and equity. F(x) is the set of
feasible solutions. We should point out that on the left-hand sides of the constraint of the model (10), λ0 is multiplied
by θk to seek an equity solution, in which the ratio of the achieved levels comes as close to the ratio of the weights as
possible (Lin 2004).

Then the equivalent auxiliary crisp mathematical programming model is formulated as follows:

Max k xð Þ ¼ ck0 þ ð1� cÞðh1 � l1 þ h2 � l2 þ h3 � l3Þ (11)

subject to

l1 �
zul � z1
zu1 � zl1

(12)

l2 �
zu2 � z2
zu2 � zl2

(13)



l3 �
zu3 � z3
zu3 � zl3

(14)

h1k0 � l1 (15)

h2k0 � l2 (16)

h3k0 � l3 (17)

0� k0 � 1 (18)

0� l1 � 1 (19)

0� l2 � 1 (20)

0� l3 � 1 (21)

and Constraints (4)–(8).
where z1, z2 and z3 correspond to Constraints (1), (2) and (3), respectively. zu1; z

u
2; z

u
3 and zl1; z

l
2; z

l
3 are their

corresponding upper and lower bounds.

4.2 Converting solutions into a decision. A centre of gravity defuzzification method

By solving models (11)–(21) for each lead time instance, a fuzzy set of solutions S is generated. As we mentioned
before, the possibility of occurrence of each of these solutions equals the minimum between the possibilities of
occurrence of lead times that make up the corresponding instance. In order to make a decision at this point, we have to
look for the most representative solution. That is to say, the obtained fuzzy set of solutions S should be defuzzified.
Given its efficiency, the centre of gravity defuzzification method is the most widely used in practical applications (Van
Broekhoven and De Baets 2006). In order to obtain the centre of gravity of our solutions set S, we propose a procedure
inspired in the way in which the centre of gravity of a particle system is calculated in physical sciences. As it is well
known, if we have n coordinate particles (xi, yi, zi) and a mass mi, the coordinates of their centre of gravity are:

xG ¼
Pn

1 mixiPn
1 mi

; yG ¼
Pn

1 miyiPn
1 mi

; zG ¼
Pn

1 miziPn
1 mi

(22)

This procedure is adapted to our problem by considering the solution of models (11)–(21) for each instance Ii to be a
particle in space with coordinates as its optimal objective values ðz�1i; z�2i; z�3iÞ and an associated mass that corresponds to
the value of achievement function λi

*(x), multiplied by its possibility degree πi. Then Expression (22) is written as
follows:

zG1 ¼
Pn

i¼1 k
�
i � pi � z�1iPn

i¼1 k
�
i � pi

; zG2 ¼
Pn

i¼1 k
�
i � pi � z�2iPn

i¼1 k
�
i � pi

; zG3 ¼
Pn

i¼1 k
�
i � pi � z�3iPn

i¼1 k
�
i � pi

(23)

Our decision has to correspond to one of the considering lead times instances. However, the centre of gravity obtained
in (23) did not correspond to any of them. In this case, we choose for our action the solution z�1i; z

�
2i; z

�
3i

� �
that has the

minimum Euclidean distance to the centre of gravity zG1 ; z
G
2 ; z

G
3

� �
:

4.3 Summarised solution procedure

In accordance with the foregoing, we can summarise our procedure as follows:

Step 1: Formulate the MRP problem (1)–(8).
Step 2: Estimate the fuzzy lead times.
Step 3: Specify the corresponding linear membership functions for all the fuzzy objectives (upper and lower limits).
Step 4: Determine the corresponding relative importance of the objective functions (θk) and the coefficient of

compensation (γ).
Step 5: Transform the original MRP problem into an equivalent single-objective problem using models (11)–(21).



Step 6: Generate problem instances that are related to all the possible combinations of product lead time values.
Step 7: Solve the proposed auxiliary crisp single-objective model for each problem instance and obtain a fuzzy set

of solutions.
Step 8: Defuzzify the obtained solution by applying the centre of gravity method.
Step 9: Determine the Euclidean distance of each solution to the centre of gravity obtained in step 8.
Step 10: Select the solution with a minimum distance to the defuzzified crisp solution.

5. Computational experiments. A numerical example

The proposed model was implemented and solved with Gurobi 6.5. The input data and the model solution values were
processed with the PostgreSQL database. A numerical example (25 instances) to validate and evaluate the results of our
proposal is presented in order to gain a better understanding of the proposed procedure in Section 4.3, although it could
be applied to a more complex production problem.

5.1 Assumptions

The study considers a finished good (final product) with a product structure composed of two components (Figure 1). In
order to validate our approach, we have used a representative part, which allows us to generalise its behaviour to any
part in the system, also to understand the behaviour of this single part can be the basis for additional research of the
proposed models (Mula, Poler, and Garcia 2006).

Decision variables, Pit, INVTit and Bit are considered to be integer. A planning horizon of 25 periods is considered.
Only the finished good has external demand. Firm orders cannot be rejected, although the backlog for the finished good
is considered. A single productive resource restricts production: the assembly line. Fuzzy lead times are represented
using three different values associated with the different possibility degrees of each one: Product 1 (lead time/possibility
degree): {1/1, 1/0.5, 3/0.2}; Product 2 (lead time/possibility degree): {1/1, 5/0.7, 7/0.3}; Product 3 (lead time/possibility
degree): {3/1, 7/0.8, 8/0.4}. The fuzzy lead times of components are always longer than or equal to the finished good
lead times. Thus, by combining the discrete values of lead times the following instances were generated (Table 2).

5.2 Solution procedure

The model is executed for a rolling horizon over 25 daily time periods. Figure 2 depicts the execution of the models
based on the rolling horizon technique. Each model calculation in the different planning horizon periods (after applying
the defuzzification method to the 19 instances) updates the data for the time period being considered, and the results of
the decision variables for the remaining periods are ruled out.

Some of the stored decision variables are used as input data to solve the model in the following time periods. These
data include: demand backlog, programmed receptions and inventory. This process is repeated for all the time periods
of the rolling horizon planning. The results of the model are evaluated from the data of the decision variables stored
during each model execution. Experiments are run in an Intel I5 PC, at 3.3 GHz and with 8 GB of RAM memory.

5.3 Evaluation of the results

In order to validate our proposal, the model was executed according to the solution procedure described in the previous
Section and was compared to additional executions by always considering a lead time combination of (1,1,3); i.e. with
a possibility of occurrence equal to one. Tables 3 and 4 show the detailed results provided by the two different

Figure 1. Product structure.



executions. First, Table 3 presents the results when the combination of lead times considered is always (1,1,3). Then
Table 4 provides the results when lead times are obtained from the centre of gravity method. Furthermore, orders are
simulated to arrive later owing to back orders caused by supplier or transport problems (scenario row), which might
already be the case in practice. Table 5 summarises the results by comparing both the experimentation approaches;

Table 2. Instances generated (1).

Instance Lead times
Possibility

(minimum of the possibility degrees)

I1 1,1,3 1
I2 1,1,7 0.8
I3 1,1,8 0.4
I4 1,5,3 0.7
I5 1,5,7 0.7
I6 1,5,8 0.4
I7 1,7,3 0.3
I8 1,7,7 0.3
I9 1,7,8 0.3
I10 3,5,3 0.5
I11 3,5,7 0.5
I12 3,5,8 0.4
I13 3,7,3 0.3
I14 3,7,7 0.3
I15 3,7,8 0.3
I16 5,5,7 0.2
I17 5,5,8 0.2
I18 5,7,7 0.2
I19 5,7,8 0.2

Figure 2. Computational experiment diagram.



T
ab
le

3.
R
es
ul
ts
by

as
si
gn

in
g
cr
is
p
le
ad

tim
es
,
on

ly
th
os
e
w
ith

po
ss
ib
ili
ty

=
1
(1
,1
,3
),
th
ro
ug

h
th
e
ro
lli
ng

ho
ri
zo
n.

t
=
1

t
=
2

t
=
3

t
=
4

t
=
5

t
=
6

t
=
7

t
=
8

t
=
9

t
=
10

t
=
11

t
=
12

t
=
13

t
=
14

t
=
15

t
=
16

t
=
17

t
=
18

t
=
19

t
=
20

t
=
21

t
=
22

t
=
23

t
=
24

t
=
25

T
O
TA

L

D
em

an
d

61
2

68
4

47
1

64
7

53
1

77
8

36
9

55
4

68
5

53
5

76
1

40
1

43
5

65
4

50
8

47
2

62
5

75
8

76
2

37
0

44
5

57
3

76
2

48
8

43
3

14
,3
13

IN
V
T i
=
1
,t

0
69

7
61

6
19

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
87

16
07

IN
V
T i
=
2
,t

61
2

22
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
83

4
IN
V
T i
=
3
,t

12
,1
95

76
77

11
,5
29

10
,6
83

99
42

84
30

84
30

84
30

33
51

15
12

15
12

32
61

32
61

30
3

30
3

25
53

10
41

10
41

33
27

33
27

15
12

16
71

15
9

0
15

12
10

6,
96
2

P
i=
1
,t

27
9

39
0

22
2

28
2

24
7

50
4

0
0

16
93

79
2

0
10

08
0

14
90

50
4

0
50

4
0

50
4

0
60

5
26

54
50

4
50

4
0

12
,6
86

P
i=
2
,t

0
28

2
24

7
50

4
45

4
10

08
16

93
0

79
2

50
4

0
98

6
0

50
4

50
4

50
4

34
7

0
60

5
0

23
07

50
4

50
4

34
64

0
15

,7
13

P
i=
3
,t

0
0

0
22

8
0

0
53

7
17

25
28

20
15

12
0

15
12

22
50

15
12

37
98

0
24

45
41

64
0

0
13

53
15

12
0

0
0

25
,3
68

B
i=
1
,t

0
0

0
0

34
0

58
9

95
8

15
12

16
93

53
5

50
4

90
5

13
40

98
6

4
47

6
59

7
85

1
16

13
19

83
19

24
18

92
0

0
0

18
,7
02

Tu
n

11
,2
50

57
00

14
,1
00

11
,1
00

12
,8
50

0
25

,2
00

25
,2
00

0
0

25
,2
00

0
25

,2
00

0
0

25
,2
00

0
25

,2
00

0
25

,2
00

0
0

0
0

25
,2
00

25
6,
60
0

To
v

0
0

0
0

0
0

0
0

59
,4
50

14
,4
00

0
25

,2
00

0
49

,3
00

0
0

0
0

0
0

50
50

10
7,
50
0

0
0

0
26

0,
90
0

S
ce
na
ri
o

1,
1,
6

1,
2,
3

1,
2,
7

2,
2,
8

1,
1,
4

3,
6,
6

2,
2,
3

4,
6,
4

1,
1,
3

1,
4,
4

2,
2,
3

2,
2,
3

1,
1,
3

1,
1,
8

2,
4,
4

1,
1,
4

1,
5,
5

4,
4,
4

2,
2,
4

2,
4,
6

1,
1,
3

1,
1,
3

1,
1,
8

1,
2,
8

1,
4,
3

L
ea
d
tim

es
w
ith

po
ss
ib
ili
ty

=
1

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3

1,
1,
3



T
ab
le

4.
R
es
ul
ts
by

as
si
gn

in
g
fu
zz
y
le
ad

tim
es

th
ro
ug

h
th
e
ro
lli
ng

ho
ri
zo
n.

t
=
1

t
=
2

t
=
3

t
=
4

t
=
5

t
=
6

t
=
7

t
=
8

t
=
9

t
=
10

t
=
11

t
=
12

t
=
13

t
=
14

t
=
15

t
=
16

t
=
17

t
=
18

t
=
19

t
=
20

t
=
21

t
=
22

t
=
23

t
=
24

t
=
25

T
O
TA

L

D
em

an
d

61
2

68
4

47
1

64
7

53
1

77
8

36
9

55
4

68
5

53
5

76
1

40
1

43
5

65
4

50
8

47
2

62
5

75
8

76
2

37
0

44
5

57
3

76
2

48
8

43
3

14
,3
13

IN
V
T i
=
1
,t

0
92
2

84
5

87
9

34
8

10
42

67
3

11
9

18
5

25
7

40
1

50
4

57
3

92
7

92
3

45
1

83
4

76
0

0
0

0
44
6

18
8

20
4

0
11
,4
81

IN
V
T i
=
2
,t

38
7

27
19

20
38

13
74

10
48

33
52

31
05

26
01

24
17

15
12

10
08

50
4

0
30
56

30
24

25
20

18
36

13
32

82
8

32
4

0
12

37
73

3
50
4

0
37
,4
59

IN
V
T i
=
3
,t

11
,5
20

10
,3
38

82
95

63
03

38
79

23
67

30
24

15
12

12
03

62
91

47
79

12
,6
42

11
,1
30

96
18

81
06

65
94

45
42

30
30

52
29

45
42

35
70

37
11

21
99

15
12

0
13

5,
93
6

P
i=
1
,t

50
4

39
4

68
1

66
4

80
8

50
4

24
7

50
4

60
7

90
5

50
4

50
4

50
4

50
4

50
4

50
4

68
4

50
4

50
4

50
4

32
4

50
4

50
4

22
9

50
4

13
,1
03

P
i=
2
,t

27
26

0
48
2

71
1

20
97

0
42
3

17
4

0
23
94

0
45
6

53
6

47
2

0
0

12
37

50
4

0
0

0
0

0
0

0
12

,2
12

P
i=
3
,t

13
98

0
78
03

17
91

0
41
58

0
34
26

0
0

0
0

0
96
6

37
11

82
5

0
68
7

0
0

0
0

0
0

0
24

,7
65

B
i=
1
,t

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
37

2
31

3
0

0
0

0
68

7
Tu

n
0

55
00

0
0

0
0

12
,8
50

0
0

0
0

0
0

0
0

0
0

0
0

0
90

00
0

0
13

,7
50

0
41

,1
00

To
v

0
0

88
50

80
00

15
,2
00

0
0

0
51

50
20
,0
50

0
0

0
0

0
0

90
00

0
0

0
0

0
0

0
0

66
,2
50

S
ce
na
ri
o

1,
1,
6

1,
2,
3

1,
2,
7

2,
2,
8

1,
1,
4

3,
6,
6

2,
2,
3

4,
6,
4

1,
1,
3

1,
4,
4

2,
2,
3

2,
2,
3

1,
1,
3

1,
1,
8

2,
4,
4

1,
1,
4

1,
5,
5

4,
4,
4

2,
2,
4

2,
4,
6

1,
1,
3

1,
1,
3

1,
1,
8

1,
2,
8

1,
4,
3

L
ea
d
tim

es
by

ce
nt
re

of
gr
av
ity

3,
5,
7

1,
5,
3

3,
5,
8

3,
5,
8

5,
5,
7

1,
5,
8

1,
1,
3

3,
5,
3

1,
1,
8

5,
5,
7

1,
1,
7

1,
7,
7

1,
5,
3

1,
7,
7

3,
5,
7

1,
1,
8

3,
5,
3

1,
7,
7

1,
1,
7

1,
5,
7

1,
1,
7

1,
5,
7

1,
1,
3

1,
5,
3

1,
1,
3



specifically, the results from our proposal, based on the centre of gravity defuzzification method, are related to those
based on the assignation of lead times with a greater possibility of occurrence. We have shown, despite total costs being
slightly higher with our proposal (8.44%), as the model produces earlier to face uncertain lead times and higher inven-
tory costs are generated, satisfactory improvements are obtained in terms of minor back orders, idle time and overtime
production.

Figure 3 shows how the production of the different solution approaches adapts to demand. We can see how running
our proposal provides production levels that adapt considerably better to the demand levels.

5.4 Comparative with an alternative approach

Additionally, in order to strengthen our proposal, we have compared it with an alternative approach. Thus, according to
the previous literature review, we can conclude that the approach by Jiménez et al. (2007) later applied by (Peidro et al.
2010) in a supply chain planning problem considering fuzzy lead times is the closer one to address a similar problem.
Nevertheless, the main difference between the two approaches, apart from the solution methodology is that while the
approach by Jiménez et al. (2007) provides a fuzzy solution based on alpha-cuts that the DM must select based on his
perception our new proposal is able to offer a defuzzified solution. Therefore, by applying the approach by Jiménez
et al. (2007) Constraint (4) in the previous original model is transformed into the following two equivalent crisp
constraints:

INVTi;t�1 þ Pi;t�TSi þ SRit � INVTi;t � Bi;t�1 �
XI

j¼1

aij Pjt þ SRjt

� �þ Bit ¼ dit 8i8t (24)

FTSi � a
2

FTSi1 þ FTSi2
2

þ 1� a
2

�� FTSi3 þ FTSi4
2

8i (25)

FTSi � a
2

FTSi3 þ FTSi4
2

þ 1� a
2

�� FTSi1 þ FTSi2
2

8i (26)

where α represents the degree that, at least, all the constraints are fulfilled; that is, α is the feasibility degree of a deci-
sion x; and FTSi1, FTSi2, FTSi3, FTSi4 are the extreme values which represent the trapezoidal fuzzy number associated
with the corresponding fuzzy lead time ðT~SiÞ. Table 6 provides the results generated by applying the Jiménez et al.
(2007) approach to our problem by selecting arbitrarily an alpha cut of 0.8. It is seen that, apart from the advantage of
getting a defuzzified solution, our approach has provided better results, mainly, in terms of minor inventory levels and
overtime and, consequently, total costs.

Table 5. Summary of results.

Total costs Back orders Idle time Overtime

+8.44% −96.33% −83.98% −74.61%

Figure 3. Demand and production levels.



T
ab
le

6.
R
es
ul
ts
by

ap
pl
yi
ng

Ji
m
én
ez

et
al
.
(2
00

7)
ap
pr
oa
ch

w
ith

α
=
0.
8.

t
=
1

t
=
2

t
=
3

t
=
4

t
=
5

t
=
6

t
=
7

t
=
8

t
=
9

t
=
10

t
=
11

t
=
12

t
=
13

t
=
14

t
=
15

t
=
16

t
=
17

t
=
18

t
=
19

t
=
20

t
=
21

t
=
22

t
=
23

t
=
24

t
=
25

T
O
TA

L

D
em

an
d

61
2

68
4

47
1

64
7

53
1

77
8

36
9

55
4

68
5

53
5

76
1

40
1

43
5

65
4

50
8

47
2

62
5

75
8

76
2

37
0

44
5

57
3

76
2

48
8

43
3

14
,3
13

IN
V
T i
=
1
,t

0
47
1

64
7

67
0

13
9

41
9

50
0

32
3

29
2

14
80

15
83

16
52

27
36

27
32

22
60

24
93

22
39

14
77

11
07

66
2

10
56

79
8

81
4

88
5

26
,9
85

IN
V
T i
=
2
,t

83
8

11
74

50
4

45
4

50
4

10
08

50
4

0
87
0

50
4

0
46
9

29
5

18
66

13
62

10
08

95
6

45
2

50
4

82
0

50
4

50
4

50
4

0
14
,8
66

IN
V
T i
=
3
,t

12
,8
73

10
,9
32

89
22

72
60

57
48

42
36

27
24

12
12

25
20

22
41

72
9

61
20

24
18

55
98

57
54

46
92

31
80

16
68

11
,2
83

10
,0
17

97
71

16
,3
80

16
,3
80

14
,8
68

14
,8
68

18
2,
39
4

P
i=
1
,t

53
64
7

67
0

55
4

50
4

50
4

50
4

50
4

50
4

19
49

50
4

50
4

12
34

50
4

50
4

35
4

50
4

50
4

0
42
2

82
50
4

50
4

50
4

50
4

13
,5
25

P
i=
2
,t

98
3

50
4

55
4

68
5

32
3

97
3

13
74

18
25

15
83

25
0

10
60

0
0

0
52

45
2

50
4

50
4

0
50
4

0
50
4

0
0

0
12
,6
34

P
i=
3
,t

0
0

16
50

17
07

28
20

15
60

39
18

12
66

23
70

30
24

16
68

16
68

0
81
21

96
15

0
0

0
15
12

0
0

0
0

0
0

40
,8
99

B
i=
1
,t

0
0

0
0

0
0

0
50
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
50

4
Tu

n
22
,5
50

0
0

0
0

0
0

0
0

0
0

0
0

0
0

75
00

0
0

25
,2
00

41
00

21
,1
00

0
0

0
0

80
,4
50

To
v

0
71
50

83
00

25
00

0
0

0
0

0
72
,2
49

0
0

36
,5
00

0
0

0
0

0
0

0
0

0
0

0
0

12
6,
69

9



6. Conclusions

This paper addresses the MRP problem under uncertainty associated with lead times by means of a fuzzy multi-
objective decision model. Multi-objective models are necessary because of the difficulty that companies have defining pro-
duction parameters as backlog costs or idle time costs, which tend to appear in single-objective traditional MRP models.

For the purpose of solving the multi-objective model, we propose a solution methodology based on FGP which con-
siders lack of knowledge associated with lead times, and a defuzzification method based on the centre of gravity calcu-
lation. This proposal is applied to a numerical example with 25 different instances. A rolling horizon experimentation
approach was designed to test this proposal. The results provide major improvements in terms of reducing back orders,
idle time, production overtime and better adjustment from production to demand levels. Additionally, the approach was
compared with the previous one by Jiménez et al. (2007). In this sense, the proposal was consistent with their results by
decreasing total costs derived by minor inventory levels and overtime costs.

The advantages of this proposal are related to: (i) modelling and establishing priorities for production objectives that
are traditionally measured through estimated costs, with the consequent difficulty for companies; considering different
values for the product lead times associated with distinct possibility degrees, which provide the decision-maker with a
broad decision spectrum that has different risks levels; (ii) validating the centre of gravity concept as a defuzzification
method for production problems under fuzzy lead times; (iii) using rolling horizon experiments for validating problems
under uncertainty in lead times.

Managerial implications are oriented, mainly, to the availability of models that can formalise the uncertainty in lead
times additionally to model multiple objectives in different measure units. In this sense, decision-makers could integrate
these types of models in their current information systems based on MRP for supporting the decision-making processes
under uncertainty in external or internal supply, where suppliers or manufacturing processes are not very reliable. There-
fore, decision-makers can account with an alternative approach to safety stocks, safety times and lot-sizing rules in order
to face the epistemic uncertainty in lead times.

With respect to the limitations of our proposal, we have validated our approach using a numerical example with an
only finished good and a unique BOM level. Nevertheless, in order to apply it to a real-life situation the same steps in
Section 4.3 should be followed by replying it for all the desired finished goods and raw materials and components. Of
course, at the same time that the input data in terms of finished goods and raw materials are growing the combinatorial
explosion of lead times instances (from step 6 to step 9 in Section 4.3) also increases. Therefore, it would be desirable
the development of a tailored software application to manage it for each specific real-life problem according to the sum-
marised solution procedure in Section 4.3. Thus, further research proposals include: (i) developing a decision support
system to systematise model configuration and running; (ii) examining the effect of more complex product structures
and validating the proposed solution methodology in real-world MRP problems; (iii) proposing alternative solution
methodologies for the addressed fuzzy problem and comparing them with the current proposal; (iv) comparing alterna-
tive approaches based on parameterisation methodologies and robust optimisation.
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