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ABSTRACT
The main goal of this contribution is to introduce a new procedure in order to analyze
properly SISO dual-rate systems (DRS) and to provide straightforward answers to
some common general questions about this kind of systems. Frequency response
analysis based on DRS lifting modeling can lead to interesting results about stability
margins or performance prediction. As a novelty, it is explained how to understand
DRS frequency response and how to handle it for an easy computation of magnitude
and phase margins keeping classical frequency domain methods. There are also some
repetitive questions about DRS that can be analyzed and answered properly using
the results from this contribution: what the optimum relation between sampling
periods is or what effects does delay have in a DRS . Every step is illustrated with
examples that should clarify the understanding of the text.
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1. Motivation

In general a multi-rate sampled data system (MRS) is defined as a hybrid system
composed of continuous time elements, usually the plant, and some discrete time
components, usually the controllers and/or the filters, where two or more variables are
sampled or updated at different frequencies. These systems have been reported and
applied in fields like signal processing and communications for a long time. In digital
control systems MRS were assumed by engineers since the fifties with seminal papers
like (Kranc 1957; Friedland 1959; Coffey and Williams 1966; Kalman and Bertram
1959). When there are just two sampling periods, the system is called dual-rate. The
consideration of this kind of systems is proposed mainly due to restrictions in sampling
periods. For instance slow chemical measurements or artificial vision sensing where the
processing data is time consuming. This situation leads to unacceptable sampling times
for control purposes in a single rate enviroment. In networked control systems (NCS) it
is a viable solution either to avoid delays (Cuenca et al. 2011) or to save network load
by sending less information across the shared medium. Due to the current importance
of the NCS applications, other non-conventional sampling schemes (like DRS) for
dealing with communication bandwidth restrictions, such as event-triggered sampling,
have been lately proposed (Hou et al. 2018; Bu et al. 2018; Zhao et al. 2018; Liu,
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Liu, and Alsaadi 2016). In some low cost devices, DRS is also necessary for solving
problems due to the low resolution of sensors (cheap encoders) (Petrella and Tursini
2008). These DRS cases are what is defined as MRIC (multi-rate input control) that
is a slow output but a higher rate input which is the most common schema in DRS. It
is usual that both sampling periods are related by a natural number N ∈ N. A regular
pattern of sampled signals without sampling times mismatch between them will also
be considered.

In the field of control systems, there are two trends for modelling MRS (and DRS).
It can be said that one of them is an external representation based on (Tsai, Chen,
and Shieh 1993; Cimino and Pagilla 2010b,a; Du et al. 2011) and the other one is a
state space form. These options consider the least common multiple of all sampling
periods for modelling purposes1. In the external case the skip (downsampling) and
expand (upsampling) operations are crucial and in the state space form a MIMO
model is assumed enveloping the input and output of every system in vectors accord-
ing to the frame period (least common multiple). The system progresses repeating
the same scheme frame after frame. Therefore this MR (time-varying system) can be
transformed into a LTI system once the system description is enlarged over a “metape-
riod”. Using this technique, even from a single-input single-output (SISO) system an
artificial multi-input and multi-output (MIMO) system is obtained. This procedure is
known as lifting in control area (Bamieh et al. 1991; Chen June 2005; Albertos 1990),
originally denoted as Vectorial Switch Decomposition by (Kranc 1957) or blocking (in
signal processing) (Meyer and Burrus 1975).

Consider now a SISO system with two samplers (DRS); in these conditions lifting
provides a MIMO system. A classical issue in multi-rate control schemes is that such a
MIMO lifted system can be managed as any other multivariable MIMO one. However,
there are not different input and output variables, but just one input and one output,
“lifted” at different input and output sampling times in a periodically-repeating meta-
period. This will be a very important aspect when a DRS frequency response is con-
sidered. Usually classical MIMO techniques are considered -it is common to study the
frequency response of dual-rate plants by using singular value decomposition (SVD) of
the lifted MIMO system-, losing important features that will be introduced in this con-
tribution. In order to solve this problem a new algorithm for DRS frequency response
computation in discrete control systems was introduced by (Salt and Sala 2014), but
it seems difficult to understand the complete meaning from that reference, which will
be clarified now. It has been studied how this technique can be advantageous by ob-
taining the frequency response and its derived concepts and procedures when applying
to DRS. In fact, this is the main goal of this article and some examples are introduced
to emphasize its importance. Specifically it will attempt to meet answers to repetitive
questions made when a DRS is analyzed: what is the best relation between sampling
periods or about the influence of delay in these systems.

The structure of the paper is as follows: the next section introduces some preliminary
material and exposes how to compute the frequency response for a DRS in an efficient
way; Section 2 presents how to make this frequency response easily understandable
introducing an example. In the following section, the results from the previous section
are used to explain the advantages of DRS frequency response and how to answer
some classical questions about the optimum value of N in a simple MRIC DRS. A
conclusion section closes the paper.

1A more formal definition will be given in section 2
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Figure 1. Generalized Dual-Rate System

Figure 2. Kranc’s vector switch decomposition

2. DRS frequency response computation: a classical interpretation

2.1. Preliminaries and notation

A dual-rate discrete LTI system is one in which the input and output sequences are
assumed to have different sampling periods, Tu and Ty. If they are rationally related,
it is possible to define T0 as the minimum real number such that T0/Tu and T0/Ty are
integers. It is similar to a least common multiple T0 = lcm(Tu, Ty) whose definition
related to real numbers can be confusing. T0 is usually known as ”metaperiod” or
”frame period” and integers Nu, Ny can be defined complying with T0 = TuNu = TyNy

(indeed, then Tu/Ty = Ny/Nu is a rational number). It is also usual to define T as
a kind of “greatest common divisor sampling period”, such that T0 = NT being
N = lcm(Nu, Ny); therefore T0 = NT = NuTu = NyTy. With these conditions, the
behaviour of the DRS may be characterised via a “lifted” transfer function matrix

yl(z
N ) = Glifted(z

N )ul(z
N ) (1)

where the variable z stands for the LTI z-transform argument at sampling period T ,
and consequently zN is related to T0 = NT . In equation (1) yl is a vector of length Ny,
ul is a vector of length Nu and Glifted is a Ny ×Nu transfer function matrix (Bamieh
et al. 1991). The lengths of the vectors are increased in the case of MIMO systems
(multiplied by the number of outputs and inputs, respectively). The next figures can
help to completely deduce and clarify this equation.

Figure 1 depicts an open loop DRS and figure 2 describes the application of Kranc’s
idea vector switch decomposition to the situation of figure 1. Note that in figure 2,
T0/Nu = NyT and T0/Ny = NuT . It can be seen that with this scheme, the central
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part of the diagram would be

(1 z−Nu . . . z−(Ny−1)Nu)
Glifted(z

NyNu)

Ny


1
zNy

...

z(Nu−1)Ny

 (2)

This expression can be also derived using the known Mason’s rule for blocks diagram.
This diagram is now a T0 single rate blocks diagram 2. Actually, that is the main
reason for Kranc’s procedure.

2.2. Sampled-data lifted systems

There are different ways to obtain the lifted model. For processes, it may be that the
easiest one is to consider the successive iterations from the gcd T discrete state space. If
a strictly proper continuous system is discretised (assuming ZOH) at period T , with a
realization (A,B,C, 0), then the lifted dual-rate model has a realization (Al, Bl, Cl, Dl),
at metaperiod T0, where these matrices are obtained by repeated evaluations of the
equations at sampling period T giving rise to well-known convolution-like formulae.
For instance

y(kT0 + ζT ) =Cx(kT0 + ζT ) =

= C[Aζx(kT0) +Aζ−1Bu(kT0)+

+Aζ−2Bu(kT0 + T ) + . . .+Bu(kT0 + (ζ − 1)T )]

(3)

for ζ = 1, . . . , (Nu − 1)Ny,. However, the zero-order-hold entails

u(kT0 + dNyT ) = u(kT0 + (dNy + 1)T ) = · · · = u[kT0 + ((d+ 1)Ny − 1)T ]

∀d = 0, 1 . . . , (Nu − 1)
(4)

Therefore the lifted matrices are obtained by suitably stacking the results from the
above equation. It is also possible to consider that G has different natures (contin-
uous system without ZOH, digital system, etc). For each of these cases a proper in-
put or output assignment (like (4)) must be established leading to a specific lifted
model (Thompson 1986). Some other details, omitted here for brevity, can be found in
(Bamieh et al. 1991; Albertos 1990; Salt, Torneno, and Albertos 1993). Now, a brief
example could be considered. If in figure 1 G is a continuous-time plant with ZOH and
Tu = 0.3 y Ty = 0.2 (Nu = 2 and Ny = 3), then the lcm T0 = 0.6, the gcd T = 0.1,
and the lifted representation will be

2It will denoted ws = 2π/T0

4



x[(k + 1)T0] = A6x(kT0) +
(

(A5 +A4 +A3)B (A2 +A+ I)B)
)( u(kT0)

u(kT0 + 3T )

)
 y(kT0)

y(kT0 + 2T )
y(kT0 + 4T )

 =

 C
CA2

CA4

x(kT0) +

 0 0
C(A+ I)B 0

C(A3 +A2 +A)B CB

( u(kT0)
u(kT0 + 3T )

)
(5)

2.3. DRS Frequency Response

From a lifted LTI representation of a DRS, it is possible to calculate the frequency
response. The Theorem introduced in (Salt and Sala 2014) says: The output y(k), when
u(k) = ejωTuk, of a SISO dual-rate (NuTu = NyTy) lifted system yl(z) = Glifted(z)ul(z)
is a collection of components yr(k) = ȳre

jTyωrk of frequencies ωr = ω + 2ωsyr/Ny, for
r = 0, . . . , (Ny − 1), with ωsy = π/Ty, and ȳr is given by

ȳr =
1

Ny

Ny−1∑
p=0

Nu−1∑
q=0

Gpq(e
jωrTyNy)e−jTyωrpejωTuq (6)

The singe-rate discrete frequency-response computations are carried out by replac-
ing z = ejωT for some T . It is easy to check that in the DRS case, from (6), the
components will be given by the product of the frequency response of the left factor

[1 z−1 z−2 . . . z−(Ny−1)]Glifted(z
Ny)

replacing z = ejωrTy , which gives a row vector, and the right factor (column vector)

(1 z z2 . . . zNu−1)T

replacing z = ejωTu .
As it will be explained later, there is a possibility of computing the whole frequency

response from only one Bode plot in the case in which Ny and Nu are coprime. Note
that, ωs = 2π/(NyTy) and then that the components of the frequency response are
defined at ωr = ω + rωs, for, r = 0, . . . , Ny − 1. For more details, see (Salt and Sala
2014).

3. Frequency Response Interpretation

As it is relatively easy to understand considering the equation (2) and unwrapping it,
that is, doing the matrices products, an usually high dimension SISO transfer function
is reached. This is a simple procedure but it produces very unsatisfactory results as
will be shown later in this section. The results from the algorithm proposed in the
previous section are proper but require an interpretation. From the results above, it
can be tested that the DRS frequency response can be explained by adding Ny

gcd(Nu,Ny)

values from the Bode diagram outlined from 0 to ( Ny

gcd(Nu,Ny) − 1)Nuws. In fact, for

an input frequency b Rad/s, the output is the sum of sine signals with frequencies b,
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Figure 3. DRS Bode

b+Nuws, b+2Nuws, . . . b+( Ny

gcd(Nu,Ny)−1)Nuws with amplitude and phase determined

by Bode diagram at the indicated points. The coprime case is illustrative and gives
a link with the theoretical results. If Nu and Ny are coprime, then, considering the
blocks diagram from figure 2, the DRS frequency response is obtained reading the
Ny points from the magnitude and phase Bode diagrams in the interval from 0 to
NuNyws, each length Nuws.

The proposed algorithm introduced in (Salt and Sala 2014) returns Ny Bode di-
agrams concerning to the tracks: 0 to NuNyws, Nuws to (NyNu + Nu)ws, . . . ,
(Ny − 1)Nuws to (NyNu + (Ny − 1)Nu)ws. So, the same Bode translated NuwsRad/s
Nytimes is reached. Of course, the Ny points can be read in the interval 0 to Nuws
knowing the true sense of all of them.

In the following section, a simple example is introduced illustrating the procedure.
The academic system G(s) = 1

(s+1)(s+4) preceded by a zero order hold is consid-

ered, with Nu = 2 and Ny = 3 and a metaperiod T0 = 1, that is Tu = 1/2 and
Ty = 1/3. The DRS frequency response is formed by three components. The result
is showed in figure 3. For this case, ws = 2π

T0
= 6.28R/s, Nuws = 12.566R/s and

NuNyws = 37.699R/s. As it can be seen, the Bode diagram is made up of three
components whose responses are achieved each Nuws. In fact and as it was said
before, if the input is a sine signal with pulsation w = 3R/s, the three components are:

Component w (R/s) Magnitude (dB) Phase (Rad)
1 3 -24.8 -2.64
2 3+12.56=15.56 -65.85 2.96
3 3+(2*12.56)=28.3 -51.11 -1.275

In figures 4 and 5 the procedure is explained graphically. If the multiplicities Nu, Ny

are coprime it is possible to read every value in just one Bode diagram. This is the
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Figure 4. DRS Bode Interpretation. w = 3R/s

same as reading the value of each component in its proper w and it is also the same as
reading the 0 to ws zone but taking into account that the real value of the frequency
of component i is w + i × Nuws. Note the linear scale of the frequency axis in both
figures.

At this point, it is time to check the accuracy of the procedure. Adding the three
responses, the result is equivalent to the output of the ZOH−G(s) with the proposed
input. As it can be seen in figure 6 the output true response is mapped at Ty at steady
state.

However, in the classical way, as it was said before, the problem is the high dimen-
sion of the transfer function that usually leads to an inefficient use of classical Bode
computation routines. Some examples are now introduced for the explanation of this
problem. If the continuous-time system with ZOH

G(s) =
20

(s+ 1)(s+ 3)

is considered, the results for a metaperiod T0 = 0.1 Tu = T0/2 and Ty = T0/3 computed
using both methods are plotted in figure 7. As it is observed, the results from the
procedure based on obtaining the transfer function show some differences with the
correct ones.

The mistake is even greater if the degree increases, considering for instance a meta-
period T0 = 0.1, Tu = T0/4 and Ty = T0/3. Figure 8 plots this last case with unac-
ceptable results.

However a problem is found if the purpose is to work with these diagrams in a
classical way obtaining important values such as margins for stability. The reason is
that this sum is not really a pure sine signal. It is possible to assume a shortcut,
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adding the different output components at a specific metaperiod. In the case that the
multiplicities Nu, Ny were coprime, the output is 3

y(kTy) =A1sin(wkTy + ϕ1) +A2sin((w +Nuws)kTy + ϕ2) + . . .+

+ANy
sin((w + (Ny − 1)Nuws)kTy + ϕNy

)

As it was said this is not a pure sine signal. However if the decomposition of each
component is observed

Aνsin(wνkTy + ϕν) =Aνsin(wνkT0 + ϕν)+

z−1
Ty
Aνsin(wν(kT0 + Ty) + ϕν) + . . .

z
−(Ny−1)
Ty

Aνsin(wν(kT0 + (Ny − 1)Ty) + ϕν)+

for ν = 1, . . . , (Ny − 1)

Aνsin(wνkTy + ϕν) =Aνsin(wνkT0 + ϕν)+

z−1
Ty
Aνsin(wνkT0 + (wνTy + ϕν)) + . . .

z
−(Ny−1)
Ty

Aνsin(wνkT0 + (wν(Ny − 1)Ty + ϕν))+

for ν = 1, . . . , (Ny − 1)

So, adding the contributions of each component at kT0, that is the skip of y(kTy)

yT0(kTy) = A1sin(wkT0 + ϕ1)+

+A2sin(w + ws)kT0 + ((w+ws)Ty + ϕν)) + . . .

+ANy
sin(((w + (Ny − 1)ws) + (Ny − 1)Nuws)kT0 + ϕNy

)

This finally leads to the T0 approximation

yT0(kTy) = A1sin(wkT0 + ϕ1)+

+A2sin(wkT0 + (wsT0 + ϕν)) + . . .

+ANy
sin((wkT0 + ((Ny − 1)wsT0 + ϕNy

))

The results of such approximation are depicted in figure 9.
These time responses have been achieved by using the diagram in figure 10

4. Stability Margins for DRS

Once the DRS frequency response is known and its interpretation has been explained,
the important concept of Stability Margins must be presented. In general, it could
be said that the gain margin is the range of a gain α ∈ R that multiplying the open

3Remember that in general there will be
Ny

gcd(Nu,Ny)
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loop transfer function system preserves the stability. In a Bode diagram it is usual to
find the frequency for a −π Rad and read the gain magnitude for that frequency. The
interval from that value to 0 dB is the gain margin, obviously if the value is under 0 dB.
Regarding the phase margin, now the frequency for which the 0 dB is read and the
interval from the angle for that frequency to −π Rad is this phase margin. In this case
there is an interval as well but the minimum value is the minus positive angle and for
this reason just the maximum value is given (Thompson 1986) The same explanation
could be applied for a DRS because it is possible to obtain a Bode diagram. As it was
said before, this is just viable with the sum of all the output components for T0 period
(a metaperiod Bode). As it was explained it is an approximation, a very applicable
one, as the practical experiences will show.

4.1. Example

Let us study the stability margins with the system

G(s) =
5

s(s+ 1)(s+ 4)

with Tu = T0/2 and Ty = T0/3. The system is preceded by a ZOH. In this case, the
T0 = 0.1 metaperiod Bode diagram is depicted in figure 11.

As it can be seen in figure 11 a gain margin of 11.05 dB and a phase margin of 33.8◦

are obtained.
The top signal in figure 12 represents the simulation with a gain of 10( 11.05

20 ) and
the bottom signal shows the time response when the system has a critical time delay
of
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tdelay =
(Phase Margin)◦

57.3w0dB
= 0.65sec

Note that if the DRS is considered as a MIMO system and, as usual, the singular
values of the MIMO transfer function frequency response are studied in this domain,
it is more difficult to know the phase margin except when using a characteristic gain
loci (Thompson 1986)

Figure 13 shows both the magnitude and the greatest singular value of the DRS
frequency response in the metaperiod Bode diagram.

5. Optimum N Determination

A question or a repetitive comment that every reader considers when she/he is reading
a MRS contribution is: what is the best relation in a DRS when Tu = T0/N and
Ty = T0?, (that is in a MRIC scheme). Sometimes the N is imposed by the specific
problem but if the designer can choose the N value, which will be the best one?
Generally, at first, there is no way to determine an optimum N for all cases. But now,
the designer has powerful tools. Studying a couple of examples, assuming different
dual-rate controllers, some issues will be able to be extrapolated.
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5.1. Example 1

The following system is considered

G(s) =
1.5

(s+ 0.5)(s+ 1.5)

controlled by a parallel structure PID

Gr(s) = Kp(1 + Tds+
1/Ti
s

)

with Kp = 8, Td = 0.2 and Ti = 8 for desired specifications. Due to problems in
measurement frequency, the sampling time at process output is restricted to T0 =
0.3 sec. If the control scheme (case N = 1) is analysed it leads to an unacceptable
behaviour with excessive underdamping and slow response. The proposal is to apply
the scheme in figure 14. The non-conventional controller with slow input T0 and fast
output T0/N is composed by a digital hold, HT0,T0/N , which repeats every T0 input

N times, and the T0/N discretization G
T0/N
R of the analog controller Gr(s) using a

known discretization technique 4. With these conditions, e(kT0) = e(kT0 + T0/N) =
. . . = e(kT0 + (N − 1)T0/N) and using the procedure exposed in section 2 the lifting
matrix can be obtained.

Therefore, it is possible to obtain both the root locus and the Bode diagram 5

regarding the T0 open loop system for different values of N = 1, 2, 3, 4, . . .. Figures 15,
16 and 17 depict the time response, the root locus and the Bode diagram respectively.

4In this case the formula exposed in (Iserman 1990)
5It is also possible to obtain the components Bode diagram if G(s) fast intersampling is required. These

diagrams must be done if ripple occurence is suspected
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Figure 14. DR control scheme applied in example 1

Figure 15. Time Response for different values of N

From these figures it is easy to understand that increasing the value of N a better
performance is obtained, although the most intensive improvement is from N = 1 to
N = 2. The root locus is not able to clearly express the dynamic response because
different closed loop poles and zeros prevent from an easy interpretation. The open loop
Bode diagram is much clearer and it is observed how the margin phase is increasing
with N and therefore the underdamping is reduced. The gain margin is improved
as well between N = 1 and N = 2, but among N = 2 and successive values N =
3, 4, ... the magnitude margin decreases. As it has been said, this is not a recipe for all
processes and specifications but these comments are usually valid for a large variety of
common processes. By obtaining the closed loop model and using the aforementioned
tool, the frequency response of the closed loop Y/R was obtained as well (see figure
18). As it can be seen, the underdamping of the case N = 1 is explained and it is
deduced that the dual-rate cases present less high frequency noise rejection capability.

5.2. Example 2

Some works from author et al, (Salt and Albertos 2000, 2005), introduced a special
structure for a Dual-Rate Control scheme in a Multi rate input problem (that is more
frequent input than output of the process). The detailed explanation can be read
at (Salt and Albertos 2005; Salt et al. 2014). In (Salt and Albertos 2005) the time-
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Figure 16. Root Locus for different values of N

Figure 17. Open Loop Bode diagrams for different values of N
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Figure 18. Closed Loop Bode diagrams for different values of N

design based procedure is exposed. Basically, this non-conventional structure dual-rate
controller is composed by a slow part (working at the low frequency or measurement
frequency) GT0

1 , an expansion and digital holder HT0,T0/N to transform the slow signal
output from slow dual-rate controller part, and a fast part (performing at updating

control frequency or high frequency) G
T0/N
2 . In that contribution a model based design

was introduced. The objective was to achieve a behaviour settled by continuous closed
loop transfer function M(s). In addition the ideal closed loop response follows the
M(s) ZOH discretization at fast and slow frequencies. Some problems with ripple
could occur but there are ways to avoid it as is pointed out in the cited contribution.
The non conventional dual-rate controller parts are

GT0

1 (zN ) =
1

1−MT0(zN )

G
T0/N
2 (z) = MT0/N (z)/GT0/N

p (z) =
G
T0/N
R (z)

1 +G
T0/N
R (z)G

T0/N
p (z)

HT0,T0/N (z) =
RT0/N (z)

(RT0)T (z)
=

1− z−N

1− z−1

In figure 19 the configuration is depicted. Note that the algebra introduced in section
2 was considered.

There are different ways to design this DR controller. From the easiest one, that
consists in assuming GT0

1 = 1 (like in example 1) and preserves the fast controller

G
T0/N
R (z) for G

T0/N
2 , with unpredictable behaviour to more elaborated design proce-

dures (see for instance (Salt et al. 2014)). In this contribution, the MR model-based
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Figure 19. Closed Loop Dual-Rate Control. Non-conventional Dual-Rate Controller Structure used in exam-

ple 2

controller will be assumed (Salt and Albertos 2005) (Figure 19).
Now, a specific example in this case is introduced. With the same plant and PID as

presented in example 1, the continuous closed loop transfer function is reached

M(s) =
2.4(s+ 4.66)(s+ 0.335)

(s+ 0.33)(s2 + 4s+ 11.4)

With the same frame period, that is T0 = 0.3 and successive values of N = 2, 3, 4 the
non-conventional controllers parts are computed. Specifically, the results for N = 2
are

GT0

1 (z2) =
z3 − 1.656z2 + 0.0.9741z − 0.2671

z3 − 2.328z2 + 1.72z − 0.3913

G
T0/N
2 (z) =

23.55z4 − 74.51z3 + 86.81z2 − 43.92z + 8.08

z4 − 1.402z3 − 0.2546z2 + 1.141z − 0.4677

(7)

The application of single and dual-rate controllers for different N values leads to the
results shown in figures 20, 21, 22 and 23.

As it can be seen, some similar results are obtained, that is, there is an improvement
in time response which is suspected from the Root Locus. The open loop Bode diagrams
confirm this intuition adding that with this kind of controllers the best step is from
N = 1 to N = 2. For successive values of N a similar phase margin but lower gain
margin is obtained. The sensitivity is worse when the value of N is higher.

6. Conclusions

In this contribution the interpretation of a new, proper and efficient way to obtain the
frequency response of a DRS was introduced. It was also tested that the other methods
for computing the MRS frequency response: MRS MIMO consideration and transfer
function obtaining lead to partial or unacceptable results respectively. Some examples
are introduced with the intention to clarify the understanding and consequences of this
new method. This tool allows to properly ask some practical questions about MRS.
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Figure 20. Time Response for different values of N

Figure 21. Root Locus for different values of N
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Figure 22. Open Loop Bode diagrams for different values of N

Figure 23. Closed Loop Bode diagrams for different values of N
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