
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/140915

Blanes Zamora, S.; Casas, F.; Mechthild Thalhammer (2017). High-order commutator-free
quasi-Magnus exponential integrators for non-autonomous linear evolution equations.
Computer Physics Communications. 220:243-262. https://doi.org/10.1016/j.cpc.2017.07.016

https://doi.org/10.1016/j.cpc.2017.07.016

Elsevier



Please cite this article in press as: S. Blanes, et al., High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations,
Computer Physics Communications (2017), http://dx.doi.org/10.1016/j.cpc.2017.07.016.

Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

High-order commutator-free quasi-Magnus exponential integrators
for non-autonomous linear evolution equations
Sergio Blanes a, Fernando Casas b,*, Mechthild Thalhammer c

a Universitat Politècnica de València, Instituto de Matemática Multidisciplinar, 46022 Valencia, Spain
b Universitat Jaume I, IMAC and Departament de Matemàtiques, 12071 Castellón, Spain
c Leopold–Franzens Universität Innsbruck, Institut für Mathematik, 6020 Innsbruck, Austria

a r t i c l e i n f o

Article history:
Received 5 February 2017
Received in revised form 12 July 2017
Accepted 17 July 2017
Available online xxxx

Keywords:
Non-autonomous linear equations
Exponential methods
Magnus integrators
Dissipative quantum systems
Schrödinger equations
Master equations

a b s t r a c t

The class of commutator-free quasi-Magnus (CFQM) exponential integrators provides a favourable al-
ternative to standard Magnus integrators, in particular for large-scale applications arising in the time
integration of non-autonomous linear evolution equations. The schemes are given by compositions of
several exponentials that comprise certain linear combinations of the values of the defining operator
at specified nodes. Due to the fact that previously proposed CFQM exponential integrators of order five
or higher involve negative coefficients in the linear combinations, severe instabilities are observed for
spatially semi-discretised parabolic equations or for master equations describing dissipative quantum
systems. In order to remedy this issue, two different approaches for the design of efficient time integrators
of orders four, five, and six are pursued: (i) the study of CFQM exponential integrators involving complex
coefficients that satisfy a positivity condition, and (ii) the study of unconventional methods in the sense
that an additional exponential involving a commutator of higher order with respect to the time stepsize
occurs. Numerical experiments confirm that the identified novel time integrators are superior to other
integrators of the same family previously proposed in the literature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Simulation of quantum systems.
In order to describe the evolution of a quantumsystemsubjected to a time-dependent potential, onemust dealwith the time-dependent

Schrödinger equation

i ∂tψ(t) = H(t)ψ(t); (1)

here, H denotes the time-dependent Hamiltonian operator, and the wave function ψ(t) represents the state of the system at time t . For
convenience, we employ a compact formulation as evolution equation and the normalisation h̄ = 1.

Dynamical processes involving dissipation are better described by a master equation

∂tρ(t) = L (t) ρ(t), (2)

defined by a time-dependent Liouville operator L , see [1]; this in particular applies to quantum systemswith dissipation caused by cavity
losses and spontaneous emission of energy input from external pumping [2,3] and also when a complex absorbing potential is present [4].

Due to the fact that analytical solutions to time-dependent partial differential equations such as Schrödinger equations and master
equations are available only in academic examples, numerical methods are inevitable tools in their simulation. A common approach is to
first discretise in space, for which procedures such as finite differences, pseudo-spectral methods based on collocation with trigonometric
polynomials, or Galerkin methods with a Hermite basis are used, see [5] and references therein. The (large) systemmatrix of the resulting
linear ordinary differential equation inherits fundamental properties of the Hamiltonian and the Liouville operator, respectively. In the
first case, it is skew-Hermitian reflecting (high) oscillations in the solution; in the second case, it comprises eigenvalueswith large negative
real part reflecting dissipation.
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Evolution equation. In the simulation of (dissipative) quantum systems, one is thus led to numerically integrate a non-autonomous
evolution equation of the form{

u′(t) = A(t) u(t), t ∈ (t0, T ),
u(t0) = u0,

(3a)

defined by a family of time-dependent linear operators (A(t))t∈[t0,T ]. In view of a spatial semi-discretisation, we assume in addition that
A(t) is a family of real or complex matrices

A(t) ∈ Kd×d, K = R,C, (3b)

which have large dimension and large operator norm, in general.
In addition to (1) and (2) leading in a natural way to a non-autonomous linear evolution equation (3), we mention the variational

equations related to periodic solutions in nonlinear parabolic equations, see [6].

Exponential time integrators. Compared to standard time integration methods such as explicit or implicit Runge–Kutta methods,
exponential integrators have shown to be particularly useful in approximating the exact solution of (oscillatory) stiff differential equations
in an efficient manner whilst preserving qualitative properties of the system, see [7] and references therein. As a matter of fact, there is a
considerable research interest in the study of different methods involving exponentials and the design of novel schemes; we mention
time-splitting methods, Magnus and Fer integrators, Crouch–Grossman methods, and commutator-free exponential integrators, see
[7–13]. Two relevant classes, time-splitting methods and interpolatory Magnus integrators, will be reviewed in Section 2.

Exponential midpoint rule. An elementary time integrator of exponential type requiring the computation of one single matrix-
exponential per time step is the so-called exponential midpoint rule. For certain equidistant grid points

t0 ≤ tn < tn+1 = tn + τ ≤ tN = T , (4a)

the time-discrete solution of (3) is defined by the recurrence

un+1 = CF[2]
1 (τ , tn) un = eτA(tn+

1
2 τ ) un ≈ u(tn+1), n ∈ {0, 1, . . . ,N − 1}. (4b)

The exponential midpoint rule provides an approximation that has non-stiff order two in the time stepsize. When the arising matrices
are of large dimension, the scheme is frequently implemented by means of an efficient algorithm that approximates the action of a
matrix-exponential on a vector, instead of computing the matrix-exponential itself, see [11,14–17] and references therein; in this respect,
procedures that involve only matrix–vector products such as Chebyshev or Krylov methods are usually preferred, see [5,18].

Higher order methods can be achieved by applying different strategies, in particular by constructing the scheme as a single exponential
(Magnus integrators) or as a product of exponentials (Fer integrators, splitting methods, commutator-free methods, etc.). In any case, the
presence of commutators and/or negative coefficients in themethods lead to serious issues concerningwell-definedness and stability. The
reason is easy to grasp making use of backward error analysis [10]. Suppose we have a numerical map provided by a given integrator of
order, say, r , u1 = Φh u0. Then u1 = ũ(h) = u(h) + O(hr+1) and ũ(h) is the exact solution of the modified equation{

ũ′(t) =
(
A(t) + hr Â

)
ũ(t), t ∈ (t0, T ),

ũ(t0) = u(t0),

where Â = A1(t)+hA2(t)+h2A3(t)+· · · is an asymptotic series in general.Whereas low order exponentialmethods usually show excellent
stability and convergence properties, for higher order methods the corresponding modified equation is not well conditioned, the norm of
the perturbation term ∥̂A∥ takes exceedingly large values and thus only very small time steps provide meaningful results.

One of the goals of the present paper is indeed to develop high-order integrators avoiding these drawbacks. This can be achieved, in
particular, by considering commutator-free methods of exponential type involving complex coefficients. Splitting methods with complex
coefficients have been proposed for Hamiltonian systems, see [19], in the context of the time-dependent Schrödinger equation in quantum
mechanics, see [20–22], and also in the more abstract setting of evolution equations with unbounded operators generating analytic
semigroups, see [23–25].

Commutator-free quasi-Magnus exponential integrators. To be more specific, in this work we primarily focus on a class of high-order
commutator-free integrators which can be considered as a generalisation of (4): they are given by a composition of several exponentials
that comprise certain linear combinations of the values of the defining operator at specified quadrature nodes. We call them commutator-
free quasi-Magnus (CFQM) exponential integrators to distinguish themselves from other classes of commutator-free integrators and to
emphasise the close relationship with interpolatory Magnus methods, in the sense that both make use of the Magnus expansion in their
derivation.

For our purposes, it suffices to study the initial step of a commutator-free quasi-Magnus exponential integrator of order r

u1 = CF[r]
J (τ ) u0 =

J∏
j=1

eBj(τ ) u0 = eBJ (τ ) . . . eB1(τ ) u0 ≈ u(t1) = u(t0 + τ ), (5a)

Bj(τ ) = τ

K∑
k=1

ajk Ak(τ ), j ∈ {1, . . . , J}, (5b)

Ak(τ ) = A(t0 + ckτ ), ck ∈ [0, 1], k ∈ {1, . . . , K }, (5c)

u1 = u(t1) + O
(
τ r+1)

; (5d)

for notational simplicity, here and in the sequel, we only indicate the dependence on the decisive quantity τ > 0.
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Integrators of this class with real coefficients have been designed and analysed in [26,27]; we in particular mention [28], where
optimised methods of orders four, six, and eight have been proposed and tested.

Evidently, for the special case of a time-independent operator A, the composition (5a) reads CFJ (τ ) = eτaJA . . . eτa1A, where

aj =

K∑
k=1

ajk, j ∈ {1, . . . , J}. (5e)

As shown in [29], the positivity condition

∀ j ∈ {1, . . . , J} : Re(aj) > 0 (5f)

ensures that a CFQM exponential integrator is well-defined within the framework of sectorial operators and analytic semi-groups.
Depending on the prescribed order, condition (5f) can be satisfied by a commutator-free quasi-Magnus exponential integrator with

real coefficients or demands the consideration of complex coefficients. For instance, for order four, there exist schemes comprising two
exponentials that satisfy property (5f). On the contrary, it has been noticed in [2] that for all schemes with real coefficients of order six
and higher the positivity condition (5f) is violated for at least one index; numerical experiments confirm that these schemes exhibit poor
stability when applied to spatially semi-discretised partial differential equations of parabolic type or to equations modelling driven open
quantum systems, respectively. Since we are interested in designing high-order schemes that are also suitable for the time integration of
parabolic equations and for master equations describing dissipative quantum systems, we explore the more general approach of complex
coefficients.

In the present work, we trace back this unfavourable feature to the non-stiff order conditions and show that, at least if the CFQM
exponential integrator does not involve an exceedingly large number of stages, this property is characteristic for schemes with real
coefficients of order five or higher. To remedy the issue, we explore the following approaches: The design of novel commutator-free
quasi-Magnus exponential integrators that involve more stages than strictly required to satisfy as many conditions at order five as
possible whereas keeping positive coefficients, and the design of novel fifth- and sixth-order CFQM exponential integrators with complex
coefficients satisfying the positivity condition. As confirmed by numerical experiments, the proposed schemes can be safely applied to
problems related to parabolic equations and to dissipative quantum systems. Moreover, we study unconventional methods that comprise
in addition a single exponential involving a commutator which is of higher order with respect to the time stepsize.
Convergence analysis. A rigorous stability and error analysis of high-order commutator-free quasi-Magnus exponential integrators with
complex coefficients applied to non-autonomous linear evolution equations of parabolic type is carried out in [29]; the stated convergence
estimate in particular implies that a CFQM exponential integrator retains its non-stiff order under suitable regularity and compatibility
requirements on the exact solution.
Extension. The time integration of nonlinear evolution equations of the form

u′(t) = A(t) u(t) + ε g
(
t, u(t)

)
, t ∈ (t0, T ), |ε| ≪ 1, (6)

is often advantageously based on the previous accurate numerical solution of the non-autonomous linear equation (3); the equation
associated to the perturbation, u′(t) = ε g

(
t, u(t)

)
, is solved separately with the time frozen. The techniques provided in this work and

the obtained novel schemes are thus of use in this setting.
Outline and overview. The present work is organised as follows. In Section 2, we introduce two classes of numerical methods based on
exponentials, to put commutator-free quasi-Magnus exponential integrators into perspective with them. In Section 3, we in particular
state a set of independent order conditions to be satisfied by time-symmetric CFQM exponential integrators of order six. In Section 4, we
solve the order conditions and collect several families of commutator-free quasi-Magnus exponential integrators and related methods.
Finally, in Section 5, efficient novel schemes are tested on model equations.

An overview of the different time-splitting methods, interpolatory Magnus integrators, and commutator-free quasi-Magnus exponen-
tial integrators that are discussed in this work is given in Table 1. In particular, for sixth-order methods, it is seen that CFQM exponential
integrators involve a significantly reduced number of exponentials, which is a first indicator of the computational cost. In the design of
novel schemes, an additional objective is to keep the quantity ρ defined in (18) as small as possible.

2. Splitting methods and Magnus integrators

In this section, we briefly review splitting methods and interpolatory Magnus integrators for the time integration of non-autonomous
linear evolution equations, paying special attention to stability issues and computational effort. In conclusion, we relate commutator-free
quasi-Magnus exponential integrators to them.
Estimating the computational cost. In view of the design of novel time integration methods, it is essential to compare efficiency. To
this end, we introduce the computational cost of evaluating the action of a matrix-exponential of the form ea0A(t) with real or complex
coefficient a0 on a vector u by polynomial approximations such as Krylov-type methods,

C
(
ea0A(t) u

)
,

as a basic measure.
Working with complex coefficients instead of real coefficients potentially makes an algorithm about four times more costly; however,

this is not necessarily what happens in our situation. For instance, in applications from quantum mechanics, where A ∈ Cd×d and the
solution of (3) evolves in the complex space, the evaluation of ea0A(t) u by a Krylov method requires the computation of certain products
(A(t))m u and the computational cost is comparable for real and complex coefficients; if A(t) ∈ Rd×d and u ∈ Rd, the extra cost to compute
U = ea0A(t)uwith a0,∈ C corresponds to the computation of the exponential of a complex matrix of relatively small dimension. However,
if one has next to compute, say, Ũ = ẽa0A(t)U , the products (A(t))m U duplicate their computational cost, since U is a complex vector.

Due to the fact that a matrix–vector product of the form (A1 + A2) u commonly has the same complexity as either A1 u or A2 u, first
considerations given below for time-splitting methods essentially extend to commutator-free quasi-Magnus exponential integrators.
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Table 1
Overview of various higher-order time-splitting methods (S), Magnus integrators (M), and commutator-free quasi-
Magnus exponential integrators (CFQM). The number of Gaussian quadrature nodes s corresponds to the minimum
number of nodes. Indicators for the computational cost are the number of exponentials J and the quantity (18). For
Magnus integrators, the cost comparable to the computation of eA(t) u0 is given. We recall that the abbreviation CF[r]

J
reflects the number of exponentials.

Method Coefficients Order Indicator for computational cost

S (see [30]) Real r = 4 J = 6

S (see [24]) Complex r = 4 J = 4

S (see [30]) Real r = 6 J = 10

S (see [23]) Complex r = 6 J = 16

M (see (9)) Real r = 4 C
(
eΩ

[4](τ ) u0
)

≃ 5C
(
eA(t) u0

)
M Real r = 6 C

(
eΩ

[6](τ ) u0
)

≃ 13C
(
eA(t) u0

)
CFQM (see (12)) Real r = 4 = 2 s ρ(CF[4]

2 ) = 1

CFQM (see [28, Eq. (43)]) Real r = 4 = s + 1 ρ
(
CF[4]

3

)
= 1.35

CFQM Real r = 4 = s + 1 ρ
(
CF[4]

4

)
≈ 1.1547

CFQM Real r = 4 = s + 1 ρ
(
CF[4]

5

)
≈ 1.12605

CFQM Complex r = 5 = s + 2 ρ
(
CF[5]

3

)
= 1.2

CFQM (see [28, Eq. (43)]) Real r = 6 = 2 s ρ
(
CF[6]

6

)
≈ 3.40428

CFQM Complex r = 6 = 2 s ρ
(
CF[6]

4

)
≈ 1.17458

CFQM Complex r = 6 = 2 s ρ
(
CF[6]

5

)
= 1.29727

CFQM Real r = 6 = 2 s CF[6]
5C , additional commutator

2.1. Time-splitting methods

Splittingmethods. Given two non-commuting squarematrices X and Y , a time-splittingmethod of order r for approximating the solution
of the linear differential equation

y′(t) = (X + Y ) y(t), t ∈ (t0, T ),

or equivalently the corresponding matrix-exponential is given by a composition of the form
L∏
ℓ=1

(
eτaℓX eτbℓY

)
≈ eτ (X+Y ).

Simply by adding the trivial relation d
dt t = 1, this splitting method applied to (3) yields

u1 =

L∏
ℓ=1

eτaℓA(t0+cℓτ ) u0, cℓ =

ℓ∑
i=1

bi, ℓ ∈ {1, . . . , L}. (7)

Efficient splitting methods are found in [13,30]; for instance, the coefficients of a fourth-order scheme comprising six exponentials and of
a sixth-order scheme comprising ten exponentials are given there.

Stability. A well-established result states that time-splitting methods of order higher than two necessarily involve negative coefficients
and hence are not suitable for non-reversible systems [31–34]; in particular, such schemes have poor stability properties for non-
autonomous linear evolution equations of parabolic type and for dissipative quantum systems.

An alternative approach is to employ time-splitting methods that are defined by complex coefficients aℓ ∈ C+ and real coefficients
bℓ ∈ R for ℓ ∈ {1, . . . , L}; we note that this ensures t0 + cℓ τ ∈ R for ℓ ∈ {1, . . . , L}. A fourth-order scheme comprising four exponentials
is given in [24], and a sixth-order scheme comprising 16 exponentials is found in [23].

Computational effort. In situations where the defining operator family and the time-discrete solution are complex-valued, the presence
of complex coefficients in the composition (7) does not lead to an increment in the computational cost, compared to splitting methods
with real coefficients; however, if A(t) ∈ Rd×d and u0 ∈ Rd, the computational effort of schemes with complex coefficients will increase,
in general. In this situation, the computation from time t0 to t1 proceeds as{

U1 = eτa1A(t0+c1τ ) u0,

Uℓ = eτaℓA(t0+cℓτ ) Uℓ−1, ℓ ∈ {2, . . . , L},

and the projection on the real part defines the new time-discrete solution value

Re(UL) ≈ u(t1);

the computational effort for evaluating U1 by means of polynomial approximations such as Krylov methods is basically the same for
a1 ∈ C+ and a1 ∈ R, whereas the effort for computing the remaining vectors doubles for complex coefficients.
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2.2. Interpolatory Magnus integrators

Magnus expansion. The Magnus expansion provides a formal solution representation of (3) as the exponential of an infinite series

u(t0 + τ ) = eΩ(τ ) u0, Ω(τ ) =

∞∑
m=1

Ωm(τ ), (8a)

which involves multiple integrals of nested matrix-commutators such as

Ω1(τ ) =

∫ t0+τ

t0

A(s) ds,

Ω2(τ ) =
1
2

∫ t0+τ

t0

∫ s1

t0

[
A(s1), A(s2)

]
ds2 ds1,

Ω3(τ ) =
1
6

∫ t0+τ

t0

∫ s1

t0

∫ s2

t0

[
A(s1), [A(s2), A(s3)]

]
+
[
A(s3), [A(s2), A(s1)]

]
ds3 ds2 ds1;

(8b)

here, as standard, the commutator of two square matrices is defined by

[X, Y ] = X Y − YX .

Recursive procedures to generate the Magnus expansion are found in [7,12,35].

Magnus integrators. The natural approach of truncating the infinite series and applying quadrature approximations of the integrals
leads to the class of interpolatory Magnus integrators. For instance, from considering the two principal terms in (8), Ω1 + Ω2, and
applying a quadrature formula of order four or higher, defined by K nodes and corresponding weights, a fourth-order Magnus integrator
results [36,37]

u1 = eΩ
[4](τ ) u0 = u(t1) + O

(
τ 5
)
,

Ω [4](τ ) = B̃1(τ ) +
[̃
B2(τ ), B̃3(τ )

]
,

B̃j(τ ) = τ

K∑
k=1

ãjk Ak(τ ), j ∈ {1, 2, 3},

Ak(τ ) = A(t0 + ckτ ), ck ∈ [0, 1], k ∈ {1, . . . , K },

(9a)

in comparison with (5); the particular choice of the fourth-order Gauss–Legendre quadrature formula yields

c1 =
1
2 −

√
3
6 , c2 =

1
2 +

√
3
6 ,

Ω [4](τ ) =
1
2 τ
(
A1(τ ) + A2(τ )

)
+

√
3

12 τ
2[A2(τ ), A1(τ )

]
.

(9b)

In the context of partial differential equations, however, higher-order interpolatory Magnus integrators exhibit serious difficulties, due to
the presence of nested commutators.

Well-definedness and stability. A first issue is that commutators in general do not inherit the properties of the operator family
(A(t))t∈[t0,T ]; as a consequence, characterising well-definedness and stability of higher-order interpolatory Magnus integrators for partial
differential equations is a delicate question.

Computational effort. A second issue is the potential exceedingly large computational cost of higher-order interpolatory Magnus
integrators. Suppose for instance that the fourth-order Magnus integrator (9) is implemented by Krylov techniques. The computation
of eΩ

[4](τ ) u0 requires to evaluate the action of certain powers of Ω [4](τ ) at the cost of five matrix–vector multiplications per product;
specifically, the relation

Ω [4](τ ) u0 = v1 + (v4 − v5),
v1 = B̃1(τ ) u0, v2 = B̃2(τ ) u0, v3 = B̃3(τ ) u0,

v4 = B̃2(τ ) v3, v5 = B̃3(τ ) v2,

in general implies the computational cost

C
(
eΩ

[4](τ ) u0
)

≃ 5C
(
eA(t) u0

)
.

In some cases, however, the evaluation of the commutators acting on the vector can be efficiently carried using an appropriate approach,
e.g. the linear Schrödinger equation in the semiclassical regime with time-dependent potential [8].

For a sixth-order Magnus integrator at least 13 matrix–vector multiplications are needed [38]; consequently, computing the action of
the matrix-exponential is about 13 times more expensive than the cost of evaluating a single matrix-exponential

C
(
eΩ

[6](τ ) u0
)

≃ 13C
(
eA(t) u0

)
.

2.3. Commutator-free quasi-Magnus exponential integrators

Favourable conjunctionofmethod classes. The class of commutator-free quasi-Magnus exponential integrators combines the favourable
properties of time-splitting methods and standard interpolatory Magnus integrators. On the one hand, CFQM exponential integrators can
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be considered as generalisations of time-splittingmethods (7), but with a significantly reduced number of exponentials, see also Sections 3
and 4. On the other hand, they circumvent difficulties exhibited by higher-order interpolatoryMagnus integrators, especially the presence
of the often cumbersome (from the stability point of view) and in many cases computationally costly nested commutators; the single
exponential involving commutators is replaced by a composition of several exponentials that comprise linear combinations of the values
of the defining operator at certain quadrature nodes, which leads to the general format (5). As for interpolatory Magnus integrators, the
coefficients of a commutator-free quasi-Magnus exponential integrator can be easily recalculated for each particular choice of the nodes.

3. Derivation and analysis of order conditions

In this section, we deduce the non-stiff order conditions for CFQM exponential integrators; we thus may restrict ourselves to the case
where the operator norm of A(t) ∈ Kd×d is of moderate size, see (3). We first indicate the general approach; as illustration, the expansions
are rendered more precisely for the special case of a fourth-order CFQM exponential integrator involving two exponentials. Following
up these considerations, and employing additional algebraic means, we attain a set of independent order conditions that is suitable for a
detailed analysis of its solutions.

3.1. Expansions

The requirement that a commutator-free quasi-Magnus exponential integrator of the form (5a)–(5c) satisfies relation (5d) for a given
r , implies certain conditions on the coefficients. Among a number of ways, suitable for ordinary differential equations, a possible approach
for the derivation of these conditions consists in representing the exact solution by the Magnus expansion (8) and reproducing it by the
time-discrete solution up to the prescribed order

CF[r]
J (τ ) u0 − eΩ(τ ) u0 = O

(
τ r+1).

For simplicity, in the presentation, we take t0 = 0. Given (wi, ci), i = 1, . . . , K , the weights and nodes of a quadrature rule of order r , it is
shown in [37] that the evaluations A(ciτ ), i = 1, . . . , K suffice to get an approximation of the solution of (3) up to order O

(
τ r
)
(see also

[39–41]). This is so because the solution of the differential equation{̃
u′(t) = Ã(t) ũ(t), t ∈ (0, τ ),
ũ(0) = u(0), (10)

where Ã(t) is the polynomial of degree K − 1 in t that interpolates A(t) on the interval [0, τ ] at the nodes ciτ , i = 1, . . . , K , i.e.

Ã(t) =

K∑
i=1

Li(t)Ai

with Ai = A(ciτ ) and Li(t) are the usual Lagrange polynomials

Li(t) =

K∏
j=1,j̸=i

t − cjτ
ciτ − cjτ

, t ∈ [0, τ ],

verifies

∥u(τ ) − ũ(τ )∥ = O
(
τ r+1).

On the other hand, the Magnus expansion can be used to solve the initial value problem (10), so that

ũ(τ ) = eΩ̃(τ ) u0, Ω̃(τ ) =

∞∑
m=1

Ω̃m(τ ). (11)

Now, since Ã(t) is a polynomial of degree K − 1 in t , it is clear that all the terms in the series (11) can be evaluated analytically. An
approximation tou(τ ) up to order p can thenbe achieved by taking into account the first terms of the series, since it holds that Ω̃1(τ ) = O(τ )
and Ω̃2m(τ ) = O(τ 2m+1), Ω̃2m+1(τ ) = O(τ 2m+3), m > 0.

Let us take in particular the K nodes of a Gauss–Legendre quadrature rule, so that p = 2K . Since these nodes are symmetrically
distributed with respect to the midpoint, it is advantageous to consider a Taylor expansion of Ã(t) around τ

2 ,

Ã(t) = Ã
(
τ
2 + σ

)
=

1
τ

K∑
i=1

(
σ
τ

)i−1
αi, σ ∈

[
−
τ
2 ,

τ
2

]
,

αi = τ i 1
(i−1)!

di−1

dσ i−1

⏐⏐⏐
σ=0̃

A
(
τ
2 + σ

)
.

Notice that αi = O(τ i), [αi, αj] = O(τ i+j), etc., and Ω̃(τ ) can be written as an element of the free Lie algebra generated by α1, . . . , αK . Since
the exact solution is time-symmetric and αi are derivatives with respect to the midpoint, no even terms will appear in the expansion [38].

Specifically, with r = 2K = 4 (order four) one has

c1 =
1
2 −

√
3
6 , c2 =

1
2 +

√
3
6 , w1 = w2 =

1
2 ,

Ã( τ2 + σ ) = L1( τ2 + σ ) A1 + L2( τ2 + σ ) A2 =
1
2 (A1 + A2) + σ

√
3
τ

(A2 − A1) =
1
τ
α1 +

σ

τ2
α2,

with Ai ≡ A(ciτ ), so that

Ω̃1(τ ) = α1, Ω̃2(τ ) = −
1
12

[
α1, α2

]
,
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and

∥u(τ ) − eΩ̃1(τ )+Ω̃2(τ ) u0∥ = O
(
τ 5
)
.

The approximation eΩ̃1(τ )+Ω̃2(τ ) can also be reproduced up to order O(τ 5) by a product of two exponentials. Specifically,

Ψ
[4]
2 (τ ) = e

1
2 α1+

1
6 α2 e

1
2 α1−

1
6 α2 u0 = eΩ̃(τ ) u0 + O

(
τ 5
)
. (12a)

Finally, expressing α1, α2 in terms of the evaluations A1, A2, results in the fourth-order CFQM exponential integrator

CF[4]
2 (τ ) = eτa21A1+τa22A2 eτa11A1+τa12A2 ,

a = (aij) =

(
1
4 +

√
3
6

1
4 −

√
3
6

1
4 −

√
3
6

1
4 +

√
3
6

)
;

(12b)

for the benefit of a compact formulation, the coefficients are given in matrix-form. We point out that although negative coefficients
necessarily arise,

a21 = a12 < 0,

the positivity condition (5f) is satisfied, since

a1 = a11 + a12 = a2 = a21 + a22 =
1
2 .

Additional considerations. (r = 2K = 6) For order six we consider the nodes andweights of the sixth-order Gauss–Legendre quadrature
formula,

c1 =
1
2 −

√
15
10 , c2 =

1
2 , c3 =

1
2 +

√
15
10 ,

w1 =
5
18 , w2 =

4
9 , w3 = w1.

Then

Ã
(
τ
2 + σ

)
= A2 + σ

√
15

3 τ (A3 − A1) + σ 2 10
3 τ2

(A1 − 2 A2 + A3)
=

1
τ
α1 +

σ

τ2
α2 +

σ2

τ3
α3,

(13)

and

u(τ ) = eΩ̃1(τ )+Ω̃2(τ )+Ω̃3(τ )+Ω̃4(τ )u0 + O
(
τ 7
)

with
Ω̃1(τ ) = α1 +

1
12 α3,

Ω̃2(τ ) = −
1
12

[
α1, α2

]
+

1
240

[
α2, α3

]
,

Ω̃3(τ ) =
1

360

[
α1, [α1, α3]

]
−

1
240

[
α2, [α1, α2]

]
+ O

(
τ 7
)
,

Ω̃4(τ ) =
1

720

[
α1, [α1, [α1, α2]]

]
+ O

(
τ 7
)
.

The exact solution can be approximated by a composition of the form

Ψ
[r]
J (τ ) u0 =

J∏
j=1

exj1α1+xj2α2+xj3α3 u0 = eΩ̃(τ ) u0 + O
(
τ r+1) (14)

with r = 6 and appropriately chosen coefficients in the linear combinations. Once such coefficients are determined by solving certain
order conditions, see Section 3.2, this product defines a CFQM exponential integrator (5) with K = 3 and

Bj(τ ) = τ

3∑
k=1

ajk Ak(τ ) =

3∑
k=1

xjk αk(τ ), j ∈ {1, . . . , J}; (15)

besides, the positivity condition (5f), where α1 = τA, α2 = α3 = 0, corresponds to the requirement

∀ j ∈ {1, . . . , J} : Re(xj1) > 0. (16)

3.2. Order conditions

Approach based on BCH formula (r = 4). Different approaches can be used to determine the coefficients that arise in the factorisa-
tion (14). For instance, we can apply recursively the Baker–Campbell–Hausdorff (BCH) formula to get a series expansion with respect to
the time stepsize τ ; for (12), this yields

log
(
Ψ

[r]
J (τ )

)
= w1 α1 + w2 α2 + w3 α3 + w12

[
α1, α2

]
+ w13

[
α1, α3

]
+ O

(
τ 5
)
,

wherew1, w2, w3, w12, w13 are polynomials in terms of xj1, xj2, xj3. The order conditions are then obtained by requiring that this expansion
agrees with the corresponding expansion of Ω̃(τ ) up to the desired order, that is

w1 = 1, w2 = 0, w3 =
1
12 , w12 = −

1
12 , w13 = 0.
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Order conditions and time-symmetry (r = 6). A more elegant approach to deduce a set of necessary and sufficient independent
order conditions for splitting methods has been proposed in [42] (see also [43]) and makes use of Lyndon words. Roughly speaking, one
computes the series expansion of the product of exponentials defining Ψ [r]

J (τ ), but only takes into account those terms in the expansion
corresponding to a Lyndon word. Then these terms are equating to those obtained by applying the same procedure to eΩ̃(τ ). The order
conditions thus derived are shown to be equivalent to those given by applying the BCH formula.

More specifically, let us consider the set of all multi-indices comprising positive integers with lexicographical order <; a tuple
(i1, . . . , im) ∈ Nm is called a Lyndon multi-index if for each integer ℓ ∈ {1, . . . ,m} the condition (i1, . . . , iℓ) < (iℓ+1, . . . , im) is satisfied,
and for each Lyndon multi-index there is a Lyndon word on the alphabet {α1, α2, . . . , αm}. In view of (14), anticipating that the additional
requirement of time-symmetry will raise the order to six, we list all Lyndon multi-indices with cross sum at most five

(1), (2), (3), (4), (5) ∈ N, (1, 2), (1, 3), (1, 4), (2, 3) ∈ N2,

(1, 1, 2), (1, 1, 3), (1, 2, 2) ∈ N3, (1, 1, 1, 2) ∈ N4
;

the word α1α3 corresponds to (1, 3), the word α1α2α2 corresponds to (1, 2, 2), and so on. Using that the composition in (14) agrees up
to order five or higher with the power series corresponding to the Magnus expansion (8) if and only if the coefficients multiplying the
Lyndon words on the alphabet {α1, α2, α3} are equal in both expansions, gives us ten independent polynomial equations to be satisfied by
the coefficients. Setting

yj =

j∑
ℓ=1

xℓ1, zj =

j∑
ℓ=1

xℓ2, j ∈ {1, . . . , J}, (17a)

explicit expressions of these order conditions are

(1) : yJ = 1,
(2) : zJ = 0,

(3) :

J∑
j=1

xj3 =
1
12 ,

(1, 2) :

J∑
j=1

xj2
(
xj1 + 2 (1 − yj)

)
= −

1
6 ,

(1, 3) :

J∑
j=1

xj3
(
xj1 + 2 (1 − yj)

)
=

1
12 ,

(2, 3) :

J∑
j=1

xj3
(
xj2 − 2 zj

)
=

1
120 ,

(1, 1, 2) :

J∑
j=1

xj2
(
x2j1 + 3 (1 − yj)2 + 3 xj1 (1 − yj)

)
= −

1
4 ,

(1, 1, 3) :

J∑
j=1

xj3
(
x2j1 + 3 (1 − yj)2 + 3 xj1 (1 − yj)

)
=

1
10 ,

(17b)

(1, 2, 2) :

J∑
j=1

xj1
(
x2j2 + 3 xj2 zj−1 + 3 z2j−1

)
=

1
40 ,

(1, 1, 1, 2) :

J∑
j=1

xj2
(
x3j1 + 4 (1 − yj)3 + 6 xj1 (1 − yj)2 + 4 x2j1 (1 − yj)

)
= −

3
10 .

When dealing with a non-autonomous linear evolution equation (3), time-symmetric methods (14) satisfying the condition

Ψ
[r]
J (−τ ) =

(
Ψ

[r]
J (τ )

)−1

are usually preferred. As shown in [26], this corresponds to the requirement

xJ+1−j,k = (−1)k+1xjk, j ∈ {1, . . . , J}, k ∈ {1, 2, 3}; (17c)

due to the fact that the order conditions at odd orders are then automatically satisfied, a time-symmetric scheme is of even order. In
particular, to achieve order six, the seven equations in (17b) associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2) (17d)

have to be solved.

Positivity condition. In (17b), the four equations related to α3, namely

(3), (1, 3), (2, 3), (1, 1, 3)
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are linear with respect to xj3 for j ∈ {1, . . . , J}; thus, we proceed by first solving the remaining equations

(1), (2), (1, 2), (1, 1, 2), (1, 2, 2), (1, 1, 1, 2)

and then computing xj3 for j ∈ {1, . . . , J}. Up to J = 7, we have analysed the equations related to α1 and α2 in regard to real solutions that
satisfy in addition the positivity condition (16); it turned out that all of them involve at least one negative coefficient. Moreover, we have
studied the case of a composition (14) with identical coefficients

xj1 =
1
J , j ∈ {1, . . . , J},

such that yJ = 1 by construction; up to J = 80, the remaining five equations do not admit a real solution. Thus, there is strong evidence
that the order conditions (17b) under the positivity requirement (16) do not admit real solutions, unless for an impractical high number
of exponentials.

Special case (r = 2s = 4, J = 2). In order to achieve order four, only the equations in (17b) related to

(1), (2), (1, 2), (1, 1, 2)

with xj3 = 0 for j ∈ {1, . . . , J} need to be solved; setting J = 2 and employing the requirement of time-symmetry, we retain (12)

x11 = x21 =
1
2 , x12 = −

1
6 , x22 =

1
6 .

4. Families of novel commutator-free quasi-Magnus exponential integrators

In this section, we design efficient commutator-free quasi-Magnus exponential integrators of orders four, five, and six and related
methods of order six.

Efficient novel schemes. From the analysis provided in Section 3, we conclude that for CFQM exponential integrators, cast into the
form (14) with real coefficients and satisfying the positivity condition xj1 > 0 for j ∈ {1, . . . , J}, there is an order barrier at order
four, at least from a practical point of view. This is also confirmed by [28], where an exhaustive study of fourth-, sixth- and eighth-order
time-symmetric CFQM exponential integrators with up to three, six and eleven exponentials, respectively, was carried out; when more
exponentials than strictly necessarywere included in the composition, an optimisation criterionwas adopted. Any of the sixth- and eighth-
order schemes considered in [28] contain at least one index j ∈ {1, . . . , J} such that xj1 < 0, and hence their applicability to non-reversible
systems is problematic. Our objective is to design CFQM exponential integrators which do not present this limitation; in doing so, we
eventually consider schemes including compositions with complex coefficients. Moreover, we study unconventional methods comprising
an additional exponential that involves a commutator which is of higher order with respect to the time stepsize.

Short notation. For the sake of a compact formulation, instead of

CF[r]
J (τ ) =

J∏
j=1

eτaj1A1(τ )+τaj2A2(τ )+τaj3A3(τ ), Ψ
[r]
J (τ ) =

J∏
j=1

exj1α1(τ )+xj2α2(τ )+xj3α3(τ ),

see (5a)–(5c) and (14), we henceforth write

ψ
[r]
J =

J∏
j=1

(xj1, xj2, xj3),

for short.We recall that the coefficients of a sixth-order time-symmetric CFQM exponential integrator are determined by seven conditions
associated with the multi-indices

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2),

see (17); we collect these coefficients in matrix-form.
In order to measure the computational effort needed to achieve a given accuracy1 , we introduce, as a reference, the quantity

ρ
(
CF[r]

J

)
= J × max

j∈{1,...,J}
|aj|. (18)

Thus, in particular, for the method (12) one has

ρ(CF[4]
2 ) = 1.

Notice that ρ(CF[r]
J ) is independent of the quadrature nodes used.

4.1. Fourth-order schemes with real coefficients

First, we design favourable fourth-order time-symmetric commutator-free quasi-Magnus exponential integratorswith real coefficients
satisfying the positivity condition xj1 > 0 for any j ∈ {1, . . . , J}, see (14) and (17c). We use the extra degrees of freedom due to the

1 Given, for example, Φ1 = eτ/2A eτ/2A and Φ2 = e−τ/2A e3τ/2A , it is obvious that formally Φ1 = Φ2 , but from the computational point of view Φ2 u can be more costly
since, in general, e3τ/2A will require to consider more terms in the Krylov space.
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inclusion of sixth-order Gaussian quadrature nodes and additional exponentials to verify certain conditions at order five and to minimise
the deviation of the remaining fifth-order conditions without increasing the overall computational cost.

Scheme (r = 4, s = 3, J = 3). For three exponentials, we have not found fourth-order time-symmetric CFQM exponential integrators that
are substantiallymore efficient than the optimised schemeproposed in [28, Eq. (43)]. For this reason,we take this schemeas representative.

Novel scheme (r = 4, s = 3, J = 4). For four exponentials, the time-symmetric composition reads

ψ
[4]
4 = (x11,− x12, x13) (x21,− x22, x23) (x21, x22, x23) (x11, x12, x13),

and thus six coefficients have to be determined.

(i) When solving the order conditions associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 1, 1, 2),

it turns out that the condition related to (1, 2, 2) is automatically satisfied, and so one ends up with a sixth-order method; this
feature was already noticed in [28]. However, as the resulting scheme does not fulfil the positivity condition, we discard it for
non-reversible systems.

(ii) Alternatively, we solve the order conditions that correspond to

(1), (3), (1, 2), (2, 3), (1, 1, 3)

in terms of x11; moreover, we minimise the amount by which the remaining order conditions

(1, 2, 2), (1, 1, 1, 2)

are not satisfied. This yields the solution

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3−
√
3

6
−5+

√
3

36
11 (3−

√
3)

360

1
2
√
3

1−
√
3

18
−18+11

√
3

360

x21 − x22 x23

x11 − x12 x13

⎞⎟⎟⎟⎟⎟⎟⎟⎠
;

by (15) with (13), the coefficients of the actual scheme read

a =

⎛⎜⎜⎜⎜⎜⎜⎝
0.2463347584748155 − 0.0469610812011527 0.0119511881315244

0.0622500005170514 0.2691833034233750 − 0.0427581693456134

a23 a22 a21

a13 a12 a11

⎞⎟⎟⎟⎟⎟⎟⎠ .

For this particular scheme, a measure for the computational cost is

ρ
(
CF[4]

4

)
≈ 1.1547,

see (18).

Novel scheme (r = 4, s = 3, J = 5). For five exponentials, where the time-symmetric composition (14) involves eight coefficients

ψ
[4]
5 = (x11,− x12, x13) (x21,− x22, x23) (x31, 0, x33) (x21, x22, x23) (x11, x12, x13),

we first solve the order conditions associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2)

in terms of x11 and x31; then, we minimise the amount by which the conditions related to (1, 1, 1, 2) at order five and to (1, 1, 1, 1, 1, 2)
at order seven are not satisfied. This results in the coefficients

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.162183524371561442 − 0.072694239085678008 0.038866376472869818

0.225210983752292371 − 0.049795311423950918 − 0.013159721466654280

x21 0 0.031920023320902257

x21 − x22 x23

x11 − x12 x13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.223402447357583129 − 0.096925652114237345 0.035706729128215657

0.020419732399210346 0.312942460196654240 − 0.108151208843572214

0.106400077736340858 0.012410828279610654 a31

a23 a22 a21

a13 a12 a11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and implies

ρ
(
CF[4]

5

)
≈ 1.12605.

4.2. Schemes with complex coefficients

Complex coefficients. In the following,wemake use of the fact that the order conditions for higher-order commutator-free quasi-Magnus
exponential integrators admit complex solutions such that Re(xj1) > 0 for any j ∈ {1, . . . , J}. Irrespective of their favourable stability
behaviour for non-reversible systems, schemes with complex coefficients generically involve smaller values and exhibit better accuracy,
compared to related schemes with real coefficients; in certain situations, these benefits compensate the additional computational cost.
Besides, contrary to the real case, the optimisation strategy of considering additional parameters to designmore efficient schemes is usually
not needed, since solving the order conditions with the minimum number of degrees of freedom often yields more efficient schemes.

Novel scheme (r = 5, s = 3, J = 3). Remarkably, the ten conditions (17b) for order five can be verified by a composition of three
exponentials which only contains nine coefficients. The resulting scheme is not time-symmetric but exhibits a special symmetry

ψ
[5]
3 = (x∗

11,− x∗

12, x
∗

13) (x21, x22, x23) (x11, x12, x13);

the coefficients are given by

x =

⎛⎜⎜⎜⎝
3
10 −

1
10 i −

37
300 +

3
100 i 29

600 −
1

200 i

2
5 −

3
50 i −

1
75

x∗

11 − x∗

12 x∗

13

⎞⎟⎟⎟⎠ ,

a =

⎛⎜⎜⎜⎝
145+37

√
15

900 +
5+3

√
15

300 i −1
45 +

1
15 i 145−37

√
15

900 +
5−3

√
15

300 i

−
2
45 −

√
15
50 i 22

45 a∗

21

a∗

13 a∗

12 a∗

11

⎞⎟⎟⎟⎠ ,
which implies

ρ
(
CF[5]

3

)
= 1.2.

Novel scheme (r = 6, s = 3, J = 4). As alternative to a sixth-order time-symmetric scheme with real coefficients that violates the
positivity condition, since x21 < 0, we consider the composition

ψ
[6]
4 = (x11,− x12, x13) (x21,− x22, x23) (x21, x22, x23) (x11, x12, x13)

with complex coefficients given by

x =

⎛⎜⎜⎜⎜⎜⎜⎝
0.210073786808784558 − 0.091050437198396164 0.038531990496200024

0.289926213191215441 − 0.040603931666806409 0.003134676170466642

Re(x21) − Re(x22) Re(x23)

Re(x11) − Re(x12) Re(x13)

⎞⎟⎟⎟⎟⎟⎟⎠

+ i

⎛⎜⎜⎜⎜⎜⎜⎝
0.046600721949282283 − 0.016773967556035159 0.005123787068714588

− Im(x11) 0.024540754547582206 − Im(x13)

Im(x21) − Im(x22) Im(x23)

Im(x11) − Im(x12) Im(x13)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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a =

⎛⎜⎜⎜⎜⎜⎜⎝
0.245985577298764294 − 0.046806149832548937 0.010894359342569201

0.062868370946917202 0.269028372054771159 − 0.041970529810472921

Re(a23) Re(a22) Re(a21)

Re(a13) Re(a12) Re(a11)

⎞⎟⎟⎟⎟⎟⎟⎠

+ i

⎛⎜⎜⎜⎜⎜⎜⎝
0.038734389227164527 0.012442141491185027 − 0.004575808769067271

− 0.048761268117765233 − Im(a12) 0.014602687659667977

Im(a23) Im(a22) Im(a21)

Im(a13) Im(a12) Im(a11)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which implies

ρ
(
CF[6]

4

)
≈ 1.17458;

as well, the complex conjugate of x defines a scheme that verifies the established requisites.

Novel scheme (r = 6, s = 3, J = 5). For a time-symmetric composition of the form

ψ
[6]
5 = (x11,− x12, x13) (x21,− x22, x23) (x31, 0, x33) (x21, x22, x23) (x11, x12, x13),

defined by eight coefficients, we can choose one free parameter to fulfil the seven order conditions (17d); requiring in addition the
condition (1, 1, 1, 1, 1, 2) at order seven to be satisfied, we obtain

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.152650950104799817 − 0.069507847652388833 0.031345110126188879

0.226364275186039762 − 0.052927811715861823 0.010656132772422111

0.241969549418320839 0 − 0.000669152463888648

Re(x21) − Re(x22) Re(x23)

Re(x11) − Re(x12) Re(x13)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.030279967163699065 − 0.012546214668641093 0.004976222877716327

0.016537249619936515 0.009492678652216735 − 0.005955196194270531

− 0.093634433567271162 0 0.001957946633108408

Im(x21) − Im(x22) Im(x23)

Im(x11) − Im(x12) Im(x13)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.194217945883437680 − 0.056316450736459376 0.014749454957821513

0.103849953683651922 0.155323390036559016 − 0.032809068534171175

− 0.002230508212962162 0.246430565844245165 Re(a31)

Re(a23) Re(a22) Re(a21)

Re(a13) Re(a12) Re(a11)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.032784503082251144 − 0.002894852021076449 0.000390316102524370

− 0.032105649424546467 0.056238557581740060 − 0.007595658537257078

0.006526488777028029 − 0.106687411121327221 Im(a31)

Im(a23) Im(a22) Im(a21)

Im(a13) Im(a12) Im(a11)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which yields

ρ
(
CF[6]

5

)
= 1.29727.
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It turns out that for this scheme also the condition at order seven related to (1, 1, 1, 1, 3) is verified.

Scheme (r = 6, s = 3, J = 6). For comparison, we consider an optimised sixth-order time-symmetric CFQM exponential integrators with
real coefficients involving six exponentials, proposed in [28, Table 3].

4.3. Sixth-order schemes with one commutator

Unconventional schemes. The reason for the high computational cost of interpolatoryMagnus integrators can be traced back to the large
number of matrix–vector products that are required to approximate eΩ

[r]
u, sinceΩ [r](τ ) = O(τ ). However, if the considered matrix has a

special form say, D = [B1, B2], such that

D = O
(
τ 3
)
,

the evaluation of Du requires only four matrix–vector products and hence the action of the matrix-exponential can be approximated to a
certain accuracy with 4m products

eD u =

m∑
i=0

1
i! D

i u + O
(
τ 3(m+1))

;

thus, in practice, the computational effort of eD u is comparable to that of a single matrix-exponential

C
(
eD u

)
∼ C

(
eτA(t) u

)
.

This observation opens the door to consider yet another unconventional possibility to design sixth-order schemes satisfying the positivity
condition by including a single commutator of the form[

d1 α1(τ ) + d2 α3(τ ), α2(τ )
]

= O
(
τ 3
)

in the composition (14).

Novel scheme involving commutator (r = 6, s = 3, J = 5). Based on our considerations, we study a time-symmetric composition of the
form

CF[6]
5C (τ ) =

5∏
j=4

eτaj1A1(τ )+τaj2A2(τ )+τaj3A3(τ ) eτ
2

[C1(τ ),C2(τ )]
2∏

j=1

eτaj1A1(τ )+τaj2A2(τ )+τaj3A3(τ ),

ψ
[6]
5,1C = (x11,− x12, x13) (x21,− x22, x23) ([d1α1 + d2α3, α2]) (x21, x22, x23) (x11, x12, x13),

involving eight coefficients, required to fulfil the seven order conditions (17d); the free parameter is chosen such that the condition related
with (1, 1, 1, 1, 1, 2) at order seven is verified. The uniquely determined solution is given by

C1(τ ) = e1
(
A1(τ ) + A3(τ )

)
+ e2 A2(τ ), C2(τ ) = A3(τ ) − A1(τ ),

e1 = 0.000210514641318946, e2 = 0.000355878988200746,

x =

⎛⎜⎜⎜⎜⎜⎜⎝
0.166598694406302052 − 0.075210207247722093 0.033881593332661472

0.333401305593697947 − 0.063751516929898526 0.007785073334005194

x21 − x22 x23

x11 − x12 x13

⎞⎟⎟⎟⎟⎟⎟⎠ ,

a =

⎛⎜⎜⎜⎜⎜⎜⎝
0.210034604487283585 − 0.059278594478107764 0.015842684397126231

0.108253098901669707 0.281500816700329986 − 0.056352610008301747

a23 a22 a21

a13 a12 a11

⎞⎟⎟⎟⎟⎟⎟⎠ .

5. Numerical experiments

In this section, we present numerical results for two representative examples, a diffusion–advection–reaction equation and a high-
dimensional (dissipative) Rosen–Zener model. In particular, we illustrate the behaviour of the novel schemes

CF[4]
4 , CF[4]

5 , CF[5]
3 , CF[6]

4 , CF[6]
5 , CF[6]

5C ,

compared to the optimised fourth- and sixth-order commutator-free quasi-Magnus exponential integrators proposed in [28, Eq. (43),
Table 3], where

ρ
(
CF[4]

3

)
= 1.35, ρ

(
CF[6]

6

)
≈ 3.40428. (19)

We note that the sixth-order scheme does not satisfy the positivity condition (5f) resulting in poor stability properties for evolution
equations of parabolic type and dissipative quantum systems; besides, as the value ofρ(CF[6]

6 ) is considerably larger than the corresponding
values for the novel schemes, the computational effort for the evaluation of the matrix-exponential will in general be higher.
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Fig. 1. Non-autonomous linear evolution equation (20). Solution profile for t ∈ [0, 1].

5.1. Test equation of parabolic type

Variational equation. Following [29], we consider a nonlinear diffusion–advection–reaction equation, prescribing a smooth solution
U : [0, 1] × [0, T ] → R : (x, t) ↦→ U(x, t)

∂tU(x, t) = f2
(
U(x, t)

)
∂xxU(x, t) + f1

(
U(x, t)

)
∂xU(x, t) + f0

(
U(x, t)

)
+ g(x, t),

f2(w) =
1
10

(
cos(w) +

11
10

)
, f1(w) =

1
10 w, f0(w) = w

(
w −

1
2

)
,

U(x, t) = e− t sin(2πx).
(20a)

The associated variational equation is of the form (3)

∂tu(x, t) = α2(x, t) ∂xxu(x, t) + α1(x, t) ∂xu(x, t) + α0(x, t) u(x, t),
α2(x, t) = f2

(
U(x, t)

)
, α1(x, t) = f1

(
U(x, t)

)
,

α0(x, t) = f ′

2

(
U(x, t)

)
∂xxU(x, t) + f ′

1

(
U(x, t)

)
∂xU(x, t) + f ′

0

(
U(x, t)

)
.

(20b)

We in particular consider the initial state

u(x, 0) =
(
sin(2πx)

)2
, x ∈ [0, 1], (20c)

and impose periodic boundary conditions; the solution profile is displayed in Fig. 1.

Numerical results. For the space discretisation, we choose M = 100 equidistant grid points and apply standard symmetric finite
differences. The time integration is performed by the schemes introduced in the previous section with time stepsizes 2−ℓ for ℓ ∈

{1, . . . , 10}; the numerical approximation obtained for the finest time stepsize serves as reference solution. The global errors at time
T = 1 versus the time stepsizes are displayed in Fig. 2; in addition, as a rough estimate of the computational cost, we include the errors
versus the numbers of exponentials. In accordance with the convergence result given in [29], the nonstiff orders are retained for smaller
time stepsizes. The numerical comparisons also confirm the poor stability behaviour of the sixth-order scheme CF[6]

6 , which does not satisfy
the positivity condition.

Effect of space discretisation. For completeness, we include the results obtained forM = 150, see Fig. 3. Here, the instabilities are more
severe; otherwise, we observe that the spatial error is negligible and that the numerical results are independent of the considered space
discretisation method.

5.2. High-dimensional Rosen–Zener model with dissipation

Non-autonomous linear system. As a further application, we consider a quantum system that is closely related to the model analysed
in [44]. For a Rosen–Zener model with dissipation, the associated Schrödinger equation in the interaction picture has the following form{

u′(t) = A(t) u(t) = − iH(t) u(t), t ∈ (t0, T ),
u(t0) = u0,

(21a)

see (3). After normalisation, the time-dependent Hamiltonian reads

H(t) = f1(t) σ1 ⊗ I + f2(t) σ2 ⊗ R + δD ∈ Cd×d, d = 2 k, (21b)
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Fig. 2. Time integration of test equation (20) by different commutator-free quasi-Magnus exponential integrators of orders r = 4, 5, 6 and related scheme of order r = 6.
First row: Global errors at time T = 1 versus chosen time stepsizes. Second row: Global errors at time T = 1 versus number of exponentials.

Fig. 3. Corresponding results for refined spatial grid width.

with identity matrix I ∈ Rk×k, Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

⎛⎝0 − i

i 0

⎞⎠ , (21c)

and dissipation parameter δ > 0 with

R = tridiag
(
1, 0, 1

)
∈ Rk×k, D = − i diag

(
12, 22, . . . , d2

)
∈ Cd×d. (21d)

Evidently, the components of the matrix D increase in modulus for larger dimensions. We in particular set

f1(t) = V0 cos(ω t)
(
cosh

( t
T0

))−1
, f2(t) = − V0 sin(ω t)

(
cosh

( t
T0

))−1
. (21e)
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Time integration. In principle, commutator-free quasi-Magnus exponential integrators (5a)–(5c) that do not satisfy the positivity
condition (5f) are suitable for the time integration of a Rosen–Zener model with dissipation (21). However, if the dimension of the system
is large, the dissipative term forces the time stepsize to be sufficiently small, in order to avoid instabilities; in this situation, the proposed
novel schemes involving complex coefficients provide a favourable alternative.

Global error. In the sequel, we choose t0 = − 4 T0 for some T0 > 0 as initial time and determine numerical approximations uapp(T ) at final
time T = 4 T0 for different time stepsizes τ =

T−t0
N ; in addition, a reference solution uref(T ) is computed numerically to high accuracy. In

order to obtain numerical results that are independent of the prescribed initial value, we determine the global errors in the corresponding
fundamental matrix solutions

error =
Uapp(T ) − Uref(T )

, uapp(T ) = Uapp(T ) u0, uref(T ) = Uref(T ) u0;

in all cases, the errors are measured with respect to the Euclidean norm.

Implementation and computational cost. For the considered test problem and the chosen parameter regimes, it suffices to use a
relatively low order truncated Taylor series approximation for the computation of the matrix-exponentials to illustrate the performance
of the novel schemes, whereas other approximations to the matrix-exponentials might be more appropriate for longer times or more
challenging models, respectively. In fact, for the novel schemes, it turned out that the Taylor method is nearly optimal, since polynomials
of degrees four to eight suffice in most cases; contrary, the optimal truncation order for the schemes proposed in [28], resulting in larger
values (19), is usually higher. In order to measure the computational cost of a commutator-free quasi-Magnus exponential integrator by
an M th-order Taylor approximation, we count the number of matrix–vector products per time step

cost
(
T [M]

(
CF[r]

J

))
= JM.

Numerical results. In a first test comparing the performance of the novel schemes, we fix the frequency, the time interval, and the
dimension of the system

ω = 5, T0 = 1, d = 10. (22)

The order of the Taylor series approximation is set to M = 6; for the computation of the action of the matrix-exponential involving the
commutator, a second-order Taylor approximation is applied, and a first-order approximation essentially yields the same results. The
amplitude of the initial value is set to V0 = 2 or V0 =

1
2 , respectively. Besides, we contrast the special case of vanishing dissipation to the

case δ = 10−1, respectively.

(i) Fourth-order schemes. The numerical results obtained for the optimised CFQM exponential integrator with three exponentials
proposed in [28] and for the novel schemes with J = 4 and J = 5, respectively, are displayed in Fig. 4. We observe that for medium
to high accuracies the novel schemes perform better.

(ii) Sixth-order schemes with real coefficients. The numerical results obtained for the optimised CFQM exponential integrator with six
exponentials proposed in [28] and for the novel method involving a single commutator are displayed in Fig. 5. We observe that the
novel scheme performs better; in addition, in the presence of a dissipative term, its stability properties are clearly superior.

(iii) Fifth- and sixth-order schemes with complex coefficients. The numerical results obtained for the novel fifth- and sixth-order schemes
with complex coefficients are displayed in Fig. 6. The schemes are appropriate for dissipative quantum systems and show a good
performance, whenever high accuracy is desired, see also Fig. 5. In particular, the non-time-symmetric fifth-order scheme involving
three exponentials is favourable in efficiency.

Comparison with standard integrators. Next, we take into account that the order of accuracy when computing the action of the arising
matrix-exponentials on vectors influences the performance of the novel schemes; in our case, this corresponds to the order of the Taylor
series approximation. In order to illustrate this influence, we consider the novel schemes

CF[4]
4 , CF[5]

3 , CF[6]
5C ,

which performed well in the previous test, and compare them with the standard sixth-order interpolatory Magnus integrator involving a
single exponential and a standard explicit sixth-order Runge–Kutta method with seven stages

RK [6]
7 , M [6]

13 ;

for the Magnus integrator, each product of the exponent with a vector requires 13 products, whereas the explicit Runge–Kutta method
only requires seven products per time step and thus is considerably cheaper than all other exponential integrators. Consequently, for our
simple test problem, this would be in favour of the Runge–Kutta method.

Numerical results. We consider the case of vanishing dissipation and in particular choose

δ = 0, V0 = 5, ω =
1
2 , T0 = 5, d = 20.

For most accuracies, a Taylor series approximation of order M = 6 for the fourth-order scheme and M = 8 for the fifth- and 6th-
order schemes is nearly optimal. However, due to the fact that the matrix-exponentials are replaced by polynomial approximations, the
∥Uapp(T )∥ is not exactly preserved.

In Fig. 7, we display the global errors as well as the errors in the norm preservation | ∥Uapp(T )∥ − 1|. We observe that the standard
Magnus integrator is not appropriate for the considered situation; its performance would improve for low dimensional problems, where
matrix–matrix products are feasible. In spite of its very low computational cost, the standard explicit Runge–Kutta method shows a poor
performance; this is more manifest when qualitative properties are of interest or for longer time integrations.
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Fig. 4. Time integration of (21)–(22) by fourth-order commutator-free quasi-Magnus exponential integrators involving J = 3, 4, 5 exponentials. Implementation by Taylor
series approximation of orderM = 6. Global errors in fundamental matrix solution versus number of matrix–vector products.

Fig. 5. Corresponding results for sixth-order commutator-free quasi-Magnus exponential integrator with real coefficients involving J = 6 exponentials and for related
method with real coefficients involving five exponentials and single commutator of higher order in time stepsize.
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Fig. 6. Corresponding results for fifth- and sixth-order commutator-free quasi-Magnus exponential integrators with complex coefficients involving J = 3, 4, 5 exponentials.

A benefit of (commutator-free quasi-) Magnus integrators is that different underlying quadrature rules as well as different approxi-
mations to the exponentials can be used; their optimal choice will depend on the considered problem and the sizes of the parameters. In
order to illustrate this, we set

δ = 10−2, (V0, ω) ∈ {(5, 2), (2, 5)}, T0 = 5, d = 10.

In Fig. 8, we display the results obtained for different orders of Taylor series approximations and the optimised sixth-order CFQM
exponential integrator proposed in [28] and for the novel fifth-order scheme with complex coefficients. We conclude that the optimal
choice of Taylor series approximations indeed depends on the accuracy desired and on the particular problem considered; in all cases, the
novel scheme is superior.
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Appendix

A.1. Magnus integrators in terms of arbitrary quadrature rules

To build methods of order 2K that can easily be used with any quadrature rule of order 2K or higher we introduce the one-dimensional
momentum matrices with respect to the interpolating matrix Ã in (10)

Ã(i)
=

∫ τ
2

−
τ
2

(
σ
τ

)i Ã( τ2 + σ
)
dσ =

K∑
j=1

1 − (−1)i+j

(i + j)2i+j αj, i = 0, . . . , K − 1.

For example, at order four and six we have(
α1
α2

)
=

(
1 0
0 12

) (̃
A(0)

Ã(1)

)
,

(
α1
α2
α3

)
=

⎛⎜⎝ 9
4

0 −15
0 12 0

−15 0 180

⎞⎟⎠
⎛⎝Ã(0)

Ã(1)

Ã(2)

⎞⎠ ,
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Fig. 7. Left: Global errors in fundamental matrix solution versus number of matrix–vector products. Right: Corresponding errors in preservation of norm | ∥Uapp(T )∥ − 1|.

Fig. 8. Global errors in fundamental matrix solution versus number of matrix–vector products. Comparison of optimised sixth-order scheme CF[6]
6 (dashed lines), see [28],

and novel scheme CF[5]
3 (solid lines). Implementation by Taylor series approximations of ordersM = 4 (circles), M = 6 (squares), andM = 8 (stars). .

and the Magnus expansion can be written in terms of Ã(i). If we take into account that

A(i)
=

∫ τ
2

−
τ
2

(
σ
τ

)i A( τ2 + σ
)
dσ = Ã(i)

+ O
(
τ 2K+1),

we can safely replace Ã(i) by A(i) in the Magnus integrators and then to use any quadrature rule of order p ≥ 2K to approximate
A(i), i = 0, . . . , K − 1. If {ŵi, ĉi}K̂i=1 correspond to the weights and nodes of a quadrature rule of order p ≥ 2K , then we have that

τ

K∑
j=1

wj
(
cj − 1

2

)i  
Gi,j

Aj + O
(
τ 2K+1)

= A(i)
= τ

K̂∑
j=1

ŵj
(̂
cj − 1

2

)i  
Qi,j

Âj + O
(
τ 2K+1),

where Âj = A(̂cj τ ). This relation allows to change from the Gauss–Legendre quadrature rule to any other quadrature rule, e.g. we can
replace

Ai =

K̂∑
j=1

(
G−1Q

)
i,ĵAj, j = 1, . . . , K ,

that keeps accuracy up to order 2K so, in (5) we can take

Bj(τ ) = τ

K̂∑
k=1

âjk Âk(τ )

with coefficients

â = a
(
G−1Q

)
to obtain another approximation in terms of the evaluations at the new quadrature rule that is correct up to terms of order τ 2K .
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