Hindawi

Scientific Programming

Volume 2019, Article ID 4108652, 15 pages
https://doi.org/10.1155/2019/4108652

Research Article

Hindawi

Automatic Testing of Program Slicers

Sergio Pérez (), Josep Silva

, and Salvador Tamarit

Universitat Politécnica de Valéncia, Cami de Vera s/n, E-46022 Valéncia, Spain

Correspondence should be addressed to Salvador Tamarit; tamarit27@gmail.com

Received 4 November 2018; Accepted 22 January 2019; Published 25 February 2019

Academic Editor: Michele Risi

Copyright © 2019 Sergio Pérez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Program slicing is a technique to extract the part of a program (the slice) that influences or is influenced by a set of variables at a
given point (the slicing criterion). Computing minimal slices is undecidable in the general case, and obtaining the minimal slice
of a given program is normally computationally prohibitive even for very small programs. Therefore, no matter what program
slicer we use, in general, we cannot be sure that our slices are minimal. This is probably the fundamental reason why no
benchmark collection of minimal program slices exists. In this work, we present a method to automatically produce quasi-
minimal slices. Using our method, we have produced a suite of quasi-minimal slices for Erlang that we have later manually
proved they are minimal. We explain the process of constructing the suite, the methodology and tools that were used, and the
results obtained. The suite comes with a collection of Erlang benchmarks together with different slicing criteria and the

associated minimal slices.

1. Introduction

In the areas of scientific and engineering computing, it is
common the use of different program transformations to
change an algorithm several times until certain performance
requirements are met. One of these transformations is
program slicing. Program slicing is a technique for program
analysis and transformation whose main objective is to
extract from a program those statements (the slice) that
influence or are influenced by the values of one or more
variables at some point of interest, often called the slicing
criterion [1-4]. This technique has been adapted to practi-
cally all programming languages, and it has many appli-
cations such as debugging [5], program specialization [6],
software maintenance [7], and code obfuscation [8].

In the general case, determining the minimal slice is
undecidable [1]. For this reason, almost all program slicing
techniques guarantee that their computed slices are complete
(i.e., they contain all statements that do influence the slicing
criterion), but, in general, they do not guarantee that their
computed slices are sound (i.e., they probably contain
statements that do not influence the slicing criterion).

Example 1. Consider the programs in Figure. We can define
the slicing criterion (7,x) in the original program. This
means that we are interested in all statements that are needed
to compute the value of x in line 7. The original code is a slice
of itself, but there exist smaller slices. For instance, the code
in the middle is the slice computed by almost all current
static program slicers (e.g., this is the output of the Indus
Java slicer [9] and CodeSurfer [10]). However, the slice in the
middle is not minimal. The minimal slice of the original
program is the code on the right. It would be difficult for a
slicer to compute this slice because line 7 is reachable via a
control-flow path from line 6 and line 6 defines variable x,
which is used in line 7. Thus, most slicers consider that line 6
does influence line 7. This reasoning is transitively applied to
lines 4 and 6. Hence, program slicers produce the code in the
middle.

Example 1 illustrates how a tiny program without
method calls and even without loops, cannot be handled
precisely by current program slicers. The fact that computing
minimal slices is undecidable in the general case does not,
however, prevent us from defining a procedure to compute
minimal slices for a given concrete program. Nevertheless,

mailto:tamarit27@gmail.com
http://orcid.org/0000-0002-4384-7004
http://orcid.org/0000-0001-5096-0008
http://orcid.org/0000-0001-5103-4153
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4108652

2
Original Program Slice Minimal Slice
1 read (z) read (z) read (z)
2 x=42 x =42 x =42
3 y=1
4 xt++ X+
5 if(z>0){ if (z>0) { if (z>0) {
6 X--5 X--5
7 print (x); print (x); print (x);
8
9 } /
10 ..
FiGure 1

normally, even for very small programs, this procedure
would be computationally intractable [11, 12]. Un-
fortunately, human intervention is often needed to produce
minimal slices, and this is only practical for small programs.

1.1. Motivation. Being able to compute minimal slices would
speed up many software processes. For instance, compilers
use program slicing to remove dead code, and many analyses
use program slicing as a preprocessing stage to detect
variable dependencies. Therefore, making slicing more ac-
curate would also improve the later analyses based on it.

Because computing minimal static slices is undecidable,
in this work, we propose a method to compute quasi-
minimal slices, which, roughly, are minimal slices for a
given set of inputs (this means that quasi-minimal slices may
not be sound static slices, i.e., for all possible sets of inputs).
In many cases, we are interested in producing a slice with
respect to a given computation (known as minimal dynamic
slice). For instance, in debugging, we are often interested in
producing a slice of a program that produced an error for a
particular input because the slice produced is a reduced
version of the program that reproduces the wrong com-
putation (and that contains the error). In regression testing,
after we test a new release of a program with the regression
tests, many different errors can show up. In this situation, we
can be interested in producing a slice for a given set of test
cases (known as minimal simultaneous dynamic slice).

Our method produces minimal dynamic slices and si-
multaneous dynamic slices, and it can also produce static
minimal slices in many cases. On the one hand, if the input
domain of a program is finite, we automatically produce all
possible input values, thus, producing a minimal static slice.
On the other hand, if the input domain is infinite, we provide
an instrumentation based on concolic testing to produce test
cases that explore all possible branches (100% branch cov-
erage) of the program. This ensures in many cases that the
produced static slice is also minimal.

We have used our method to produce a suite of
benchmarks with minimal slices. This has shown that quasi-
minimal slices are often minimal slices. In fact, we have
produced a suite of 23 quasi-minimal slices, and we have
proven that all of them are actually minimal slices.

From the best of our knowledge, there does not exist any
public repository of benchmarks with minimal slices, and
this is surprising because a suite of minimal slices is very
useful for slicer developers. In particular, we have

Scientific Programming

implemented several program slicers for different languages,
including Petri nets [13], XQuery [14], Erlang [15], and CSP
[16]. Every time we improved our program slicer (e.g., with a
new technique or feature or just to correct some bug), we
found the same problem: we could not measure the im-
provement achieved with that change. What we often do is to
implement some benchmarks and compare our previous
results with the new ones. This gives a measure of im-
provement. But, it would be much more useful to start a
battery of tests that automatically compare the new slices
produced by our released code with a gold standard (i.e., the
minimal slices). This would allow us not only to objectively
measure the improvement of the new release but also to
detect possible introduced problems in other parts of the
slicer and, e.g., to fairly compare our tool with other tools.

As an application of our method to produce quasi-
minimal slices, in this work, we also present the first fully
automated system to evaluate and compare program slicers.
This system inputs a program slicer and outputs a report about
precision and recall of this slicer with respect to a suite of
minimal slices that have been already computed. The system
can also input two slicers and automatically compare them. If
the two slicers are two releases of the same slicer, then the
system can not only measure the improvement achieved but
also identify errors introduced (or solved) in the new release.

1.2. Contributions. The main contribution of this work is a
method for generating quasi-minimal slices, which has been
later instantiated for Erlang and used to generate a suite of
benchmarks composed of programs together with their
minimal slices. The contributions of this work are sum-
marized below:

(i) A method to obtain quasi-minimal slices.

(ii) An adaptation of observation-based slicing (ORBS)
[12] to work with abstract syntax trees (ASTs). This
maximizes precision, allowing us to slice at the level
of literals.

(iii) A generalization of ORBS. ORBS is not correct in all
cases. This problem is identified and solved in our
approach.

(iv) An implementation of the proposed method for
Erlang, producing a new program slicer for Erlang.

(v) A suite of benchmarks with challenging program
slicing problems together with their minimal slices.
The suite includes a tool that can be used to evaluate
a program slicer against the suite.

2. Preliminaries and Notation

This section introduces some preliminary definitions and
notation that are used along the paper. Because there exist
several different notions of slice and minimal slice in the
literature, to make things concrete, we need to provide a
formal definition on which we will base the rest of the paper.

Program slicing is based on a slicing criterion over which
the slice is obtained. This slicing criterion traditionally
corresponds to a statement in the code and a variable within

Scientific Programming

that statement. However, if we use statements in our defi-
nitions, we could not be as precise as we want to be.
Therefore, we base our slicing criterion on expressions,
which do not impose that precision barrier.

Definition 1 (slicing criterion). Let P be a program. A slicing
criterion C of P is an expression in P whose evaluation
produces a value.

Note that even though most program slicers are based on
statements, we do not have to restrict ourselves to that
precision level. Moreover, any variable v in P can be con-
sidered a slicing criterion in our definition because variables
are expressions, but we also allow for defining other slicing
criteria such as results of operations (e.g., an addition),
values to be assigned, values returned by procedure calls, and
values of literals.

Our method combines static and dynamic slicing and,
thus, we also need a definition of dynamic slicing criterion
based on expressions, as well as a definition for the sequence
of values the dynamic slicing criterion is evaluated to.

Definition 2 (dynamic slicing criterion). Let P be a program.
A dynamic slicing criterion of P is a tuple {C, I) such that C
is a slicing criterion and I is an input for P.

Definition 3 (sequence of values). Let P be a program and
(C,I) be a dynamic slicing criterion of P. seq (P, C,I) is the
sequence of values the slicing criterion C is evaluated to
during the execution of P with I.

First of all, it is important to remark that we use the
standard definition of slice, which excludes nonterminating
and nondeterministic programs. A justification of the ne-
cessity of these exclusions can be found in the seminal paper by
Weiser [1]. Another important property is that we want our
slices to be executable so that the execution of the slice for any
given input must evaluate the slicing criterion as many times
(or more) as the original code, and the sequence of values the
slicing criterion is evaluated to when executing the original
code must be equal to (or a prefix of) the sequence obtained at
the slice. Formally, the definition is given as follows:

Definition 4 (static executable program slice (based on
[3, 12])). A static executable program slice S of program P
with respect to a slicing criterion C is any executable pro-
gram with the following properties:

(1) S can be obtained by deleting code from P (denoted
ScCP).

(2) For all input I, seq (P, C,I) is a prefix of seq(S, C, I).

We define a dynamic executable program slice as an
executable program slice for a given set of inputs. Formally,
the definition is given as follows:

Definition 5 (dynamic executable program slice). A dynamic
executable program slice S of a program P on a dynamic
slicing criterion {C, I') is any executable program that fulfils

the two properties of Definition 4 for P with respect to C and
for only one specific input L

According to Definitions 4 and 5, every program itself
has as an executable program slice under any criteria.

From here on, given a program P and a slicing criterion
C for P, we use the domain Slicest to denote the finite set
containing all possible slices of P with respect to C. We also
use the notation slicey (P, C) to refer to the slice of P with
respect to C computed with a specific slicer X.

Definition 6 (minimal slice). A minimal slice of program P
with respect to a slicing criterion C is any S € Slices> such
that AS' € SlicesE AS' ¢ S.

Note that a minimal slice, according to this definition, is
not necessarily unique and is not necessarily a slice with the
smallest number of expressions (e.g., [17]). Because com-
puting minimal slices is undecidable, similarly to [12], we
can relax its definition to be minimal with respect to a finite
set of inputs. Formally, the definition is given as follows:

Definition 7 (quasi-minimal slice). Let .7 be a set of possible
inputs for a program P and C be a slicing criterion for P. A
quasi-minimal slice (QM-slice) gm-slice (P, C, %) of P with
respect to Cand .7 is a dynamic executable program slice of
P that is minimal for all I € ¥ on a dynamic slicing cri-
terion {(C,I). If ¥ contains all possible inputs of P, then
gm-slice (P, C, %) is a minimal slice of P with respect to C.

In the method proposed in this paper, besides a program
P, a slicing criterion C, and a set of inputs .#, we also as-
sociate slices with the AST of P. This is particularly useful to
allow us to reason about the accuracy of slices (Section 3).
Therefore, we need to adapt the notion of slicing criterion to
ASTs. This can be easily done by redefining a slicing criterion
in such a way that the point of interest is not an expression
but the AST node whose subtree represents that expression.
We define the slicing criterion and the dynamic slicing
criterion in terms of ASTs as follows:

Definition 8 (AST-adapted slicing criterion). Let P be a
program and C be a slicing criterion of P. Let AST (P) =
(N, E) be an AST of P where N is the set of nodes and E is the
set of edges. n is the AST-adapted slicing criterion of C such
that n € N and # is the root of the subtree of AST (P) that
represents C.

Definition 9 (AST-adapted dynamic slicing criterion). Let P
be a program and {C, I be a dynamic slicing criterion of P.
An AST-adapted dynamic slicing criterion of {C, I’) is a tuple
{n, I) such that n is the AST-adapted slicing criterion of C.

3. Focussing on Fine-Grained Slices

Program slices are often measured in code lines. The reason
is that most program slicing techniques consider lines of
code as atomic elements and, thus, they remove a whole line

or nothing [1, 5, 12]. For this reason, most of the work that
compares the precision of different program slicing tech-
niques just compares the retrieved number of lines
(e.g., [12, 18]). Unfortunately, this is very sensitive to the
programming style, and moreover, it can be very imprecise,
especially in functional languages.

Example 2. Consider the Erlang program in Figure 2(a)
and its minimal slice 2(b) with respect to the slicing cri-
terion (10, B). Observe that some expressions have been
replaced by _ or by the fresh atom sliced ([15, 19]). This is
needed to make the slice executable. Clearly, all methods
based on lines would not be able to remove the sub-
expressions that are not needed in lines 1, 2, 3, and 6. For
instance, in line 2, C=B can be removed, but the pro-
grammer initialized A, B, and Cin a single line, and thus the
whole line cannot be removed. One can argue that a
preprocessing phase could be used to refactor the code and
place all statements in different lines whenever it is pos-
sible. But, this cannot solve the second problem: sometimes
only a subexpression can be removed in a line. This is the
case of variables Z, Y, and C in line 3.

To overcome these limitations, as already done by,
e.g., CodeSurfer [10] or in [15], in our method, we propose to
use expressions as the slicing criterion, so precision can be
increased. We also reason about slices at the AST level so
that instead of counting lines of code, we can measure the
number of AST nodes that belong to the slices, thus pro-
ducing a more precise measure. However, note that this is a
generalization, i.e., those program slicers that work directly
on lines or statements (e.g., [9]) are an instance of our model
because they remove subtrees of the AST that corresponds to
lines or statements. That is, a line/statement is represented in
the AST with a single node (and its subtree). This reasoning
is also applicable to those program slicers that base their
slices over other elements such as procedures and expres-
sions or even AST nodes (e.g., [10, 15, 20]).

4. A Method to Produce Quasi-Minimal Slices

Given a program and a slicing criterion, our method
computes its QM-slice (Definition 7) following two se-
quential phases. The first phase produces a static slice of the
original program, which is the input of the second phase. The
second phase further slices this slice, producing the final
QM-slice. Figure 3 summarizes the method, which is
explained in the following subsections.

4.1. Phase 1: Combining Static Program Slicers. In the first
phase, we use a set of static program slicers to repeatedly slice
the original program until a fix point is reached. Different
program slicers usually implement different techniques and
optimizations to reduce the size of the slice. Therefore, we
can use any program slicer to produce a first slice that we can
use as the starting point to further reduce its size with
another program slicer because the slice of a slice is a slice
provided that the same slicing criterion is used.

Scientific Programming

Theorem 1. Let P be a program and S = sliceX1 (P,C) be a
program slice. Then, S = slicex (S, C) € Slices¢. for any P, C,
X, and X,.

Proof. By point 4 in Definition 4, we know that S S < P. By
point 4 in Definition 4, we know that VI : seq(P,C,I)isa
prefix of seq(S,C,I) and that seq(S,C,I) is a prefix of
seq(S',C, I). Therefore, seq(P,C,I) is also a prefix of
seq(S',C,I). Hence, S' € é’licesg. O

Therefore, given a program P and a slicing criterion C,
slicer B can use the slice provided by slicer A as its input and
take advantage of the code removed by A. However, A may
also take advantage of the code removed by B and thus
remove code it did not remove the first time, which would
imply that A can take further advantage of the new code
removed. Therefore, a loop between all the slicers is needed
until none of them can further remove any additional code,
thus reaching a fix point.

One important property of the slicers, which is a re-
quirement of the method, is that the slices produced by all of
them must be complete (Note that, in our context (according
to Definitions 4 and 5), a slice is always complete. However,
not all program slicers produce complete slices. Some slicers
such as [21] only ensure soundness. Therefore, in this paper,
“complete slice” should be read as just “static slice”).
Therefore, the output of Phase 1 is always a complete slice,
because the sequential composition of complete slicers
produces a complete slicer.

Theorem 2 (completeness). Let P be a program, and let C be
a slicing criterion for P. Given two complete program slicers
X, and X,, then slicex (slicex (P,C),C) is a complete slice
with respect to P and C.

Proof. First, because X, is complete, we know that S; =
slicex (P,C) is a complete slice with respect to P and C. We
prove the theorem by contradiction assuming that the slice
S, = slicex (slicex (P,C),C) is not complete with respect to
Pand C. This is only possible if either X, is not complete and
thus slicey (S;,C) is not a complete slice with respect to S,
and C, or if X, is complete, but S, is not complete with
respect to P and C. However, both cases lead to a contra-
diction because both S; and X, are complete. Moreover,
because S; and S, are complete, then S, €S, € P, and thus, S,
is also a complete slice with respect to P and C. O

While it is mathematically correct to say that the
slicing criterion C is common for all program slicers
(because C is a reference to a piece of code in P), in
practice C is normally provided in a text mode (e.g., {5,V
meaning line 5, variable v), so it is not a reference any-
more. Therefore, if a line before C (e.g., line 2) is sliced off
from P by the first program slicer obtaining S, then C
needs to be updated (e.g., to {(4,v)) so the subsequent
program slicers can locate the slicing criterion in S.
Figure 4 shows how the slicing criterion is updated. The
process consists of four steps: first, an AST of the code and
of its slice are obtained; second, a mapping ([22, 23]) over

Scientific Programming 5

Original Program Minimal Slice for (10, B)
1 main (X, Y) -> main (X, _) ->
2 A=1,B=AC=B, A=1,B=A,
3 Z = foo (X, {Y, B, C}), _ =foo (X, {sliced, B, sliced}).
4 Z.
5
6 foo (X, {Y, B, C})-> foo (X, {_,B, _})->
7 case X of case X of
8 123456789 -> Z = X/Y,
9 Z+ G
10 2 -> B; 2->B
11 _ ->X/Y
12 end. end.
(a) (b)

FIGURE 2: An Erlang program and its minimal slice for a slicing criterion.

. Slicing
: Phasel
7
3 Fix point loop
Original]
pogram [N
Program 4
p S

Slice 2

Program
slicer n

Program
slicer 2

slicer 1

Slicing
criterion

Slice
Phase 1

P! .
n-ORBS loop Phase 2 s)

Quasi-minimal
slice

AST-adapted ORBS }

Previous r=—=-" Test-case
slice : Slice ! generator
| candidate ! Test
R J‘ case |}
Restore No Test-case Slicing
candidate —=—==a validator criterion 3 Original
I Slice ! g rogram
| Slice ; prog
1 candidate | F
(R

F1GURE 3: A method to produce quasi-minimal slices.

Slicing
criterion
(code)

Slice

Code
7 K AST of code AST of slice/

FIGURE 4: Slicing criterion mapper.

both ASTs is calculated (dashed lines in the figure); third, 4.2. Phase 2: Increasing Precision via an AST-Adapted ORBS
the node that represents the slicing criterion (Definitions Algorithm. Phase 2 comprises three main modules: ORBS,
8 and 9) is located within the AST of the code; finally, the test-case generation, and test-case validation. We explain the
mapping is used to find the node in the AST of the slice. ~ modules hereafter. Before delving into the details, it is worth

to remark that Phase 1 is optional because Phase 2 obtains
the same result working alone as when it is combined with
Phase 1. However, Phase 1 significantly reduces the number
of AST nodes that Phase 2 has to work with, which speeds up
the process (e.g., in our implementation of the method,
Phase 1 reduces the time of Phase 2 by 64.99%).

4.2.1. ORBS. We have implemented a variant of
observation-based slicing (ORBS) [12]. ORBS is a tech-
nique that iteratively removes lines from a program and
checks whether the observable behaviour is the desired
one. This is checked for a particular set of test cases. If the
observable behaviour is the desired one, then the line can
be effectively removed and the system can try again with a
different line until no more lines can be removed. When
the system has finished with one line at a time, it can
repeat the process removing two lines at each iteration,
and so on.

Our variant of ORBS iterates over the AST of the pro-
gram (instead of iterating over its lines). In particular, it
iterates over the AST of “Slicep,,..; ” (Figure 3). Roughly, this
variant iteratively tries to remove from the AST each subtree.
Each removal attempt of a subtree produces a “Slice can-
didate” (see Figure 3). For each slice candidate, its behaviour
is compared with the behaviour of the original program
according to Definition 7. If they show the same behaviour,
then that part is permanently removed from the AST pro-
ducing a “New slice” (see Figure 3), and ORBS is restarted
with this new slice as input. Otherwise, the “Previous slice” is
restored and used in a new iteration of ORBS. This iterative
process is incremental (first, it removes one node at a time,
then, two nodes at a time, and so on) and continues until no
more nodes can be removed. This ORBS-based technique is
described in Algorithm 1, where we use E* to denote the
reflexive and transitive closure of E. Note that the algorithm
is parametric with respect to MN, which denotes the
maximum number of nodes that can be removed to produce
a slice candidate (all possible combinations could be checked
when MN=—N—.) Roughly, the algorithm loops currMN
from 1 to MN. It proceeds by removing every combination of
currMN nodes and then testing them. For example, first take
out each one node (and its subtree) and run tests to check
whether the sequences of values at the slicing criterion are
preserved. Second, take out combinations of two nodes (and
their subtrees), test those, and so on. Always building on the
previous result.

For this, the algorithm uses function seq (P, C, t), which
executes program P with the test case t and records the
sequences of values computed at the slicing criterion C. The
recursive function (ORBSAST) iterates top-down over the
ASTremoving subtrees and checking whether the sequences
of values computed with seq for the original program are a
prefix of the sequences of values computed for the new
program with the subtrees removed. This is done with a
battery of tests (also called inputs in our context). Function
ORBSAST is called until a fix-point is reached (repeat-until
loop), for each number of removed nodes from 1 to MN (for
loop).

Scientific Programming

This adaptation of ORBS to ASTs works top-down. This
is more efficient because it works in a concretization fashion,
trying to remove first entire functions, clauses, and data
structures before trying with their components. If a bottom-
up traversal was used instead, whenever a function could be
removed, each of its statements would be removed be-
forehand. This is probably not a problem in other contexts,
but in our context, each time a subtree (e.g., a statement) is
removed from the AST, all generated test cases are run to
validate that removal. Clearly, these validations are a waste of
time in case the whole function is going to be removed.

The only functions that must be provided by the user in
Algorithm 1 are seq and generateTestCases, which is de-
scribed in the next subsection.

It is important to remark that our algorithm is a gen-
eralization of ORBS in two ways. First, because it can slice
any expression and not only lines of code. If we consider that
the nodes removed can only be those subtrees that corre-
spond to lines in the code, then our algorithm is equivalent
to ORBS. However, there is a second generalization. ORBS
uses a window of size § that represent the lines that can be
removed all together. Therefore, ORBS can delete various
lines at a time, but it imposes the restriction that all of them
must be together (inside the window). This means that ORBS
cannot produce the minimal slice of Example 1 because lines
4 and 6 must be deleted together without deleting line 5. Our
approach allows for deleting different (not necessarily ad-
jacent) subtrees of the AST, thus solving this problem and
producing the minimal slice in Example 1.

4.2.2. Test-Case Generation and Validation. The second
module used in this phase is in charge of the test-case
generation, which is implemented by function gen-
erateTestCases in Algorithm 1. The goal is to generate test
cases that execute different paths of the slice and that
evaluate the slicing criterion. Every “Slice candidate” pro-
duced by ORBS is tested by comparing its behaviour with the
one of the original program. If they show the same be-
haviour, then the missing code in the slice candidate is
definitely removed. Otherwise, it is restored. Clearly, the
quality of this phase depends on the generated test cases. An
important remark is that our architecture takes advantage of
Phase 1 not only to produce the refined slice “Slicep,,.,,” but
also to improve the generation of test cases. In particular, we
can observe in Figure 3 that module “Test-Case Generator”
inputs “Slicepy,,;” (instead of the “Original program”).
Generating the test cases from “Slicep,,..;” produces better
test cases because this avoids generating test cases that
explore the removed code in the slice (and,thus that cannot
affect the slicing criterion). Observe, however, that
“Sliceppyse;” 1s not used as input for the module “Test-Case
Validator” because the output of seq for this slice and for the
“Original program” differs according to property 4 in Def-
inition 4. This is explained in Example 3.

Example 3. Consider the following sequences of values
produced in a slicing criterion SC when executing a concrete
input I over the original program (Original), the output slice

Scientific Programming

Output: A quasi-minimal slice of P.
tests = generateTestCases (S, C)

A = getAST (S)
for (currMN € 1... MN)
repeat
A=A

until A=A’
end for
return getProgram (A)

(N,E)=A
while (remNodes + &)
remNodes = remNodes\{node}

E.={(nn')eE|nn eN'}
A' = (N',E)
if (currNode <currMN)

if (A'#A")
return A"
end if
else
if (V (t, seqp) € testsSeq.

return A’
end if
end if
end while
return A
end function

Input: A program P, an executable program slice S of P, a slicing criterion C for
S, and the maximum number of nodes MN to be removed at a time.

testsSeq = {(t, seq(P,C,1)) | t € tests}

A = ORBSAST (A', 1, currMN, @)

function ORBS g7 (A, currNode, curr MN, treatedNodes)

remNodes = {n € N|#n' € treatedNodes . (n',n) € E*}

node = n € remNodes | #n’ € remNodes . (n',n) € E

N' = N\{n € N | (node,n) € E*}

A" = ORBS 441 (A', currNode + 1, currMN,
treated Nodes U {node})

seqp is a prefix of seq (getProgram (A'), C, 1))

ALGORITHM 1: ORBS-based AST pruning algorithm

of phase 1 candidate

(SliceCandidate):
(a) seq(Original, I,SC) =[1,2,3],
(b) seq (Sliceppaser» 1, SC) =11,2,3,5], (1)
(c) seq(SliceCandidate, I,SC) =[1,2,3,7].

(Sliceppge1)» and a slice

In this scenario, if we validate (i.e., decide whether it is a
valid slice) SliceCandidate with respect to Original, then,
according to property 4 of Definition 4, SliceCandidate is an
executable program slice of Original ((a) is a prefix of (c)).
Nevertheless, if we validate SliceCandidate with respect to
Slice pyyqe1»> then the validation fails because (b) is not a prefix
of (¢). This happens because a slice can produce more values
than the original program in the slicing criterion. Therefore,
module Test-Case Validator inputs Original to prevent these
kinds of false negatives.

Figure 3 summarizes the described phases. In the figure,
the phases are enclosed inside light grey boxes; the slicers
and the other processes are represented with dark grey

boxes; the slices and the test cases are represented with white
files; the slice candidates (not validated yet or not valid) are
represented with dashed-border white files; and decision
points are represented with dark rhombuses. The in-
termediate and output slices of the first phase must be static
executable program slices of the original program (Defini-
tion 4), whereas the intermediate and output slices of the
second phase are dynamic executable program slices (see
Definition 5).

Note that this is a general scheme that can be adapted to
any language. For this, we only need to instantiate some of
the dark grey components: the program slicers, the test-case
validator, and the test-case generator (the ORBS technique is
already paradigm-independent and works for any language).

5. Implementation of the Method for Erlang

We describe in this section how we have instantiated the
method for Erlang. The method follows the schema shown in

Figure 3, where we use two program slicers in Phase 1 called
Slicerl [15] and e-Knife; CutEr [24] as a test-case generator;
SecEr [25] as a test-case validator; and Cover [26] as a
coverage meter to decide when to stop generating test cases.

5.1. Phase 1: Slicerl and e-Knife. In our setting, we used two
slicers: Slicerl [15] and e-Knife. We selected Slicer] for four
reasons: First, because it is based on a data structure called
Erlang Dependence Graph (EDG) whose granularity level is
minimal (i.e., tokens). This allows for removing expressions
even inside a line of code. Second, because it is open source,
and thus, we have been able to access its internal behaviour
and analyses, extend it, and use it in our implementation.
Third, because it implements some novel optimization
techniques that make it very precise. And fourth, because it
is interprocedural. Other slicers such as the Wrangler’s slicer
[27] were quickly discarded because they are only intra-
procedural, and thus, they cannot handle with precision any
of the benchmarks in the suite (note that this does not mean
that the suite is useless for intraprocedural slicers. It just
means that intraprocedural slicers are less useful to construct
the suite.)

The second slicer is called e-Knife. It is a static slicer for
Erlang on which we have been working for the last few years.
e-Knife is also based on the EDG and thus, it has the same
granularity level as Slicerl tokens (every token is represented
in the EDG with a different node that is susceptible of being
sliced off). Moreover, e-Knife incorporates a new technique
to precisely slice composite data structures, which com-
plement the static analyses made by Slicerl.

Example 4. Given the program on the left in Figure 5, with
the slicing criterion (3, X), Wrangler and Slicerl produce the
slice in the middle, whereas e-Knife produces the slice on the
right.

Note that, even though X depends on A and A depends
on 2, X does not depend on 2. Only e-Knife is able to detect
intransitive data dependencies.

5.2. Phase 2: CutEr, Cover, and SecEr. In this section, we
explain how we have instantiated for Erlang the test-case
generation and validation tasks needed for ORBS.

5.2.1. Test-Case Generation. We ensure high quality test
cases using concolic testing. We did two sequential steps to
ensure a 100% branch and statement coverage:

(i) Concolic test-case generation. This technique analyses
the branching conditions in the source code and
generates constraints that the input must satisfy to
visit all branches. Then, a constraint solver is used to
produce the test cases. We used a concolic testing tool
for Erlang called CutEr [24]. The following example
shows that white-box testing can generate test cases
that execute very unusual branches.

Scientific Programming

Original Program Wrangler’s Slice e-Knifes Slice
1 main () -> 1 main () -> 1 main () ->
2 A={12}, 2 A=1{12}, 2 A ={1, sliced},
3 {X,Y} = A 3 {X,_}=A. 3 {X,_}=A
F1GURE 5

Example 5. Consider again the program in Figure 2(a). The
case branch in line 8 will be hardly executed with random
test-case generation. 100% branch coverage can only be
achieved if a test case exists with X =123456789. However,
this does not guarantee the evaluation of all expressions in
the branch. 100% statement coverage in the first branch can
only be achieved if a test case exists with X = 123456789 and
Y<>0.

(ii) Semirandom test-case generation. We complemented
our white-box testing with black-box testing. We
implemented random generators for all possible data
types in Erlang.

The maximum number of test cases to be generated is a
parameter of our method. This number depends on the
concrete code to be processed. The number also has a direct
impact on the run time and on the precision of the final slices
produced. In the default configuration, our implementation
generates test cases until all the codes are tested (i.e., 100%
statement and branch coverage). For this, it generates 10 test
cases at a time, accumulating the test cases produced and
measuring the coverage at each step with a tool called Cover
[26]. Cover is a coverage analysis library for Erlang that can
determine the coverage achieved when executing a program
with several invocations (in our setting, test cases) and that
can also identify the uncovered branches. It basically in-
struments the code so that every line is augmented with a
new function call. Therefore, by counting the calls per-
formed during the execution of the test cases we can know
exactly what lines were executed and how many times. When
Cover reports that 100% statement and branch coverage is
reached, the test-case generation finishes. We want to note
that these coverages are only metrics but not objectives.
100% coverage does not necessarily imply high slicing
precision.

Example 6. Consider again the program in Figure 2(a). A
test case with input X=1 and Y=1 does execute all ex-
pressions in line 11—100% branch and statement coverage
in this line— but it does not trigger the division-by-zero
exception. Finding this situation would require to generate
more test cases (e.g., X=1and Y=0).

5.2.2. Test-Case Validation. Our test-case generation ob-
tains inputs that ensure a 100% statement and branch
coverage. However, in our case, these inputs must be
complemented with very specific outputs to form the test
cases: the sequences of values the slicing criterion is eval-
uated to. In our case, this is done by a tool called SecEr [25]
(which implements function seq in Algorithm 1). Given a

Scientific Programming

slicing criterion, SecEr instruments the source code in such a
way that the execution of the instrumented code obtains as a
side effect the sequence of values it is evaluated to.

6. Evaluation of the Method

We identified a collection of slicing problems and challenges
and applied our method to obtain 23 benchmarks for Erlang
(23 slicing criteria defined over 18 different Erlang pro-
grams) that (combined) implement all of the problems.
These benchmarks form a suite that contains triples
program-—slicing criterion-minimal slice. The slices produced
in our implementation are QM-slices (Definition 7) and they
are fine-grained slices because they have been obtained
working over AST nodes (Definitions 8 and 9). In this
section, we show the behaviour of each component of the
method.

6.1. Phase 1: Behaviour of Slicerl and e-Knife. The fix point of
Phase 1 was reached in only one iteration (the slice produced
by e-Knife (Slice 2) could not be further reduced by Slicerl).
The first slicer needed 12820 milliseconds to slice all the
benchmarks except for nine of them whose syntax is not
supported by Slicerl. This produces an average of
916 milliseconds per benchmark. Slicer] was able to remove
619 nodes from “Original program” in total (an average
reduction of 31.89%). The second slicer needed
48361 milliseconds to slice all the benchmarks (an average of
2103 milliseconds per benchmark) (e-Knife is a multi-
paradigm slicer implemented in Java. For this reason, it
needs extra time to access Erlang). e-Knife further reduced
the slices produced by Slicerl by 59 nodes in total (an average
extra reduction of 2.48% over the original program). If we
also consider those benchmarks that Slicerl cannot handle,
then the extra reduction is 14.67%.

6.2. Phase 2: Behaviour of ORBS and CutEr

6.2.1. ORBS. The execution of Algorithm 1 with Slicep,,.,
and removing one node at a time (MN = 1) reduce the
original program to 50.02% (as an average). This is an extra
reduction of 15.84% over the result of phase 1. Afterwards,
Algorithm 1 was executed again but this time removing two
nodes instead of one. The slice remained unchanged in all
cases (0% reduction). Then, three nodes were removed in
each iteration, and 0% reduction was achieved. Finally, four
nodes were removed in each iteration for some benchmarks
(according to our estimations, the evaluation of the other
benchmarks would have taken around 8 months). Again, in
all cases, 0% reduction was achieved when four nodes were
removed in each iteration. Due to the combinatorial ex-
plosion, we did not run any of the benchmarks with five
nodes because its run time was estimated in years.

We compare the four iterations performed with ORBS in
Table 1. The columns labelled with i nodes, where
i € {1,2,3,4}, represent each of the iterations of the for loop
in Algorithm 1 (the first removing 1 node in each iteration,
the second removing 2 nodes in each iteration, etc.). In these

columns, Iter is the number of different iterations performed
by the algorithm (i.e., the number of configurations that
were checked, where each configuration is the result of
removing i nodes from the AST), Time is the total time used
to check the configurations, and % is the percentage of nodes
that remain from the original code. Note that the algorithm
only removed nodes when trying to remove single nodes (1
node).

This whole exhaustive process (with MN = 4) took nine
days, thirteen hours, and fifty-one minutes. However, the
ORBS loop with 2, 3, and 4 nodes did not produce any
reduction (and consumed most of the time). Therefore,
unless one is specially interested in producing minimal slices
(as we are), it is a good design decision to configure ORBS to
only remove one node at a time. This nearly always produces
exactly the same results, but the time is significantly reduced.
With this configuration (MN = 1), the whole suite of
benchmarks was sliced in 14 minutes and 25 seconds, pro-
ducing the same results.

6.2.2. CutEr. The coverage achieved by the test cases gen-
erated with CutEr for each benchmark is listed in column
CutEr of Table 2. In 14 out of 23 benchmarks, CutEr pro-
duced a 100% branch coverage. In 4 out of 23 benchmarks,
CutEr produced a branch coverage <100%. In 5 bench-
marks (b16_s58C, bl2_s40BS, bl2_s92A, bl5_s65Shown,
and b18_s50]), CutEr returned an error or was unable to
generate any test case.

In all those benchmarks where CutEr did not produce a
100% branch and statement coverage, a second phase of
semirandom test-case generation was activated to reach
100%. Column Random of Table 2 shows this second phase
where a 100% statement and branch coverage was achieved
in only 0.12 seconds on average.

6.3. Empirical Evaluation. Prior to the design and applica-
tion of our method, we first produced the slices of the
benchmarks with Slicerl and with e-Knife, separately. This
enables evaluating how precise QM-slices (obtained with our
method) are compared to standard slices (obtained with two
program slicers).

6.3.1. Executable Program Slices. We sliced all the bench-
marks with two Erlang program slicers (Slicerl and e-Knife)
that produced an interesting result: the empirical evaluation
of (and a comparison between) each slicer. Slicerl could not
handle nine of the benchmarks (it crashed due to unhandled
syntax constructs). If we omit these benchmarks, then their
precision was similar. As an average, Slicer] reduced the
original programs (X = 31.90%, ¢ = 21.29%), while e-Knife
reduced them (X = 33.03%, 0 = 25.18%). However, because
the analyses performed by both slicers are different, Slicerl
was better twice and e-Knife was better thirteen times. This
clearly justifies the combination of program slicers in the
first phase of our method. We also compared the following
three slices for all benchmarks:

10 Scientific Programming
TaBLE 1: Comparison of the different iterations of ORBS.
1 node 2 nodes 3 nodes 4 nodes
Benchmark) i))

Tter Time (s) % Tter Time (s) % Iter Time % Iter Time (s) %
bl_s56Year 10430 441.48 28.29 23155 649.08 0 692795 269172.36 0 — — —
b2_s38C 253 10.76 26.56 264 6.08 0 1072 23.00 0 2714 53.34 0
b2_s40D 82 3.51 29.69 467 10.49 0 3460 73.66 0 16110 315.32 0
b3_s28C 133 5.50 45.28 136 3.69 0 395 8.76 0 621 15.35 0
b4_s32Abb 193 8.36 72.41 1453 36.41 0 21319 488.77 0 211141 4437.24 0
b5_s30C 42 2.21 94.44 758 18.64 0 7909 165.45 0 54567 1134.96 0
b6_s35C 222 9.07 28.57 414 10.00 0 2923 61.19 0 13063 257.84 0
b6_s36D 126 5.33 20.30 206 4.82 0 836 17.90 0 2039 39.64 0
b7_s27C 18 0.87 78.57 105 3.38 0 234 5.33 0 285 7.54 0
b8_s29Deposits 244 23.14 72.50 1165 51.24 0 15468 540.83 0 140135 4134.79 0
b9_s59A 112 4.96 88.14 799 18.83 0 8039 177.06 0 51658 1353.71 0
b10_s34DB 253 43.48 76.43 4383 225.84 0 123884 4651.84 0 2477094 81536.00 0
b11_s28C 28 1.18 80.00 293 7.00 0 1588 44.10 0 5509 133.16 0
b12_s40BS 138 12.56 25.77 4872 257.64 0 145830 5510.94 0 3085914 102958.79 0
b12_s92A 83 7.17 20.70 3168 166.99 0 74649 2625.25 0 1227042 37374.00 0
b13_s38Newl 41 0.65 69.70 700 29.19 0 6649 208.36 0 39929 1112.95 0
bl4_s44V 214 6.78 26.32 983 22.33 0 11418 224.08 0 84958 1689.93 0
b14_s45W 137 156.76 23.92 808 465.78 0 8169 4563.61 0 54519 30204.37 0
b14_s467Z 127 5.35 18.18 357 8.16 0 2402 47.41 0 10629 215.53 0
b15_s65Shown 657 34.97 81.33 13208 384.85 0 661963 1626798 0 23716885 560087.23 0
b16_s58C 25 1.37 27.78 241 13.07 0 1195 75.92 0 3465 399.11 0
b17_s54X 408 38.39 68.35 848 69.63 0 9230 3263.62 0 — — —
b18_s50] 341 41.25 48.42 588 50.01 0 4965 3761.92 0 — — —
Average 622.04 37.61 50.08 2581.35 109.27 0 78538.78 13564.32 0 1356446.83 35976.58 0
Median 137 717 45.28 758 22.33 0 7909 208.36 0 45793.50 1123.95 0
Total 14307 865.09 1151.67 59371 2513.15 0 1806392 31197934 0 31198277 798490.53 0

S, = SliceSlicerl(Slicee—Knife (B, C),C), generation and ORBS limited to only one iteration (see
Section 4.2 for a justification of this decision). Finally,
S, = slice,_g;fe (slicegjicer; (B, C), C), (2) column Iterations shows the number of configurations

83 = slicegice (B, C) Nislice,_yi s (B, C),

where B is a benchmark and C is a slicing criterion (note
that, theoretically, unions and intersections of slices are not
necessarily slices [17], but in practice (e.g., with all our
benchmarks), they usually are). We discovered that, for all
benchmarks, $; = S, €S;. Hence, (i) the order in which the
slicers were executed was not relevant and (ii) it is better
composing slicers sequentially (i.e., slicing slices) than
composing them in parallel and get the intersection. The
reason is that one slicer can take advantage of the parts
removed by the other slicer. This justifies the need for a fix-
point loop in Phase 1 of the method.

6.3.2. Quasi-Minimal Slices. Table 2 summarizes the em-
pirical evaluation of our particular implementation of the
proposed method. Concretely, it compares the size of the
successive refinements of all the slices, and the time needed
by all processes of the two phases. Each row represents a
different benchmark. For each benchmark, column Nodes
represents its number of AST nodes, which corresponds to
the size of the programs/slices. In the case of the slices, we
also include the percentage of nodes that remain in the slice
with respect to the original program. Column Time shows
the time expended in each phase measured in seconds (s).
Phase 2 is divided into two different processes: test-case

checked by ORBS (that is, the number of different nodes
removed to produce slice candidates).

It is important to compare the data of the different rows
taking into account that the columns provide comple-
mentary information. For instance, if we compare the re-
duction % achieved by Slicerl for benchmarks b5_s30C and
bl4_s44V, one can think that the slice produced for
bl4_s44V is much better (it was reduced to 37.8%, while
b5_s30C was only reduced to 94.44%). However, if we
observe the % in the ORBS column, we can see that the
conclusion could be the opposite: Slicerl produced a minimal
slice for b5_s30C, while the slice produced for b14_s44V was
not minimal.

6.3.3. Lessons Learnt. Our implementation of the proposed
method and its empirical evaluation has answered several
research questions in the process:

(1) Is Phase 1 really needed? The final slice produced in
Phase 2 is the same with independence of whether
Phase 1 is used or not. However, the use of Phase 1
reduced the time of Phase 2 by 64.99%.

(2) Run time: How long does each process last? The whole
suite was sliced in 1054 s. (Phase 1: 62 s, ORBS: 865 s,
and test case generation: 127 s). This provides an idea
of the relative costs of the phases.

11

9¢"FS0T (80°05) €6¥1 60°598 LOSHT (s80°1) (og'9z1) (€6°59) 067C 80°6¥ (65°08) TL£€ 8l 166€ [elog,
8T'S¥ (00°0S) 1 LTL L€1 ('s€0°0) %00T ('sS6'%) %001 (95°92) sz 81T (¥¥'¥6) L8 €60 871 UBIPIA
$8'S¥ (80°09) 1679 19°L¢ $0°79 (sTT'0) %001 (S6%'S) %LTS6 (£6'S9) LS'66 4 (65°08) T9°9%T 950 TSELT aderaay
€T (¢v'8y) 9F STTY 1543 (s%0°0) %00T — (¥8'96) 26 701 — — S6 [0ss7819
6L9% (5€'89) ¥S 6€°8¢ 80F — (88€L) %00T (07°96) 9L 10T — — 6L XPSST219
60°€ (8£°L2) 0€ LT ST (s%0°0) %001 — (8£°L2) 0¢ 191 — — 80T D8Ss91q
L€ (€€'18) €81 L6F7€ LS9 (s%0°0) %00T — (£9'98) s61 0v'c — — gTe umoyssos G1q
86°CT (81'81) 8¢ Ge's LT — (S¥S¥) %00T (7'9%) L6 €TT (86°5S) L11 98°0 60T Z9%s #19
¥L €91 (¢6°€7) 6F 94951 LE1 (s €8°0) %00T (866'7) %L9 (29°0€) ¥9 0T (85°Th) 68 96°0 60¢ MSHS F1q
8511 (2€'97) SS 8.9 ¥1C — (569'T) %00T (68°5€) SL 81'C (08°2€) 62 €60 60¢ AVPS F1q
8¢S (0£69) 9% S9°0 ¥ — (559'T) %001 (0£69) 9% SIT (0£°69) 9% ¥6°0 99 IMINBES €19
8¢°6 (0£02) ¥6 LTL €8 (5€0°0) %00T — (0£°02) ¥6 81T — — ¥S¥ VT6s CIq
ITST (LL:5T) L11 9671 8¢l (5€0°0) %00T — (66°S7) 811 ST — — 294 S90¥s 219
718 (00°08) € 8Tl 8T — (596°¢) %001 (0008) € SI'T (0008) 7€ €8°0 o¥ D8Ts 119
12°0S (€%'92) L0T i €5¢ (20°0) %00T (S96'%) %C8 (6T6L) TT1 STT — — 0v1 aares o1q
70°TT (P1°88) S 96'¥ 41 — (S £0'FT) %00T (€5°16) ¥S 81T (19'96) LS 18°0 6S V65S 69
€0'6¢ (05°2L) 85 AN X4 PP (5€0°0) %00T (S69°CT) %98 (00°56) 92 €TT (05°£6) 8L S6°0 08 sysoda167s 89
659 (L5'82) Tt L8°0 81 — (S19°7) %001 (L582) Tt e (L58L) TT S6°0 8T DLTS L9
0811 (0€°07) LT €¢'S 91 — (867°€) %001 (¥8°9¢) 6% 91'¢C (¥89¢) 6% 101 €€l1 asss 99
PI€T (£5°87) 8¢ L0°6 e — (5£8°0T) %00T (98°T%) LS 81'C (799%) 79 01 el D5¢s9q
ol F¥¥6) 15 17°¢C w (s20°0) %00T (S€0°S) %8L F¥¥6) 15 L1T (¥¥¥6) 15 66°0 ¥S D0¢s ¢q
001 (7'2L) €9 9¢'8 €61 — (SS¥°0T) %00T (90°58) ¥ 61°¢ — — L8 qQqvees 79
6511 (8Tsh) ¥¢ 0SS €€l — (SST'€) %001 (70°99) s¢ 44 (¥099) s¢ 780 €S D8Ts €q
ww (69°67) 8¢ IS¢ 78 — (ST10°9T) %00T (9592) 86 €T (95°92) 86 880 8Tl aovs zq
88°6¢ (95°97) ¥¢ 94701 €5t — (S€091) %001 (zzvL) s6 (44 (zzvL) s6 L8°0 871 D8¢s ¢q
9°6¥F (¥5°82) 181 8¥ IH¥ 0701 — (5€6%) %001 (sT'62) 699 49 — — 0z8 Ie3X96571q
(s)awiL, (%) S9PON (Ss) dwIL SUONEI] wopuey ceive) (%) s?poN. (s) duui, (%) SSPON (s)wiL s3poN
. (owm e Je 9pou duo) STYO uoneraudd ases-1sa, afiuy-o 14991]S [euBuo
T aseyq 1 aseyq

Scientific Programming

“SueIg 10y pajenjUBISUI POYIOW I} JO UonenyeAd [estrrdury :g a14v],

12

(3) Accuracy: How accurate is each phase (on average)?
Phase 1 reduced the original program 34.07%, and
Phase 2 further reduced it 15.85% (producing the
minimal slice).

(4) Concolic vs. random test cases: Is concolic testing
enough? No. CutEr was able to produce the desired
coverage 60.87% of the times. In the other 39.13%,
random test-case generation was needed.

(5) Slicerl vs. e-Knife: Which is better (on average)? When
they were run independently, e-Knife was better in
13/23 benchmarks. Table 3 shows the comparison of
both slicers.

(6) Sequential vs. parallel composition (intersection) of
slicers: Which is better? Sequential composition of
slicers provides the best results.

7. A Suite of Minimal Slices

Following the method presented, we have generated a suite
of minimal slices for Erlang. In Erlang, this suite is especially
useful because it presents special challenges for program
slicing (higher order, anonymous functions, pattern
matching, etc.) and, moreover, in this language, no studies
evaluating current program slicers existed yet.

7.1. Selection of Benchmarks. The suite of benchmarks has
been designed to contain small to medium programs that
contain well-known program slicing challenging problems
described in the literature (e.g., dead code, unreachable
clauses [21], pattern matching [15], and collapse and ex-
pansion of composite data structures [28]). For instance, the
suite includes classical slicing programs used in different
papers such as word count, the SCAM mug, the Montréal
boat example, and the Horwitz et al. interprocedural slice
[29]. The objective is to challenge program slicers to check
how many of these programs are they able to slice. In order
to test different syntax constructs in Erlang that are also
challenging for program slicing (e.g., list comprehensions,
block structures, chars, and remote function calls), various
benchmarks have been taken from the github repository and
the rosetta code programming chrestomathy website (http://
rosettacode.org/). For each benchmark, we defined different
slicing criteria so that their slices can be used to test slicers
that work at the function, clause, line, or expression level.
The suite of benchmarks has been designed to contain small
to medium programs that

(i) Require interprocedural techniques. Interproce-
dural slicing is a challenge in functional languages.
For instance, the program slicer of Wrangler [20],
one of the most advanced Erlang refactoring tools, is
still intraprocedural.

(ii) Can be sliced by slicers of different performance.
The main goal of the suite is not performance but
precision. Therefore, we prefer small to medium
programs for which we can systematically produce
minimal slices rather than large programs for which

Scientific Programming

reasoning about minimality is impossible due to its
prohibitive cost.

(iii) Contain different slicing problems. In fact, each
benchmark defines concisely one specific slicing
challenge.

This suite can be used to evaluate and compare program
slicers, but it is also particularly useful to develop slicers. To
help in this last task, we have implemented a tool that inputs
a program slicer and it slices all the benchmarks in the suite
with this program slicer. Then, the slices the program slicer
obtains are compared with the minimal slices in the suite to
calculate the accuracy in terms of preserved AST nodes
(i.e., using the minimum granularity). Finally, a report in-
dicating the recall, precision, and F1 is provided to the user
as well as the variation of these metrics with respect to the
best results the program slicer has achieved so far. The suite
and the tool are publicly available at http://personales.upv.
es/josilga/slicing/bencher/.

7.2. Structure of the Suite. All benchmarks are labelled so that
their purposes and properties can be identified by just
looking at their labels. The labels classify the benchmarks
depending on the slicing challenges they include and on the
syntax constructs they use.

Example 7. All benchmarks are identified with a code. For
instance, benchmark b15_s65Shown refers to program 15
with slicing criterion {65, Shown). The code of program 15
was originally extracted from rosettacode. Then, the code was
augmented and redesigned to include challenging problems
for slicing. Finally, this benchmark has been labelled with IP,
LC, AF, Rem. Their meanings are as follows:

IP: the benchmark requires interprocedural slicing
LC: the benchmark uses list comprehensions

AF: the benchmark defines and uses anonymous
functions

Rem: the benchmark contains remote procedure calls
to external functions (nonavailable code)

All the information about the meaning of the labels and
about the classification of benchmarks can be found on the
public website of the suite.

7.3. Minimality. Our method/slicer produces quasi-
minimal slices. Ensuring minimality is undecidable be-
cause not all possible test cases can be executed (they are
potentially infinite). However, our method palliates this
problem with a test-case generation phase that ensures 100%
branch and statement coverage combining white-box and
black-box testing. Thanks to this phase, the quasi-minimal
slices produced are actually minimal in many cases. In
particular, we have manually proved that all 23 quasi-
minimal slices generated with our tool (with MN =1 and
generating random test cases until 100% statement and
branch coverage is achieved) are in fact minimal slices.

http://rosettacode.org/
http://rosettacode.org/
http://personales.upv.es/josilga/slicing/bencher/
http://personales.upv.es/josilga/slicing/bencher/

Scientific Programming 13
TaBLE 3: Empirical evaluation and comparison of Slicerl and e-Knife.

Original Slicerl e-Knife

Nodes Time (s) Nodes (%) Time (s) Nodes (%)
bl_s56Year 820 — — 3.21 647 (78.90)
b2_s38C 128 0.87 95 (74.22) 2.07 95 (74.22)
b2_s40D 128 0.88 98 (76.56) 2.08 98 (76.56)
b3_s28C 53 0.82 35 (66.04) 2.08 35 (66.04)
b4_s32Abb 87 — — 2.19 74 (85.06)
b5_s30C 54 0.99 51 (94.44) 2.09 51 (94.44)
b6_s35C 133 1.02 62 (46.62) 2.10 72 (54.14)
b6_s36D 133 1.01 49 (36.84) 2.09 49 (36.84)
b7_s27C 28 0.95 22 (78.57) 2.16 22 (78.57)
b8_s29Deposits 80 0.95 78 (97.50) 2.08 76 (95.00)
b9_s59A 59 0.81 57 (96.61) 2.06 54 (91.53)
b10_s34DB 142 — — 2.78 113 (79.58)
b11_s28C 40 0.83 32 (80.00) 2.09 32 (80.00)
b12_s40BS 454 — — 2.52 118 (25.99)
b12_s92A 454 — — 2.18 94 (20.70)
b13_s38Newl 66 0.94 46 (69.70) 217 46 (69.70)
bl4_s44V 209 0.93 79 (37.80) 2.27 99 (47.37)
bld_s45W 209 0.96 89 (42.58) 2.28 64 (30.62)
bl4_s46Z 209 0.86 117 (55.98) 2.28 97 (46.41)
b15_s65Shown 225 — — 2.39 195 (86.67)
bl6_s58C 108 — — 1.67 30 (27.78)
b17_s54X 79 — — 1.01 76 (96.20)
b18_s50] 95 — — 1.02 92 (96.84)
Average 173.52 0.92 65 (68.10) 2.12 101.26 (66.97)
Average total 173.52 0.56 146.61 (80.59) 2.12 101.26 (66.97)

Concretely, we have proven minimality for each single pair
(benchmark, slicing criterion) in the suite, proving that
each single node of the sliced AST is actually needed and
that all required nodes are part of the slice. Each bench-
mark of the suite is thus accompanied with a proof of
minimality.

8. Related Work

One approach similar to ours is dynamic program dicing,
proposed by Chen and Cheung [30] as an alternative to static
program dicing, which was originally proposed by Lyle and
Weiser [31]. This approach obtains a program slice formed
by the statements contained in the traces of a set of failed
executions and not in the traces of a set of correct executions.
In most cases, the remaining statements would contain the
source of the error. Nevertheless, this approach presents two
differences with respect to our approach. 1) It is incomplete.
The slices produced may not contain the errors that pro-
duced the discrepancies. (2) The slices produced may not be
executable, and thus, they cannot be used to check the
discrepancies.

In our approach, we use a technique that can be con-
sidered a variant of ORBS [12]. ORBS is a language-
independent technique, and thus it removes lines without
parsing them. Hence, if two statements are placed in the
same line, they are removed together. Of course, this can also
produce compilation errors if a part of one syntax construct
is removed. Instead of removing lines of the code, we use a
mechanism to remove expressions or replace them by a fresh

constant sliced; thus, the obtained precision is higher and,
moreover, this enables us to remove expressions with in-
dependence of how they were coded. Our proposed ORBS
algorithm is similar to the one proposed in [32] that removes
nodes one by one. Specifically, the algorithm proposed in
this work is a generalization of [32], because we also allow to
iteratively remove N nodes (instead of one) by computing all
possible combinations with an efficient top-down pruning
algorithm.

Our technique is also similar to Delta Debugging (DD)
[11, 33]. DD was originally defined for debugging, but it can
also be used to compute slices. The way in which DD and our
technique compute slices differ. DD relies on the use of a
trace, which is cut in the middle first, in a quarter next, and
so on. This process is too expensive compared to our ap-
proach (and also compared to ORBS). Moreover, DD can
produce slices that are not correct, in the sense that their
behaviour differs from the one of the original program.
Clearly, this is useless for our purposes because we need to
ensure that the slices of the suite are correct.

Another related approach is Critical Slicing [5]. The idea
behind Critical Slicing is the same as ORBS: they both
remove lines and check whether the slice produced by re-
moving each line preserves the original behaviour. The
difference is that Critical Slicing removes lines one at a time,
while ORBS removes them incrementally. As a consequence,
(i) contrarily to ORBS, Critical Slicing needs a fixed number
of compilations (one per line), and (ii) critical slices can be
incorrect because two lines individually removed without
changing the behaviour at the slicing criterion may produce

14

a program with a different behaviour when they are removed
together. Hence, as DD, Critical Slicing also produces in-
correct slices.

Comparing and evaluating the performance of program
slicers and slicing-based techniques has been traditionally of
wide interest, not only because this enables developers to
select the best slicer or technique for their purposes but also
because it provides information about how precise the slicer
is. For this reason, many surveys and works exist (e.g.,
[18, 34, 35]) that evaluate and compare the size of the sli-
ces produced by different techniques. Unfortunately, due to
the lack of a standard suite of benchmarks, in most cases, the
benchmarks are implemented from scratch to make the
experiments [34, 35], they are taken from different papers
and projects [12], or they belong to suites of programs not
specific for slicing [18]. Moreover, often, the benchmarks
that are used in the experiments are not publicly available or
accessible (e.g., in [18, 34, 35]), which makes them im-
possible to replicate and/or validate the study. Furthermore,
the unavailability of the benchmarks prevents other re-
searchers and developers from comparing their techniques
with the reported results. In consequence, these reports are
just a fixed picture of the state of the art, but they are not
usable to measure and compare future techniques.

A suite of program slicing benchmarks would solve these
problems, but we are not aware of any suite of benchmarks
prepared for slicing, i.e., with specific challenging problems
for slicing and with solutions (minimal slices) for each
benchmark. The construction of this suite is completely novel.
Unfortunately, computing the minimal slices of each
benchmark is not trivial at all. In fact, it is undecidable in the
general case, so we had to manually prove minimality. The
techniques used in this system are very related to other
existing techniques and methods. In particular, we use
semirandom test-case generation similar to the one imple-
mented by SmallCheck [36]. We also prevent duplicated test
cases but, contrarily to SmallCheck, our test-case generation is
not based on properties.

9. Conclusions

This work presents a method to produce a new type of slice
that we call quasi-minimal slice. This method has been used
to obtain a suite of minimal slices. In all our benchmarks, we
have proved that the quasi-minimal slices obtained with the
method are indeed minimal slices.

The method includes the use of several tools, including
program slicers, white-box and black-box test-case gener-
ators, and coverage tools that are combined in such a way
that they minimize their global computation effort and
maximize their performance.

In the process of designing the method, we had to define
new algorithms to further reduce the size of our slices. In
particular, we have implemented a new interprocedural slicer
for Erlang, e-Knife, and we have adapted the ORBS technique
to work with AST nodes instead of lines. Of course, the
methodology can be perfectly used with the standard ORBS
technique but reimplementing it to use as an AST instead of
lines has increased its precision.

Scientific Programming

We have instantiated the proposed methodology and
produced the first program slicing benchmark suite for
Erlang. As a result, we have developed a collection of
benchmarks with specific and challenging problems for
program slicing. Each benchmark in the suite is composed of
its slicing criteria, their associated minimal slices (accom-
panied with a proof), and metainformation to ease its use
and classification.

The evaluation of the methodology has produced in-
teresting residual results. In particular, we have empirically
evaluated and compared two Erlang slicers, proving that
they are complementary and should be combined if reducing
the size of the slice is critical. We have also evaluated three
combinations of the slicers (two sequential and one in
parallel) showing that the sequential combinations produce
better results. We have also evaluated the ORBS technique
with our suite of benchmarks. This has revealed that re-
moving one node at a time often (always in our experiments)
produces the same results as removing 2, 3, and 4 nodes at a
time. This justifies skipping these expensive configurations.

It is also interesting to remark that our implementation
of the method is fully automatic and can be used itself as a
very precise slicer because it takes a program and produces a
QM-slice. Moreover, this new slicer is not only precise but
also scalable if we parameterize Algorithm 1 with MN=1.
According to our experiments (Table 2), this significantly
reduces the run time at no cost (precision is not reduced
according to our experiments because MN > I never reduced
the size of any slice).

Data Availability

The data used to support the findings of this study are in-
cluded within the article.

Disclosure

A preliminary version of this paper was presented at the XVI
edition of the Spanish Workshop on Programming Languages
(PROLE 2016).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work has been partially supported by MINECO/AEI/
FEDER (EU) under grant TIN2016-76843-C4-1-R and by
the Generalitat Valenciana under grant PROMETEO-II/
2015/013 (SmartLogic).

References

[1] M. Weiser, “Program slicing,” in Proceedings of 5th in-
ternational conference on Software engineering (ICSE °81),
pp- 439-449, IEEE Press, San Diego, CA, USA, March 198l.

[2] F. Tip, “A survey of program slicing techniques,” Journal of
Programming Languages, vol. 3, no. 3, pp. 121-189, 1995.

Scientific Programming

[3] D. W. Binkley and K. B. Gallagher, “Program slicing,” Ad-
vances in Computers, vol. 43, no. 2, pp. 1-50, 1996.

[4] J. Silva, “A vocabulary of program slicing-based techniques,”
ACM Computing Surveys, vol. 44, no. 3, pp. 1-41, 2012.

[5] R. A. DeMillo, H. Pan, and E. H. Spafford, “Critical slicing for
software fault localization,” ACM SIGSOFT Software Engi-
neering Notes, vol. 21, no. 3, pp. 121-134, 1996.

[6] C. Ochoa, J. Silva, and G. Vidal, “Lightweight program
specialization via dynamic slicing,” in Proceedings of 2005
ACM SIGPLAN Workshop on Curry and Functional Logic
Programming, WCFLP 05, pp. 1-7, ACM, Tallinn, Estonia,
September 2005.

[7] A. Hajnal and 1. Forgdcs, “A demand-driven approach to
slicing legacy COBOL systems,” Journal of Software: Evolution
and Process, vol. 24, no. 1, pp. 67-82, 2011.

[8] A. Majumdar, S. J. Drape, and C. D. Thomborson, “Slicing
obfuscations: design, correctness, and evaluation,” in Pro-
ceedings of 2007 ACM Workshop on Digital Rights Manage-
ment, DRM 07, pp. 70-81, ACM, Alexandria, VA, USA,
October 2007.

[9] V.-P. R.. Indus, “A toolkit to customize and adapt Java
programs,” http://indus.projects.cis.ksu.edu.

[10] P. Anderson, T. Reps, and T. Teitelbaum, “Design and
implementation of a fine-grained software inspection tool,”
IEEE Transactions on Software Engineering, vol. 29, no. 8,
pp. 721-733, 2003.

[11] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software En-
gineering, vol. 28, no. 2, pp. 183-200, 2002.

[12] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and

S. Yoo, “ORBS: language-independent program slicing,” in

Proceedings of 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE 2014, pp. 109-

120, ACM, Hong Kong, China, November 2014.

M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal,

“Dynamic Slicing techniques for petri nets,” Electronic Notes

in Theoretical Computer Science, vol. 223, pp. 153-165, 2006.

[14] J. M. Almendros-Jimenez, J. Silva, and S. Tamarit, “Xquery

optimization based on program slicing,” in Proceedings of 20th

ACM International Conference on Information and Knowledge

Management, CIKM ’11, pp. 1525-1534, ACM, Glasgow, UK,

October 2011.

J. Silva, S. Tamarit, and C. Tomas, “System dependence graphs

in sequential Erlang,” in Proceedings of 15th International

Conference on Fundamental Approaches to Software Engi-

neering (FASE 2012), volume 7212 of Lecture Notes in Com-

puter Science (LNCS), pp. 486-500, Springer, Tallinn, Estonia,

April 2012.

M. Llorens, J. Oliver, J. Silva, and S. Tamarit, “Dynamic slicing

of concurrent specification languages,” Parallel Computing,

vol. 53, pp. 1-22, 2016.

[17] A. De Lucia, M. Harman, R. Hierons, and J. Krinke, “Unions
of slices are not slices,” in Proceedings of Seventh European
Conference on Software Maintenance and Reengineering,
CSMR 03, p. 363, March 2003.

[18] D. Binkley, N. Gold, and M. Harman, “An empirical study of
static program slice size,” ACM Transactions on Software
Engineering and Methodology, vol. 16, no. 2, p. 8, 2007.

[19] D. Binkley, “Precise executable interprocedural slices,” ACM
Letters on Programming Languages and Systems, vol. 2, no. 1-
4, pp. 31-45, 1993.

[20] H. Li, S. Thompson, L. Laszlo et al., “Refactoring erlang
programs,” in Proceedings of 12th International Erlang/OTP
User Conference, Stockholm, Germany, November 2006.

(13

(15

(16

15

[21] K. Sagonas, J. Silva, and S. Tamarit, “Precise explanation of
success typing errors,” in Proceedings of ACM SIGPLAN 2013
Workshop on Partial Evaluation and Program Manipulation,
PEPM ’13, pp. 33-42, ACM, Rome, Italy, January 2013.

[22] K.-C. Tai, “The tree-to-tree correction problem,” Journal of the
ACM, vol. 26, no. 3, pp. 422-433, July 1979.

[23] D. d. C. Reis, P. B. Golgher, A. S. Silva, and A. H. F. Laender,
“Automatic web news extraction using tree edit distance,” in
Proceedings of 13th International Conference on World Wide Web
(WWW’04), pp. 502-511, ACM, New York, NY, USA, May 2004.

[24] A. Giantsios, N. Papaspyrou, and K. Sagonas, “Concolic
testing for functional languages,” in Proceedings of 17th In-
ternational Symposium on Principles and Practice of De-
clarative Programming (PPDP ’15), pp. 137-148, ACM, Siena,
Italy, July 2015.

[25] D. Insa, S. Pérez, J. Silva, and S. Tamarit, “Erlang code evo-
lution control,” in Proceedings of 27th International Sympo-
sium on Logic-based Program Synthesis and Transformation
(LOPSTR 2017), Namur, Belgium, October 2017.

[26] Erlang-cover, 1997, http://www.erlang.org/doc/apps/tools/
cover_chapter.html.

[27] H.Li, S. Thompson, G. Orosz, and M. Téth, “Refactoring with

wrangler, updated: data and process refactorings, and in-

tegration with eclipse,” in Proceedings of 7th ACM SIGPLAN

Workshop on ERLANG, ERLANG 08, pp. 61-72, ACMd,

Victoria, BC, Canada, September 2008.

M. Toéth, 1. Bozd, Z. Horvath, L. Lovei, M. Tejfel, and

T. Kozsik, “Impact analysis of erlang programs using be-

haviour dependency graphs,” in Proceedings of Third Summer

School Conference on Central European Functional Pro-

gramming School, CEFP’09, pp. 372-390, Springer-Verlag,

Budapest, Hungary, May 2010.

S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing

using dependence graphs,” in Proceedings of ACM SIGPLAN

1988 Conference on Programming Language Design and

Implementation, PLDI 88, pp. 35-46, ACM, Atlanta, GA,

USA, June 1988.

[30] T.Y. Chen and Y. Y. Cheung, “Dynamic program dicing,” in
Proceedings of 1993 Conference on Software Maintenance,
pp- 378-385, Montréal, Canada, September 1993.

[31] W. M. Lyle, “Automatic program bug location by program

slicing,” in Proceedings of 2nd International Conference, Com-

puters and Applications, vol. 2, pp. 877-883, Peking, China, 1987.

D. Binkley, N. Gold, S. Islam, J. Krinke, and S. Yoo, “Tree-

oriented vs. line-oriented observation-based slicing,” in

Proceedings of 2017 IEEE 17th International Working Con-

ference on Source Code Analysis and Manipulation (SCAM),

pp. 21-30, Shanghai, China, September 2017.

[33] H. Cleve and A. Zeller, “Finding failure causes through au-
tomated testing,” in Proceedings of Fourth International
Workshop on Automated Debugging, Munich, Germany,
August 2000.

[34] T. Hoffner, “Evaluation and comparison of program slicing
tools,” Technical Report, LITH-IDA-R-95-01 Department of
Computer and Information Science, University of Kent,
Linkping University, Sweden, Sweden, 1995.

[35] D. Gifthorn and C. Hammer, “An evaluation of slicing al-
gorithms for concurrent programs,” in Proceedings of 7th
IEEE Working Conference on Source Code Analysis and
Manipulation (SCAM’07), pp. 17-26, Maison Internationale,
Paris, France, September 2007.

[36] C.Runciman, M. Naylor, F. L.. Smallcheck, and L. Smallcheck,
“Automatic exhaustive testing for small values,” SIGPLAN
Not, vol. 44, no. 2, pp. 37-48, sep 2008.

(28

[29

(32

http://indus.projects.cis.ksu.edu
http://www.erlang.org/doc/apps/tools/cover_chapter.html
http://www.erlang.org/doc/apps/tools/cover_chapter.html

D. | Advances in !

s . WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

