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Lenguajes y Sistemas Informáticos y Estad́ıstica e Investigación Operativa,

Universidad Rey Juan Carlos, Madrid, Spain

Abstract

Recently, the transmission dynamics of the Human Papillomavirus (HPV)
has been studied. In previous works, we have designed and implemented a
computational model (agent-based simulation model) where the contagion
of the HPV is described on a network of lifetime sexual partners. The run
of a single simulation of this computational model, composed of a network
with 500 000 nodes, takes about one hour and a half. In addition to set an
adequate model, finding out the model parameters that best fit the proposed
model to the available data of prevalence is a crucial goal. Taking into ac-
count that the necessary number of simulations to perform the calibration of
the model may be very high, the aforementioned goal may become unafford-
able. In this paper, we present a procedure to fit the proposed HPV model to
the available data and the design of an asynchronous version of the Particle
Swarm Optimization (PSO) algorithm adapted to the distributed comput-
ing environment. In the process, the number of particles used in PSO should
be set carefully looking for a compromise between quality of the solutions
and computation time. Another feature of the procedure presented here is
that we want to capture the intrinsic uncertainty in the data (data come
from a survey) when calibrating the model. To do so, we also propose the
design of an algorithm to select the model parameter sets obtained during
the calibration that best capture the data uncertainty.
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1. Introduction

Human papillomaviruses (HPV) include more than 100 genotypes of
viruses that infect cutaneous, genital and respiratory epithelia of humans.
HPV is the most common sexually transmitted infection (STI) in the world.
It is transmitted via vaginal, anal or oral sex with someone who has the
virus [1]. In general, it is asymptomatic, inoffensive and disappears sponta-
neously. However, if it persists, it may develop anogenital warts, secondarily
juvenile onset of recurrent respiratory papillomatosis, cervical cancer, other
anogenital cancers and head and neck cancers [2].

There are two main types of HPV, high risk (HR) that are directly related
to the origin of cancers and low risk (LR) related with anogenital warts and
mucocutaneous lesions [3]. To fight against the infection, a vaccine has been
developed. It protects against the HPV types 6, 11, 16, 18, 31, 33, 45, 52
and 58, responsible of 90% of genital warts and 90% of cancers [4]. In [5, 6]
we have proposed a network computational model (agent-based simulation
model) of lifetime sexual partners (LSP) to study the HPV dynamics.

In [5], we have performed a calibration of the agent-based simulation
model. This calibration allowed to reproduce the Australian scenario [6],
where girls aged between 12 and 13 years old were vaccinated and a catch-up
vaccination on women aged 14 to 26 years old during two years was done.
Two years after the vaccine was introduced, the proportion of diagnosed
genital warts declined by a 59% in vaccine eligible young women aged 12 to
26 years in 2007, and by 39% in heterosexual men of the same age.

However, the calibration of this kind of complex random computational
models is an open problem and several challenging issues about fitting com-
putational models to data with uncertainty have to be addressed:

• the model is not deterministic and, for the same set of parameters, dif-
ferent runs of the computational model may return different outputs,
and, consequently, one realization may fulfill the fitting requirements
while another realization does not. Thus, the objective function is not
the typical differentiable and closed-form function;

• the determination of an appropriate measure of goodness-of-fit is still
needed;
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• it is necessary to find model parameters in such a way that their values
agree with the figures reported in medical studies, and the method be
reliable and reproducible;

• the adaptation of the optimization algorithms to these above issues
and the available resources is of special interest;

• the determination of the best parallel implementation of the optimiza-
tion algorithm, in terms of quality of the solutions and computational
efficiency.

In this paper, we present a procedure to fit this network computational
model to the available data taking into account all the above issues, that
is: first, determining the appropriate number of particles for PSO balancing
the quality of the solutions and the computation time; second, designing an
asynchronous PSO algorithm on a distributed computing environment to
calibrate the model; third, designing a selection algorithm inspired by PSO
that allows us to select model parameters that best capture data uncertainty.

The idea of using asynchronous PSO algorithms appears, among others,
in the papers [7, 8]. In the latter, the authors show that in most cases, asyn-
chronous updates save considerable time while not significantly impacting
the probability of finding a solution.

We must say that we deal with a problem in epidemiology with high
uncertainty. Therefore, we expect to obtain reasonable solutions explaining
the HPV prevalence in women but not necessarily the optimal. Also, in the
proposed algorithms, the computation time is important but not critical,
because once we have obtained the calibration we will simulate possible
public health scenarios with the obtained parameters. Furthermore, from a
more theoretical point of view, some issues about accuracy and performance
of the proposed procedure could be improved. Hence, our main goal is to
provide a reliable answer to an epidemiological that, to the best of our
knowledge has not been solved yet.

The rest of the paper is organized as follows. In Section 2 we describe
the computational network model, we show the data to be fitted by the
model and, using medical literature, we determine appropriate bounds for
the model parameters. In Section 3, we describe the available computers and
the distributed computing environment Sisifo we have used to perform the
model simulations. Section 4 is devoted to the description of the Random
Particle Swarm Optimization (rPSO) algorithm [9] and its asynchronous
adaptation to the Sisifo distributed computing environment (arPSO). In
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this section, we introduce a measure of goodness-of-fit that allows us to
make specific changes in arPSO aimed to improve its performance.

Section 5 starts proposing a test able to determine the optimal number
of particles in the arPSO, in terms of computational efficiency. Then, the
calibration procedure is described. Afterwards, we propose a selection al-
gorithm, inspired in PSO and applied to select the best 30 sets of model
parameters that best capture data uncertainty. Conclusions are given in
Section 6.

2. Description of the model

In papers [5, 6], we described how to build lifetime sexual partners (LSP)
networks. These networks are built following the Spanish demographic
structure [10] and the LSP structure provide by the survey about sexual
habits in Spain [11], for age groups 18 to 29, 30 to 39 and 40 to 65, and
collected in Table 1. In this table, figures express the proportion of subjects
with none, one, two, three to four, five to nine, and ten or more sexual
partners during his/her whole life. For instance, for the age group 30 to 39
around 21% of the males reported 3 or 4 LSPs (see 5th column, 3rd row in
Table 1). Although the original work in [11] was done only for people older
than 18, due to ethical issues of the study, we will assume that people aged
14 to 17 follows a similar pattern as ages 18 to 29.

Table 1: Proportion of males and females per number of LSP age group [11]. Note that
the sum of the rows are 1.

MALES

Age 0 LSP 1 LSP 2 LSP 3− 4 LSP 5− 9 LSP LSP ≥ 10

14− 29 0.107 0.207 0.131 0.225 0.168 0.162
30− 39 0.027 0.225 0.128 0.210 0.170 0.240
40− 65 0.019 0.268 0.140 0.193 0.163 0.217

FEMALES

Age 0 LSP 1 LSP 2 LSP 3− 4 LSP 5− 9 LSP LSP ≥ 10

14− 29 0.138 0.43 0.186 0.158 0.056 0.032
30− 39 0.029 0.501 0.168 0.177 0.077 0.048
40− 65 0.017 0.652 0.138 0.118 0.039 0.036

There are many possible combinations to create networks matching the
demography and the LSP distribution described above. As a consequence,
the generated networks will contain uncertainty stemming from the buiding
process itself and the different shapes these networks may have. Then,
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over the LSP network, where each node represents a subject, we describe
the dynamics of the HPV [5, 6]. Initially, each node i of the network, is
characterized (labeled) by the following information:

• Gender: male, female or men who have sex with men (MSM). Fe-
males who have sex with females are not considered because the HPV
prevalence is almost inexistent.

• Age Group. We consider the four age groups defined in the [11] to
assign LSPs to the node:

– Group 1: 14 to 17.

– Group 2: 18 to 29.

– Group 3: 30 to 39.

– Group 4: 40 to 65.

• Age of the individual (node) in months.

• Number of expected LSPs for this node, LSPi, i.e. number of connec-
tions of the node in the network.

• Probability of transmission of LR viruses in a sexual intercourse if one
of the individuals is infected of LR.

• Probability of transmission of HR viruses in a sexual intercourse if one
of the individuals is infected of HR.

• Infected by LR virus, yes or not.

• Time since infection by LR virus.

• Infected by HR virus: yes or not.

• Time since infection by HR virus.

In order to properly describe the transmission dynamics of HPV on the
LSP networks, it is also necessary to include 11 model parameters that will
govern the aforementioned HPV dynamics. Most of these parameters have
been studied in the literature and there are some estimations we have to
take into account:

• The average number of men LSP, that is, the average number of con-
nections of all nodes, k. It is around 8 [12]. For this parameter, the
search will be performed in the interval (7, 10).
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• Global probabilities in order to determine if the existence of a LSP
implies sexual intercourses in the current time step per age group, i.e.,
P 1
g , P 2

g , P 3
g , and P 4

g .

• The average time T cls
HR, an individual infected by a high risk HPV

clears the infection and recovers. The time for clearing the infections
due to HPV HR, for both men and women: in [13], the authors say
that the average duration of HPV 16/18 infection is 1.2 years; in [14],
the average duration of HPV 16 is 12.19 months (7.16 − 18.17); in
[15] the duration of HPV HR infection is between 6.5 months to 11.8
months. Thus, we consider the interval of (0.8, 1.2) years.

• The average time T cls
LR an individual infected by a low risk HPV clears

the infection and recovers. The time for clearing the infections due to
HPV LR, for both men and women: in [13], the mean duration of HPV
6/11 infection is 0.7 years; in [14], the mean duration of HPV infection
is 7.52 months (6.80− 8.61) for any HPV; in [15] the duration of HPV
LR infection varies depending the locations, in average, between 6.2
months to 11.7 months. Therefore, we consider an average clearing of
any LR in the interval (0.5, 1) years.

• The probability that a woman infected of high risk HPV transmits it
to her partner in a sexual intercourse, Pw

HR.

• The probability that a woman infected of low risk HPV transmits it
to her partner in a sexual intercourse, Pw

LR.

• The probability that a man infected of high risk HPV transmits it to
his partner in a sexual intercourse, Pm

HR.

• The probability that a man infected of low risk HPV transmits it to
his partner in a sexual intercourse, Pm

LR.

In [13], the authors estimated the probability of HPV infection trans-
mission per partnership and by type and, as in [2], this probability is higher
in the transmission from males to females (0.8) than in transmission from
females to males (0.7). Given that these data come from estimations (not
surveys) and after some runs of our model, we are going to be more flexible.
Then, let us consider the probability interval (0.2, 0.6) for LR transmission
and (0.5, 1.0) for HR transmission, given that, women transmit less than
men.

6



Now, we are able to define the dynamics of HPV. Hence, we have imple-
mented in C++ a simulator that, given the above described model param-
eters, builds a LSP network and performs a realization of the transmission
dynamics of HPV HR and HPV LR. Algorithm 1 describes the HPV dynam-
ics implemented in the simulator. For each node of the network we check
if it is infected, if it clears the infection and if it will infect its connected
nodes.

It is important to note that the simulation of the contagion in the net-
work is made through the transmission parameters, with certain probabil-
ities. Then, in order to see if a contagion has been carried out by a sex-
ual intercourse, we simulate this event by generating random numbers and
checking if they are less than the corresponding thresholds given by the
model transmission parameters. Therefore, randomness is included into the
model in a natural way producing uncertainties on the model output that
have to be quantified. Thus, there are two sources of uncertainty: the LSP
network building and the simulation of HPV dynamics. Thus, our goal is
to find the model parameters in such a way that the computational model
output is close, in a way we will describe later, to the data in Table 2. In
this table, we recall the data presented in [2] related to the percentage of
women HR- and LR-infected per group ages 18− 29 and 18− 64.

A set of parameters of the agent-based simulation model, −→pi , is repre-
sented by a vector of 11 parameter values:

−→pi = (k, P 1
g , P

2
g , P

3
g , P

4
g , T

cls
HR, T

cls
LR, P

w
HR, P

w
LR, P

m
HR, P

m
LR) (1)

and then we evaluate the solution by running the simulation and observ-
ing the final disposition of the network.

3. Distributed computing environment

All the realizations were performed on two computers with 64 cores on 8
Xeon Sandy Bridge E5-4620 processors running at 2,2 Ghz, with 16 MB of
cache memory and 512 GB RAM memory. The operating system is Ubuntu
Server 16.04.3 LTS.

We also have deployed a distributed computing environment called Sisifo.
Sisifo is a client-server based system designed to allow a problem to be solved
using distributed computation. Sisifo is able to assign tasks to a set of per-
sonal computers (clients), wait for the tasks to be completed and collect
the results for further analysis. Sisifo is made with simplicity as main goal,
giving as a result a system that requires almost no maintenance, needs very
little configuration time, and can be deployed in just a couple of hours.
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input : Initial Network
output: Network after simulation of Mmonths

1 for t← 1 to #Months do
2 for i← 1 to #Nodes do
3 Update Age of Node i;
4 if Node is infected by LR-HPV then
5 if Time since infection ≥ Time of clearance for LR then
6 Node i clears the LR infection;
7 Reset to 0 the time since LR infection;

8 else
9 Time since LR infection is increased in 1 month

10 end

11 foreach LSPj of Node i do
12 if LSPj is infected of LR-HPV and

GenerateRandom(0,1) < Probability of LR transmission
then

13 Node i gets infected of LR-HPV;
14 end

15 end
16 if Node is infected by HR-HPV then
17 if Time since infection ≥ Time of clearance for HR then
18 Node i clears the HR infection;
19 Reset to 0 the time since HR infection;

20 else
21 Time since HR infection is increased in 1 month
22 end

23 foreach LSPj of Node i do
24 if LSPj is infected of HR-HPV and

GenerateRandom(0,1) < Probability of HR
transmission then

25 Node i gets infected of HR-HPV;
26 end

27 end

28 end

29 end

Algorithm 1: Pseudocode of the dynamics of the HPV implemented
in the C++ simulator.
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Table 2: Prevalence of HR- and LR-infected women per age groups [2]. Mean and 95%
confidence intervals. Co-infection is possible and it is considered in both, HR and LR.

Women HR-infected LR-infected

18− 29 y.o. 24.10%, [21.33%, 26.98%] 6.36%, [4.71%, 8.07%]
18− 64 y.o. 16.23%,[14.52%, 17.97%] 4.41%, [3.42%, 5.45%]

The Sisifo server keeps listening for requests of the clients. The Server
has stored one or more executors, a set of problems to be solved in the
Problem files folder, and the solutions returned by the clients in the Result
files folder.

The Sisifo Client is a program stored in one or several PCs that connects
to the server and asks for a work packet. This work packet is composed of
two elements: a text file containing the model parameter values (problem)
and the simulator executable file. Once the work packet is received, the
Client executes a realization using the model parameters stored in the text
file. When the realization finishes, a solution file is generated, returned to
the server and dropped in the Results files folder. More details about how
Sisifo works can be found in [16].

In our case, the Sisifo clients are going to be located in each one of the
64 cores of the Sandy Bridge computer. The Sisifo server is located in a
regular PC running under Windows 7 OS.

4. Asynchronous Random Particle Swarm Optimization (arPSO)

4.1. Introducing arPSO into the distributed computing environment

Using Python3 [17] and Mathematica [18], we have implemented an asyn-
chronous version of Random Particle Swarm Optimization (arPSO) algo-
rithm adapted to the Sisifo computing environment. First, we need to
recall, in the Algorithm 2, the rPSO algorithm appearing in [9]. For our
problem, a solution (particle) is a vector, −→pi composed of a set of values
for the 11 parameters of the model. Then a run of the simulator under
this configuration of the parameters is made and the state of the network is
obtained and compared with the data obtained from the surveys.

The Algorithm 2 can be adapted to Sisifo computing environment if,
using the Sisifo Server, the run of the model for each particle is distributed
among the Sisifo Clients.

However, in a typical PSO procedure, including the rPSO, the set of
particles is updated once the fitnesses of all the particles (a whole generation)
have been calculated. This means that, while all the fitnesses have not been
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input : N : number of particles
input : ITMAX maximum number of iterations
output: Fi: Best fitness
output: −→p best

global: Best Solution

1 // Initialization

2 for i← 1 to N do
3

−→pi ← GenerateRandomVector11

(k, P 1
g , P

2
g , P

3
g , P

4
g , T

cls
HR, T

cls
LR, P

w
HR, P

w
LR, P

m
HR, P

m
LR);

4
−→vi ← GenerateRandomVector11 (0,0.1);

5 Fi ← Evaluate (−→pi );
6

−→pi best ← −→pi ;
7 if i = 1 then −→p best

global ←
−→p1;

8 else if −→pi best has better fitness than −→p best
global then−→p best

global ←
−→pi best;

9 end
10 // Main loop

11 for t← 1 to ITMAX do
12 for i← 1 to N do
13 // Velocity update

14 ω ← GenerateRandomNumber [14 ,
3
4 ];

15 ψ1
i ← GenerateRandomNumber (0, 1.5);

16 ψ2
i ← GenerateRandomNumber (0, 1.5);

17
−→vi ← ω · −→vi + ψ1

i · (
−→pi best −−→pi ) + ψ2

i · (
−→p best

global −
−→pi );

18 // Particle update

19
−→pi = −→pi +−→vi ;

20 Fi ← Evaluate (−→pi );
21 // Local best update

22 if −→pi has better fitness than −→pi best then
23

−→pi best ← −→pi
24 end

25 end
26 // Update the global best as the particle with the

best fitness so far

27
−→p best

global ← best fitness of {−→p best
global,

−→p1best, . . . ,−→pNbest} ;

28 end

Algorithm 2: rPSO pseudocode [9]. GenerateRandomVector11 gen-
erates a random vector with 11 elements and GenerateRandomNumber

generates a random number. Note that the global best is updated
once a whole generation has been evaluated and this global best is
used in the update of the next generation.10



evaluated and an iteration (loop 12 − 25) of Algorithm 2 is not completely
finished, the global best is not updated, the particles cannot be updated and
new evaluations cannot be performed. Then, in every iteration of rPSO,
scenarios where some Sisifo clients have finished their evaluations and are
idle while other Sisifo clients are still performing their evaluations are usual.
In these scenarios, we have an under-use of the Sisifo system.

In order to avoid the under-use system drawback, we propose the im-
plementation of an asynchronous version of rPSO in such a way that, when
the fitness of a particle has been evaluated, this particle is updated (lines
14− 19 in Algorithm 2) without waiting for the evaluation of the remainder
particles, considering the current existing global best and its individual best
particles. To do so, we modify rPSO algorithm parallelizing the loop 12−25
and sharing the updates of the global best particle.

The asynchronous rPSO with the inclusion of the above features and
others is described in Algorithm 3. In the Figure 1 we show how and where
we set the arPSO in the Sisifo environment.

Figure 1: Introduction of the asynchronous rPSO (arPSO) algorithm in the Sisifo envi-
ronment. arPSO manages: (1) the generation of new problems and put them into the
Problem files folder and (2) the reading and processing of the solution files located in the
Result files folder.

When the procedure of Algorithm 3 starts running, with the initialization
of the particles (loop 1 − 6), we create their corresponding problem files
in the Problem files folder. The Sisifo Server detects new problem files
and distribute them among free Sisifo Clients. These clients carry out the
realizations. When a Sisifo client ends its task, a file with results is generated
and sent to the Sisifo Server that drops it on the Result files folder. Every
time a new file with results appears (line 9) in the Results files folder, the
arPSO reads the data from the file with results and calculates the fitness.
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Then, updates the local best, the global best and the velocity taking into
account one of the existing global best, selected randomly, and its individual
best (line 161), updates the particle (lines 23−29) and with the new particle
creates a new problem file in the Problem files folder. And so on.

4.2. Fitness function and some features included in the arPSO

The fitness evaluation F performs as follows:

• we start the model and, after a warm-up time of 400 simulated months,
we assume a stabilization of the model output;

• we take the model output from month 401 to 500 for the subpop-
ulations in the data of Table 2, i.e., percentage of women HR- and
LR-infected per group ages 18− 29 and 18− 64;

• then, for each subpopulation, we calculate the maximum and the min-
imum of these portions of the model output and we see if these maxi-
mum and minimum are inside the corresponding data 95% confidence
interval;

• if this happens, the fitness is zero;

• otherwise, the fitness is the sum of the distances from these maxima
and minima to the corresponding 95% confidence interval of the data.

In Figure 2, we can see an example of how the fitness function works.
We run the computational model. In the month 400 (green vertical line)
the model (red line) is stable and from month 401 until month 500 we can
compare with the data 95% confidence interval given by the horizontal blue
lines. In this case, the error is close to zero, because the only model output
outside the confidence interval, but very near, is the corresponding to the
lower right graph.

Remark 4.1. At this point, we want to remark that to evaluate the fitness
function, we do not need the model output for all the subpopulations. Only
is necessary the output corresponding to HR- and LR-infected women in the
group ages 18 − 29 and 18 − 64. Then, when a realization is carried out,
we retrieve and analyze from the results file, the data corresponding to the
above subpopulations from the month 401 to 500, write them in a row and
this row is stored as the result of the realization to be used later. Also, in
order to compare properly the model output row with the data, we build the
vector whose components are average data, percentile 2.5 and percentile 97.5,
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repeating 100 times the 4 values of each we have in the Table 2 and write
them in a row.

Next we describe some new features included in our version of the arPSO
algorithm. These changes have been devised to explore the parameter space
deeper:

1. We include the possibility to discard the new particle and generate a
new one randomly with 10% probability, lines 31 − 32 of Algorithm
3. If it is not discarded, with 10% probability we apply a mutation to
the new particle a mutation (lines 34− 35).

2. The definition of the fitness function may provide the same fitness
values for different particles. Therefore, we are going to store all the
particles with the same best fitness and in line 20 we chose pbestglobal

randomly among the stored particles.

3. As we mentioned before, physicians around the world have published
estimations of most of the model parameters [12, 13, 14, 15]. It is
clear that we have to respect their estimation in our fitting proce-
dure avoiding that some model parameters overpass the estimation
intervals. Furthermore, finding model parameters in the range of the
estimations gives credibility to our model. Therefore, when a model
parameter is less than 1% closer to an extreme of the interval provided
by the physicians’ estimations, we discard this value and it is substi-
tuted by a random value inside the interval of bonds for the parameter
(line 28).

It is worth noting that the above points allow us to explore extensively
the whole space of parameters avoiding the accumulation of particles close
to the borders, as we see later in Figure 5.3.

5. Experiments, calibration and results

5.1. Selecting an optimal number of particles to calibrate the HPV network
computational model with rPSO

In this section we are going to determine the optimal number of particles
for our calibration problem. We can not affirm that the higher the number
of particles, the better the quality of the solution. Moreover, we also detected
that, due to our asynchronous parallel implementation, sometimes the use
of more processors does not mean lower execution times. We would need
more experiments to detect the correct cause of the delays. However, in
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this case is more practical to investigate wich is the optimal combination of
particles to achieve the best quality with the lowest number of processors.

To perform this test, we are going to build HPV network models with
50, 000 nodes. We run 5 repetitions of the same problem with different
number of particles. Times are shown in seconds. Thus, the question is,
what is the quality of the solutions for different number of particles? Table 3
shows relevant information regarding the quality of the solutions for different
number of particles and 5 runs of each configuration. Each run carried out
1200 particle evaluations. We measure the quality of the solutions on Table
3 by counting the number of fitness values equal to zero in the 5 runs (Total
# 0s) and on average (Avg #0s). In addition, we also recorded the average
iteration that the first zero appears (Avg First), from the last population
of particles. Fitness of the best, worst and average, averaged over five runs
(Best at end, Worst at end and Avg at end). And, regarding executions
time, we show on Table 3 information about the average total execution
time for 1200 evaluations (Total Time), the worst execution time for one
particle (Worst t) and the best execution time for one particle (Best t). Red
color indicates the worst configuration, bold letters indicate the best and
blue color the second best configuration.

Table 3: Analysis of the quality and execution times of different rPSO configurations.
Results of 1200 evaluations for different number of particles on the rPSO process (#
Part).

# Total Avg Avg Best Worst Avg Total
Part. #0s #0s First at end at end at end Time Worst t Best t

25 18 3.60 531.00 0.015486 0.429090 0.122573 8422.00 148.60 107.00
30 28 5.60 594.00 0.003785 0.445587 0.131193 6908.00 186.60 112.00
35 8 1.60 834.80 0.010211 0.576688 0.149215 7105.00 250.60 119.60
40 16 3.20 692.80 0.003332 0.524417 0.132628 8808.60 389.40 144.60
45 14 2.80 790.40 0.006458 0.639775 0.149670 10004.00 502.00 177.20
50 11 2.20 796.00 0.005168 0.658020 0.139089 11124.40 648.40 220.00
55 2 0.40 1171.20 0.004330 0.518894 0.137088 11905.80 775.00 207.40
60 12 2.40 765.00 0.002153 0.546259 0.132464 13787.80 857.00 245.40
64 5 1.00 985.40 0.002763 0.551228 0.140977 18770.00 1041.20 379.20

As we can see, 25 and 30 particles are the best configurations, since we
obtained the higher number of zeros in total and on average and with the
lower executions times. Although the results of 25 particles show a very good
run with 18 zeros and also a very good execution time, the configuration
with 30 particles should be selected bearing in mind both quality and exe-
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cution time. Results on total number of 0s and total time were statistically
significant with p value of 0.1 after an ANOVA analysis.

5.2. Calibration procedure

Now, we are going to perform the model calibration using the Sisifo
environment with the arPSO algorithm and N = 30 particles. The HPV
network models have 500 000 nodes. In order to guarantee the reproducibil-
ity of the realizations, we are going to include in the problem files seeds for
the generation of the random numbers during the calibration process. Thus,
with the same seed we guarantee the building of the same network and the
same model output.

We assume that, initially, data of prevalence from Table 2 are not only
for women but also for men. Then, we label women and men as infected
randomly following these prevalence data. Also, we start running the real-
ization and the first 400 months are used as a warm-up period to stabilize
the distribution of infected men and women. Thus, the goal is to calibrate
the model parameters in such a way that the model output related to women
HR and LR prevalence minimize the fitting function defined in Section 4.2.

We have performed 20 different calibrations using arPSO, each one with
around 500 realizations and 30 particles. A total of 10, 487 realizations of
the model were performed with an equivalent sequential total computation
time of 690 days. More information about the computation time of the
realizations can be seen in Figure 3.

5.3. Improving the exploration of the arPSO

As we explained in Section 4.2, we established a procedure respect to the
intervals for the parameter values proposed by physicians. Some algorithms
such as differential evolution [19] allow to overpass these limits in the search
of a good combination of parameters. However, this is not a good idea
when implementing our parallel arPSO. First, remember that our parallel
version is asynchronous and the updating of the particles is made once every
particle is evaluated because parameters out of the defined bounds have not
a medical meaning. Therefore, when a model parameter is less than 1%
closer to an extreme of the interval provided by the estimations, we discard
this value and it is substituted by a random value inside its interval. This
also allows to make a deeper and more efficient exploration of the search
space.

Figures in Table 5.3 show the exploration performed in some of the pa-
rameters of the model (time of clearance and contagion parameters). Figures
represent the values of the parameters in the 10, 487 realizations performed
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during the 20 executions of arPSO algorithm. X axis represents the realiza-
tion number and Y axis the value of each parameter. We can see that we
find points on most of the search space.

5.4. Selecting the 30 realizations that best capture the data uncertainty

Our goal, now, is to find a procedure to select 30 among the 10, 487 real-
izations of the model in such a way that the means and the 95% confidence
intervals of these 30 realizations are as close as possible of the corresponding
means and the 95% confidence intervals of the data in Table 2. We decided
to select 30 because, as we can see in Table 3, the total computation time is
the best for 30 particles running in parallel in the Sandy Bridge computers.
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input : N : number of particles
input : ITMAX maximum number of iterations
input : [b1, B1], [b2, B2], . . . [b11, B11]: lower and upper bounds of

parameters

output: F best: Best fitness
output: −→p best

global: Best Solution

1 // Initialization of the particles and velocities.

Then, they are sent to free Sisifo clients

2 for i← 1 to N do
3

−→pi ← GenerateRandomVector11

(k, P 1
g , P

2
g , P

3
g , P

4
g , T

cls
HR, T

cls
LR, P

w
HR, P

w
LR, P

m
HR, P

m
LR);

4
−→vi ← GenerateRandomVector11 (0,0.1);

5 if i = 1 then P best
global = {−→p1} with fitness +∞;

6 Create the Problem File with −→pi and send it to a free Sisifo
client to be evaluated;

7 end
8 // Main loop

9 count = 0 ;
10 while count < ITMAX do
11 // When the server receives a Result File from a

client ...

12 if a client returns a Result File for particle −→p then
13 // Analize the problem file and calculate the

fitness

14 F ← Evaluate (−→p );
15 // Update the local best

16 if −→p has better fitness than −→p best then −→p best ← −→p ;
17 // Update the global best

18 if −→p has the same fitness as P best
global then

19 add −→p to P best
global

20 else if −→p has better fitness than P best
global then

21 P best
global = {−→p }

22 end
23 // Generate a new particle

24 ω ← GenerateRandomVector11 [14 ,
3
4 ];

25 ψ1 ← GenerateRandomVector11 (0, 1.5);
26 ψ2 ← GenerateRandomVector11 (0, 1.5);

27 Select −→p best
global randomly among the elements of P best

global;

28
−→v ← ω · −→v + ψ1 · (−→p best −−→p ) + ψ2 · (−→p best

global −
−→p );

29
−→p = −→p +−→v ;

30 // Generation of a new random particle

31 if GenerateRandomNumber(0,1)< 0.1 then
32 GenerateNewParticle (−→p );
33 // Mutation

34 else if GenerateRandomNumber(0,1)< 0.1 then
35 Mutate (−→p );
36 end
37 // Preventing overpassing

38 PreventOverpassing (−→p );
39 // Send the problem to a free client

40 Create the Problem File with −→p and send it to a free Sisifo
client to be evaluated;

41 count ++;

42 end

43 end

Algorithm 3: arPSO, the rPSO pseudocode adapted to the Sisifo
distributed computing environment with some features included.
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Figure 2: Example of how the fitness function works. In the month 400 (green vertical
line) the model (red line) is stable and from month 401 until month 500 we can see if
the model output lies inside the data 95% confidence interval given by the horizontal blue
lines.

Figure 3: Histogram of the computation time of each one of the 10, 487 realizations of the
model using networks of 500, 000 nodes. The average computation time is 5687.9 seconds,
around one hour and a half.
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Figure 4: Upper figures, from left to right: Time of clearance of HPV high risk and low
risk, both for men and women. Lower figures: on the left, probability to transmit low risk
HPV if the infected is a woman; on the right, probability to transmit high risk HPV if
the infected is a man. Red dashed lines correspond to the bounds of each parameter. We
can see that most of the search space is explored in all the cases.

Figure 5: Plot of the 70 model realizations with error 0 from month 401 to 500. Note
that all of them lie inside the 95% confidence intervals of the data represented by the blue
horizontal dashed lines.
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Figure 6: Plot of the 1217 model realizations with error less than 0.03 from month 401 to
500. These realizations cover the 95% confidence intervals of the data, represented by the
blue horizontal dashed lines.

Thus, we check the number of possible realizations depending on their
error. Then, there are 360 realizations with error less than 0.01, 740 with
error less than 0.02, 1217 with error less than 0.03, 1716 with error less than
0.04 and 2294 with error less than 0.05. In Figure 6, we draw the 1217
model realizations of with error less than 0.03. Note that the realizations
cover completely the 95% confidence intervals of the data.

Nevertheless, it would be interesting to reduce the number of eligible
realizations to much less than 10, 487. In Figure 5 we can see the 70 realiza-
tions with error 0, that is, the realizations that lie inside the 95% confidence
intervals of the data, represented by the blue horizontal dashed lines. If we
select 30 among these 70, it is clear that some percentiles of the model are
far from the corresponding percentiles of the data, for instance, the lower
parts of the left figures. Therefore, we need to consider realizations with er-
rors greater than zero without forgetting the objective to reduce the number
of eligible realizations.

In order to determine the 30 realizations that capture in the best way the
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mean and the 95% confidence intervals of the data in Table 2, we propose
the PSO-inspired Algorithm 4. Let E be a subset of the 10, 487 realizations
(model outputs) to be obtained by the 20 executions of arPSO algorithm
previously performed and E(i) the vector corresponding to realization i in
the set E. Let card(E) = M be the number of elements of E. In our
experiments, if we call E to the set of realizations with error equal to zero,
then card(E) = 70. For E being the set of realizations with error less that
0.03, card(E) = 1217. Thus, the problem now consists of selecting the set
of 30 solutions from some specific set E, which best fit the mean, percentile
2.5 and percentile 97.5 of the data:

−→
Si = (E(i1), E(i2) . . . , E(i30)). (2)

The search process is inpired in the PSO algorithm, but instead of up-

dating
−→
Si with the velocity of the particle as in Algorithm 2 and Algorithm

3, we use a super-set of components (realizations) Pi. This super-set in-

cludes the solutions of
−→
Si , the best solution found for this particle,

−→
Si

best,

and the best global solution,
−→
S best

global (see lines 16− 18 at Algorithm 4). We
also consider 10% of randomness and 10% of mutation when updating new
particles. In this case, mutation consists of changing some of the indexes
in the current particle by other randomly chosen, avoiding repetitions. And
now the evaluation process is:

INPUT: Set of 30 indexes I = {i1, . . . , i30}, 1 ≤ ij ≤M , j = 1, . . . , 30.

Step 1. Select the realizations E(i1), . . . , E(i30) and calculate the mean,
percentile 2.5 and percentile 97.5 of them.

Step 2. Calculate the root mean squate of the difference between the mean,
percentile 2.5 and percentile 97.5 of the 30 realizations and the data
(see Remark 4.1), and sum them up.

Algorithm 4, in the tests we have run, lasts around 20 minutes for 1
million of evaluations of the fitness function in the Sandy Bridge computer,
returning accurate solutions. We have performed runs for 30, 40, 50 and 60
particles, being E the realization sets with errors less than 0.01, 0.02, 0.03,
0.04 and 0.05. The lowest error has been 0.1107 for the following realizations

14, 18, 19, 40, 59, 76, 111, 116, 121, 127, 166, 181, 182, 184, 197, 234,
309, 345, 380, 404, 407, 704, 705, 742, 776, 864, 887, 1069, 1082, 1092,

(3)
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Table 4: Mean and the 95% confidence interval of the model parameters corresponding to
the 30 selected realizations from (3).

Model parameter Mean 95% confidence interval

Average LSP men 7.89 [7.05, 9.17]
Average time for clearing HR HPV 1.08 [0.98, 1.17]
Average time for clearing LR HPV 0.60 [0.52, 0.71]
Probability a woman transmits LR 0.24 [0.21, 0.29]

Probability a man transmits LR 0.30 [0.23, 0.38]
Probability a woman transmits HR 0.75 [0.59, 0.89]

Probability a man transmits HR 0.90 [0.77, 0.98]

among the 1217 of the set of realizations with error less than 0.03. In
Figure 7 we draw the 30 selected realizations and in Figure 8 we can see
the graphical result of the calibration and how resemble the means and 95%
confidence intervals.

The mean and the 95% confidence interval of the model parameters
corresponding to the 30 selected realizations from (3) are given in the Table
4. Note that the obtained model parameters are in accordance to the medical
parameters appearing in the literature and detailed in Section 2.
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input : E with M realizations; N number of particles
input : ITMAX maximum number of iterations
input : CI = 95% Confidence Interval
input : DataSet =Table 2

output:
−−−→
Sbest
global: 30 realizations from E that best fit DataSet with

CI

1 // Initialization of the particles and the local and

global best

2 for i← 1 to N do

3
−→
Si ← RandomSelect (30, E);

4 Fi ← EvaluateSet (
−→
Si , CI, DataSet );

5
−−→
Sbest
i ←

−→
Si ;

6 if i = 1 then

7
−→
S best

global ←
−→
S1

8 else if
−→
Si has better fitness than

−→
S best

global then

9
−→
S best

global ←
−→
Si

10 end

11 end
12 // Main loop

13 for t← 1 to ITMAX do
14 for i← 1 to N do
15 // Update new particle

16 Pi ←
−→
Si ∪

−−→
Sbest
i ∪

−−−→
Sbest
global;

17 Pi ← RemoveRepetitions (Pi);

18
−→
Si ← RandomSelect (30, Pi);

19 // Random generation of a new particle

20 if GenerateRandom(0,1) < 0.1 then

21
−→
Si ← RandomSelect (30, E)

22 // Mutation

23 else if GenerateRandom(0,1) < 0.1 then

24
−→
Si ←Mutate (

−→
Si);

25 end

26 Fi ← EvaluateSet (
−→
Si , CI, DataSet );

27 // Update local best

28 if
−→
Si better than

−→
Si

best then

29
−→
Si

best ←
−→
Si ;

30 end
31 // Update global best

32 if
−→
Si

best better than
−→
S best

global then

33
−→
S best

global ←
−→
Si

best;

34 end

35 end

36 end

Algorithm 4: PSO-inspired algorithm for selection.
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Figure 7: Drawing of the 30 selected model realizations from month 401 to 500. These
realizations are the ones whose means and 95% confidence intervals resemble the most the
data in Table 2, represented by the blue horizontal dashed lines.

Figure 8: Means and 95% confidence intervals of the 30 selected realizations (in red)
compared to the means and 95% confidence intervals of the data (blue).
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6. Conclusion

The goal of this paper has been the design of a reproducible and reliable
procedure that allows to calibrate a complex network computational model
that simulates the transmission dynamics of the Human Papillomavirus
(HPV), with the aim to be extensible to other computational models with
randomness in the building and uncertainty in the data.

Due to the large amount of computations, we have to use a computed dis-
tributed environment and to design an asynchronous PSO algorithm, called
arPSO, specifically adapted to this environment. Also, we perform a test to
determine the appropriate number of particles to improve the computational
efficiency obtaining good quality solutions as well.

Once the calibration has been done, we have to select the model param-
eters that best capture the data uncertainty. To achieve this goal, we design
an ad-hoc PSO-inpired algorithm.

In future works, we will use the sets of parameters corresponding to the
realizations (3) (and their corresponding seeds) to perform, among others,
the following simulations of interest in Public Health,

• to study the decline of genital warts cases in the long-term in Spain,

• to simulate the effect of the tourism on the contagion of HPV in Spain,

• to simulate different strategies of vaccination of girls and boys aimed
at erradicating the high risk HPV.

We expect that the above simulations can be performed in a reasonable
time because of the selection of only 30 sets of model parameters that fit
and explain the data uncertainty, and will help us to predict the evolution
of HPV in the above scenarios.
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