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ABSTRACT 

Divergent selection can alter frequencies of genetic markers in opposite 

directions, leading to intermediate allelic frequencies when both divergent lines 

are jointly considered in the genetic analyses. Therefore, divergent selection 

experiments increase the detection power for genome wide association study 

(GWAS) and for genomic scan studies through methods of selection signatures. 

 

At the Universitat Politècnica de València, two independent divergent selection 

experiments were carried out in rabbits, one for uterine capacity and the other 

one for intramuscular fat. Both experiments attained successful selection 

responses, being 1.50 kits for uterine capacity at 10th generation and 3.10 

standard deviations for intramuscular fat at 9th generation, respectively. 

Animals from these experiments were used for performing genomic analyses of 

litter size traits and intramuscular fat. Genotypes were obtained by means of a 

high-density single nucleotide polymorphism (SNP) array of 200K. 

 

Bayesian GWASs using Bayes B model was used to analyse genomic data of 

litter size traits of the uterine capacity experiment with 181 does. The 

associations were tested by computing Bayes factors for each SNP, and by 

computing percentages of the genomic variance for each 1-Mb non-overlapping 

window. The GWASs uncovered SNPs associated with total number born and 

implanted embryos. Moreover, relevant genomic regions were revealed for total 

number born (1 region), number born alive (1 region), implanted embryos (3 

regions), and ovulation rate (5 regions). The percentages of genomic variance 

that accounted for these litter size traits were 39.48%, 10.36%, 37.21%, and 

3.95%, respectively, under a model excluding line effect; and 7.36%, 1.27%, 

15.87%, and 3.95%, respectively, under a model with line effect. The genomic 

region located on the rabbit chromosome (OCU) 17 at 70.0 - 73.3 Mb was 

deemed as a novel quantitative trait locus (QTL) of reproductive traits in rabbits, 

since this region was found overlapped for total number born, number born 

alive and implanted embryos. Bone morphogenetic protein 4 gene, BMP4, is the 

main promising candidate gene within the novel QTL. 

 

A combination of GWASs were performed for analysing the genomic data of the 

intramuscular fat experiment with 480 rabbits. The GWAS methods included a 
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Bayesian method, Bayes B model; and a frequentist method, single marker 

regressions with the data adjusted by genomic relatedness. This study revealed 

four relevant genomic regions in OCU1 (1 region), OCU8 (2 regions) and OCU13 

(1 region) associated with intramuscular fat. The most important associated 

region was on OCU8 at 24.59 - 26.95 Mb, and accounted for 7.34% of the 

genomic variance. The low percentage explained by the main relevant genomic 

regions indicates a large polygenic component for intramuscular fat. Functional 

analyses retrieved genes linked to pathways and function of energy, 

carbohydrate and lipid metabolisms. In addition, a genome scan study was 

performed using rabbits from the divergent selection experiment for 

intramuscular fat, and using three methods of selection signatures: Wright’s 

fixation index (Fst), cross population composite likelihood ratio (XP-CLR) and 

cross population extended haplotype homozygosity (XP-EHH). The results 

showed multiple selection signatures across the rabbit genome. None of these 

selection signatures agreed with the associated genomic regions from GWAS 

findings. In synthesis, the results of both experiments, GWAS and genome scan 

study, suggest that the genomic architecture of intramuscular fat in rabbit 

seems to be highly polygenic and their causative variants would be hardly 

detectable. 

 

This study demonstrates that detection of causative variants and associated 

genetic markers depends on the hypothetical genomic architectures of traits, 

regardless of the successful responses attained in the two divergent selection 

experiments. Apart from the novel QTL for litter size, none of genomic regions 

explained a large part of the genomic variances of litter size traits and of 

intramuscular fat in rabbits. Thus, all analysed traits have a large polygenic 

component. Further analyses and studies will be needed to bear out the findings 

of the current research study. Hitherto, these findings would not have 

worthwhile implications for the rabbit breeding programs. 
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RESUMEN 

La selección divergente puede cambiar las frecuencias de los marcadores 

genéticos en direcciones opuestas, produciéndose frecuencias alélicas 

intermedias en estos marcadores cuando ambas líneas divergentes son 

consideradas conjuntamente en los análisis genéticos. Por lo tanto, los 

experimentos de selección divergente aumentan el poder de detección para 

estudio de asociación de genoma completo (GWAS) y para estudios de escaneo 

genómico por medio de métodos de huellas de selección. 

 

En la Universitat Politècnica de València, dos experimentos de selección 

divergente independientes entre sí fueron realizados en conejos, uno para la 

capacidad uterina y el otro para la grasa intramuscular. Ambos experimentos 

lograron exitosas respuestas de selección, siendo 1.50 gazapos para la 

capacidad uterina en la décima generación y 3.10 desviaciones estándar para 

la grasa intramuscular en la novena generación, respectivamente. Los animales 

que provienen de estos experimentos fueron utilizados para llevar a cabo 

análisis genómicos de los caracteres de tamaño de camada y de la grasa 

intramuscular. Los genotipos fueron obtenidos usando una plataforma de alta 

densidad de 200k de polimorfismos de nucleótido único (SNP). 

 

GWASs bayesianos, utilizando el modelo Bayes B, se implementaron para 

analizar datos genómicos de los caracteres de tamaño de camada del 

experimento de capacidad uterina con 181 hembras. Las asociaciones fueron 

evaluadas calculando los factores de Bayes para cada SNP, y calculando los 

porcentajes de la varianza genómica para cada ventana no solapada de 1-Mb. 

Los GWASs descubrieron SNPs asociados con el número total de gazapos al 

parto y los embriones implantados. Además, se revelaron regiones genómicas 

relevantes para el número total de gazapos al parto (1 región), el número de 

nacidos vivos (1 región), los embriones implantados (3 regiones) y la tasa de 

ovulación (5 regiones). Los porcentajes de varianza genómica que explicaban los 

anteriores caracteres de tamaño de camada fueron 39.48%, 10.36%, 37.21% y 

3.95%, respectivamente, en un modelo que excluye el efecto línea; y 7.36%, 

1.27%, 15.87% y 3.95%, respectivamente, en un modelo con el efecto línea. La 

región genómica localizada en el cromosoma del conejo (OCU) 17 en 70.0 - 73.3 

Mb se consideró como un nuevo locus de carácter cuantitativo (QTL) asociado a 
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caracteres reproductivos en conejos, ya que esta región fue encontrada solapada 

para el número total de gazapos al parto, el número de nacidos vivos y los 

embriones implantados. El gen de la proteína morfogenética ósea 4, BMP4, es 

el principal gen candidato prometedor dentro del nuevo QTL. 

 

Una combinación de GWASs fueron implementados para analizar los datos 

genómicos del experimento de la grasa intramuscular con 480 conejos. Los 

métodos de GWASs incluyeron un método bayesiano, modelo Bayes B; y un 

método frecuentista, regresiones de marcadores únicos con los datos ajustados 

por el parentesco genómico. Este estudio reveló cuatro regiones genómicas 

relevantes en OCU1 (1 región), OCU8 (2 regiones) y OCU13 (1 región) asociadas 

con la grasa intramuscular. La región asociada más importante estaba en OCU8 

en 24.59 - 26.95 Mb, y explicó el 7.34% de la varianza genómica. El bajo 

porcentaje explicado por las principales regiones genómicas relevantes indica 

un gran componente poligénico para la grasa intramuscular. Los análisis 

funcionales recuperaron genes vinculados con las rutas y funciones de los 

metabolismos de energía, carbohidratos y lípidos. Además, se realizó un estudio 

de escaneo genómico usando conejos del experimento de selección divergente 

para grasa intramuscular, y usando tres métodos de huellas de selección: índice 

de fijación de Wright (Fst), coeficiente de verosimilitud compuesto entre 

poblaciones (XP-CLR) y extensión de homocigosidad de los haplotipos entre 

poblaciones (XP-EHH). Los resultados mostraron múltiples huellas de selección 

en todo el genoma del conejo. Ninguna de estas huellas de selección concuerda 

con las regiones genómicas asociadas con la grasa intramuscular, provenientes 

de los resultados de los GWASs. En síntesis, los resultados de ambos 

experimentos, GWAS y el estudio de escaneo genómico, sugieren que la 

arquitectura genómica de la grasa intramuscular en el conejo parece ser 

altamente poligénica y sus variantes causales serían apenas detectables. 

 

Este estudio demuestra que la detección de variantes causales y marcadores 

genéticos asociados depende de las hipotéticas arquitecturas genómicas de los 

caracteres, independientemente de las exitosas respuestas logradas en los dos 

experimentos de selección divergente. Aparte del nuevo QTL para el tamaño de 

la camada, ninguna de las regiones genómicas explicaba una gran parte de las 

varianzas genómicas de los caracteres del tamaño de la camada y de la grasa 

intramuscular en conejos. Por lo tanto, todos los caracteres analizados tienen 
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un gran componente poligénico. Análisis y estudios adicionales serán 

necesarios para confirmar los hallazgos del actual estudio de investigación. 

Hasta la fecha, estos hallazgos no tendrían implicaciones factibles para los 

programas de cría de conejos. 
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RESUM 

La selecció divergent pot alterar les freqüències dels marcadors genètics en 

direccions oposades, donant lloc a freqüències al·lèliques intermèdies quan les 

dos línies divergents es consideren conjuntament en els anàlisis genètics. Per 

tant, els experiments de selecció divergents augmenten el poder de detecció en 

estudis d'associació de genoma ampli (GWAS) i en estudis d'exploració genòmica 

a través de mètodes de signatures de selecció. 

 

A la Universitat Politècnica de València, es van dur a terme dos experiments 

independents de selecció divergent en conills, un per a la capacitat uterina i 

l'altre per al greix intramuscular. Els dos experiments van aconseguir respostes 

de selecció reeixides, sent 1.50 llorigons per a la capacitat uterina en la desena 

generació i 3.10 desviacions estàndard per al greix intramuscular en la novena 

generació, respectivament. Els animals d'aquests experiments es van usar per 

a realitzar anàlisis genòmics de caràcters de grandària de ventrada i greix 

intramuscular. Els genotips es van obtindré per mitjà d'una matriu d'alta 

densitat de polimorfisme d'un sol nucleòtid (SNP) de 200k. 

 

GWASs bayesians, utilitzant el model Bayes B, es van implementar per a 

analitzar dades genòmiques de caràcters de grandària de ventrada de 

l'experiment de capacitat uterina amb 181 conilles femelles. Les associacions es 

van provar calculant els factors de Bayes per a cada SNP, i calculant els 

percentatges de la variància genòmica per a cada finestra no superposada d'1-

Mb. Els GWASs van descobrir SNPs associats amb el número total de llorigons 

al part i els embrions implantats. A més, es van revelar regions genòmiques 

rellevants per al número total de llorigons al part (1 regió), el número de nascuts 

vius (1 regió), els embrions implantats (3 regions) i la taxa d'ovulació (5 regions). 

Els percentatges de variància genòmica que explicaven els anteriors caràcters 

de grandària de ventrada van ser 39.48%, 10.36%, 37.21% i 3.95%, 

respectivament, sota un model que exclou l'efecte de línia; i 7.36%, 1.27%, 

15.87% i 3.95%, respectivament, sota un model amb efecte de línia. La regió 

genòmica situada en el cromosoma del conill (OCU) 17 en 70.0 - 73.3 Mb es va 

considerar com un nou locus de caràcters quantitatius (QTL) associat a 

caràcters reproductius en conills, ja que aquesta regió es va superposar per al 

número total de llorigons al part, el número de nascuts vius i els embrions 
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implantats. El gen de la proteïna morfogenètica òssia 4, BMP4, és el principal 

gen candidat prometedor dins del nou QTL. 

 

Una combinació de GWASs es van implementar per a analitzar les dades 

genòmiques de l'experiment del greix intramuscular amb 480 conills. Els 

mètodes GWASs van incloure un mètode bayesià, model Bayes B; i un mètode 

frecuentista, regressions de marcadors únics amb les dades ajustades pel 

parentiu genòmico. Aquest estudi va revelar quatre regions genòmiques 

rellevants en OCU1 (1 regió), OCU8 (2 regions) i OCU13 (1 regió) associades amb 

el greix intramuscular. La regió associada més important estava en OCU8 en 

24.59 - 26.95 Mb, i va explicar el 7.34% de la variància genòmica. El baix 

percentatge explicat per les principals regions genòmiques rellevants indica un 

gran component poligènic per al greix intramuscular. Els anàlisis funcionals 

van recuperar gens relacionats amb les rutes i la funció d'energia, metabolismes 

de carbohidrats i lípids. A més, es va realitzar un estudi d'exploració del genoma 

usant conills de l'experiment de selecció divergent per a greix intramuscular, i 

usant tres mètodes de signatures de selecció: índex de fixació de Wright (Fst), 

coeficient de versemblança compost entre poblacions (XP-CLR) i extensió de 

homocigosidad dels haplotipos entre poblacions (XP-EHH). Els resultats van 

mostrar múltiples petjades de selecció en tot el genoma del conill. Cap 

d'aquestes petjades de selecció concorda amb les regions genòmiques 

associades a partir dels resultats dels GWASs. En síntesi, els resultats dels dos 

experiments, GWASs i estudi d'exploració del genoma, suggereixen que 

l'arquitectura genòmica del greix intramuscular en el conill sembla ser altament 

poligènica i les seues variants causals serien a penes detectables. 

 

Aquest estudi demostra que la detecció de variants causals i marcadors genètics 

associats depèn de les hipotètiques arquitectures genòmiques dels caràcters, 

independentment de les respostes reeixides en els dos experiments de selecció 

divergents. A part del nou QTL per a la grandària de la ventrada, cap de les 

regions genòmiques explicava una gran part de les variacions genòmiques dels 

caràcters de la grandària de la ventrada i del greix intramuscular en conills. Per 

tant, tots els caràcters analitzats tenen un gran component poligènic. Anàlisi i 

estudis addicionals seran necessaris per a confirmar les troballes de l'actual 

estudi d'investigació. Fins ara, aquestes troballes no tindrien implicacions 

valuoses per als programes de cria de conills. 
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RÉSUMÉ  

La sélection divergente peut modifier les fréquences des marqueurs génétiques 

dans des directions opposées. Les études génétiques des lignées divergentes 

mènent à des fréquences alléliques intermédiaires. Par conséquent, les études 

d’association génétique pangénomiques (GWAS) et de balayage génomique, 

basées sur des expériences de sélection divergente, présentent un meilleur 

pouvoir de détection. 

 

A l’Université Polytechnique de Valence, deux expériences indépendantes de la 

sélection divergente ont été menées chez le lapin, une pour la capacité utérine 

et une autre pour la graisse intramusculaire. Les deux expériences ont rapporté 

des réponses positives à la sélection, respectivement, 1.50 lapinous pour la 

capacité utérine à la 10-ème génération et 3.1 écart-type pour la graisse 

intramusculaire à la 9-ème génération. Des individus issus de ces expériences 

ont été utilisés pour effectuer des analyses génomiques de la taille de la portée 

et de la graisse intramusculaire. Les génotypes ont été obtenus en utilisant des 

puces à ADN de haute densité  de 200K polymorphismes mono-nucléotidiques 

(SNP).  

 

Des GWASs bayésiennes, du type Bayes B, ont été utilisées pour l’analyse 

génomique de la capacité utérine, et ont portées sur 181 individus. Les 

associations ont été testées en calculant le facteur de Bayes pour chaque SNP 

ainsi que le pourcentage de la variance génomique des fenêtres non superposés 

de 1-Mb. Ces analyses ont permis de détecter les SNPs associés au nombre total 

des naissances et des embryons implantés. De plus, des régions génomiques 

importantes ont été détectées pour le nombre total des naissances (une région), 

le nombre des nés-vivants (une région), les embryons implantés (3 régions), et 

le taux d’ovulation (5 régions). Les pourcentages de la variance génomique 

expliquées par les régions associées  a ces caractères ont été respectivement de 

39.48%, 10.36%, 37.21%, et 3.95% sous un modèle sans l’effet lignée, alors 

qu’elles ont été respectivement de 7.36%, 1.27%, 15.87% et 3.95% en incluant 

l’effet lignée. La région génomique 70.0-73.3 Mb au niveau du chromosome de 

lapin (OCU) 17 a été considérée comme un nouveau locus à caractère quantitatif 

(QTL) pour les caractères reproductifs du lapin. Cette région résulte de la 

superposition des régions associées aux  nombre de naissances totales, des nés-
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vivants et le taux des embryons implantés. Le gène de la protéine 

morphogénétique osseuse 4, BMP4, est le principal gène candidat prometteur 

au niveau de ce QTL.  

 

Plusieurs analyses GWASs ont été performées pour l’analyse des données 

génomiques de la graisse intramusculaire de 480 individus. Ils ont inclus une 

méthode bayésienne, le Bayes B, une méthode fréquentiste et une régression à 

un seul marqueur avec les données corrigées pour la parenté  génomique. Cette 

étude a révélé quatre régions génomiques pertinentes, OCU1 (une région), OCU8 

(2 régions) et OCU13 (une région), associées à la graisse intramusculaire. La 

plus importante région a été OCU8 à 24.59-26.95 Mb en expliquant 7.34% de 

la variance génomique. Certes c’est un faible pourcentage, toutefois, il indique 

une importante composition polygénique de la graisse intramusculaire. Les 

analyses fonctionnelles ont identifié des gènes liés à des voies et fonctions 

énergétiques, ainsi qu’au métabolisme glucidique et lipidique. En plus, un 

balayage du génome a été performé en utilisant des lapins issus de l’expérience 

de la sélection divergente pour la graisse intramusculaire et trois méthodes des 

signatures génétiques de la sélection à savoir l’index de fixation de Wright (FST), 

le rapport de vraisemblance composite entre populations (XP-CLR) et l’extension 

de l’homozygotie de l’haplotype entre population (XP-EHH). De nombreuses 

signatures génétiques de la sélection ont été détectées tout au long du génome 

du lapin. Cependant, aucune n’a coïncidé avec les régions génomiques obtenues 

par l’analyse GWAS. Ainsi, à partir des résultats de l’analyse GWAS et du 

balayage du génome, parait-il que la graisse intramusculaire chez le lapin est 

très polygénique et la variante causale serait difficile à détecter.  

 

Cette étude montre que la détection des variantes causales et des marqueurs 

génétiques associés dépend de l’architecture génomique hypothétique du 

caractère, en dépit des réponses positives obtenues par les deux expériences de 

la sélection divergente. A part le nouveau QTL détecté pour la taille de la portée, 

aucune région génomique n’a expliqué une importante part de la variance 

génomique de la taille de la portée et de la graisse intramusculaire. Par 

conséquent, les caractères étudiés présentent de larges composantes 

polygéniques. D’autres analyses seront nécessaires pour confirmer les résultats 

de la présente étude. Jusqu’à présent, ces résultats n’auraient pas 
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d’importantes implications dans les programmes d’amélioration génétique du 

lapin.  
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CHAPTER ONE 

1. GENERAL INTRODUCTION 

1.1. Rabbit production and breeding 

European domestic rabbit (Oryctolagus cuniculus) belongs to the family 

Leporidae and the order Lagomorpha. At world level, the main purposes of 

raising rabbits are meat, wool, fur and an animal model for experimental 

research (McNitt et al., 2013).  

 

1.1.1. Overview 

The domestication of rabbits was a dynamic process including several events; 

such as the transportation of rabbits to Mediterranean islands, rabbits housed 

in Roman leporaria, and they also reared under an organized reproduction 

system into hutches in southern France (Irving-Pease et al., 2018). A genomic 

analysis from wild French and domestic rabbits suggests that rabbit 

domestication could be traced between 12,200 years and 17,000 years ago. Two 

consecutive bottlenecks occurred in the rabbit farming, impairing the genetic 

and phenotypic variability of fitness and adaptation traits (Carneiro et al., 2011; 

Irving-Pease et al., 2018). In this sense, the study of the domestication process 

showed phenotypic changes linked to polygenic background, essentially in 

behavioural traits influencing the brain and neuronal development (Carneiro et 

al., 2014). Besides, the domestication process would lead to changes in the litter 

size (Carneiro et al., 2011). 

 

1.1.2. Traits of interest in rabbit production 

The rabbit, being a prolific species, presents beneficial features for breeding 

such as the small space of housing, a short productive cycle and handling 

facilities (McNitt et al., 2013; Cullere and Dalle Zotte, 2018). At trade level, 

rabbit production involves items such as meat, fur, pet, and lab animals (McNitt 

et al., 2013). Regarding meat production, consumer demand for rabbit meat has 

been decreasing in the last years, and hence, rabbit industry requires new 

strategies of production and marketing (Cullere and Dalle Zotte, 2018). 

Economic weights, derived from profit functions, have been estimated. The main 

traits having high economic weights are feed conversion rate (FCR) during 
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fattening and litter size (Prayaga and Eady, 2000; Cartuche et al., 2014). Several 

experiments have been carried out to improve litter size; however, selection 

responses have been low, around 0.1 kits per generation (see in: Khalil & Al-

Saef, 2008; Argente, 2016; Badawy et al., 2018). As FCR is difficult and 

expensive to measure, FCR has been usually improved as a correlated response 

by selecting average daily gain (ADG). Although the genetic and phenotypic 

correlations between them are rather moderate, around 0.48; as also are their 

heritabilities, around 0.21 to 0.31 (Piles et al., 2004; Blasco et al., 2018). 

Conventional selection through ADG has attained positive genetic progress (see 

review by Blasco et al., 2018), e.g. for ADG, around 3.9 g/d after 11 generations 

of selection in a Spanish rabbit line (Piles M. and Blasco A., 2003), and for FCR, 

-0.015 per generation in French rabbit lines under ad libitum feeding (Drouilhet 

et al., 2016).  

 

Lately, carcass and meat quality traits have been investigated for main livestock 

species because of the possibility of obtaining an additional economic value, 

supported by consumer’s perceptions (Hocquette et al., 2010; Pannier et al., 

2018). These most noticeable traits of meat quality are intramuscular fat and  

fatty acid profiles (Pena et al., 2016; Cullere and Dalle Zotte, 2018; Blasco et al., 

2018). These traits are not selection criteria in rabbits since their recording is 

expensive and it has to be done in a large number of candidate animals to 

selection. Besides, rabbit meat has very low fat (Hernández, 2008; Martínez-

Álvaro et al., 2016a), and consequently, for example, an increase in 

intramuscular fat would not be perceptible by consumers (Martínez-Álvaro et 

al., 2016a, 2016b). 

 

1.1.3. Relationship between growth, meat and litter size traits 

Animal breeding programmes for prolific livestock species generally comprise 

several traits, in which the traits are first chosen according to their economic 

values, and then according to their genetic parameters and correlations.  

Estimates of correlations between growth and carcass traits present a wide rank 

of values in pigs (Hoque et al., 2007; Gilbert et al., 2007; Kouba and Sellier, 

2011), and rabbits (Hernández et al., 2004; Larzul et al., 2005; Su G. et al., 

2010). For instance, in rabbits, ADG has low-to-moderate genetic correlations 

with carcass traits (Larzul et al., 2005; Nagy et al., 2006); and besides, it has 
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null-to-low genetic correlations with meat quality traits (Hernández et al., 2004; 

Blasco et al., 2018). Thus, selection for growth rate in rabbit could have little 

effect in carcass and meat quality in rabbits. 

 

Regarding the reproductive traits, they present low-to-moderate genetic 

correlations with growth traits in pigs (Holm et al., 2004; Skovsted et al., 2005; 

Rothschild and Ruvinsky, 2011), minks (Karimi et al., 2018), mice (Malik, 1984), 

rats (Eisen, 1976), rabbits (Garreau et al., 2004; Peiró et al., 2019) and all 

polytocous species. In rabbits, estimations of genetic correlations amongst 

reproductive traits and body weight traits within lines were low (Garcı ́a and 

Baselga, 2002; Peiró et al., 2019) or inconsistent (Camacho and Baselga, 1990), 

since studies suggested positive and negative correlations between them 

(Camacho and Baselga, 1990; Bünger et al., 2005). For instance, genetic 

correlations between litter size and weaning weight, slaughter weight, and 

growth rate were -0.11, 0.03 and 0.11, respectively  (Peiró et al., 2019). Garcı́a 

& Baselga (2002) found very low genetic correlation (0.06) between ADG and 

litter size. Furthermore, correlated responses have been null-to-low for growth 

and carcass traits in experiments of litter size selection in pigs (Estany et al., 

2002; Petry et al., 2004) and rabbits (Garcı́a and Baselga, 2002; Peiró et al., 

2019). 

 

The estimated correlations amongst litter size and meat quality traits in pigs are 

low (Beaulieu et al., 2010). Hitherto in rabbits, there is no known information 

about the correlation among litter size and meat quality traits. A preliminary 

unpublished study, at Universitat Politècnica de València, suggests low 

correlations between total number born with average daily gain and 

intramuscular fat, which have been estimated using rabbit data of a divergent 

selection experiment (Martínez-Álvaro et al., 2019, personal communication). 

 

Despite numerous research studies on selection for alternatives traits in order 

to improve rabbit meat production, the selection scheme and criteria have not 

changed. Breeding programs in commercial rabbit lines consist of a cross of 

three ways, in which the maternal line comes from a cross of two synthetic lines 

selected for number of kits at birth or weaning. The terminal sire line comes 

from a synthetic line selected for growth rate (Baselga, 2004; McNitt et al., 2013). 
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1.2. Rabbits as animal experimental model 

Rabbits are also used for human medical research as animal model (Calasans-

Maia et al., 2009; Mapara et al., 2012). The availability of new genomic tools 

(e.g. next generation sequencing, NGS) in research has led to an increase of 

proteomic and genomic information in rabbits, being useful in specific fields of 

human research. Currently, muscular and circulatory systems have been fields 

of human research in which the rabbits have been useful as animal model 

(Miller et al., 2014); for example, the implementation of new generation 

transgenic methods by employing rabbit models of cardiac disease (Bősze et al., 

2016). Thus, rabbits are very important for production and as an experimental 

model, which furthers investigation in the fields of genetics and genomics in this 

species. 

 

1.3. Divergent selection experiments 

Divergent selection experiments, as one-way selection experiments with control 

populations, are used to compute selection responses (Hill and Caballero, 1992). 

Furthermore, divergent selection experiments present advantage against one-

way selection, such as: (1) to reduce the number of generations of selection, 

obtaining a double selection response of one-way selection whether there is 

symmetry in the response; (2) populations can be used as a control population 

of each other in the cases of symmetric selection responses, since experiments 

present populations with high and low performance for the selected trait; and 

(2) to reveal physiological information of selected traits, e.g. physiological 

boundaries of selected traits whether there are asymmetric responses (Hill, 

1972; Bohren, 1975; Walsh and Lynch, 2018). The asymmetry in the response 

can be detected by a control population or by comparing the estimated genetic 

values in the last generation of selection; though this latter is strongly 

dependent on the mixed model techniques (Blasco et al., 2018).  

 

Various divergent selection experiments have been carried out in rabbits, having 

positive results of selection responses (Table 1). Particularly, the Universitat 

Politènica de València has performed pioneering research of divergent selection 

experiments in rabbits. These experiments presented symmetric selection 

responses (Blasco et al., 1993, 2018; Argente et al., 1997); for example, in an 

experiment of divergent selection for uterine capacity was attained a positive 
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response of ~1.5 kits after ten generations of selection (Blasco et al., 2005). 

Furthermore, in a divergent-based experiment for intramuscular fat was 

obtained a response of 2.4 phenotypic standard deviations after eight 

generations of selection (Martínez-Álvaro et al., 2018). Selection can modify 

frequencies of genetic markers in opposite directions leading to intermediate 

allelic frequencies when both lines are jointly regarded in genetic analyses. 

Under this condition, the detection power can be increased for genome wide 

association (GWAS) and genomic scan studies, e.g. methods of selection 

signatures (Kessner and Novembre, 2015). Thereby, exceptional biological 

samples can be obtained from divergently selected populations in order to study 

the relationship between the selected trait and the rabbit genome. This 

approach has been implemented in other livestock species, such as poultry 

(Johansson et al., 2010; Grams et al., 2015) and pigs (Kim et al., 2015a), 

displaying positive results with respect to genome-wide analyses. 

 

1.4. Molecular genetics for uncovering the importance of genomics 

in rabbit 

Genetic improvement of livestock has been relying on selective breeding with 

superior phenotypes. With the advent of the genomic tools and techniques, the 

traditional artificial selection has been modified due to the interest in applying 

genomic information on animal breeding programs (Gurgul et al., 2014; Singh 

et al., 2014; Mehrban et al., 2017). Animal genomics is not only genomic 

selection, but it encompasses the study of polymorphisms, genes, functional 

genomics and linkage disequilibrium by methods such as parentage 

determination, genome-wide association study, signatures of selection, genetic 

expression, marker-assisted selection, and so on (Gurgul et al., 2014). Genomic 

information is mainly worthy for traits having specific features related to the 

data collection and related to some specific populations or breeds (Ibáñez-

Escriche and Gonzalez-Recio, 2011; Schmid and Bennewitz, 2017). This 

information can be relevant for traits of low-to-moderate heritability, traits of 

sex limited expression, and when a trait is collected late in an individual’s life 

(Singh et al., 2014). Most quantitative or complex traits in livestock breeding are 

controlled by many genes; therefore, some genomic analyses, e.g. GWAS and 

genome scan studies, can shed light on how the livestock genome is linked to 
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the variability of economically important traits, since these studies can be 

performed using the whole genome of particular livestock. 

 

 

Table 1. Selection response of divergent selection experiments in rabbits. 

Trait 

(selection criterion) 

Selection 

response 

Number of 

generations 
Reference 

112-days body weight 
126.60 

grams 
4 

(Mgheni and 

Christensen, 1985) 

Number of foetus 

(dead embryos 

between implantation 

and birth) 

- 0.50 

foetus 
4 

(Bolet et al., 1994) 

(Santacreu et al., 

1994) 

Average daily gain  8.40 g/d 3 (Moura et al., 1997) 

Feed conversion rate 0.20 3 (Moura et al., 1997) 

Uterine capacity 1.50 kits 10 (Blasco et al., 2005) 

63-days body weight 450 g 6 (Larzul et al., 2005) 

Locomotor activity 

score in the open field 
~ 50 OFS 8 

(Daniewski and 

Jezierski, 2003) 

Total fleece weight  
80.95 

grams 

Overlapped 

generation* 

High line = 3.90 

Low line = 3.64 

(Rafat et al., 2009) 

(Rafat et al., 2007) 

Computer tomography 

(thigh muscle weight) 
~ 27 cm3 2 

(Szendro et al., 

2012) 

Intramuscular fat 0.39 grams 6 
(Martínez-Álvaro et 

al., 2016a) 

Residual variance 1.67 kits2 10 (Blasco et al., 2017) 

Variability of birth 

weight 
3.9 grams 10 (Bodin et al., 2010) 

Longevity index 

(number of AI) 

+0.75 AI  

(32 days) 

2  

(does was kept 

until 8th litter) 

(Larzul et al., 2014) 

Digestive disorders 

(EBV – ES) 
~ 1.7% CM 1 

(Garreau et al., 

2012) 

OFS = open-field score; AI = artificial insemination; EBV – ES = estimated 
breeding value for the enteropathy score; CM = cumulative mortality; 
Overlapped generation* = equivalent number of discrete generations in the 
selection for total fleece weight of high and low lines.  
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1.4.1. Genome wide association study 

Nowadays, the GWAS is the leading strategy used to find genetic markers 

throughout the whole genome associated, with important economic production 

traits. GWAS exploits the linkage disequilibrium (LD) between the genetic 

causative variants of the alleles of a trait and genetic markers. GWAS tries to 

find effective signals of association of these genetic markers with a given trait 

when it is controlled by particular causative variants large enough to be detected 

(Spencer et al., 2009; Ball, 2013).  

 

1.4.1.1. Previous to GWAS: genetic markers and genomic analyses 

Molecular markers, also termed genetic markers, are polymorphic fragments of 

DNA with a certain location in the genome (Vignal et al., 2002; Stram, 2014). 

Some genetic markers are: amplified fragment length polymorphism, restriction 

fragment length polymorphism (RFLP), copy number variants, single nucleotide 

polymorphisms (SNPs), insertion/deletion, minisatellites and microsatellites, 

and sequences (Teneva and Petrovic, 2010; Singh et al., 2014). Several 

techniques are used to obtain polymorphisms which are still used according to 

their price and automatisation (Vignal et al., 2002; Stram, 2014).  

 

In the past, linkage analyses were the main association studies for genetic 

maps. They were based on the recombination rate of genetic markers such as 

RFLP or microsatellites (Hearne et al., 1992; Witte, 2010; Singh et al., 2014). 

Linkage analyses presented problems in complex traits for discovering the 

causative variants, since the associated regions were large, limited by the 

annotation on the genetic map, and had a low resolution because of the limited 

number of meiosis within families (Tabor et al., 2002; Witte, 2010). 

 

Another method of association analysis is the candidate gene study. This 

method evaluates the association between a trait of interest with some genetic 

markers placed inside a known gene (Tabor et al., 2002; Patnala et al., 2013). 

The principal problem of this method has been its dependence on the prior 

biological information of genes for using the candidate genes. This method 

ignores most of the genome and therefore the analyses are probably missing 

many causative regions, leading to many false-positive associations (Zhu and 
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Zhao, 2007; Witte, 2010). Despite these drawbacks, some genetic markers 

within genes associated with a trait were identified by this method. For instance, 

there were genetic markers located in the genes or gene regions K88, FUT1, SLA 

and NRAMP (associated with immune response or disease resistance traits), and 

ESR, PRLR, RBP4 and FSHB (associated with litter size) in pigs (Rothschild et 

al., 2007). Genes with genetic markers showing associations in rabbits were: 

OVGP1 (Merchán et al., 2009), PGR (Peiró et al., 2010) and TIMP1 (Argente et al., 

2010). These markers were associated with litter size traits, having small effects 

(Merchán et al., 2009; Argente et al., 2010; Peiró et al., 2010). In addition, a 

genetic marker in the MSTN gene was associated with carcass traits in rabbits 

(Sternstein et al., 2014). To our knowledge, these associated markers within 

these genes have not been validated in additional rabbit populations. Besides, 

when these markers were found, there were limitations such as non-availability 

of SNP platforms, low resolution of the genomic map and little functional 

information in rabbits, hindering exhaustive researches throughout the rabbit 

genome (Ibáñez-Escriche and Gonzalez-Recio, 2011; Miller et al., 2014). 

 

With the development of NGS, the SNP became the most popular polymorphism. 

Currently, it is the most abundant of all marker systems, both in animals and 

plants (Vignal et al., 2002; Gurgul et al., 2014; Sharma et al., 2015). SNP is 

defined as a single nucleotide variant (SNV) with two alleles (biallelic genetic 

marker), at a specific position on a given chromosome, wherein the least 

common allele has a frequency of about 1% or greater (Vignal et al., 2002; 

Stram, 2014). An advantage of the SNPs in animal breeding studies was the 

creation of low cost SNP platforms for genotyping the main livestock species 

(Sharma et al., 2015). SNPs have received attention due to their genetically 

stability and amenability to high-throughput automated analysis (McCarthy 

and Hirschhorn, 2008; Singh et al., 2014). Besides, SNPs are widely used for 

implementing GWAS and genomic scan studies, albeit in rabbits the high cost 

of SNP platforms hampered its usefulness for research studies (Ibáñez-Escriche 

and Gonzalez-Recio, 2011). 

 

1.4.1.2. Methods and strategies 

GWASs depend chiefly on LD between genes and genetic markers, i.e. SNPs. In 

this way, GWASs can capture the effect of several genes when SNPs have high 
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LD with the causative variants of these genes (Spencer et al., 2009; De Los 

Campos et al., 2013). The GWAS analyses also rely on several factors, e.g. type 

of trait (case-control traits or quantitative traits), the genomic architecture of 

traits (additive, dominant, traits with imprinting, etc.), the population features 

(populations under natural or artificial selection), sample size, and inference 

methods (frequentist or Bayesian inferences). These factors are important before 

performing a genomic analysis, since they determine the scope, strengths, 

limitations and strategies of the experiments (Witte, 2010; Hayes, 2013).  

 

Designing association studies 

The factors influencing GWAS results are described in the following paragraphs: 

 

Choosing the SNP-array density. In rabbits, a SNP platform of ~200k SNP was 

made available to genotype rabbit at research level (Blasco and Pena, 2018). 

High SNP-density platforms are useful for GWASs when a genome presents a 

wide variability of LD between SNPs. For example, populations with large 

hypothetical effective population size would need to use platforms of high SNP-

density in order to analyse the whole genome. This is especially important for 

across-breed GWAS experiments due to their high genomic variability. The high 

SNP-density platforms (e.g. SNP density of 777K in cattle), having a homogenous 

distribution of SNPs across a given genome, can increase the detection power of 

association between SNPs with causative variants of a particular trait (Spencer 

et al., 2009; Schmid and Bennewitz, 2017). These platforms can increase the 

number of SNPs close to causative variants, which would also increase the 

detection power (Schmid and Bennewitz, 2017). Nonetheless, this depends 

mainly on the analysed trait and its genomic architecture. In addition, a shorter 

physical genomic distance between SNPs could not be interpreted as a high LD 

between SNPs and causative variants improving detection power and 

consequently to the GWAS results. For instance, platforms higher than 650 k 

SNP in human can produce a negligible change in improving detection power 

(Spencer et al., 2009).  

 

Taking into account the genomic map. The resolution of the genomic map is 

important for identifying the genes around associated SNPs. There are a few 

known maps in rabbits: a linkage map by crossing Giant Gent and New Zealand 
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White (Sternstein et al., 2015), a microsatellite-based integrated genetic and 

cytogenetic map (Chantry-Darmon et al., 2006), a physical map of sequence 

assembly having 2X coverage (https://may2009.archive.ensembl.org/ 

Oryctolagus_cuniculus/Info/Index), and the current physical map of 7X 

coverage, named OryCun2.0 (Miller et al., 2014; Carneiro et al., 2014). Despite 

the availability of the rabbit genome map, the functional annotations of the 

genes in this species are much less broad than in other species (humans, mice, 

and cattle), which hinders the identification of promising candidate genes (Craig 

et al., 2012; Miller et al., 2014). 

  

Knowing the features of populations. Samples for GWAS experiments must 

represent statistically independent units drawn from populations (Sul et al., 

2018). GWAS can present problems of confounding factors, such as population 

structure and cryptic relatedness, when samples come from several populations 

or high inbreeding populations (Price et al., 2010). Population structure occurs 

when systematic differences are present in allele frequencies between 

subpopulations in a population because of different ancestry, especially in case-

control association studies. These systematic differences can cause the method 

applied to GWAS to assign strong association signals to genetic markers that 

are not actually causal for the trait. In a nutshell, population structure produces 

a high rate of false positive associations named as inflation of type I errors (Price 

et al., 2010; Sul et al., 2018). The cryptic relatedness appears when the 

relationships between individuals are unknown or ignored by researchers, albeit 

the individuals shared or had common ancestries. This confounding factor can 

also increase the rate of false positive associations. This can affect the 

association analysis under the presence of family-based samples, e.g. parent-

offspring, full-siblings (Voight and Pritchard, 2005; Sul et al., 2018). 

Nevertheless, the modelling of relatedness can be carried out using genomic 

data, pedigrees or both (Price et al., 2010; Li and Zhu, 2013; Eu-

ahsunthornwattana et al., 2014). Another essential point of features of 

populations is to know whether the analysed populations are currently under 

selection. This is linked to tests and filters of quality controls, affecting the 

GWAS results. For instance, Hardy-Weinberg equilibrium test indicates 

genotyping errors in non-selected populations; on the contrary, this test can 

remove relevant SNPs associated with a given trait when populations are under 

selection (Marees et al., 2018). 

https://may2009.archive.ensembl.org/%20Oryctolagus_cuniculus/Info/Index
https://may2009.archive.ensembl.org/%20Oryctolagus_cuniculus/Info/Index
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Choosing the sample size. Large sample sizes must ensure that a given study of 

association clearly distinguishes between real and spurious associations. 

GWASs look for strong evidence of association. Therefore, GWASs with low 

detection power lead to a higher presence of spurious associations. Frequently, 

at least 1000 genotyped and phenotyped individuals are required for statistical 

analysis (Ball, 2013; Schmid and Bennewitz, 2017). The samples should have 

animals as unrelated as possible avoiding the problem of confounding factors. 

The sample size for GWASs may be reduced when phenotypic records of traits 

are collected in experimental populations through exhaustive phenotyping at a 

molecular level (e.g., metabolic traits or gene expression traits) (Schmid and 

Bennewitz, 2017). When phenotypic data come from experiments of divergent 

selection, the sample size may also be reduced since these experiments increase 

the detection power (Kessner and Novembre, 2015). 

 

In synthesis, researchers should take into account for designing an association 

study: (a) the SNP-array density, (b) the genomic map, (c) the features of 

population, and (d) the sample size. All of them are directly or indirectly affecting 

the detection power which depends on LD between the markers and a given 

causative variant, and also, on the genomic architecture. This latter includes 

the effect size of causative variants and the proportion of total phenotypic 

variance accounted for by every causative variant (De Los Campos et al., 2013; 

Hayes, 2013). Causative variants of large effect can be easily detectable even 

using small sample sizes when they are segregating in a population. Besides, 

causative variants with both a high minor allele frequency (MAF) and LD can be 

detected regardless of their effect sizes (López de Maturana et al., 2014). Note 

that LD has been always an essential factor. In a nutshell, true marker 

associations cannot be detected in the absence of high LD. 

 

There are numerous GWASs that were published after the availability of SNP 

platforms in livestock species with positive results (Sharma et al., 2015). 

Nonetheless, there has been a problem concerning the lack of replication of the 

positive findings from GWASs. This lack of replication of genetic markers, 

previously associated, shows the need for larger samples, control of the 

population’s differences and stronger statistical evidence priors. Bearing in 

mind this GWAS issue and a reasonable cost, the incorporation of genome 
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sequences with imputation strategies has been investigated as a new strategy 

for GWAS in order to place the causative variants. However, this method would 

rely strongly on the quality of sequencing and imputation (see review by Schmid 

& Bennewitz, 2017).  

 

Frequentist inference 

The GWAS in the past was mainly carried out by using of single marker 

regression (SMR) models and frequentist statistic, i.e. p-values.  SMR consist of 

performing marker-by-marker analysis, testing every association between 

genetic marker or SNP and a given phenotypic database for a trait. P-values, 

used by frequentists, are defined as the probability than under conceptual 

future repetitions of study would generate stronger evidence for association 

than actually observed test statistic when the null hypothesis were true. P-

values are usually easily calculated (Stephens and Balding, 2009; Ball, 2013). 

But, how to use and interpret the p-value? The test of association is done by 

testing of every SNP effect, being different from zero, which result in a p-value. 

These values are mistakenly construed as “the probability of being wrong”. In 

addition, p-values are commonly misinterpreted as a measure of significance, 

as also the probability of the null hypothesis being true, e.g. no having SNPs 

associated with a given trait; and moreover, as evidence that supports the 

alternative hypothesis (Ball, 2013; Blasco, 2017; Schmid and Bennewitz, 2017). 

More details of common misinterpretation for p-values are in Blasco (2017). 

Furthermore, p-values depend on sample size, test setup and experimental 

design. In turn, these values also change by experiment; thus, p-values are 

troublesome in a sequential sampling application (Ball, 2013).  

 

The number of phenotypic data (sample size) and the allele frequency of SNPs 

influence the estimation of allelic effect of the SNPs. This problem, termed “large 

p small n”, arises when the number of genetic markers (p) vastly exceeds the 

number of samples with phenotypic record (n). This situation can lead to issues 

of high-dimensional feature space and consequently, problems of computation 

(De Los Campos et al., 2013; Shen et al., 2013; Mei and Wang, 2016). Under the 

frequentist inference, the models would fit the whole genome based on penalized 

likelihood (linear mixed models and ridge regression). Although, common 

GWASs normally avoid high-dimensional models and turns the issue into 



GENERAL INTRODUCTION 

 

25 

multiple testing problem instead. Thus, the routines for implementing of SMR 

sacrifices both detection and prediction power (Shen et al., 2013; Mei and Wang, 

2016). This problem is utterly more important in whole-genome regression and 

prediction methods than in GWASs (De Los Campos et al., 2013).  

 

Under a predefined significance threshold, e.g. 0.05, p-values fall below this 

threshold are considered to be significant. Choosing a significance threshold is 

a problem in GWAS since the threshold should regard and account for the huge 

amount of multiple testing performing (Ball, 2013; Schmid and Bennewitz, 

2017). The most common corrections of multiple testing are the Bonferroni 

correction (or an alternative option adjusted by LD blocks), permutation testing 

and the false discovery rate - FDR (Hayes, 2013; Schmid and Bennewitz, 2017; 

Marees et al., 2018). The Bonferroni correction is very stringent, especially in 

high SNP-density platforms (e.g. over 700K SNPs), and considers all 

independent tests each other. As this assumption is wrong, alternative 

approaches are used to discover associations having a trade-off between the 

detection power and the inflation of type I errors, such as the above mentioned 

corrections (Li et al., 2012; Schmid and Bennewitz, 2017; Marees et al., 2018). 

In human, the current conventional threshold is 5 x 10-8 (Ball, 2013). This is 

based on threshold of 0.05 fitted for the equivalent number of independent 

comparisons conforming to a dense set of genetic markers. Moreover, short LD 

blocks are widely present in the human genome, explained mainly by few non-

inbreeding matings. This corroborates the presence of a large number of 

independent testing for most of traits in humans (Duggal et al., 2008; Ball, 

2013). In livestock, the number of long LD blocks increases strongly under 

artificial selection and mating between close relatives, named as inbreeding 

populations. Commercial livestock populations have also small effective 

population size. Hence, the number of independent testing in livestock is 

commonly much lower than in human (Schmid and Bennewitz, 2017). Thus, 

this suggested the inclusion of a lower “suggestive” threshold, 1 x 10-4, for 

livestock GWASs (Sahana et al., 2011; Bertolini et al., 2018; Do et al., 2018). 

 

Population structure and cryptic relatedness augment false positive 

associations in GWAS. The main methods uncovering and controlling the 

confounding factors are: genomic control, structured association, 

multidimensional scaling and principal component analyses. The correction of 
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the tests can be accomplished by adjusting the inflation of test by the population 

structure, or by including principal components as fixed effects in the model (Li 

and Zhu, 2013). These methods deal efficiently with the problems derived from 

population structure; however, decline their impact on cryptic relatedness with 

family-based data (Eu-ahsunthornwattana et al., 2014; Sul et al., 2018). 

Different frequentist models are used for GWAS. An alternative way to avoid 

cryptic relatedness and consequently the inflation of type I errors is applying 

linear mixed models with a random polygenic effect of the individuals (Li and 

Zhu, 2013; Sul et al., 2018). The polygenic effects are normally distributed with 

mean zero and an additive genetic variance multiplied by a variance-covariance 

matrix. This latter may be based on either pedigree or genomic kinship - 𝑮𝑹𝑴 

(VanRaden, 2008). The estimator of 𝑮𝑹𝑴 varies from field to field according to 

use of allelic frequencies and statistical modelling (Wang, 2016; Goudet et al., 

2018). For example, in human genetics, estimators are frequently used from 

equations of Yang et al. (2010) and Ritland (1996), and in the models for animal 

breeding programs are commonly used the procedures of VanRaden (2008) and 

Yang et al. (2010). The main difference between them lies in the assumption on 

the contribution of the genetic markers and their allelic frequencies. The 𝑮𝑹𝑴 

of VanRaden (2008) is calculated from the following equation:  

 

 𝑮𝑹𝑴 =  
𝒁𝒁′

  2 ∑ 𝑝𝑖𝑞𝑖
𝑘
𝑖=1

 

 

where 𝒁 is an incidence matrix of marker effects, 𝒁′ is an inverse of incidence 

matrix of marker effects, 𝑘 is the number of genetic markers, 𝑝𝑖 is the allelic 

frequency of one allele at marker 𝑖, and 𝑞𝑖 is the allelic frequency of another 

allele at marker 𝑖 (VanRaden, 2008; Clark and Van Der Werf, 2013; Goudet et 

al., 2018). A second matrix creates 𝑮𝑹𝑴 weighting every marker differently 

(VanRaden, 2008; Yang et al., 2010). The 𝑮𝑹𝑴 would be: 
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where 𝒛𝒊 is a vector with genotypes for genetic marker 𝑖, 𝒛𝒊
′ is an inverse of a 

vector with genotypes for genetic marker 𝑖 . The rest of parameters in the 

equation are the same than in 𝑮𝑹𝑴 of VanRaden (2008). The estimates of 𝑮𝑹𝑴 
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elements of this second matrix are relative to the base population, in which the 

average of the relationship between individuals is zero. This 𝑮𝑹𝑴  presents 

problems compared with the first one: it is very sensitive to small allelic 

frequencies because this gives high weight to very rare alleles; besides, it gives 

large effects to genetic markers with small allelic frequencies because the 𝑮𝑹𝑴 

assumes that the contribution of every marker to the overall 𝑮𝑹𝑴 are identical. 

Hence, this 𝑮𝑹𝑴  sets different a priori variances to the genetic markers, 

depending on their frequencies (Clark and Van Der Werf, 2013; Legarra, 2016; 

Goudet et al., 2018). On the other hand, there is a concern about whether a 

given SNP to be tested for its association (and the other SNPs in high LD with 

the given SNP) should be used to establish the 𝑮𝑹𝑴  or not. The initial 

hypothesis poses that if the tested SNP is included in the GRM, this could 

increase the rate of false negatives. Therefore, several authors have 

recommended the exclusion of all SNPs that are located on the same 

chromosome as the SNP to be tested from the GRM (Yang et al., 2014; Schmid 

and Bennewitz, 2017). Nevertheless, other authors suggest that double-fitting 

of the SNP effects is a less severe problem than previously thought, having 

negligible impact on the results (Gianola et al., 2016). 

 

There are various models, methods and software for GWAS by SMR. Some of 

them involve linear regression models, such as TASSEL, TASSEL+P3D, EMMAX, 

FaST-LMMfull, FaST-LMMlowfull, GenABEL (FASTA and GRAMMAR), GEMMA 

and so on (see reviews by: Li & Zhu, 2013; Eu-ahsunthornwattana et al., 2014; 

Yang et al., 2014). Currently, the most common software is Genome wide 

Complex Trait Analysis - GCTA (Yang et al., 2011). Another approach is instead 

to identify a particular SNP, to identify a genomic region. This approach 

calculates the heritability of each genomic region using consecutive SNPs within 

each particular region. It takes into account that a large proportion of genetic 

variation is captured by common linked SNPs clusters (Caballero et al., 2015; 

Visscher et al., 2017). Under this condition, the method recommended is the 

estimation of the heritability of genomic regions using regional heritability 

software - REACTA (Caballero et al., 2015; Shirali et al., 2016). However, all of 

the above mentioned methods still present the problems concerning the p-

values and multiple testing. Nowadays, numerous researchers ask for the 

retirement of the p-value and statistical significance as the procedures of 

interpretation of results when an actual effect exists (Amrhein et al., 2019; 
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McShane et al., 2019; Wasserstein et al., 2019). Besides, some researchers have 

suggested that p-values and statistical significance should be replaced by 

indicators showing stronger evidence for each research hypothesis, e.g. test 

using Bayesian statistic (Stephens and Balding, 2009; Ball, 2013; Blasco, 

2017).  

 

Bayesian inference 

The Bayesian inference is increasingly used in GWAS because this statistical 

school employs probability distributions given the observed data (Stephens and 

Balding, 2009; Ball, 2013; Blasco, 2017). Bayesian inference is based on the 

use of probability for stating uncertainty. Calculating posterior probability 

distributions are carried out by specifying probability statement based in the 

observed data and prior distributions that are normally subjective priors. These 

priors summarize knowledge about unknown before the observed data are 

considered. Moreover, the Bayesian inference provides a description of how 

existing knowledge is changed by experience. In brief, statisticians use Bayes’ 

theorem to turn the prior distribution into a posterior distribution. This latter 

distribution is used to describe and obtain the results of a given research study 

(Sorensen and Gianola, 2002; Stephens and Balding, 2009; Blasco, 2017). 

 

Bayesian multi-marker (BMM) models fit a large number of SNPs 

simultaneously as random effects in the model under distinct shrinkage 

assumptions (Gianola, 2013; López de Maturana et al., 2014; Schmid and 

Bennewitz, 2017). The main difference amongst BMM models is essentially the 

information on prior distributions of SNPs effect sizes. These models include 

Bayes A, B (Meuwissen et al., 2001), LASSO (Park and Casella, 2008), C, Cπ, D, 

Dπ (Habier et al., 2011), R (Erbe et al., 2012), IM (Wilson-Wells and Kachman, 

2016) and so on. A brief description of the main BMM is presented below:  

 Bayes A: assumes a t distribution of SNPs effects, depending on the 

degree of freedom and the scale parameters, characterized by thick-tailed 

prior. All SNPs contributes to the trait variance (Meuwissen et al., 2001). 

 Bayes B: the same as Bayes A but assuming a small proportion of SNPs 

that have effects on the trait variance. The proportion is assigned by the 

researcher. Every SNP has a specific variance (Meuwissen et al., 2001). 
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 LASSO: assumes a shrinkage under a double exponential distribution. 

The method estimates the parameters under penalized regressions (Park 

and Casella, 2008). 

 Bayes C and Cπ: the first is as the Bayes B model but assuming a normal 

distribution of SNPs effects. All SNPs effects have a common variance. In 

Bayes Cπ, the proportion of SNPs with effect are estimated derived from 

data, as the proportion is treated as an unknown parameter (Habier et 

al., 2011). 

 

Nowadays, Bayes C, B and R are most commonly applied models for Bayesian 

GWASs (Sharma et al., 2015; Fernando et al., 2017; Schmid and Bennewitz, 

2017). The Bayes B reduces the effects of sampling noise, producing 

associations inside or very close to major genes (De los Campos et al., 2013; 

Ros-Freixedes et al., 2016; Fernando et al., 2017). This could be convenient 

when the sample number is small for traits presenting evidence of major genes. 

GWASs using Bayesian inference are more robust in detecting of genetic 

markers associated with a given trait than using frequentist inference. These 

GWASs can efficiently deal with the “large p small n” problems (De Los Campos 

et al., 2013) and confounding factors  (Toosi et al., 2018). Hence, BMM methods 

demonstrate a larger detection power and smaller type I errors compared with 

SMR methods (López de Maturana et al., 2014). However, BMM methods depend 

on the variance scaling factor, the degrees of freedom, and the proportion of the 

SNPs having a zero effect on the variance of a given trait (denoted as  𝜋  in Bayes 

B, C and D). In this sense, the wrong choice of these former parameters could 

entail some problems on the detection power and precision of the results, over- 

or under-estimating the SNPs effects (Habier et al., 2011; Lehermeier et al., 

2013; Gianola, 2013). Moreover, the length of Markov chain Monte Carlo 

(MCMC), being a computational method, can influence the sampling for creating 

the posterior distribution and, consequently, the SNP effect estimation. 

Standard MCMC presents high computational cost and is inefficient in the 

presence of high-dimensional data. Therefore, other alternatives have been 

proposed and developed, e.g. Bayesian hierarchical variable selection (Schmid 

and Bennewitz, 2017; Zhao et al., 2019).  

 

For Bayes B, C, and D, the inference about each SNP association with a given 

trait can be tested using Bayes factors. These are obtained using the marginal 
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posterior distribution of each SNP effect (Stephens and Balding, 2009; Habier et 

al., 2011; Schmid and Bennewitz, 2017). Bayes factors are defined as the ratio 

between the posterior odds ratio and the prior odds ratio derived from:  

 

 𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  
 P(𝐻1)

P(𝐻0)
  

 

𝐵𝐹  =   
 P(𝑦 |  𝐻1) 

P(𝑦 |  𝐻0)
    

 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜  =   
 P(𝐻1|  𝑦) 

 P(𝐻0 |  𝑦)
 =   

 
  P(𝑦 |  𝐻1)    ·   P(𝐻1)  

 P(𝑦)

  P(𝑦 |  𝐻0)    ·   P(𝐻0) 
 P(𝑦)

  

 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =   
P(𝑦 | 𝐻1)

P(𝑦 | 𝐻0)
   ·    

P(𝐻1)

P(𝐻0)
 =  𝐵𝐹   ·    

 P(𝐻1)

P(𝐻0)
      

 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =    𝐵𝐹 ·  𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 

 

𝐵𝐹  =   
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜

𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜
 

 

where Pr(𝐻1 |  𝑦)  is the probability of an alternative hypothesis under the 

observed data, Pr(𝐻0 |  𝑦) is the probability of a hypothesis of a zero-effect SNP 

under the observed data, Pr(𝑦 |  𝐻1) is the probability of the data under an 

alternative hypothesis, Pr(𝑦 |  𝐻0)  is the probability of the data under a 

hypothesis of a zero-effect SNP,  Pr(𝐻1) is the prior probability of the alternative 

hypothesis,  Pr(𝐻0) is the prior probability of the hypothesis of a zero-effect SNP, 

and 𝐵𝐹  denotes the Bayes factors (Sorensen and Gianola, 2002; Wakefield, 

2012; Blasco, 2017). The use of BF allows to compare the posterior probabilities 

of two hypotheses (Stephens and Balding, 2009; Blasco, 2017). BF using Bayes 

B, C or D can be calculated considering the posterior probability of each SNP at 

locus 𝑗, denote as 𝑝𝑗̂ , and a prior 𝜋, representing the proportion of the SNPs 

having a zero-effect on the variance of a given trait (Ros-Freixedes et al., 2016): 
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𝐵𝐹  =   
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜

𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜
=   

    
P(𝐻1 |  𝑦) 
P(𝐻0 |  𝑦)

   

P(𝐻1)
P(𝐻0)

   =   

𝑝𝑗̂

(  1 −   𝑝𝑗̂  )

(  1 −   𝜋  )
𝜋

  

 

𝐵𝐹  =    

𝑝𝑗̂

(  1 −   𝑝𝑗̂  )

(  1 −   𝜋  )
𝜋

  

 

The evidence of association of a given SNP can be considered "substantial" when 

its 𝐵𝐹  is above 3.2, "strong" above 10, and "decisive" above 100 (Kass and 

Raftery, 1995). The chief problem of BF is that the probabilities of the 

hypotheses are sensitive to the prior information of the unknown parameters 

within the hypotheses. Moreover, BF are only ratios of posterior probabilities 

when prior probabilities are the same. BF will be difficult to compute and to 

interpret under other conditions, particularly in complex models (Stephens and 

Balding, 2009; Blasco, 2017). Posterior probabilities of association, P(𝐻1|  𝑦), 

are represented as PPA by some researchers. PPA are better indicators for 

defining the association importance rather than the use of BF. These latter (BF) 

has to be very large to provide convincing evidence for an association as 𝜋 is 

taken generally so small (Stephens and Balding, 2009; Purfield et al., 2014). The 

PPA can be expressed using 𝐵𝐹 and 𝜋. Hence, PPA does not depend on detection 

power and sample size (Stephens and Balding, 2009). PPA are easy of 

calculating through the following equations: 

 

𝑃𝑂  =  𝐵𝐹   .    
(  1 −   𝜋  )

𝜋
  =    

𝑝𝑗̂

(  1 −  𝑝𝑗̂  )
 

 

PPA  =  
𝑃𝑂

(𝑃𝑂 +   1)
  =   

P(𝐻1 |  𝑦) 
P(𝐻0 |  𝑦)

 

   
P(𝐻1 |  𝑦) 
P(𝐻0 |  𝑦)

  +   1  
=   

𝑝𝑗̂

(  1 −   𝑝𝑗̂  )

   
𝑝𝑗̂

(  1 −   𝑝𝑗̂  )
 +   1  

  =      𝑝𝑗̂ 

 

Where 𝑃𝑂 is the posterior odds ratio, and the rest of the parameters means the 

same than in the above equations. In a nutshell, PPA is 𝑝𝑗̂ , the posterior 

probability of each SNP at a SNP at locus 𝑗. 
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On the other hand, consecutive SNPs that surround a causative variant of a 

gene can jointly explain better the effect of this causative variant than using a 

single SNP. Defining genomic windows, using a physical distance or the number 

of consecutive SNPs, can improve the detection power. This approach also 

reduces the sampling error due to the presence of reasonable hitchhiking 

phenomena derive from the LD produced by selection (Garrick and Fernando, 

2013; Beissinger et al., 2015; Hoban et al., 2016). There are three types of 

approaches for delineating boundaries of windows: sliding-windows, distinct-

windows and the optimization of window size using smoothing spline 

techniques. Sliding-windows consist of defining each window with a constant 

window length and an interval for moving along the genome. This interval is 

lower than the window size leading to overlapping of adjacent windows. This 

approach allows to refine the precise locations of windows associated with a 

given trait (Tang et al., 2009). However, as the number of tests increases, an 

inflation of type I errors is produced (Beissinger et al., 2015; Hoban et al., 2016). 

Distinct windows consist of defining each window with a constant window 

length without being overlapped along the genome (Garrick and Fernando, 

2013; Beissinger et al., 2015). This approach shows lower inflation of type I 

errors than the sliding-window approach (Beissinger et al., 2015; Hoban et al., 

2016). The optimization of windows size using smoothing spline techniques 

determines the ideal window size along the genome from the genomic database. 

This approach can attain a greater number of detected QTL, controlling the 

inflation of type I errors at the same time, compared with the two former 

approaches (Beissinger et al., 2015). The importance of the associations can be 

defined using the conventional threshold of 1% of genomic variance explained 

by a window (Garrick and Fernando, 2013) or the window posterior probability 

of association (WPPA). This latter criterion is appropriate to calculate evidence 

of association for a window, since WPPA is not influenced by the SNP-density in 

the model (Fernando et al., 2017; Schmid and Bennewitz, 2017). The 

implementation of Bayesian GWAS can be performed using GenSel (Garrick and 

Fernando, 2013) and BGLR software (Pérez and De Los Campos, 2014). 
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1.4.2. Genome scan study  

Most traits in livestock lack major genes ruling the trait variation (Sharma et 

al., 2015; Goddard et al., 2016; Schmid and Bennewitz, 2017). Revealing 

causative genes by GWAS is like finding a needle in the haystack. The 

underlying causative genes have only been identified in few exceptional cases 

(Schmid and Bennewitz, 2017). The implementation of genomic scans studies 

using animals from divergent selections can improve or confirm GWAS results 

(Qanbari and Simianer, 2014; Kim et al., 2015a). In this way, both results, from 

GWAS and genomic scan study, would give a better strong evidence of the 

positions of putative causative genes. 

 

1.4.2.1. Methods of selection signatures 

In absence of phenotypic information, genomic scan analyses contribute to 

elucidate selective signals across the genome of livestock breeds. Selection 

signatures are defined as genomic regions that harbour outstanding sequence 

variants; therefore, they are or have been under either artificial or natural 

selection leaving particular patterns of DNA behind (Qanbari and Simianer, 

2014). These patterns derive from “selective sweep” processes when an allele of 

beneficial mutation (or SNV) chains the alleles of SNPs located in the vicinity of 

this beneficial mutation. This phenomenon increases LD between these SNPs 

and consequently an allele of the beneficial mutation rise to high frequency, 

jointly with these nearby SNPs ( see review by Biswas & Akey, 2006; Oleksyk et 

al., 2010; Qanbari & Simianer, 2014). The procedures for detecting selection 

signatures are based on several null hypotheses of absence of selection (Biswas 

and Akey, 2006; Qanbari and Simianer, 2014). Similar than in GWAS, these 

require high statistical power to detect “selective sweeps” (Schwarzenbacher et 

al., 2012; Jacobs et al., 2016). Hence, some factors are crucial for choosing the 

procedures, e.g. recombination rate, mutation rate, timing of selection, number 

of genetic markers and the type of trait (sex limited, fitness and so on) (Oleksyk 

et al., 2010). The methods of selection signatures can cluster in the following 

categories:  
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Differentiation amongst populations 

Genome scans of genetic markers between breed groups selected for simply 

inherited traits may disclose the genomic regions that contributed to the 

observed phenotypic divergence (Beaumont and Balding, 2004; Johansson et 

al., 2010; Kessner and Novembre, 2015). These methods detect chiefly the 

deviation of the loss of heterozygosity amongst populations. However, they are 

very sensitive to “ascertainment bias”. This systematic bias is introduced due to 

selection criteria for SNPs of genotyping platforms. Since SNPs are chosen 

according to their MAF, those SNPs will present low MAFs in regions under 

natural or artificial selection. Hence, these SNPs will be under-represented or 

no included in the genotyping platforms (see review by Biswas & Akey, 2006; 

Qanbari & Simianer, 2014).  

 

Wright’s fixation index (Fst) is the most used metric of genetic differentiation 

(Wright, 1949). When selection favours a particular causative variant, several 

markers close to this causative variants show large Fst values (Biswas and Akey, 

2006). In populations selected for and against a trait, it is more efficient 

searching  for a number of consecutive SNP with large Fst rather than analysing 

each SNPs separately (Qanbari and Simianer, 2014). Nonetheless, we must take 

into account that Fst depends on the allele frequency of the SNP before selection; 

hence, the genomic information in the base population is important for detecting 

most causative variants with this method (Pritchard et al., 2010). 

 

Another method, called SelEstim by Vitalis et al. (2014), analyses the differences 

among the allele frequencies of several populations using a Bayesian approach. 

This method is based on a diffusion model approximation, i.e. an island model, 

for the distribution of allele frequency in a population subdivided into a number 

of groups of closely related individuals (demes), exchanging migrants. SelEstim 

estimates the parameters 𝒌𝑖𝑗 that indicates which allele is selected for, in the 

𝑖th deme at the locus 𝑗; the parameter  𝜹𝑗 which denotes the average effects of 

selection at locus 𝑗  (over all demes); and the hyper-parameter 𝝀  which 

represents the genome-wide effect of selection over all demes and loci. The 

model-based method distinguish the strength and the type of selection acting 

on segregating polymorphisms. These parameters are estimated from the 
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posterior distributions using a MCMC algorithm for sampling from the joint 

posterior distribution of the model parameters (Vitalis et al., 2014).   

 

Reduction of the local genomic variability 

These methods are used to study patterns along the genome of only one 

population, i.e. intra–population study. The main idea is to identify genomic 

regions with a systematically local reduced variation relative to the average 

across the genome. These methods present an advantage, in which a causative 

variant and their associated genetic markers can be detected when these are 

already fixed. Under this condition, these detections are impossible in GWASs 

(see review by Qanbari & Simianer, 2014). This category includes: deviation of 

molecular genomic kinship, measure of heterozygosity (Hp) and runs of 

homozygosity (ROH) (see review by Oleksyk et al., 2010). This latter method is 

defined as steady homozygous segments of DNA sequence. Besides, its 

importance lies mainly in quantifying and understanding inbreeding in 

humans, livestock, and plants (Peripolli et al., 2017; Ceballos et al., 2018). This 

method is strongly linked to adaptation or fitness traits, e.g. litter size and 

immune response (Kim et al., 2015b; Saura et al., 2015). 

 

Modification of allele frequency spectrums 

These methods detect signals of “selective sweeps” which model the allele 

frequency spectrum across a given genome. The allele frequency distribution of 

a given set of loci is termed the “site frequency spectrum” (SFC). Under a non-

recombination model, SFC can be skewed by natural or artificial selection. In 

this way, SFC that results from a recent selective fixation may be very different 

from that produced under the hypothesis of genetic neutrality. Hence, two 

separate sides of allele frequencies may be observed in a chromosome region, 

showing an excess of both low- and high-frequencies of each genetic marker. 

Namely, these methods are based on searching for noticeable shifts in the allele 

frequency spectrum or haplotype structure in a single population (see reviews 

by Bamshad & Wooding, 2003; Akey, 2009; Qanbari & Simianer, 2014). Some 

statistics based on the spectrum of allele frequencies are: Taijama’s D (TD), Fay 

and Wu H test, Fu and Li D test and composite likelihood ratio (CLR) test (see 

reviews by Biswas & Akey, 2006; Qanbari & Simianer, 2014). The CLR uses 

coalescent simulations to derive a distribution of the test under the null 
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hypothesis of absence of selection. Nevertheless, this statistic assumes a 

uniform mutation rate and recombination rate across the genome, which would 

be an incorrect hypothesis (Williamson et al., 2007). A drawback of these 

methods is their high sensitivity to “ascertainment bias”, similar to the methods 

of differentiation amongst populations (Chen et al., 2010; Qanbari and 

Simianer, 2014). This pitfall can be avoided using sequence data or using SNP 

arrays greater than 50K SNP (Qanbari and Simianer, 2014).  

 

“The cross-population composite likelihood ratio test” (XP-CLR) is a method 

which allows comparing an objective population against a reference population. 

This likelihood method models the multilocus allele frequency differentiation 

between the two populations (Chen et al., 2010). XP-CLR models the genetic 

drift under neutrality using Brownian motion which is a non-Markov random 

process described by stochastic integral equations (Chen et al., 2010; Morozov 

and Skripkin, 2011). Besides, XP-CLR uses a deterministic model to 

approximate the effect of a “selective sweep” on genetic markers in the vicinity 

of the SNP allele chosen as reference point. This method looks for chromosome 

regions in the genome, where the shift of allele frequency at the locus happened 

too quickly to be due to random drift (Chen et al., 2010). The XP-CLR is a robust 

method since can improve unfavourable effects of “ascertainment bias” by 

modelling the SNP ascertainment schemes (Chen et al., 2010; Qanbari and 

Simianer, 2014).  

 

Extension of linkage disequilibrium  

The methods are based on the decay of LD and the extension of haplotypes in 

the genome. These methods focus on the study of the correlations amongst 

neighbouring genetic markers (Oleksyk et al., 2010). They are efficient for 

detecting ongoing and nearly fixed “selective sweeps”. Essentially, they detect 

hard “selective sweeps” where a new mutation arises on a haplotype that quickly 

sweeps toward fixation before a recombination process breaks up the haplotype 

(Sabeti et al., 2007; Szpiech and Hernandez, 2014). Some statistics of this 

category are: extended haplotype homozygosity (EHH), integrated haplotype 

score (|iHS|), variation of linkage disequilibrium (varLD) and relative extended 

haplotype homozygosity (REHH) (see review by Biswas & Akey, 2006; Oleksyk 

et al., 2010; Qanbari & Simianer, 2014). These methods are the least sensitive 
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to “ascertainment bias” (Chen et al., 2010; Qanbari and Simianer, 2014). A 

popular method is “the cross-population extended haplotype homozygosity test” 

(XP-EHH) (Sabeti et al., 2007). As in XP-CLR, this method compares two 

populations distinguishing nearby loci with “selective sweeps” in which the 

selected alleles have risen to high frequency or fixation in the objective 

population, whilst these alleles tend toward non-extreme frequencies in the 

reference population. This method assumes that two populations had a common 

ancestors population and proceeded from a genomic divergence process (Sabeti 

et al., 2007; Pritchard et al., 2010; Schwarzenbacher et al., 2012).  

 

1.4.3. Post-genomic analyses, validation and application of 

findings 

Increasing the number of SNP (high SNP-density) can lead to many spurious 

associations in both GWASs and genomic scan studies (Spencer et al., 2009; 

Sul et al., 2018). After genomic analyses, it is important to bear out the findings 

by means of (a) implementing several genomic studies (Schwarzenbacher et al., 

2012), (b) validation through biological information (Ioannidis et al., 2009), and 

(c) replication of the findings using several independent populations within a 

given species (Schmid and Bennewitz, 2017). 

 

A combination of methods of selection signatures may improve the detection of 

genomic regions showing signals of hard “selective sweep”. These methods 

should be chosen according to the lower sensitivity to “ascertainment bias” 

(Schwarzenbacher et al., 2012; Qanbari and Simianer, 2014). Besides, genomic 

regions overlapped between selection signatures and GWAS signals may provide 

a way to validate promising genetic markers and QTLs  (Schwarzenbacher et al., 

2012).  

 

After positive findings from GWASs and genomic scan study, the adequate 

process involves the validation and the replication of these results (Sharma et 

al., 2015). In this way, the next step is the searching for genes within associated 

genomic regions using genomic maps (Ioannidis et al., 2009; Schmid and 

Bennewitz, 2017). Discovering causative variants must have a biological 

interpretation. The search of genes with causative variants linked to associated 

SNPs must also point out a consistent and intelligible interpretation of the 



GENERAL INTRODUCTION 

 

38 

pathways, as also cause-effect factors according to knowledge of molecular 

biology (Schmid and Bennewitz, 2017). That would be the most important way 

of validation for putative causative variants, inferred from the results of gene 

expression and references of previous studies in a particular species (McCarthy 

and Hirschhorn, 2008; Ioannidis et al., 2009). In the case of absence of genomic 

information in the associated genomic regions, the next step would be to make 

refining or sequencing of these genomic regions. In particular, researchers 

should analyse the promoter and exonic regions of the genes within the 

associated genomic regions. These procedures must initially carry out using the 

same population in which the associated genomic regions were identified.  

 

GWASs and genomic scan results help to outline further strategies of research 

and characterize the genomic architecture for a given trait of interest (Ioannidis 

et al., 2009; Schmid and Bennewitz, 2017). The final objective of these genomic 

experiments is to detect associated markers with a particular trait, located these 

markers very close to the underlying genes and to the mutation, within a given 

gene, affecting the phenotypic trait (Witte, 2010; Sharma et al., 2015). The 

association and the causation as synonymous are rare from GWASs results. In 

this way, the causation of a SNV (or causative variant) can be validated using 

several independent populations as long as a beneficial allele is segregating 

within those populations. For instance, if a relevant SNP with large effect was 

identified by genomic analyses using a Spanish rabbit population, researchers 

must identify the same associated SNP when they repeat the analyses using 

French, Polish and Hungarian rabbit populations. In this way, they can deem 

this SNP as a causative variant. Namely, the causative variants must show the 

same magnitude of effect with the same algebraic sign in all analyzed rabbit 

populations. In addition, positive results from GWASs and genomic scan studies 

must be validated by the concordance test and the complete linkage 

disequilibrium test (Ioannidis et al., 2009; Schmid and Bennewitz, 2017) 

 

Results of GWASs are troublesome for their application in animal breeding 

programs. Frequently, different regions and different genes are found associated 

with a given trait in different breeds, due to different genomic architectures and 

the polygenic nature of complex traits. Nonetheless, there is a few GWASs with 

outstanding results in livestock production, e.g. GWAS for diseases (Meyers et 

al., 2010; Sharma et al., 2015; Schmid and Bennewitz, 2017). An example was 
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the GWAS for osteopetrosis in red Angus cattle. The results showed a significant 

SNP cluster associated with the disease on bovine chromosome 4. This SNP 

cluster was considered as QTL. The refining and validation of this associated 

QTL conducted to discover a deletion mutation which causes loss of SLC4A2 

function inducing premature cell death and stillbirth. This finding considerably 

improved the beef production in red Angus cattle, since it was possible to remove 

the animals showing the unfavourable allele (Meyers et al., 2010).   

 

Anyway, the usefulness of GWASs on animal breeding programs is actually 

negligible for most quantitative traits, according to mentioned references in this 

“General Introduction” (view reviews by Sharma et al., 2015; Schmid & 

Bennewitz, 2017; Georges et al., 2019). Finding all causative variants does not 

ensure an increase of genetic progress for a given quantitative trait. For instance, 

we can suppose that a GWAS discovered the 1000 causative variants controlling 

the variability of that trait. After that, we would only select for the beneficial 

additive alleles of causative variants. Although this GWAS revealed the effect of 

causative variants, the study thoroughly ignores the effects of interactions 

amongst the causative variants. Thus, this selection using the 1000 causative 

variants will produce a null or the same genetic progress than the traditional 

selection in the following generation of selection. 
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CHAPTER TWO 

2. SCOPE OF THE STUDY 

At the Universitat Politècnica de València, the Animal Breeding Unit carried out 

two independent experiments of divergent selection for uterine capacity and for 

intramuscular fat, respectively. The divergently selected populations are an 

exceptional material to identify causative variants because they increase the 

detection power compared with a one-way selected population. The outline of 

the current research study was to disclose potential genomic regions and 

putative causative variants controlling the traits which were selection criteria. 

The findings of this study could suggest new research studies focused likely on 

rabbit breeding programs. 

 

2.1. Specific objectives of this thesis 

 To identify genetic markers (SNPs) and genomic regions associated with 

uterine capacity and its correlated traits, using Bayesian GWAS and the 

rabbit lines of the divergent selection experiment for uterine capacity. 

 

 To identify genetic markers (SNPs) and genomic regions associated with 

intramuscular fat, using distinct GWAS approaches and the rabbit lines 

of the divergent selection experiment for intramuscular fat. 

 

 To detect genomic regions associated with intramuscular fat through 

genome scan studies, as the methods of selection signatures, taking 

samples from divergently selected populations. 
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3.1. Abstract 

Uterine capacity (UC), defined as the total number of kits from unilaterally 

ovariectomized does at birth, has a high genetic correlation with litter size. The 

aim of our research was to identify genomic regions associated with litter size 

traits through a genome-wide association study using rabbits from a divergent 

selection experiment for UC. A high-density SNP array (200K) was used to 

genotype 181 does from a control population, high and low UC lines. Traits 

included total number born (TNB), number born alive (NBA), number born dead, 

ovulation rate (OR), implanted embryos (IE), and embryo, foetal and prenatal 

survivals at second parity. We implemented the Bayes B method and the 

associations were tested by Bayes factors and the percentage of genomic 

variance (GV) explained by windows. Different genomic regions associated with 

TNB, NBA, IE, and OR were found. These regions explained 7.36%, 1.27%, 

15.87%, and 3.95% of GV, respectively. Two consecutive windows on 

chromosome 17 were associated with TNB, NBA, and IE. This genomic region 

accounted for 6.32% of GV of TNB. In this region, we found the BMP4, PTDGR, 

PTGER2, STYX and CDKN3 candidate genes which presented functional 

annotations linked to some reproductive processes. Our findings suggest that a 

genomic region on chromosome 17 has an important effect on litter size traits. 

However, further analyses are needed to validate this region in other maternal 

rabbit lines. 

 

Keyword: divergent selection, genome-wide association study, litter size, 

quantitative trait loci, rabbits, uterine capacity. 

 

3.2. Background 

Litter size has high economic importance in all polytocous livestock species, 

including rabbits (Cartuche et al., 2014) and swine (Quinton et al., 2006). 

However, the selection response for this complex trait, as well for several other 

reproduction traits, is small. For example, in rabbit selection experiments for 

litter size the response can be 0.1 kits per generation (see review Khalil & Al-

Saef, 2008). This situation encouraged the application of alternative selection 

strategies based on litter size components such as uterine capacity (UC) 

(Argente et al., 1997), ovulation rate (OR) (Laborda et al., 2012), or selection 
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using independent culling levels for OR and litter size (Ziadi et al., 2013; Badawy 

et al., 2018). 

 

UC is the prenatal survival when the OR is not a limiting factor of litter size and 

the uterine horn is crowded with embryos (Blasco et al., 1994; Argente et al., 

1997). This trait can be measured as total number of kits at birth under these 

conditions (Christenson et al., 1987; Mocé et al., 2004), since does have a double 

cervix preventing intrauterine transmigration; and thus, only one uterine horn 

remains functional and crowed, duplicating its OR when ovariectomies are 

implemented (Blasco et al., 1994; Argente et al., 1997). From 1991 to 1998, the 

Animal Science Department of “Universitat Politècnica de València” carried out 

an experiment of divergent selection for UC. After ten generations of selection, 

the divergence between the two divergent lines (high and low UC lines) was 1.50 

kits for UC (Blasco et al., 2005), with a correlated response in litter size of 2.35 

kits (Santacreu et al., 2005). Approximately one-half of the response in UC was 

obtained in the first two generations suggesting the presence of a major locus 

with large effect segregating in these populations (Argente et al., 2003; Blasco 

et al., 2005). Thus, a candidate gene strategy was carried out to characterize 

this locus by comparing polymorphisms and expression levels between the two 

UC lines of some promising candidates (Peiró et al., 2008; Argente et al., 2010; 

Ballester et al., 2013). Some of these genes (progesterone receptor - PGR, 

hydroxysteroid (17-beta) dehydrogenase 4 - HSD17B4, and Endoplasmic 

Reticulum Oxidoreductase 1 - ERO1) showed different expression levels in the 

oviduct of the two UC line, remarkably overexpressed in the low UC line, but 

these result could not identify any putative causal mutations (Peiró et al., 2008; 

Argente et al., 2010; Ballester et al., 2013). 

 

The recent availability of an updated rabbit reference genome (Carneiro et al., 

2014) and a high-density single nucleotide polymorphisms (SNP) array (Blasco 

& Pena, 2018) has opened new possibilities for more comprehensive genomic 

analyses in this species, similar to what is possible in all other major livestock 

species.  Together with these tools, several methods for genome-wide association 

analyses have been also already developed and applied in many different species 

(Fan et al., 2010). Among them, genome-wide association studies (GWAS) using 

multi-marker regression approaches can attain better power detection to 

identify genomic regions associated with a trait than the classical approach of 
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single maker simple regression (López de Maturana et al., 2014; Toosi et al., 

2018). 

 

In this study, we designed a GWAS in rabbit based on the described extreme 

and divergent lines for UC and applied a Bayesian multi-marker regression 

approach to identify quantitative trait loci (QTL) affecting litter size traits in this 

species. 

 

3.3. Material and Methods 

3.3.1. Ethical statement 

Animal manipulations and the experimental procedures were approved by the 

Ethical Committee of the Universitat Politècnica de València, according to 

Council Directives 98/58/EC (European Economic Community, 1998). 

 

3.3.2. Animals and phenotypes 

Animals came from an experiment of divergent selection for uterine capacity and 

a cryopreserved control population (Santacreu et al., 2005; Blasco et al., 2005).  

After ten generations of selection for uterine capacity, the selection was relaxed. 

For the current study, we collected blood samples from non-ULO female rabbits. 

The study involves 90 does of the high UC line, 69 does of the low UC line and 

30 does of the control population. All samples of high and low UC lines came 

from the 11th and 12th generations (Mocé et al., 2005; Santacreu et al., 2005). 

The base population of divergent lines for UC came from the 12th generation of 

a line selected for number of kits at weaning (named V line). The control 

population was derived from cryopreserved embryos from the 13th and 15th 

generations of the V line. The embryos were transferred to receptor does to 

produce a control population which was contemporary to UC females from 11th 

generation (Santacreu et al., 2005). 

 

The traits were recorded at the second parity: NBA, as the number of alive kits 

at parity; NBD, as the number of dead kits; TNB, as the sum of NBA and NBD; 

OR, calculated as the number of corpora lutea; IE, calculated as the number of 

implantation sites by  laparoscopy at day 12 of the gestation; embryo survival 

(ES), computed as a ratio IE/OR; foetal survival (FS), as a ratio TNB/IE; and 
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prenatal survival (PS), as a ratio TNB/OR (Mocé et al., 2005; Santacreu et al., 

2005). 

 

3.3.3. Genotypes and quality control  

Genomic DNA was isolated from blood using Favorgen Kit (FABGK 001-2; 

Favorgen Biotech Corp., Taiwan). We collected 189 samples with a minimum 

concentration of 20 ηg/µl and minimum volume of 45 µl. The concentrations 

were estimated with Nanodrop ND-1000 (NanoDrop Technologies, Wilmington, 

DE, USA) and borne out with PicoGreen (Invitrogen Corp. Carlsbad, C.A.). The 

threshold values for the integrity of DNA were 1.8 OD260 /OD280 and 1.5 

OD260 /OD320. The genotyping was performed in The National Genotyping 

Centre of “Universidad de Santiago de Compostela”.  

 

Does were genotyped using the Affymetrix Axiom OrcunSNP Array (Affymetrix, 

Inc. Santa Clara, CA, USA) (Blasco & Pena, 2018). The SNP array contains 

199,692 molecular markers. Quality control (QC) and genotype calling from raw 

data in the form of CEL files were implemented with Axiom Analysis Suite v. 4.0 

and reanalysed by ZANARDI (Marras et al., 2017). The SNP quality control was 

performed using the following criteria: call rate ≥ 0.95, P-value > 1.0E-7 for the 

χ2 test for Hardy Weinberg equilibrium, MAF ≥ 0.03 and only SNPs with known 

chromosome position. Animal samples were excluded from the dataset for 

values of dish quality control (DQC) < 0.89, missing genotype frequency > 0.03, 

Plate QC ≤ 0.96 or for failing a Mendelian segregation test. Missing genotypes 

were imputed by BEAGLE v4.1. SNPs with imputation quality score R2 > 0.75 

were included (Browning & Browning, 2009). After quality control, genotyping 

data for association analysis consisted of 181 samples and 117,791 SNPs. 

 

3.3.4. Statistical analysis 

Preceding to GWAS, we carried out a classical multidimensional scaling plot 

(Borg & Groenen, 2005) to find putative outliers or the presence of population 

stratification. The associations between SNPs and phenotypic traits were 

obtained using Bayes B Method. Briefly, this method computes all SNPs effects 

jointly and assumed for each marker a different genomic variance (Garrick & 

Fernando, 2013; Lehermeier et al., 2013). The following statistical model was 

used for the GWAS analysis: 
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𝒚 = 𝝁 +   𝑿 𝒃 +  ∑  𝒛𝒋 𝛼𝑗  𝛿𝑗  +   𝒆

𝑘

𝑗=1

 

 

in which 𝒚 is the vector of the phenotypic values; 𝝁  is the trait mean, 𝑿 is the 

incidence matrix for systematic effects; 𝒃  is the vector with the systematic 

effects of year-season (five levels), line (high UC, low UC or control) and 

physiological state (lactating or non-lactating does); 𝑘 is the total number SNP 

after quality control; 𝒛𝒋 is the vector including the genotypic covariate for each 

SNP or locus 𝑗 (0, 1 or 2 reference alleles); 𝛼𝑗 is the random allele substitution 

effect for SNP𝑗, which conditional on  𝜎𝛼
2   is  assumed normally distributed 

Ν( 0 ,  𝑰 ∙  𝜎𝛼
2 );  𝛿𝑗 is the random 0/1 variable that represents the presence (𝛿𝑗 = 

1, with probability 1-π) and the absence (𝛿𝑗 = 0, with probability π) of the SNP 

in the model for a given iteration of the Markov chain; and  𝒆  is the vector of 

the residual values with a normal distribution Ν( 0 ,  𝑰 ∙ 𝜎𝑒
2 ) (Onteru et al., 2012; 

Cesar et al., 2014). The genomic variance for every SNP was denoted as  𝜎𝛼
2 and 

the residual variance as  𝜎𝑒
2. In Bayesian approaches, variance parameters can 

be treated as unknown, but having assumed prior distributions (Garrick & 

Fernando, 2013). In our study, we assigned the prior genomic variance of the 

SNPs derived from the estimated total genetic variance (Lehermeier et al., 2013). 

The prior variances for each trait were retrieved from previous experiments 

(García & Baselga, 2002; Blasco et al., 2005; Ragab et al., 2014) and are 

displayed in Table 1. A model including line effect can cause a reduction of the 

statistical power of the divergent selection experiment. The line effect can 

mistakenly capture markers effects with opposite frequencies between lines. 

Hence, GWAS analyses were repeated using a model without line effect. 

 

The π value defines the proportion of SNPs having zero effects in each iteration. 

We performed several analyses before defining this parameter. The π values 

were evaluated within range of 0.99 to 0.9995. The π values were very high 

according to the limited number of animals in this study (Ros-Freixedes et al., 
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2016). In addition, we also performed GWAS at chromosome level with π = 0.95 

in order to corroborate the results consistency. 

 

The parameters of the model were estimated with marginal posterior 

distributions using Markov chain Monte Carlo (MCMC). After some exploratory 

analyses, a total of 825,000 iterations were performed, with a burn-in period of 

225,000 iterations. Only one sample every 60 iterations was saved to avoid the 

high correlation between consecutive samples. The GenSel® v. 4.90 software 

(Garrick & Fernando, 2013) was used for the GWAS analysis. 

 

Table 1. Prior variances for Bayes B method. 

Trait 𝝈𝒂
𝟐 𝝈𝒆

𝟐 

Ovulation rate 1.5913 3.3816 

Implanted embryos 1.6638 5.8987 

Embryo survival 11.56 x 10-4 27.74 x 10-4 

Foetal survival 8.96 x 10-4 55.24 x 10-4 

Prenatal survival 2.25 x 10-4 22.75 x 10-4 

Total number born 0.6495 5.2554 

Number born alive 0.8589 9.8198 

Number born dead 0.1261 0.6652 

𝝈𝒂
𝟐: additive genetic variance; 𝝈𝒆

𝟐: residual variance. 

 

In our study, 2,171 genomic windows were allocated to the 21 autosomes and 

the chromosome “X”, containing around 54 SNP markers by each one. Genomic 

windows were defined for each chromosome according to the rabbit genetic map 

of OryCun2.0 assembly, and the percentage of the genomic variance explained 

for non-overlapping genomic windows of one megabase was calculated by 

marginal posterior density (Onteru et al., 2012; Garrick & Fernando, 2013; 

Cesar et al., 2014). The genomic windows that explained at least 0.5% of the 

genomic variance of each trait and with a probability being higher than zero at 

chromosome level of at least 0.70 were considered to be putative QTL. This 

threshold of 0.5% was 10 times higher than the expected percentage of genomic 

variance explained for one window (Onteru et al., 2013; Cesar et al., 2014). In 

addition, we considered relevant those SNPs markers that overcome at least a 
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Bayes factor of 10, a value commonly considered as evidence of association 

(Kass & Raftery, 1995; Stephens & Balding, 2009; Ros-Freixedes et al., 2016). 

The posterior probability of association (PPA) suggested was not used as 

criterion of association since the low number of records with a high number of 

SNPs leads always low PPA values, even for real associations (Stephens & 

Balding, 2009: see their supplementary information). Hence, additional 

information such as the results consistency for different models and priors was 

used to identified the genomic regions associated to the traits.  

 

3.3.5. Linkage disequilibrium, pathways and functional 

enrichment analyses 

The analysis of LD was performed in order to assess its pattern within the 

consecutive associated windows. The aim of this analysis was to provide support 

for the association evidence. Hence, those windows with a great span of LD (r2 

> 0.5) and with SNPs associated within this LD block were considered as a true 

association with the trait. We assumed that these SNPs are a tag of the same 

causal variant. In addition, the LD analysis was performed within line, in order 

to understand the selection process. The R LDheatmap package was used for 

this analysis (Shin et al., 2006).  

 

The position of the candidate genes was determined for each QTL using UCSC 

Rabbit Genome Browser (Rosenbloom et al., 2015). The gene annotations were 

provided by Ensembl Genes 97 database using Biomart Software (Aken et al., 

2016) and “GenerCards” (Stelzer et al., 2016). Moreover, the functional 

enrichment analyses were performed by Gene Ontology (GO) (Ashburner et al., 

2000) and “Database for Annotation, Visualization and Integrated Discovery” 

(DAVID) v 6.8 (Jiao et al., 2012). 

 

3.4. Results and Discussion 

3.4.1. Descriptive statistics of phenotypic data 

Descriptive statistics for litter size traits of the rabbit lines of UC divergent 

selection experiment are shown in Table 2. The mean and standard deviation 

across lines for litter size traits were similar to other rabbit lines (Piles et al., 

2006; Elmaghraby & Elkholya, 2010; Ragab et al., 2014). Apart from OR, there 
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were phenotypic differences between lines in all the traits. The most noticeable 

differences were for TNB with mean (standard deviation) of 10.11 (2.71), 7.01 

(3.08), and 9.57 (2.82) kits for the high UC line, the low UC line and the control 

population, respectively; and for IE with 13.08 (2.65), 10.96 (3.04), and 12.07 

(2.88) embryos; and for PS with 0.69 (0.17), 0.51 (0.21), and 0.65 (0.21), 

respectively. 

 

Table 2. Descriptive statistics of little size traits.  

Trait N1 Mean SD2 Min3 Max4 

Ovulation rate (OR) 157 14.85 2.52 9.00 22.00 

Implanted embryos (IE) 158 12.15 2.98 3.00 19.00 

Embryo survival (ES) 154 0.82 0.17 0.25 1.00 

Foetal survival (FS) 158 0.75 0.19 0.09 1.00 

Prenatal survival (PS) 157 0.62 0.21 0.06 1.00 

Total number born (TNB) 183 8.87 4.18 1.00 17.00 

Number born alive (NBA) 183 8.25 3.98 0.00 15.00 

Number born dead (NBD) 183 0.62 0.89 0.00 11.00 

N1: Number of records; SD2: Standard deviation; Min3: Minimum; Max4: 
Maximum. 

 

3.4.2. Description of genomic data 

A total of 181 rabbits from the two UC lines and for a control line were genotyped 

with the Affymetrix Axiom OrcunSNP Array, which interrogates 199,692 SNPs. 

The criteria to exclude SNPs for the GWAS analysis were: minor allele frequency 

smaller than 0.03 (16.37%), unmapped SNPs (15.82%), mono-high resolution 

(8.65%), and call rate smaller than 0.95 (8.05%). After filtering, only 59% of 

SNPs in the array remained. This number was appropriate, taking into account 

the small phenotypic data size and the selection process performed before the 

UC experiment (Blasco et al., 1994). Besides, the rabbit lines from “Universitat 

Politècnica de València” were not considered to design the actual SNP-array. 

Thus, an important number of SNPs (17,282) was fixed in the experimental UC 

lines. The average distance between SNPs was 18.90 kb along the genome 

leading to a LD average around 0.79 for 100 kb, and 0.76 when all genomic data 

in consecutive pairs SNPs were used. This value seems to be high considering 
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that an average distance of 98 kb showed a LD of 0.5, calculated within rabbit 

strains (Carneiro et al., 2011). 

 

The multidimensional scaling analysis using genomic data found an evident 

population stratification (Figure 1). This analysis identified three clusters 

corresponding to the high UC line, the low UC line, and the control population, 

respectively. The first two principal components jointly explained 23.6% of the 

total variance. This would indicate that SNPs captured the population 

stratification of this experiment. Bayesian multi-marker regression models are 

quite robust to population stratification (Toosi et al., 2018). Although the 

inclusion of line effect reduced the power obtained by the divergent selection, 

we included the line effect in order to avoid the possible drift effect and check 

the consistency of the results. We are aware that this type of correction is very 

stringent. So, we also performed the analysis without line. The variance 

explained for the main associated region increased considerably (Table 3). 

However, the conclusions our findings did not change. The regions identified as 

associated were identical and with the similar order of importance which 

showed results consistency with and without line effect. 

 

 

Figure 1. Multidimensional scaling plot of the genomic data. The first 
component (MDS1) explained 16.73% of the genomic variance and 
the second component (MDS2) explained 6.90% of the genomic 
variance. Populations: high uterine capacity line (HUC), low uterine 
capacity line (LUC) and control population or line selected for number 
of kits at weaning (V). 
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3.4.3. Prior choice 

The exploratory analysis of the π value under the model without line effect 

showed similar results across π values, being not sensitive to them. By contrast, 

the model with line effect showed a greater increase of shrinkage led to a lower 

number of windows overcoming the relevant threshold. Additionally, the 

percentage of the genomic variance explained by these associated windows was 

greater when the π value was greater. For instance: using a π value of 0.9995 

the analysis reported four consecutive genomic windows associated with TNB 

that explained 16.3% of the genomic variance, whilst using 0.9992, 0.9975, 

0.995, and 0.99, these explained 7.4%, 2.8%, 1.4% and 0.6%, respectively. 

However, the ranking of the relevant genomic windows did not change. 

Therefore, the π value used in this study was 0.9992 based on the average 

number of SNPs in the model per iteration (119) and the total number of samples 

(181).  

 

3.4.4. Genomic windows associated with litter size traits 

The GWAS analyses showed associated genomic windows for TNB, NBA, IE, and 

OR. No associations were evidenced for NBD, ES, FS, and PS. 

 

3.4.4.1. Total number born and number born alive 

The genomic windows associated with TNB are located on chromosome 17 

(windows 1903, 1904, 1905 and 1906) (Figure 2). Two of them (1905 and 1906) 

also showed association with NBA (Figure 3). The genomic variance explained 

by these two windows was 6.32% for TNB and 1.27% for NBA (Table 3). This 

result would be in agreement with the high genetic correlation found between 

NBA and TNB (0.964 +/- 0.008) (García & Baselga, 2002).  

 

The associated genomic region (70.0 - 73.3 Mb) seems to have a major effect on 

TNB in the UC lines. This could make sense since half of response of selection 

was obtained in the first two generations of UC divergent selection (Blasco et al., 

2005). This region accounted for up to 38.82% and 10.36 % of the genomic 

variance for TNB and NBA, respectively, under a model excluding the line effect. 
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In addition, the genomic variance explained by all these genomic windows had 

a probability of being greater than zero at chromosome level of at least 0.95, 

except the 1906 being greater than 0.75.  

 

 

Figure 2. Manhattan plot for total number born (TNB) using the percentage of 
genomic variance explained by each non-overlapping one megabase 
window. 

 

 

Figure 3. Manhattan plot for number born alive (NBA) using the percentage of 
genomic variance explained by each non-overlapping one megabase 
window. 
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Other genomic regions with a smaller effect size than the region associated on 

chromosome 17 could not have been identified due to the small sample size. In 

swine, GWAS analyses for TNB and NBA have reported QTLs in several 

chromosomes. However, the sample size in these studies was greater (>600), 

and in both studies, third terminal crossbred lines were used (Onteru et al., 

2012; Schneider et al., 2012), generating a much higher LD in their population 

than in our lines. 

 

3.4.4.2. Implanted embryos 

A large relevant genomic region for IE was found on chromosome 11 (Figure 4). 

This region involved five associated genomic windows (35.2 – 39.0 Mb), from 

window 1143 to 1147, accounting for 10% of the genomic variance of IE (Table 

3). Besides, the same genomic region on chromosome 17 associated with TNB 

and NBA explained 5.37% (32.23 % without line) of the genomic variance of IE. 

Therefore, this region could have a pleiotropic effect on these three litter size 

traits (TNB, NBA, and IE). These results could be related to the correlated 

response to selection for IE, shown in the UC divergent selection experiment 

(Santacreu et al., 2005; Blasco et al., 2005) which is in agreement with the 

moderate to high genetic correlation between IE and UC (0.66) (Blasco et al., 

2005) and IE and TNB (0.46) (Laborda et al., 2012). 

 

Figure 4. Manhattan plot for implanted embryos (IE) using the percentage of 
genomic variance explained by each non-overlapping one megabase 
window. 
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3.4.4.3. Ovulation rate 

The results did not show a strong genomic association for this trait due to the 

low amount of genomic variance explained by each associated window. 

Moreover, none of the windows were consecutive. Two genomic windows on 

chromosome 9, window 996 and 993, only explained 1.13% (0.84 % without 

line) and 1.03% (0.94 % without line) of the genomic variance, respectively 

(Table 3). Overall, all genomic windows associated with OR accounted for 3.95% 

(with and without line) of the genomic variance. This result is in contrast to a 

swine GWAS that found three relevant genomic regions associated with OR 

explaining 51% of the genomic variance (Schneider et al., 2014). The sample 

size of their study was considerably greater than in our study, and the swine 

population had much higher LD and genomic variability. Moreover, in our study 

animals came from a divergent selection experiment for UC, whose trait had a 

moderate (0.56) genetic correlation with OR (Blasco et al., 2005). Additionally, 

the genomic windows associated with OR did not agree with the associated 

genomic region found for three litter size traits - TNB, NBA, and IE (Figure 5). 

These results are in concordance with the null correlated response in litter size 

for OR selection in rabbits and the low genetic correlation estimated between 

OR and litter size (Laborda et al., 2011). 

 

 

Figure 5. Manhattan plot for ovulation rate (OR) using the percentage of 
genomic variance explained by each non-overlapping one megabase 
window. 
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Table 3. Genomic windows associated with total number born (TNB), number born alive (NBA), implanted embryos (IE), and 
ovulation rate (OR) in rabbits. 

 

Window 
ID 

Chr 
Position 

in Mb 
Traits 

%Var 

#SNP Genes 
+ Line - Line 

993 9 42.0 - 43.0 OR 1.03 0.84 55 CNTN3, 5S_rRNA†, U6† 

996 9 47.0 - 48.0 OR  1.13 0.94 52 

C4orf3, ENSOCUG00000021038, 
ENSOCUG00000002078, 
ENSOCUG00000025665, 
ENSOCUG00000023430 

1097 10 35.0 - 36.0 OR 0.68 0.64 80 
CALCR, U6†, ENSOCUG00000020017†, 
VPS50, HEPACAM2, SAMD9L, SAMD9, 
GINS2, ENSOCUG00000029687, CDK6 

1100 10 38.0 - 39.0 OR 0.55 0.89 72 
CDK14, CLDN12, GTPBP10, CFAP69, 

STEAP2, STEAP1 

1143 11 35.2 - 35.9 

IE  

0.79 0.25 55 
FAM173B, CCT5, CMBL, MARCH6, 

ROPN1L, ANKRD33B, 
ENSOCUG00000010666 

1144 11 36.0 - 37.0 0.89 0.45 76 
CTNND2, 5S_rRNA†, 

ENSOCUG00000027984 

1145 11 37.0 - 38.0 3.83 1.46 85 U6† 

1146 11 38.0 - 39.0 1.71 0.62 66 DNAH5, ENSOCUG00000025796† 

1147 11 39.0 - 40.0 2.77 1.33 71 
TRIO, FAM105A, OTULIN, ANKH, 

5S_rRNA†, U6† 

1535 14 51.0 - 52.0 OR 0.56 0.64 83 
TIPARP, SNORA65†, LEKR1, U2†, CCNL1, 

VEPH1, PTX3, SNORD90† 
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Window 
ID 

Chr 
Position 

in Mb 
Traits 

%Var 

#SNP Genes 
+ Line - Line 

1902 17 69.1 - 70.0 IE 0.51 0.87 59 
VCPKMT, SOS2, L2HGDH, ATP5S, CDKL1, 

MAP4K5, ATL1, SAV1, NIN, ABHD12B, 
PYGL,  

1903 17 70.0 - 71.0 

TNB 

0.50 0.36 51 
TRIM9, TMX1, FRMD6, GNG2, 

ENSOCUG00000014681, NID2, 
SCARNA23† 

1904 17 71.0 - 72.0 0.54 0.30 61 
PTGDR, PTGER2, TXNDC16, GPR137C, 

ERO1A, PSMC6, STYX, FERMT2, DDHD1, 
7SK†, ENSOCUG00000007858 

1905 17 72.0 - 73.0 

TNB 2.76 18.72 

66 PNRC2, BMP4, 5S_RNA†, U4†, snoU13† NBA 0.53 3.52 

IE 2.77 16.95 

1906 17 73.1 - 73.3 

TNB 3.56 20.10 

16 CDKN3, GMFB, CGRRF1, SAMD4A NBA 0.74 6.84 

IE 2.60 15.28 

Window ID: window identification; Chr: chromosome; Position in Mb: position of the genomic window in megabases on the 
OryCun2.0 corresponding chromosome. This indicates the position from the first to the last SNP within each window: %Var: 
percentage of genomic variance accounted for by the genomic window; + Line: including the line effect in the model; - Line: without 
the line effect in the model; #SNP: number of SNPs into the window; Genes: annotated genes in the window portion delimited by 
the SNPs included in the window. The pseudogenes are not included in this table. † Non-coding genomic DNA.  
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3.4.5. Associated SNPs in genomic regions 

The Bayes factor criteria showed only relevant SNP associations for IE and TNB. 

These associated SNPs map to chromosome 11 for IE (Figure 6), and 

chromosome 17 for TNB and IE (Figure 6 and 7). The highest Bayes factor was 

for a SNP on chromosome 17, associated with TNB under the model without the 

line effect. The total number of SNPs between the two traits in chromosome 17 

was 14 (five in the window 1905 and nine in the window 1906) (Table 4). This 

corroborated the remarkable importance of this genomic region on chromosome 

17 as a putative QTL. However, the PPAs of SNPs within the putative QTL were 

low (0.04 to 0.15), which is expected with the small sample size used in our 

study. Stephens & Balding (2009) pointed out that PPAs have the advantage of 

being not very sensitive on sample size, power and number of tested SNPs. 

Despite that, they showed that small sample size can give low PPAs with real 

associations even under several Bayesian approaches based on different priors, 

according to their supplementary material. In our study, the putative QTL on 

chromosome 17 was consistent across the analyses of GWAS, under window 

and SNP association criteria, allele frequencies and linkage disequilibrium 

analyses (as shown below). All associated SNPs had an overall MAF above 0.28. 

Moreover, the associated SNPs for both TNB and IE showed an even higher value 

of MAF (from 0.33 to 0.49). The allele frequencies in the control population for 

these associated SNPs were intermediate (0.43 - 0.45), whilst they were higher 

for the low UC line (0.64 and 0.75) and very low (0.05) for the high UC line. We 

assumed that all of these SNPs were associated with the traits (TNB and IE) due 

to strong LD with their causal variants since selection could have modified the 

allelic frequencies of the SNPs associated with the causal variants. In this case, 

the joint analysis of the divergent selection would have led to intermediate 

frequencies, increasing the SNP detection power (López de Maturana et al., 

2014; Kessner & Novembre, 2015). Thus, our experiment has been valuable for 

revealing novel QTLs associated with litter size traits in rabbits. 
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Figure 6. Manhattan plot for implanted embryos (IE) using the Bayes factors 
by each SNP along the rabbit chromosomes. 

 

 

 

Figure 7. Manhattan plot for total number born (TNB) using the Bayes factors 

by each SNP along the rabbit chromosomes. 
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Table 4. Relevant polymorphisms (SNPs) for total number born (TNB) and implanted embryos (IE).  

Window 
ID 

SNP name Chr 
Position 
in Mb 

Bayes Factor 
Allele 

Reference 
MAF + Line - Line 

IE TNB IE TNB 

1905 

Affx-151926619 17 72.14 10.04 4.38 11.47 7.67 C 0.30 

Affx-151908415 17 72.15 10.25 4.17 11.98 7.67 T 0.30 

Affx-151904115 17 72.15 10.25 4.17 10.83 8.30 G 0.30 

Affx-151825298 17 72.23 8.15 18.49 4.51 24.84 A 0.50 

Affx-151870244 17 72.23 8.15 18.06 4.64 21.60 C 0.50 

Affx-152013420 17 72.25 8.15 17.64 4.64 26.14 A 0.50 

Affx-151801784 17 72.93 36.01 21.88 97.63 110.23 G 0.33 

Affx-151957551 17 72.95 36.23 20.61 94.44 101.12 T 0.33 

Affx-151955776 17 72.97 32.35 20.61 95.60 110.09 A 0.33 

Affx-151991400 17 72.98 34.07 21.25 94.16 122.62 G 0.33 

Affx-151972019 17 72.99 17.64 13.41 30.06 41.56 G 0.34 

1906 

Affx-151858851 17 73.10 21.03 10.88 40.09 31.63 G 0.34 

Affx-151802659 17 73.11 33.43 20.61 97.49 114.54 A 0.33 

Affx-151975417 17 73.11 35.37 22.73 97.49 114.69 T 0.33 

Affx-151955414 17 73.13 33.86 21.25 93.87 115.13 T 0.33 

Affx-151943719 17 73.13 24.01 20.82 57.08 70.32 T 0.33 

Affx-151913508 17 73.17 8.57 14.26 5.02 20.44 G 0.49 

Affx-151985483 17 73.18 10.04 14.26 6.15 22.89 T 0.49 

Affx-151933136 17 73.20 8.78 14.89 5.27 20.05 G 0.49 
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Window 
ID 

SNP name Chr 
Position 
in Mb 

Bayes Factor 
Allele 

Reference 
MAF + Line - Line 

IE TNB IE TNB 

1906 

Affx-151974640 17 73.21 8.78 14.89 5.14 19.79 C 0.49 

Affx-151983535 17 73.22 10.04 14.89 5.90 23.80 T 0.49 

Affx-151823935 17 73.22 8.36 14.05 5.02 16.71 T 0.49 

Affx-151860280 17 73.24 8.57 14.47 5.14 21.08 G 0.49 

Affx-151999537 17 73.25 8.78 14.68 5.02 19.41 A 0.49 

Affx-151995315 17 73.27 10.25 14.47 6.40 23.80 T 0.49 

Affx-151909593 17 73.28 10.04 14.89 5.90 32.81 T 0.49 

Window ID: window identification; Chr: chromosome; Position in Mb, position of the genomic window in megabases on the 
OryCun2.0 corresponding chromosome; + Line: including the line effect in the model; -Line: without the line effect in the model; 
MAF: minor allele frequency. The threshold value of Bayes factor was 10.  
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3.4.6. Linkage disequilibrium analysis 

We assessed the LD in the consecutive associated genomic windows on 

chromosome 11 and 17. The genomic regions associated with IE (chromosome 

11) showed a strong LD block amongst the windows 1145, 1146 and 1147. This 

block was more evident in the low UC line. This suggests that this QTL could 

have been under higher selection pressure for low UC than for high UC, in 

agreement with the asymmetric response estimated using the UC lines and the 

cryopreserved control population. This latter study showed the selection 

response was higher in the low UC line (Mocé et al., 2005; Santacreu et al., 

2005). The SNPs that overreached the threshold for IE are indicated with black 

points in Figure 8. Most of them are mapped in the LD block made up by the 

three windows (1145, 1146 and 1147). This result is in contrast to the genomic 

region associated with TNB, NBA, and IE on chromosome 17 displaying several 

short LD blocks. Most of the associated SNPs within this QTL were in the 

window 1906 (Figure 9). This window presents a steady LD block within the 

control population (r2 > 0.8). This would indicate that the UC selection formed 

new LD blocks from a large one in the control population.  

 

In our study, both LD and GWAS results support the idea that QTL on 

chromosome 17 had a major impact on the divergent selection experiment. This 

hypothesis of an important QTL for litter size in the UC lines is supported by 

the great response at the second generation, half of the estimated response in 

this divergent selection experiment, as we said previously (Argente et al., 2003; 

Blasco et al., 2005). 
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Figure 8. Linkage disequilibrium plot of chromosome 11 (35.2 – 40.0 Mb). 

Physical length is 4756 kb and contains a total of 353 SNPs. The 
black triangle stands for each one of five associated windows for 
implanted embryos. The black points are the 38 associated SNP. The 
colour red is the R-squared from 0.8 to 1.0 (strong LD). The 
computation was performed using data from (a) all lines, (b) HUC 
(high UC line), (c) LUC (low UC line) and (d) control population. 
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Figure 9. Linkage disequilibrium plot of chromosome 17 (72.0 – 73.2 Mb). 

Physical length is 1278 kb and contains a total of 82 SNPs. The black 
triangle stands for each one of two associated windows for total 
number born, number born alive and implanted embryos. The black 
points are the 14 associated SNP for total number born and 
implanted embryos. The colour red is the R-squared from 0.8 to 1.0 
(strong LD). The computation was performed using data from (a) all 

lines, (b) HUC (high UC line), (c) LUC (low UC line) and (d) control 
population. 

 

 



CHAPTER THREE: FIRST ARTICLE  

81 

3.4.7. Gene search and functional annotations 

The associated genomic regions disclose 72 coding and noncoding genes 

(additional file 1: Table S1); nine of them located on the genomic region 

associated with TNB, NBA and IE (chromosome 17) (Table 3). The top five results 

of the functional annotation analysis, using the genes in putative QTLs, are 

shown in Table 5. The human, mice and rabbit functional annotations from 

DAVID databases gave similar results. Therefore, we described these results 

using the annotated rabbit genes to subsequently perform a detailed functional 

seeking for each gene. The most relevant functions were linked to terms such 

as activity prostanoid receptors, cellular response to prostaglandin, negative 

regulation of striated muscle tissue development, carbohydrate derivative 

binding, and cyclin-dependent protein kinase activity. The genes related to 

reproductive processes and associated with TNB were PTGDR, PTGER2, BMP4, 

STYX, and CDKN3. The PTGDR and PTGER2 belong to the prostaglandins 

receptor family which are essential for the adequate performance of uterus; 

mainly prostaglandin F receptor that presents underlying functions over the 

female reproductive cycle in mammals (Blesson & Sahlin, 2014). Also, a severe 

deficiency in the PTGER2 genetic expression decreases fertilization and 

generates defects in cumulus expansion (Matzuk & Lamb, 2002). Otherwise, 

PTGDR gene presents an important role in the differentiation of germ and Sertoli 

cells of the embryonic testis in males (Rossitto et al., 2014). Genes of the 

transforming growth factor-β superfamily, including BMP4, are involved in 

follicular growth and development in mammals (Al-Samerria et al., 2015) 

avoiding the apoptosis of oocytes through regulation of both Sohlh2 and c-ki 

(Ding et al., 2013). Nevertheless, the BMP4 gene showed no association with OR, 

but it was associated with TNB and IE in our study. BMP4 has been also 

implicated in trophoblast development, implantation, and placentation in 

humans (Li & Parast, 2014). CDKN3 gene is related to inhibition and reduction 

of choline, particularly in the neural progenitor cells of the foetal hippocampus, 

producing cellular apoptosis (Zeisel, 2011). Moreover, the reduction of STYX 

expression disrupts spermatid development (Matzuk & Lamb, 2002). The 1903 

window on chromosome 17, associated only with TNB, contains the ERO1A 

gene. This gene did not show a functional annotation directly related to 

reproductive processes but was identified as overexpressed between the UC 

lines in a previous study (Ballester et al., 2013). Moreover, it is the precursor of 
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the ER1L transcript, which is related to redox homeostasis and oxidative protein 

folding in the endoplasmic reticulum (Konno et al., 2015). 

 

Regarding genes associated with IE, BMP4 and CDKN3 genes (chromosome 17) 

are annotated to embryo development processes in mice (Goggolidou et al., 

2013). In chromosome 11, we found the CCT5 gene related to sperm quality in 

bulls (Yathish et al., 2017). Finally, the genes annotated for OR did not have a 

direct relationship with this trait or the female reproductive physiology.  

 

Previous candidate gene studies, using the UC divergent lines, showed genes 

associated with reproductive traits such as progesterone receptor (PGR) 

associated with IE (Peiró et al., 2008), tissue inhibitor of metalloproteinases 1 

(TIMP1) associated with number of embryos (Argente et al., 2010) and oviduct 

glycoprotein 1 (OVGP1) associated with TNB (Merchán et al., 2009). However, 

our study did not identify associated genomic regions close to these genes. 

  

In general, the candidate genes found in our study are different from those 

identified in GWAS for OR, TNB and NBA in swine (Onteru et al., 2012; 

Schneider et al., 2014; Bergfelder-Drüing et al., 2015). The main associations 

in these studies did not overlap amongst litter size traits. However, Schneider 

et al. (2012) found overlapping genomic windows for TNB, NBA, NBD and 

average piglet birth weight in swine; similar to the novel putative QTL found on 

chromosome 17.
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Table 5. Top five functional enrichment from the analyses performed through DAVID online web.  

 

Category Term's CODE Term Genes P-Value 
Fold 

Enrichment 
Bonferroni 

Total Number Born (TNB)     

INTERPRO IPR008365 Prostanoid receptor PTGER2, PTGDR 7.38E-03 256.07 4.09E-01 

GOTERM_MF_ALL GO:0004955 
prostaglandin receptor 
activity 

PTGER2, PTGDR 1.10E-02 169.06 5.68E-01 

GOTERM_BP_ALL GO:0071379 
cellular response to 
prostaglandin stimulus 

PTGER2, PTGDR 1.75E-02 106.86 1.00E+00 

GOTERM_BP_ALL GO:0034694 response to prostaglandin PTGER2, PTGDR 2.22E-02 83.96 1.00E+00 

KEGG_PATHWAY ocu05200 Pathways in cancer GNG2, BMP4, PTGER2 3.94E-02 77.55 6.19E-01 

Implanted Embryos (IE)     

INTERPRO IPR023235 FAM105 FAM105A, OTULIN 3.83E-03 503.31 2.81E-01 

GOTERM_BP_FAT GO:0045843 
negative regulation of striated 
muscle tissue development 

BMP4, SAV1 2.92E-02 63.90 1.00E+00 

GOTERM_BP_FAT GO:0048635 
negative regulation of muscle 
organ development 

BMP4, SAV2 3.09E-02 60.35 1.00E+00 

GOTERM_MF_FA
T 

GO:0097367 
carbohydrate derivative 
binding 

CCT5, PYGL, BMP4, 
ATL1, MAP4K5, 
CDKL1, TRIO 

4.89E-02 2.37 9.95E-01 

GOTERM_BP_FAT GO:0060428 lung epithelium development BMP4, SAV1 5.09E-02 36.21 1.00E+00 

Ovulation Rate (OR)     

GOTERM_MF_ALL GO:0097472 
cyclin-dependent protein 
kinase activity 

CDK14, CDK6 4.82E-03 362.29 2.97E-01 
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Category Term's CODE Term Genes P-Value 
Fold 

Enrichment 
Bonferroni 

GOTERM_MF_ALL GO:0004693 
cyclin-dependent protein 
serine/threonine kinase 
activity 

CDK14, CDK7 4.82E-03 362.29 2.97E-01 

INTERPRO IPR013130 
Ferric reductase 
transmembrane component-
like domain 

STEAP2, STEAP1 1.13E-02 165.86 3.78E-01 

KEGG_PATHWAY ocu04978 Mineral absorption STEAP2, STEAP2 2.95E-02 55.93 4.33E-01 

UP_KEYWORDS   Cyclin CCNL1, CDK6 3.14E-02 59.31 5.64E-01 
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3.5. Conclusions 

Our study reveals associations between genomic regions and TNB, NBA, IE, OR. 

Two consecutive genomic windows on chromosome 17 were associated with 

three traits (TNB, NBA, and IE), and accounted for a meaningful percentage of 

the genomic variance for TNB, indicating that this genomic region could contain 

remarkable causal variants for litter size traits in rabbits. In addition, a genomic 

region on chromosome 11 appears particularly important for IE. The associated 

genomic regions harboured 72 genes. However, few of these genes were profiled 

as physiological candidate genes due to their link to reproductive processes (i.e., 

BMP4, PTDGR, PTGER2, STYX, and CDKN3). In summary, our results disclosed 

new putative QTLs for TNB and IE, likely responsible for the large divergent 

response obtained in the first two generations of selection. However, these 

results must be validated in independent maternal rabbit lines before being 

used in breeding programs. This study is the first GWAS for reproductive traits 

in rabbits and provides a starting point to disentangle the genetic basis of litter 

size traits in rabbits. 

 

3.6. Abbreviations 

ES: Embryo survival; FS: Foetal survival; GO: Gene ontology; GV: genomic 

variance; GWAS: Genome-wide association study; IE: Implanted embryos; LD: 

Linkage disequilibrium; MAF: Minor allele frequency; NBA: Number born alive; 

NBD: Number born dead; OR: Ovulation rate; PPA: the posterior probability of 

association; PS: Prenatal survival; QC: Quality control; QTL: Quantitative trait 

loci; SNP: Single nucleotide polymorphism; TNB: Total number born; UC: 

Uterine capacity, ULO: unilaterally ovariectomized. 

 

3.7. References 

Aken, B. L., S. Ayling, D. Barrell, L. Clarke, V. Curwen et al., 2016. "The 

Ensembl gene annotation system." Database (Oxford), 2016: baw093. 

Al-Samerria, S., I. Al-Ali, J. R. McFarlane, and G. Almahbobi, 2015. "The impact 

of passive immunisation against BMPRIB and BMP4 on follicle 

development and ovulation in mice." Reproduction, 149(5): 403–411. 



CHAPTER THREE: FIRST ARTICLE  

 

86 

Argente, M. J., A. Blasco, J. A. Ortega, C. S. Haley, and P. M. Visscher, 2003. 

"Analyses for the presence of a major gene affecting uterine capacity in 

unilaterally ovariectomized rabbits." Genetics, 163(3): 1061–1068. 

Argente, M. J., M. Merchán, R. Peiró, M. L. García, M. a. Santacreu et al., 2010. 

"Candidate gene analysis for reproductive traits in two lines of rabbits 

divergently selected for uterine capacity." Journal of Animal Science, 88(3): 

828–836. 

Argente, M. J., M. A. Santacreu, A. Climent, G. Bolet, and A. Blasco, 1997. 

"Divergent selection for uterine capacity in rabbits." Journal of Animal 

Science, 75(9): 2350–2354. 

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., 2000. "Gene 

Ontology: tool for the unification of biology." Nature Genetics, 25(1): 25–29. 

Badawy, A. Y., R. Peiró, A. Blasco, and M. A. Santacreu, 2018. "Correlated 

responses on litter size traits and survival traits after two-stage selection 

for ovulation rate and litter size in rabbits." Animal, 13(3): 453-459. 

Ballester, M., A. Castelló, R. Peiró, M. J. Argente, M. A. Santacreu et al., 2013. 

"Identification of differentially expressed genes in the oviduct of two rabbit 

lines divergently selected for uterine capacity using suppression 

subtractive hybridization." Animal Genetics, 44(3): 296–304. 

Bergfelder-Drüing, S., C. Grosse-Brinkhaus, B. Lind, M. Erbe, K. Schellander et 

al., 2015. "A genome-wide association study in large white and landrace 

pig populations for number piglets born alive." PLoS ONE, 10(3): e0117468. 

Blasco, A., M. J. Argente, C. S. Haley, and M. A. Santacreu, 1994. "Relationships 

between components of litter size in unilaterally ovariectomized and intact 

rabbit does." Journal of Animal Science, 72(12): 3066–3072. 

Blasco, A., J. A. Ortega, A. Climent, and M. A. Santacreu, 2005. "Divergent 

selection for uterine capacity in rabbits. I. Genetic parameters and 

response to selection." Journal of Animal Science, 83(10): 2297–2302. 

Blasco, A., and R. N. Pena, 2018. "Current Status of Genomic Maps: Genomic 

Selection/GBV in Livestock", pp. 61–80 in Animal Biotechnology 2, edited 

by H. Niemann and C. Wrenzycki. Springer International Publishing, 

Cham. 

Blesson, C. S., and L. Sahlin, 2014. "Prostaglandin E and F receptors in the 

uterus." Receptors & Clinical Investigation, 1: e115 

Borg, I., and P. J. F. Groenen, 2005. "Modern Multidimensional Scaling: Theory 

and Applications." Springer International Publishing. 



CHAPTER THREE: FIRST ARTICLE  

 

87 

Browning, B. L., and S. R. Browning, 2009. "A unified approach to genotype 

imputation and haplotype-phase inference for large data sets of trios and 

unrelated individuals." American Journal of Human Genetics, 84(2): 210–

223. 

Carneiro, M., S. Afonso, A. Geraldes, H. Garreau, G. Bolet et al., 2011. "The 

genetic structure of domestic rabbits." Molecular Biology and Evolution, 

28(6): 1801–1816. 

Carneiro, M., C. J. Rubin, F. Di Palma, F. W. Albert, J. Alföldi et al., 2014b. 

"Rabbit genome analysis reveals a polygenic basis for phenotypic change 

during domestication." Science, 345(6200): 1074–1079. 

Cartuche, L., M. Pascual, E. A. Gómez, and A. Blasco, 2014. "Economic weights 

in rabbit meat production." World Rabbit Science, 22(3): 165–177. 

Cesar, A. S., L. C. Regitano, G. B. Mourão, R. R. Tullio, D. P. Lanna et al., 2014. 

"Genome-wide association study for intramuscular fat deposition and 

composition in Nellore cattle." BMC Genetics, 15(1): 39. 

Christenson, R. K., K. A. Leymaster, and L. D. Young, 1987. "Justification of 

unilateral hysterectomy-ovariectomy as a model to evaluate uterine 

capacity in swine." Journal of Animal Science, 65(3): 738–744. 

Ding, X., X. Zhang, Y. Mu, Y. Li, and J. Hao, 2013. "Effects of BMP4/SMAD 

signaling pathway on mouse primordial follicle growth and survival via up-

regulation of Sohlh2 and c-kit." Molecular Reproduction and Development 

80(1): 70–78. 

Elmaghraby, M. M. A., and S. Z. Elkholya, 2010. "Characterizing Litter Losses 

in Purebred New Zealand White Rabbits." Lucrări S ̧tiinţifice - Universitatea 
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3.8. Additional Files 

Additional file 1: Table S1. Annotated genes in the genomic regions associated 

with litter size traits. 

 

Gene Name Chromosome Rabbit Gene Description 

5S_rRNA 9, 11, 17 5S ribosomal RNA 

7SK 17 7SK RNA 

ABHD12B 17 abhydrolase domain containing 12B 

ANKH 11 ANKH inorganic pyrophosphate transport regulator 

ANKRD33B 11 ankyrin repeat domain 33B 

ATL1 17 atlastin GTPase 1 

ATP5S 17 

ATP synthase, H+ transporting, mitochondrial Fo 

complex, subunit s (factor B)  

BMP4 17 bone morphogenetic protein 4 

C4orf3 9 chromosome 4 open reading frame 3 

CALCR 10 calcitonin receptor 

CCNL1 14 cyclin L1 

CCT5 11 chaperonin containing TCP1, subunit 5 (epsilon) 

CDK14 10 cyclin-dependent kinase 14 

CDK6 10 cyclin-dependent kinase 6 

CDKL1 17 

cyclin-dependent kinase-like 1 (CDC2-related 
kinase) 

CDKN3 17 cyclin-dependent kinase inhibitor 3 

CFAP69 10 cilia and flagella associated protein 69 

CGRRF1 17 cell growth regulator with ring finger domain 1 

CLDN12 10 claudin-12 

CMBL 11 

carboxymethylenebutenolidase homolog 
(Pseudomonas) 

CNTN3 9 contactin 3 (plasmacytoma associated) 

CTNND2 11 catenin (cadherin-associated protein), delta 2 

DDHD1 17 DDHD domain containing 1 

DNAH5 11 dynein, axonemal, heavy chain 5 

ERO1A 17 endoplasmic reticulum oxidoreductase alpha 

FAM105A 11 family with sequence similarity 105, member A 

FAM173B 11 family with sequence similarity 173, member B 

FERMT2 17 fermitin family member 2 

FRMD6 17 FERM domain containing 6 

GINS2 10 GINS complex subunit 2 (Psf2 homolog) 

GMFB 17 glia maturation factor, beta 

GNG2 17 

guanine nucleotide binding protein (G protein), 
gamma 2  

GPR137C 17 G protein-coupled receptor 137C  

GTPBP10 10 GTP-binding protein 10 (putative) 

HEPACAM2 10 HEPACAM family member 2 

http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
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Gene Name Chromosome Rabbit Gene Description 

L2HGDH 17 L-2-hydroxyglutarate dehydrogenase 

LEKR1 14 Leucine, Glutamate and Lysine Rich 1 

MAP4K5 17 mitogen-activated protein kinase 5 

MARCH6 11 

membrane-associated ring finger (C3HC4) 6, E3 
ubiquitin protein ligase 

NID2 17 nidogen 2 (osteonidogen) 

NIN 17 ninein (GSK3B interacting protein) 

OTULIN 11 OTU deubiquitinase with linear linkage specificity 

PNRC2 17 proline-rich nuclear receptor coactivator 2 

PSMC6 17 

proteasome (prosome, macropain) 26S subunit, 
ATPase, 6  

PTGDR 17 prostaglandin D2 receptor (DP) 

PTGER2 17 prostaglandin E receptor 2 (subtype EP2), 53kDa 

PTX3 14 pentraxin 3, long 

PYGL 17 phosphorylase, glycogen, liver 

ROPN1L 11 rhophilin associated tail protein 1-like  

SAMD4A 17 sterile alpha motif domain containing 4A 

SAMD9 10 sterile alpha motif domain containing 9 

SAMD9L 10 sterile alpha motif domain containing 9-like 

SAV1 17 salvador family WW domain containing protein 1 

SCARNA23 17 Small Cajal body specific RNA 23 

SNORA65 14 Small nucleolar RNA SNORA65 

SNORD90 14 Small nucleolar RNA SNORD90 

snoU13 17 Small nucleolar RNA U13 

SOS2 17 son of sevenless homolog 2 (Drosophila)  

STEAP1 10 metalloreductase STEAP1  

STEAP2 10 
Oryctolagus cuniculus STEAP family member 2, 
metalloreductase (STEAP2), mRNA 

STYX 17 serine/threonine/tyrosine interacting protein  

TIPARP 14 TCDD-inducible poly(ADP-ribose) polymerase 

TMX1 17 thioredoxin-related transmembrane protein 1  

TRIM9 17 tripartite motif containing 9 

TRIO 11 trio Rho guanine nucleotide exchange factor 

TXNDC16 17 thioredoxin domain containing 16  

U2 14 U2 spliceosomal RNA 

U4 17 U4 spliceosomal RNA 

U6 9, 10, 11 U6 spliceosomal RNA 

VCPKMT 17 

valosin containing protein lysine (K) 
methyltransferase 

VEPH1 14 ventricular zone expressed PH domain-containing 1 

VPS50 10 VPS50 EARP/GARPII complex subunit 

 

 

 

http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=11
http://www.ensembl.org/oryctolagus_cuniculus/contigview?chr=17
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4.1. Abstract 

Intramuscular fat (IMF) is one of the main meat quality traits for breeding 

programmes in livestock species. The main objective of this study was to identify 

genomic regions associated with IMF content comparing two rabbit populations 

divergently selected for this trait, and to generate a list of putative candidate 

genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array 

(200k). After quality control, the data involved 477 animals and 93,540 SNPs. 

Two methods were used in this research: single marker regressions with the 

data adjusted by genomic relatedness, and a Bayesian multiple marker 

regression. Associated genomic regions were located on the rabbit chromosomes 

(OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the 

genomic variance explained by a genomic region was found in two consecutive 

genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 

and OCU8 presented biological functions related to the control of adipose cell 

function, lipid binding, transportation and localisation (APOLD1, PLBD1, 

PDE6H, GPRC5D and GPRC5A) and lipid metabolic processes (MTMR2). The 

EWSR1 gene, underlying the OCU13 region, is linked to the development of 

brown adipocytes. The findings suggest that there is a large component of 

polygenic effect behind the differences in IMF content in these two lines, as the 

variance explained by most of the windows was low. The genomic regions of 

OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies 

would be needed to validate the associations and explore their possible 

application in selection programmes. 

 

Keyword: divergent selection, intramuscular fat, genome-wide association 

study, meat quality, rabbits. 

  

4.2. Background 

Intramuscular fat (IMF) contributes to improve organoleptic properties and 

sensory attributes of the meat, as demanded by consumers (Hocquette et al., 

2010). Hence, a large number of studies have investigated the genetic factors 

controlling IMF content in meat and their implications for several species, e.g. 

in beef cattle (Sapp et al., 2002; Garrick, 2011; Ochsner et al., 2017), swine 

(McLaren & Schultz, 1992; Gao et al., 2007), sheep (Hopkins et al., 2011; 

Mortimer et al., 2014) and goats (Peña et al., 2011). Following these studies, 



CHAPTER FOUR: SECOND ARTICLE 

 

98 

IMF has emerged as one of the most important meat quality parameters to be 

improved and in a few cases it has been included in breeding programmes 

(Gotoh et al., 2018; Pannier et al., 2018). 

 

Moderate-to-high heritability and large variability have been reported for 

livestock IMF traits, which argue for a good potential for improving meat quality 

through genetic selection. IMF heritability is around 0.53 in swine (Ros-

Freixedes et al., 2016), 0.38 in cattle (Mateescu et al., 2015), 0.48 in sheep 

(Mortimer et al., 2014) and 0.54 in rabbit (Martínez-Álvaro et al., 2016). 

Important limitations to IMF selection are IMF being recorded mainly at 

slaughter and the phenotyping process is costly. In this context, genetic marker 

selection based on quantitative trait locus (QTL) with high or moderate effect 

size could overcome some of these limitations. 

 

At genomic level, studies carried out in beef cattle suggest that IMF could be 

influenced by a large number of genes (Strucken et al., 2017). Nevertheless, 

studies in Japanese Black cattle have reported genomic markers with large 

effects on IMF or marbling score around the SCD, FASN, AKIRIN2, EDG1 and 

RPL27A genes (Gotoh et al., 2014; Sukegawa et al., 2014). Genomic markers on 

the genes SCD and FASN have been incorporated into a breeding programme of 

this breed to select elite sires (Gotoh et al., 2018). In swine, similarly to beef 

cattle, the results of experiments associating genetic markers with IMF are 

hardly conclusive with regards to the magnitude and importance of discovered 

associations (Pena et al., 2016). However, traits correlated to IMF such as fatty 

acid profiles have shown a noteworthy QTL on chromosome 14 in a Duroc 

commercial line (Uemoto et al., 2012; Ros-Freixedes et al., 2016). So far, IMF 

appears as a troublesome trait for mapping studies in livestock species, owing 

to either the lack of validation in the results or the insufficient power to detect 

genetic causal variants. Thus, genomic studies to understand the genetic 

control of IMF are still needed. 

 

The rabbit has been shown to be an excellent animal model for other livestock 

species (Miller et al., 2014). Further, the recent availability of a high-density 

SNP (Single Nucleotide Polymorphism) array has facilitated the performance of 

genomic studies. At the Universitat Politècnica de València, a successful 

divergent selection experiment for IMF has been carried out (Martínez-Álvaro et 
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al., 2016). The developed rabbit lines were kept in the same environment and 

selection criteria only differ for the IMF selection objective. Selection could have 

modified SNP frequencies in opposite directions, leading to intermediate allelic 

frequencies when both lines are jointly considered. This could increase the 

detection power of associated loci in a genome-wide association study (GWAS) 

based on this experimental design. 

 

The aim of this study was to carry out GWASs using these divergently selected 

rabbit lines to identify genomic regions associated with IMF and generate a list 

of putative candidate genes affecting this trait. Two different methods (single 

marker regression, SMR, and Bayesian multiple marker regression, BMMR) 

were applied to confirm the identified relevant genomic regions. 

 

4.3. Material and Methods 

4.3.1. Ethical statement 

All experimental procedures were approved by the Ethical Committee of the 

Universitat Politècnica de València, according to Council Directives 98/58/EC 

(European Economic Community, 1998). 

 

4.3.2. Animals and phenotypes 

The animals of this study came from two rabbit lines divergently selected for 

IMF during nine generations at the Universitat Politècnica de València. The base 

population was composed of 83 does and 13 males from a synthetic rabbit line 

(Zomeño et al., 2013). The selection criterion was IMF content collected in two 

full-siblings of the first parity. The selection of the males was within sire family, 

avoiding mating between cousins to control inbreeding. At the 9th generation, 

high-IMF line consisted of 55 does and 10 males, and the low-IMF line consisted 

of 61 does and 10 males. Over all animals, the mean was 1.09 grams of IMF per 

100g of Longissimus thoracis et lumborum (LTH) muscle, after adjusting data by 

systematic effects (parity order, line, month-season and sex) and a common 

litter random effect. The high-IMF line had a mean of 1.27 g/100g of LTH with 

0.21 standard deviations, and the low-IMF line had a mean of 0.83 g/100g of 

LTH with 0.07 standard deviations. Details about the IMF divergent selection 

experiment can be found in Martínez-Álvaro et al. (2016). The selection response 
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was around 3.1 standard deviations at 9th generation, calculated as the 

difference between lines. The phenotypic difference between lines was 41% of 

the mean of the base population.  

 

The rabbits were brought up jointly from 33 days at weaning until slaughter 

under the same handling and feeding conditions. After 9 weeks from birth, the 

rabbits were slaughtered following a fasting period of 4 hours. Carcasses were 

chilled 24 hours at 2.5 °C after slaughter and dissected to obtain a sample of 

the left LTH muscle for each animal. These samples were minced, frozen, 

lyophilised and milled. The IMF data were obtained using near-infrared 

spectroscopy (model 5000; FOSS NIRSystems Inc., Hilleroed, Denmark) 

(Zomeño et al., 2013; Martínez-Álvaro et al., 2016). In the last generation, 729 

samples of the left LTH muscle of each animal were collected and IMF measured 

to compute the IMF selection response, and 480 rabbits were chosen from 

groups of an average size of four siblings per doe (dam) for the GWAS. 

 

4.3.3. Genotypes and quality control  

Obliquus abdominis muscle specimens (~50 grams), obtained after slaughter of 

the animals, were used for DNA extraction using a standard protocol (Green et 

al., 2012). A total of 480 individuals were genotyped using the Affymetrix Axiom 

OrcunSNP Array (Affymetrix, Inc. Santa Clara, CA, USA) at the “Centro Nacional 

de Genotipado” (CeGen) – Universidad de Santiago de Compostela. The SNP 

array contains 199,692 genetic molecular markers. The quality control was 

performed by Axiom Analysis Suite v. 3.0.1.4 and ZANARDI (Marras et al., 

2017). The SNPs with a call rate of at least 0.95, MAF of at least 0.03 and a 

known autosomal chromosome position according to OryCun2.0 assembly 

(Carneiro et al., 2014) were used in the analyses. Furthermore, animals missing 

more than 3% of marker genotypes, or failing a Mendelian inheritance test, were 

excluded. The remaining missing genotypes were imputed by the software 

BEAGLE v4.0 (Browning & Browning, 2016). The SNPs with an imputation 

quality score R2 > 0.75 were included. After filtering, the data included 477 

animals (240 from the high-IMF line and 237 from the low-IMF line) and 93,540 

SNPs. In addition, the SNP density was described in this research because the 

rabbit SNP array is new (Blasco & Pena, 2018). 
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4.3.4. Genome-wide association study 

Prior to performing the GWAS, we performed a multidimensional scaling 

analysis to evaluate the population structure in our genomic data. The method 

treats the distances as Euclidean distances and preserves the original distance 

metric, between points, as well as possible (Borg & Groenen, 2005). The 

command cmdscale() from R package stats was used to implement this analysis 

(R Core Team, 2018).  

 

Two methods were employed in this study: a frequentist and a Bayesian. Both 

methods included the mean and the systematic effects in the model: month-

season (five levels), sex (two levels), order-parity (three levels), and line (two 

levels). The inclusion of a common litter random effect in the model was 

evaluated due to the importance of this effect in previous studies of IMF in 

rabbits (Martínez-Álvaro et al., 2016). Inclusion of this effect did not affect 

GWAS results (not shown), hence for simplicity we excluded this effect in the 

GWAS.  

 

Single marker regression (SMR) with the data adjusted by genomic relatedness: 

The analysis was implemented using a family-based score test for association 

(FASTA). The SNP effects were evaluated with FASTA based on a polygenic-lineal 

mixed model that included the genomic kinship matrix to explain relatedness 

in the sampled population (Chen & Abecasis, 2007). The model equation was: 

 

𝒚  =  𝟏 𝝁  +   𝑿𝒃  +   𝛽𝒈  +   𝒁𝒖  +  𝒆 

 

where, 𝒚 is the vector of IMF phenotypes, 𝟏 is a vector of ones, 𝝁 is the trait 

mean, 𝑿  is the design matrix for the systematic effects, 𝒃  is the vector of 

systematic effects, 𝛽 is the substitution effect for a particular SNP, 𝒈 is the 

vector of genotypes for each SNP denoted as the number of reference alleles for 

a particular SNP (0, 1 or 2),  𝒁  is the design matrix for random polygenetic 

effects, 𝒖  is the vector of random polygenic effects with a normal distribution 

Ν( 0 ,  𝑮 ∙ 𝜎𝑢
2 ) ,  𝒆   is the vector of random residual effects with a normal 

distribution Ν( 0 ,  𝑰 ∙ 𝜎𝑒
2 ).  𝜎𝑢

2  is the genomic variance and 𝑮  is the genomic 

kinship matrix computed using the genomic data by the method of Astle & 
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Balding (2009). The identity matrix was denoted as 𝑰  and  𝜎𝑒
2  is the residual 

variance. The implementation of the association analysis was performed using 

R software package GenABEL (Aulchenko et al., 2007). Furthermore, we utilized 

a genomic control method to avoid inflation in the statistic test. We calculated 

the lambda parameter that indicates the excess of false positives in the results. 

When its application is needed, the regression factor lambda (λ) corrects the 

observed p-values leading to new p-values for every assessed SNP (Aulchenko 

et al., 2007). In this research, we used two thresholds; a LD-adjusted Bonferroni 

(8.12x10-6) calculated for 10-Mb LD blocks according to LD analysis 

implemented in PLINK, and also, a suggestive threshold of 1x10-4 due to the 

high relatedness of the samples (Lander & Kruglyak, 1995; Sahana et al., 2011; 

Do et al., 2018). As Bonferroni is a very conservative method, we also 

implemented the suggestive threshold because it is less stringent as the samples 

from animals with high relatedness would have genomic segments of LD larger 

than in human (Wang et al., 2016b; Schmid & Bennewitz, 2017). Therefore, the 

number of independent sites could be overestimated causing false-negative 

results if SNP density is not large enough to adjust Bonferroni by LD (Spencer 

et al., 2009; Do et al., 2014). 

 

Bayesian multiple marker regression (BMMR): This method is more robust to 

population structure than SMR approaches (Toosi et al., 2018). However, the 

line effect would correct for potential biases that might be derived from the 

family data structures in the investigated rabbit populations. Thus, the line 

effect was remained in the BMMR model. The parameters were estimated with 

the following Bayes B model (Cesar et al., 2014; Ros-Freixedes et al., 2016): 

 

𝒚 = 𝟏𝝁 +   𝑿𝒃 +  ∑  𝒛𝒋  𝛼𝑗  𝛿𝑗  +   𝒆

𝑘

𝑗=1

 

 

where 𝒚, , 𝑿, 𝒃 and 𝒆 are the same parameters that in frequentist method 

shown above. 𝒛𝒋 is the vector including the genotypic covariate for each SNP or 

locus 𝑗 (0, 1 or 2); 𝛼𝑗   is the random substitution effect for SNP  𝑗; 𝛿𝑗  is the 

random 0/1 variable that represents presence (𝛿𝑗 = 1 with probability 1-π) or 
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absence (𝛿𝑗 = 0 with probability π) of SNPs in the model for a given iteration. 

The value of π is defined as the proportion of SNPs with zero effects in the model. 

The value of π in our study was 0.9988, which means that between 100 and 

200 SNP markers have nonzero effects for every iteration. The parameters of the 

model were estimated with marginal posterior distributions using Markov chain 

Monte Carlo (MCMC). After some exploratory analysis, a total of 825,000 

iterations were performed, with a burn-in period of 225,000 iterations. Only one 

sample every 60 iterations was saved to avoid the high correlation between 

consecutive samples. The GenSel® v. 4.90 software (Garrick & Fernando, 2013) 

was used for the GWAS analysis. The relevance of the association was assessed 

using two criteria, the Bayes factor (Stephens & Balding, 2009; Ros-Freixedes 

et al., 2016), and the percentage of the genomic variance explained for non-

overlapping genomic windows of 1 megabase, calculated by marginal posterior 

density. The genomic windows were defined for each chromosome and according 

the OryCun2.0 rabbit genome assembly (Carneiro et al., 2014). In our study, 

1,999 genomic windows were defined. Those windows accounting for at least 

1.0% of the total genomic variance were considerate as important to continue 

with the subsequent analysis (Cesar et al., 2014). This threshold was 20 times 

greater than the average genomic variance explained by a window (0.05%). We 

also considered the consecutive windows that explained at least 0.5% of 

genomic variance having a strong linkage disequilibrium between them (Ros-

Freixedes et al., 2016) as SNPs associated with a causal variant can be located 

between consecutive windows and the estimated effect of association could be 

divided among these windows, hindering the detection of a genomic region 

(Beissinger et al., 2015). 

 

In this study, we integrated the results from both frequentist and Bayesian 

methods to define the relevance of associations. This was established by the 

following procedure: first, we drew all genomic windows that overcame the 

condition expressed in the above paragraph. Then, the genomic windows 

harbouring SNP above or around 20 Bayes factor (Kass & Raftery, 1995) were 

extracted and considered as relevant genomic windows. These SNPs reaching at 

least one of thresholds, either suggestive or Bayes factor thresholds, were 

denoted as relevant polymorphisms. Finally, the genomic regions having 

relevant associations were chosen for functional gene analysis. 
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In addition, the three main important polymorphisms within relevant genomic 

regions were tested according to genotypes using contrasts by frequentist 

statistic. This test was carried out within IMF line in order to evaluate the 

statistical differences amongst genotypes of SNPs. To do that, a general linear 

model was implemented using R software (R Core Team, 2018). 

 

4.3.5. Linkage disequilibrium and functional gene analysis 

To evaluate the number of independent sites across the rabbit genome, a 

computation of LD for blocks was performed. The PLINK software was utilised 

to identify LD blocks (Purcell et al., 2007). The number of independent sites was 

calculated every 0.5, 1, 5, 10 and 20 Mb (genomic distance) across the whole 

rabbit genome. The LD-adjusted Bonferroni threshold used in this study was 

calculated using the number of independent sites for 10 Mb as the number of 

independent sites barely changed between 10 to 20 Mb. LD blocks were 

examined in the associated genomic regions through the Haploview software 

(Barrett et al., 2005). In order to visualise the genes into the relevant genomic 

regions (+/- 500 kb of associated SNP), we initially used the program UCSC 

Genome Browser (https://genome.ucsc.edu/cgi-bin/hgGateway). The gene 

annotations were determined using Ensembl Genes 96 Database in software 

BioMart (Aken et al., 2016). The functional enrichment and metabolic pathways 

analysis were finally performed with “Database for Annotation, Visualization 

and Integrated Discovery” (DAVID) v 6.8 (Jiao et al., 2012) and “Enrichr” 

(Kuleshov et al., 2016). The computation for the functional analyses was carried 

out using the parameters recommended by the authors. In addition, the search 

of annotated functions for each gene was performed individually using the 

database of all annotated functions from Ensembl and DAVID. 

 

4.4. Results 

4.4.1. Genomic data 

A total of 93,540 autosomal SNPs with known chromosomal positions were 

retained after filtering for minor allele frequency (MAF) and call rate (see details 

in Materials and Methods). The number of retained SNPs on each of the 21 

rabbit autosomes is shown in Table 1. The average physical distance between 

these SNPs was 22.61 kb. The average SNP number within 1-Mb windows was 
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46. One extended genomic region on OCU14 (54-65 Mb) did not contain any 

SNPs. 

 

Table 1. Allocation of SNPs after quality control and average distance amongst 
contiguous SNPs on every chromosome. 

OCU 
Number of 

SNPs 

Percentage 
of SNPs in 

OCU* 

Average 
Distance 

(kb) 

Chromosome Size 
(Mb) 

1 9288 63% 20.98 194.85 

2 7856 58% 22.19 174.33 

3 7006 59% 22.22 155.69 

4 3895 58% 23.47 91.39 

5 1721 67% 21.84 37.99 

6 1222 63% 22.48 27.50 

7 7626 57% 22.78 176.68 

8 5075 57% 22.03 111.80 

9 5136 57% 22.58 116.25 

10 2318 61% 19.38 48.00 

11 3827 56% 22.81 87.55 

12 7116 60% 21.83 155.35 

13 5945 56% 24.11 143.36 

14 5687 45% 28.81 163.90 

15 4657 55% 22.71 109.05 

16 3962 62% 21.32 84.48 

17 3836 59% 21.94 85.01 

18 3102 64% 21.45 69.80 

19 2574 64% 21.00 57.28 

20 1224 51% 24.66 33.19 

21 467 55% 26.56 15.58 

Total 93540 47%   

* The proportion of SNPs after quality control divided by number total of SNPs 
into OCU (rabbit chromosome) from the rabbit SNP array. 

 

4.4.2. GWAS for intramuscular fat 

Figure 1 reports a multidimensional scaling (MDS) plot obtained using the 

genotyped SNPs on the rabbits of the two divergent IMF lines. A strong structure 

separating the high- and low-IMF lines is clearly evident. Therefore, a line effect 

was included in the models. In addition, a polygenic effect was also included in 
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the SMR to adjust this model owing to the plausible effects derived from family-

data structures, considering a genomic kinship matrix. After this correction, the 

calculated lambda parameter was 1.065, indicating that the correction of bias 

derived from the population structure was not enough. Hence, we also 

implemented the correction by the lambda parameter in the SMR analysis. Note 

that the first and second components of MDS accounted for 29.26% and 3.26% 

of genomic variance, respectively (Figure 1). 

 

 

 
Figure 1. Multidimensional scaling plot of genomic data. The first component 

(MDS1) explained 29.26 % of the genomic variance and the second 
component (MDS2) explained 3.26 % of the genomic variance. 

 

Two methods were used in this research: SMR with the data adjusted by 

genomic relatedness, and a BMMR (Bayes B method). We employed the term of 

“relevant” in order to denote those SNPs and genomic windows that we 

considered as true positive associations. In this research, we understand the 

GWAS as an exploratory analysis, which works as a mechanism for deriving 

promising genomic regions associated with IMF, and retrieving annotated rabbit 

genes. Table 2 shows the SNPs and genomic windows associated with IMF 
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according to the procedure for defining the relevant associations (see details in 

Materials and Methods). For both methods, the associated SNPs and genomic 

windows were located on OCU8 and OCU13. The two genomic windows on 

OCU13 (2Mb), containing ten relevant SNPs, accounted together for 1.30% of 

the total genomic variance. On OCU8, ten relevant polymorphisms showed the 

lowest p-values for the SMR method, and had high Bayes factors for the BMMR 

method (Figure 2). The two genomic windows containing these relevant 

polymorphisms accounted for 7.34% of the genomic variance. In addition, a 

genomic window on OCU1 was found associated with IMF by BMMR, explaining 

2.03% of the genomic variance. The associated SNPs in this latter genomic 

window presented values close to the Bayes factor threshold, but these SNPs 

were distant from the p-value (suggestive) threshold for SMR method. 

 

Regarding the LD analysis, we found that in our data the rabbit genome could 

be divided in 2,338 LD blocks and 6,158 independent sites, with the longest LD 

blocks having a maximum length of 10 Mb. The associated SNPs on OCU13 and 

on OCU8 displayed a high LD within chromosomal region (Figure 3). The 

associated genomic region on OCU13 (window 1380 and 1381) holds two LD 

blocks. The second LD block (of 1506 kb) included almost the two-associated 

windows (Additional file 1: Figure S1). The associated genomic region on OCU8 

(window 841 and 842) presented just one block of 1945 kb, containing both 

windows (Additional file 2: Figure S2).  
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Table 2. Relevant polymorphisms (SNPs) and genomic windows associated with intramuscular fat.  
 

SNP name OCU 
Position 

(bp) 
P-value Bayes Factor 

Window 

MAF 
Name % Variance 

Affx-151793092 1 121151928 1.10x10-3 15.95 118 2.03 0.24 

Affx-151803947 1 121280205 1.10x10-3 19.59   0.24 

Affx-151888965 1 121308004 1.10x10-3 16.03   0.25 

Affx-151956200 8 14893810 3.51x10-4 19.51 831 1.21 0.31 

Affx-151962168 8 14913105 3.51x10-4 24.86   0.32 

Affx-151945237 8 14939285 3.51x10-4 28.58   0.31 

Affx-151973204 8 14972879 1.83x10-4 18.38   0.31 

Affx-151800097 8 25087426 2.13x10-6 21.78 841 6.20 0.16 

Affx-151900210 8 25227502 3.33x10-6 44.73   0.16 

Affx-151917268 8 25262821 2.13x10-6 20.64   0.16 

Affx-151813008 8 25268392 2.13x10-6 22.57   0.16 

Affx-151795704 8 25467177 3.12x10-6 20.99   0.16 

Affx-151972842 8 25643667 2.06x10-6 24.15   0.16 

Affx-151964185 8 25732369 2.06x10-6 21.78   0.16 

Affx-152000638 8 25751303 2.06x10-6 21.17   0.16 

Affx-151808634 8 25863739 2.06x10-6 23.27   0.16 

Affx-151853378 8 25874631 2.12x10-6 21.25   0.16 
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SNP name OCU 
Position 

(bp) 
P-value Bayes Factor 

Window 
MAF 

Name % Variance 

Affx-151824236 8 26115758 2.66x10-3 21.87 842 1.14 0.16 

Affx-151867012 13 84307591 7.14x10-5 11.73 1380 0.79 0.09 

Affx-151824373 13 84431723 7.14x10-5 10.62   0.09 

Affx-151874466 13 84447172 8.45x10-5 11.90   0.09 

Affx-151883028 13 84453332 7.14x10-5 11.73   0.09 

Affx-151801561 13 84537466 7.14x10-5 25.39   0.09 

Affx-151841215 13 84723427 2.20x10-5 25.39   0.09 

Affx-151846540 13 84738337 2.20x10-5 26.98   0.09 

Affx-151790364 13 84751504 2.23x10-5 25.30   0.09 

Affx-151939801 13 85316544 3.40x10-4 43.81 1381 0.51 0.08 

Affx-151937959 13 85333053 6.31x10-6 15.69   0.09 

 
OCU = rabbit chromosome, bp = base pair, % Variance = percentage of genomic variance explained by window.  
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Figure 2. Manhattan plot for each model. (a) Single marker regression fitted by 

genomic relationship. The –log (p-value) thresholds are 5.09 (LD-
Bonferroni – red dashed line) and 4.0 (suggestive – black dashed line) 
(b) The Bayes Factor (BF) for each SNP for the Bayesian multi-marker 
regression model. The black dashed line indicates the BF threshold 
of 20 (c) The percentage of genomic variance explained by each non-
overlapping one megabase window for the Bayesian Multi marker 
regression model (threshold of 1% - red dashed line). 
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Figure 3. Linkage disequilibrium blocks from main relevant associated 
polymorphisms. Block 1 includes SNPs (1-10) on chromosome 8 in 
24.59 - 26.95 Mb, and block 2 includes SNPs (11-20) on chromosome 
13 in 83.81 - 86.00 Mb. 

 

 

After the previous analysis (GWAS and LD), four relevant genomic regions were 

used to continue the searching of putative candidate genes based on the 

functional annotation analysis (Table 3). In these regions, we also tested the IMF 

differences between genotypes within line. Most of the SNPs tested presented 

statistical differences between one of the homozygous genotypes and the others 

genotypes within the high-IMF line. In the low-IMF line, except in region located 

14.01-15.47 Mb in OCU8, these SNPs were not segregating (Additional file 3: 

Figure S3). 

 

4.4.3. Functional annotation analysis and putative candidate genes. 

The final objective of our study was to generate a list of putative candidate genes, 

in order to guide further research for investigating the genetic determination of 

IMF content. Overall, 46 genes are annotated to the four relevant genomic 

regions (Additional file 4: Tables S1).  

 

Only three genes (two non-coding-protein genes and one protein-coding gene) 

mapped to the genomic region on OCU13 (Table 3). Among them stands out a 

novel annotated gene with Ensembl gene ID: ENSOCUG00000027270 (84.56 

Mb), which is linked to metal ion binding in rabbits. The genes located on the 
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genomic region on OCU8 were those showing a clearer relationship to lipid 

metabolism pathways. The “apolipoprotein L domain containing 1” gene 

(APOLD1) shows functions related to lipid binding, transportation, and 

localization. The “phospholipase B domain containing 1” (PLBD1) and 

“phosphodiesterase 6H” (PDE6H) genes show functions linked to hydrolase 

activity (phospholipases) and lipid metabolic processes. In human, several 

functional annotations, including sphingolipid signalling pathway, have been 

found for the “K-RAS proto-oncogene, GTPase” (KRAS) gene. Moreover, two 

members of the retinol-induced G protein-coupled protein receptors also stand 

out in OCU8: “G protein-coupled receptor class C group 5 member D” (GPRC5D) 

and “G protein-coupled receptor class C group 5 member A” (GPRC5A) (Table 3). 

On OCU1, the “myotubularin related protein 2” (MTMR2) gene displays 

biological functions linked to lipid metabolic processes. In addition to the 

biological and molecular functional annotations, a list of pathways that include 

these genes was generated from DAVID, the KEGG and Wiki pathways 

databases (Additional file 5: Table S2).  

 

4.5. Discussion 

Knowledge and understanding of control mechanisms of IMF content would be 

useful in the meat industry. Thus, GWAS was performed in order to identify 

genomic regions associated with IMF content in rabbits owing to the increasing 

importance of meat quality in livestock for consumers (Hocquette et al., 2010; 

Pena et al., 2016; Strucken et al., 2017). 

 

Following GWAS detection power studies (Spencer et al., 2009; Visscher et al., 

2017), the distribution of SNPs (after quality control) across the rabbit genome 

in our data was suitable for GWAS analysis in livestock, given the LD and SNP 

density (Fan et al., 2010; Zhang et al., 2012). For instance, LD blocks having 

distance of 98 kb show r2 = 0.5 as a measure of LD within rabbit breeds 

(Carneiro et al., 2011). This would indicate that the 93,540 SNP having an 

average distance of 22.61 kb between SNPs can be useful for discovering true 

associations amongst SNPs and the causal variants of IMF. 
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Table 3. Summary of relevant genomic regions associated with intramuscular fat, and annotated rabbit genes.  

 

CLUSTER OCU 
Position (bp) 

Number of 
genes 

Annotated rabbit gene 
Start End 

1 1 120,651,928 121,986,803 9 
MAML2, MTMR2, CEP57, FAM76B, 

ENSOCUG00000025632*, SESN3, ENDOD1, KDM4D, 
CWC15 

2 8 14,014,437 15,472,879 9 
RASSF8, LMNTD1, RF00001, KRAS, ETFRF1, CASC1, 

LRMP, BCAT1, ENSOCUG00000021067* 

3 8 24,587,426 26,948,204 25 

PDE6H, ARHGDIB, ERP27, MGP, ART4, SMCO3, 
ENSOCUG00000017177*, H2AFJ, HIST4H4, 

GUCY2C, PLBD1, ATF7IP, ENSOCUG00000017095*, 
ENSOCUG00000021765*, GRIN2B, RF00411, 

ENSOCUG00000021882*, EMP1, GSG1, FAM234B, 
HEBP1, GPRC5D, GPRC5A, DDX47, APOLD1 

4 13 83,807,591 85,998,108 3 RF00026, ENSOCUG00000027270*, RF00001 

 

CLUSTER = denotes the genomic region, OCU = rabbit chromosome, bp = base pair. 

*Novel genes are named with their Ensembl gene ID. 
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A challenge in GWAS analysis is the impact of confounding factors in the 

results. To avoid problems owing to population structure, we fit the genomic 

kinship matrix (Sul et al., 2018). The obtained λ value of 1.065 shows that this 

was almost enough to correct the population stratification effect. The purpose 

of implementing two methods was to corroborate the presence of associations 

between genomic windows or SNPs with IMF. The causal variants of moderate-

to-high effect size can be detected by both methods in GWAS analyses when 

polymorphisms present high LD with these causal variants (López de Maturana 

et al., 2014). SNPs on OCU13 and OCU8 were found to be associated with IMF 

for both frequentist and Bayesian methods. However, the two associated 

windows on OCU13 (window 1380 and 1381) explained the low percentage of 

genomic variance (<1%). In addition, the LD block containing the most 

important SNPs on OCU13 covered a short physical distance and was uneven 

with regard to LD within this block (Additional file 1: Figure S1). This indicates 

that in this area of the genome a selective sweep process might not have been 

produced by divergent selection, since short-term selection increases LD and 

the expected length of the LD block that contains an important causal variant 

(Vitti et al., 2013). In addition, the reference alleles of these associated SNPs 

presented low allelic frequencies (close to zero) for the low-IMF line. The MAF 

value of the reference SNPs was also very low (<0.09) in both, low- and high-IMF 

lines (Table 2). All SNPs were fixed or near fixation in the low-IMF line, therefore 

the association of these SNPs with IMF was uncovered given their segregation 

in the high-IMF line. This could affect the association detection power even when 

the sample size is large (López de Maturana et al., 2014). For instance, if SNPs 

associated with the causal variants present a low MAF, the effects and 

association can be underestimated generating false-negative results.  

 

In contrast, the associated region on OCU8 in 24.59 - 26.95 Mb explained a 

larger percentage of genomic variance between both associated windows 

(7.34%). Moreover, this region presented a strong and long linkage 

disequilibrium block between windows 841 and 842, which could imply a 

selective sweep process owing to divergent selection (additional file 2: Figure S2). 

The MAF values of the SNPs in this region were higher than on OCU13, reaching 

a maximum value of 0.16 (Table 2). Most of SNPs in OCU8 were fixed or near 

fixation in the low-IMF line. It seems that the causative variants and their 

surrounding SNPs would be at low frequency in the base population. This might 
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explain the fixation of SNPs in the low-IMF line and their segregation in the 

high-IMF line at the 9th generation. Therefore, this genomic region showed more 

evidence than the region on OCU13 for considering it as an important 

association driving the control mechanism of IMF. Finally, another potentially 

interesting genomic region was identified on OCU1. This region explained 2.03% 

of the IMF genomic variance, although the SNPs show –log (p-values) or Bayes 

factors below thresholds (Figure 2). This suggests that the association of these 

SNPs could be better captured by the method that considers the percentage of 

variance explained by the windows instead of evaluating each SNP individually. 

In addition, these SNPs present MAF values around 0.24 (0.48 for high-IMF line 

and close to zero for low-IMF line), which might suggest that the differences 

might be a consequence of the divergent selection process.  

 

This is the first GWAS study for IMF in rabbits. Therefore, comparisons within 

rabbits are limited to previous candidate gene studies. In this sense, as Migdał 

et al. (2018), we did not find association between FABP4 (OCU3) candidate gene 

and IMF. Our results are not in agreement with the studies for FTO (OCU5) 

(Zhang et al., 2013), CAST (OCU11) (Wang et al., 2016a) and MYPN (OCU18) 

(Wang et al., 2017) which found associations in two, one and one SNP within 

gene, respectively (p-values between 0.032 and 0.044). However, these 

associations should be taken with caution as the significance threshold was 

more liberal (p-value < 0.05, without applying correction for multiple testing) 

than in our GWAS study (p-value < 1x10-4). In agreement with GWAS studies 

for IMF in swine, our results suggest that there is a large polygenic component 

influencing the trait (Pena et al., 2016; Ros-Freixedes et al., 2016; Won et al., 

2017). However, our results also showed important genomic regions associated 

with IMF. Especially in OCU8, a region of 2 Mb explains a notable percentage of 

the genomic variance (7.34%) in comparison with other GWAS studies for IMF 

(Cesar et al., 2014; Pena et al., 2016). 

 

Several genes related to lipid metabolism (on OCU1, OCU8 and OCU13) were 

found in the associated regions. In OCU13, orthologues of a novel gene (Ensembl 

gene ID: ENSOCUG00000027270) have been reported in other species. In 

rabbits, there are not functional annotations related to lipid metabolism or 

intramuscular fat linked to this gene. However, in humans and mice this gene 

is known as EWS or EWSR1, and regulates the genetic expression of the 
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transcription factor “Y-Box Binding Protein 1” gene (YBX1). This transcription 

factors activates the expression of the gene BMP7 (“Bone Morphogenetic protein 

7”) which in turn promotes the development of brown adipocytes (Wang & Seale, 

2016) 

 

The genomic regions on OCU8 contained the genes with the most important 

biological functions. Hence, the genes on this region can be considered as 

candidates for further research, given this window explains a large percentage 

of the IMF genomic variance (7.34%). In particular, APOLD1, PLBD1, PDE6H and 

GPRC5A were involved in functions of lipid transport, localisation and binding 

or in the control of adipose cell function. Two of these genes (PLBD1 and, PDE6H) 

participated in the catabolism of phospholipids, which are the major component 

of cell membranes and have important implication in adipocyte hypertrophy 

(Chaves et al., 2011; Aloulou et al., 2012). As a result, PLBD1 has been related 

to lipid catabolic processes, skeletal muscle weight and body mass index in mice 

(Lionikas et al., 2012; Nyima et al., 2016) and humans (Wahl et al., 2017). In 

addition, KRAS (OCU8) was associated with the control of fat deposition in 

chicken (Claire D’Andre et al., 2013) and was involved in sphingolipid signalling 

pathway. In humans, this gene was related to abnormal lipid metabolism in 

therapy of pancreatic cancer (Swierczynski et al., 2014). Another promising gene 

is GPRC5A, also known as RAI3, which is a key factor in repressing the 

differentiation of adipocytes in humans (Jin et al., 2017). This gene encodes for 

a member of the G-coupled proteins, a large family including over 800 receptors, 

amongst them, the olfactory receptors. GRPC5A belongs to a small subfamily of 

4 members that are activated by retinol, the bioactive version of vitamin A. 

Although the role of GPRC5A is not well characterized at present, initial 

investigation report a link with lung cancer, and also as a negative regulator or 

with adipogenesis (Song et al., 2019). Given the dual role of retinol during the 

adipogenesis (a positive regulator of pre-adipocyte hyperplasia but a negative 

regulator of final maturation; see Wang et al., 2016c), GRPC5A rises as an 

interesting gene to mediate the inhibitory effect of retinoids in adipogenesis 

(Amisten et al., 2017). 

 

In addition, MTMR2 (OCU1) was linked to the metabolic process of lipids. This 

gene has been proposed as functional candidate gene for IMF in GWAS and 
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signature of selection studies in a Duroc population selected for IMF (Kim et al., 

2015). 

 

4.6. Conclusions and Implications 

This is the first GWAS study for IMF in rabbits and hence provides a benchmark 

for continuing research in the field. Our findings support that four genomic 

regions (on OCU1, OCU8 and OCU13) influence IMF content. The genomic 

variance explained by these associated regions is important although no major 

causal variants seem to segregate in the analysed rabbit populations. Therefore, 

according to what we observed in these divergently selected lines, it seems that 

IMF content is mainly driven by a polygenetic effect. In addition, we identified 

some candidate genes on the associated genomic regions of OCU13 (EWSR1), 

OCU8 (APOLD1, PLBD1, PDE6H, GPRC5A, KRAS), and OCU1 (MTMR2) related 

to IMF. Nevertheless, further research would be necessary in order to 

corroborate these results; for instance, a genotype refinement or sequencing of 

promoter and exonic regions of the candidate genes and its validation in 

independent populations of rabbits. Our results could be important for further 

studies to discover polymorphisms that can assist IMF genetic improvement. 

 

4.7. Abbreviations 

BMMR: Bayesian multi marker regression; FASTA: family-based score test 

association; MDS: multidimensional scaling; GWAS: genome-wide association 

study; LD: linkage disequilibrium; LTH: longissimus thoracis et lumborum; MAF: 

minor allele frequency; SMR: single marker regression; OCU: rabbit 

chromosome; QTL: quantitative trait loci; IMF: intramuscular fat; SNP: single 

nucleotide polymorphism. 

 

4.8. Availability of data and material 

The datasets used and analysed in the current study are available from the 

Figshare Repository (https://doi.org/10.6084/m9.figshare.9934058.v1). 
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4.10. Additional Files 

Additional supporting information may be found online in the Supporting Information section at the end of the article.  
 

 

Additional file 1: Figure S1. Linkage disequilibrium (LD) block of the associated genomic region on OCU13. The window 1380 and 
1381 display a shared LD block of 1506 kb. This block includes 18 SNPs of the first window and 42 SNPs from the second window. 
The red colour indicates a high LD and the blue colour indicate a low LD.  
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Additional file 2: Figure S2. Linkage disequilibrium (LD) block of an associated genomic region on OCU8. The window 841 and 
842 display a shared LD block of 1945 kb. The block includes 145 SNPs. The red colour indicates a high LD. 
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Additional file 3: Figure S3. Assessment of genotypes for the three relevant 
SNPs within genomic regions associated with intramuscular fat. The light blue 
colour denotes IMF high line and orange colour denotes IMF low line. Boxplots 
of polymorphisms (SNPs) in (a) OCU1 (120.65 – 121.99 Mb), (b) OCU8 (14.01 - 
15.47 Mb), (c) OCU8 (24.59 - 26.95 Mb), and (d) OCU13 (83.81 - 86.00 Mb). The 
SNPs in the regions (a), (c), and (d) displayed minor allele frequencies (MAF) 
below 0.03 (close to zero) within IMF low line precluding their assessment. 
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Additional file 4: Table S1. Genes found in the genomic regions associated with intramuscular fat.  

Gene stable ID 
Rabbit gene 

name 
OCU Gene type Gene description 

ENSOCUG00000010820 MAML2 1 protein coding 
mastermind like transcriptional coactivator 2 
[Source:NCBI gene;Acc:100345650] 

ENSOCUG00000014568 MTMR2 1 protein coding 
myotubularin related protein 2 [Source:NCBI 
gene;Acc:100352381] 

ENSOCUG00000014557 CEP57 1 protein coding 
centrosomal protein 57 [Source:NCBI 
gene;Acc:100353145] 

ENSOCUG00000014549 FAM76B 1 protein coding 
family with sequence similarity 76 member B 
[Source:NCBI gene;Acc:100354406] 

ENSOCUG00000025632 SUCLA2* 1 protein coding 
succinate-CoA ligase ADP-forming beta subunit 
[Source:NCBI gene;Acc:105868516 

ENSOCUG00000026640 SESN3 1 protein coding sestrin 3 [Source:NCBI gene;Acc:100354919] 

ENSOCUG00000014040 ENDOD1 1 protein coding 
endonuclease domain containing 1 [Source:NCBI 
gene;Acc:100355178] 

ENSOCUG00000001631 KDM4D 1 protein coding 
lysine-specific demethylase 4D [Source:NCBI 
gene;Acc:100348204] 

ENSOCUG00000001629 CWC15 1 protein coding 
CWC15 spliceosome associated protein homolog 
[Source:NCBI gene;Acc:100355678] 

ENSOCUG00000010737 RASSF8 8 protein coding 
Ras association domain family member 8 
[Source:NCBI gene;Acc:100357319] 

ENSOCUG00000006725 LMNTD1 8 protein coding 
lamin tail domain containing 1 [Source:NCBI 
gene;Acc:100357834] 

ENSOCUG00000028888 RF00001 8 rRNA  

ENSOCUG00000012106 KRAS 8 protein coding 
KRAS proto-oncogene, GTPase [Source:NCBI 
gene;Acc:100347487] 

ENSOCUG00000012099 ETFRF1 8 protein coding 
electron transfer flavoprotein regulatory factor 1 
[Source:NCBI gene;Acc:100347981] 

ENSOCUG00000015984 CASC1 8 protein coding 
cancer susceptibility 1 [Source:NCBI 
gene;Acc:100358611] 
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Gene stable ID 
Rabbit gene 

name 
OCU Gene type Gene description 

ENSOCUG00000015956 LRMP 8 protein coding 
lymphoid restricted membrane protein 
[Source:NCBI gene;Acc:100358873] 

ENSOCUG00000003963 BCAT1 8 protein coding 
branched chain amino acid transaminase 1 
[Source:NCBI gene;Acc:100337981] 

ENSOCUG00000021067  8 protein coding  

ENSOCUG00000006014 PDE6H 8 protein coding 
phosphodiesterase 6H [Source:NCBI 
gene;Acc:100345162] 

ENSOCUG00000006010 ARHGDIB 8 protein coding 
Rho GDP dissociation inhibitor beta 
[Source:NCBI gene;Acc:100345676] 

ENSOCUG00000006003 ERP27 8 protein coding 
endoplasmic reticulum protein 27 [Source:NCBI 
gene;Acc:100347486] 

ENSOCUG00000016964 MGP 8 protein coding 
matrix Gla protein [Source:NCBI 
gene;Acc:100008989] 

ENSOCUG00000017191 ART4 8 protein coding 
ADP-ribosyltransferase 4 (Dombrock blood 
group) [Source:NCBI gene;Acc:100008862] 

ENSOCUG00000023339 SMCO3 8 protein coding 
single-pass membrane protein with coiled-coil 
domains 3 [Source:NCBI gene;Acc:100348987] 

ENSOCUG00000017177  8 protein coding 
WW domain binding protein 11 [Source:NCBI 
gene;Acc:100349748] 

ENSOCUG00000027663 H2AFJ 8 protein coding 
histone H2A.J [Source:NCBI 
gene;Acc:100350997] 

ENSOCUG00000017172 HIST4H4 8 protein coding histone H4 [Source:NCBI gene;Acc:100351746] 

ENSOCUG00000008162 GUCY2C 8 protein coding 
guanylate cyclase 2C [Source:NCBI 
gene;Acc:100008740] 

ENSOCUG00000026751 PLBD1 8 protein coding 
phospholipase B domain containing 1 
[Source:NCBI gene;Acc:100347232] 

ENSOCUG00000012361 ATF7IP 8 protein coding 
activating transcription factor 7 interacting 
protein [Source:NCBI gene;Acc:100353017] 

ENSOCUG00000017095  8 protein coding  
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Gene stable ID 
Rabbit gene 

name 
OCU Gene type Gene description 

ENSOCUG00000021765  8 miRNA  

ENSOCUG00000015111 GRIN2B 8 protein coding 
glutamate ionotropic receptor NMDA type 
subunit 2B [Source:NCBI gene;Acc:100353266] 

ENSOCUG00000027899 RF00411 8 snoRNA  

ENSOCUG00000021882  8 miRNA  

ENSOCUG00000022231 EMP1 8 protein coding 
epithelial membrane protein 1 [Source:NCBI 
gene;Acc:100009209] 

ENSOCUG00000012837 GSG1 8 protein coding 
germ cell associated 1 [Source:NCBI 
gene;Acc:100348479] 

ENSOCUG00000012826 FAM234B 8 protein coding 
family with sequence similarity 234 member B 
[Source:NCBI gene;Acc:100348737] 

ENSOCUG00000015344 HEBP1 8 protein coding 
heme binding protein 1 [Source:NCBI 
gene;Acc:100353525] 

ENSOCUG00000015331 GPRC5D 8 protein coding 
G protein-coupled receptor class C group 5 
member D [Source:NCBI gene;Acc:100349237] 

ENSOCUG00000016556 GPRC5A 8 protein coding 
G protein-coupled receptor class C group 5 
member A [Source:NCBI gene;Acc:100349493] 

ENSOCUG00000014390 DDX47 8 protein coding 
DEAD-box helicase 47 [Source:NCBI 
gene;Acc:100354028] 

ENSOCUG00000025481 APOLD1 8 protein coding 
apolipoprotein L domain containing 1 
[Source:NCBI gene;Acc:100354429] 

ENSOCUG00000023584 RF00026 13 snRNA  

ENSOCUG00000027270 EWSR1* 13 protein coding 
EWS RNA binding protein 1 [Source:HGNC 
Symbol;Acc:HGNC:3508 

ENSOCUG00000028459 RF00001 13 rRNA  

 
 * Genes annotated to the human orthologue.  
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Additional file 5: Table S2. Functions of genes identified in this study through Enrichr and DAVID.  

Results of Enrich 
 

DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

KEGG 
H2AFJ(8), HIST4H4(8), KRAS(8), 
GRIN2B(8) 

HSA05034 Alcoholism 13.2227 

KEGG H2AFJ(8), HIST4H4(8), GRIN2B(8) HSA05322 Systemic lupus erythematosus 9.3380 

KEGG KRAS(8), GRIN2B(8) HSA04720 Long-term potentiation 8.1546 

KEGG SESN3(1), KRAS(8) HSA04211 Longevity regulating pathway - mammal 6.9843 

KEGG ARHGDIB(8), KRAS(8) HSA04722 Neurotrophin signaling pathway 5.9656 

KEGG GUCY2C(8), PDE6H(8) HSA00230 Purine metabolism 4.1724 

KEGG HIST1H4(8), KRAS(8) HSA05203 Viral carcinogenesis 4.0400 

KEGG KRAS(8), GRIN2B(8) HSA04015 Rap1 signaling pathway 3.7396 

KEGG KRAS(8) HSA05216 Thyroid cancer 3.6327 

KEGG KRAS(8), GRIN2B(8) HSA04014 Ras signaling pathway 3.3951 

KEGG KRAS(8) HSA04320 Dorso-ventral axis formation 3.2936 

KEGG BCAT1(8) HSA01210 2-Oxocarboxylic acid metabolism 3.1575 

KEGG SUCLA2(1) HSA00640 Propanoate metabolism 2.8686 

KEGG KRAS(8) HSA04960 Aldosterone-regulated sodium reabsorption 2.8658 

KEGG GRIN2B(8) HSA05033 Nicotine addiction 2.6715 

KEGG SUCLA2(1) HSA00020 Citrate cycle (TCA cycle) 2.5982 

KEGG KRAS(8) HSA05219 Bladder cancer 2.5727 

KEGG ARHGDIB(8)   HSA04962 Vasopressin-regulated water reabsorption 2.5377 

KEGG BCAT1(8) HSA00770 Pantothenate and CoA biosynthesis 2.4263 

KEGG BCAT1(8) HSA00270 Cysteine and methionine metabolism 2.1672 

KEGG BCAT1(8) HSA00280 Valine, leucine and isoleucine degradation 2.1457 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

KEGG KRAS(8) HSA05223 Non-small cell lung cancer 2.1353 

KEGG KRAS(8) HSA05213 Endometrial cancer 2.0689 

KEGG KRAS(8) HSA05221 Acute myeloid leukemia 1.9737 

KEGG MAML2(1) HSA04330 Notch signaling pathway 1.9012 

KEGG GRIN2B(8) HSA05030 Cocaine addiction 1.8983 

KEGG KRAS(8) HSA04370 VEGF signaling pathway 1.8632 

KEGG KRAS(8) HSA04730 Long-term depression 1.8226 

KEGG GRIN2B(8) HSA05014 Amyotrophic lateral sclerosis (ALS) 1.7835 

KEGG KRAS(8) HSA05214 Glioma 1.7789 

KEGG KRAS(8) HSA04213 Longevity regulating pathway - multiple species 1.6955 

KEGG KRAS(8) HSA05210 Colorectal cancer 1.6879 

KEGG KRAS(8) HSA05212 Pancreatic cancer 1.5734 

KEGG KRAS(8) HSA04664 Fc epsilon RI signaling pathway 1.4557 

KEGG GRIN2B(8) HSA05031 Amphetamine addiction 1.4339 

KEGG KRAS(8) HSA05211 Renal cell carcinoma 1.4012 

KEGG KRAS(8) HSA05230 Central carbon metabolism in cancer 1.2870 

KEGG KRAS(8) HSA05218 Melanoma 1.1559 

KEGG MTMR2(1) HSA00562 Inositol phosphate metabolism 1.1470 

KEGG KRAS(8) HSA04917 Prolactin signaling pathway 1.1305 

KEGG KRAS(8) HSA04662 B cell receptor signaling pathway 1.1145 

KEGG KRAS(8) HSA05220 Chronic myeloid leukemia 1.0157 

KEGG KRAS(8) HSA04012 ErbB signaling pathway 0.9771 

KEGG KRAS(8) HSA05215 Prostate cancer 0.9488 

KEGG SESN3(1) HSA04115 p53 signaling pathway 0.9110 

KEGG KRAS(8) HSA04912 GnRH signaling pathway 0.9075 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

KEGG GRIN2B(8) HSA04713 Circadian entrainment 0.8412 

KEGG KRAS(8) HSA04914 Progesterone-mediated oocyte maturation 0.8343 

KEGG KRAS(8) HSA04933 
AGE-RAGE signaling pathway in diabetic 
complications 

0.8268 

KEGG KRAS(8) HSA04540 Gap junction 0.7618 

KEGG KRAS(8) HSA04915 Estrogen signaling pathway 0.7467 

KEGG MTMR2(1) HSA04070 Phosphatidylinositol signaling system 0.7236 

KEGG KRAS(8) HSA04916 Melanogenesis 0.7150 

KEGG BCAT1(8) HSA01230 Biosynthesis of amino acids 0.6944 

KEGG KRAS(8) HSA04725 Cholinergic synapse 0.6615 

KEGG KRAS(8) HSA05231 Choline metabolism in cancer 0.6256 

KEGG KRAS(8) HSA04660 T cell receptor signaling pathway 0.5350 

KEGG GRIN2B(8) HSA04724 Glutamatergic synapse 0.4508 

KEGG KRAS(8) HSA04726 Serotonergic synapse 0.4456 

KEGG KRAS(8) HSA04919 Thyroid hormone signaling pathway 0.3467 

KEGG SUCLA2(1) HSA01200 Carbon metabolism 0.2997 

KEGG KRAS(8) HSA04071 Sphingolipid signaling pathway 0.2862 

KEGG GRIN2B(8) HSA04728 Dopaminergic synapse 0.2763 

KEGG KRAS(8) HSA04068 FoxO signaling pathway 0.2549 

KEGG KRAS(8) HSA04360 Axon guidance 0.2415 

KEGG KRAS(8) HSA05160 Hepatitis C 0.2171 

KEGG CWC15(1) HSA03040 Spliceosome 0.2155 

KEGG KRAS(8) HSA04210 Apoptosis 0.1997 

KEGG KRAS(8) HSA04650 Natural killer cell mediated cytotoxicity 0.1814 

KEGG KRAS(8) HSA04910 Insulin signaling pathway 0.1240 

KEGG KRAS(8) HSA05161 Hepatitis B 0.0906 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

KEGG KRAS(8) HSA04072 Phospholipase D signaling pathway 0.0746 

KEGG KRAS(8) HSA04550 
Signaling pathways regulating pluripotency of 
stem cells 

0.0705 

KEGG KRAS(8) HSA04530 Tight junction 0.0672 

KEGG KRAS(8) HSA04921 Oxytocin signaling pathway 0.0419 

KEGG GRIN2B(8) HSA05016 Huntington's disease -0.0322 

KEGG GRIN2B(8) HSA05010 Alzheimer's disease -0.0384 

KEGG EWSR1(13) HSA05202 Transcriptional misregulation in cancer -0.0416 

KEGG KRAS(8) HSA05205 Proteoglycans in cancer -0.0534 

KEGG KRAS(8) HSA04010 MAPK signaling pathway -0.0684 

KEGG KRAS(8) HSA04062 Chemokine signaling pathway -0.0688 

KEGG KRAS(8) HSA04810 Regulation of actin cytoskeleton -0.0735 

KEGG MTMR2(1), SUCLA2(1), BCAT1(8) HSA01100 Metabolic pathways -0.0780 

KEGG KRAS(8) HSA04151 PI3K-Akt signaling pathway -0.0915 

KEGG GRIN2B(8) HSA04024 cAMP signaling pathway -0.0923 

KEGG KRAS(8) HSA05206 MicroRNAs in cancer -0.0947 

KEGG GRIN2B(8) HSA04080 Neuroactive ligand-receptor interaction -0.0954 

KEGG KRAS(8) HSA05166 HTLV-I infection -0.0981 

KEGG KRAS(8) HSA05200 Pathways in cancer -0.1120 

WIKIPATHWAY GPRC5A(8), GPRC5D(8) WP2369 
GPCRs, Class C Metabotropic glutamate, 
pheromone (Hs) 

15.6094 

WIKIPATHWAY GPRC5A(8), GPRC5D(8) WP80 
GPCRs, Class C Metabotropic glutamate, 
pheromone (Mm) 

14.6975 

WIKIPATHWAY MGP(8) WP501 
NOTCH1 regulation of human endothelial cell 
calcification (Hs) 

6.1611 

WIKIPATHWAY GUCY2C(8), PDE6H(8) WP207 Purine metabolism (Mm) 5.3406 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

WIKIPATHWAY KRAS(8) WP327 
Serotonin Receptor 2 and ELK-SRF/GATA4 
signaling (Hs) 

5.0556 

WIKIPATHWAY GPRC5A(8), KRAS(8) WP1396 Integrated Pancreatic Cancer Pathway (Hs) 4.8393 

WIKIPATHWAY KRAS(8) WP1270 
Nanoparticle-mediated activation of receptor 
signaling (Hs) 

4.6529 

WIKIPATHWAY HIST4H4(8) WP2185 Gastric Cancer Network 1 (Hs) 4.2209 

WIKIPATHWAY KRAS(8) WP474 RalA downstream regulated genes (Hs) 4.1832 

WIKIPATHWAY KRAS(8) WP2380 MAPK Cascade (Hs) 4.0027 

WIKIPATHWAY KRAS(8) WP3413 MAPK Cascade (Mm) 3.8582 

WIKIPATHWAY SUCLA2(1) WP2643 TCA Cycle (Mm) 3.6417 

WIKIPATHWAY KRAS(8) WP732 
Extracellular vesicle-mediated signaling in 
recipient cells (Hs) 

3.4936 

WIKIPATHWAY KRAS(8) WP2361 IL-5 Signaling Pathway (Hs) 3.2793 

WIKIPATHWAY GRIN2B(8) WP422 Hypothetical Network for Drug Addiction (Mm) 3.2223 

WIKIPATHWAY ARHGDIB(8) WP251 
FAS pathway and Stress induction of HSP 
regulation (Mm) 

3.1941 

WIKIPATHWAY GRIN2B(8) WP189 Hypothetical Network for Drug Addiction (Hs) 3.1572 

WIKIPATHWAY ARHGDIB(8) WP2377 G13 Signaling Pathway (Mm) 3.0049 

WIKIPATHWAY GPRC5A(8), GPRC5D(8) WP434 Non-odorant GPCRs (Mm) 2.9910 

WIKIPATHWAY ARHGDIB(8) WP2870 G13 Signaling Pathway (Hs) 2.9422 

WIKIPATHWAY ARHGDIB(8) WP127 
FAS pathway and Stress induction of HSP 
regulation (Hs) 

2.8848 

WIKIPATHWAY KRAS(8) WP1246 ErbB Signaling Pathway (Hs) 2.7410 

WIKIPATHWAY GRIN2B(8) WP666 
Splicing factor NOVA regulated synpatic 
proteins (Mm) 

2.7154 

WIKIPATHWAY KRAS(8) WP571 Aryl Hydrocarbon Receptor (Hs) 2.6332 

WIKIPATHWAY MAML2(1) WP1253 Notch Signaling Pathway (Hs) 2.4221 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

WIKIPATHWAY MGP(8) WP2290 Endochondral Ossification (Mm) 2.3491 

WIKIPATHWAY KRAS(8) WP298 Oncostatin M Signaling Pathway (Hs) 2.2680 

WIKIPATHWAY MGP(8) WP524 Endochondral Ossification (Hs) 2.1843 

WIKIPATHWAY KRAS(8) WP314 IL-5 Signaling Pathway (Mm) 2.1637 

WIKIPATHWAY KRAS(8) WP619 Signaling Pathways in Glioblastoma (Hs) 2.1494 

WIKIPATHWAY KRAS(8) WP673 Rac1/Pak1/p38/MMP-2 pathway (Hs) 2.0524 

WIKIPATHWAY HIST4H4(8) WP61 Histone Modifications (Hs) 2.0351 

WIKIPATHWAY SESN3(1) WP2586 p53 signaling (Mm) 2.0285 

WIKIPATHWAY GRIN2B(8) WP1983 Alzheimers Disease (Mm) 1.8911 

WIKIPATHWAY KRAS(8) WP2374 
DNA Damage Response (only ATM dependent) 
(Hs) 

1.6906 

WIKIPATHWAY BCAT1(8) WP151 Amino Acid metabolism (Mm) 1.6726 

WIKIPATHWAY KRAS(8) WP2261 IL-3 Signaling Pathway (Mm) 1.6243 

WIKIPATHWAY KRAS(8) WP3303 G Protein Signaling Pathways (Mm) 1.6024 

WIKIPATHWAY KRAS(8) WP455 TNF alpha Signaling Pathway (Hs) 1.5752 

WIKIPATHWAY KRAS(8) WP2902 G Protein Signaling Pathways (Hs) 1.4993 

WIKIPATHWAY GRIN2B(8) WP2075 BDNF signaling pathway (Hs) 1.3118 

WIKIPATHWAY GRIN2B(8) WP69 Alzheimers Disease (Hs) 1.2732 

WIKIPATHWAY KRAS(8) WP662 Regulation of Actin Cytoskeleton (Hs) 1.1733 

WIKIPATHWAY KRAS(8) WP232 Regulation of Actin Cytoskeleton (Mm) 1.1447 

WIKIPATHWAY KRAS(8) WP231 Integrated Breast Cancer Pathway (Hs) 1.1232 

WIKIPATHWAY KRAS(8) WP373 MAPK signaling pathway (Mm) 1.0490 

WIKIPATHWAY KRAS(8) WP710 EGF/EGFR Signaling Pathway (Hs) 0.9870 

WIKIPATHWAY KRAS(8) WP295 Chemokine signaling pathway (Mm) 0.9853 

WIKIPATHWAY KRAS(8) WP35 MAPK Signaling Pathway (Hs) 0.9724 

WIKIPATHWAY KRAS(8) WP2271 EGFR1 Signaling Pathway (Mm) 0.9416 
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DataBase 
Orthologue Genes  

(rabbit chromosome) 
Code 

Term (Homo sapiens - Hs or Mus musculus -
Mm) 

Combined 
Score 

WIKIPATHWAY HEBP1(8) WP111 Circadian rythm related genes (Hs) 0.7912 

WIKIPATHWAY KRAS(8) WP2064 
Focal Adhesion-PI3K-Akt-mTOR-signaling 
pathway (Mm) 

0.6032 

WIKIPATHWAY GRIN2B(8) WP2059 
XPodNet - protein-protein interactions in the 
podocyte expanded by STRING (Mm) 

0.1172 

 
 
Functions search from DAVID analysis 
 

Category Term Genes P-Value 
Fold 

Enrichment 
FDR 

GOTERM_BP_DIRECT GO:0008380~RNA splicing 
ENSOCUG00000014390, 
ENSOCUG00000017177 

3.56E-02 52.5842 30.0541 

INTERPRO 
IPR004031:PMP-
22/EMP/MP20/Claudin 

ENSOCUG00000012837, 
ENSOCUG00000022231 

7.22E-02 25.8108 53.3161 

INTERPRO 
IPR017978:GPCR, family 3, C-
terminal 

ENSOCUG00000016556, 
ENSOCUG00000015331 

8.82E-02 20.9713 60.8533 

KEGG_PATHWAY 
ocu05322:Systemic lupus 
erythematosus 

ENSOCUG00000015111, 
ENSOCUG00000027663, 
ENSOCUG00000017172 

1.73E-02 13.3007 13.9990 

KEGG_PATHWAY ocu05034:Alcoholism 
ENSOCUG00000015111, 
ENSOCUG00000027663, 
ENSOCUG00000017172 

2.64E-02 10.6098 20.6850 

GOTERM_BP_ALL GO:0008380~RNA splicing 
ENSOCUG00000014390, 
ENSOCUG00000017177, 
ENSOCUG00000001629 

3.36E-02 9.7951 39.0736 
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Category Term Genes P-Value 
Fold 

Enrichment 
FDR 

GOTERM_BP_FAT GO:0008380~RNA splicing 
ENSOCUG00000014390, 
ENSOCUG00000017177, 
ENSOCUG00000001629 

3.50E-02 9.5853 39.5966 

UP_KEYWORDS Coiled coil 

ENSOCUG00000012361, 

ENSOCUG00000010820, 
ENSOCUG00000017177, 
ENSOCUG00000014557, 
ENSOCUG00000015984, 
ENSOCUG00000001629, 
ENSOCUG00000014568, 
ENSOCUG00000026640, 
ENSOCUG00000015956, 
ENSOCUG00000010737 

1.59E-02 2.3665 13.6936 

 

 



CHAPTER FIVE: THIRD ARTICLE  

 

139 

 

CHAPTER FIVE 

5. THE EFFECT OF DIVERGENT SELECTION FOR INTRAMUSCULAR FAT 

IN THE DOMESTIC RABBIT GENOME. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors: B. S. Sosa-Madrid1, L. Varona2, A. Blasco1, P. Hernández1, C. Casto-

Rebollo1, and N. Ibáñez-Escriche1.  

 

Institutional affiliations 

1 Institute for Animal Science and Technology, Universitat Politècnica de 

València, 46022 Valencia, Spain. 

2 The AgriFood Institute of Aragon (IA2). Department of Anatomy, Embryology 

and Genetics, Universidad de Zaragoza, 50013 Saragossa, Spain. 

 

 

The content of this chapter has been accepted in Animal. 

 



CHAPTER FIVE: THIRD ARTICLE 

 

140 

 



CHAPTER FIVE: THIRD ARTICLE  

 

141 

5.1. Abstract 

An experiment of divergent selection for intramuscular fat was carried out at 

Universitat Politècnica de València. The high response of selection in 

intramuscular fat, after nine generations of selection, and a multidimensional 

scaling analysis showed a high degree of genomic differentiation between the 

two divergent populations. Therefore, local genomic differences could link 

genomic regions, encompassing selective sweeps, to the trait used as selection 

criterion. In this sense, the aim of this study was to identify genomic regions 

related to intramuscular fat through three methods for detection of selection 

signatures, and to generate a list of candidate genes. The methods implemented 

in this study were: Wright’s fixation index (Fst), cross population – composite 

likelihood ratio (XP-CLR) and cross population – extended haplotype 

homozygosity (XP-EHH). Genomic data came from the 9th generation of the two 

populations divergently selected, 237 from low line and 240 from high line. A 

high SNP-density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), 

was used for genotyping samples. Several genomic regions distributed along 

chromosomes were identified as signatures of selection (SNPs having a value 

above cut-off of 1%) within each method. In contrast, eight genomic regions, 

harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16, and OCU17), were 

identified by at least two methods and none by the three methods. In general, 

our results suggest that intramuscular fat selection influenced multiple 

genomic regions which can be a consequence of either only selection effect or 

the combined effect of selection and genetic drift. In addition, 73 genes were 

retrieved from the eight selection signatures. After functional and enrichment 

analyses, the main genes into the selection signatures linked to energy, fatty 

acids, carbohydrates and lipid metabolic processes were ACER2, PLIN2, 

DENND4C, RPS6, RRAGA (OCU1), ST8SIA6, VIM (OCU16), RORA, GANC and 

PLA2G4B (OCU17). This genomic scan is the first study using rabbits from a 

divergent selection experiment. Our results pointed out a large polygenic 

component of the studied trait. Besides, promising positional candidate genes 

would be analysed in further studies in order to bear out their contributions to 

this trait and their feasible implications for rabbit breeding programs. 

 

Keyword: genome scan, genomic divergence, lagomorph, meat quality, selection 

signatures.  
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5.2. Implications 

Intramuscular fat content is an essential factor in meat quality because affects 

nutritional, sensory and technological properties of meat; such as tenderness, 

flavour and juiciness of meat. In this study we applied methods of selection 

signatures to identify genomic regions modified by a divergent selection 

experiment for intramuscular fat in rabbits. Results revealed several selection 

signatures across the rabbit genome with genes linked to lipid metabolism. 

These findings will help to increase our understanding of intramuscular fat 

genomic regulation and could be used to apply in genomic evaluation programs 

for intramuscular fat. 

 

5.3. Background 

Selection and mutation trigger shifts in the genome architecture of traits, 

gathering the history of particular populations at a genomic level (Oleksyk et al., 

2010). Genomic regions harbouring genes influenced by a selective process can 

be detected by the methods for the identification of selection signatures. These 

methods can be categorized in four groups depending on the assumptions 

behind the null hypothesis of absence of selection (Qanbari and Simianer, 2014) 

based on: (i) classical analyses of genetic variability (e.g. Fst – Wright’s fixation 

index, π - nucleotide diversity); (ii) reduction of local variation in genomic regions 

(e.g. ROH – run of homozygosity); (iii) modification of allelic frequency spectrum 

(e.g. TD – Tajima’s D, Fay and Wu H test, CLR – composite likelihood ratio); (iv) 

and linkage disequilibrium decay (e.g. |iHS| – integrated haplotype score, EHH 

– extended haplotype homozygosity, varLD – variation of linkage disequilibrium); 

see reviews by Oleksyk et al., 2010, and Qanbari & Simianer, 2014. The choice 

of methods depends on the type of selective events, timescale of selective events, 

the density of the genotyping data and the number of populations available for 

each particular study. A combination of methods for selection signatures can 

provide a clearer evidence of the genomic regions considered as selection 

signatures (Utsunomiya et al., 2013). 

 

The identification of genomic regions containing genes affected by natural and 

artificial selection can be a difficult task, because selection is a complex 

phenomenon involving a potentially large number of traits (Mallick et al., 2009). 

Conversely, populations derived from divergent selection experiments for one 
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trait provide a valuable biological material for detecting those signatures, as the 

genetic divergence between them is linked to one particular trait (Qanbari and 

Simianer, 2014). In this sense, several studies of divergent selection were used 

to detect genomic regions associated with selection events in poultry: for body 

weight (Johansson et al., 2010), feather pecking behaviour (Grams et al., 2015), 

and antibody response (Lillie et al., 2017); and pigs: for intramuscular fat (Kim 

et al., 2015), and feed efficiency (Mauch et al., 2018). 

 

In rabbits, an experiment of divergent selection for intramuscular fat was 

carried out at the Universitat Politècnica de València attaining a high selection 

response (Martínez-Álvaro et al., 2016). The genomic information from these two 

rabbit lines establishes an outstanding material to disentangle the genetic 

architecture of intramuscular fat content through the implementation of 

genome-wide scan studies for the detection of selection signatures. 

 

The aim of this study was to identify genomic regions using three methods to 

detect selection signatures that exploit the genomic information from divergent 

populations and based on distinct hypotheses. The first is the fixation index (Fst) 

(Qanbari and Simianer, 2014), based on conventional genetic differentation; the 

second is the XP-CLR (Chen et al., 2010), which analyses the modifications on 

the allele frequency spectrum; and the last one is the XP-EHH (Sabeti et al., 

2007), focused on the differences on the extension of linkage disequilibrium 

between populations. The final objective was to generate a list of potential 

candidate genes associated with intramuscular fat content. 

 

5.4. Material and Methods 

5.4.1. Ethical statement 

The animal manipulations were approved by the Ethical Committee of the 

Universitat Politècnica de València, according to Council Directives 98/58/EC 

(European Economic Community, 1998). 
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5.4.2. Animals, genotyping data and quality control 

The two rabbit lines selected divergently for intramuscular fat came from a 

synthetic line (base population) reared at Universitat Politècnica de València 

(Zomeño et al., 2013). Each line was composed of 8 to 10 sires and 40 to 60 

does per generation. Further details of the divergent selection experiment for 

intramuscular fat are presented in Martínez-Álvaro et al. (2016). After nine 

generations of selection, the response was 3.1 phenotypic standard deviations 

(41% of the mean from the base population), estimated as the phenotypic 

difference between the two divergently selected lines (Sosa-Madrid et al., 2019). 

Muscle samples were collected for genotyping. A total of 480 individual rabbits 

(240 from each line) at 9th generation were genotyped with the Affymetrix Axiom 

OrcunSNP Array (around 200k SNPs). In addition, we genotyped 96 ancestors 

at 8th generation (10 sires and 38 dams by each line). Quality control of the SNP 

data was performed using “Axiom Analysis Suite v. 3.0.1.4” by using the 

following criteria: (i) individual call rate > 0.97; (ii) SNP call rate > 0.95; (iii) SNP 

minor allele frequency (MAF) > 0.05; (iv) and only autosomal SNPs with known 

positions were used. A MAF threshold of 0.05 was chosen in order to control the 

rate of false positive selection signatures and the effect of genotyping errors on 

the results. After filtering, we imputed the missing genotypes and inferred 

haplotype phases using population and genealogical information with FImpute 

(Sargolzaei et al., 2014). The final dataset consisted of 89,968 genotyped SNPs 

from 477 rabbits (240 from the high and 237 from the low lines, respectively). 

 

5.4.3. Divergence between lines 

At first, a multidimensional scaling (MDS) analysis with all genomic data was 

carried out to corroborate the divergence between lines. The command 

cmdscale() from R package stats was implemented for the MDS analysis. In 

addition, linkage disequilibrium was computed as Pearson’s squared correlation 

coefficient (r2) across the rabbit genome using PLINK (Purcell et al., 2007).     

  

5.4.4. Detection of signatures of selection 

The data were analysed using the following methods for the detection of 

selection signatures, taking advantage of selection in the two divergent lines 

after nine generations of selection:  
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5.4.4.1. Fixation Index (Fst) 

The Fst was computed for each SNP as: 

 

𝐹𝑠𝑡  =  
 (𝐻𝑒 – 𝐻𝑜) 

𝐻𝑒
 

 

where 𝐻𝑒  and 𝐻𝑜  are the expected and observed heterozygosity, respectively. 

The Fst values were clustered over sliding windows of predefined size (250kb, 

500kb and 1000kb) surrounding every SNP. The Fst normalization was carried 

out in order to correct the Fst values due to the heterogeneous distribution of 

SNPs, after quality control, along the rabbit genome. The equation used was: 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_Fst =  
𝑋𝑗̅  −  𝜇  

𝑆
√𝑛𝑗

⁄
 

 

This is based on the number of SNP within window j: 𝑛𝑗 , the standard deviation 

using all data: 𝑆, the deviation from Fst average of a given window j:  𝑋𝑗̅  , and 

the Fst total mean: 𝜇 (Beissinger et al., 2015). 

 

5.4.4.2. Cross Population Composite Likelihood Ratio Test (XP-CLR) 

The XP-CLR method computes the likelihood ratio of selection signatures by 

comparing the spatial distribution of allele frequencies in an observed window 

to the frequency spectrum of the whole genome between two populations (Chen 

et al., 2010). The high line was used as the objective population and the low line 

was used as the reference population. In this analysis, XP-CLR software 

(http://genetics.med.harvard.edu/reich/Reich_Lab/Software.htm) was 

employed to compute the XP-CLR. After several exploratory analyses on XP-CLR 

score and its parameters, we defined a grid size of 2000 base pairs, sliding 

window size of three levels (250 kb, 500 kb and 1000 kb), maximum number of 

SNPs within a window 200, and a correlation value between two adjacent SNPs 

weighted with a cut-off of r2 > 0.95 (author’s recommendation). A shortcoming 

of composite likelihood ratio based-methods is that the correlation of marginal 

likelihood terms in the composite likelihood function is ignored. Thus, these 

methods overestimate the amount of information that is available in the data, 
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which can prompt false-positive signals of selection. To control for this issue, 

the XP-CLR method assigns weights to each marginal likelihood function in 

proportion to their statistical independence from all of the others. When r2 > 

0.95, CLR scores for two SNPs are down-weighted. After performing the analyses 

for every level of sliding window, the XP-CLR score for every SNP was chosen as 

the value of the nearest grid to each SNP. More details of the parameters of this 

method are described in Chen et al. (2010). 

 

5.4.4.3. Cross Population Extended Haplotype Homozygosity Test 

(XP - EHH) 

The extended haplotype homozygosity (EHH) profiles are defined as the 

probability that two randomly chosen haplotypes are identical by descent for 

the entire interval from the core region to a given point. The XP-EHH test 

compares the integrated EHH profiles between two populations around the 

same SNP, detecting ongoing selection or nearly fixed sites (overrepresented 

haplotypes) unveiling selection in one population (Sabeti et al., 2007). As in the 

XP-CLR score, we defined the high line as the objective population and low line 

as the reference population. First, we calculated the integrated haplotype score 

(IHH) for both lines. Then, the statistic was calculated at each SNP position as: 

 

XP-EHHhigh-low = ln (IHHhigh / IHHlow) 

 

in which XP-EHHhigh-low is the XP-EHH between the high and low intramuscular 

fat lines, IHHhigh is the integrated haplotype score of the high line, and IHHlow is 

the integrated haplotype score of the low line (Sabeti et al., 2007; Qanbari & 

Simianer, 2014). The maximum of extended haplotype was restricted in 250 kb, 

500 kb and 1000 kb in order to compare with the other methods and to evaluate 

the sensitivity of the methods to the window size. The computation of XP-EHH 

score was carried out using selscan software (Szpiech & Hernandez, 2014), and 

finally, normalization of these data was performed since recombination rates 

vary widely across the rabbit genome within and between populations. This 

normalization was carried out setting all such log-ratios have zero mean and 

unit variance. Thus, the EHH statistic can be interpreted as a measure of 

selection solely after appropriate normalization for genome-wide difference in 
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haplotype length between populations as the distribution of recombination sites 

and the recombination rate are not steady (Sabeti et al., 2007). 

 

5.4.5. Enrichment analysis of functional annotation, and gene 

ontology (GO) terms  

In this study, we used a cut-off of 1% (the 99th percentile of all values) for every 

method. In order to determine the genomic regions of interest for searching 

genes and functional annotations, we used the physical position of the SNPs 

exceeding the cut-off (+/- 250 kb) in at least two methods. This distance 

criterion was chosen based on the results of the relationship between window 

size and the threes methods of selection signatures used in this study. We 

considered that criterion for searching genes under the assumption that an 

outstanding signature of selection must be detected in at least two methods, 

showing better evidence in this way and taking into account that the methods 

use different null hypotheses of absence of selection (Kim et al., 2015; González-

Rodríguez et al., 2016). Besides, we considered a cut-off of 1% in order to reduce 

false positives in the detection of selection signatures (Mallick et al., 2009). 

 

The genomic regions for each rabbit chromosome (OCU) were defined based on 

the OryCun2.0 rabbit genome assembly (Carneiro et al., 2014b). The genes 

comprised within those genomic regions were identified using BIOMART 

(Ensemble 98; https://www.ensembl.org/index.html) and then, the functional 

annotation and gene ontology (GO) terms enrichment analysis was performed 

using Enrichr (Kuleshov et al., 2016). The gene functional analysis was carried 

out using the rabbit and mouse annotation databases. Parameters 

recommended by the developers of Enrichr (i.e. p-value < 0.05 for Fisher exact 

test, and a high combined score, greater than 70) were used for the identification 

of genes in this study. We focused on the genes related to biological functions 

(GO terms) of energy metabolism and lipid metabolism. 

 

5.5. Results and Discussion 

The average physical distance between SNPs was 23.51 kb after quality control. 

However, the density of the SNPs through the rabbit genomic map was 

heterogeneous (Figure 1). The average of SNP density by each 1-Mb window was 
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41.87 with a standard deviation of 22.36, ranging between zero and 93. The 

OCU14, OCU20 and OCU21 had a low density with the average number of SNPs 

32.29, 35.56 and 28.38 per Mb, respectively. On OCU14, two large gaps without 

any SNP marker was found (54.0 - 64.0 Mb and 89.0 - 95.0 Mb). Despite the 

gaps, the SNP density used in our study was in line with other studies (Gurgul 

et al., 2018; Ma et al., 2019). The heterogeneity of SNP density confirmed the 

need of data normalisation for the methods of selection signatures. 

 

 

Figure 1. Single nucleotide polymorphism (SNP) density within 1-Mb window 
size using 89,968 SNPs after quality control for the intramuscular fat 
genomic data in rabbits. 

 

 

The linkage disequilibrium was very high, with estimated r2 values of 0.81, 0.68 

and 0.52 at physical distances of 40 kb, 250 kb and 1000 kb, respectively. The 

number of linkage disequilibrium blocks was 2309 encompassing 89346 SNPs 

and showing a distance of 1 Mb for the longest linkage disequilibrium block. 

Moreover, the MDS displayed a noticeable genomic differentiation between the 

individuals (8th and 9th generation) from the high and low lines; 17.59 % and 

2.75 % of variance explained by two first dimensions, respectively (Figure 2). As 
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expected, this analysis also corroborated the close relationship between the 

parents (8th generation) and their offspring (9th generation) in both lines. 

 

 

Figure 2. Multidimensional scaling plot of intramuscular fat genomic data in 
rabbits. The plot displays the first component (MDS1), the second 
component (MDS2) and intramuscular fat lines: high line at 8th 
generation (GA8 in red), high line at 9th generation (GA9 in light blue), 
low line at 8th generation (GB8 in yellow), high line at 9th generation 
(GB9 in dark green). 

 

 

5.5.1. Genome-wide scan for populations from divergent selection 

The identification of potential signatures of selection was performed with three 

methods (Fst, XP-CLR and XP-EHH) and three window sizes (250 kb, 500 kb and 

1000 kb). The correlations between window sizes within every method were very 

high for Fst method (> 0.92) and lower for the XP-CLR and XP-EHH methods, 

especially between 250 kb and 1000 kb (Table 1). However, all correlations 
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within the methods were high, between 0.72 and 0.97, confirming that the 

results were robust to variations in window size. Thus, hereinafter we will refer 

exclusively to the results obtained with a window size of 500 kb. As expected, 

the correlations of the results between methods were very low, showing a mean 

of 0.08 using absolute values (Table 1). These correlations agreed with a genome 

scan study using pigs divergently selected for intramuscular fat, in which the 

correlations were less of 0.12 between methods of selection signatures (iHS, Fst 

and Rsb; Kim et al., 2015). It can be explained because every method entails a 

distinct hypothesis, (Qanbari and Simianer, 2014; González-Rodríguez et al., 

2016), capturing different selection signals depending on the timescale of 

selective events (Utsunomiya et al., 2013). Hence, we decided to analyse the 

results separately and with those SNPs exceeding a cut-off of 1% in at least two 

methods for establishing selection signatures and to search for candidate genes. 

 

The average of 500 kb windows for Fst (non-normalised), XP-CLR (non-

normalised) and XP-EHH (in absolute value) were 0.0973, 1.7228 and 0.5878, 

respectively. The average of Fst by computing each SNP was 0.10. This average 

of Fst was higher than the results obtained in other studies between several 

populations of domestic European rabbit, Fst = 0.08 (Carneiro et al., 2014a), and 

also, from an experiment of divergent selection for uterine capacity in rabbits, 

Fst = 0.05 (Sosa-Madrid et al., 2017). To our knowledge, no comparison can be 

made for XP-EHH and XP-CLR because until date this is the first study using 

these methods for detecting signatures of selection in rabbits. 

 

 



 

 
 

1
5
1
 

Table 1. Correlations between the levels of window size within methods of selection signatures in rabbits.  
 

 
XP-CLR  
250kb 

XP-CLR 
500kb 

XP-CLR 
1000kb 

XP-EHH 
250kb 

XP-EHH 
500kb 

XP-EHH 
1000kb 

Fst 
250kb 

Fst 
500kb 

Fst 
1000kb 

XP-CLR 
250kb 

1 0.8798 0.8142 -0.0284 -0.0298 -0.0437 0.1804 0.1697 0.1545 

XP-CLR 
500kb 

 1 0.9587 -0.0427 -0.0463 -0.0634 0.1804 0.1731 0.1571 

XP-CLR 
1000kb 

  1 -0.0442 -0.0486 -0.0669 0.1787 0.1726 0.1572 

XP-EHH 
250kb 

   1 0.8951 0.7189 -0.0195 -0.0226 -0.0238 

XP-EHH 
500kb 

    1 0.8229 -0.0259 -0.0283 -0.0302 

XP-EHH 
1000kb 

     1 -0.0403 -0.0424 -0.0463 

Fst 
250kb 

      1 0.9719 0.9215 

Fst 
500kb 

       1 0.9648 

Fst 

1000kb 
        1 

XP-CLR = cross population – composite likelihood ratio. XP-EHH = cross population – extended haplotype homozygosity. Fst = 

Wright’s fixation index.  
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The results of the genome-wide scan are shown by Manhattan plots in Figure 3. 

The results of each method individually showed several chromosomes with SNPs 

exceeding the cut-off of 1%. However, the joint results of the three methods did 

not evidence a genomic region clearly linked to a signature of selection. None of 

SNPs had values exceeding the cut-off of 1% in all methods (Figure 4). In 

contrast, several SNPs (80) associated with selection signatures overlapped 

between at least two methods. The overlapping results between XP-CLR and Fst 

were greater than the others, harbouring SNPs in OCU16 (31 SNPs) and OCU17 

(24 SNPs); see Table 2. It can be explained because Fst and XP-CLR are based 

in allele frequencies and could detect dramatic shifts of opposite symmetrical 

allele frequencies for the SNPs located in the vicinity of an important causative 

variant. Conversely, XP-EHH is based on haplotype lengths comparison and was 

designed to compare a selected population with a reference population (non-

selected; see Sabeti et al., 2007). Then, if the extension of a selected haplotype 

occurs in both lines with similar strength, the XP-EHH power detection could 

be lower than when regions were selected in one of the divergent lines but not 

in the another. 

 

In total, eight genomic regions of the rabbit genome were identified as selection 

signatures (Table 2). This number is low in comparison with most signature 

selection studies (13 – 224) using populations of divergent artificial selection in 

poultry for body weight (Johansson et al., 2010), antibody response (Grams et 

al., 2015) and feather pecking behaviour (Lillie et al., 2017); and in a divergent 

selection experiment for intramuscular fat and backfat thickness in pigs (15 

regions; Kim et al., 2015). Nevertheless, most of these studies identified 

selection signatures using only one method, unlike the criterion of our study. 
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Figure 3. Manhattan plot of 500 kb window for every method of selection 
signatures in rabbits: normalised Wright’s fixation index, Fst (top); 
cross population composite likelihood ratio test, XP-CLR score 
(middle); and normalised cross population extended haplotype 
homozygosity test, XP-EHH (bottom). The dashed line denotes the 
cut-off 1% (Fst: 15.81, XP-CLR: 38.94, and XP-EHH: +/- 2.34). 
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Table 2. SNP name (SNP_ID), rabbit chromosome (OCU), cluster (genomic 

region), SNP physical position in megabase and values for three 

methods of selection signatures based on detection in at least two 

methods using a cut-off of 1%. 

SNP_ID OCU CLUSTER 
Physical 
position 

XP-CLR1 XP-EHH2 Fst
3 

Affx-151788669 1 

1 

34.40 42.80 -2.78 3.25 

Affx-151841835 1 34.42 46.32 -2.72 4.05 

Affx-151948493 1 34.42 42.35 -2.72 4.05 

Affx-151981842 1 34.53 70.13 -2.89 7.58 

Affx-151800050 1 34.55 74.74 -2.88 8.12 

Affx-151888128 1 34.56 42.29 -2.89 8.10 

Affx-151808312 1 34.57 72.84 -2.88 9.02 

Affx-151996305 1 34.59 76.09 -2.87 9.25 

Affx-151796600 1 34.60 64.85 -2.86 9.33 

Affx-151996963 3 2 148.58 39.42 2.41 -1.34 

Affx-151940966 6 

3 

6.58 68.34 -2.89 1.05 

Affx-151916999 6 6.59 47.82 -2.89 1.11 

Affx-151906393 6 6.60 80.26 -2.88 1.17 

Affx-151850643 6 6.62 75.42 -3.11 1.62 

Affx-152006617 6 6.63 80.80 -3.07 1.62 

Affx-151909107 6 6.65 53.68 -2.98 1.86 

Affx-151858638 7 

4 

7.85 62.05 -2.48 0.64 

Affx-151988414 7 7.87 48.46 -2.53 1.11 

Affx-151901134 7 7.89 83.02 -2.54 1.26 

Affx-151884578 7 7.89 80.85 -2.50 1.26 

Affx-151968222 7 7.91 82.74 -2.53 1.26 

Affx-151923372 7 7.92 82.83 -2.55 1.55 

Affx-151832398 7 7.95 60.81 -2.41 2.09 

Affx-151887243 7 7.96 78.92 -2.41 2.09 

Affx-151798377 7 7.99 121.74 -2.38 2.65 

Affx-152002624 16 

5 

44.14 56.15 0.57 16.01 

Affx-151964090 16 44.16 76.86 0.58 16.05 

Affx-151954735 16 44.18 56.19 0.57 16.63 

Affx-152011401 16 44.21 49.99 0.58 16.44 

Affx-151994299 16 44.25 76.42 0.58 16.82 

Affx-151935006 16 44.27 44.46 0.58 16.87 

Affx-151934731 16 44.28 39.12 0.58 16.91 

Affx-151916386 16 44.31 41.23 0.58 17.23 

Affx-151945660 16 44.31 49.81 0.58 17.05 

Affx-151892655 16 44.33 85.41 0.58 16.87 

Affx-151923274 16 44.34 139.09 0.57 16.92 

Affx-151981680 16 44.34 164.39 0.57 16.92 

Affx-151922936 16 44.37 166.24 0.57 16.42 

Affx-152012312 16 44.37 146.40 0.85 16.23 

Affx-151904619 16 44.38 111.16 0.85 16.83 

Affx-151947283 16 44.39 78.58 0.85 16.83 

Affx-151892171 16 44.41 47.52 0.85 17.38 



CHAPTER FIVE: THIRD ARTICLE  

 

155 

Affx-151999419 16 44.42 50.66 0.71 17.38 

Affx-151831673 16 44.46 53.22 0.74 16.96 

Affx-151877806 16 44.47 52.99 0.74 17.19 

Affx-151933718 16 44.48 52.90 0.74 17.41 

Affx-151961515 16 44.50 51.22 0.73 17.85 

Affx-152004824 16 44.51 50.14 0.73 17.67 

Affx-152008187 16 44.52 74.51 0.73 17.46 

Affx-151886887 16 44.54 93.91 0.74 17.25 

Affx-151900728 16 44.55 100.41 0.32 17.25 

Affx-151875439 16 44.56 96.80 0.31 17.25 

Affx-151786498 16 44.57 118.82 0.30 16.81 

Affx-151820958 16 44.59 131.41 0.32 16.86 

Affx-151942314 16 44.61 112.63 0.31 16.40 

Affx-151797733 16 44.63 100.38 0.30 15.93 

Affx-151854426 17 

6 

11.32 47.27 -1.68 17.79 

Affx-152017855 17 11.45 41.36 -1.71 20.90 

Affx-151809007 17 11.46 40.34 -1.71 20.65 

Affx-151945077 17 11.49 44.26 -1.71 20.79 

Affx-151827750 17 11.50 45.09 -1.71 21.05 

Affx-151813388 17 11.51 49.33 -1.70 20.79 

Affx-151897106 17 11.51 60.52 -1.71 20.69 

Affx-151970040 17 11.52 61.40 -1.69 20.95 

Affx-151854218 17 11.53 60.99 -1.69 20.69 

Affx-151999939 17 11.54 58.80 -1.69 20.70 

Affx-151872016 17 11.56 56.37 -1.69 20.06 

Affx-151809616 17 11.57 55.06 -1.67 19.42 

Affx-151800782 17 11.58 54.38 -1.69 19.06 

Affx-151992875 17 11.59 53.07 -1.64 18.71 

Affx-151953403 17 11.62 46.73 -1.64 16.22 

Affx-151860917 17 
7 

29.59 39.64 -0.22 19.14 

Affx-151984545 17 29.64 39.42 -0.40 17.52 

Affx-151841455 17 

8 

30.42 80.81 -0.16 15.89 

Affx-152009920 17 30.45 39.82 -0.27 16.57 

Affx-151819416 17 30.55 84.32 0.06 16.43 

Affx-151905376 17 30.56 87.35 -0.13 16.43 

Affx-151933923 17 30.57 83.99 -0.12 16.15 

Affx-151909639 17 30.57 81.33 0.74 16.45 

Affx-151912729 17 30.59 71.87 0.79 15.99 

SNP = Single nucleotide polymorphism. XP-CLR1 = cross population composite 

likelihood ratio test. XP-EHH2 = cross population extended haplotype 

homozygosity test. These values are normalised and Fst
3 = fixation index. The 

bold data and green cells indicate the values exceeding a cut-off of 1% (XP-CLR: 

38.94, and XP-EHH: +/- 2.34, Fst: 15.81). 
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Figure 4. Venn diagram of methods of selection signatures in rabbits: cross 
population composite likelihood ratio test (XP-CLR), cross population 
extended haplotype homozygosity test (XP-EHH), and Wright’s 
fixation index (Fst). 

 

 

The selection signatures identified in our study can be a consequence of the 

selection of a polygenic trait with a high heritability such as the intramuscular 

fat (Martínez-Álvaro et al., 2016), or due to the further effect of genetic drift. The 

last hypothesis could be plausible because of the reduced number of sires used 

in the first generations, the mating structure (a female was mated with the same 

sire during its production life; Zomeño et al., 2013), and the increase of two sire 

families in the last generations in each line. In many ways, detection of selective 

sweeps in smaller populations is more difficult than in large populations as 

extensive drift can obscure and weaken the selection signatures (Mallick et al., 

2009; Johansson et al., 2010). However, genetic drift would generate random 

shifts of allelic frequency across the rabbit genome and our results showed the 

existence of consecutives SNPs with high scores of selection signatures within 

methods which is a direct evidence of selection. For instance, cluster 5 in 

OCU16 presented high scores of normalised Fst (up to 17.85, Table 2) and a 

substantial length (487.49 kb) encompassing 31 SNPs. They could be identified 

because we employed windows for detecting selection signatures instead of 

evaluating each SNP of the rabbit array. In addition, under the Fst method and 
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a cut-off of 1%, a cluster in OCU13 encompassing 45 SNPs was identified by 

this study in a relevant genomic region (83.8 – 86.0 Mb) associated with 

intramuscular fat in rabbits, according to a genome-wide association study 

(GWAS) using the two lines of divergent selection (Sosa-Madrid et al., 2019). This 

region showed SNPs with high normalised Fst, reaching values up to 20.33 (0.51 

as Fst mean of 500 kb windows), albeit with only one of these SNPs, Affx-

151937959, agreed with the relevant SNPs reported by GWAS (Sosa-Madrid et 

al., 2019). This SNP showed a low MAF (0.09), but the surrounding SNPs 

presented very high MAF (up to 0.44). The methods of selection signatures can 

validate GWAS results assuming the presence of major genes affecting a selected 

trait. Otherwise, these methods would reveal new associated genomic regions, 

unlike GWAS results, when the selected trait has a large polygenic component 

influencing several genomic regions (Qanbari and Simianer, 2014). 

 

On the other hand, divergent selection for intramuscular fat did not lead to 

fixation of alternate alleles of any of the SNPs studied. The selection response 

was very high (3.1 SD), hence, we expected some SNPs associated with causal 

variants had their alternate alleles fixed o nearby fixation in one of the opposite 

divergent lines (e.g. frequencies in high line: 0 A / 1 T, and in low line: 1 A / 0 

T). These SNPs would show MAF values of 0.5 using all samples (both lines). 

However, the SNPs did not show both conditions. All these results would suggest 

several soft selective sweeps caused by short-term divergent selection of 

intramuscular fat instead of few hard selective sweeps, controlling this trait 

(Oleksyk et al., 2010). 

 

5.5.2. Underlying selected genes and gene ontology terms for 

divergent selection 

Potential candidate genes were explored within the genomic regions identified 

as signatures of selection using a cut-off of 1%. The number of genes disclosed 

for each method were 579, 443, and 368 for XP-CLR, XP-EHH and Fst, 

respectively (see Additional file 1: Table S1). From these genes, 73 were detected 

by at least two methods of selection signatures. These genes were grouped in 63 

protein coding and 10 non-protein coding genes (see Additional file 2: Table S2). 

The results of the first ten biological processes of the GO term enrichment 

analysis through Enrichr are presented in Additional file 3: Table S3. The GO 
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term enrichment analysis did not identified pathways related to biological 

processes affecting the intramuscular fat. 

  

 

Table 3. Biological processes of highlighted genes identified by at least two 

methods of selection signatures in rabbits for cut-off of 1%. 

Biological Process Highlighted genes 

Insulin signalling pathways DENND4C 

Lipid droplets and storage VIM, PLIN2, ACER2 

mTORC signalling pathways RRAGA, RPS6 

Carbohydrate metabolism process RORA, ST8SIA6, GANC 

Lipid metabolic process RORA, ACER2, PLA2G4B 

Regulation of adipocytes differentiation RORA 

Phospholipase activity PLA2G4B 

Processes related to intramuscular fat*  PLIN2, SLC24A2, RTF1, RORA 

* Based on genomic and gene expression studies of intramuscular fat. 

 

 

A deep search of biological functions for the 73 genes disclosed 12 promising 

candidate genes related to lipid and carbohydrate metabolisms which are 

important pathways to modulate the intramuscular fat (Table 3). Genes involved 

in the lipid metabolism were alkaline ceramidase 2 (ACER2), Perilipin 2 (PLIN2), 

Vitemin (VIM), Ras related GTP binding A (RRGA), ribosomal protein S6 (RPS6), 

RNA Polymerase-Associated Protein RTF1 Homolog (RTF1), solute-carrier gene 

family 24 member 2 (SLC24A2) and phospholipase A2 group IVB (PLA2G4B). 

From these, it is worth to highlight ACER2 (OCU1), VIM (OCU16) and PLIN2 

(OCU1), which are tightly related to lipid droplets and storage, being crucial in 

disease such as obesity, diabetes and atherosclerosis. ACER2 encoding 

ceramidases and broken-down ceramides to sphingosine and free fatty acids at 

alkaline pH. VIM can cause an excessive endosomal cholesterol accumulation 

due to an imbalance of its iterations with other proteins (Walter et al., 2009). 

PLIN2 bears an essential role over long-chain fatty acid transport. Genomic 
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studies reported PLIN2 associations with intramuscular fat content (Gandolfi et 

al., 2011) and its composition in pigs (Gol et al., 2016). Moreover, gene 

expression studies for intramuscular fat in pig identified differentially expressed 

genes such as RTF1 in OCU17 (Damon et al., 2012) and SLC24A2 in OCU1 (Li 

et al., 2010). RRGA and RPS6 in OCU1 could stimulate the lipogenesis and the 

lipid accumulation via activation of the mTOR signalling pathways (Wipperman 

et al., 2019). PLA2G4B in OCU17 is linked to phospholipid catabolic processes 

because of its phospholipase A2 (PL2) activity. This enzyme has been widely 

studied using knockout and transgenic mice, showing to be important for the 

fatty acid pathway, e.g. for oleic acid (Aloulou et al., 2012). 

 

Phenotypic variation of intramuscular fat between divergent lines could also be 

due to differences in regulation of lipid and carbohydrates (glycogen) 

metabolisms. This latter is important for intramuscular fat as the glycolytic 

products could be used to synthesize fatty acids, being incorporated into 

cholesterol esters, triacylglycerol, and phospholipids in hepatocytes, increasing 

the lipid stores (Rui, 2014). Genes involved in the carbohydrate metabolism were 

RAR related orphan receptor A (RORA), glucosidae alpha neutral C (GANC), ST8 

alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 6 (ST8SIA6) and DENN 

domain containing 4C (DENND4C). The regulation of differentiating pre-

adipocytes by retinoic acid is controlled by RORA in OCU1, bearing a crucial 

role in triglyceride (lipids) / glucose homeostasis and various immune functions. 

The RORA functions are tightly related to hepatosteatosis, obesity, and insulin 

resistance. Besides, RORA was identified by genomic studies in Nellore (Cesar 

et al., 2014) and Chinese Wagyu cattle (Wang et al., 2019) having extreme 

phenotypes of intramuscular fat composition and marbling. Hence, we 

presented RORA as the principal candidate gen for further studies. In addition, 

other genes as GANC in OCU17 is involved in the hydrolysis of glycogen; and 

ST8SIA6 in OCU16 is important in the pathways of oligosaccharide metabolic 

process and carbohydrate biosynthetic process. DENND4C in OCU1 could be 

indirectly modulate the intramuscular fat content through control of glucose 

transport in response to insulin. However, the specific functions of these genes 

over the intramuscular fat remains unknown. Further analyses would be 

needed to corroborate the relationships between these genes (their 

polymorphisms) and the intramuscular fat in rabbits. 
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5.6. Conclusions 

In conclusion, a large number of genomic regions were identified within each 

method of selection signatures. A total number of 80 SNPs and 73 genes were 

detected using selection signatures exceeding cut-off of 1% at least two of the 

methods; XP-CLR, XP-EHH, and Fst. General biological functions were retrieved 

from enrichment analysis. However, genes such as ACER2, PLIN2 (OCU1), 

ST8SIA6, VIM (OCU16), RORA, GANC and PLA2G4B (OCU17) linked to energy 

metabolism, carbohydrates metabolism, and lipid metabolism were identified as 

candidate genes to explain the differences in intramuscular fat observed 

between the divergent lines. The findings of the current study suggest that the 

intramuscular fat in rabbits is influenced by a large polygenic component. 

 

5.7. Abbreviations 

MAF: minor allele frequency; OCU: rabbit chromosome; MDS: multidimensional 

scaling; XP-CLR: cross population composite likelihood ratio test; XP-EHH: 

cross population extended haplotype homozygosity test; Fst: Wrigth’s fixation 

index; GO: gen ontology; EHH: extended haplotype homozygosity; SNP: single 

nucleotide polymorphism; GWAS: genome-wide association study; ACER2: 

alkaline ceramidase 2; PLIN2: Perilipin 2; VIM: Vitemin; RRGA: Ras related GTP 

binding A; RPS6: ribosomal protein S6; RTF1: RNA Polymerase-Associated 

Protein RTF1 Homolog, SLC24A2: solute-carrier gene family 24 member 2; 

PLA2G4B: phospholipase A2 group IVB; RORA: RAR related orphan receptor A; 

GANC: glucosidae alpha neutral C; ST8SIA6: ST8 alpha-N-acetyl-neuraminide 

alpha-2,8-sialytransferase 6; DENND4C: DENN domain containing 4C. 
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5.9. Additional Files 

Additional file 1: Table S1. Top five GO terms of biological processes using cut-off of 1% for each method of selection signatures 

in rabbits. 

Method XP-CLR     

Genes 579     

Name GO term P-value 
Odds 
ratio 

Combined 
Score 

Genes 

ribosomal small subunit export from 

nucleus 
GO:0000056 6.74E-03 15.26 76.27 LTV1; RPS15 

ventricular compact myocardium 

morphogenesis 
GO:0003223 6.74E-03 15.26 76.27 DSP; BMPR1A 

regulation of anion channel activity GO:0010359 6.74E-03 15.26 76.27 TCAF2; TCAF1 

maintenance of protein location in 

extracellular region 
GO:0071694 6.74E-03 15.26 76.27 FBN2; NBL1 

glutamate catabolic process GO:0006538 6.74E-03 15.26 76.27 GLUD1; GLUD2 

Method XP-EHH     

Genes 443     

Name GO term P-value 
Odds 
ratio 

Combined 
Score 

Genes 

regulation of osteoclast development GO:2001204 4.16E-03 19.55 107.20 NOTCH2; FBN1 

detection of chemical stimulus involved in 

sensory perception 
GO:0050907 1.90E-07 6.83 105.77 

OR4A8; OR4C12; OR4C45; OR4C11; 

OR4A47; OR4P4; OR4C15; OR2A4; 

OR4A15; OR4C13; OR4S2; OR4C46 
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aminoglycoside antibiotic metabolic 

process  
GO:0030647 7.58E-03 14.66 71.58 AKR1B10; AKR1B1 

daunorubicin metabolic process GO:0044597 7.58E-03 14.66 71.58 AKR1B10; AKR1B1 

positive regulation of TORC1 signalling GO:1904263 7.58E-03 14.66 71.58 RRAGA; LARS 

Method normalised-Fst     

Genes 368     

Term GO term P-value 
Odds 
ratio 

Combined 
Score 

Genes 

citrate metabolic process GO:0006101 3.43E-03 21.57 122.47 STAT5A; STAT5B 

interleukin-15-mediated signalling 

pathway 
GO:0035723 9.31E-04 14.94 104.24 STAT5A; STAT5B; STAT3 

cellular response to interleukin-15 GO:0071350 9.31E-04 14.94 104.24 STAT5A; STAT5B; STAT3 

oxaloacetate metabolic process GO:0006107 4.75E-03 18.49 98.94 STAT5A; STAT5B 

valine metabolic process GO:0006573 4.75E-03 18.49 98.94 STAT5A; STAT5B 

Gene Ontology (GO) knowledgebase is the world's largest source of information on the functions of genes. Odds ratios are used to 

compare the relative odds of the occurrence of the outcome of interest given exposure to the variable of interest. The odds ratio is 

calculated using the analysed genes and GO terms of the datable. XP-CLR = cross population – composite likelihood ratio. XP-EHH 

= cross population – extended haplotype homozygosity. Fst = Wright’s fixation index. TORC1 = mammalian target of rapamycin 

complex 1. 
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Additional file 2: Table S2. Annotated genes in the selection signatures of intramuscular fat in rabbits. 

Gene stable ID Gene description 
Gene 
name 

Chromosome/ 
scaffold name 

Gene start 
(bp) 

Gene end 
(bp) 

Gene type 

ENSOCUG00000002462 
solute carrier family 24 member 2 

[Source:HGNC Symbol;Acc:HGNC:10976] 
SLC24A2 1 34121351 34381731 protein coding 

ENSOCUG00000012439 
alkaline ceramidase 2 [Source:HGNC 

Symbol;Acc:HGNC:23675] 
ACER2 1 34454721 34501675 protein coding 

ENSOCUG00000025352 
40S ribosomal protein S4, X isoform-like 

[Source:NCBI gene;Acc:100338112] 
Rps4x 1 34520162 34520953 protein coding 

ENSOCUG00000003336 
ribosomal protein S6 [Source:HGNC 

Symbol;Acc:HGNC:10429] 
RPS6 1 34527129 34530485 protein coding 

ENSOCUG00000003320 
DENN domain containing 4C [Source:HGNC 

Symbol;Acc:HGNC:26079] 
DENND4C 1 34532623 34658797 protein coding 

ENSOCUG00000023552     1 34565805 34565914 snoRNA 

ENSOCUG00000037713     1 34659452 34697576 lncRNA 

ENSOCUG00000012244 
perilipin 2 [Source:HGNC 

Symbol;Acc:HGNC:248] 
PLIN2 1 34734595 34759320 protein coding 

ENSOCUG00000003507 
HAUS augmin like complex subunit 6 

[Source:HGNC Symbol;Acc:HGNC:25948] 
HAUS6 1 34761804 34814946 protein coding 

ENSOCUG00000028955 
small Cajal body-specific RNA 8 

[Source:HGNC Symbol;Acc:HGNC:32564] 
SCARNA8 1 34804610 34804740 scaRNA 

ENSOCUG00000003506 
Ras related GTP binding A [Source:HGNC 

Symbol;Acc:HGNC:16963] 
RRAGA 1 34823569 34824510 protein coding 

ENSOCUG00000012362 
stabilizer of axonemal microtubules 1 
[Source:HGNC Symbol;Acc:HGNC:28566] 

SAXO1 1 34838189 34990237 protein coding 

ENSOCUG00000009754 
leucine rich repeat containing 6 

[Source:HGNC Symbol;Acc:HGNC:16725] 
LRRC6 3 148347222 148453432 protein coding 
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Gene stable ID Gene description 
Gene 

name 

Chromosome/ 

scaffold name 

Gene start 

(bp) 

Gene end 

(bp) 
Gene type 

ENSOCUG00000034557     3 148473001 148476496 lncRNA 

ENSOCUG00000009761 
transmembrane protein 71 [Source:HGNC 

Symbol;Acc:HGNC:26572] 
TMEM71 3 148493203 148534309 protein coding 

ENSOCUG00000009768 
PHD finger protein 20 like 1 [Source:HGNC 

Symbol;Acc:HGNC:24280] 
PHF20L1 3 148550576 148623229 protein coding 

ENSOCUG00000034085     3 148659556 148661451 protein coding 

ENSOCUG00000028722     3 148715973 148716105 snoRNA 

ENSOCUG00000002999 
thyroglobulin [Source:HGNC 

Symbol;Acc:HGNC:11764] 
TG 3 148726297 148867431 protein coding 

ENSOCUG00000017684 
Src like adaptor [Source:HGNC 

Symbol;Acc:HGNC:10902] 
SLA 3 148781918 148840524 protein coding 

ENSOCUG00000021148 
shisa family member 9 [Source:HGNC 
Symbol;Acc:HGNC:37231] 

SHISA9 6 6114954 6432579 protein coding 

ENSOCUG00000038543     6 6437084 6533361 lncRNA 

ENSOCUG00000031076     6 6690408 6711660 lncRNA 

ENSOCUG00000003406 
thiamin pyrophosphokinase 1 [Source:HGNC 

Symbol;Acc:HGNC:17358] 
TPK1 7 7412937 7795934 protein coding 

ENSOCUG00000001027 
NOBOX oogenesis homeobox [Source:HGNC 

Symbol;Acc:HGNC:22448] 
NOBOX 7 7838974 7844349 protein coding 

ENSOCUG00000025879 
Rho guanine nucleotide exchange factor 5 
[Source:HGNC Symbol;Acc:HGNC:13209] 

ARHGEF5 7 7861292 7885252 protein coding 
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Gene stable ID Gene description 
Gene 

name 

Chromosome/ 

scaffold name 

Gene start 

(bp) 

Gene end 

(bp) 
Gene type 

ENSOCUG00000010368 
olfactory receptor 2A1/2A42 [Source:NCBI 
gene;Acc:100356551] 

OR2A1 7 7929276 7930091 protein coding 

ENSOCUG00000021687 
olfactory receptor 13 [Source:NCBI 

gene;Acc:100356800] 
Olfr13 7 7939208 7940140 protein coding 

ENSOCUG00000006436 
kinetochore protein Spc25-like [Source:NCBI 

gene;Acc:100357315] 
  7 7973609 7974289 protein coding 

ENSOCUG00000034348     7 7984992 7986230 protein coding 

ENSOCUG00000034276 
neuroblastoma breakpoint family member 9 

[Source:NCBI gene;Acc:103348625] 
  7 7989864 8006238 protein coding 

ENSOCUG00000025612 

olfactory receptor family 2 subfamily A 

member 14 [Source:HGNC 

Symbol;Acc:HGNC:15084] 

OR2A14 7 8013085 8014011 protein coding 

ENSOCUG00000032840     7 8017830 8039557 lncRNA 

ENSOCUG00000022708     7 8040429 8041372 protein coding 

ENSOCUG00000021482     7 8069582 8079336 protein coding 

ENSOCUG00000036352     7 8094274 8095485 lncRNA 

ENSOCUG00000021016 

olfactory receptor family 6 subfamily B 

member 1 [Source:HGNC 
Symbol;Acc:HGNC:8354] 

OR6B1 7 8129584 8133013 protein coding 

ENSOCUG00000001333 
olfactory receptor 2F1-like [Source:NCBI 
gene;Acc:100357829] 

Olfr451-
ps1 

7 8174630 8295709 protein coding 

ENSOCUG00000034930     7 8201202 8201957 protein coding 
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Gene stable ID Gene description 
Gene 

name 

Chromosome/ 

scaffold name 

Gene start 

(bp) 

Gene end 

(bp) 
Gene type 

ENSOCUG00000007240 

ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 6 [Source:HGNC 

Symbol;Acc:HGNC:23317] 

ST8SIA6 16 43862449 44016871 protein coding 

ENSOCUG00000009222 
vimentin [Source:HGNC 

Symbol;Acc:HGNC:12692] 
VIM 16 44091745 44099432 protein coding 

ENSOCUG00000007235 
tRNA aspartic acid methyltransferase 1 

[Source:HGNC Symbol;Acc:HGNC:2977] 
TRDMT1 16 44124048 44183627 protein coding 

ENSOCUG00000029667 
cubilin [Source:HGNC 

Symbol;Acc:HGNC:2548] 
CUBN 16 44213239 44491445 protein coding 

ENSOCUG00000030399 
Ras suppressor protein 1 [Source:HGNC 
Symbol;Acc:HGNC:10464] 

RSU1 16 44502655 44709091 protein coding 

ENSOCUG00000001991 
complement C1q like 3 [Source:HGNC 

Symbol;Acc:HGNC:19359] 
C1QL3 16 44748685 44780163 protein coding 

ENSOCUG00000001985 
phosphotriesterase related [Source:HGNC 

Symbol;Acc:HGNC:9590] 
PTER 16 44783349 44860212 protein coding 

ENSOCUG00000012900 
RAR related orphan receptor A 

[Source:HGNC Symbol;Acc:HGNC:10258] 
RORA 17 11702755 11891409 protein coding 

ENSOCUG00000011046 
tau tubulin kinase 2 [Source:HGNC 

Symbol;Acc:HGNC:19141] 
TTBK2 17 29360750 29472877 protein coding 

ENSOCUG00000037370     17 29475638 29475829 protein coding 

ENSOCUG00000011031 
codanin 1 [Source:HGNC 

Symbol;Acc:HGNC:1713] 
CDAN1 17 29480384 29491285 protein coding 

ENSOCUG00000011018 
StAR related lipid transfer domain 

containing 9 
STARD9 17 29495468 29615866 protein coding 

ENSOCUG00000011004 
HAUS augmin like complex subunit 2 

[Source:HGNC Symbol;Acc:HGNC:25530] 
HAUS2 17 29621687 29642371 protein coding 
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Gene stable ID Gene description 
Gene 

name 

Chromosome/ 

scaffold name 

Gene start 

(bp) 

Gene end 

(bp) 
Gene type 

ENSOCUG00000010999 
leucine rich repeat containing 57 
[Source:NCBI gene;Acc:100342146] 

Lrrc57 17 29642835 29647754 protein coding 

ENSOCUG00000010995 
synaptosome associated protein 23 

[Source:NCBI gene;Acc:100008776] 
SNAP23 17 29652558 29670490 protein coding 

ENSOCUG00000016382 
zinc finger protein 106 [Source:HGNC 

Symbol;Acc:HGNC:12886] 
ZNF106 17 29719749 29777468 protein coding 

ENSOCUG00000024481 
calpain 3 [Source:NCBI 

gene;Acc:100008726] 
CAPN3 17 29781670 29828844 protein coding 

ENSOCUG00000011176 
glucosidase alpha, neutral C [Source:NCBI 

gene;Acc:100343672] 
Ganc 17 29836357 29914449 protein coding 

ENSOCUG00000015759 
EH domain containing 4 [Source:HGNC 

Symbol;Acc:HGNC:3245] 
EHD4 17 30179178 30253268 protein coding 

ENSOCUG00000011997 
spectrin beta, non-erythrocytic 5 

[Source:HGNC Symbol;Acc:HGNC:15680] 
SPTBN5 17 30257315 30296213 protein coding 

ENSOCUG00000011984 
phospholipase A2 group IVB [Source:NCBI 
gene;Acc:100533118] 

PLA2G4B 17 30299312 30307757 protein coding 

ENSOCUG00000035726 
jumonji domain containing 7 [Source:NCBI 

gene;Acc:100341549] 
JMJD7 17 30308417 30313754 protein coding 

ENSOCUG00000011969 

mitogen-activated protein kinase binding 

protein 1 [Source:HGNC 

Symbol;Acc:HGNC:29536] 

MAPKBP1 17 30315910 30365469 protein coding 

ENSOCUG00000006505 
MAX dimerization protein MGA 

[Source:HGNC Symbol;Acc:HGNC:14010] 
MGA 17 30372251 30449268 protein coding 

ENSOCUG00000006229 
TYRO3 protein tyrosine kinase 

[Source:HGNC Symbol;Acc:HGNC:12446] 
TYRO3 17 30568857 30582861 protein coding 

ENSOCUG00000007409 
RNA polymerase II associated protein 1 

[Source:HGNC Symbol;Acc:HGNC:24567] 
RPAP1 17 30601127 30614693 protein coding 
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Gene stable ID Gene description 
Gene 

name 

Chromosome/ 

scaffold name 

Gene start 

(bp) 

Gene end 

(bp) 
Gene type 

ENSOCUG00000026867 
leukocyte receptor tyrosine kinase 
[Source:HGNC Symbol;Acc:HGNC:6721] 

LTK 17 30616839 30624998 protein coding 

ENSOCUG00000023580 
inositol-trisphosphate 3-kinase A 

[Source:HGNC Symbol;Acc:HGNC:6178] 
ITPKA 17 30625711 30627736 protein coding 

ENSOCUG00000000278 

RTF1 homolog, Paf1/RNA polymerase II 

complex component [Source:HGNC 

Symbol;Acc:HGNC:28996] 

RTF1 17 30643777 30693176 protein coding 

ENSOCUG00000004206 

NADH:ubiquinone oxidoreductase complex 

assembly factor 1 [Source:HGNC 
Symbol;Acc:HGNC:18828] 

NDUFAF1 17 30719275 30731356 protein coding 

ENSOCUG00000003277 
nucleolar and spindle associated protein 1 

[Source:NCBI gene;Acc:100349779] 
Nusap1 17 30737649 30774531 protein coding 

ENSOCUG00000003274 
Opa interacting protein 5 [Source:HGNC 

Symbol;Acc:HGNC:20300] 
OIP5 17 30774845 30791085 protein coding 

ENSOCUG00000013832 
calcineurin like EF-hand protein 1 
[Source:HGNC Symbol;Acc:HGNC:17433] 

CHP1 17 30813272 30868942 protein coding 

ENSOCUG00000028255 
U2 spliceosomal RNA 

[Source:RFAM;Acc:RF00004] 
U2 17 30826486 30826562 snRNA 

       

       

  Mouse and human orthologues (>80% querry genes identical to target gen of this species) 
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Additional file 3: Table S3. First ten go ontology (GO) terms of biological processes using genes located in genomic regions that 

exceeded a cut-off of 1% in at least two methods of selection signatures in rabbits. 

GO term’s 
CODE 

Term P-value 
Odds 
Ratio 

Combined 
Score 

Annotated 
Mouse Genes 

GO:0072528 
pyrimidine-containing compound biosynthetic 
process 

1.67E-02 59.52 243.65 TPK1 

GO:0070417 cellular response to cold 1.67E-02 59.52 243.65 SAXO1 

GO:0010665 regulation of cardiac muscle cell apoptotic process 1.67E-02 59.52 243.65 LTK 

GO:0044003 
modification by symbiont of host morphology or 
physiology 

1.94E-02 51.02 201.04 RRAGA 

GO:1904526 regulation of microtubule binding 1.94E-02 51.02 201.04 TTBK2 

GO:2000483 negative regulation of interleukin-8 secretion 1.94E-02 51.02 201.04 MAPKBP1 

GO:0042723 thiamine-containing compound metabolic process 1.94E-02 51.02 201.04 TPK1 

GO:0033629 
negative regulation of cell adhesion mediated by 
integrin 

1.94E-02 51.02 201.04 ACER2 

GO:0060292 long term synaptic depression 1.94E-02 51.02 201.04 SLC24A2 

GO:0060850 
regulation of transcription involved in cell fate 
commitment 

1.94E-02 51.02 201.04 RORA 

Gene Ontology (GO) knowledgebase is the world's largest source of information on the functions of genes. Odds ratios are used to 

compare the relative odds of the occurrence of the outcome of interest given exposure to the variable of interest. The odds ratio is 

calculated using the analysed genes and GO terms of the datable. 
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CHAPTER SIX 

6. GENERAL DISCUSSION 

This thesis is focused on the identification of genetic markers, genomic regions 

and genes associated with litter size traits and intramuscular fat (IMF). The 

samples came from two independent experiments of divergent selection in 

rabbits for uterine capacity (UC) (Blasco et al., 2005) and for IMF (Martínez-

Álvaro et al., 2016), respectively. Divergent selection experiments increase the 

detection power, according to simulation studies (Kessner & Novembre, 2015; 

Lou et al., 2019). However, it is rare to find most causative variants explaining 

a great part of the variability of a given trait through a unique genomic analysis, 

e.g. genome wide association study – GWAS (López de Maturana et al., 2014; 

Schmid & Bennewitz, 2017; Georges et al., 2019). Besides, the identification of 

genetic markers and genes depends on the genomic architecture of a trait: 

number and effect size of causative variants, interaction effects amongst these 

variants, and distribution of genetic markers and causative variants across the 

rabbit genome (Lou et al., 2019; Georges et al., 2019). Thus, we used both GWAS 

and genome scans studies approaches to identify relevant genetic markers and 

genes associated with each analyzed trait in this thesis. We initially proposed 

three scenarios for our divergent selection experiments, taking into account 

different genomic architectures: 

 

(a) The trait presents few causative variants of large effect (less than five) 

and some causative variants with small effect (between 50 and 100). The 

divergent selection caused shifts of allelic frequencies in the causative 

variants with large effect. The opposite alleles of most of these causative 

variants are fixed or nearby fixation in each line of divergent selection 

(one allele in the high line and another allele in the low line). 

(b) The trait presents several causative variants of small effect (greater than 

100) and no causative variants with large effect. The divergent selection 

caused shifts of allelic frequencies in most causative variants with small 

effect. The opposite alleles of these causatives variants are fixed or 

nearby fixation in each line of divergent selection. 

(c) The trait presents several causative variants of small effect (greater than 

100) and no causative variants with large effect. The divergent selection 

caused noticeable shifts of allelic frequencies in a few causative variants 
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with small effect, since the opposite alleles of these causative variants 

are fixed or nearby fixation in one line but not in the other one. 

 

If genetic makers have high linkage disequilibrium with causative variants and 

present minor allele frequencies (MAF) near 0.5, the identification of genetic 

markers located near the causative variants would be easy in the first two 

scenarios, (a) and (b) (López de Maturana et al., 2014); but not in the third 

scenario even though studies would use a large sample size. This happens 

because genetic markers close to causative variants would be undetectable, 

since their shifts of allele frequencies are negligible. Moreover, the variation of a 

given trait is hypothetically linked to different causative variants in each line, 

and consequently to different genetic markers. 

 

One of the main issues of GWAS analysis is the “missing heritability”. UC lines 

showed that the estimates of genomic heritabilities including line effect were 

similar to the heritabilities calculated by Blasco et al. (2005). Therefore, there 

were not ‘missing heritabilities’. Conversely, this genetic parameter was higher 

in the model excluding line effect (e.g. 0.34 and 0.30 for TNB and IE, 

respectively), suggesting an overestimation of the heritability. This might be the 

result of using a small sample of highly related animals for traits with a few 

major genes in agreement with the relevant genomic region identified on rabbit 

chromosome (OCU) 17 at 70.0 - 73.3 Mb. This region was associated with three 

little size traits: implanted embryos (IE), total number born (TNB) and number 

born alive (NBA). The genomic variances explained by this region were up to 

32%, 39% and 10% for IE, TNB, and NBA, respectively, under a model excluding 

the line effect. Thus, this genomic region was considered as a novel reproductive 

QTL in rabbits, since shows an important pleiotropic effect. The main retrieved 

genes in this QTL were PNRC2, BMP4, CDKN3, GMFB, CGRRF1, and SAMD4A. 

The genes within this novel QTL have not been previously reported in GWAS for 

reproductive traits in pigs (Onteru et al., 2013; Bergfelder-Drüing et al., 2015; 

Guo et al., 2016). Genes of bone morphogenetic protein (BMP) family, including 

BMP4 gene from our GWAS for UC, are linked to reproductive traits in pig 

(Hunter et al., 2005), sheep (Demars et al., 2013), mice and human (Shimasaki 

et al., 2004). The findings of this study suggest that the divergent selection 

agreed with the scenario (a), in which few causative variants of large effect 

present MAF close to 0.5. Besides, this can be supported by the great response 
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at the second generation, half of the estimated selection response in UC 

divergent selection experiment (Blasco et al., 2005). A study focused on the 

presence of a feasible mayor gene segregating in these UC lines showed positive 

results (Argente et al., 2003). Nevertheless, our results must be interpreted with 

caution because of the small sample size, triggering higher sampling noise and 

increasing the false positives rate. Furthermore, these results came from 

phenotypic records collected at second parity; therefore, our findings may not 

be extrapolated to other parities. However, the genetics correlation between the 

second and subsequent parities are high, being greater than 0.84, according to 

an experiment in three maternal rabbit lines (Piles et al., 2006). 

 

Further genomics studies on QTL in OCU17 would be necessary in order to 

corroborate the effect size and identify causative variants using rabbit 

commercial populations; for instance, the refining of the genomic region by 

genome sequencing, gene expressions, and local association studies (Ioannidis 

et al., 2009; Schmid & Bennewitz, 2017). In addition, a preliminary study of 

selection signatures using UC lines has been carried out. According to this 

analysis, the SNPs in the associated region in OCU17 presented Fst up to 0.39, 

being their values over five times standard deviation (SD) of Fst using both UC 

lines (Sosa-Madrid et al., 2017). Nevertheless, the small sample size hindered 

reliable results from several methods of selection signatures, leading to non-

conclusive results with these methods. 

 

A selection response of 3.10 SD was attained from the divergent selection 

experiment for IMF at 9th generation. Our initial hypothesis was that the high 

genetic divergence between the IMF lines was the result of the selection of few 

causative variants of large effects, the scenario (a), or several causative variants 

of small effects linked to detectable and nearby SNPs, the scenario (b). In some 

livestock, such as pigs and beef cattle, the selection against fat depot have been 

carried out directly and indirectly by correlated traits in the breeding programs, 

e.g. the selection for backfat thickness or for feed efficiency in pigs (Hermesch, 

2004); and for marbling or for 12th-rib fat in beef cattle (Ochsner et al., 2017). 

Therefore, if there were major genes for IMF, these genes would be fixed or 

nearby fixation. On the contrary, in rabbits, the idea of few mayor genes for the 

IMF, the scenario (a), would be feasible, since this species had never been 

selected for meat quality traits or for any trait having a high correlation between 
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it and IMF (Martínez-Álvaro et al., 2016). Besides, we assumed a high detection 

power because of using of animals from the IMF divergent selection. These 

animals are an exceptional material for genomic analyses (Kessner & Novembre, 

2015; Lou et al., 2019). In the case of scenario (b), we would detect several SNPs 

associated with causative variants of small effect if this scenario would be 

suitable for the IMF divergent selection. Results of GWAS for IMF disclosed ten 

SNPs in OCU8 and ten SNPs in OCU13 with relevant p-values and Bayes factors. 

Nevertheless, none of these genomic regions explained over 10% of IMF genomic 

variance. In addition, SNPs within associated genomic regions had low MAF. 

Overall, an allele of SNP was fixed in low IMF line and this same allele was in 

high frequency in high IMF line. This finding rejects the hypotheses based on 

scenarios (a) and (b). Thus, the results suggest the divergent selection of IMF 

experiment produced shifts of allele frequency in different SNPs and different 

causative variants for each IMF line, represented by the scenario (c). 

 

Regarding the study of selection signatures, multiple genomics regions are 

considered as selection signatures from each method (Fst, XP-EHH and XP-CLR). 

The results showed only one selection signature in OCU13 that agreed with the 

GWAS for IMF, under Fst method with cut-off of 1%. Nonetheless, the eight 

selection signatures identified by at least two methods are not in agreement with 

the physical positions of genomic regions associated with IMF and reported by 

the GWAS for IMF. Therefore, the IMF selection signatures bear out the 

assumption of scenario (c), meaning that IMF in rabbits is a complex trait having 

a large polygenic component with their causative variants barely detectable. 

That scenario was similar to the Fisher’s infinitesimal model (Georges et al., 

2019). Besides, the hypothesis of scenario (c) would be supported by a constant 

genetic progress, around 5% per generations of selection (Martínez-Álvaro et al., 

2016). Taking into account that, we cannot suit the scenario (b) to our results 

as the GWAS detected SNPs having low MAF which are unlike the selection 

signatures. The conclusion of IMF having a large polygenic component is similar 

to the conclusions derived from genomic analyses for IMF experiments in sheep 

(Duijvesteijn et al., 2018), pigs (Pena et al., 2016), and bovine (Strucken et al., 

2017). In addition, the absence of detectable major genes (causative variants) 

generates few agreements between results from GWAS and methods of selection 

signatures. Kim et al. (2015) reported low correlations between GWAS and Fst 

(0.33), iHS in the high IMF line (-0.01), iHS in the low IMF line (0.01), and Rsb 
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(0.01) using divergently selected lines in pigs. Therefore, the absence of major 

genes would explain our results for genomic analyses of IMF in rabbits.   

 

Our research study shed light on how the rabbit genome is linked to the trait 

variability in the two divergent selection experiments. The findings of this thesis 

showed that litter size and intramuscular fat are undoubtedly complex traits. 

Thus, it would be necessary more evidence derived from other omics, such as 

transcriptomics, proteomics, metabolomics, and metagenomics; in order to 

comprehend control mechanisms and complex networks driving these traits in 

rabbits. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND IMPLICATIONS 

 

 The genomic analyses of this thesis used animals from two successful 

experiments of divergent selection in rabbits; however, the detection 

power for genomic analyses relies strongly on genomic architectures. 

 

 Genome wide association studies (GWAS) for litter size traits disclosed a 

promising QTL in the rabbit chromosome (OCU) 17 at 70.0 - 73.3 Mb. 

The intermediate frequencies of SNPs within this QTL can be a result of 

the divergent selection for uterine capacity. This genomic region 

presented an important pleiotropic effect for implanted embryos, total 

number born and number born alive. Nonetheless, this QTL would be 

validated in maternal rabbit commercial lines. 

 

 Main genomic regions associated with intramuscular fat (IMF) were in 

OCU8 (24.6 - 26.9 Mb) and in OCU13 (83.8 - 86.0 Mb). The findings 

suggest that this trait has a large polygenic component due to the small 

genomic variance accounted for by genomic regions.  

 

 Genomic scans studies using IMF lines revealed multiple genomic regions 

considered as selection signatures when methods were individually 

analysed. Despite some genes presented function directly related to 

energy, carbohydrates and lipid metabolisms, none of the selection 

signatures identified by at least two methods were in the regions reported 

by GWAS. This corroborates that IMF has a large polygenic component. 

 

 From both results, GWAS and selection signatures studies, we suggest 

that the IMF divergent selection affected different causative variants and 

different SNPs in each IMF line. 

 

 Regarding the implications, the results of this thesis do not still have 

implications for maternal rabbit breeding programs. No particular SNP 

was found explaining a large part of the genomic variance of litter size 

traits. 
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 GWAS and genome scan studies do not work as methods for 

accomplishing relevant information for rabbit breeding programs. These 

methods must be used as an exploratory analysis.  


