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Abstract

Two subgroups A and B of a finite group G are said to be tce-permutable
if X permutes with Y9 for some g € (X,Y), for all X < A and all Y < B.
Some aspects about the normal structure of a product of two tcc-permutable
subgroups are analyzed. The obtained results allow to study the behaviour
of such products in relation with certain classes of groups, namely the class
of T-groups and some generalizations.
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1. Introduction

All groups considered in the paper are finite.

Within the theory of finite groups, the structure of subgroups and the way
how they are embedded into the group influence its structure, and conversely.
Then a natural approach to the subject consists in looking for decompositions
of the group as product of subgroups. Direct product, and also normal prod-
ucts, i.e. products of normal subgroups, appear as relevant decompositions.
A basic significant fact to be mentioned here is that supersoluble groups are
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closed under taking direct products but not for normal products. This has
been the origin of a large and fruitful research on products of groups. Asaad
and Shaalan searched in [7] for criteria of supersolubility, and introduced
the corresponding concepts of totally and mutually permutable products,
which can be seen as extensions of direct products and normal products,
respectively: Two subgroups A and B of a group G are said to be totally
permutable if every subgroup of A permutes with every subgroup of B, while
A and B are called mutually permutable if A permutes with every subgroup
of B, and conversely. Much is known nowadays about the structure of to-
tally and mutually products of groups (see [1, 9, 14, 15, 17, 18, 22, 23, 34]),
which turns out to be cornerstones of a huge research, continuing to present
days, and extending influence into different areas, as formation theory (see
[1], [11]-[14], [21], [24], [34]), Fitting classes (see [17, 18, 20, 21, 22],[28]-[30])
and classes of groups defined in terms of subgroup embeddings; we refer in
particular to T-groups, i.e. groups in which normality is a transitive relation
in the group, and generalizations of this class of groups given by the ascend-
ing series of classes of PT-, PST-, SC-, and SM-groups, where PT-groups
and PST-groups are defined in the same way but with transitive relations
given by permutability and permutability with Sylow subgroups, respectively,
SM-groups are those groups where each subnormal subgroup permutes with
every maximal subgroup, and following Robinson [37], SC-groups are groups
whose chief factors are simple; (see [8, 9, 18, 19]). We refer to [10] for a good
convenient recopilation on the topic.

Sometimes permutability turns out to be a strong hypothesis. In this
direction further progress nicely show that it is still possible to obtain good
information by considering conditional permutability. We recall that two
subgroups X and Y of a group G are said to be conditional permutable
(c-permutable, for brevity) in G if X permutes with Y9 for some g € G.
For instance, trivially any two Sylow p-subgroups of a group G, for a fixed
prime p, are conditional permutable in G, but they are not permutable if
they are different. This example shows the much wider reach of conditional
permutability in comparison with permutability. Stricter, but in some respect
more natural also, is the concept of complete conditional permutability (or
cc-permutability): Two subgroups X and Y of a group G are said to be cc-
permutable if X permutes with Y9 for some g € (X,Y).

Now total permutability can be generalized to total cc-permutability (or
tce-permutability), i.e. the subgroups A and B of a group G are said to be



tce-permutable if every subgroup of A is ce-permutable with every subgroup
of B. If G = AB we say that G is the tcc-permutable product of the subgroups
A and B.

These concepts first appear in [26] and were initially used to provide new
supersolubility criteria (see also [2, 27, 32, 33]). We refer to [3, 5] for surveys
on these and further progress.

The present paper is mainly concerned with tcc-permutability, and we are
interested in a better understanding of the inner structure of such products of
subgroups, particularly in their normal structure. In this direction, we take
further the study carried out in [4, 6], and are inspired by the investigation of
Beidleman and Heineken in [17] on mutually permutable products. As in the
case of mutually permutable products (see [17]), we prove in Section 2 that
the factors of a tce-permutable product have the cover-avoidance property in
the product (Corollary 1), i.e. each factor either covers or avoids each chief
factor of the product ([25, A. Definition (10.8)]). Moreover, a minimal normal
subgroup of the product which is either covered or avoided simultaneously by
the two factors is cyclic of prime order (Propositions 1, 2). As a consequence,
Corollary 2 describes tce-permutable products which are primitive groups of
type 3, and complete, for two factors, the characterization of primitive tcc-
permutable products, together with corresponding results in [4, Lemma 4,
Corollary 5] for primitive groups of types 1 and 2 (for which in fact only type
1 is possible; see Lemmas 4, 5).

The results in Section 2 are then applied in Section 3 to find new classes of
groups which are closed with respect to tce-permutable products. A previous
research within the framework of formation theory has been carried out in
[4, 6]. Now, we take further previous developments on totally and mutually
permutable products, and search for the interaction between the ascending
series of classes of T-, PT-, PST-, SC-, and SM-groups and tcc- permutability.
For the last two classes of groups, we prove that a tcc-permutable product
belongs to the class if and only if the factors do so (Theorems 2, 3). The
necessary condition holds also for T-, PT-, PST-groups (Theorem 4). The
proof rests in addition on the good behaviour of the soluble residual and rad-
ical in a tce-permutable product (Proposition 3). For the converse additional
hypotheses are needed (see Remark 3 and Theorem 5), as happens for totally
permutable products (see [8], [19]).

We point out that totally permutable products are tcc-permutable, and
so, in many cases, the research on the last kind of products develops as



generalization of previous studies on the first ones. It is remarkable how
many results on totally permutable products remain true in the more general
setting in spite of the failure of significant structural properties (see [2, 4, 6]
and Remark 1). As showed in this paper, even more surprising is the revealed
analogy of certain results between mutually permutable products and tcc-
permutable products. Mutual permutability and tcc-permutability appear
to be quite different extensions of total permutability. They are concepts
which are not connected to each other and basic structural properties are
different (see Example 1, Remark 1, comment after Theorem 2 in relation
with Part (i), and Proposition 3 (ii) with the previous comment).

We shall adhere to the notation used in [25].

2. Minimal normal subgroups and cc-permutability

The following lemma gives information about normal subgroups of tcc-
permutable products, in fact for more general products by considering c-
permutability instead of cc-permutability. A corresponding result for mutu-
ally permutable products was obtained in [1, Lemma 3].

Lemma 1. Let the group G = AB be the product of subgroups A and B
such that every subgroup of A is c-permutable in G with every subgroup of
B. If N is a normal subgroup of G, then (AN N)(B N N) is a normal
subgroup of G. Moreover, if N is a minimal normal subgroup of G, then
either N=(ANN)(BNN) orANN=BNN =1.

Proof. By the hypothesis, there exists ¢ € G such that (BN N)AY =
AY(BN N). But g = ab for some a € A and b € B. We can deduce
that B NN permutes with A, because B N N is a normal subgroup of B.
Analogously, AN N permutes with B. We notice that N N (A(BN N)) =
(ANN)(BNN)=NN(B(ANN)). Therefore, (ANN)(BNN) is normalized
by both A and B and so by GG. If in addition NV is a minimal normal subgroup
of G, the rest of the result follows easily. m

The following lemmas are key facts in our work. A relevant structural
property of a tce-permutable product G = AB of subgroups A and B is that
the commutator subgroup [A, B] is a normal nilpotent subgroup of G ([4,
Theorem 4]). Then we can state the following easily:

Lemma 2. Let the group G = AB be the product of the tcc-permutable sub-
groups A and B and let N be a minimal normal subgroup of G. Then [A, B] <
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Ca(N) and G/Cs(N) is the central product of the subgroups ACg(N)/Cea(N)
and BCg(N)/Cg(N), i.e. [ACG(N)/Cq(N), BCs(N)/Ca(N)] = 1.

Proof. Let N be a minimal normal subgroup of G. From [4, Theorem
4] and [25, A. Theorem (10.6)] it follows that [A, B] < F(G) < Cg(N).
Consequently, [ACg(N)/Cq(N), BCg(N)/Cq(N)] =1, as desired. O

Lemma 3. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Let N be an abelian normal subgroup of G. Then:

(i) NN B and A are totally permutable subgroups.

(ii) If N is a p-group for a prime number p, then OP(A) normalizes N N
B and acts as a universal power automorphism group on N N B. In
particular, if N is an elementary abelian p-group, OP(A)/Corcay(NNB)
1s a cyclic group of order dividing p — 1.

(iii) If N is a minimal normal p-subgroup of G for a prime number p and
N < B, then Op/(A) centralizes N.

Proof. (i) Let n € NN B and a € A. Then there exists z € (n,a) < N{a)

such that (n)”(a) = (a)(n)”. Let = nga’ with ny € N and i € Z. Since
N is abelian, (n)*(a) = ({n){a))* and so (n) permutes with (a). Therefore
N N B and A are totally permutable subgroups.

(ii) Let A, be a Sylow g-subgroup of A with ¢ # p and n € N N B,
Then [(n), 4,] < NN (n)A, = (n), which means that A, normalizes (n).
Since N N B is abelian, we deduce that OP(A) acts as a universal power
automorphism group on N N B and the result follows.

(iii) By (ii), OP(A) acts as a universal power automorphism group on N =
NNB. Let A, be a Sylow p-subgroup of A. Then [OP(A), A,] < C := Cg(N),
which implies that A,C is normalized by A = OP(A)A,. Using Lemma 2,
we can deduce that A,C'/C is normal in G/C, and so A,C/C < O,(G/C).
Since O,(G/C) =1 (cf. [25, A. Lemma (13.6)]), we have that A, centralizes
N. Therefore O (A) centralizes N as desired. O

We recall in the next two lemmas the structure of monolithic primitive
groups, i.e. primitive groups with a unique minimal normal subgroup (types
1 and 2), which are product of pairwise tcc-permutable subgroups.

Lemma 4. [4, Lemma 4] Let the group 1 # G = G --- G, be the product of
pairwise permutable subgroups Gy, ..., G,, for r > 2. Assume that G; and
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G; are tcc-permutable subgroups for all i,j € {1,...,r}, i # j. Assume in
addition that G s a primitive group of type 1. Let N be the unique minimal
normal subgroup of G and p be a prime divisor of |[N|. Then either G is
supersoluble or the following conditions are satisfied:

(1) w.l.o.g. N <Gy
(1) Go--- G, 1s a cyclic group whose order divides p — 1;

(i) there exists a mazimal subgroup M of G with Coreg(M) =1 such that
M= (MnNG)(Gy---G,) and M NGy centralizes Gy - - - G,.

Lemma 5. [4, Corollary 5] Let the group G = G1---G, be the product of
pairwise permutable subgroups Gi,...,G,, for r > 2, and G; # 1 for all
it =1,...,7. Assume that G; and G; are tcc-permutable subgroups for all
i,j€{l,...,r}, i # j. Let N be a minimal normal subgroup of G. Then:

1. If N is non-abelian, then there exists a unique i € {1,...,r} such
that N < G;. Moreover, G; centralizes N and N N G; = 1 for all
je{l,....,r}, j#i.

2. If G 1s a monolithic primitive group, then the unique minimal normal
subgroup N is abelian.

The next Theorem 1 gives information about minimal normal subgroups
in relation with the factors of a tcc-permutable product. The cover-avoidance
property of the factors of a tce-permutable product will follow as an easy
consequence of this result.

Theorem 1. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. If N is a minimal normal subgroup of G, then {AN
N,BNN} C{1,N}.

Proof. Assume that the result is not true and let the group G = AB be
a counterexample with minimal order. Then there exists a minimal normal
subgroup N of G which does not satisfy the thesis. By Lemma 5 we have
that N is an abelian p-group for some prime p. From Lemma 1 we deduce
that NN A#1and NN B # 1. Without loss of generality we may assume
that 1 # ANN # N. We set C = Cg(N) and note that G # C. We
distinguish two cases:

Case 1: NN B # N.



Let g be the largest prime dividing the order of G/C. Without loss of
generality we may assume that ¢ divides the order of AC/C. Now, we split
the proof into the next following steps:

Step 1.1 AC/C' is a supersoluble group.

By [6, Lemma 2.7] we have that A“ is a normal subgroup of G. Since
N is a minimal normal subgroup of G and N N A # N, we deduce that
[AY N] = 1. Therefore, we have that AY < C' and AC/C is a supersoluble
group.

Step 1.2 Let A, be a Sylow g-subgroup of A. Then A,C' is a normal subgroup
of G. In particular, q # p.

From Step 1.1 and the choice of ¢, we deduce that A,C/C = O,(AC/C).
By Lemma 2 we have that AC'/C' is a normal subgroup of G/C. Conse-
quently, A,C'/C is normal in G/C. Moreover, since O,(G/C) =1 (cf. [25,
A. Lemma (13.6)]), it follows that p # q.

Step 1.3 Let A, be a Sylow g-subgroup of A. Then A, < C4(N N B).

By Lemma 3, O?(A) normalizes N N B and OP(A)/Cora)(N N B) is a
cyclic group of order dividing p — 1. If p divides the order of AC/C, then
p < ¢ by the choice of ¢ and Step 1.2. Then A, < C4(N N B) and we
are done. Otherwise, for a Sylow p-subgroup A, of A, we would have that
A= 0P(A)A, < Ng(N N B), which would imply that 1 # N N B is normal
in G and so N = N N B, a contradiction.

Step 1.4 Contradiction to Case 1.

Let A, be a Sylow g-subgroup of A. By Lemma 1 and Step 1.3, we have
that [N, A,C] = (NN B)(NNA),AC] =[NNAAC] < NNA#N.
But [N, A,C] is normal in G' by Step 1.2, which implies [N, A,C] = 1 and
A, < C, a contradiction.

Case 2: N < B.
We split the proof into the following steps:

Step 2.1 AC' = OP(A)C and it normalizes every subgroup of N.

By Lemma 3 we know that AC' = OP(A)C and OP(A) acts as a universal
power automorphism group on N = NN B. Hence OP(A)C normalizes every
subgroup of N.

Step 2.2 B =_.

If K is a minimal normal subgroup of B contained in N, then K is normal
in G by Step 2.1 and so we deduce that K = N. Assume that B is a proper



subgroup of G. Hence, we can see that B = (AN B)B is the product of the
tee-permutable subgroups AN B and B. The choice of G implies that either
l1=NN(ANnB)=NNAo N=NnN(ANB) < A. Both cases are not
possible, so G = B.

Step 2.3 The final contradiction.

By Lemma 3(i) and Step 2.2, we have that NN A is a permutable subgroup
of G. Applying [35] (see also [10, Corollary 1.5.6]) it follows that N N A <
Zso(@G), since Coreg(N N A) = 1. Therefore, N < Z(G) and N = NNA, a
contradiction which concludes the proof. O]

We recall that a subgroup U of a group G is said to cover a chief factor
H/K of Gif HU = KU and to avoid H/K if UNH = UN K. The subgroup
U is said to have the cover-avoidance property in G, and it is also called

CAP-subgroup in this case, if U either covers or avoids each chief factor of
G ([25, A. Definition (10.8)]).

Corollary 1. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Then A and B are CAP-subgroups of G.

Proof. If H/K is a chief factor of G, then H/K is a minimal normal
subgroup of G/ K, which is a tce-permutable product of the subgroups AK /K
and BK/K. Let X € {A, B}. By Theorem 1, X K/K either covers or avoids
H/K and so X does, which proves the result. O

A corresponding result to Corollary 1 for mutually permutable products
was proved by Beidleman and Heineken in [17].

Propositions 1 and 2 next study the cases when a minimal normal sub-
group of a tce-permutable product is either covered or avoided simultaneously
by the two factors, in which cases the minimal normal subgroup has prime
order. Examples (i), (iv) in Remark 1 below show that both cases are possi-
ble (in spite of the situation when the group is a nonsupersoluble monolithic
primitive group; see Lemmas 4, 5).

Proposition 1. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Let N be a minimal normal subgroup of G. Assume that
N < AN B. Then |N| = p, where p is a prime number.

Proof. From Lemma 5 we deduce that N is an abelian p-group for some
prime p. By Lemma 3 (ii), (iii), we deduce that A = OP(A)O” (A) and
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B = OP(B)O¥(B) normalize each subgroup of N < AN B, which implies
that |N| = p, since N is a minimal normal subgroup of G = AB. ]

Nevertheless, the next example shows that it is not possible to replace tcc-
permutable product by mutually permutable product in the previous result.

Example 1. Let X = Sym(3) be the symmetric group of degree 3. By
25, B. Corollary (10.7)], X has an irreducible and faithful module V', which
has dimension 2, over Fj, the field of 5 elements. Let G = [V]X be the
corresponding semidirect product, which is the mutually permutable product
of A = VX3 and B = VX,, where X,, is a Sylow p-subgroup of X for
p € {2,3} . We observe that V' is a minimal normal subgroup of G, which is
covered by both A and B, but V is not of prime order.

Next we will deal with the case when a minimal normal subgroup N in
a tce-permutable product G = AB is avoided by the two factors, that is,
NNA=1=NnNB.

Proposition 2. Let the group G = AB # 1 be the product of the tcc-
permutable subgroups A and B. Let N be a minimal normal subgroup of
G. Assume that NN A= NNDB=1. Then |N| = p, where p is a prime
number.

Proof. Assume that the result is false and let the group G = AB be a
counterexample with |G| minimal, as in the statement. Let N be a minimal
normal subgroup of G such that NN A= NNB =1 but N is not of prime
order. From Lemma 5 we deduce that N is an abelian p-subgroup for some
prime p. (We notice that the hypotheses of the result imply that A # 1 and
B # 1.) We split the proof into the following steps:

Step 1. G/Cs(N) is a cyclic group.

By [4, Proposition 1] we know that A" and B’ are subnormal subgroups
of G. Since N is a minimal normal subgroup of G, we have that N <
Ng(A') N Ng(B') (cf. [25, A. Lemma (14.3)]). Then [A’, N] = [B',N] = 1,
because NN A = NN B = 1. On the other hand, from Lemma 2, it
follows that [A, B] < Cg(N). Consequently, G' = A'[A, B|B' < Cg(N) and
G/Cg(N) is an abelian group. Now we conclude that G/Cg(N) is a cyclic
group (cf. [25, B. Theorem (9.8)]), as desired.

Step 2. N is not a minimal X-invariant subgroup for X € {A, B}. In
particular, AC(N) and BCg(N) are proper subgroups of G.
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Assume that N is a minimal A-invariant subgroup. If AN < G, since
AN = A(AN N B) # 1 is the product of the tce-permutable subgroups
A and AN N B, and N is a minimal normal subgroup of AN, which is
avoided by both A and AN N B, the choice of G implies that |[N| = p, a
contradiction. Consequently, G = AN and A is a maximal subgroup of G.
Therefore, if we set L = Coreg(A), we have that G/L = (A/L)(NL/L)
is a primitive group with a unique minimal normal subgroup NL/L = N,
since ANN = 1. Moreover, G/L = (A/L)(BL/L) is the product of the
tce-permutable subgroups A/L and BL/L. By Lemma 4, either G/L is
supersoluble or A/L is a cyclic group whose order divides p — 1. In both
cases we can conclude that |N| = p, a contradiction. Therefore, N is not
a minimal A-invariant subgroup, and the same is true for B. In particular,
ACq(N) and BCg(N) are proper subgroups of G.

Step 3. The final contradiction.

By Step 2 there exists M a maximal subgroup of G containing ACg(N).
Observe that M = A(M N B) # 1 is the product of the tcc-permutable
subgroups A and BN M, and N < M. The minimal choice of G implies
that N is not a minimal normal subgroup of M. Moreover, any minimal
normal subgroup of M contained in N has order p. On the other hand,
from Step 1 we have that G/Cg(N) is abelian, so M < G and |G : M| = ¢
where ¢ is a prime. We consider now NN as an irreducible F,G-module, F,
the field of p-elements, and apply Clifford’s theorem (cf. [25, B. Theorem
(7.3)]). Let W be an irreducible F,M-submodule of N, and denote H(W)
the homogeneous component of N belonging to W and Io(W) = Ng(H(W))
the inertia subgroup of W. Then either Io(W) = M or Io(W) = G. In
the first case, since H(W) is irreducible as F,I¢(W)-module, it follows that
W = H(W) has order p and |N| = p?, because N is a direct sum of its
homogeneous components. If this were the case for any maximal subgroup of
G containing either AC;(N) or BCg(N), we would deduce that G/ACs(N)
and G/BCg(N) would be g-groups, and then G/(ACg(N)NBCg(N)) would
be a cyclic g-group. Therefore, since G = AB, it would follow that either
G = A(AC5(N)N BCg(N)) = ACg(N) or G = B(ACg(N) N BCg(N)) =
BC¢(N), a contradiction with Step 2. Hence we may assume that Io(W) =
G and then N is a homogeneous F,M-module with |W| = p. But this implies
that M acts as a universal power automorphism group on NV, in particular,
M normalizes every subgroup of N, and then NN is a minimal B-invariant
subgroup, the final contradiction. O
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As mentioned in the Introduction (see also Lemmas 4, 5), the structure
of tce-permutable products which are monolithic primitive groups has been
described in [4, Lemma 4, Corollary 5]. As an application of our results on
the cover-avoidance property, the structure of a tcc-permutable product of
two factors, which is a non-monolithic primitive group, is also clarified.

Corollary 2. Let the group G = AB be the product of the tcc-permutable
subgroups A and B with A # 1 and B # 1. Assume in addition that G is
a primitive group of type 3, i.e. with two minimal normal subgroups. Let
Ny and Ny be the minimal normal subgroups of G. Then G = A x B where
A= Ni, B= Ny and N; = Ny are nonabelian simple groups.

Proof. From [25, A. Theorem (15.2)] we have that G is a primitive group
with stabilizer M, G = MN; = MN,, N = Cg(Ny) and Ny = Cg(Ny).
Using Lemma 2 we deduce that [A, B] < Cg(Ny) N Ce(Ng) = No NNy = 1.
By Proposition 1, Proposition 2 and Corollary 1 we have w.o.l.g that Ny < A
and BN N; = 1. So, we obtain that [V;, B] =1 and 1 # B < Cg(N;) = Na.
Using again Corollary 1 we have that B = Ny and [A, No] = 1. We conclude
that A= N; and G = A x B = N; x Ny with N; & N, nonabelian simple
groups. ]

Remark 1. We refer to [2, Examples 2, 3] (also [6, Examples 3.5, 3.6]) and
to [4, Example 1] for examples showing the failure of significant structural
properties and results of products of totally permutable subgroups when
considering instead tcc-permutability.

When comparing totally permutable products and mutually permutable
products, the intersection of the factors has played a key role. We gather
next some significant previous results in this direction as well as basic struc-
tural properties of mutually permutable products in relation with minimal
normal subgroups. Also the statement 4 below is a key fact within the
study of mutually permutable products in the framework of Fitting classes.
Then we provide examples showing that they are missed when considering
tce-permutability. These examples together with Example 1, comment af-
ter Theorem 2 in relation with Part (i), and Proposition 3 (ii) with the
previous comment, show that the concepts of tce-permutability and mutual
permutability are not connected to each other and basic structural properties
of corresponding products are different, as mentioned in the Introduction.

Known results on mutually and totally permutable products of subgroups:
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1. ([34, Lemma 2]) If G = AB is the product of the totally permutable
subgroups A and B, then AN B is a nilpotent subnormal subgroup of
G.

For statements 2 — 7, let G = AB be the product of the mutually
permutable subgroups A and B. Then:

2. ([23, Proposition 3.5(b)]) If AN B = 1, then A and B are totally
permutable subgroups.

3. ([17, Lemma 1(v)], [23]) ((A N B)¢)/Corec(A N B) is nilpotent; in
particular, AN B is subnormal in G.

4. (][22, Theorem 2]) There exist subnormal subgroups L and M of G,
with A" < L < Aand B < M < B, such that ANB < LN M and
G' < LM.

5. ([10, Lemma 4.3.3(3)]) If NV is a minimal normal subgroup of G, then
either N < ANBor [NANB]=1.

6. ([17, Lemma 1 (viii)], [10, Lemma 4.3.3(5)]) If N is a minimal normal
subgroup of G with N < A and N N B = 1, then either [N, A] =1 or
[N, B] = 1.

7. ([17, Lemma 2)], [10, Lemma 4.3.9)]) If V is a minimal normal subgroup
of G with NNA=1=NnNDB, then N = Z,, where p is a prime, and
either [N,A]=1or [N,B] =1

Examples on tcc-permutable products of subgroups:

(i) (Failure of 1. when considering tcc-permutability instead of total per-
mutability. )
Let G = Sym(3) be the symmetric group of degree 3 and consider
G = AB the trivial factorization with G = A = B. Then A and B are
tce-permutable subgroups in G, but AN B = G = Sym(3) € N. (See
also (iii)).
The next examples show the failure of statements 2—7 when considering
tee-permutability instead of mutual permutability

(ii) (Failure of 2, 6.) We consider the group constructed in [2, Example 3]:
Let V = (a,b) = Zs x Z5 and Zs = C = («, 5) < Aut(V) given by a® =
at, b*=b"Y a’=0b, b =a"'b". Let G = [V]C the corresponding
semidirect product of V' with C. Set A = (a) and B = V(). Then
GG = AB is the tce-permutable product of the subgroups A and B. But:

Obviously AN B =1 but A and B are not totally permutable.
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V' is the unique minimal normal subgroup of G, V < B and ANV =1,
but [V, A] # 1 and [V, B] # 1.

(iii) (Failure of 3, 4, 5.) (]2, Example 2]) Let again G = Sym(3) be the
symmetric group of degree 3 and consider the factorization G = AB
with A = G and B a Sylow 2-subgroup of G. Then A and B are
tce-permutable in G. But:

AN B = B is not a subnormal subgroup of G}
(AN B)Y)/Coreg(AN B) = G = Sym(3) is not nilpotent.

Since ANB = B and the unique subnormal subgroup M of G contained
in B is the trivial one, there exists no subnormal subgroup L of
G, with A’ < L < A, such that ANB < LN M.

Let N be the Sylow 3-subgroup of G. Then N is the unique minimal
normal subgroup of G, N £ AN B and [N,AN B] =[N, B] # 1.
(iv) (Failure of 7.) Let V. = (a,b) = Z3 x Z3z and Zy = C = (o) <
Aut(V) given by a® =a™t, b* =b~!. Let G = [V]C the corresponding
semidirect product of V' with C. Set A = [(a)](a) and B = [(b)]{«).
Then G = AB and A and B are tce-permutable subgroups.
Let D be the diagonal subgroup of V. Then D is a minimal normal
subgroup of G, AND =BND=1,but [D,A] # 1 and [D, B] # 1.
(Proposition 2 shows that the first part of statement 7 holds for tcc-
permutable products.)

Nevertheless, the intersection A N B of the factors of a tcc-permutable
product G = AB of subgroups A and B still enjoys some nice properties. As
a direct consequence of Proposition 1, by considering the trivial factorization
ANB = (AN B)(AN B), it follows that A N B is supersoluble, since its
chief factors have prime order (Corollary 3(i) below). Though it should
be mentioned that this fact is also a consequence of a stronger result [26,
Theorem 3.8] involving c-permutability, which shows in particular that a
group is supersoluble if and only if every maximal subgroup is c-permutable
in the group. The second part of the next Corollary 3 is a consequence of
a significant property of tcc-permutable products, obtained in [4, Theorem
3], which states that the nilpotent residuals of the corresponding factors are
normal subgroups in the whole group. With the previous notation, since
A = A(AN B) and B = B(A N B) are tce-permutable products of the
subgroups A and AN B, and B and AN B, respectively, we can deduce that
G = AB normalizes (AN B)N. Hence, the following result follows.

13



Corollary 3. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Then,

(i) AN B is a supersoluble group.

(ii) (ANBYN is a normal subgroup of G. In particular, (AN B)/Coreg(AN
B) is a nilpotent group.

Corollary 3(i) will be applied in the next section to prove Theorem 3.

3. On T-, PT-, PST-, SC- and SM-groups and conditional per-
mutability

First, we collect here the permutability notions considered in this sec-
tion: a subgroup of a group G is called permutable if it permutes with every
subgroup of G, and a subgroup of G is called S-permutable if it permutes
with all Sylow subgroups of G. A group G is called a T-group if normality
is a transitive relation in G, that is, if all subnormal subgroups of G are
normal in G. A group G is called a PT-group if permutability is a transitive
relation in GG. As a consequence of [36, 13.2.1], PT-groups are exactly those
groups where all subnormal subgroups are permutable. A group G is called a
PST-group if S-permutability is a transitive relation in G. From [31, Satz 1],
PST-groups are exactly those groups in which all subnormal subgroups are S-
permutable. Robinson in [37] introduced and classified SC-groups as groups
whose chief factors are simple. Finally, Beidleman and Heineken in [16] be-
gan the study of the so-called SM-groups, which are those groups where each
subnormal subgroup permutes with every maximal subgroup. The classes
of all finite T-, PT-, PST-, SC- and SM-groups will be denoted by T, PT,
PST, SC and SM, respectively. They form the following ascending series
T CPT C PST C SC C SM. (We refer to [16, Theorem A] for the last
containment and to [10] for an overview of the rest.)

We start the study with the class SC. We note that this class is a forma-
tion closed under taking normal subgroups, but it is neither subgroup closed
nor saturated (see [10, Theorem 1.6.3]). As a consequence of Corollary 1 we
obtain the following result:

Theorem 2. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Then:

(i) If A and B € SC, then G € SC.
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(ii) If G € SC, then A and B € SC.

Proof. (i) We argue by induction on the order of G. We notice that, for any
minimal normal subgroup N of G, the factor group G/N = (AN/N)(BN/N)
is the product of the tce-permutable SC-subgroups AN/N and BN/N. Then,
by induction we have that G/N is an SC-group. Using Corollary 1 we have
that A and B either covers or avoids N. If either N < ANBor NNA=
N N B =1, then by Proposition 1 and Proposition 2 it follows that |N| = p,
where p is a prime. Therefore, we have that G is an SC-group. Hence, w.o.l.g.
we may assume that NN A=1and N < B. We take Ny a minimal normal
subgroup of B contained in N. By hypothesis ANy, < G. We notice that A
normalizes Ny, because Ny = No(N N A) = N N ANy. So, we deduce that
N = Ny and N is a minimal normal subgroup of B. Since B is an SC-group,
we obtain that N is a simple group. Consequently, G is an SC-group, which
proves (i).

(ii)) We prove that A and B are SC-groups by induction on the order of
G. We notice that, for any minimal normal subgroup N of G, the factor
group G/N = (AN/N)(BN/N) satisfies the hypothesis and, by induction,
we have that AN/N and BN/N are SC-groups. Since G is an SC-group, N
is a simple group. From Corollary 1 we have that A either covers or avoids
N. Therefore N < Aor NN A =1, and in both cases it follows that A is an
SC-group. Analogously, B is an SC-group, and (ii) holds. ]

We recall that soluble SC-groups are exactly supersoluble groups. There-
fore the above result can be seen as a natural extension of the well-known
criterion of supersolubility due to Asaad and Shaalan, which states that a
totally permutable product of supersoluble subgroups is supersoluble (|7,
Theorem 3.1]). More exactly, the result of Asaad and Shaalan appears as
a consequence of Theorem 2 together with [2, Remark], which provides the
solubility of a product of totally c-permutable soluble subgroups.

Also in relation with the study of tcc-permutable products in the frame-
work of formation theory, it may be of interest to point out here that SC is
a formation containing all supersoluble groups, and closed with respect to
tce-permutable products, which is not saturated (see [6, Theorem 1.4], [4,
Theorem 5, Example 1]).

A result corresponding to Theorem 2 for totally permutable products was
obtained in [8, Theorem A] for two factors, and in [19, Theorem A] for an
arbitrary number of factors, though also the arguments used for the proofs
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here are different. Regarding mutually permutable products of subgroups, a
corresponding result to Part (ii) in Theorem 2 was obtained in [9, Theorem 3],
also in [18, Theorem 3| using a different approach, for two factors, and in [10,
Theorem 4.5.11] for an arbitrary number of factors. The corresponding result
to Part (i) for this kind of products has been obtained under the additional
hypothesis that the intersection of the factors has trivial core (|9, Theorem
2], [18, Theorem 3]).

We continue the study with the class SM. This class is closed under tak-
ing factor groups and normal subgroups. We will need the following struc-
tural result on SM-groups:

Lemma 6. ([16, Theorem A]) Let G be a group. Then the following are
equivalent:

(i) G is an SM-group;
(ii) G/o(G) is an SC-group;
(iii) (a) all soluble quotients of G are supersoluble,

(b) all perfect subnormal subgroups of G are normal,

(¢) G/o(G) is an extension of a direct product of non-abelian simple
groups by a supersoluble group.

Beidleman, Hauck and Heineken proved in [19, Theorem B] that the class
SM is closed with respect to products of pairwise totally permutable sub-
groups. Next, we obtain a corresponding result for products of two tcc-
permutable subgroups, using also a different approach, as application of
Corollary 1.

Theorem 3. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Then:

(i) If A and B € SM, then G € SM.
(ii) If G € SM, then A and B € SM.

Proof. (i) Assume that the result is false and let the group G = AB
be a counterexample with |G| minimal, and subgroups A and B as in the
statement. Hence A # 1 and B # 1. Let H be a subnormal subgroup of G of
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minimal order such that H does not permute with some maximal subgroup
of GG, say M. We split the proof into the following steps:

Step 1. G is a primitive group of type 1 with G = NM, Coreqg(M) =1, N
the unique minimal normal subgroup of G, Cg(N) = N, and NN M = 1.
Moreover, GG is not a supersoluble group.

Assume that C' := Coreg(M) # 1. Since the factor group G/C =
(AC/C)(BC/C) satisfies the hypotheses of the result, the choice of G implies
that G/C is an SM-group. Hence, HM = (HC)M = M(HC) = M H, a con-
tradiction. Therefore, M is a maximal subgroup of G with Coreg(M) = 1,
and G is a primitive group. From Lemma 5, G is a primitive group of type
either 1 or 3. If G were a primitive group of type 3, then Corollary 2 implies
that G = A x B with A = B nonabelian simple groups. By Theorem 2, G
would be an SM-group, a contradiction. Therefore, GG is a primitive group
of type 1. If G € U, then G would be an SC-group and, consequently, an
SM-group, a contradiction which proves Step 1.

Step 2. H < N.

If 1 < NN H < H, the minimal choice of H implies that (H N N)M =
M(HNN). Since M is a maximal subgroup of G, we have that G = (NNH)M
and G = HM, a contradiction. Hence, either NN H = H or NN H = 1.
Assume that N W H = 1. We notice that N normalizes H, because H
is a subnormal subgroup of G (cf. [25, A. Lemma (14.3)]). So, it follows
that [N,H] < NN H = 1. Since Cg(N) = N, we have that H < N, a
contradiction. Consequently, NN H = H, and H < N, as desired.

Step 3. Final contradiction.

From Steps 1, 2 and Lemma 4, we may assume w.l.o.g. that H < N <
A=NMnA)and M = (M N A)B. By Lemma 3, B normalizes every
subgroup of N. In particular, B permutes with H, and also /N is a minimal
subgroup of A, which implies that M NA is a maximal subgroup of A. Since A
is an SM-group, the subnormal subgroup H of A permutes with the maximal
subgroup M N A of A. Consequently, H permutes with M = B(M N A), the
final contradiction.

(ii) Assume that the result is false, and let the group G = AB be a
counterexample with |G| + |A| + |B| minimal, where A and B are subgroups
of G as in the statement. From Lemma 6 we have that G/¢(G) is an SC-
group. If ¢(G) = 1, it follows from Theorem 2 that A and B are SC-groups
and, consequently, A and B are SM-groups. Hence ¢(G) # 1. Let N be
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a minimal normal subgroup of G such that N < ¢(G). We notice that
G/N = (AN/N)(BN/N) satisfies the hypotheses of the result. The choice
of G implies that AN/N and BN/N are SM-groups.

We claim that A is an SM-group. Using Corollary 1 we have that A
either covers or avoids N. If NN A = 1, then A is an SM-group. Assume
now that N < A. If N < ¢(A), since A/N is an SM-group, it follows that
A/p(A) is an SC-group by Lemma 6. But, again Lemma 6 implies that A
is an SM-group. Consider now the case that N is not contained in ¢(A),
and let M be a maximal subgroup of A such that A = NM. Since A and
B are tce-permutable subgroups and NV is normal in G, we may assume that
M permutes with B. Then G = AB = NMB = MB is the product of
the tce-permutable subgroups M and B, because N < ¢(G). The choice
of (G, A, B) implies that M and B are SM-groups. On the other hand,
A=ANMB = M(AnN B) is the product of the tcc-permutable subgroups
M and ANB. By Corollary 3(i), ANB is a supersoluble group. Consequently,
AN B is an SC-group and so also an SM-group. Hence, Part (i) implies now
that A is an SM-group, and the claim is proved.

Analogously, B is an SM-group, which provides the final contradiction
and concludes the proof. O]

Now we consider the relationship between tce-permutability and the classes
T, PT and PST. We recall that these three classes are closed under taking
quotient groups and normal subgroups.

Again as application of the cover-avoidance property in tcc-permutable
products of groups, obtained in Corollary 1, we will show first that the prop-
erty of being a T-group, a PT-group or a PST-group is inherited by the
factors in a tce-permutable product (Theorem 4 below). Corresponding re-
sults have been obtained for pairwise totally permutable products of sub-
groups ([19, Theorem C]; see also [8, Theorem B]) as well as for mutually
permutable products of two factors ([18, Theorem 5]). In fact, in order to
prove Theorem 4 it is possible to argue as in the proof of [18, Theorem 5], tak-
ing into account Corollary 1, and after stating, as in the referred paper, the
results about the soluble radical and residual in Part (i) and first statement
of Part (ii) of the next Proposition 3.

Regarding Part (i) of Proposition 3, the behaviour of the F-residual in
a tce-permutable product, for a saturated formation F containing all super-
soluble groups, has been studied in [6] (under the additional hypothesis that
F C §) and [4] (in the general case). The required result here, for the soluble
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residual, is a particular case of [6, Corollary 1.5] (see also [4, Corollary 7))
when considering the formation of all soluble groups.

On the other hand, a corresponding result to the first statement in the
next Proposition 3 (ii), for mutually permutable products, has been obtained
in [18, Theorem 4]. Taking into account [6, Lemma 2.3], Lemma 5 and
Lemma 1, it is also possible to adapt the arguments in the proof of [18,
Theorem 4], to prove that Xs = XNGs for X € {A, B} and a tce-permutable
product G = AB of subgroups A and B.

It is observed in [18, Example] that in general Gs # AsBs in a mutually
permutable product G = AB of subgroups A and B. However, as proved
next, this result holds for tcec-permutable products.

We state now the following result:

Proposition 3. Let the group G = AB be the product of tcc-permutable
subgroups A and B. Then:

(i) (/6, Corollary 1.5], [4, Corollary 7]) AS and B are normal subgroups
in G and G° = A°BS.

(11) AS =AnN GS, BS =BnN GS; and GS = AsBs.

Proof. By the previous comments, we need only to prove that Gs = AsBs.

Assume that this result is false and let the group G = AB be a counterex-
ample with |G| minimal, and A and B subgroups as in the statement. By
Lemma 1, we have that AsBs = (AN Gs)(B N Gs) is a normal subgroup
of G and AsBs < Gs. Assume first that AsBs # 1. We notice that
G/AsBs = (ABs/AsBs)(BAs/AsBs) is the tce-permutable product of the
subgroups ABs/AsBs y BAs/AsBs. Moreover, (G/AsBs)s = Gs/AsDBs.
Whence, the choice of G implies that:

1 7é GS/ASBS = (G/A$B$>S = (ABs/ASBs)S(BAs/AsBs)S
((Gs/AsBs) N (ABs/AsBs))((Gs/AsBs) N (BAs/AsBs))
= ((GS N A)BS/ASBS)((GS N B)AS/ASBs) = AsBS/AsBs,

a contradiction.

Hence, AsBs = 1 and S := Gs # 1. Also, A # 1 and B # 1. We
claim that AS is a proper subgroup of GG. Assume that AS = G. We notice
that S < BS, and so BS = BSNG = BSNAS = (BSNA)S, which
implies that BS N A # 1. Since [A, B] < S, by [4, Theorem 4], we have that
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[BSNA A <SNA= As =1, which implies that 1 # BSNA < Z(A) <
As =1, a contradiction which proves the claim.

Now, on the one hand, AS = ASNG = ASN AB = A(AS N B) is the
tce-permutable product of the subgroups A and AS N B. The choice of G
implies that (AS)S = AS(AS N B)S = (AS N B)g S B.

On the other hand, S < (AS)s = S((AS)sNA) =SAs=S.

Consequently, S = (AS)s < B, which implies S < Bs = 1, the final
contradiction which proves the result. O

Remark 2. 1. Example (iii) in Remark 1 shows that the soluble radicals of
the factors in a tce-permutable product are not necessarily normal subgroups
in the whole group.

2. Totally permutable products in the context of Fitting classes have been
studied in [28]-[30]. Particularly, a corresponding result to Proposition 3 (ii)
for a general Fischer class containing all supersoluble groups, instead of the
class § of soluble groups, and a pairwise totally permutable product of sub-
groups appears in [30, Theorem 1].

We still follow the notation introduced in [18], to prove the corresponding
above-mentioned Theorem 5 there. Let © € {T,PT,PST}. A subnormal
subgroup H of a group G is said to be ©-well embedded in G if

(a) H is a normal subgroup of G for © =T,

(b) H is a permutable subgroup in G for © = PT,

(c) H is an S-permutable subgroup in G for © = PST,
Consequently, the following result holds:

Theorem 4. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. If G € ©, then A, B € ©.

Remark 3. The converse of Theorem 4 does not hold in general, not even
if the group G = AB is a product of totally permutable subgroups A and B,
as stated in [19], as well as in [8]; the direct product of the symmetric group
of degree three with a cyclic group of order three is an example. Though
Theorem C in [8] shows that a positive result is possible for totally permutable
products of two subgroups under the additional hypothesis that the indices
of the factors are coprime. We prove next that a corresponding result for
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tce-permutable products still holds. Using the above notation we formulate
and prove the following theorem. We notice that some arguments used here
appear in [8, Theorem C].

Theorem 5. Let the group G = AB be the product of the tcc-permutable
subgroups A and B. Assume that (|G : A|,|G : B|) = 1. If A, B € ©, then
G € 0o.

Proof. Assume that the result is false and let G = AB be a counterexample

with |G| is minimal and A and B tcc-permutable. Let H be a subnormal
subgroup of G of minimal order such that H is not ©-well embedded in G.
We split the proof into the following steps:

Step 1. Coreg(H) =1 and H has a unique maximal normal subgroup.

Set L = Coreg(H) and assume that L # 1. Since the factor group
G/L = (AL/L)(BL/L) satisfies the hypotheses of the result, the choice of
G implies that H/L is ©-well embedded in G/L. Therefore, H is O-well
embedded in G, a contradiction. Then L = 1. Let M; and M, be two
maximal normal subgroups of H. The choice of H implies now that M,
and M, are O-well embedded in G. Consequently, H = M;M, is O-well
embedded in GG, a contradiction which completes the proof of Step 1.

Step 2. H is a soluble group.

Let T = HS denote the soluble residual of H. We notice that A and B
are SM-groups, and so is GG, by Theorem 3. Therefore, Lemma 6 implies that
T is a normal subgroup of GG, because T is a perfect subnormal subgroup of
G. Consequently, T' < Coreg(H) = 1 and H is a soluble group, as claimed.

Step 3. The final contradiction.
Now, we distinguish the following cases:

Case © = 7. From Step 1, Step 2 and the minimal choice of H, we deduce
that H is a p-group for some prime p. W.l.o.g. we may assume that p does
not divide |G : Al, because (|G : A|,|G : B|) = 1. Hence, H < 0,(G) < A
and H is a normal subgroup of A, because A is a T-group. We claim that
H is normalized by B. We notice first that |B| = |A N B||G : A|, and
consequently a Sylow p-subgroup of AN B is a Sylow p-subgroup of B which
normalizes H. Moreover, by hypothesis, for each prime ¢ # p dividing the
order of B, there exists a Sylow g-subgroup B, of B which permutes with H.
But then H is normalized by B, since H is a subnormal Sylow p-subgroup
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of HB,, and the claim follows. Consequently, H is a normal subgroup of G,
a contradiction.

Case © = PT or © = PTS. Since H is not ©-well embedded in G, we
claim that there is a p-subgroup P of G, for some prime p, which does not
permute with H, and which is a Sylow p-subgroup of G in the case © = PTS.
If © = PT, there exists a subgroup W of G which does not permutes with
H. Therefore, for some prime p, there exists a Sylow p-subgroup P of W
such that P does not permute with H. The case © = PTS is obvious,
and the claim is proved. W.l.o.g. we may assume that p does not divide
|G : A|. For any g € G it is well-known that G = AYB, and also A9 and
B are tce-permutable subgroups ([6, Lemma 2.1]). Therefore, we may also
assume that P < A. By Step 1 and Step 2, there exists a unique maximal
normal subgroup M of H and H/M is a cyclic group of prime order, ¢ say.
The minimal choice of H implies that M P = PM. Assume first that ¢ does
not divide |G : A|. Then a Sylow ¢-subgroup A, of A is a Sylow g-subgroup
of G and A, N H is a Sylow ¢-subgroup of H, since H is subnormal in G.
Consequently, H = M(HNA). But HNA is a subnormal subgroup of A € O,
which implies that H N A permutes with P < A, and so H permutes with
P, a contradiction. Consequently, ¢ divides |G : A| and so g does not divide
|G : B|. As before, if B, is a Sylow ¢-subgroup of B, then H, := B,N H is a
Sylow g-subgroup of H, which is contained in B, and H = M H,. Let N be a
minimal normal subgroup of G. We observe that N is simple, because G is an
SC-group by Theorem 2. Moreover, since N normalizes H and Coreg(H) = 1
by Step 1, it follows that [N, H] < NNH = 1, i.e. N centralizes H. Now, the
choice of G implies that HN/N is O-well embedded in G/N and so HNP
is a subgroup of G. By hypothesis there exists x € (H,, P) < HNP such
that H;P = PH;, where x = hny with h € H, n € N and y € P. Then
H(?P = PHé‘, because N centralizes H. Therefore, P permutes H = MH(?,
the final contradiction which concludes the proof. O
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