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Abstract

In this paper we introduce a metric on the space I(X) of idempotent
probability measures on a given compact metric space (X, ρ), which
extends the metric ρ. It is proven the introduced metric generates the
pointwise convergence topology on I(X).
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1. Introduction

Idempotent mathematics is based on replacing the usual arithmetic opera-
tions with a new set of basic operations, i. e., on replacing numerical fields by
idempotent semirings and semifields. Typical example is the so-called max-plus
algebra Rmax.

Many authors (S. C. Kleene, S. N. N. Pandit, N. N. Vorobjev, B. A. Carré,
R. A. Cuninghame-Green, K. Zimmermann, U. Zimmermann, M. Gondran,
F. L. Baccelli, G. Cohen, S. Gaubert, G. J. Olsder, J.-P. Quadrat, and others)
used idempotent semirings and matrices over these semirings for solving some
applied problems in computer science and discrete mathematics, starting from
the classical paper by S. C. Kleene [7].
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The modern idempotent analysis (or idempotent calculus, or idempotent
mathematics) was founded by V. P. Maslov and his collaborators [10]. Some
preliminary results are due to E. Hopf and G. Choquet, see [2], [5].

Idempotent mathematics can be treated as the result of a dequantization
of the traditional mathematics over numerical fields as the Planck constant h
tends to zero taking imaginary values. This point of view was presented by
G. L. Litvinov and V. P. Maslov [11]. In other words, idempotent mathematics
is an asymptotic version of the traditional mathematics over the fields of real
and complex numbers.

The basic paradigm is expressed in terms of an idempotent correspondence
principle. This principle is closely related to the well-known correspondence
principle of N. Bohr in quantum theory. Actually, there exists a heuristic corre-
spondence between important, interesting, and useful constructions and results
of the traditional mathematics over fields and analogous constructions and re-
sults over idempotent semirings and semifields (i. e., semirings and semifields
with idempotent addition).

A systematic and consistent application of the idempotent correspondence
principle leads to a variety of results, often quite unexpected. As a result, in
parallel with the traditional mathematics over fields, its “shadow,” idempo-
tent mathematics, appears. This “shadow” stands approximately in the same
relation to traditional mathematics as classical physics does to quantum theory.

Recall [10] that a set S equipped with two algebraic operations: addition ⊕
and multiplication �, is said to be a semiring if the following conditions are
satisfied:

• the addition ⊕ and the multiplication � are associative;
• the addition ⊕ is commutative;
• the multiplication � is distributive with respect to the addition ⊕:

x� (y ⊕ z) = x� y ⊕ x� z and

(x⊕ y)� z = x� z ⊕ y � z

for all x, y, z ∈ S.

A unit of a semiring S is an element 1 ∈ S such that 1 � x = x � 1 = x
for all x ∈ S. A zero of the semiring S is an element 0 ∈ S such that 0 6= 1
and 0 ⊕ x = x ⊕ 0 = x for all x ∈ S. A semiring S is called an idempotent
semiring if x⊕x = x for all x ∈ S. A (an idempotent) semiring S with neutral
elements 0 and 1 is called a (an idempotent) semifield if every nonzero element
of S is invertible. Note that diöıds, quantales and inclines are examples of
idempotent semirings [10].

Let R = (−∞, +∞) be the field of real numbers and R+ = [0, +∞) be the
semiring of all nonnegative real numbers (with respect to the usual addition
and multiplication). Consider a map Φh : R+ → S = R∪{−∞} defined by the
equality

Φh(x) = h ln x, h > 0.
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Let x, y ∈ X and u = Φh(x), v = Φh(y). Put u⊕h v = Φh(x+ y) and u� v =
Φh(xy). The imagine Φh(0) = −∞ of the usual zero 0 is a zero 0 and the
imagine Φh(1) = 0 of the usual unit 1 is a unit 1 in S with respect to these
new operations. Thus S obtains the structure of a semiring R(h) isomorphic
to R+.

A direct check shows that u ⊕h v → max{u, v} as h → 0. The convention
−∞� x = −∞ allows us to extend ⊕ and � over S. It can easily be checked
that S forms a semiring with respect to the addition u ⊕ v = max{u, v} and
the multiplication u � v = u + v with zero 0 = −∞ and unit 1 = 0. Denote
this semiring by Rmax; it is idempotent, i. e., u⊕ u = u for all its elements u.
The semiring Rmax is actually a semifield. The analogy with quantization is
obvious; the parameter h plays the role of the Planck constant, so R+ can be
viewed as a “quantum object” and Rmax as the result of its “dequantization”.
This passage to Rmax is called the Maslov dequantization (for details, see [8],
[9], [15]).

The notion of idempotent (Maslov) measure finds important applications in
different parts of mathematics, mathematical physics and economics (see the
survey article [10] and the bibliography therein). Topological and categorical
properties of the functor of idempotent measures were studied in [16], [17].
Although idempotent measures are not additive and the corresponding func-
tionals are not linear, there are some parallels between topological properties
of the functor of probability measures and the functor of idempotent mea-
sures (see, for example [15], [14], [16]) which are based on existence of natural
equiconnectedness structure on both functors.

However, some differences appear when the problem of the metrizability of
the space of idempotent probability measures is studied. The problem of the
metrizability of the space of the usual probability measures was investigated in
[3]. We show that the analog of the metric introduced in [3] (on the space of
probability measures) is not a metric on the space of idempotent probability
measures. We show the mentioned analog is only a pseudometric.

It is well-known that if (X, ρ) is a compact metric space, then the space
P (X) of probability measures can be endowed with the Kantorovich metric.
In [17], M. Zarichnyi posed the problem of building a metric on the space of
idempotent probability measures. Still the problem of existence of a natural
metrization of the space I(X) has been open. In this paper we give a positive
answer and introduce a metric on the space of idempotent probability measures.

2. Idempotent probability measures. Preliminaries

Let X be a compact Hausdorff space, C(X) be the algebra of continuous
functions on X with the usual algebraic operations. On C(X) the operations
⊕ and � are determined by ϕ⊕ ψ = max{ϕ,ψ} and ϕ� ψ = ϕ+ ψ where ϕ,
ψ ∈ C(X).
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Recall [17] that a functional µ : C(X) → R is said to be an idempotent
probability measure on X if it satisfies the following properties:

(1) µ(λX) = λ for all λ ∈ R, where λX is a constant function;
(2) µ(λ� ϕ) = λ� µ(ϕ) for all λ ∈ R and ϕ ∈ C(X);
(3) µ(ϕ⊕ ψ) = µ(ϕ)⊕ µ(ψ) for all ϕ, ψ ∈ C(X).
For a compact Hausdorff spaceX by I(X) we denote the set of all idempotent

probability measures on X. Since I(X) ⊂ RC(X), we consider I(X) as a
subspace of RC(X). A family of sets of the form

〈µ; ϕ1, . . . , ϕn; ε〉 = {ν ∈ I(X) : |ν(ϕi)− µ(ϕi)| < ε, i = 1, . . . , n}

is a base of open neighbourhoods of a given idempotent probability measure µ ∈
I(X) according to the induced topology, where ϕi ∈ C(X), i = 1, . . . , n, and
ε > 0. It is obvious that the induced topology and the pointwise convergence
topology on I(X) coincide.

Let X, Y be compact Hausdorff spaces and f : X → Y be a continuous
map. It is easy to check that the map I(f) : I(X) → I(Y ) determined by the
formula I(f)(µ)(ψ) = µ(ψ ◦ f) is continuous. The construction I is a normal
functor acting in the category of compact Hausdorff spaces and their continuous
maps. Therefore, for each idempotent probability measure µ ∈ I(X) one may
determine its support :

suppµ =
⋂{

A ⊂ X : A = A, µ ∈ I(A)
}
.

Consider functions of the type λ : X → [−∞, 0]. On a given set X we
determine a max-plus-characteristic function ⊕χA : X → Rmax of a subset
A ⊂ X by the rule

⊕χA(x) =

{
0 at x ∈ A,
−∞ at x ∈ X \A.

(2.1)

For a singleton {x} we will write ⊕χx instead of ⊕χ{x}.
Let F1, F2, . . . ,Fn be a disjoint system of closed sets of a space X, and a1,

a2, . . . , an be non-positive real numbers. A function

⊕χa1, ..., anF1, ..., Fn
(x) =



a1 at x ∈ F1,

. . . ,

an at x ∈ Fn,

−∞ at x ∈ X \
n⋃
i=1

Fn

(2.2)

we call the max-plus-step-function defined by the sets F1, F2, . . . , Fn and the
numbers a1, a2, . . . , an.

Note that

⊕χaA(x) = a� ⊕χA(x) =

{
0� a at x ∈ A,
−∞ at x ∈ X \A

=

{
a at x ∈ A,
−∞ at x ∈ X \A
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for a set A in X and a non-positive number a. Consequently, for a disjoint
system of closed sets F1, F2, . . . ,Fn in a space X, and non-positive real numbers
a1, a2, . . . , an we have

⊕χa1, ..., anF1, ..., Fn
(x) = ⊕χa1F1

(x)⊕ ⊕χa2F2
(x)⊕ . . . ⊕ ⊕χanFn

(x).

In the case when F1, F2, . . . ,Fn are singletons, say Fi = {xi}, i = 1, . . . , n, we
have

(2.3) ⊕χa1, ..., an{x1}, ..., {xn} = ⊕χa1{x1} ⊕
⊕χa2{x2} ⊕ . . . ⊕ ⊕χan{xn}.

The notion of density for an idempotent measure was introduced in [8],
where the main result on the existence on densities for arbitrary measures
was proved. A more detailed exposition is given in [9] – the first systematic
monograph on the idempotent analysis. Later the paper [1] appeared, where
further investigations of densities were done. Let µ ∈ I(X). Then we can
define a function dµ : X → [−∞, 0] by the formula
(2.4)
dµ(x) = inf{µ(ϕ) : ϕ ∈ C(X) such that ϕ ≤ 0 and ϕ(x) = 0}, x ∈ X.

The function dµ is upper semicontinuous and is called the density of µ. Con-
versely, each upper semicontinuous function f : X → [−∞, 0] with max{f(x) :
x ∈ X} = 0 determines an idempotent measure νf by the formula

(2.5) νf (ϕ) =
⊕
x∈X

f(x)� ϕ(x), ϕ ∈ C(X).

Note that a function f : X → R is said to be upper semicontinuous if for
each x ∈ X, and for every real number r which satisfies f(x) < r, there exists
an open neighbourhood U ⊂ X of x such that f(x′) < r for all x′ ∈ U . It is
easy to see that functions defined by (2.1) or by (2.2) are upper semicontinuous.

Put

US(X) =
{
λ : X → [−∞, 0]

∣∣ λ is upper semicontinuous and there exists a

x0 ∈ X such that λ(x0) = 0
}
.

Then we have

I(X) =

{⊕
x∈X

λ(x)� δx : λ ∈ US(X)

}
.

Obviously that
⊕
x∈X

⊕χx0
(x) � δx = δx0

, i. e. for a max-plus-characteristic

function ⊕χx0 formula (2.5) defines the Dirac measure δx0 supported on the
singleton {x0}. A set of all Dirac measures on a Hausdorff compact space X
we denote by δ(X). It is easy to notice that the space X and the subspace
δ(X) ⊂ I(X) are homeomorphic. This phenomenon gives us the opportunity
to consider X as subspace of I(X).

Let A be a closed subset of a compact Hausdorf space X. It is easy to check
that ν ∈ I(A) iff {x ∈ X : dν(x) > −∞} ⊂ A. Hence,

supp ν = {x ∈ X : dν(x) > −∞}.
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It is evident that supp ν = {x1, . . . , xn} if and only if the density dν of ν
has the shape (2.3) for singletons {x1}, . . . , {xn} and for some non-negative
numbers a1, . . . , an with ai > −∞, i = 1, . . . , n, and max{a1, . . . , an} = 0.
In this case ν is said to be an idempotent probability measure with finite support.
A subset of I(X) consisting of all idempotent probability measures with finite
support we denote by Iω(X).

Consider an idempotent probability measure µ =
⊕
x∈X

λ(x)� δx ∈ I(X) and

a finite system {U1, . . . , Un} of open sets Ui ⊂ X such that suppµ ∩ Ui 6= ∅,

i = 1, . . . , n, and suppµ ⊂
n⋃
i=1

Ui. Define a set

(2.6) 〈µ; U1 . . . , Un; ε〉 =
{
ν =

⊕
x∈X

γ(x)� δx ∈ I(X) :

supp ν ∩ Ui 6= ∅, supp ν ⊂
n⋃
i=1

Ui, and |λ(x)− γ(y)| < ε

at the points x ∈ suppµ ∩ Ui and y ∈ supp ν ∩ Ui, i = 1, . . . , n,
}
.

Theorem 2.1. The sets of the type (2.6) form a base of the pointwise conver-
gence topology in I(X).

Proof. Let 〈µ; ϕ; ε〉 be a prebase element, where ϕ ∈ C(X), ε > 0 and µ =⊕
x∈X

λ(x) � δx ∈ I(X). As ϕ is continuous, for each point x ∈ suppµ there is

its open neighbourhood Ux in X such that for any point y ∈ Ux the inequality
|ϕ(x)−ϕ(y)| < ε

2 holds. From the open cover {Ux : x ∈ suppµ} in X of suppµ
by owing to compactness of suppµ one can choose a finite subcover {Ui : i =
1, . . . , n}. Further, for every ν =

⊕
x∈X

γ(x)� δx ∈ 〈µ; U1, . . . , Un; ε
2 〉 we have

|λ(x)− γ(y)| < ε
2 at x ∈ suppµ ∩ Ui and y ∈ supp ν ∩ Ui. Let us estimate the

following absolute value |µ(ϕ)−ν(ϕ)| =
∣∣∣∣ ⊕
x∈X

λ(x)� ϕ(x)−
⊕
x∈X

γ(x)� ϕ(x)

∣∣∣∣ =

a.
Two cases are possible:
Case 1 :

⊕
x∈X

λ(x)�ϕ(x) ≥
⊕
x∈X

γ(x)�ϕ(x). Let
⊕
x∈X

λ(x)�ϕ(x) = λ(x′)�

ϕ(x′). Then x′ ∈ Ui for some i, and

a =
⊕
x∈X

λ(x)� ϕ(x)−
⊕
x∈X

γ(x)� ϕ(x) = λ(x′)� ϕ(x′)−
⊕
x∈X

γ(x)� ϕ(x) ≤

≤ (for every y ∈ supp ν ∩ Ui) ≤
≤ λ(x′)� ϕ(x′)− γ(y)� ϕ(y) = |λ(x′)� ϕ(x′)− γ(y)� ϕ(y)| ≤

≤ |λ(x′)− γ(y)|+ |ϕ(x′)− ϕ(y)| < ε

2
+
ε

2
= ε.
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Case 2 :
⊕
x∈X

λ(x)�ϕ(x) ≤
⊕
x∈X

γ(x)�ϕ(x). Let
⊕
x∈X

γ(x)�ϕ(x) = γ(x′)�

ϕ(x′). Then x′ ∈ Ui for some i, and

a =
⊕
x∈X

γ(x)� ϕ(x)−
⊕
x∈X

λ(x)� ϕ(x) = γ(x′)� ϕ(x′)−
⊕
x∈X

λ(x)� ϕ(x) ≤

≤ (for every y ∈ suppµ ∩ Ui) ≤
≤ γ(x′)� ϕ(x′)− λ(y)� ϕ(y) = |γ(x′)� ϕ(x′)− λ(y)� ϕ(y)| ≤

≤ |λ(x′)− γ(y)|+ |ϕ(x′)− ϕ(y)| < ε

2
+
ε

2
= ε.

So, |µ(ϕ)− ν(ϕ)| < ε. From here ν ∈ 〈µ;ϕ; ε〉, in other words,〈
µ; U1, . . . , Un;

ε

2

〉
⊂ 〈µ; ϕ; ε〉.

�

Theorem 2.1 immediately yields the following statement.

Corollary 2.2. The subset Iω(X) is everywhere dense in I(X) with respect to
the pointwise convergence topology.

We recall some concepts from [13] and if necessary, modify them for the
max-plus case . Let X and Y be compact Hausdorff spaces, f : X → Y
be a map, f◦ : C(Y ) → C(X) be the induced operator defined by equality
f◦(ϕ) = ϕ ◦ f , ϕ ∈ C(Y ). We say that an operator u : C(X) → C(Y ) is a
max-plus-linear operator provided u(α � ϕ ⊕ β � ψ) = α � u(ϕ) ⊕ β � u(ψ)
for every pair of functions ϕ, ψ ∈ C(X), where −∞ ≤ α, β ≤ 0, α ⊕ β = 0.
A max-plus-linear operator u : C(X) → C(Y ) is max-plus-regular provided
‖u‖ = sup{‖u(ϕ)‖ : ϕ ∈ C(X), ‖ϕ‖ ≤ 1} = 1 and u(1X) = 1Y . A max-plus-
linear operator u : C(X) → C(Y ) is said to be a max-plus-linear exave for f
provided f◦ ◦ u is the identity on f◦(C(Y )) or equivalently f◦ ◦ u ◦ f◦ = f◦. A
max-plus-regular exave is a max-plus-linear exave which is a regular operator.
If f is a homeomorphic embedding, then a max-plus-linear exave (max-plus-
regular exave) for f is called max-plus-linear extension operator (max-plus-
regular extension operator). If f is a surjective map, then a max-plus-linear
exave (max-plus-regular exave) for f is called max-plus-linear averaging oper-
ator (max-plus-regular averaging operator).

Remind, in category theory a monomorphism (an epimorphism) is a left-
cancellative (respectively, right-cancellative) morphism, that is, a morphism
f : Z → X (respectively, f : X → Y ) such that, for each pair of morphisms g1,
g2 : Y → Z the following implication holds

f ◦ g1 = f ◦ g2 ⇒ g1 = g2 (respectively, g1 ◦ f = g2 ◦ f ⇒ g1 = g2).

If u is an exave for f : X → Y and y ∈ f(X), then for every function
ϕ ∈ C(Y ) we have

(u ◦ f◦)(ϕ)(y) = ϕ(y).
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Proposition 2.3. Let f : X → Y be a map. A max-plus-regular operator
u : C(X)→ C(Y ) is a max-plus-regular extension (respectively, averaging) op-
erator if and only if f◦ ◦ u = idC(X) (respectively, u ◦ f◦ = idC(Y )).

Proof. Let u be a max-plus-regular extension (respectively, averaging) opera-
tor. Then the induced operator f◦ : C(Y )→ C(X) is an epimorphism (respec-
tively, monomorphism). That is why equalities f◦ ◦ u ◦ f◦ = f◦ = idC(X) ◦ f◦
imply f◦ ◦ u = idC(X) (respectively, f◦ ◦ u ◦ f◦ = f◦ = f◦ ◦ idC(Y ) imply
u ◦ f◦ = idC(Y )).

Let u be a max-plus-regular operator and f◦ ◦ u = idC(X). It requires to
show f : X → Y is an embedding. Suppose f(x1) = f(x2), x1, x2 ∈ X. Assume
there exists a function ϕ ∈ C(X) such that ϕ(x1) 6= ϕ(x2). Conversely, we have
ϕ(x1) = f◦ ◦ u(ϕ)(x1) = u(ϕ)(f(x1)) = u(ϕ)(f(x2)) = f◦ ◦ u(ϕ)(x2) = ϕ(x2).
We get a contradiction. So, x1 = x2.

Let u be a max-plus-regular operator and u ◦ f◦ = idC(Y ). We should show
that f : X → Y is a surjective map. Suppose f is not so. Then Y \ f(X) 6= ∅
and for every y ∈ Y \f(X), since the image f(X) is a compact Hausdorff space,
any ϕ : f(X)→ R has different extensions ϕ1, ϕ2 : Y → R such ϕ1(y) 6= ϕ2(y).
Hence, ϕ1 6= ϕ2. On the other hand ϕ1 = u ◦ f◦(ϕ1) = u ◦ f◦(ϕ2) = ϕ2. The
obtained contradiction finishes the proof.

�

An epimorphism f : X → Y is said to be a max-plus-Milutin epimorphism
provided it permits a max-plus-regular averaging operator. A compact Haus-
dorff space X is a max-plus-Milutin space if there exists a max-plus-Milutin
epimorphism f : Dτ → X [13]. Every compact metrizable space is a Milutin
space ([4], Corollary VIII.4.6.). Analogously, every compact metrizable space
is a max-plus-Milutin space.

3. An analog of the Kantorovich metric

It is well-known (see, for example [4]) that every zero-dimensional space
of the weight m ≥ ℵ0 embeds into Cantor cube Dm. Consequently, a zero-
dimensional compact metrizable space is a max-plus-Milutin space.

Let µi =
⊕
x∈X

λi(x)� δx ∈ I(X), i = 1, 2. Put

Λ1 2 = Λ(µ1, µ2) = {ξ ∈ I(X2) : I(πi)(ξ) = µi, i = 1, 2},

where πi : X × X → X is the projection onto i-th factor, i = 1, 2. We will
show the set Λ(µ1, µ2) is nonempty. Let xi 0 ∈ suppµi be points such that
λi(xi 0) = 0, i = 1, 2. Then the direct checking shows that I(πi)(ξ) = µi,
i = 1, 2, for all ξ ∈ I(X2) of the form ξ = ξ0 ⊕R(µ1, µ2). Here

ξ0 = 0� δ(x1 0, x2 0)

⊕
x∈X\{x1 0}

λ2(x)� δ(x1 0, x) ⊕
⊕

x∈X\{x2 0}

λ1(x)� δ(x, x2 0)
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is an idempotent probability measure on X2, and

R(µ1, µ2) =
⊕

x∈X\{x1 0}
y∈X\{x2 0}

γ(x, y)� δ(x, y)

is some functional on C(X) where

−∞ ≤ γ(x, y) ≤ min{λ1(x), λ2(y)}, x ∈M, y ∈ N,
M ⊂ X \ {x1 0}, N ⊂ X \ {x2 0}.

Thus ξ ∈ Λ(µ1, µ2), i. e. Λ(µ1, µ2) 6= ∅. In fact, here more is proved: it
is easy to see if |X| ≥ 2 and |Y | ≥ 2 then quantity of the numbers γ(x, y) is
uncountable. From here one concludes that the potency of the set Λ(µ1, µ2)
is no less than continuum potency as soon as each of the supports suppµi,
i = 1, 2, contains no less than two points.

Note that ξ = ξ0 if one takes empty set as K and M .
Idempotent probability measures ξ ∈ I(X2) with I(πi)(ξ) = µi, i = 1, 2 we

will call as a coupling of µ1 and µ2.
The following statement is rather evident.

Proposition 3.1. Let µi =
⊕
x∈X

λi(x)� δx, i = 1, 2, be idempotent probability

measures. Then every their coupling ξ =
⊕

(x, y)∈X2

λ1 2(x, y) � δ(x, y) ∈ I(X2)

satisfies the following equalities:

λ1(x) =
⊕
y∈X

λ1 2(x, y), x ∈ X, and λ2(y) =
⊕
x∈X

λ1 2(x, y), y ∈ X.

Consider a compact metrizable space (X, ρ). We define a function ρ0 : I(X)×
I(X)→ R by the formula

ρ0(µ1, µ2) = inf{ξ(ρ) : ξ ∈ Λ1 2}.

This function was offered by V. V. Uspenskii and in [3] it was proved that it is
a metric on the space P (X) of probability measures. Its analog for idempotent
probability measures is not a metric on the space of idempotent probability
measures.

L. V. Kantorovich, G. Sh. Rubinshtein offer another metric on the space of
all measures [6]. For the space of probability measures their metric has the
form

ρK(µ1, µ2) = inf{ξ(ρ) : ξ ∈ P (X ×X), P (π1)(ξ)− P (π2)(ξ) = µ1 − µ2}.

In [12] it was shown that on the space of all probability measures the above
metrics ρ0 and ρK coincide.

Proposition 3.2. For every pair µ1, µ2 ∈ I(X) there exists a coupling ξ ∈
I(X2) of µ1 and µ2 such that

ρ0(µ1, µ2) = ξ(ρ).
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Proof. Consider a sequence {ξn} of couplings of µ1 and µ2 such that ξn(ρ) −→
ρ0(µ1, µ2). Passing in the case of need to a subsequence, owing to the compact-
ness of I(X2), it is possible to assume that {ξn} tends to some ξ ∈ I(X2). Since
the projections I(πi) are continuous, ξ is a coupling of µ1 and µ2. Further, for
an arbitrary ε > 0 there exists n0 such that ξn ∈ 〈ξ; ρ; ε〉 for all n ≥ n0, where
〈ξ; ρ; ε〉 is a prebase neighbourhood of ξ in the pointwise convergence topology
on I(X2). So, |ξ(ρ)− ξn(ρ)| < ε. Consequently, ρ0(µ1, µ2) = ξ(ρ).

�

Proposition 3.3. The function ρ0 is a pseudometric on I(X).

Proof. Since each ξ ∈ I(X2) is order-preserving then the inequality ρ ≥ 0
immediately implies ρ0 ≥ 0. So, ρ0 is nonnegative. Obviously, ρ0 is symmetric.

Let µ1 = µ2 = µ. There exists λ ∈ US(X) such that µ =
⊕
x∈X

λ(x) � δx.

Then ξµ =
⊕
x∈X

λ(x)� δ(x, x) is a coupling of µ1 and µ2, and

0 ≤ ρ0(µ1, µ2) = inf{ξ(ρ) : ξ ∈ Λ1 2} ≤ ξµ(ρ) =
⊕
x∈X

λ(x) = 0,

i. e. ρ0(µ1, µ2) = 0.
Let us show that the triangle inequality is true as well. Take arbitrary triple

µi ∈ I(X), i = 1, 2, 3. Let µ1 2, µ2 3 ∈ I(X2) be couplings of µ1 and µ2, and µ2

and µ3, respectively, such that ρ0(µ1, µ2) = µ1 2(ρ) and ρ0(µ2, µ3) = µ2 3(ρ),
respectively. For a compact Hausdorff space X we put

X1 = X2 = X3 = X, X1 2 3 = X3 = X1 ×X2 ×X3,

Xi j = X2 = Xi ×Xj ,

and let

π1 2 3
i j : X1 2 3 → Xi j , πi jk : Xi j → Xk, 1 ≤ i < j ≤ 3, k ∈ {i, j},

be corresponding projections.
According to Corollary 4.3 [17] the functor I is bicommutative. Using this

fact one can similarly to Lemma 4 [3] show that for idempotent probability
measures

µ2 ∈ I(X2), µ1 2 ∈ I(X1 2), µ2 3 ∈ I(X2 3)

such that

I(π1 2
2 )(µ1 2) = µ2 = I(π2 3

2 )(µ2 3),

there exists µ1 2 3 ∈ I(X1 2 3) which satisfies the equalities

I(π1 2 3
1 2 )(µ1 2 3) = µ1 2 and I(π1 2 3

2 3 )(µ1 2 3) = µ2 3.

Put

(3.1) µ1 3 = I(π1 2 3
1 3 )(µ1 2 3).
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Then according to Proposition 3.1 µ1 3 is a coupling of µ1 and µ3. Using
Proposition 3.1, we obtain

ρ0(µ1, µ2) + ρ0(µ2, µ3) = µ1 2(ρ) + µ2 3(ρ) =

=
⊕

(x1, x2)∈X1 2

dµ1 2
(x1, x2)� ρ(x1, x2) +

⊕
(x2, x3)∈X2 3

dµ2 3
(x2, x3)� ρ(x2, x3) =

=
⊕

(x1, x2, x3)∈X1 2 3

dµ1 2 3
(x1, x2, x3)� ρ(x1, x2)+

+
⊕

(x1, x2, x3)∈X1 2 3

dµ1 2 3
(x1, x2, x3)� ρ(x2, x3) ≥

≥
⊕

(x1, x2, x3)∈X1 2 3

(dµ1 2 3
(x1, x2, x3)� ρ(x1, x2)+

+dµ1 2 3
(x1, x2, x3)� ρ(x2, x3)) =

=
⊕

(x1, x2, x3)∈X1 2 3

dµ1 2 3
(x1, x2, x3)� (ρ(x1, x2) + ρ(x2, x3)) ≥

≥
⊕

(x1, x2, x3)∈X1 2 3

dµ1 2 3
(x1, x2, x3)� ρ(x1, x3) =

=
⊕

(x1, x3)∈X1 3

dµ1 3
(x1, x3)� ρ(x1, x3) = µ1 3(ρ) ≥ ρ0(µ1, µ3),

i. e. ρ0(µ1, µ3) ≤ ρ0(µ1, µ2) + ρ0(µ2, µ3). Here dν is the density function of
the corresponding measure ν ((2.4), see page 39).

�

Unlike usual probability measures, the function ρ0 is not a metric on I(X).

Example 3.4. Let (X, ρ) be a metric space, x, y ∈ X be points such that
ρ(x, y) = 1. Consider idempotent probability measures µ1 = 0�δx⊕ (−2)�δy
and µ2 = 0 � δx ⊕ (−4) � δy. One can directly check that the idempotent
probability measure ξ = 0� δ(x, x) ⊕ (−2)� δ(y, x) ⊕ (−4)� δ(x, y) is a coupling
of µ1 and µ2, and ξ(ρ) = 0. That is why ρ0(µ1, µ2) = 0, though µ1 6= µ2.

Example 3.4 shows that the functors P of probability measures and I of
idempotent probability measures are not isomorphic.

4. On a metric on the space of idempotent probability measures

Let (X, ρ) be a metric compact space. We define distance functions ρ1 : I(X)×
I(X)→ R and ρ2 : Iω(X)× Iω(X)→ R as follows

ρ1(µ1, µ2) = inf{sup{ρ(x, y) : (x, y) ∈ supp ξ} : ξ ∈ Λ1 2},
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where µ1, µ2 ∈ I(X), and

ρ2(µ1, µ2) = inf


∑

(x, y)∈supp ξ
eλ1(x)+λ2(y) · ρ(x, y)∑

x∈suppµ1

eλ1(x) ·
∑

y∈suppµ2

eλ2(y)
: ξ ∈ Λ1 2

 ,

where µi =
⊕
x∈X

λi(x)� δx ∈ Iω(X), i = 1, 2.

It is easy to notice that ρ2 ≤ ρ1 on Iω(X).
The following statement has technical character and its proof consists of

labour-intensive calculations (similarly calculations were done in [16]).

Lemma 4.1. For every pair µi =
⊕
x∈X

λi(x)� δx ∈ Iω(X), i = 1, 2, and for a

coupling ξ ∈ Iω(X2) of µ1 and µ2 we have

ρ2(µ1, µ2) =

∑
(x, y)∈supp ξ

eλ1(x)+λ2(y) · ρ(x, y)∑
x∈suppµ1

eλ1(x) ·
∑

y∈suppµ2

eλ2(y)

if and only if ρ0(µ1, µ2) = ξ(ρ).

Theorem 4.2. The function ρ1 is a metric on I(X) which is an extension of
the metric ρ.

Proof. Obviously, ρ1 is nonnegative and symmetric. If µ1 = µ2 then similarly
to the proof of Proposition 3.3 one can show that ρ1(µ1, µ2) = 0. Inversely,
let ρ1(µ1, µ2) = 0. Then there exists a coupling ξ ∈ Λ1 2 such that ρ(x, y) = 0
for all (x, y) ∈ supp ξ. Consequently supp ξ must lie in the diagonal ∆(X) =
{(x, x) : x ∈ X}. Applying Proposition 3.1, we have dµ1 = dµ2 , which implies
µ1 = µ2. Now, it remains to check the triangle axiom. But the checking
consists only of the repeating of procedure at the proof of Proposition 3.3.

For every pair of Dirac measures δx, δy, x, y ∈ X, the uniqueness of a
coupling ξ ∈ I(X2) of δx and δy, ξ = 0� δ(x, y), implies that

ρ1(δx, δy) = ξ(ρ)⊕ ρ(x, y) = 0� δ(x, y)(ρ)⊕ ρ(x, y) = ρ(x, y).

From here we get that ρ1 is an extension of ρ.
�

Lemma 4.3. diam(I(X), ρ1) = diam(X, ρ).

Proof. Indeed, since we may considerX as a subspace of I(X) we get diam(X, ρ)
≤ diam(I(X), ρ1). On the other hand, by construction we have

ρ1(µ1, µ2) = inf{sup{ρ(x, y) : (x, y) ∈ supp ξ} : ξ ∈ Λ1 2} ≤
≤ sup{ρ(x, y) : (x, y) ∈ supp ξ} ≤ sup{ρ(x, y) : (x, y) ∈ X×X} = diam(X, ρ)

for an arbitrary pair µ1, µ2 ∈ I(X). Consequently, diam(I(X), ρ1) ≤ diam(X, ρ).
�
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Theorem 4.4. The function ρ2 is a metric on Iω(X) which is an extension of
the metric ρ.

Proof. By construction ρ2 is non-negative. It is clear that ρ2 is symmetric.
The above noticed inequality ρ2 ≤ ρ1 on Iω(X) implies that ρ2 satisfies the
identity axiom, i. e. ρ2(µ, ν) = 0 if and only if µ = ν. By definition we have
ρ2(δx, δy) = ρ(x, y).

For a triple µi ∈ Iω(X), i = 1, 2, 3, let µ1 2, µ2 3 ∈ Iω(X2) be couplings
of µ1 and µ2, and µ2 and µ3, respectively, satisfying Proposition 3.2. Let
µ1 3 ∈ Iω(X2) be an idempotent probability measures, defined by (3.1). Then
Proposition 3.1 yields that µ1 3 is a coupling of µ1 and µ3.

Applying Proposition 3.1, Lemma 4.1 and Theorem 2, we have

ρ2(µ1, µ2) + ρ2(µ2, µ3) ≥ ρ2(µ1, µ3).

�

Let µ, ν ∈ I(X).Corollary 2.2 implies the existence of sequences {µn}, {νn} ⊂
Iω(X) converging to µ and ν respectively. We have 0 ≤ ρ2(µn, νn)≤ ρ1(µn, νn) ≤
diam(X, ρ). Therefore there exists a limit of the sequence {ρ2(µn, νn)}. Put

ρI(µ, ν) = lim
n→∞

ρ2(µn, νn).

Now Theorem 4.4 gives the following result.

Corollary 4.5. The function ρI is a metric on I(X) which is an extension of
the metric ρ.

Note that ρI ≤ ρ1. For this reason from Lemma 4.3 we obtain the following
statement.

Corollary 4.6. diam(I(X), ρI) = diam(X, ρ).

Proposition 4.7. Let X be a compact metrizable space and a sequence {µn} ⊂
I(X) converges to µ0 ∈ I(X) with respect to point-wise convergence topology.
Then for every open neighbourhood U of the diagonal ∆(X) = {(x, x) : x ∈ X}
there exist a positive integer n and a coupling µ0n ∈ I(X2) of µ0 and µn such
that

(4.1)
⊕

(x, y)∈X2\U

dµ0n
(x, y)� ρ(x, y) = −∞.

Proof. At first we consider the case of zero-dimensional compact metrizable
space X. There exists a disjoint clopen cover {V1, . . . , Vn} of X (i. e. a cover,
which consists of open-closed sets of X) such that Vi × Vi ⊂ U for each i =
1, . . . , n. As µn → µ there exists n such that µn ∈ 〈µ; ⊕χV1 ,

⊕χV2 , . . . ,
⊕χVn ; ε〉.

We will construct a coupling µ0n ∈ I(X2) of µ0 and µn.
There exists a base of the compact metrizable space X consisting of clopen

sets

V ε1ε2...εki , 1 ≤ i ≤ s, εk ∈ {0, 1}, 1 ≤ k <∞,
such that
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1) V 0
i ∪ V 1

i = Vi;
2) V 0

i ∩ V 1
i = ∅;

3) V ε1ε2...εk0i ∪ V ε1ε2...εk1i = V ε1ε2...εki ;

4) V ε1ε2...εk0i ∩ V ε1ε2...εk1i = ∅.

The sets V ε1ε2...εki × V ε
′
1ε
′
2...ε

′
k

i′ form a base of the compact metrizable space
X1 2. To determine µ0n it is enough to construct its density function. Let
µ0 =

⊕
x∈X

λ0(x)� δx, µn =
⊕
x∈X

λn(x)� δx. We set

λ
ε1...εk, ε

′
1...ε

′
k

i i′ =
⊕

(x, y)∈X×X

(λ0(x)� λn(y))� δ(x, y)(⊕χ
V

ε1...εk
i ×V

ε′1...ε′
k

i′
),

i. e.

λ
ε1...εk, ε

′
1...ε

′
k

i i′ =
⊕

(x, y)∈V ε1...εk
i ×V

ε′1...ε′
k

i′

λ0(x)� λn(y).

It is clear that

λ
ε′1...ε

′
k

i′ =

s⊕
i=1

λ
ε1...εk, ε

′
1...ε

′
k

i i′ and λε1...εki =

s⊕
i′=1

λ
ε1...εk, ε

′
1...ε

′
k

i i′ ,

where

λε1...εki =
⊕
x∈X

λ0(x)� δx(⊕χV ε1...εk
i

) =
⊕

x∈V ε1...εk
i

λ0(x)

and

λ
ε′1...ε

′
k

i′ =
⊕
x∈X

λn(x)� δx(⊕χ
V

ε′1...ε′
k

i

) =
⊕

x∈V
ε′1...ε′

k
i′

λn(x).

Put

dµ0n
= lim
s→∞

s⊕
i, i′=1

⊕χ
λ
ε1...εk, ε′1...ε′k
i i′

V
ε1...εk
i ×V

ε′1...ε′
k

i′

.

Then dµ0n is an upper semicontinuous function on X2 and µ0, n =⊕
(x, y)∈X2

dµ0n(x, y) � δ(x, y) is a coupling of µ0 and µn with suppµ0, n ⊂ U .

Consequently,
⊕

(x, y)∈X2\U
dµ0n

(x, y) = −∞ and, the equation (4.1) is proved

for the zero-dimensional case.
Now let X be an arbitrary compact metrizable space. There exists a zero-

dimensional compact metrizable space Z, a max-plus-Milutin epimorphism
f : Z → X and a max-plus-regular averaging operator u : C(Z) → C(X) cor-
responding to this epimorphism. The dual max-plus-map u⊕ which we de-
fine by the equality u⊕(µ)(ϕ) = µ(u(ϕ)), ϕ ∈ C(Z), generates an embedding
u⊕ : I(X)→ I(Z).

c© AGT, UPV, 2020 Appl. Gen. Topol. 21, no. 1 48



A metric on the space of idempotent measures

For idempotent probability measures µ′0 = u⊕(µ0) and µ′n = u⊕(µn) there
exists a coupling µ′0, n =

⊕
(x′, y′)∈Z2

dµ′0n
(x′, y′) � δ(x′, y′) ∈ I(Z × Z) of µ′0 and

µ′n such that ⊕
(x′, y′)∈Z2\(f×f)−1(U)

dµ′0n
(x′, y′)� ρ(x′, y′) = −∞.

Put µ0, n = I(f × f)(µ′0n). Then for every ϕ ∈ C(X2) we have

µ0, n(ϕ) = I(f × f)(µ′0n)(ϕ) = µ′0n(ϕ ◦ (f × f)) =

=
⊕

(x′, y′)∈Z2

dµ′0n
(x′, y′)� ϕ ◦ (f × f)(x′, y′) =

=
⊕

(x′, y′)∈Z2

dµ′0n
(x′, y′)� ϕ(f(x′), f(y′)) =

=
⊕

(x, y)∈X2

dµ′0n
(x, y))� δ(x, y)(ϕ),

i. e. µ0, n =
⊕

(x, y)∈X2

dµ′0n
(x, y))� δ(x, y). Here

dµ′0n
(x, y) =

⊕
(x′, y′)∈(f×f)−1(x, y)

dµ′0n
(x′, y′).

That is why ⊕
(x, y)∈X2\U

dµ′0n
(x, y)� ρ(x, y) = −∞.

So, µ0, n = I(f × f)(µ′0n) satisfies (4.1). It remains to show that µ0, n is a
coupling of µ0 and µn.

A diagram

(4.2)

Z × Z f×f−−−−→ X ×Xyθ121 yπ12
1

Z
f−−−−→ X

is commutative, where θ121 , π12
1 are projections onto the first corresponding

factors. Then

I(π12
1 )(µ0n) = I(π12

1 ) ◦ I(f × f)(µ′0n) = I(π12
1 ◦ (f × f))(µ′0n) =

= (owing to commutativity of the diagram (4.2)) =

= I(f ◦ θ121 )(µ′0n) = I(f) ◦ I(θ121 )(µ′0, n) = I(f)(µ′0) = I(f)(u⊕(µ0)),

i. e. for every ϕ ∈ C(X) we have

I(π12
1 )(µ0n)(ϕ) = I(f)(u⊕(µ0))(ϕ) = u⊕(µ0)(ϕ ◦ f) = u⊕(µ0)(f◦(ϕ)) =

= µ0(u ◦ f◦(ϕ)) = (with respect to Proposition 2.3) = µ0(ϕ).
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Thus, I(π12
1 )(µ0n) = µ0. Similarly, I(π12

2 )(µ0n) = µn. The Proposition is
proved.

�

Theorem 4.8. The metric ρI generates pointwise convergence topology on
I(X).

Proof. Let {µn} ⊂ I(X) be a sequence and µ0 ∈ I(X). Suppose the sequence
converges to µ0 with respect to the pointwise convergence topology but not by
ρI . Passing in the case of need to a subsequence, it is possible to regard that

ρI(µn, µ0) ≥ a > 0 for all positive integer n.

Consider an open neighbourhood of the diagonal ∆(X):

U =
{

(x, y) ∈ X2 : ρ(x, y) <
a

2

}
.

By virtue of Proposition 4.7 there exist a positive integer n and a coupling
µ0n ∈ I(X2) of µ0 and µn such that⊕

(x, y)∈X2\U

dµ0n
(x, y)� ρ(x, y) = −∞.

Therefore, suppµ0n ⊂ U , and

ρI(µn, µ0) ≤ ρ1(µn, µ0) ≤ sup
(z, t)∈suppµ0n

{ρ(z, t)} = sup
(z, t)∈suppµ0n

{µ0n(ρ)⊕ρ(z, t)} =

= sup
(z, t)∈suppµ0n

{( ⊕
(x, y)∈X2

dµ0n(x, y)� ρ(x, y)
)
⊕ ρ(z, t)

}
=

= sup
(z, t)∈suppµ0n

{( ⊕
(x, y)∈X2\U

dµ0n(x, y)�ρ(x, y)⊕ sup
(x, y)∈U

dµ0n
(x, y)�ρ(x, y)

)
⊕

⊕ ρ(z, t)
}

= sup
(z, t)∈suppµ0n

{(
sup

(x, y)∈U
dµ0n

(x, y)� ρ(x, y)
)
⊕ ρ(z, t)

}
≤

≤ sup
(z, t)∈U

{(
sup

(x, y)∈U
dµ0n

(x, y)� ρ(x, y)
)
⊕ ρ(z, t)

}
= sup

(z, t)∈U
{ρ(z, t)} ≤ a

2
.

The obtained contradiction finishes the proof.
�
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