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The Poisson-like effect, describing the redirection of waves by 90�, is shown to be feasible for flex-

ural waves propagating in perforated thin plates. It is demonstrated that the lowest order symmetric

leaky guided mode (S0 mode) is responsible for the splitting of wave motion in two orthogonal

directions. The S0 mode shows a feature of stationary waves containing standing wave modes in one

and two orthogonal directions for smaller and larger holes, respectively. The former case is well

understood thanks to the phenomenon of Wood’s anomaly, which was first observed in optical gra-

tings supposed to be transparent. On the contrary, the strong scattering caused by the larger holes

leads to a mixed mode occurring when the incident wave is totally transmitted. The mixed mode eas-

ily couples with the incoming waves and, therefore, the Poisson-like effect activated under this

mechanism is much stronger. Using the Poisson-like effect, a device is proposed in which about

82% of the incident mechanical energy is redirected to the perpendicular direction. Results obtained

with arrays of free holes also apply to inclusions with parameters properly chosen. The findings may

provide applications in beam splitting and waveguiding. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

Redirection of waves is not a new concept. One typical

example is provided at an interface separating two different

dielectric media where light propagation is controlled by the

well-known Snell’s law.1 It is expected that, at normal inci-

dence, the incident waves will pass through a flat interface

directly without any deflection. By introducing abrupt phase

changes on the interface, Yu et al.2 generalized the laws of

reflection and refraction and achieved anomalous light prop-

agation. This aspect has generated rising scientific interest

and is developing into a prosperous research field, metasur-

faces.3 Even though they provide new degrees of freedom to

facilitate the manipulation of various types of waves, the

redirection of normally incident waves to the perpendicular

sides is still challenging.

Redirection of acoustic energy by 90� has been obtained

by constructing chains of cylindrical shells.4–6 By using

arrays of perforated cylindrical shells, Garc�ıa-Chocano and

S�anchez-Dehesa4 employed the strategy of wave redirection

for the purpose of increasing the propagation path of sound

and, thus, enhancing the dissipation loss of the structure. The

redirection of acoustic waves was explained in terms of the

resonant excitation of a Wood’s anomaly; i.e., a leaky

guided mode propagating normally to the impinging direc-

tion.7 Soon afterwards, Titovich and Norris5 introduced the

term Poisson-like effect to describe the redirection of acous-

tic energy found in arrays of thin elastic shells embedded in

water. A different mechanism explained this energy redirec-

tion, which has been proved to be possible by employing

quadrupole resonance of cylindrical shells thanks to the

dynamic coupling of normal unidirectional wave motion to

the perpendicular one. More recently, Bozhko et al.6 further

developed the microscopy theory of wave redirection

applied to a linear chain of perforated shells in the air. They

demonstrated that, at slightly oblique incidence, the sound

waves can be redirected along a periodic chain to one single

side provided the symmetric or antisymmetric eigenmode is

resonantly excited.

This work expands the study of redirection of waves to

the case of Lamb waves propagating in thin perforated plates.

In such a system, the lower order transversely polarized plate

wave modes dominate when the wavelength is much larger

than the plate thickness. Particularly, our interest concentrates

on the first order asymmetric Lamb mode, also termed as a

flexural wave, whose behavior is well described by a bihar-

monic equation based on Kirchhoff–Love plate theory.8–10

By considering arrays of free holes we can adjust the scatter-

ing strength by merely changing the radius of the holes. It is

shown later that the lowest order symmetric leaky guided

mode (S0 mode) evolves with increasing radius, offering a

new freedom to manipulate the propagation of flexural waves.

Transmittance spectra and eigenfrequency analysis are the
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two main tools employed in the following discussions. On the

one hand, the transmission properties of flexural waves

through lattices of typical scatterers, like inclusions and free

or clamped holes, have been obtained in the framework of the

multiple scattering formalism.10,11 The accuracy of the semi-

analytical method has been fully demonstrated in the original

works, therefore the relevant results will be directly used in

this work without any repetition of details. On the other hand,

due to the difficulties in solving transcendental equations

with complex solutions,6 a commercial finite element package

(COMSOL Multiphysics) is employed to conduct the eigen-

frequency analysis in three-dimensional (3-D) solid mechan-

ics module where full elastic equations are taken into

consideration. However, in-plane motions are out of the scope

of the present work. Therefore, only the out-of-plane motions

will be discussed in the rest of the article.

II. MODEL

Let us consider a platonic crystal slab constructed in a

homogeneous aluminum plate with parameters: Young’s

modulus E¼ 69 GPa, Poisson’s ratio �¼ 0.33, mass density

q¼ 2.7� 103 kg/m3, and plate thickness h¼ 1 mm. As

shown in Fig. 1, the slab consists of three layers of free cir-

cular holes arranged in a square distribution with lattice con-

stant d¼ 25 mm. Moreover, kp is the wave number in the

uniform host plate, r and h0 denote the radius of the holes

and the incident angle of plane waves, respectively. In the

eigenfrequency analysis, a row of holes are chosen as the

unit cell of the infinite slab which serves as a leaky wave-

guide for flexural waves propagating along it. Perfectly

matched layers (PML) are applied in the x-direction to simu-

late an infinite plate. In the y-direction, periodic boundary

conditions are imposed on both sides of the unit cell. In this

work, the reduced frequency, kpd/p, is adopted since it pro-

vides useful information about the wavelength of the disper-

sive flexural waves. For example, two reduced units

represent a wave with its wavelength being equal to the lat-

tice constant; in absolute units, it corresponds to 15.54 kHz

for the parameters studied.

III. RESULTS AND DISCUSSION

First, let us discuss the results for the case of weak scat-

terers. Figure 2 shows the dispersion relations of an infinite

slab containing three layers of free holes with radius

r¼ 3 mm. Note that the dispersion relations are linear near

the origin since we are representing the reduced frequency in

the vertical axis. Only bands associated with the first three

orders of out-of-plane eigenmodes are plotted here. Since the

scattering of these small holes is relatively weak, it is

observed that all the bands are nearly overlapping with that of

an empty lattice represented by the solid lines. Nevertheless,

the level repulsion originating from the impedance mismatch

does indeed open a narrow bandgap near the diffraction limit,

as it is seeing in the zoom views.

For a better understanding, Fig. 3 displays the eigen-

modes of the out-of-plane displacement calculated at the

edges of the narrow bandgap shown at qd/p¼ 0. The nodal

lines in the y-direction reflect the band folding effect, while

the ones in the x-direction indicate the order of the mode.

According to the symmetry with respect to the x axis, these

eigenmodes are classified into two categories: symmetric

modes (S0, S1, and S2) and antisymmetric modes (A0, A1,

and A2). Their corresponding eigenfrequencies are given in

the caption of Fig. 3. Note that they are complex numbers

with small positive imaginary parts, which determine the

lifetime of the resonant modes.4 So, large imaginary part

means short lifetime because more energy leaks from the

guided mode to the free space. From another perspective, a

FIG. 1. (Color online) (Upper panel) Scheme of a platonic crystal slab con-

sisting of three layers of free circular holes. The holes are distributed in a

square lattice with period d. (Lower panel) Geometry of the finite element

model employed to obtain the eigenfrequencies of the leaky-guided modes

along the slab. Perfectly matched layers (PML) are employed at both ends.

FIG. 2. (Color online) Band structures of an infinite slab containing three

layers of free holes arranged in a square distribution with period d. The sym-

bols represent the real parts of the calculated eigenfrequencies. The solid

lines represent the dispersion relations of an empty lattice with the same

periodicity d. Crossings of the dispersion relations with the dashed line give

the frequencies of resonant coupling between the guided modes and the flex-

ural wave with incident angle h0¼ 5�.
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leaky guided mode with short lifetime means more chances

for the coupling with the incident waves. Except for the S0

mode, the rest of symmetric modes have negligible imagi-

nary parts so that they cannot be excited at normal incidence.

At slightly oblique incidence, however, both the lowest order

symmetric and antisymmetric modes can be excited at fre-

quencies predicted by the matching condition for the wave

vectors:6

ky ¼ kp sin h0 ¼ qðf Þ: (1)

A case example is shown in Fig. 2 where the matching fre-

quencies are given by the crossings points between the dis-

persion relations and the dashed line defining the incident

angle h0¼ 5�. Under this circumstance, incident waves with

the lower frequency will be partially redirected along the

negative y-axis while, for the upper frequency, the redirec-

tion will be along the positive y-axis (see the Appendix).

In summary, for weak scatterers, the previous results are

consistent with the works reported for acoustic waves.4,6 What

happens if we increase the radius of the holes? Figure 4(a)

shows the transmittance spectra when a plane wave impinges

on an infinite slab containing three layers of free holes. They

correspond to holes with radii 3 mm (solid line), 5 mm (dashed

line), and 7 mm (dotted line). It is observed that the transmis-

sion minimum, D1, evolves into broad transmission peaks, P1

and P2, when the radius increases. The narrow dip indicates

the presence of a Wood’s anomaly,7,12,13 which appears when

the incident wave is strongly coupled to the S0 mode.4,14

This explanation applies to the transmission peaks as well.

Nevertheless, we emphasize that in this case the S0 mode

evolves to a mixed mode featured as stationary waves contain-

ing standing wave modes in two orthogonal directions, as

shown in Fig. 4(b). In addition, we notice that, with the

increasing radius, the dip and peak frequencies experience a

red shift, which is predictable on account of the stronger level

repulsion caused by the larger holes. During this process, the

A0 mode [see Figs. 3 and 4(c)] is slightly changed, but it is

always strongly localized and has no interest here.

The mixed eigenmode S0 shown in Fig. 4(b), with com-

plex frequency 13.55þ 1.42i kHz, deserves additional dis-

cussion because of its large imaginary part. On the one hand,

this property contributes to resonant coupling and facilitates

its potential application for energy redirection. On the other

hand, this property also implies large energy leakage into

free space due to its extremely short lifetime.4,15 These fea-

tures are clearly observed in Fig. 4(d), showing a snapshot of

the out-of-plane displacement produced by the interaction of

a Gaussian beam with frequency 13.75 kHz, corresponding

to the transmission peak P2, with the slab of holes. The

Poisson-like effect (vertical solid arrows) is clearly seen

together with the energy leakage through the side of the slab

(hollow arrows). Throughout this paper, the out-of-plane dis-

placement snapshots are obtained via the multiple scattering

algorithms developed in Ref. 10, which is not described here

to avoid redundancy. This frequency value agrees fairly well

with the eigenfrequency of the mixed mode S0 indepen-

dently calculated with a commercial 3-D finite element

method (FEM).

The leaky behavior of the fundamental eigenmode S0 is

significantly influenced by the radius of the holes. For com-

parison, Fig. 5 plots the calculated sideways transmissions,

Tside, of several finite slabs being three layers thick. Here,

Tside is defined as the energy ratio of the redirected waves to

the incident ones, Tside¼ 2Etop/Einc, where the energy-related

quantities are numerically calculated by integrating the

energy flux over the boundaries of the finite slab.5,17 The

FIG. 3. (Color online) The first three orders of out-of-plane eigenmodes

associated with the edges of the narrow bandgap at the high symmetry point

qd/p¼ 0. From top to bottom figures, the values of eigenfrequencies are

15125, 15414þ0.5i, 15472þ3.1i, 15257þ13.2i, 15441þ1.9i, and

15478þ6.0i (in Hz), respectively.

FIG. 4. (Color online) (a) Transmittance spectra for an infinite slab contain-

ing three layers of free holes whose radius increases from 3 and 5 mm to

7 mm. The lowest order leaky guided modes S0 and A0 are displayed in (b)

and (c), respectively, for the largest holes studied here. Their eigenfrequency

values are 13547þ 1418.0i and 13395 (in Hz), respectively. (d) Poisson-like

effect excited at one peak frequency (P2, 13.75 kHz), where a Gaussian

beam propagates from left to right. The arrows indicate the directions of the

different waves entering or leaving the sample.

FIG. 5. (Color online) The dependence of sideways transmission, Tside on

the length of a slab containing three layers of small/large holes. The length

varies with the number of holes in each column Nhole, and Fig. 4(d) provides

an example with Nhole¼ 20.
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dependence of Tside with the number of holes along the y-

direction Nhole is analyzed. It is observed that the Poisson-like

effect is strongly enhanced when the finite slab is constructed

with the larger holes. In addition, as shown in Fig. 4(b), the

eigenfrequencies values are complex and large imaginary

parts mean more energy leakage from the guided mode to the

free space due to the complex propagation wavenumber.4,15

As a result, the energy transferred to the mixed mode decays

more quickly compared with the other case. This effect

explains the failure in splitting bi-frequency signals6 at obli-

que incidence; the energy coupled to the symmetric mode is

completely leaked out (see the Appendix).

From Fig. 5, we conclude that fewer holes are preferred

in each column if one wants to redirect more energy to the

perpendicular sides. In addition, some other improvements

can be made to further increase the sideways transmission.

Here, we have considered a platonic crystal barrier placed at

the rear of the finite slab in order to totally reflect the waves

transmitted through the slab. The barrier consists of three

layers of two-beam resonators.9 There are two main reasons

justifying the choice of this type of resonators. First, the res-

onance induced bandgap can be easily tuned to specific

working frequencies by changing the geometric parameters.

Second, two beams contribute to bandgap enhancement

when they are arranged in parallel with the wavefront of the

incident waves.10,16 The geometric parameters described

in Fig. 6(a) are R1¼ 4 mm, R2¼ 7 mm, b¼ 2 mm, and

l¼ 20 mm. The band structure shown in Fig. 6(b) indicates

that the propagation of flexural waves is completely

prohibited in the frequency region between 11.42 and

16.79 kHz. In reduced units, the lower and upper bounds are

1.72 and 2.08, respectively. Figure 6(c) studies the influence

of the number of two-beam resonators in each column, Nres,

and the spacing a between the slab and barrier on the side-

ways transmission, Tside. Due to the destructive and con-

structive interference Tside changes periodically with a,

while Nres has little influence on it. At the position marked

with a cross symbol in Fig. 6(c) the sideways transmission

reaches 82%, which is about 25 times larger than that

obtained in Fig. 4(d). This position defines the optimum

parameters to design a device showing the strongest Poison-

like effect. Figure 6(d) shows a snapshot of the out-of-plane

displacement pattern obtained from a multiple scattering

simulation of the optimum device.

For the sake of comprehensiveness, in what follows we

briefly discuss the performance of slabs based on other kinds

of scatterers, such as clamped holes and inclusions. Let us

stress that the mixed S0 eigenmode and holes with clamped

boundaries are incompatible and, therefore, it is impossible

to redirect flexural waves with platonic crystal slabs contain-

ing clamped holes. However, inclusions with properly cho-

sen parameters are likely to work since the void in the

cavities can be considered as an extremely soft material

without mass and modulus. For demonstration, two kinds of

inclusions are considered here, and their physical parameters

are: E¼ 102 GPa, �¼ 0.30, q¼ 4.5� 103 kg/m3 (titanium);

E¼ 16 GPa, �¼ 0.44, q¼ 11.3� 103 kg/m3 (lead). Figure 7

provides the transmittance spectra and S0 eigenmodes for an

infinite slab containing three layers of inclusions with the

same radius r¼ 7 mm. These results have been obtained fol-

lowing a procedure similar to that employed in Fig. 4. The

real parts of the complex eigenfrequencies obtained using

FEM agree fairly well with the frequencies of the peak (P1)

and the narrow minimum (D1) in the transmission spectra.

The transmittance profile indicates that titanium (lead) inclu-

sions behave like weak (strong) scatterers. In the latter case,

the huge impedance mismatch leads to a stronger level repul-

sion so that the resonant frequency shifts to a much lower

value, which provides a new degree of freedom to control

the Poisson-like effect.

FIG. 6. (Color online) (a) Scheme of lattice of two-beam resonators in real

space together with the definitions of the high symmetry directions in reciprocal

space, where the shadowed region represents the irreducible Brillouin zone. (b)

Band structure of the flexural waves propagating along the OA direction. (c)

Optimization process for a barrier in order to increase the sideways transmis-

sion, where Nres represents the number of two-beam resonators in each column,

and a denotes the spacing between the barrier and slab. (d) Poisson-like effect

excited by a Gaussian beam at one peak frequency (P2, 13.75 kHz), where an

optimized barrier [see the cross in figure (c)] is placed right behind the slab.

FIG. 7. (Color online) Transmittance spectra for an infinite slab containing

three layers of inclusions. The insets show the S0 modes for the two kinds of

inclusions considered here. Their eigenfrequencies are 15284þ 111.7i and

9533þ 816.0i (in Hz) for slabs containing titanium and lead inclusions,

respectively. In reduced units, the real parts correspond to 1.98 and 1.57,

respectively.
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IV. SUMMARY

In conclusion, the Poisson-like effect has been demon-

strated for flexural waves interacting with finite platonic

crystal slabs. The effect arises because of the coupling prop-

erties of the fundamental symmetric leaky guided mode

embedded in the slab. For weak scatterers, like small free

holes or inclusions with materials similar to the background,

the energy redirection is explained in term of a Wood’s

anomaly. The redirection appears as a minimum in the trans-

mittance spectrum, indicating the excitation of the S0 leaky

eigenmode. For strong scatterers, like large free holes or

inclusions with a large impedance mismatch with the back-

ground, the S0 eigenmode is a mixed mode with a complex

eigenfrequency of considerable large imaginary part. In this

case, the incident wave is totally transmitted. Using this

property, an optimum structure is here designed in which the

Poisson-like effect is greatly enhanced. The structure con-

sists of a finite platonic crystal slab with a barrier for flexural

waves at its rear face. Numerical simulation shows that

about 82% of the incident energy is redirected to the perpen-

dicular directions. At oblique incidence, where both the sym-

metric and antisymmetric modes can be resonantly excited

at different but close frequencies, we have obtained that the

redirection performance is slightly different for weak and

strong scatterers. The results here reported have potential

applications in designing practical devices for beam splitting

and waveguiding in thin plates.
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APPENDIX: ENERGY REDIRECTION AT OBLIQUE
INCIDENCE

At normal incidence h0¼ 0�, only the lowest order sym-

metric mode (S0 mode) can be excited by the incident

flexural waves. Nevertheless, it is emphasized that, thanks to

symmetry broken, the coupling of incident waves to the anti-

symmetric modes is possible at slightly oblique incidence

provided the matching condition is satisfied.6 To prove this,

Fig. 8 shows the transmittance spectra for an infinite slab

containing three layers of free circular holes with radius

r¼ 3 mm, where the solid and dotted lines represent the

results for two incident angles h0¼ 0� and 5�, respectively.

The transmission dips indicate the excitation of both sym-

metric and antisymmetric modes. At oblique incidence, the

dips come into being at 1.83 and 2.18 in reduced units. The

values agree well with those predicted by the matching con-

dition (see the crossings in Fig. 2). Since the higher order

modes have eigenfrequencies of negligible imaginary parts,

only the lowest order leaky guided modes are excited for the

system studied here, which is a little different from the

results reported for acoustic waves.4

Through the resonant coupling, it is possible to redirect

flexural waves to the orthogonal directions.6 Fig. 9 shows

the numerical simulations for the system excited by a

Gaussian beam. At normal incidence [see Fig. 9(a)], part of

the incident energy is equally redirected to the two perpen-

dicular sides, and this behavior has been termed as Poisson-

FIG. 8. (Color online) Transmittance spectra for an infinite slab containing

three layers of free holes with radius r¼ 3 mm.

FIG. 9. (Color online) Redirection of flexural waves through a platonic crys-

tal slab containing 3� 20 free circular holes (r¼ 3 mm). The systems in (a),

(b), and (c) are excited by a Gaussian beam having frequencies extracted at

D2, D1, and D3 (see Fig. 8), respectively. The incident waves propagate

from left to right. The vertical solid arrows indicate the propagation direc-

tions of the redirected waves leaving the sample while the arrows indicate

the energy leakage through the lateral sides of the slab.

FIG. 10. (Color online) Transmittance spectra for an infinite slab containing

three layers of free holes with radius r¼ 7 mm.
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like effect.5 At slightly oblique incidence [see Figs. 9(b) and

9(c)], however, the energy transferred to the A0 and S0

modes will be redirected downward and upward individu-

ally. The behaviors are the same as those reported in Refs. 4

and 6 where the perforated shells serve as weak scatterers

for airborne acoustic waves.

Previous analysis applies to periodic structures contain-

ing larger holes as well, but instead of Wood’s anomaly, it is

the broad transmission peak that indicates the resonant cou-

pling. Figure 10 shows the transmittance spectra for an infi-

nite slab containing three layers of larger holes r¼ 7 mm,

where two peaks P1 and P3 are observed at oblique incidence.

As has been performed in Figs. 9(b) and 9(c), Fig. 11 provides

the out-of-plane displacement maps excited at the resonant

frequencies. Due to the anomalous scattering, it is observed

that the energy coupled to the A0 mode is redirected to the

lower end [see Fig. 11(a)], while the energy transferred to the

S0 mode leaks out completely before it was redirected to the

upper end [see Fig. 11(b)].
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