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Perchlorate (ClO4
−) has several industrial applications and is frequently detected in environmental matrices at relevant con-

centrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted
sites. 0e aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten
bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia.
Isolates grew at concentrations up to 30% sodium chloride. 0e isolates tolerated pH variations ranging from 6.5 to 12.0 and
perchlorate concentrations up to 10000mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S
rRNA gene sequence analysis indicated that the strains were phylogenetically related to Vibrio, Bacillus, Salinovibrio, Staphy-
lococcus, and Nesiotobacter genera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean
are promising resources for the bioremediation of perchlorate contamination.

1. Introduction

Perchlorate pollution is a problem of global impact because
it has a negative effect on ecosystems with a loss of envi-
ronmental quality, which increases with anthropogenic
activity. Perchlorate is an ubiquitous emerging contaminant
produced from both natural and anthropogenic sources [1],
particularly present in areas associated with the use and
manufacture of rockets and ammunition. 0is compound is
a potent endocrine disruptor that mainly affects the fixation
of iodine by the thyroid gland, responsible for regulating
metabolism, growth, and development [2, 3], thus being
dangerous to infants and young children [4]. Acute, short-
term exposure has been shown to affect the nervous, re-
spiratory, immune, and reproductive systems [5]. It has also

been related to thyroid cancer and teratogenesis during the
first trimester of pregnancy [6].

Perchlorate is highly distributed in ecosystems and or-
ganisms; thus, it is frequently found in several matrices,
including breast milk, fertilizers, plants, food, and human
tissues. 0is scenario has led to the prioritization of studies
that allows for the removal of this contaminant from pol-
luted sites, as it is extremely toxic and persistent; therefore,
efficient treatments for its degradation are needed in order to
maintain the quality of soils from biodiversity hotspots.
0ere are different physicochemical techniques commonly
used for the environmental removal of this anion, such as
ion exchange, but it is not selective and the process usually
only separates the perchlorate from contaminated sources
[7], also generating by-products, which requires subsequent
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treatment [7]. Perchlorate is persistent but possesses bio-
degradability [8]. However, enzymes such as the perchlorate
reductase and superoxide chlorite carry out the reduction or
elimination of perchlorate. A reductase enzyme is re-
sponsible for reducing perchlorate to chlorate and chlorate
to chlorite, while the enzyme superoxide chlorite changes
chlorite to chloride and molecular oxygen. Biological re-
duction through the use of bacteria completely degrades the
perchlorate ions into Cl− and O2 (equation (1)) [9–11]. 0e
perchlorate degradation pathway is as follows:

ClO4
−
(perchlorate)⟶ ClO3

−
( 􏼁(chlorate)

⟶ ClO2
−

( 􏼁(chlorite)⟶ Cl−(chloride) + O2
(1)

Marine soils usually contain bacterial species with bio-
chemical versatility and ability to tolerate salt, being an
interesting target for researchers due to the potential re-
duction of environmental perchlorate [10]. 0e reason for
selecting this type of environment is that degradation of
perchlorate may be carried out using salt-tolerant bacteria
[12], although this perchlorate-reduction process could be
impaired with increasing salinity [11, 13]. Moreover, these
organisms are available in diverse environments, from
Antarctica, saline lakes, and hot springs, even in hyper-
thermophilic and hypersaline soils [10, 11]. Additionally,
perchlorate deposits in these environments may be formed
by chemical reactions between sodium chloride from land or
sea and ozone [14].

Pilot testing of biotechnologies using perchlorate-
reducing bacteria has been studied and tuned in suspen-
sion, fixed-bed, fluidized, and biofilm reactors [15, 16],
evaluating the effectiveness of treatments on soil and water
contaminated with perchlorate [15]. Nowadays, the use of
integrated systems, combining physicochemical treatments
and perchlorate-reducing halophilic bacteria, is being
studied to increase the efficiency of water treatment,
allowing the handling of residual flows with high salinity and
large perchlorate concentrations, simultaneously solving the
waste disposal problem [17].

Colombia has a variety of ecosystems with different
climatic and biogeochemical features, which facilitates the
development of different halophilic bacteria. 0e aim of this
study was the characterization of perchlorate-reducing
bacteria recovered from hypersaline soils of the Colom-
bian Caribbean.

2. Materials and Methods

2.1. Study Area and Sample Collection. Soil samples were
obtained from salt mines of Colombia, specifically from
Galerazamba-Bolivar (10°47′21″N, 75°15′41″W), Manaure-
Guajira (11°46′30″N, 72°26′40″W), and saline soils located
in Salamanca Island-Magdalena (10°56′00″N, 75°15′00″W)
(Figure 1). A sterile spatula was employed to collect ap-
proximately 100 g of soil from the upper 1–10 cm layer in
May 2015. All samples were collected in 50mL Falcon tubes,
kept refrigerated at 4°C, and taken to the laboratory for
processing. Salinity and pH were recorded for each sample
according to Nozawa-Inoue et al. [18].

2.2. Isolation of Strains and Culture Conditions. Isolation,
purification, and preservation techniques were used as de-
scribed by Shimkets and Rafiee [19]. Samples were treated
with amphotericin B (0.25mg/mL) for 3 h until inoculation
(50 µL) in the isolation media. Subsequently, samples were
incubated in Petri dishes containing modified sterilized agar
Luria-Bertani in seawater (LB NaCl) [20] and incubated at
37°C for 24 h under aerobic conditions [21]. Bacterial growth
was monitored by observation of colonies. For preservation,
a bacterial colony was transferred to modified LB broth and
incubated at 37°C aerobically during 12 h, adjusting the cell
density to 0.5 Mc-Farland turbidity standard. 0en, 720 µL
of each culture was transferred to a Cryovial with 80 µL
glycerol and stored at −80°C.

2.3. Molecular Identification

2.3.1. 16S rRNA Gene Sequencing and Phylogenetic Analysis.
For 16S rRNA gene amplification, genomic DNA was
extracted using a QIAamp® DNA Mini Kit (Qiagen, CA,
USA) as described by the manufacturer. 0e 16S rRNA
gene was amplified from the total genomic DNA of the
bacterial strains by PCR using the forward primer PF (5′-
AGAGTTTGATCCTGGCTCAG-3′) and the reverse primer
1492R (5′-ACCTTGTTACGACTT-3′) [22, 23]. PCR was
performed with an AmpliTaq Gold® 360 Master Mix
(Applied Biosystems) according to the manufacturer’s in-
structions. Each 25 μL reaction mixture contained 0.4 μM of
each primer and ∼100 ng of template DNA. 0e amplifi-
cation was performed as follows: initial denaturation for
10min at 95°C, 25 cycles of denaturation for 1min at 94°C,
annealing for 1min at 43°C, and extension for 1.5min at
72°C, and a final extension for 5.5min at 72°C. All PCR
products were checked by electrophoresis on 1.2% (w/v)
agarose gels stained with ethidium bromide (10mg/mL) and
analyzed using a gel documentation system (IngGenius 3
System-Syngene).

0e PCR product was purified with a QIAquick PCR
purification kit (Qiagen, CA, USA), following the manu-
facturer’s instructions. Automated DNA sequencing was
performed by the National Center for Genomic Sequencing
(CNSG) (Medellin-Colombia) using PF and 1492R
primers. Sequence readings were edited and assembled
with the CAP3 software [24]. 0e resulting 16S rRNA gene
sequences were compared to reference strains with validly
published names using the EzTaxon-e server (http://www.
ezbiocloud.net/eztaxon). After multiple alignments of
the data via CLUSTAL_W, four methods, including
neighbor joining (NJ) [25], maximum likelihood (ML)
[26], minimum evolution (ME), and maximum parsimony
(MP) [27], were used to perform phylogenetic analysis.
Phylogenetic trees were constructed using MEGA version
6 [28]. Distances were calculated using the Kimura cor-
rection in a pair-wise deletion manner [29]. 0e topologies
of the phylogenetic tree were evaluated by the bootstrap
resampling method described by Felsenstein [30] with
1000 replicates. 0e GenBank/EMBL/DDBJ accession
numbers for the 16S rRNA gene sequences of isolated
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strains BBCOL-031, BBCOL-023, BBCOL-024, BBCOL-
025, BBCOL-026, BBCOL-027, BBCOL-028, BBCOL-029,
BBCOL-032, and BBCOL-033 are KX821664–KX821673,
respectively.

2.4. Morphological Characterization. Strains were incubated
on LB NaCl agar, and both growth and morphogenesis were
observed under light microscopic examination (Olympus
microscope BX41). Gram staining was conducted following
Bergey’s Manual Taxonomic Key [31] and Koneman’s Mi-
crobiologic Atlas [32]. Samples were further processed by
means of scanning electron microscopy (SEM) visualization
as previously described [33].

2.5. Biochemical Characterization. Biochemical character-
istics were investigated using the BBL Crystal™ Kit (Becton
Dickinson Microbiology Systems, Cockeysville, USA) as
described by the manufacturer. Catalase and oxidase tests
were performed according to the reported methods [21].

2.6. Chloride Susceptibility Assay. All strains were assayed
for perchlorate susceptibility in LB broth in the presence of
NaCl (3.5, 5.0, 7.5, and 30% w/v) [20, 34]. �e experiments
started adding 20 µL of cell suspension, OD� 0.6, into 5mL
LB broth. �e cultures were incubated at 37°C for 24 h, and
after that, strains showing turbidity [35] were identi�ed as
resistant to NaCl. �e experiments were carried out by
triplicates and performed three times.

2.7. Perchlorate Susceptibility Assay. All strains were assayed
for perchlorate susceptibility in LB broth in the presence
of perchlorate at concentrations of 100, 250, 500, 750, 1000,
1250, 1500, 2000, 3000, 5000, 7500, and 10000mg/L
[20, 36, 37]. �e experiments were carried out as de-
scribed for the chloride susceptibility assay. After the in-
cubation time (24 h), a culture of each isolate was tested on

LB agar at their corresponding KClO4 concentrations to
con�rm cell viability and purity of each of the bacterial
strains.

2.8. Evaluation of Perchlorate Reduction by Isolates. �e
experiments were carried out using concentration of
10000mg/L KClO4 in LB with 3.5% NaCl, inoculating
with the isolates as described in the chloride susceptibility
assay and incubating for a 24-hour time period at 37°C.
After incubation time, the �nal KClO4 concentration was
measured with a �ermo Scienti�c Orion 93 perchlorate
electrode (�ermo Fisher Scienti�c Inc., Beverly, MA), used
according to the manufacturer’s instructions. �e di¡erence
in concentration after and before the incubation was
employed to calculate the perchlorate reduction percentage
elicited by each strain.

3. Results and Discussion

3.1. Molecular Identi�cation. Almost-complete 16S rRNA
gene sequences were obtained from strains BBCOL-023
to BBCOL-033 (GenBank accession numbers: KX821664–
KX821673). �e results of the phylogenetic analysis showed
that these strains belonged to members of Bacillus, Vibrio,
Salinivibrio, Nesiotobacter, and Staphylococcus. Strain
BBCOL-023 presented 99% similarity with Nesiotobacter;
strains BBCOL-024, BBCOL-028, BBCOL-029, and BBCOL-
033 had 99% homology with Bacillus species; and strains
BBCOL-025, BBCOL-026, BBCOL-027, and BBCOL-031
had 99% homology with members of the Vibrionaceae
family, particularly Vibrio and Salinivibrio species. Strain
BBCOL-032 presented 99% similarity to Staphylococcus spp.

�e 16S rRNA gene sequence had similar values between
strains BBCOL-024, BBCOL-028, BBCOL-029, and BBCOL-
033, and validly named type strains of Bacillus were cal-
culated by using the EzTaxon-e server. Strains BBCOL-024
and BBCOL-028 showed high 16S rRNA gene sequence
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Figure 1: Map of the Caribbean region of Colombia showing the geographic location of the sampling sites.
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similarities with Bacillus vallismortis DV1-F-3(T) (99.6 and
99.5%, respectively), Bacillus subtilis subsp. inaquosorum
KCTC 13429(T) (99.6 and 99.4%, respectively), and Bacillus
subtilis subsp. spizizenii NRRL B-23049(T) (99.6 and 99.4%,
respectively).

Levels of 16S rRNA gene sequence similarity between
strains BBCOL-024 and BBCOL-028 and other current
members of the genus Bacillus were below 99.0%. In the
neighbor-joining (Figure 2) and the minimum-evolution
phylogenetic dendrograms based on 16S rRNA gene se-
quences, strains BBCOL-024 and BBCOL-028 were placed in
a cluster in Bacillus and were shown to be closely related to B.
vallismortis, B. subtilis subsp. spizizenii TU-B-10, B. vanillea,
and B. atrophaeus.

Strain BBCOL-029 shares high-sequence similarity
with B. oryzaecorticis R1 (T), B. haikouensis C-89(T), B.
aquimaris TF-12(T), and B. vietnamensis 15-1(T) with 98.2,
97.9, 97.9, and 97.9% respectively, and nucleotide differences
of 20, 29, 30, and 29 nucleotides, respectively. 0e com-
parative analysis of 16S rRNA gene sequences and phylo-
genetic relationships showed that the BBCOL-029 strain lies
in a subclade in the tree with B. marisflavi, B. aquimaris, and
B. vietnamensis (supported by a bootstrap value of 77%
(Figure 2)), with which it shares the highest 16S rRNA
gene sequence similarity. 0e affiliation of strain BBCOL-
029 and its closest neighbors was also supported by the
maximum parsimony and maximum likelihood algorithms
with bootstrap values above 70%. EzTaxon-e server search
analysis revealed that the BBCOL-033 strain is closely related
to B. flexus FO 15715(T) (99.7%, 16S rRNA gene sequence
similarity), B. paraflexus RC2 (T) (99%), B. megaterium
NBRC 15308�ATCC 14581(T) (98.5%), and other bacilli
(<97%). 0e sequence similarities of strain BBCOL-033 with
B. flexus using different clustering algorithms (100% in NJ
tree; 100% in ME tree; and 100% in ML tree) along with the
EzTaxon-e server analysis consistently indicated that B.
flexus is the closest relative.

For strain BBCOL-023, 1329 nt of the 16S rRNA gene
sequence was determined. Comparative 16S rRNA gene
sequence analysis showed that strain BBCOL-023 was
most closely related to members of the genus Nesiotobacter.
Strain BBCOL-023 shares the highest sequence similarity
with Nesiotobacter exalbescens LA33B (T), Roseibium
aquae DSG-S4-2 (T), and Pseudovibrio hongkongensis
UST20140214-015B (T) with 99.8, 95.9, and 95.7% and
nucleotide differences of 3, 55, and 57, respectively. 0e 16S
rRNA gene sequence similarities to the type strains of other
members of the family Rhodobacteraceae with validly
published names were below 94%. In the phylogenetic tree
based on the NJ algorithm (Figure 3), strain BBCOL-023
formed a single clade with Nesiotobacter exalbescens (sup-
ported by a bootstrap value of 100% (Figure 3)), with which
it shares the highest 16S rRNA gene sequence similarity. 0e
affiliation of strain BBCOL-023 and its closest neighbors was
also supported by the MP and ML algorithms with above
90% bootstrap values.

0e 16S rDNA sequences of strains BBCOL-025,
BBCOL-026, BBCOL-027, and BBCOL-031 determined
in this study comprised 1402, 1361, 1399, and 1389 nt,

respectively, representing approximately 90% of the
Escherichia coli 16S rRNA sequence. 0e results of phylo-
genetic analysis of the 16S rRNA gene sequences revealed
that the isolated strains were related phylogenetically to
members of the Vibrionaceae family and belong within the
phyletic group classically defined as the genus Salinivibrio
and Vibrio (Figure 4). Strain BBCOL-025 shows high 16S
rRNA gene sequence similarities with Salinivibrio costicola
subsp. vallismortis DSM 8285(T) (98.4%), Salinivibrio cos-
ticola subsp. costicola ATCC 33508(T) (97.8%), and Sali-
nivibrio proteolyticus AF-2004(T) (97.7%). Levels of 16S
rRNA gene sequence similarity between strain BBCOL-025
and the other current members of the genus Salinivibrio are
below 97%. In the neighbor joining (Figure 4) and the
minimum evolution phylogenetic dendrograms based on
16S rRNA gene sequences, strain BBCOL-025 was placed in
a cluster in the Salinivibrio genus and was shown to be
closely related to S. budaii and S. costicola subsp. alcaliphilus
(supported by a bootstrap value of 75%). 16S rRNA gene
sequence comparison between the BBCOL-026 strain and
other members from the Vibrionaceae family by using the
EzTaxon-e server indicated that the strain was closely related
to members of Vibrio genus, showing 99.2% gene sequence
similarity to V. antiquarius Ex25 (T), 99% to V. alginolyticus
NBRC 15630(T), 98% to V. neocaledonicus NC470 (T), and
98.9% to V. natriegens DSM 759(T). Likewise, strains
BBCOL-027 and BBCOL-031 show high 16S rRNA gene
sequence similarities with V. alginolyticus NBRC 15630(T)
(99.8 and 98.9%, respectively) and V. antiquarius Ex25(T)
(99.5 and 98.9%, respectively). A phylogenetic tree, gener-
ated from the neighbor joining algorithm, showed that
strains BBCOL-026 and BBCOL-031 both fell within the
radiation of the cluster comprising Vibrio species and
formed a coherent cluster that is supported by a bootstrap
analysis at a confidence level of 98% (Figure 4). 0is cluster
joins the phylogenetic clade comprising V. alginolyticus
and V. parahaemolyticus, which is supported by a 71%
bootstrap value. 0is topology was also found in trees
generated with the ML and MP algorithms (not shown).
0e NJ and ME phylogenetic trees based on 16S rRNA gene
sequence data showed that the strain BBCOL-027 forms a
coherent cluster with Vibrio alginolyticus (a bootstrap value
of 72%).

For strain BBCOL-032, 1416 nt of the 16S rRNA gene
sequence was determined. Comparative 16S rRNA gene
sequence analysis showed that strain BBCOL-032 was more
closely related to the Staphylococcus species. Strain BBCOL-
032 shares highest sequence similarity with Staphylococcus
haemolyticus ATCC 29970(T) (99.9%), Staphylococcus pet-
rasii subsp. pragensis NRL/St 12/356(T), and Staphylococcus
petrasii subsp. jettensis SEQ110 (T) (99.2%). 0e 16S rRNA
gene sequence similarities to strains from other members of
the Staphylococcaceae family were below 99%. In the
phylogenetic tree based on the NJ algorithm (Figure 5),
strain BBCOL-032 fell within a coherent cluster comprising
S. haemolyticus, S. petrasii subsp. pragensis, S. petrasii subsp.
jettensis, and S. lugdunensis. 0e sequence similarities of
strain BBCOL-032 with S. haemolyticus using different
clustering algorithms (100% in NJ tree; 99% in ME tree; and

4 International Journal of Microbiology



100% in ML tree) along with the EzTaxon-e server analysis
consistently indicated that S. haemolyticus is the closest
relative.

3.2. Microscopic and Biochemical Characterization. 0e
colonies of strains (BBCOL-023 to BBCOL-033) on LB agar

were circular, convex, and smooth. Cells were facultative
anaerobic, with an optimal growth at pH 6.5 to 7.5. Mor-
phological features are observed by SEM (Figure 6), and
biochemical characteristics of isolated bacteria strains
are shown in Table 1. Morphological and biochemical
characteristics detected in the isolated strain BBCOL-023
correspond to the species Nesiotobacter, as previously
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Figure 2: Neighbor joining tree based on 16S rRNA gene sequences showing the phylogenetic position of strains BBCOL-024, BBCOL-028,
BBCOL-029, and BBCOL-033 compared to the most closely related members of the genus Bacillus. Bootstrap values based on 1000
replications are listed as percentages at the branching points. Accession numbers are given in parentheses. Bar, 0.01 nucleotide substitutions
per nucleotide position.
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Figure 4: Neighbor joining tree based on 16S rRNA gene sequences showing the phylogenetic position of strains BBCOL-025, BBCOL-026,
BBCOL-027, and BBCOL-031 compared to the most closely related members of the Vibrionaceae family. Bootstrap values based on 1000
replications are listed as percentages at the branching points. Accession numbers are given in parentheses. Bar, 0.01 nucleotide substitutions
per nucleotide position.
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(X76336) was used as the outgroup. Bar, 0.01 substitutions per nucleotide position.
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reported [38]. 0e strains were able to utilize lactose,
mannose, galactose, sorbitol, and sucrose as carbon sources.
Nitrate was reduced to nitrite. 0e strains were ONPG- and
H2S-negative.

Microscopic morphological results showed that isolates
BBCOL-024, BBCOL-028, BBCOL-029, and BBCOL-033
correspond to the genus Bacillus [39]. When grown at 37°C
during 24 h in LB, the cells were Gram-positive bacilli, with
a size between 0.6-0.7 μm and 1.6-1.7 μm. Endospores were
ellipsoidal. Cells were motile, aerobic, facultative anaero-
bic, and oxidase- and catalase-positive. Optimal growth
conditions of BBCOL-024 were at pH 6.0–6.5 and 37°C.
0ese isolates showed Voges–Proskauer and nitrate re-
duction activity. However, they were ONPG- and H2S-
negative.

0e cells of strain BBCOL-025, Salinovibrio costicola,
were Gram-negative, motile, nonsporulating, and curved,
presenting an average bacterial size of 1.4× 0.7 µm. In ad-
dition, these were motile, facultative anaerobic, and oxidase-
and catalase-positive. Optimal growth conditions for
BBCOL-025 were at pH 6.0–6.5 and 37°C. 0e isolates
showed morphological differences regarding both curved
size and growth. 0ese differences may arise depending on
environmental conditions at the sampling moment, labo-
ratory procedures, and conservation techniques, among
others [40, 41]. 0ese strains presented positive activity for
Voges–Proskeuer and nitrate reduction and negative activity
against ONPG and H2S production.

0e isolates BBCOL-026, BBCOL-027, and BBCOL-
031 shared the main properties of the genus Vibrio. 0ey

were motile, curved, facultative, Gram-negative and
oxidase-positive and were able to reduce nitrate to nitrite.
0ese bacteria also formed yellow colonies, as reported by
several authors [42, 43]. Optimal growth conditions for
BBCOL-025 were at pH 6.0–6.5 and 37°C. 0e isolates
showed high phenotypical homogeneity although variable
reactions were observed for aesculin hydrolysis, N-acetyl-
glucosaminidase activity, and fermentation of galactose
and lactose.

0e cells of strain BBCOL-032 Staphylococcus spp. were
Gram-positive, motile, and nonsporulated, presenting an
average bacterial size of 1.28× 0.68 µm. Cells were facultative
and oxidase- and catalase-positive. Optimal growth condi-
tions for BBCOL-025 were at pH 6.0–6.5 and 37°C. Isolated
strains presented positive activity for the Voges–Proskauer
test and nitrate reduction, and showed negative activity
against ONPG and H2S production, as previously reported
[44, 45].

3.3. Sodium Chloride and Perchlorate Susceptibility Assay.
All isolates showed growth in the culture medium with high
concentrations of NaCl, reaching tolerance up to 30%.
Strains BBCOL-023 to BBCOL-033 presented characteristics
of moderately halophilic bacteria, according to what was
reported by Acevedo-Barrios [20].

0e ability of isolates to grow and tolerate concentrations
of KClO4 between 100 and 10000mg/L is presented in
Table 2. All isolates showed biofilm formation at the highest
concentration. 0is barrier allows the bacteria to generate a

Staphylococcus saprophyticus (L37596)
Staphylococcus saprophyticus subsp. saprophyticus (AB681788)
Staphylococcus xylosus (AB626129)

Staphylococcus gallinarum (AB726090)
Staphylococcus succinus subsp. succinus (JQ988944)

Staphylococcus kloosii (AB009940)
Staphylococcus arlettae (AB009933)

Staphylococcus equorum (AB009939)
Staphylococcus cohnii subsp. cohnii (D83361)

Staphylococcus cohnii subsp. urealyticus (AB009936)
Staphylococcus nepalensis (AJ517414)
Staphylococcus nepalensis (AB697719)

Staphylococcus lugdunensis (AB009941)
Staphylococcus haemolyticus (AB626124)

BBCOL032 (KX821673)
Staphylococcus petrasii subsp. pragensis (KM873669)

Staphylococcus petrasii subsp. jettensis (JN092111)
Staphylococcus epidermidis (L37605)
Staphylococcus aureus (D83356)

Staphylococcus simiae (AY727530)
Staphylococcus felis (D83364)

Staphylococcus lutrae (AB233333)
Staphylococcus schleiferi subsp. coagulans (AB009945)

Staphylococcus delphini (AB009938)
Bacillus subtilis (AB016721)

67

71
94

94
92

99

100

99

40

40

45

84

92
90

41

15
12

95
45

25
11

26

0.01

Figure 5: Neighbor joining phylogenetic tree based on 16S rRNA gene sequences showing the relationships of strain BBCOL-032 and
related taxa. Percentage bootstrap values based on 1000 replications are given at branch points. Bacillus subtilis (AB016721) was used as the
outgroup. Bar, 0.01 substitutions per nucleotide position.
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concentration gradient as a means of protection against the
toxicity of this chemical [2].

Other aspects evidenced in these strains are associations
between NaCl and KClO4 tolerance. 0ese isolates have
become interesting targets for this research, given the need
to identify native bacteria with potential biotechnological
and biochemical versatility, capable of degrading environ-
mental contaminants such as KClO4.

3.4. Evaluation of Perchlorate Reduction by Isolates.
Perchlorate-reducing bacteria are phylogenetically diverse,
and these include Alphaproteobacteria, Betaproteobac-
teria, Gammaproteobacteria, and Deltaproteobacteria
classes, with Betaproteobacteria being the most commonly
detected class [46, 47]. In this work, bacterial strains
BBCOL-023 to BBCOL-033 (Figure 7) showed biological

capacity to reduce concentrations of KClO4 on percentages
between 10 and 25.

0e genera Nesiotobacter and Salinivibrio showed the
highest percentage (25%) of perchlorate reduction, while the
genera Vibrio, Bacillus, and Staphylococcus presented a
lowest proportion of KClO4 reduction, with 14, 12, and 10%,
respectively. Recent studies have shown that the amount of
perchlorate reduced may be inversely proportional to in-
creased salinity [13, 17]. Future studies should be carried out
to describe the role of salinity on perchlorate reduction by
these strains.

0e ability of bacteria to grow in perchlorate polluted
areas is determined by their degrading enzymes [48, 49].0e
general metabolic reduction pathway widely accepted by
researchers [9, 10] involves the reductase enzyme, as this is
responsible to reduce perchlorate to chlorate and chlorate to
chlorite, while the superoxide chlorite enzyme changes

Figure 6: Cell morphology studied by SEM. Bacteria isolated from hypersaline soils: (a) BBCOL-023; (b) BBCOL-024; (c) BBCOL-025; (e)
BBCOL-027; (f ) BBCOL-028; (g) BBCOL-029; (h) BBCOL-031; (i) BBCOL-032; (j) BBCOL-033 (SEM at 10000x).
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chlorite to chloride and molecular oxygen [9, 46, 50]. 0e
optimal temperature range for perchlorate reduction is
28–37°C [46, 51, 52].

Perchlorate-reducing bacteria are usually anaerobic and
some facultative, despite being the molecular oxygen pro-
duced as an intermediate of the microbial perchlorate re-
duction [46, 53], in a process that exudes nitrate [46]. In our
study, isolated perchlorate-reducing bacteria were also an-
aerobic but facultative. 0erefore, although these may un-
dergo degradation processes in a wide range of environmental
conditions, it is also probable that some critical anaerobic
strains were missed during the aerobic treatment. In con-
sequence, additional experiments should be carried out under
anaerobic conditions, just to enrich some active microor-
ganisms that may improve perchlorate degradation.

Perchlorate is an ubiquitous and persistent pollutant in
the environment, causing toxic effects in biota and humans.
0erefore, different technologies have been developed to
remove and eliminate this chemical. One of the most
promising, effective, and economic ones is the use of bacteria
in biotechnological systems that are capable of reducing and
eliminating perchlorate. 0e rates of perchlorate reduction
obtained in this study were comparable to those reported by
Wang et al. [54], suggesting their potential application in
bioremediation of perchlorate contaminated areas.

4. Conclusions

0e strains isolated from Galerazamba-Bolivar, Manaure-
Guajira, and Salamanca Island-Magdalena, Colombia, were
halotolerant organisms belonging to the Vibrio, Bacillus,

Salinovibrio, Staphylococcus, and Nesiotobacter genera.
0ese strains could reduce KClO4 levels in aqueous solutions
from 10 up to 25%. Bacteria-mediated remediation of
perchlorate is a suitable process to control pollution by this
toxic chemical.
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LB NaCl: Luria-Bertani in seawater
ML: Maximum likelihood
MP: Maximum parsimony
ME: Minimum evolution
NJ: Neighbor joining
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Table 2: Bacterial strains BBCOL-023 to BBCOL-033 exposed to different NaCl and KClO4 concentrations and pH changes.

Characteristics BBCOL-
023

BBCOL-
024

BBCOL-
025

BBCOL-
026

BBCOL-
027

BBCOL-
028

BBCOL-
029

BBCOL-
031

BBCOL-
032

BBCOL-
033

Maximum NaCl
tolerance (%) 30 30 30 10 10 10 10 10 15 10

Maximum KClO4
tolerance (mg/L) 10,000 10,000 10,000 10,000 10,000 7,500 10,000 10,000 10,000 7,500

pH range tolerance 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12 6.5–12
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Figure 7: Percentage of KClO4 concentration reduction of bacteria BBCOL-023 to BBCOL-033 from saline environments in the Colombian
Caribbean. Effect of the 48 h contact time, optical density at OD 600, and optimal pH (7.0± 0.5).
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