

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/141962

Lucas Alba, S.; Meseguer, J.; Gutiérrez Gil, R. (09-2). The 2D Dependency Pair Framework
for conditional rewrite systems. Part I: Definition and basic processors. Journal of Computer
and System Sciences. 96:74-106. https://doi.org/10.1016/j.jcss.2018.04.002

https://doi.org/10.1016/j.jcss.2018.04.002

Elsevier

The 2D Dependency Pair Framework for conditional
rewrite systems. Part I: definition and basic processorsI

Salvador Lucasa, José Meseguerb, Raúl Gutiérreza

aDSIC, Universitat Politècnica de València
bCS Dept. at the University of Illinois at Urbana-Champaign

Abstract

Different termination properties of conditional term rewriting systems have been
recently described emphasizing the bidimensional nature of the termination be-
havior of conditional rewriting. The absence of infinite sequences of rewriting
steps (termination in the usual sense), provides the horizontal dimension. The
absence of infinitely many attempts to launch the subsidiary processes that
are required to check the rule’s condition and perform a single rewriting step
has been called V-termination and provides the vertical dimension. We have
characterized these properties by means of appropriate notions of dependency
pairs and dependency chains. In this paper we introduce a 2D Dependency
Pair Framework for automatically proving and disproving all these termination
properties. Our implementation of the framework as part of the termination
tool mu-term and the benchmarks obtained so far suggest that the 2D De-
pendency Pair Framework is currently the most powerful technique for proving
operational termination of conditional term rewriting systems.

Keywords: Conditional term rewriting, dependency pairs, program analysis,
operational termination

1. Introduction

Computations with Conditional Term Rewriting Systems (CTRSs [3, 7, 16])
can be defined by means of an Inference System where each rewriting step
s→R t requires a proof of the goal s→ t before it can be considered part of the
one-step rewriting relation associated to R (see Figure 1). Similarly, the fact
that a term s rewrites (in zero or more rewriting steps) to another term t using
R (denoted s→∗R t) is witnessed by the existence of a proof of the goal s→∗ t.

Remark 1. All rules in the inference system in Figure 1 are schematic in that

each inference rule B1 ··· Bn

A can be used under any instance σ(B1) ··· σ(Bn)
σ(A) of

IPartially supported by the EU (FEDER), Spanish MINECO project TIN2015-69175-C4-
1-R, GV project PROMETEOII/2015/013, and NSF grant CNS 13-19109. Raúl Gutiérrez is
also supported by Juan de la Cierva Fellowship JCI-2012-13528.

Preprint submitted to Elsevier April 24, 2018

(Refl) x→∗ x (Cong)
xi → yi

f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)
for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(Tran)
x→ z z →∗ y

x→∗ y (Repl)
s1 →∗ t1 . . . sn →∗ tn

`→ r
for `→ r ⇐ s1 → t1 · · · sn → tn ∈ R

Figure 1: Inference rules for conditional rewriting with a CTRS R with signature F

the rule by a substitution σ [29]. For instance, (Repl) actually establishes that,
for every rule ` → r ⇐ s1 → t1, . . . , sn → tn in the CTRS R, every instance
σ(`) by a substitution σ rewrites into σ(r) provided that, for each si → ti, with
1 ≤ i ≤ n, the reachability condition σ(si)→∗ σ(ti) can be proved.

Following this proof theoretic approach to the operational semantics of CTRSs,
the definition of their termination properties concerns the absence or existence
of infinite proof trees. The notion of operational termination captures this idea,
meaning that, given an initial goal, an interpreter will either succeed in finite
time in producing a proof tree, or will fail in finite time, not being able to close
or extend further any of the possible proof trees, after exhaustively searching
for all such proof trees [22].

Advanced declarative programming languages like ASF+SDF [5], CafeOBJ
[8], ELAN [4], Haskell [15], OBJ [13], or Maude [6] use CTRSs as an appropriate
basis for modeling computations with programs written in such languages. For
this reason, in [24] we have investigated characterizations of termination proper-
ties of CTRSs to faithfully capture the bidimensional nature of infinite compu-
tations with CTRSs [24, Section 3]: besides infinite sequences of rewriting steps
(a horizontal dimension, corresponding to the usual notion of nonterminating
rewriting computation), there can be infinitely many attempts to satisfy a rule’s
condition when a single rewriting step is attempted (a vertical dimension). The
second (vertical) dimension is due to the use of conditional rules ` → r ⇐ c
where the conditional part c consists of sequences of conditions s → t which
are treated as reachability tests σ(s) →∗ σ(t) for the matching substitution σ
which is used to (try to) apply a single rewriting step. Such tests may start sub-
sidiary computations that may run forever. In [24, Section 3] we have proved
that operational termination of CTRSs is equivalent to the conjunction of two
properties: termination and V -termination. Here, termination of a CTRS R is
(as usual) the absence of infinite sequences t1 →R t2 →R · · · of rewriting steps;
and V -termination is a new property which captures the absence of infinitely
many attempts to launch the subsidiary processes that are required to perform
a single rewriting step (the precise definition is given below).

These termination properties of a CTRS R are captured using two CTRSs
DPH (R) (for termination) and DPV (R) (for V -termination) which are obtained
from R [24, Sections 4 and 5]. As in the corresponding approach for Term
Rewriting Systems (TRSs) [1], we call them Dependency Pairs. We collectively

2

call DPH (R) and DPV (R) the 2D Dependency Pairs (2D DPs) of R.

1. The CTRS DPH (R) of horizontal dependency pairs contains, for each rule
` → r ⇐ c in R, all rules `] → v] ⇐ c that are obtained for each defined
subterm v of r, i.e., v is a subterm of r and the root symbol of v is a
defined symbol.1 The notation t] for a term t represents the marking of
the root symbol f of t. We often capitalize f into F instead of writing f].

2. The CTRS DPV (R) of vertical dependency pairs contains rules `] → v] ⇐
s1 → t1, . . . , si−1 → ti−1 for each rule ` → r ⇐ s1 → t1, . . . , sn → tn and
i, 1 ≤ i ≤ n such that v is a defined subterm of si.

Example 2. The following CTRS R in [28, Example 7.1.5] implements the
computation of the quotient and remainder of two natural numbers represented
in Peano’s notation where s(· · · s(︸ ︷︷ ︸

n

0) · · ·)︸ ︷︷ ︸
n

represents the natural number n:

less(x, 0) → false (1)

less(0, s(x)) → true (2)

less(s(x), s(y)) → less(x, y) (3)

monus(0, s(y)) → 0 (4)

monus(x, 0) → x (5)

monus(s(x), s(y)) → monus(x, y) (6)

quotrem(0, s(y)) → pair(0, 0) (7)

quotrem(s(x), s(y)) → pair(0, s(x))⇐ less(x, y)→ true (8)

quotrem(s(x), s(y)) → pair(s(q), r) (9)

⇐ less(x, y)→ false, quotrem(monus(x, y), s(y))→ pair(q, r)

The CTRS DPH (R) consists of the rules:

LESS(s(x), s(y)) → LESS(x, y) (10)

MONUS(s(x), s(y)) → MONUS(x, y) (11)

The CTRS DPV (R) consists of the rules:

QUOTREM(s(x), s(y)) → LESS(x, y) (12)

QUOTREM(s(x), s(y)) → QUOTREM(monus(x, y), s(y)) (13)

⇐ less(x, y)→ false

QUOTREM(s(x), s(y)) → MONUS(x, y)⇐ less(x, y)→ false (14)

Termination, V -termination, and operational termination of CTRSs R can be
investigated as the absence of infinite chains of dependency pairs from DPH (R)
and DPV (R) [24, Section 7]. However, the theory in [24] does not provide

1A k-ary symbol f is defined in a CTRS R if there is a rule f(`1, . . . , `k)→ r ⇐ c in R.

3

any practical methodology to tackle this task. In this paper we close this gap
by extending to CTRSs the Dependency Pair Framework for Term Rewriting
Systems (TRSs) [10, 12], which is very useful for the development of tools for au-
tomatically proving termination. We define a 2D Dependency Pair Framework
to mechanically prove or disprove termination, V-termination, and operational
termination of CTRSs using 2D DPs.

1.1. Contributions of the paper

The contributions of this paper are developed after the preliminary Sections
2 and 3 (the last one contains the material from [24] which is used in this paper
to make our presentation self-contained). In Section 4, we pay some attention to
the role of infeasible rules, i.e., rules whose conditional part cannot be satisfied
by any substitution and therefore cannot be used to perform any rewriting step.
In Section 5 we define our 2D DP Framework to mechanically prove or disprove
termination, V-termination, and operational termination of CTRSs using 2D
DPs. For instance, the framework can be used to prove termination of CTRSs
which are not operationally terminating and also to prove V-termination of
CTRSs which are not terminating, and is also able to disprove operational
termination of both of them.

Example 3. Consider the following CTRS R [24, Example 2]:

g(a) → c(b) (15)

b → f(a) (16)

f(x) → x⇐ g(x)→ c(y) (17)

As claimed in [24], R is terminating, but it is not V -terminating. We can
mechanically prove both claims using our framework (see Examples 59 and 92).
Of course, we also conclude that R is not operationally terminating.

As in the DP Framework for TRSs [10, 12], the notion of processor is cen-
tral. Processors transform termination problems into sets of simpler termi-
nation problems which can then be handled independently. This divide and
conquer approach is paramount in the (2D) DP Framework. Section 6 dis-
cusses the practical use of the 2D DP Framework. In contrast to the usual
practice of the DP Framework for TRSs, where a single termination property
(termination of a TRS) is proved or disproved, we aim at dealing with the three
different properties mentioned above. This requires further flexibility, which we
introduce through what we call the open 2D DP Framework. In Section 7, we
introduce several processors for their use in proofs of (operational) termination
of CTRSs within the (open) 2D DP Framework. We have implemented our 2D
DP Framework as part of the termination tool mu-term [2]. Section 8 discusses
related work. Section 9 concludes. In order to ease the reading of the paper, we
have collected the proofs of all theorems in an appendix.

This paper is an extended and completely revised version of [23, Sections 5 and
6] and [26, Sections 4,5,7, and 8]. After the new developments in [24] leading

4

to a characterization of operational termination of CTRSs as the conjunction
of termination and the new property of V-termination, we have revised the
main essential notions (e.g., CTRS problem and processor) leading to a new,
more general and powerful approach. In particular, the material in Section 6 is
completely new. The specific processors discussed here have also been revised
with regard to their definitions and use. Besides, we provide full proofs of all
results formalizing the use of the 2D DP Framework and the aforementioned
processors.

2. Preliminaries: relations, terms and substitutions

The material in this section follows [28]. A binary relation R on a set A is
terminating (or well-founded) if there is no infinite sequence a1 R a2 R a3 · · · .
For relations R,S ⊆ A×A, we let R ◦S = {(a, b) ∈ A×A | ∃c ∈ A, aR c ∧ cS b}.
We say that R is compatible with S if R ◦ S ⊆ S or S ◦ R ⊆ S

Throughout the paper X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity
given by a mapping ar : F → N. The set of terms built from F and X is
denoted T (F ,X). Var(t) is the set of variables occurring in a term t. A term t
is ground if it contains no variable (i.e., Var(t) = ∅). A term is said to be linear
if it does not contain multiple occurrences of the same variable.

Terms are viewed as labeled trees in the usual way. Positions p, q, . . . are
sequences of positive natural numbers used to address subterms of t. We denote
the empty sequence (and root position of a term) by Λ. The set of positions of a
term t is Pos(t). Positions of nonvariable symbols in t are denoted as PosF (t).
The subterm of t at position p is denoted as t|p, and t[s]p is the term t with the
subterm at position p replaced by s. We write s � t, read t is a subterm of s, if
t = s|p for some p ∈ Pos(s) and s� t if s� t and s 6= t. We write s 7 t if s� t
does not hold. The symbol labeling the root of t is denoted as root(t).

A substitution is a mapping σ : X → T (F ,X). The ‘identity’ substitution
x 7→ x for all x ∈ X is denoted ε. The set Dom(σ) = {x ∈ X | σ(x) 6= x} is
called the domain of σ. We do not require that the domain of the substitutions
be finite. This is usual practice in the dependency pair approach, where a
single substitution is used to instantiate an infinite number of variables coming
from renamed versions of the dependency pairs (see below). When substitutions
with finite domain are assumed, we explicitly call them finite substitutions. A
renaming is a bijective substitution ρ such that ρ(x) ∈ X for all x ∈ X . A
finite substitution σ such that σ(s) = σ(t) for two terms s, t ∈ T (F ,X) is called
a unifier of s and t; we also say that s and t unify (with substitution σ). If
two terms s and t unify, then there is a unique (up to renaming of variables)
most general unifier (mgu) σ such that for every other unifier τ , there is a finite
substitution θ such that θ ◦ σ = τ . In the following we often write s =?

σ t if s
and t unify with mgu σ. A substitution σ unifies a set of equations E iff2 for

2In the following, iff abbreviates if and only if.

5

all s =? t ∈ E, σ(s) = σ(t); we also say that σ is a unifier of E.

3. Conditional rewriting, operational termination, and 2D DPs

An (oriented) CTRS is a pair R = (F , R) where F is a signature and R a set
of rules ` → r ⇐ c where c is a sequence s1 → t1, · · · , sn → tn for some n ≥ 0
and terms `, r, s1, . . . , tn such that ` /∈ X . As usual, ` and r are called the left-
and right-hand sides of the rule, and c is the conditional part of the rule. Labeled
rules are written α : `→ r ⇐ c, where α is a label, which is often used by itself
to refer to the rule. In the following, if c is a sequence s1 → t1, . . . , sn → tn of
conditions, and 1 ≤ i ≤ j ≤ n, [c]ji denotes the subsequence si → ti, . . . , sj → tj ;

if i > j, then [c]ji denotes the empty sequence. We often abbreviate [c]j1 as [c]j .
Also, given a CTRS R and a rule α, the (possible) replacement R[S]α of α in
R by the (possibly empty) set of rules S is R[S]α = (R − {α}) ∪ S if α ∈ R;
and R[S]α = R otherwise.

Rewrite rules ` → r ⇐ c are classified according to the distribution of
variables among `, r, and c, as follows: type 1, if Var(r) ∪ Var(c) ⊆ Var(`);
type 2, if Var(r) ⊆ Var(`); type 3, if Var(r) ⊆ Var(`) ∪ Var(c); and type 4, if
no restriction is given. A rule of type n is often called an n-rule. An n-CTRS
contains only m-rules for m ≤ n. A TRS is a 1-CTRS whose rules have no
conditional part; we write them ` → r. A 3-CTRS R is called deterministic
if for each rule ` → r ⇐ s1 → t1, . . . , sn → tn in R and each 1 ≤ i ≤ n, we
have Var(si) ⊆ Var(l)∪

⋃i−1
j=1 Var(tj). Given R = (F , R), we consider F as the

disjoint union F = C] D of symbols c ∈ C (called constructors) and symbols
f ∈ D (called defined functions), where D = {root(`) | (` → r ⇐ c) ∈ R} and
C = F −D. If necessary, we may write CR and DR to make explicit the CTRS
R which is used to establish the partitioning of F into constructor and defined
symbols. Terms t ∈ T (F ,X) such that root(t) ∈ D are called defined terms.
PosD(t) is the set of positions p of subterms t|p such that root(t|p) ∈ D.

3.1. Proof trees

Given an atomic formula A of the form s → t or s →∗ t, pred(A) refers to
its predicate symbol → or →∗, respectively, and left(A) refers to s. Given a
CTRS R, a finite proof tree T (for the inference system in Figure 1) is either:
(i) an open goal G of the form s → t or s →∗ t for terms s, t; then, we denote
root(T) = G; otherwise, (ii) is a derivation tree with root G, denoted as

T1 · · · Tn
G

(ρ) (18)

where G is as above, T1,. . . ,Tn are finite proof trees (for n ≥ 0), and ρ : B1...Bn

A is
an inference rule such that G = σ(A) and root(Ti) = σ(Bi) for some substitution
σ and 1 ≤ i ≤ n. We write root(T) = G. A finite proof tree T is closed if it
contains no open goals. A finite proof tree T is a proper prefix of a finite proof
tree T ′ if there are one or more open goals G1, . . . , Gn in T such that T ′ is
obtained from T by replacing each Gi by a derivation tree Ti with root Gi. We

6

~T1

~Tn

...
Gn ~On

...
G1

~O1

G0

Figure 2: Structure of an infinite well-formed proof tree T

denote this as T ⊂ T ′. An infinite proof tree T is a sequence {Ti}i∈N such that
for all i, Ti ⊂ Ti+1. We let root(T) = root(T0).

A finite proof tree T is well-formed if it is either an open goal, or a closed
proof tree, or a derivation tree like (18) where there is i, 1 ≤ i ≤ n, such
that T1, . . . , Ti−1 are closed, Ti is a well-formed but not closed finite proof tree,
and Ti+1, . . . , Tn are open goals. An infinite proof tree is well-formed if it is
an increasing chain of well-formed finite proof trees. Infinite well-formed proof
trees T have a single infinite branch as shown in Figure 2, where for all i ≥ 1,
~Ti are sequences of closed (hence finite) proof trees and ~Oi are sequences of
open goals. For all i ≥ 0, goal Gi is the root of the infinite subtree immediately
above it. Formally, T is the limit of the sequence {Si}i∈N, where S0 = G0

and for all i ≥ 0, Si+1 is obtained from Si by replacing the open goal Gi by
~Ti+1 Gi+1

~Oi+1

Gi
. Note that, for all i ≥ 0, Si ⊆ Si+1, as required. The infinite

sequence (Gi)i∈N is called the spine of T , written spine(T).

3.2. Conditional rewriting and termination properties of CTRSs

We write s →R t (resp. s →∗R t) iff there is a well-formed closed proof tree
for s → t (resp. s →∗ t) using R. We often drop R from →R or →∗R if no
confusion arises. Note that s →R t iff there is p ∈ Pos(s), ` → r ⇐ c ∈ R
and a substitution σ such that σ(u)→∗R σ(v) for all u→ v ∈ c, s|p = σ(`) and

t = s[σ(r)]p; we often write s
>Λ→R t if p 6= Λ. It is easy to prove that s →∗R t

holds iff there is a sequence s1, . . . , sn of terms for some n ≥ 1 such that s = s1,

t = sn and for all i, 1 ≤ i < n, si →R si+1; in particular, we write s
>Λ−→∗ t iff

s →∗ t and for all i ≥ 0, si
>Λ→ si+1 holds. Given CTRSs R and S, and terms

s, t, we write s
Λ→S,R t if there is `→ r ⇐ c ∈ S and a substitution σ such that

s = σ(`), t = σ(r) and σ(u)→∗R σ(v) for all u→ v ∈ c; thus, the rewriting step
is performed (at the root of s) by using ` and r from a rule `→ r ⇐ c ∈ S, but
the conditional part c of the rule is evaluated using R. We call a term t [24]:

• terminating iff there is no infinite rewrite sequence t = t1 → t2 → · · ·

• V -terminating iff there is no infinite well-formed proof tree T such that
left(root(T)) = t and pred(G) =→ for infinitely many goals G ∈ spine(T).

• operationally terminating if there is no infinite well-formed proof tree T
with left(root(T)) = t.

7

A CTRS R is terminating (resp. V -terminating, operationally terminating) iff
every term t is terminating (resp. V -terminating, operationally terminating).

Let R be a CTRS, α : ` → r ⇐ c ∈ R and σ be a substitution terminating
over Var(`) (i.e., for all x ∈ Var(`), σ(x) is terminating). We say that α
preserves termination of σ iff σ is terminating over Var(r) whenever σ(s) →∗R
σ(t) for all s→ t ∈ c. We say thatR preserves terminating substitutions if for all
substitutions σ and α : `→ r ⇐ c ∈ R, if σ is terminating over Var(`), then α
preserves termination of σ. Every 2-CTRS preserves terminating substitutions.

3.3. Dependency Pairs for CTRSs

Let R be a CTRS and t be a term. The set of defined subterms of t is
D�(R, t) = {t |p | p ∈ PosDR(t)}. Let RULES Λ(R, t) = {` → r ⇐ c ∈ R |
root(`) = root(t)} and

UΛ(R, t) = RULES Λ(R, t) ∪
⋃

`→r⇐c∈RULESΛ(R,t)

UΛ(R− RULES Λ(R, t), r)

In the following, given a CTRS P, we let UΛ(R,P) =
⋃
`→r⇐c∈P UΛ(R, r).

Given a signature F and f ∈ F , we let f] (or just F) be a fresh symbol
associated to f . For t = f(t1, . . . , tk) ∈ T (F ,X), we write t] to denote the
marked term f](t1, . . . , tk).

Definition 4. [24] Let R be a CTRS. The CTRSs DPH (R) and DPV (R) of
horizontal and vertical dependency pairs are3:

DPH (R) = {`] → v] ⇐ c | `→ r ⇐ c ∈ R, v ∈ D�(R, r), ` 7 v}
DPV (R) = {`] → v] ⇐ [c]i−1 | `→ r ⇐ c ∈ R, 1 ≤ i ≤ n, v ∈ D�(R, si), ` 7 v}.

Now, we let DPVH (R) = UΛ(DPH (R),DPV (R)). Following [23], we call them
connecting dependency pairs.

Example 5. For R in Example 2, DPVH (R) = DPH (R) because for the rhs
v12 of pair (12) in DPV (R), we have UΛ(DPH (R), v12) = {(10)}; for the rhs
v13 of pair (13) in DPV (R), we have UΛ(DPH (R), v13) = ∅; and for the rhs v14

of pair (14) in DPV (R), we have UΛ(DPH (R), v14) = {(11)}.

Example 6. For R in Example 3,

DPH (R) : G(a) → B (19)

B → F(a) (20)

DPV (R) : F(x) → G(x) (21)

and DPVH (R) = DPH (R).

3The signatures F ′ of CTRSs obtained by marking rules of other CTRSs are given by just
extracting all function symbols (with their arities) from the obtained rules.

8

Definition 7. [24, Definition 71] Let P,Q,R be CTRSs. A (P,Q,R)-O-chain4

is a finite or infinite sequence of (renamed) rules ui → vi ⇐ ci ∈ P, which are
viewed as conditional dependency pairs, together with a substitution σ satisfying
that, for all i ≥ 1,

1. for all s→ t ∈ ci, σ(s)→∗R σ(t) and

2. σ(vi)(→R ∪
Λ→Q,R)∗σ(ui+1).

A (P,Q,R)-O-chain is called minimal if for all i ≥ 1, whenever

σ(vi) = wi1(→∗R ◦
Λ→Q,R)wi2(→∗R ◦

Λ→Q,R) · · · (→∗R ◦
Λ→Q,R)wimi →∗R σ(ui+1),

in the chain, then for all j, 1 ≤ j ≤ mi, wij is R-operationally terminating.

Theorem 8. [24, Section 7] Let R be a CTRS.

1. If there is no infinite (DPH (R), ∅,R)-O-chain and R preserves terminat-
ing substitutions, then R is terminating.

2. If there is an infinite (DPH (R), ∅,R)-O-chain, then R is nonterminating.

3. If there is no infinite (DPV (R),DPVH (R),R)-O-chain and R is a deter-
ministic 3-CTRS, then R is V -terminating.

4. If there is an infinite (DPV (R),DPVH (R),R)-O-chain, then R is non-V -
terminating.

5. If there is no infinite minimal (DPH (R), ∅,R)-O-chain, there is no infi-
nite minimal (DPV (R),DPVH (R),R)-O-chain and R is a deterministic
3-CTRS, then R is operationally terminating.

6. If there is an infinite (DPH (R), ∅,R)- or (DPV (R),DPVH (R),R)-O-chain,
then R is operationally nonterminating.

4. Rules with infeasible conditions

In the literature about confluence of conditional rewriting, the so-called in-
feasible Conditional Critical Pairs (CCPs, see [28, Definition 7.1.8(1)]) are those
whose conditional parts are not satisfiable. The following definition borrows [28,
Definition 7.1.8(3)] for feasibility of CCPs.

Definition 9. [21] Let R be a CTRS and α : ` → r ⇐ s1 → t1, . . . , sn → tn
be a rule. We say that (the conditional part of) α is R-feasible if there is a
substitution σ such that for all 1 ≤ i ≤ n, σ(si) →∗R σ(ti). Otherwise, it is
called R-infeasible.

Note that α in Definition 9 can also be a rule of R.

4In [24], three notions of chain of dependency pairs (namely, H-, V-, and O-chains) were
introduced and applied to prove the different termination properties considered in this paper
(termination, V-termination and operational termination, respectively). H-chains, though,
use dependency pairs that we do not consider here. Fortunately, we can use O-chains to prove
all these termination properties, although with some limitations in proofs of termination.

9

Example 10. Consider the CTRS R [28, Example 7.2.45]:

a → a⇐ b→ x, c→ x (22)

b → d⇐ d→ x, e→ x (23)

c → d⇐ d→ x, e→ x (24)

where a, . . . , e are constants and x is a variable. Clearly, (23) and (24) cannot
be used in any rewriting step: since d and e are irreducible, the only way for
condition d → x, e → x to be satisfied is instantiating x to both d and e, which
is not possible. They are, therefore, infeasible. Hence, (22) is infeasible as well.

In the following, we often assume R partitioned as R = RF] RI , with RI a
(possibly empty) set of R-infeasible rules of R and RF containing any other
rule. Since R-infeasibility is, in general, undecidable, we just assume that rules
in RI are really (i.e., proved to be) infeasible ([21, 30, 31] develop some specific
criteria for infeasibility). Some rules in RF can also be infeasible, though.

Remark 11 (Disregarding infeasible rules in chains). Provided that PI ,
QI , and RI consist of R-infeasible rules only, we can replace P, Q, and R by
PF , QF , and RF in Definition 7 without losing (P,Q,R)-O-chains.

Removing infeasible rules from R may change nonminimality of (P,Q,R)-O-
chains due to the lack of preservation of operational termination of R under
addition of rules, even if such rules are infeasible.

Example 12. Consider the CTRS R

f(x) → f(b) (25)

b → c⇐ b→ d, c→ d (26)

and DPH (R) = {F(x)→ F(b),F(x)→ B}. The (DPH (R), ∅,R)-O-chain:

F(x1)→ F(b),F(x2)→ F(b), . . . (27)

with σ(xi) = b for all i ≥ 1 is not minimal because b is not R-operationally ter-
minating. However, if we remove (26) (clearly R-infeasible), then (27) becomes
minimal (with respect to R− {(26)}).

Remark 13 (Feasibility assumption). According to Remark 11 and taking
into account Example 12, in the following we often assume that all rules in P
and Q are R-feasible in all considered (P,Q,R)-O-chains.

5. The 2D DP Framework for CTRSs

In the following, F = {a,m} is a signature of flag constants f referring to
arbitrary (resp. minimal) (P,Q,R)-O-chains if f = a (resp. f = m). We write
m < a to denote that arbitrary O-chains include minimal ones. Let’s introduce
the problems at stake in our incremental proofs of CTRS termination properties.

10

Definition 14 (CTRS problem). A CTRS problem is a tuple τ = (P,Q,R, f),
where P, Q, and R are CTRSs, and f ∈ F.

Accordingly, we speak of (P,Q,R,m)-chains (or just τ -chains if τ = (P,Q,R,m))
instead of minimal (P,Q,R)-O-chains; and of (P,Q,R, a)-chains (resp. τ -chains
if τ = (P,Q,R, a)) instead of arbitrary (P,Q,R)-O-chains.

Definition 15 (Finite CTRS problem). A CTRS problem τ = (P,Q,R, f)
with f ∈ F is finite iff there is no infinite τ -chain; τ is infinite iff there is an
infinite τ -chain (iff τ is not finite).

Note that τ = (P,Q,R, f) is trivially finite if P contains no rule (written P = ∅
for short). We call them trivial CTRS problems. We can now recast Theorem
8 as follows:

Theorem 16. Let R be a CTRS.

1. If (DPH (R), ∅,R, a) is finite and R preserves terminating substitutions,
then R is terminating.

2. If (DPH (R), ∅,R, f) is infinite for some f ∈ F, then R is nonterminating.

3. If (DPV (R),DPVH (R),R, a) is finite and R is a deterministic 3-CTRS,
then R is V -terminating.

4. If (DPV (R),DPVH (R),R, f) is infinite for some f ∈ F, then R is non-
V -terminating.

5. If both (DPH (R), ∅,R, f) and (DPV (R),DPVH (R),R, f ′) are finite for
some f, f ′ ∈ F and R is a deterministic 3-CTRS, then R is operationally
terminating.

6. If (DPH (R), ∅,R, f) or (DPV (R),DPVH (R),R, f ′) are infinite for some
f, f ′ ∈ F, then R is operationally nonterminating.

The DP problems of [10, 12] are infinite already if R is nonterminating and there
are DP problems that are both finite and infinite (e.g., with P a TRS with an
empty set of rules and R consisting of the rule a→ a). This is not possible for
CTRS problems. Actually, declaring a CTRS problem τ = (P,Q,R, f) infinite
if R is operationally nonterminating would risk reaching wrong conclusions.

Example 17. The CTRS R in Example 3 is not operationally terminating.
But it is terminating (see Example 59). If τ = (P,Q,R, f) is infinite whenever
R is operationally nonterminating, by Theorem 16(2) we would wrongly con-
clude nontermination of R. Similarly, every nonterminating TRS R, viewed
as a CTRS without conditional rules, is V-terminating (because DPV (R) = ∅).
However, considering τ infinite whenever R is nonterminating would wrongly
lead us to conclude non-V-termination of TRSs (using Theorem 16(4)).

See Section 8 for a more detailed comparison with the DP Framework for TRSs.

11

5.1. Processors

Processors transform CTRS problems τ = (P,Q,R, f) into possibly empty
sets {τ1, . . . , τn} of (simpler) CTRS problems τi = (Pi,Qi,Ri, fi). ‘Simpler’
often means that the Pi (resp. Qi, Ri) are smaller than P (resp. Q, R). Some
processors, though, transform the rules in P, Q, or R so that the obtained
CTRS problems define ‘fewer’ chains. Processors may also return “no”, with
the intended meaning of τ being infinite (but see Definition 22 below).

Definition 18 (CTRS processor). A CTRS processor P is a partial function
from CTRS problems into sets of CTRS problems. Alternatively, it can return
“no”. The domain of P, denoted Dom(P), is the set of CTRS problems τ for
which P is defined.

In the literature, processors are usually defined to be mappings, i.e., total func-
tions. We can easily fit this setting by just completing the definition of a CTRS
processor P into a mapping P as follows:

P(τ) =

{
P(τ) if τ ∈ Dom(P)
{τ} otherwise

Indeed, most definitions of processors in the literature have this shape. This
suggests that considering processors as partial functions may be more natural.
In the following we will speak of ‘processors’ rather than ‘CTRS processors’ if
no confusion arises. The definition of our first simple processor PFin illustrates
the following notational conventions to be followed in the sequel:

1. We often write P(P,Q,R, f) rather than P((P,Q,R, f)) to avoid dupli-
cate parentheses in the definition of processor P.

2. When defining P we provide the conditions that CTRS problems τ must
satisfy (if any) for P to be applied.

Definition 19 (Trivial finiteness processor). Let P, Q, and R be CTRSs
and f ∈ F. Then, PFin is given by PFin(P,Q,R, f) = ∅, if P = ∅.

Thus, in Definition 19, the condition for the application of PFin is “P = ∅”.
The following processor detects a simple kind of infinite CTRS problems.

Definition 20 (Infiniteness processor). Let P, Q, and R be CTRSs, u →
v ⇐ c ∈ P, and f ∈ F. Then, PInf is given by PInf (P,Q,R, f) = no if there are
substitutions θ, η such that for all s→ t ∈ c, η(s)→∗R η(t) and η(v) = θ(η(u)).

Ensuring that the reachability conditions η(s) →∗R η(t) hold is essential for
making sense of a ‘negative’ answer of the processor.

Example 21. Consider the CTRS P = {a → a ⇐ b → c} and Q = R = ∅.
The rule u → v ⇐ c in P satisfies the condition η(v) = θ(η(u)) if η = θ = ε,
the empty substitution. However, there is no infinite (P,R,Q)-O-chain because
the condition b→∗R c in c cannot be satisfied due to the emptiness of R.

12

Rules u → v ∈ P without conditional part are suitable candidates to be used
with PInf as we do not need to check the condition η(s) →∗R η(t) prescribed
in Definition 20 (hence we let η be the identity substitution). For pairs u →
v ⇐ c ∈ P where c is not empty, we can use the processor only if we find a
substitution η such that η(s) →∗R η(t) holds for all s → t ∈ c. In general, this
is not computable. However, we can easily apply PInf if there is a substitution
η such that η(s) = η(t) for all s → t ∈ c (unification) and η(v) = θ(η(u)) for
some substitution θ (related to semi-unification [17]). Another simple case is
when all conditions s → t ∈ c are instances of unconditional rules ` → r ∈ R,
i.e., s→ t = θ(`→ r) for some substitution θ.

5.2. Soundness and Completeness

The most relevant properties to be established when using CTRS processors
in the 2D DP Framework are soundness and completeness. Soundness is es-
sential to prove CTRS problems finite by using combinations of processors (see
Section 5.3); completeness for proving infiniteness.

Definition 22 (Soundness and completeness). Let P be a processor and
τ ∈ Dom(P). We say that P is:

• τ -sound iff τ is finite whenever P(τ) 6= no and for all τ ′ ∈ P(τ), τ ′ is
finite.

• τ -complete iff τ is infinite whenever P(τ) = no or there is τ ′ ∈ P(τ) such
that τ ′ is infinite.

Accordingly:

1. Given f ∈ F, we say that P is f -sound (resp. f -complete) if it is τ -sound
(τ -complete) for all τ = (P,Q,R, f ′) ∈ Dom(P) such that f = f ′.

2. P is sound (resp. complete) if it is f -sound (f -complete) for all f ∈ F.

Theorem 23. PFin is sound and complete. PInf is sound and a-complete. PInf

is τ -complete if τ = (P,Q,R,m) and u → v ⇐ c in Definition 20 is such that
v is ground and contains no symbol from DR.

PInf may fail to be τ -complete for CTRS problems τ = (P,Q,R, f) with f = m.

Example 24. Let P = {f(a)→ f(a)}, Q = ∅, and R = {a→ a}. Then, there is
no minimal (P,Q,R)-O-chain. Therefore, τ = (P,Q,R,m) is finite. However,
PInf (P,Q,R,m) = no. Thus, PInf is not τ -complete.

PInf illustrates the typical use of the flag component f of CTRS problems
(P,Q,R, f) in the description of processors. Although f plays no role in the
definition of PInf , it is crucial to prove it complete. A key point is noticing two
essential roles played by processors in the 2D DP Framework, which rely on
different components of CTRS problems τ :

13

1. Processors are defined as transformations of CTRS problems τ into sets of
CTRS problems (may return no). Such a transformation usually involves
the CTRS components P, Q and R of τ only (see Definitions 19 and 20).

2. Processors are qualified to be sound and/or complete. Such a qualification
often depends on the flag f ∈ F of τ only (see Theorem 23).

The following result is used to formalize the use of the processors in Section 7.

Proposition 25. Let P be a processor such that, for all CTRS problems τ =
(P,Q,R, f) ∈ Dom(P), P(τ) 6= no and if τ ′ = (P ′,Q′,R′, f ′) ∈ P(τ), then
P ′ ⊆ P, Q′ ⊆ Q, R′ ⊆ R and (i) f = a or (ii) f ′ = f = m and R′ = R. Then,
P is complete.

If f ′ = a and f = m in Proposition 25, completeness may fail to hold.

Example 26. Let P be a processor such that for all CTRSs P, Q, and R, and
f ∈ F, P(P,Q,R, f) = {(P,Q,R, a)}. P is not complete: for P and R consist-
ing of the rule b→ b there is an infinite (P, ∅,R)-chain: b→ b, b→ b, . . ., but
there is no minimal (P, ∅,R)-O-chain (because ‘b’ is not R-terminating).

Corollary 27. Let P be a processor such that, for all CTRS problems τ =
(P,Q,R, f) ∈ Dom(P), P(τ) 6= no and if τ ′ = (P ′,Q′,R′, f ′) ∈ P(τ), then
P ′ ⊆ P, Q′ ⊆ Q, R′ = R and f ′ ≤ f . Then, P is complete.

Proposition 25 and Corollary 27 concern processors P which are unable to qualify
a CTRS problem τ as infinite (by returning “no”).

5.3. CTRS Proof Trees and the 2D DP Framework

Processors are used in a divide and conquer scheme to incrementally simplify
the initial CTRS problem τI , possibly decomposing it into (a tree of) smaller
problems which are independently treated in the same way.

Definition 28 (CTRS Proof Tree). Let τI be a CTRS problem. A CTRS
Proof tree T (CTRSP-tree for short) for τI is a tree whose nodes are labeled
with CTRS problems; the leaves may also be labeled with either “yes” or “no”.
The root of T is labeled with τI . For every inner node n with label τ , there is a
processor P such that τ ∈ Dom(P) and:

1. If P(τ) = no, then n has just one child n’ with label “no”.

2. If P(τ) = ∅, then n has just one child n’ with label “yes”.

3. If P(τ) = {τ1, . . . , τk} with k > 0, then n has exactly k children n1, . . . , nk
with labels τ1, . . . , τk, respectively.

Theorem 29 (2D DP Framework). Let τ be a CTRS problem and T be a
CTRSP-tree for τ . Then,

1. If all leaves in T are labeled with “yes” and all involved processors are
sound for the CTRS problems they are applied to, then τ is finite.

14

τ1 yes!

P1

τ2

P2

τ31 τ32

P31

yes

P32

τ41 τ42

yes

P41

yes

P42

All involved processors are sound

τ1 no!

P1

τ2

P2

τ31 τ32

P31

yes

P32

τ41 τ42

no

P41

P1,P2,P32, and P41 are complete

Figure 3: Proving finiteness/infiniteness of CTRS problems in the 2D DP Framework

2. If T has a leaf with label “no” and all processors from τ to the leaf are
complete for the CTRS problems they are applied to, then τ is infinite.

Figure 3 illustrates Theorem 29. The leftmost CTRSP-tree shows a proof of
finiteness of τ1; note that all leaves are labeled with ‘yes’ and all involved pro-
cessors are sound. The rightmost CTRSP-tree shows a proof of infiniteness. As
soon as a leaf is labeled with ‘no’, we stop the development of the tree and check
whether all processors involved in the path to the leaf are complete; note that
other leaves could be labeled with ‘yes’ due to the specific generation strategy
for the tree. And other nodes (e.g., τ42) could remain unexplored.

Term. prop. Initial CTRS problems Requirements on R F/I

Term. (DPH (R), ∅,R, a) preserves terminating F
substitutions

Nonterm. (DPH (R), ∅,R, f), f ∈ F None I

V -Term. (DPV (R),DPVH (R),R, a) deterministic 3-CTRS F

Non-V -Term. (DPV (R),DPVH (R),R, f), f ∈ F None I

Op. term. (DPH (R), ∅,R, f), f ∈ F deterministic 3-CTRS F
(DPV (R),DPVH (R),R, f ′), f ′ ∈ F F

Op. nonterm. (DPH (R), ∅,R, f), f ∈ F None I

Op. nonterm. (DPV (R),DPVH (R),R, f), f ∈ F None I

Table 1: CTRS problems for proving termination properties

Following Theorem 16, Table 1 shows the initial CTRS problems to be used
with Theorem 29 to prove termination properties, including the requirements

15

on R which must be satisfied, and the condition (F)inite or (I)nfinite we need
to prove for each CTRS problem to conclude the desired property.

By Theorem 8(3) and [24, Proposition 78] V -termination can be proved as
finiteness of (DPV (R) ∪ DPVH (R), ∅,R, a). And, by [24, Theorem 81], oper-
ational termination of R can be (dis)proved as (in)finiteness of (DPH (R) ∪
DPV (R), ∅,R, f), with f ∈ F. Thus, the following could be added to Table 1:

Term. prop. Initial CTRS problems Requirements on R F/I

V -term. (DPV (R) ∪ DPVH (R), ∅,R, a) deterministic 3-CTRS F

Op. term. (DPH (R) ∪ DPV (R), ∅,R, f), f ∈ F deterministic 3-CTRS F

Op. nonterm. (DPH (R) ∪ DPV (R), ∅,R, f), f ∈ F None I

However, non-V -termination cannot be proved by just moving DPVH (R) to
DPV (R) and then proving infiniteness of (DPV (R) ∪ DPVH (R), ∅,R, a).

Example 30. Consider the following CTRS R:

b → c (28)

c → b (29)

e → f (30)

a → d⇐ b→ c (31)

b → d⇐ e→ f (32)

c → d⇐ e→ f (33)

together with

DPH (R) : B → C (34)

C → B (35)

DPV (R) : A → B (36)

B → E (37)

C → E (38)

Since DPVH (R) = DPH (R), there is an infinite (DPV (R) ∪ DPVH (R), ∅,R)-
O-chain B →DPVH (R) C →DPVH (R) B → · · · However, R is V -terminating (see
Example 61), i.e., there is no infinite (DPV (R),DPVH (R),R)-O-chain.

Remark 31 (Which kind of CTRS problems?). From the previous discus-
sion, the following question arises: do we really need CTRS problems with three
CTRSs P, Q, R instead of just P and R? Some reasons for our choice are:

1. With CTRS problems like (P,R, f), we do not capture non-V -termination
(Example 30).

2. Processors are more accurate due to a more precise characterization of the
role of the different kind of rules in the investigated termination property.

3. Several processors take advantage of the distinction between P and Q.

6. The 2D DP Framework in practice: the Open 2D DP Framework

The 2D DP Framework can be used to prove several termination proper-
ties. Depending on the targeted property, we may start with CTRS problems
(P,Q,R, f) where f = a or f = m (see Table 1). In practice, we often want to
analyze the termination behavior of a given CTRS without focusing any target
property. For this purpose, we introduce an Open 2D DP Framework where

16

the proofs are driven by the use of processors (viewed as CTRS problem trans-
formers) rather than by (specific kinds of) CTRS problems. We proceed as
follows:

1. We generalize the notion of CTRS problem into a notion of open CTRS
problem, where the flag component f is left unspecified and treated now as
a variable. We define open processors to work with open CTRS problems.

2. We define the notion of plugging scheme to capture the requirements on
the flags in CTRS problems that guarantee soundness and completeness.

3. We use open processors to build an open CTRS proof tree, where pro-
cessors transform open CTRS problems and plugging schemes are used to
track their use in proofs of finiteness/infiniteness.

6.1. Open CTRS problems and processors

In the following, V is a set of flag variables f, f ′, . . . which are intended to
range over F; the terms of signature F are T (F,V) = V ∪ F.

Definition 32 (Open CTRS problem). An open CTRS problem (OCTRS
problem for short) is a tuple τ̌ = (P,Q,R, ϕ), where P, Q, and R are CTRSs,
and ϕ ∈ T (F,V).

The usual notions of substitution, ground substitution, instantiation by a substi-
tution, etc., apply naturally to these special variables and constant symbols.

Definition 33 (Flag substitution). A substitution ς : V → T (F,V) is called
a flag substitution. We denote as ςa (resp. ςm) the constant (and obviously
ground) flag substitution that replaces every flag variable by a (resp. m).

Definition 34 (Instance of an open CTRS problem). Let ς : V→ T (F,V)
be a flag substitution. The instance by ς (or ς-instance) of an OCTRS problem
τ̌ = (P,Q,R, ϕ) is the (possibly open) CTRS problem ς(τ̌) = (P,Q,R, ς(ϕ)).

The instantiation of an open CTRS problem (Definition 32) by a ground flag
substitution ς yields a CTRS problem (Definition 14).

Definition 35 (Open CTRS processor). An open CTRS processor P is a
partial function from OCTRS problems τ̌ = (P,Q,R, ϕ) into sets of OCTRS
problems; alternatively, it can return “no”. If P(τ̌) 6= ∅, then, for all τ̌ ′ =
(P ′,Q′,R′, ϕ′) ∈ P(τ̌), we have ϕ′ ∈ {a,m, ϕ} (no new flag variables are intro-
duced). The set of open CTRS problems for which P is defined is Dom (̌P).

Processors like PFin and PInf , whose definition over CTRS problems (P,Q,R, f)
does not use the value of f , can be seen as open CTRS processors.

Definition 36 (Soundness and completeness). Let P be an open processor,
τ̌ = (P,Q,R, ϕ) ∈ Dom (̌P), and f ∈ F be such that ςf (ϕ) = f . P is said to be:

• (τ̌ , f)-sound iff ςf (τ̌) is finite whenever P(τ̌) 6= no and for all τ̌ ′ ∈ P(τ̌),
ςf (τ̌ ′) is finite.

17

• (τ̌ , f)-complete iff ςf (τ̌) is infinite whenever P(τ̌) = no or there is τ̌ ′ ∈
P(τ̌) such that ςf (τ̌ ′) is infinite.

Accordingly:

1. Given f ∈ F, we say that P is f -sound (resp. f -complete) if it is (τ̌ , f)-
sound ((τ̌ , f)-complete) for all τ̌ ∈ Dom (̌P).

2. Given τ̌ ∈ Dom (̌P), we say that P is τ̌ -sound (resp. τ̌ -complete) if it is
(τ̌ , f)-sound ((τ̌ , f)-complete) for all f ∈ F.

3. P is sound (resp. complete) if it is f -sound (f -complete) for all f ∈ F.

Theorem 23 proves PFin (viewed as an open processor) both sound and complete.
It also proves PInf sound and a-complete (and m-complete in some specific
cases).

6.2. Plugging schemes

Soundness and completeness of processors for CTRS problems (P,Q,R, f)
may require specific values for f . The role that flag variables play during the
application of an open processor to an open CTRS problem is made explicit by
means of plugging schemes.

Definition 37 (Plugging scheme). A plugging scheme is a pair ψ = 〈ϕs, ϕc〉,
where ϕs, ϕc ∈ T (F•,V) = F• ∪ V for F• = F∪{•} with ‘•’ a new constant sym-
bol. We call ϕs and ϕc the soundness and completeness components of the
plugging scheme, respectively.

The symbol • is used to exclude a given (sound or complete) use of P. In
the following, when using plugging schemes, we will assume that they do not
share any flag variable with any other plugging scheme or open CTRS problem.
Renamed flag variables can be used if necessary.

Definition 38. We say that an open processor P follows a plugging scheme
ψ = 〈ϕs, ϕc〉 with τ̌ = (P,Q,R, ϕ) ∈ Dom (̌P) iff for all f ∈ F,

1. If ςf (ϕ) = ςf (ϕs), then P is (τ̌ , f)-sound; and
2. If ςf (ϕ) = ςf (ϕc), then P is (τ̌ , f)-complete.

If P follows ψ with all CTRS problems τ̌ ∈ Dom (̌P), we say that P follows ψ.

Sound and complete processors follow every plugging scheme. For instance,
PFin is sound and complete (Theorem 23) and follows ψPFin

= 〈f, f〉. Also, the
plugging scheme 〈•, •〉 is trivially followed by every processor P.

Example 39. By Theorem 23, PInf follows ψ = 〈f, a〉, as PInf is sound and a-
complete. Also, PInf follows ψ′ = 〈•, a〉, since the presence of • in the soundness
component trivially makes condition 1 in Definition 38 true. Indeed, ψ′ is ‘more
precise’ than ψ: PInf will never be properly used in any proof of finiteness of
CTRS problems as it always returns “no”. The use of ‘•’ disallows calls to PInf

in proofs of finiteness. Finally, note that PInf follows ψPFin with τ̌ only if τ̌
satisfies certain conditions (see Theorem 23): for τ̌ ′ = (P,Q,R,m) with P, Q,
and R as in Example 24, we have m = ςm(f). However, PInf is not τ ′-complete.
Thus, we may also need 〈•, f〉 (better than ψPFin

) for PInf .

18

Example 39 shows that a processor P may follow several plugging schemes;
actually, as we will see below, this can be necessary for some processors to deal
with different CTRS problems. In general, we will choose a set Π(P) of plugging
schemes associated to a given (open) processor P. This set is obtained from the
soundness and completeness results for P.

Example 40. According to the discussion above, we let Π(PFin) = {〈f, f〉} and
Π(PInf) = {〈•, a〉, 〈•, f〉}.

The next section explains the use of plugging schemes in proofs of finiteness and
infiniteness of CTRS problems in the Open 2D DP Framework.

6.3. Open CTRS proof trees

In this section we adapt the CTRSP-trees to deal with open CTRS problems.
The nodes are now labeled with open CTRS problems and plugging schemes.

Definition 41 (Open CTRS Proof Tree). Let τ̌I be an OCTRS problem.
An open CTRS Proof tree Ť (OCTRSP-tree) for τ̌I is a tree whose nodes are
labeled with an OCTRS problem and a plugging scheme; the leaves may also be
labeled with either “yes” or “no”. The root of Ť is labeled with τ̌I . For every
inner node n with labels τ̌ and ψ, there is an open processor P such that (i)
τ̌ ∈ Dom (̌P), (ii) P follows ψ with τ̌ , and:

1. If P(τ̌) = no, then n has just one child n’ with label “no”.

2. If P(τ̌) = ∅, then n has just one child n’ with label “yes”.

3. If P(τ̌) = {τ̌1, . . . , τ̌k} with k > 0, then n has exactly k children n1, . . . , nk
with labels τ̌1, . . . , τ̌k, respectively.

The labeling of a node with labels τ̌ and ψ = 〈ϕs, ϕc〉 is displayed as follows:

ϕs [τ̌] ϕc

Figure 4 shows an open CTRSP-tree with leaves holding labels L31, L41, and
L42 which can be either yes or no. Proofs of termination properties of CTRSs
in the Open 2D DP Framework only consider two initial open CTRS problems:

τ̌H = (DPH (R), ∅,R, f) and τ̌V = (DPV (R),DPVH (R),R, f) (39)

where f ∈ V, each with a single open CTRSP-tree. At the end, flag substitutions
are obtained describing the possible instantiations of f . The interplay between
the different soundness and completeness plugs and the labels in the OCTRS
problems is handled by means of two sets of equations.

Definition 42 (Soundness and completeness equations). Given an open
CTRSP-tree Ť ,

1. the set Es(Ť) of soundness equations for Ť consists of an equation ϕ =? ϕs
for each inner node n labeled with τ̌ = (P,Q,R, ϕ) and 〈ϕs, ϕc〉.

19

ϕ1
s [τ̌1] ϕ1

c

P1

ϕ2
s [τ̌2] ϕ2

c

P2

ϕ31
s [τ̌31] ϕ31

c ϕ32
s [τ̌32] ϕ32

c

P31

L31

P32

ϕ41
s [τ̌41] ϕ41

c ϕ42
s [τ̌42] ϕ42

c

L41

P41

L42

P42

Figure 4: An open CTRSP-tree

2. the set ELc (Ť) of completeness equations for the path Γ in Ť leading from
the root of Ť to a leaf L consists of an equation ϕ =? ϕc for each node n
in Γ labeled with τ̌ = (P,Q,R, ϕ) and 〈ϕs, ϕc〉.

For instance, for the OCTRSP-tree T in Figure 4, we have:

Es(Ť) = { ϕ1 =? ϕ1
s, ϕ2 =? ϕ2

s, ϕ31 =? ϕ31
s ,

ϕ32 =? ϕ32
s , ϕ41 =? ϕ41

s , ϕ42 =? ϕ42
s }

EL41
c (Ť) = { ϕ1 =? ϕ1

c , ϕ2 =? ϕ2
c , ϕ32 =? ϕ32

c , ϕ41 =? ϕ41
c }

Note that, since open processors do not introduce new flag variables (see Def-
inition 35), besides the variables introduced by the plugging schemes in an
OCTRSP-tree Ť the corresponding soundness and completeness equations may
contain at most one additional flag variable (introduced by the open CTRS
problem τ̌I which labels the root of Ť).

Theorem 43 (Open 2D DP Framework). Let τ̌I = (P,Q,R, ϕ) be an OC-
TRS problem and ŤI be an open CTRSP-tree for τ̌I . Then,

1. If all leaves in ŤI are labeled with “yes” and there is a ground flag substi-
tution ς that unifies Es(ŤI) and ς(ϕ) 6= •, then ς(τ̌I) is finite.

2. If there is a leaf n∞ in ŤI with label “no” and there is a ground flag
substitution ς that unifies En∞c (ŤI) and ς(ϕ) 6= •, then ς(τ̌I) is infinite.

According to the possible instantiations of f in τ̌H and τ̌V , Table 2 summarizes
the conclusions of the analyses.

20

Termination prop. τ̌H / τ̌V f instantiation Requirements on R F/I

Termination τ̌H f 7→ a preserves terminating F
substitutions

Nontermination τ̌H f 7→ m or f 7→ a None I

V -Termination τ̌V f 7→ a deterministic 3-CTRS F

Non-V -Termination τ̌V f 7→ m or f 7→ a None I

Op. termination τ̌H f 7→ m or f 7→ a deterministic 3-CTRS F
τ̌V f 7→ m or f 7→ a F

Op. nontermination τ̌H f 7→ m or f 7→ a None I

Op. nontermination τ̌V f 7→ m or f 7→ a None I

Table 2: Open CTRS problems for proving termination properties

7. Processors for the (Open) 2D DP Framework

In this section we introduce several processors for their use in proofs of
termination properties of CTRSs within the (Open) 2D DP Framework and
illustrate their application with several examples. In particular:

1. the SCC processor PSCC which permits the use of graph techniques to
decompose CTRS problems (Section 7.1),

2. the subterm processor, P�, which removes pairs from P and Q without
paying attention to the structure of rules in R (Section 7.2),

3. the Removal Triple Processor PRT which uses well-founded relations to
simplify termination problems (Section 7.3),

4. PIR and PRIR, which (re)move infeasible rules from the component R of
an OCTRS problem (Section 7.4),

5. PNR, which transforms the right-hand sides of the rules in P by using
narrowing with R; and PNQ , which narrows with Q instead (Section 7.5).

First, we introduce the following processors that just fix the label of an open
CTRS problem. Often, we will silently use them to introduce more flexibility
in the use of processors as part of an OCTRSP-tree.

Definition 44. Let τ̌ = (P,Q,R, ϕ) be an OCTRS problem. Processors Parb

and Pmin are given by:

Parb(τ̌) = {(P,Q,R, a)} and Pmin(τ̌) = {(P,Q,R,m)}

Theorem 45. Parb is sound and a-complete. Pmin is m-sound and complete.
Therefore, Π(Parb) = {〈f, a〉} and Π(Pmin) = {〈m, f〉}.

Processors Parb and Pmin are often silently used in practice to be able to use
a-sound (m-complete) processors after using m-sound (a-complete) processors
in a branch of an OCTRSP-tree. Also the feasibility assumption (Remark 13)
is silently taken into account in the definition of our processors, regarding P
and Q (which are always assumed R-feasible). As an example, though, we
make explicit reference to feasible rules in the development of PSCC in the next
section.

21

7.1. The SCC processor

In this section we provide a notion of graph that is able to represent all
infinite (minimal) chains of (dependency) pairs as given in Definition 7. In the
following, given CTRSs P and R, by PF we denote the subset of R-feasible
rules of P (see Section 4).

Definition 46 (CTRS Graph of Pairs). Let P, Q and R be CTRSs. The
CTRS-graph G(P,Q,R) has PF as the set of nodes. There is an arc from a
node α to a node α′ if α, α′ is a (P,Q,R)-O-chain for some substitution σ.

By a graph for an OCTRS problem τ̌ = (P,Q,R, ϕ) (written G(P,Q,R, ϕ)
or just G(τ̌)) we mean the graph G(P,Q,R). In general, G(P,Q,R) is not
computable: neither R-feasibility of pairs nor reachability conditions σ(v)(→∗R
∪ Λ→Q)∗σ(u′) between nodes u → v ⇐ c, u′ → v′ ⇐ c′ of the graph to connect
them by means of an arc are decidable. Therefore, we need approximations.

Definition 47 (Approximation of G(P,Q,R)). Let P, Q and R be CTRSs.
A graph AG(P,Q,R) is an (over)approximation of G(P,Q,R) iff the nodes and
arcs in G(P,Q,R) are included in AG(P,Q,R).

The following simpler graphs are also used in our development.5

Definition 48 (Simple CTRS Graph). Let Q and R be CTRSs. The sim-
ple CTRS-graph SG(Q,R) has Q as the set of nodes. There is an arc from
u → v ⇐ c ∈ Q to u′ → v′ ⇐ c′ ∈ Q iff there is a substitution σ such that
σ(v)→∗R σ(u′) whenever σ(s)→∗R σ(t) for all s→ t ∈ c.

Note that, whenever Q = ∅, we have G(P,Q,R) = SG(P,R). In the following,
we identify a cycle in a (directed) graph G as a sequence n1, . . . , nm of nodes in
G such that, for all i, 1 ≤ i < m there is an arc from ni to ni+1; there is also an
arc from nm to n1. As usual in the literature of the field (see [12, Section 2.2],
for instance), we write cycles as sets {n1, . . . , nm} whose presentation does not
necessarily display the nodes in the appropriate sequence to define a cycle.

Given τ̌ = (P,Q,R, ϕ), the SCC processor PSCC decomposes τ̌ according
to an approximation AG(τ̌) of G(τ̌) into a possibly empty set PSCC (τ̌) of CTRS
problems, where the set of pairs P ′ in each τ̌ ′ = (P ′,Q′,R, ϕ) ∈ PSCC (τ̌)
contains the pairs which are nodes of a maximal cycle (called a strongly connected
component (SCC)) in AG(τ̌). Such SCCs are identified as subsets P ′ ⊆ PF of
the nodes in the graph. Then, we take into account that only a (possibly empty)
subset Q′ of rules in QF will be useful to define the arcs between nodes in P ′.

5It is not difficult to see that our simple graphs are essentially the same as the usual
dependency graphs for TRSs (see [12, Section 2.2] for instance) if we use conditional rewrite
rules instead of unconditional rules.

22

Definition 49. Let P, Q, and R be CTRSs. We let QP,R be the smallest
set of rules in QF such that for all α, α′ ∈ PF , and paths from α to α′ in
SG(QF ∪ {α, α′},R) the nodes (i.e., rules) in the path belonging to QF are in
QP,R.

Note that QP,R can be easily overapproximated by using approximations of
SG(QF ∪ {α, α′},R) (see Section 7.1.1 below).

Definition 50. Let P, Q, and R be CTRSs. The approximation QP,R of
QP,R is the union of all nodes (and therefore rules) from an approximation
of QF occurring in the paths of the graphs ASG(QF ∪{α, α′},R) approximating
SG(QF ∪ {α, α′},R) that connect α and α′ for all α, α′ ∈ P.

Definition 51 (SCC processor). Let τ̌ = (P,Q,R, ϕ) be an OCTRS prob-
lem, and AG(τ̌) be an approximation of G(τ̌). Then, PSCC is given by

PSCC (τ̌) = {(P ′,QP′,R,R, ϕ) | P ′are the nodes of an SCC in AG(τ̌)}

Theorem 52 (Soundness and completeness of PSCC). PSCC is sound and
complete. Thus, PSCC follows Π(PSCC) = {〈f, f〉}.

With PSCC we can separately work with the strongly connected components of
AG(P,Q,R, ϕ), disregarding other parts of the graph. In the next section we
investigate a computable approximation that we use in the following.

7.1.1. Approximating the CTRS graph of pairs

In practice, rather than computing QF and PF in approximations of G(τ̌)
and SG(τ̌), we use the techniques referred in Section 4 and the references therein
to obtain QI and PI (which can be empty!) and let PF = P − PI and QF =
Q−QI as the corresponding approximations. Thus, in the worst case, we will
approximate PF and QF as P and Q, respectively.

With regard to the approximation of the arcs, following [11], we approximate
G(P,Q,R) with tcapR given as follows:

tcapR(x) = y if x is a variable, and

tcapR(f(t1, . . . , tk)) =

 f([t1], . . . , [tk]) if f([t1], . . . , [tk]) does not unify
with ` for any `→ r ⇐ c in R

y otherwise

where y is a variable that has not yet been used (i.e., it is new in every invocation
of tcapR), and given a term s, [s] = tcapR(s). We assume that ` shares no
variable with f([t1], . . . , [tk]). Note that, for all terms t, tcapR(t) is a linear
term and there is a substitution σt such that t = σt(tcapR(t)) and σt(x) = x
for all x /∈ Var(tcapR(t)). With tcapR we approximate reachability problems
(with R) by means of unification.

Proposition 53. Let R be a CTRS, t, u be terms, and σ be a substitution. If
σ(t)→∗R σ(u), then tcapR(t) and u unify.

23

According to Proposition 53, given terms t, u ∈ T (F ,X) and a substitution σ,
the reachability of σ(u) from σ(t) by rewriting can be approximated as unifica-
tion of tcapR(t) and u. As a corollary, we have the following.

Corollary 54. Let Q and R be CTRSs, u, v be terms, and σ be a substitution.

If σ(v)(→R ∪
Λ→Q,R)∗σ(u), then tcapQ∪R(v) and u unify.

This result immediately leads to an approximation of G(P,Q,R): just draw an
arc from u → v ⇐ c to u′ → v′ ⇐ c′ if tcapQ∪R(v) and u′ unify, provided
that the conditional part c is R-feasible. However, we investigate a more precise
approximation based on the following.

Definition 55 (Estimated Simple CTRS Graph). Let Q and R be CTRSs.
The estimated simple CTRS-graph ESG(Q,R) has an approximation of QF as
the set of nodes. There is an arc from u → v ⇐ c ∈ Q to u′ → v′ ⇐ c′ ∈ Q iff
tcapR(v) and u′ unify.

Definition 56 (Estimated CTRS Graph). Let P, Q and R be CTRSs. The
estimated CTRS-graph EG(P,Q,R) has an approximation of PF as the set of
nodes. There is an arc from α : u → v ⇐ c to α′ : u′ → v′ ⇐ c′ iff there is a
path from α to α′ in ESG(Q∪ {α, α′},R).

Example 57 (Estimated CTRS Graphs for R in Example 3). Consider
R in Example 3, with DPH (R) = {(19), (20)} = {G(a) → B,B → F(a)} as
in Example 6. The estimated graph EG(τ̌H) is shown below. Now, consider
DPV (R) = {(21)} = {F(x) → G(x)} also in Example 6 and DPVH (R) =
DPH (R). Due to the path from (21) to itself in ESG(DPVH (R) ∪ {(21)},R)
displayed below, there is an arc from (21) to itself in EG(τ̌V):

19 20

EG(τ̌H)

21

EG(τ̌V)

19 20

21

Estimated graphs for τ̌H and τ̌V ESG(DPVH (R) ∪ {(21)},R)

The following result is obvious from Proposition 53 and Corollary 54.

Theorem 58. Let P, Q and R be CTRSs. EG(P,Q,R) is an approximation
of G(P,Q,R).

In the following, we use PSCC with EG(P,Q,R).

Example 59 (Termination of R in Example 3). For R in Example 3, with
EG(τ̌H) in Example 57, we have PSCC (τ̌H) = ∅. Thus, the open CTRSP-tree
Ť H for τ̌H is:

24

f0 [τ̌H] f0

PSCC

yes

Note the renaming of flag variable f in the plugging scheme 〈f, f〉 for PSCC

(see Theorem 52) into f0 to avoid ‘collisions’ with the flag variable used in
τ̌H . Now, Es(Ť H) = {f = f0} is unified by the ground flag substitution ςa.
Thus, ςa(τ̌

H) = (DPH (R), ∅,R, a) is proved finite. Since R is a 2-CTRS (and
preserves terminating substitutions), this proves R terminating (see Table 2).

Example 60. For R, DPH (R), DPV (R) in Example 2, with DPVH (R) =
DPH (R) (see Example 5), we have τ̌H = ({(10), (11)}, ∅,R, f) and also τ̌V =
({(12), (13), (14)}, {(10), (11)},R, f); EG(τ̌H) and EG(τ̌V) are:

10 11

EG(τ̌H)

12 13 14

EG(τ̌V)

We have PSCC (τ̌H) = {τ̌H11, τ̌
H
12}, where τ̌H11 = ({(10)}, ∅,R, f) and τ̌H12 =

({(11)}, ∅,R, f). Also, PSCC (τ̌V) = {τ̌V1 }, where τ̌V1 = ({(13)}, ∅,R, f). Note
that the second component of τ̌V1 (the Q-component) becomes empty due to the
definition of PSCC : since ESG({(10), (11)} ∪ {(13)},R) is

10 11 13

no path starting from (13) involves nodes from {(10), (11)} (Definition 50).

Example 61 (V -Termination of R in Example 30). Consider R, DPH (R),
DPV (R), and DPVH (R) = DPH (R) in Example 30. We have:

34 35

EG(τ̌H)

36 3738

EG(τ̌V)

The arc from (36) to (38) is due to a path in ESG(DPVH (R)∪ {(36), (38)},R)
from (36) to (38):

25

34 35

3638

We have PSCC (τ̌V) = ∅ and the corresponding OCTRSP-tree is:

f0 [τ̌V] f0

PSCC

yes

Now, Es(Ť V) = {f = f0} is unified by the ground flag substitution ςa. Thus,
ςa(τ̌

V) = (DPV (R),DPVH (R),R, a) is finite. This proves V -termination of
R. Although ςm is also a (ground) unifier for Es(Ť V) no conclusion about any
termination property of R in Example 30 follows in this way (see Table 2).

Example 62 (Operational termination of R in Example 10). For R in
Example 10:

DPH (R) : A → A⇐ b→ x, c→ x (40)

DPV (R) : A → B (41)

A → C⇐ b→ x (42)

and DPVH (R) = ∅. Consider τ̌H = ({(40)}, ∅,R, f). Since (40) is R-infeasible
(use [21]) there is no node in G(τ̌H) and PSCC (τ̌H) = ∅.

For τ̌V = ({(41), (42)}, ∅,R, f), since (41) and (42) define no cycle, we have
that PSCC (τ̌V) = ∅. The OCTRSP-trees

f0 [τ̌H] f0

PSCC

yes

f0 [τ̌V] f0

PSCC

yes

prove operational termination of R (see Table 2).

Since PSCC coincides with PFin on OCTRS problems τ̌ = (P,Q,R, ϕ) such
that P = ∅, PFin is not really necessary in an implementation of the (open) 2D
DP Framework that already implements PSCC . We used PFin to illustrate the
definition and use of our framework. We will not use it anymore.

7.2. Subterm processor

In this section we generalize the subterm processor for TRSs [14]. Let S be
a CTRS. The set of root symbols associated to S is:

Root(S) = {root(`) | `→ r ⇐ c ∈ S} ∪ {root(r) | `→ r ⇐ c ∈ S, r 6∈ X}

26

Definition 63 (Simple projection). Let S be a CTRS. A simple projection
for S is a mapping π : Root(S) → N such that π(f) ∈ {1, . . . , ar(f)}. The
mapping that assigns a subterm π(t) = t|π(f) to each term t with root(t) ∈
Root(S) is also denoted by π; we also let π(x) = x if x ∈ X .

Given a simple projection π for a CTRS S and a CTRS R, we let

πR(S) = {π(`)→ π(r) | `→ r ⇐ c ∈ S}.

The conditions of the rules are dismissed (but remember Remark 13). Given a
CTRS problem (P,Q,R, f), the subterm processor removes from P andQ those
rules u → v ⇐ c whose left-hand side u contains an immediate subterm π(u)
which is a strict superterm of an immediate subterm π(v) of v (i.e., π(u)�π(v)).

Definition 64 (Subterm processor). Let τ̌ = (P,Q,R, ϕ) be an OCTRS
problem, π be a simple projection for P ∪ Q, and α : u → v ⇐ c ∈ P ∪ Q.
Then, P� is given by P�(τ̌) = {(P[∅]α,Q[∅]α,R, ϕ)}, if πR(P ∪ Q) ⊆ � and
π(u) � π(v).

We call a CTRS R collapsing if there is a rule ` → r ⇐ c ∈ R where r is a
variable. Recall that DR is the set of defined symbols in R.

Theorem 65 (Soundness and completeness of P�). P� is complete and
(τ̌ ,m)-sound for all τ̌ = (P,Q,R, ϕ) ∈ Dom (̌P�) such that P∪Q is not collaps-
ing and (Root(P) ∪ Root(Q)) ∩ DR = ∅. Therefore, Π(P�) = {〈m, f〉, 〈•, f〉}.

The plugging scheme 〈•, f〉 should be used with OCTRS problems which do not
make P� sound (for instance with P ∪ Q collapsing). Of course, such ‘risky’
uses of the processor could be avoided in an implementation of the Open 2D
DP Framework. Then only 〈m, f〉 would be used to build OCTRSP-trees.

Example 66 (Finiteness of τ̌H for R in Example 2). Consider the open
CTRS problems in Example 60:

τ̌H11 = ({(10)}, ∅,R, f) τ̌H12 = ({(11)}, ∅,R, f)

For τ̌H11, where (10) is LESS(s(x), s(y))→ LESS(x, y), with the simple projection
π given by π(LESS) = 1, we have:

π(LESS(s(x), s(y))) = s(x) � x = π(LESS(x, y))

i.e., P�(τ̌H11) = {τ̌H21} with τ̌H21 = (∅, ∅,R, f), which is trivially finite. For τ̌H12,
where (11) is MONUS(s(x), s(y))→ MONUS(x, y), with π(MONUS) = 1:

π(MONUS(s(x), s(y))) = cons(x, xs) � xs = π(MONUS(x, y))

i.e., P�(τ̌H12) = {τ̌H22} with τ̌H22 = (∅, ∅,R, f), also trivially finite. The OCTRSP-
tree is shown in Figure 5. We have (repeated equations are removed):

27

f0 [τ̌H] f0

PSCC

m [τ̌H11] f11 m [τ̌H12] f12

P� P�

f21 [τ̌H21] f21

PSCC

yes

f22 [τ̌H22] f22

PSCC

yes

Figure 5: Finiteness of τ̌H for R in Example 2 using the Open 2D DP Framework

Es(Ť H) = {f = f0, f = m, f = f21, f = f22}

which is unified by the ground substitution ςm only. We can conclude finiteness
of ςm(τ̌H) now. However, we cannot conclude termination (according to Table
1) because finiteness of ςa(τ̌

H) is required for that. In Example 73, though, we
prove R operationally terminating and, consequently, terminating as well.

Note that P� cannot be used to remove (13), i.e.,

QUOTREM(s(x), s(y))→ QUOTREM(monus(x, y), s(y))

from τ̌V1 = ({(13)}, ∅,R, f) because no simple projection on its left-hand side
yields a strict superterm of the projection of the right-hand side.

Note that P� may fail to be sound when applied to an arbitrary τ̌ ∈ Dom (̌P�).

Example 67. Let P = {F(g(a)) → F(a)} and R = {a → g(a)}. Then, for
τ̌ = (P, ∅,R, a) ∈ Dom (̌P�), there is an infinite (P, ∅,R)-O-chain:

F(g(a))→P F(a)→R F(g(a))→P · · · (43)

However, since π(F(g(a))) = g(a) � a = π(F(a)) for π(F) = 1, we have P�(τ̌) =
{(∅, ∅,R, a)}. We would wrongly conclude finiteness of τ̌ . Note that (43) is not
minimal because F(a) is not (operationally) terminating.

7.3. Use of well-founded relations

The absence of infinite (P,Q,R)-O-chains can be ensured by finding ap-
propriate relations that are compatible with the rules in P, Q and R. In the
following we provide precise definitions to achieve this.

Definition 68 (Removal triple). A removal triple (&,�,=) consists of rela-
tions &,�,= on terms such that (i) = is well-founded, (ii) & ◦ =⊆=, and (iii)
� ◦ =⊆=.

28

Definition 69. Let P, Q, and R be CTRSs. A removal triple (&,�,=) is
compatible with P, Q, and R, if for all terms s, t,

1. if s→R t, then s & t and

2. if s
Λ→P∪Q,R t, then s ./ t holds for some ./ ∈ {&,�,=}.

Removal triples are used to simplify CTRS problems (P,Q,R, f) by removing
rules from P and Q. Here, & simulates→R-steps within a connection σ(v)(→∗R
∪ Λ→Q)∗σ(u′). Similarly, � simulates

Λ→Q-steps.

Definition 70 (Removal triple processor). Let τ̌ = (P,Q,R, ϕ) be an OC-
TRS problem and (&,�,=) be a removal triple which is compatible with P, Q,
and R. Let α : u → v ⇐ c ∈ P ∪ Q. Then, PRT is given by PRT (τ̌) =
{(P[∅]α,Q[∅]α,R, ϕ)} iff σ(u) = σ(v) whenever σ(s) →∗R σ(t) for all substitu-
tions σ and all s→ t ∈ c.

Theorem 71 (Soundness and completeness of PRT). PRT is sound and
complete. Therefore, Π(PRT) = {〈f, f〉}.

Example 72. With regard to R in Example 2, for τ̌V1 = ({(13)}, ∅,R, f) in
Example 60, we apply PRT using the removal triple (≥,≥, >) induced by the
polynomial interpretation over the naturals

[false] = 0 [true] = 0 [0] = 0
[s](x) = x+ 1 [less](x) = 0 [monus](x, y) = x

[pair](x, y) = 0 [quotrem](x, y) = 0 [QUOTREM](x, y) = x

where, as usual, s ≥ t if [s] ≥ [t] and s > t if [s] > [t]. We have:

[less(x, 0)] = 0 ≥ 0 = [false]
[less(0, s(x))] = 0 ≥ 0 = [true]

[less(s(x), s(y))] = 0 ≥ 0 = [less(x, y)]
[monus(0, s(y))] = 0 ≥ 0 = [0]

[monus(x, 0)] = x ≥ x = [x]
[monus(s(x), s(y))] = x+ 1 ≥ x = [monus(x, y)]
[quotrem(0, s(y))] = 0 ≥ 0 = [pair(0, 0)]

[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(0, s(x))]
[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(s(q), r)]

[QUOTREM(s(x), s(y))] = x+ 1 > x = [QUOTREM(monus(x, y), s(y))]

Since ≥ is monotonic, stable, reflexive and transitive, the inequalities prove
→∗R ⊆ ≥ (we do not need to pay attention to the conditional part of the rules).
The strict inequality shows that u13 > v13. Since > is stable, this proves
σ(u13) > σ(v13) for all substitutions σ (disregarding the condition in (13)).

Example 73 (Operational termination of R in Example 2). For R in Ex-
ample 2, Example 66 proves ςm(τ̌H) finite (Figure 5). Figure 6 shows Ť V for

29

f0 [τ̌V] f0

PSCC

f1 [τ̌V1] f1

PRT

f2 [τ̌V2] f2

PSCC

yes

Figure 6: Finiteness of τ̌V for R in Example 2 in the Open 2D DP Framework

τ̌V in Example 60, according to the application of different processors as dis-
cussed in Examples 66 and 72. Since Es(Ť V) = {f = f0, f = f1, f = f2} is
unified by ςa and also by ςm, ςm(τ̌V) is also finite, and then R is operationally
terminating.

In Example 72 no real use of the information in the conditional part of the rules
is made. In other cases, this is crucial for a successful application of PRT .

Example 74. Consider the following CTRS R:

g(a) → f(b) (44)

h(a) → b (45)

f(x)→ g(y) ⇐ h(x)→ y (46)

We have:

DPH (R) : G(a)→ F(b) (47)

F(x)→ G(y) ⇐ h(x)→ y (48)

DPV (R) : F(x)→ H(x) (49)

and DPVH (R) = ∅. Since EG(τ̌V) has no cycle, we only need to consider τ̌H

which can be proved finite using PRT . Consider the removal triple (≥,≥, >)
induced by the following polynomial interpretation:

[a] = 2 [f](x) = 2x+ 2 [g](x) = x+ 2 [h](x) = 2x
[b] = 0 [F](x) = 2x+ 2 [G](x) = x+ 1 [H](x) = 0

In order to apply the processor, we have to prove the following (Definition 69):

1. for all terms s, t, if s→R t, then s ≥ t. This can be proved if the follow-
ing sentence (∀s, t) s → t ⇒ s ≥ t (where, by abuse, ≥ is considered a
new predicate symbol) is satisfied by the structure A which interprets the
symbols in the signature as above and →∗ and → are interpreted as ≥, see
[20, Section 11.1].

30

2. for all terms s, t, if s
Λ→P∪Q,R t, then s ./ t holds for some ./ ∈ {≥, >}.

In this particular case, we can avoid this and go directly to
3. prove ‘decreasingness’ of the two dependency pairs in τ̌H (Definition 70)

by proving the following sentences

G(a) > F(b) (50)

(∀x, y) h(x)→∗ y ⇒ F(x) > G(y) (51)

both satisfiable by A. Actually, since [G(a)] = 2 + 1 = 3 and [F(b)] =
2 · 0 + 2 = 2, this corresponds to checking the following

3 > 2 (52)

(∀x, y ∈ N) 2x ≥ y ⇒ 2x+ 2 > y + 1 (53)

Note that this time we use the fact that 2x ≥ y holds, in the antecedent of
(53), to conclude that 2x+ 2 > y + 1 holds.

Therefore, we can remove both pairs in τ̌H to obtain a trivial CTRS problem.

7.4. Processors exploiting infeasibility of rules

One could think of rules in RI as somehow useless and therefore just re-
movable from any CTRS problem τ̌ = (P,Q,R, ϕ). However, as illustrated in
Example 12, completeness of processors that remove rules from R in the re-
turned CTRS problems cannot be guaranteed for minimal CTRS problems due
to the lack of preservation of operational termination of R under addition of
rules, even if such rules are infeasible. For this reason, we introduce two pro-
cessors to deal with infeasible rules: the first one, PIR, rather than removing
infeasible rules from R, moves them from RF to RI .

Definition 75 (Infeasible rules processor). Let τ̌ = (P,Q,R, ϕ) be an OC-
TRS problem and α : `→ r ⇐ c ∈ RF . PIR is given by

PIR(P,Q,RF]RI , ϕ) = {(P,Q,RF [∅]α] (RI ∪ {α}), ϕ)}

iff α is RF -infeasible.

Although PIR does not formally change the input CTRS problem, it makes the
distinction between infeasible and ‘other’ rules fromR explicit. Other processors
(e.g., PSCC) may benefit from such a distinction introduced by PIR.

Theorem 76. PIR is sound and complete. Therefore, Π(PIR) = {〈f, f〉}.
In some cases, definitely dropping infeasible rules from R can be useful. Thus,
we provide the following.

Definition 77 (Removing infeasible rules processor). Let τ̌ = (P,Q,R, ϕ)
be an OCTRS problem and ϕ ∈ T (F,V). PRIR is given by

PRIR(P,Q,RF]RI , ϕ) = {(P,Q,RF , ϕ)}

iff RI 6= ∅.

Theorem 78. PRIR is sound and a-complete. Therefore, Π(PRIR) = {〈f, a〉}.

31

7.5. Narrowing the right-hand sides of rules

In the DP approach for TRSs R, connections between dependency pairs
α : u → v and α′ : u′ → v′ by rewriting, i.e., the existence of a substitution σ
such that σ(v) →∗R σ(u′) has been investigated by using narrowing [1, 12]. If
there is a connection between α and α′ involving rewritings with R, then after
narrowing v into all its possible narrowings v1, . . . , vn, the connection will be
exhibited by some of the vi in a more specific way. The good point is that other
narrowings will eventually become unable to establish any connection. This may
lead to their removal by other processors (e.g., PSCC), thus leading to a more
precise analysis.

The connection between rules α : u → v ⇐ c and α′ : u′ → v′ ⇐ c′ ∈ P
within a (P,Q,R)-O-chain is a reachability problem σ(v)(→R ∪

Λ→Q,R)∗σ(u′),
which can also be investigated using narrowing. In our setting, we introduce
the following notion of narrowing for CTRSs.

Definition 79 (Narrowing with CTRSs). Let R be a CTRS. A term s nar-
rows to a term t (written s;R,θ,p t or just s;R,θ t or even s; t), iff there are
a nonvariable position p ∈ PosF (s), a renamed rule `→ r ⇐ s1 → t1, . . . , sn →
tn in R, substitutions θ0, . . . , θn, τ1, . . . , τn, and terms t′1, . . . , t

′
n such that:

1. s|p =?
θ0
`,

2. for all i, 1 ≤ i ≤ n, ηi−1(si) ;∗R,θi t
′
i and t′i =?

τi θi(ηi−1(ti)), where
η0 = θ0 and for all i > 0, ηi = τi ◦ θi ◦ ηi−1, and

3. t = θ(s[r]p), where θ = ηn.

Here (and in the following) we write u ;∗R,β v for terms u, v and substitution
β iff there are terms u1, . . . , um+1 and substitutions β1, . . . , βm for some m ≥ 0
such that

u = u1 ;R,β1 u2 ;R,β2 · · ·;R,βm um+1 = v

and β = βm−1 ◦ · · · ◦ β1 (or β = ε if m = 0).

In contrast to unconditional narrowing, several narrowing steps can be issued
from a given term, position, and rule. This is due to different ways to satisfy the
reachability tests in the conditional part of the rule. Also, the substitution θ in
s ;R,θ,p t is a unifier of s|p and ` but it does not need to be an mgu. In fact,
there can be delayed instantiations of variables in s|p which become instantiated
during the reachability tests for the conditional part of the rules.

Example 80. Consider the following CTRS R:

c → h(a) (54)

g(h(a)) → b (55)

f(h(x))→ y ⇐ g(h(x))→ y (56)

g(b)→ g(f(x)) ⇐ c→ x (57)

Consider s = f(x) and a renaming of rule (56):

f(h(x′))→ y′ ⇐ g(h(x′))→ y′ (58)

We narrow s using (58). Note that s and `′ = f(h(x′)) unify with mgu θ0 =
{x 7→ h(x′)}. Now, the instance θ0(s′) = g(h(x′)) of the left-hand side s′ =
g(h(x′)) of the condition in (58) can be narrowed in two ways:

32

1. No narrowing step is issued on θ0(s′) (i.e., θ1 = ε, the empty substitution).
Since y′ and s′ unify with mgu τ1 = {y′ 7→ g(h(x′))} we finally obtain:

f(x) ;R,θ g(h(x′))

where θ = η1 = τ1 ◦ θ1 ◦ η0 = τ1 ◦ θ1 ◦ θ0 = {x 7→ h(x′), y′ 7→ g(h(x′))}.
2. An unconditional narrowing step is issued on θ0(s′) using rule (55), i.e.:

g(h(x′)) ;R,θ1 b

with θ′1 = {x′ 7→ a}. Since y′ and b unify with mgu τ ′1 = {y′ 7→ b} we get:

f(x) ;R,θ′ b

where θ′ = η′1 = τ ′1 ◦ θ′1 ◦ η′0 = τ ′1 ◦ θ′1 ◦ θ0 = {x 7→ h(a), x′ 7→ a, y′ 7→ b}.

No further narrowing step is possible on s.

Furthermore, given a term, a position within this term, and a conditional rule
the set of one-step narrowings using this position and rule can be infinite.

Example 81. Consider the following (operationally terminating) 1-CTRS R:

f(f(x)) → g(f(x)) (59)

g(x) → a (60)

k(x) → x⇐ x→ a (61)

Note that f(y) can be narrowed as follows:

f(y) ;(59),{y 7→f(x′)},Λ g(f(x′)) ;(59),{x′ 7→f(x′′)},1 g(g(f(x′′))) ; · · · (62)

Thus, a term like k(f(y)) has infinitely many one-step narrowings with (61)
corresponding to extracting an initial finite sequence from (62) and then applying
(60) at the root of the last term g(· · · g(f(x(n))) · · ·) in the sequence:

k(f(y)) ;(61),{y 7→f(x′)},Λ f(f(x′))

k(f(y)) ;(61),{y 7→f(f(x′′))},Λ f(f(f(x′′)))
...

Actually, this may also happen if one-step rewritings (rather than narrowings)
are considered in proper (finite) 3-CTRSs: there are terms with infinitely many
one-step reducts.

Example 82. Consider the following (nonterminating) 3-CTRS R:

a → c(a) (63)

b → x⇐ a→ x (64)

Note that b→R cn(a) for all n ≥ 0.

33

Given a CTRS S, a non-variable term t is a narrowing redex (or a narrex,
for short) of a rule ` → r ⇐ c ∈ S if t and ` unify with mgu θ (we assume
Var(t) ∩ Var(`) = ∅), and θ(c) is S-feasible. We let NRules(S, s) be the set of
rules α : `→ r ⇐ c ∈ S such that a nonvariable subterm t of s is a narrex of α.
Then, N1(S, s) represents the set of one-step S-narrowings issued from s:

N1(S, s) = {(t, θ↓Var(s)) | s;`→r⇐c,θ t, `→ r ⇐ c ∈ NRules(S, s)} (65)

where θ↓Var(s) is a substitution defined by θ↓Var(s) (x) = θ(x) if x ∈ Var(s) and
θ↓Var(s) (x) = x otherwise.

Example 83. For R in Example 80, NRules(R, f(x)) consists of rule (56) only,
and N1(R, f(x)) = {(g(h(x′)), {x 7→ h(x′)}) , (b, {x 7→ h(a)})}.

For R in Example 82, NRules(R, b) consists of rule (64) only, but N1(R, b) =
{(a, ε) , (c(a), ε), . . .} is infinite.

If α : u→ v ⇐ c is a conditional rule,

N (S, α) = {θ(u)→ w ⇐ θ(c) | (w, θ) ∈ N1(S, v)} (66)

We call N (S, α) the set of one-step narrowings of α with S. Note that (66) can
be an infinite set (if N1(S, v) is infinite).

Example 84. For R in Example 80, we have:

DPH (R) : G(b) → G(f(x))⇐ c→ x (67)

G(b) → F(x)⇐ c→ x (68)

N (R, (67)) consists of the following rules (see Example 83):

G(b) → G(g(h(x′)))⇐ c→ h(x′) (69)

G(b) → G(b)⇐ c→ h(a) (70)

We define the following processor.

Definition 85 (Narrowing Processor with R). Let τ̌ = (P,Q,R, ϕ) be an
OCTRS problem, α : u → v ⇐ c ∈ P, and N be a finite subset of N (R, α).
Then,

PNR(τ̌) = {(P[N]α,Q,R, ϕ)}

Clearly, N (R, α) is finite iff N1(R, v) is finite; this guarantees that every subset
N of N (R, α) in Definition 85 can be used to apply PNR. Our next result
provides a sufficient condition to guarantee finiteness of N1(R, v). First, we
need the following definition, which uses RULES Λ as defined in Section 3.3.

Definition 86. [25, Definition 11] Let R be a CTRS and t be a term. Let
RULES (R, t) =

⋃
s∈D�(R,t)

RULES Λ(R, s). The set of usable rules of R for t is

U(R, t) = RULES (R, t) ∪
⋃

`→r⇐c∈RULES(R,t)

(
U(R•, r) ∪

⋃
si→ti∈c

U(R•, si)
)

where R• = R− RULES (R, t).

34

f0 [τ̌H] a

PNR

• [τ̌H1] a

PInf

no

Figure 7: Nontermination of R in Example 80 in the Open 2D DP Framework

The following simple result summarizes our previous discussion about finiteness
of N1(R, t).

Proposition 87. Let R be a finite CTRS and t be a term. Then, N1(R, t) is
finite if one of the following conditions hold:

1. NRules(R, t) is a TRS,

2. t is ground and R is a 2-CTRS,

3. t is ground and U(R, t) is a terminating and deterministic 3-CTRS.

If N in Definition 85 is such that N = N (R, α), then all possible rewriting
steps issued by instantiations of rule α and rewriting steps on the corresponding
instance of v are covered. This is crucial to prove soundness of PNR. In contrast,
completeness is not affected if some narrowings from N (R, α) are missing in N .

Theorem 88 (Soundness and completeness of PNR). Let τ̌ = (P,Q,R, ϕ)
and α : u → v ⇐ c ∈ P be as in Definition 85. PNR is a-complete. PNR is
sound for τ̌ if (i) N = N (R, α), (ii) for all u′ → v′ ⇐ c′ ∈ P∪Q (with renamed
variables), either v and u′ do not unify or v and u′ unify with mgu θ and θ(c)
is R-infeasible, and (iii) either v is ground and R is a deterministic 3-CTRS
or NRules(R, v) is a TRS and v is linear. Therefore, Π(PNR) = {〈f, a〉, 〈•, a〉}.

As for the DP Framework for TRSs, PNR is not, in general, m-complete [12,
Example 32].

Example 89 (Nontermination of R in Example 80). Consider the CTRS
R in Example 80 with τ̌H = ({(67), (68)}, ∅,R, f) and N (R, (67)) as in Exam-
ple 84. Hence, PNR(τ̌H) = {τ̌H1 } where τ̌H1 = ({(69), (70), (68)}, ∅,R, f). Now,
we can use PInf to prove τ̌H1 infinite due to (70) (see Figure 7).

Our next processor uses Q to narrow the right-hand sides v of pairs u → v ⇐
c ∈ P at the root. First, given a CTRS S, we let NRulesΛ(S, t) be the set of
rules α : ` → r ⇐ c ∈ S such that t is a narrex of α and NΛ

1 (S, s) represents
the set of one-step S-narrowings issued from s at the root position:

NΛ
1 (S, s) = {(t, θ↓Var(s)) | s

Λ
;`→r⇐c,θ t, `→ r ⇐ c ∈ NRulesΛ(S, s)} (71)

35

Finally, if α : u→ v ⇐ c is a conditional rule,

NΛ(S, α) = {θ(u)→ w ⇐ θ(c) | (w, θ) ∈ NΛ
1 (S, v)} (72)

Definition 90 (Narrowing Processor with Q). Let τ̌ = (P,Q,R, ϕ) be an
OCTRS problem, α : u → v ⇐ c ∈ P, and NΛ be a finite subset of NΛ(Q, α).
Then, PNQ is given by

PNQ(τ̌) = {(P[NΛ]α,Q,R, a)}.

PNQ changes ϕ into a because minimality of (P[NΛ]α,Q,R)-O-chains A′ ob-
tained from a minimal (P,Q,R)-O-chains cannot, in general, be guaranteed.
This is because operational termination of a term (with respect to R) cannot,
in general, be guaranteed after rewritings with Q.

Theorem 91 (Soundness and completeness of PNQ). PNQ is a-complete.
PNQ is sound if NΛ = NΛ(Q, α), NRules(R, v) = ∅, for all u′ → v′ ⇐ c′ ∈ P
(with renamed variables), v and u′ do not unify or v and u′ unify with mgu θ and
θ(c) is R-infeasible, and either v is ground and R is a deterministic 3-CTRS or
NRulesΛ(Q, v) is a TRS and v is linear. Therefore, Π(PNQ) = {〈f, a〉, 〈•, a〉}.

Example 92 (Non-V-termination of R in Example 3). We apply PNQ to
τ̌V = (DPV (R),DPVH (R),R, f) = ({(21)}, {(19), (20)},R, f) in Example 57
(for DPV (R) and DPVH (R) in Example 6) to get PNQ(τ̌V) = {τ̌V1 } for τ̌V1 =
({(73)}, {(19), (20)},R, a) with

F(a) → B (73)

And yet PNQ(τ̌V1) = {τ̌V2 } where τ̌V2 = ({(74)}, {(19), (20)},R, a) with

F(a) → F(a) (74)

This is an infinite CTRS problem, as can be proved with PInf . Thus, τ̌V is
infinite (Figure 8) and R non-V-terminating and hence operationally nontermi-
nating (although terminating, as proved in Example 59!).

8. Related work

Our proposal extends the DP Framework for TRSs [10, 12] to CTRSs. How-
ever, we differ in several foundational aspects which deserve further discussion.

Termination problems. Our definition of CTRS problem is the natural extension
of the definition of DP problem for TRSs [10, 12] given the theory in [24]. The
use we make of such CTRS problems to characterize the different termination
properties of CTRSs we are interested in is also similar to what is done in the
DP Framework for TRSs. However, the notion of open CTRS problem and the
corresponding Open Framework to deal with the different kinds of termination
problems seem to be new in the literature.

36

f0 [τ̌V] a

PNQ

f1 [τ̌V1] a

PNQ

• [τ̌V2] a

PInf

no

Figure 8: Non-V-termination of R in Example 3 in the Open 2D DP Framework

Infiniteness of CTRS problems. Our definition of infinite CTRS problem does
not follow the one in [10, 12] (see Example 17 and the discussion above). In [12,
footnote 2], the asymmetrical definition of finiteness/infiniteness of DP problems
is justified: assuming R nonterminating is “required for the completeness of”
most processors for “dependency pair transformations”. But, actually, this as-
sumption is used to guarantee the preservation of minimality of chains. In [12],
the main focus is “to show that there is no infinite minimal chain” (for prov-
ing termination) or, otherwise, proving that there is an infinite minimal chain
(for proving nontermination). However, for proving nontermination of TRSs,
showing the existence of an arbitrary chain of DP pairs suffices6. We substan-
tiate this fact by providing different results showing that minimality can be
advantageously used to prove operational termination of CTRSs (because we
consider ‘fewer’ O-chains), but being more general when proving operational
nontermination, where any arbitrary infinite O-chain witnesses the property (so
finding an example is ‘easier’). As a consequence we do not impose any specific
requirement on chains before analyzing the CTRS. Instead, our Open 2D DP
Framework leaves the involved processors to impose their requirements.

Soundness/completeness. In [12], an important reason for dealing with minimal
chains only is that some processors (e.g., the subterm processor) are sound under
minimality assumptions only. Actually, in the DP Framework, only sound pro-
cessors are allowed in any step of the proof (see [12, Corollary 5]). But soundness
is only necessary to prove (operational) termination of (C)TRSs, whereas com-
pleteness is the crucial property to prove (operational) nontermination. Thus,
we do not require soundness of all processors involved in a proof (see Theorem
29). In our approach, plugging schemes are used to separately manage the de-
scription of processors as transformations of (open) CTRS problems and the

6see [1, Theorem 6], where the proof clearly shows that from any infinite chain of DPs one
can obtain an infinite rewrite sequence that proves nontermination of the TRS.

37

assignment of a sound/complete behavior within an OCTRSP-tree.

8.1. Transformation techniques

To the best of our knowledge, existing tools for proving operational termi-
nation of CTRSs currently use transformation techniques. Transformation U
[28, Definition 7.2.48] is often used for this purpose. This transformation is not
complete, though, and may fail to prove some examples (see [24, Section 8.1.2]).

Example 93. Consider the following CTRS R [9, page 46]:

a → b (75)

f(a) → b (76)

g(x) → g(a)⇐ f(x)→ x (77)

As noticed by Giesl and Arts [9], the transformed TRS U(R):

a → b g(x) → U(f(x), x)
f(a) → b U(x, x) → g(a)

is not terminating: g(a) → U(f(a), a) → U(b, a) → U(b, b) → g(a) → · · · We
can give a simple proof of operational termination of R: DPH (R) and DPV (R)
are:

DPH (R) G(x) → G(a)⇐ f(x)→ x (78)

G(x) → A⇐ f(x)→ x (79)

DPV (R) G(x) → F(x) (80)

and DPVH (R) = ∅. The two pairs in DPH (R) are R-infeasible, see [19, Example
9]. Hence PSCC (τ̌H) = ∅. And, since there is no cycle in EG(τ̌V), we also have
PSCC (τ̌V) = ∅, i.e., R is operationally terminating.

Also, due to its incompleteness, disproving operational termination is not pos-
sible with this transformation, in sharp contrast to our approach.

9. Conclusion

We briefly explain the new contributions of this paper.

1. In Section 5 we have generalized the Dependency Pair Framework for
TRSs to deal with CTRSs and the different termination properties for
CTRSs investigated in [24]. With the same notion of CTRS problem and
using the same processors, we can prove and disprove not only operational
termination of CTRSs, but also termination and V-termination of CTRSs.

2. We define an Open Dependency Pair Framework, where we do not assume
any specific kind of (initial) CTRS problems (Section 6). As far as we
know, the proposal of such an open framework is new and could be used
in other adaptations of the DP Framework to other variants of rewriting
where similar situations occur (in particular, in the DP Framework itself).

38

3. We have introduced several processors to be used within the 2D DP Frame-
work: some of them (e.g., PInf , PSCC , P�, PRT , and PNR) adapt existing
processors from the DP Framework for TRSs. In other cases (e.g., PIR,
PRIR, and PNQ), they exploit specific features of CTRSs (e.g., the condi-
tions in the rule) or peculiarities of the 2D DP Framework.

4. We have shown by means of several examples that we can actually prove
different termination properties that ‘coexist’ in the same CTRS. For in-
stance, the CTRS in Example 3 has been proved terminating in Example
59 and non-V-terminating in Example 92.

5. We have proved operational termination of CTRSs which could not be
proved operationally terminating with existing techniques (in particular,
by means of the usual tranformations, see Example 93). Moreover, tools
based on these (incomplete) transformations are not able to disprove op-
erational termination of CTRSs (as we do in Examples 89 and 92).

The 2D DP Framework has been implemented as part of the tool mu-term. We
have participated in the 2014, 2015, 2016, and 2017 editions of the International
Termination Competition where we obtained the first position among the tools
in the TRS Conditional subcategory, see

http://zenon.dsic.upv.es/muterm/?page_id=82

for a summary. However, although the processors introduced in this first part of
the paper have been proved poweful enough to deal with CTRSs which cannot
be handled by using the usual transformation techniques7 (e.g., R in Example 3
cannot be proved operationally nonterminating by using the usual transforma-
tion U but it is proved operationally nonterminating in Example 92; similarly for
R in Example 93), more processors are necessary to obtain the good results ex-
hibited in practice. The second part of this paper [27] develops such processors
and also provides details about the implementation of the 2D DP Framework,
including statistics regarding the use of the different processors and benchmarks
comparing mu-term and other termination tools.

Acknowledgments. We thank the anonymous referees for many remarks and
suggestions that led to improve the paper.

References

[1] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs.
Theoretical Computer Science, 236(1–2):133–178, 2000.

[2] B. Alarcón, R. Gutiérrez, S. Lucas, R. Navarro-Marset. Proving Termination
Properties with MU-TERM. In M. Johnson and D. Pavlovic, editors, Proc. of the
13th International Conference on Algebraic Methodology and Software Technology,
AMAST’10, LNCS 6486:201-208, 2011.

7Sound and complete transformations for proving operational termination of some classes
of CTRSs have been reported, see, e.g., [18]. Yet, their practical application is underexplored.

39

[3] J.A. Bergstra and J.W. Klop. Conditional Rewrite Rules: Confluence and Ter-
mination. Journal of Computer and System Sciences 32:323-362, 1986.

[4] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An
Overview of ELAN. In C. Kirchner and H. Kirchner, editors, Proc. of 2nd Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA’98, Electronic
Notes in Theoretical Computer Science, 15(1998):1-16, 1998.

[5] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling lan-
guage definitions: The ASF+SDF compiler. ACM Transactions on Programming
Languages and Systems, 24(4):334–368, 2002.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude – A High-Performance Logical Framework. LNCS 4350,
Springer-Verlag, 2007.

[7] N. Dershowitz and M. Okada. A rationale for conditional equational program-
ming. Theoretical Computer Science 75:111-138, 1990.

[8] K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series in Computing, Volume 6, 1998.

[9] J. Giesl and T. Arts. Verification of Erlang Processes by Dependency Pairs. Ap-
plicable Algebra in Engineering, Communication and Computing 12:39-72, 2001.

[10] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Frame-
work: Combining Techniques for Automated Termination Proofs. In F. Baader
and A. Voronkov, editors, Proc. of XI International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning, LPAR’04, LNAI 3452:301–331,
Springer-Verlag, Berlin, 2004.

[11] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Disproving Termina-
tion of Higher-Order Functions. In B. Gramlich, editor, Proc. of 5th International
Workshop on Frontiers of Combining Systems, FroCoS’05, LNAI 3717:216-231,
Springer-Verlag, Berlin, 2005.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Im-
proving Dependency Pairs. Journal of Automatic Reasoning, 37(3):155–203, 2006.

[13] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with
OBJ: algebraic specification in action, Kluwer, 2000.

[14] N. Hirokawa and A. Middeldorp. Dependency Pairs Revisited. In V. van Oost-
rom, editor, Proc. of XV International Conference on Rewriting Techniques and
Applications, RTA’04, LNCS 3091:249–268, Springer-Verlag, Berlin, 2004.

[15] P. Hudak, S.J. Peyton-Jones, and P. Wadler. Report on the Functional Pro-
gramming Language Haskell: a non–strict, purely functional language. Sigplan
Notices, 27(5):1-164, 1992.

[16] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175–193,
1984.

40

[17] D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical
Computer Science 81:169-187, 1991.

[18] C. Kop, A. Middeldorp, and T. Sternagel. Complexity of Conditional Term
Rewriting. Logical Methods in Computer Science 13(1), February 2017.

[19] S. Lucas. Analysis of Rewriting-Based Systems as First-Order Theories. In F.
Fioravanti and J.P. Gallagher, editors, Revised Selected papers from the 27th In-
ternational Symposium on Logic-Based Program Synthesis and Transformation,
LOPSTR 2017, LNCS volume 10855, to appear, 2018.

[20] S. Lucas and R. Gutiérrez. Automatic Synthesis of Logical Models for Order-
Sorted First-Order Theories. Journal of Automated Reasoning, 60(4):465–501,
2018.

[21] S. Lucas and R. Gutiérrez. Use of logical models for proving infeasibility in term
rewriting. Information Processing Letters, 136C:90-95, 2018.

[22] S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional
term rewriting systems. Information Processing Letters 95:446–453, 2005.

[23] S. Lucas and J. Meseguer. 2D Dependency Pairs for Proving Operational Termi-
nation of CTRSs. In S. Escobar, editor, Proc. of the 10th International Workshop
on Rewriting Logic and its Applications, WRLA’14, LNCS 8663:195-212, 2014.

[24] S. Lucas and J. Meseguer. Dependency pairs for proving termination properties
of conditional term rewriting systems. Journal of Logical and Algebraic Methods
in Programming, 86:236-268, 2017.

[25] S. Lucas and J. Meseguer. Normal forms and normal theories in conditional rewrit-
ing. Journal of Logical and Algebraic Methods in Programming, 85(1):67-97, 2016.

[26] S. Lucas, J. Meseguer, and R. Gutiérrez. Extending the 2D DP Framework for
Conditional Term Rewriting Systems. In M. Proietti and H. Seki, editors, Selected
papers of the 24th International Symposium on Logic-Based Program Synthesis
and Transformation LOPSTR’14, LNCS 8981:113-130, 2015.

[27] S. Lucas, J. Meseguer, and R. Gutiérrez. The 2D DP Framework for Conditional
Term Rewriting Systems. Part II: advanced processors. In preparation, 2018.

[28] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Apr. 2002.

[29] R.M. Smullyan. Theory of Formal Systems. Princeton University Press, 1961.

[30] T. Sternagel and A. Middeldorp. Conditional Confluence (System Description).
In G. Dowek, editor, Proc. of Joint International Conference on Rewriting and
Typed Lambda Calculi, RTA-TLCA’14, LNCS 8560:456-465, 2014.

[31] T. Sternagel and A. Middeldorp. Infeasible Conditional Critical Pairs. In A. Ti-
wari and T. Aoto, editors, Proc. of the 4th International Workshop on Confluence,
IWC’15, pages 13–18, 2014.

41

Appendix A. Proofs of Theorems

Theorem 23. PFin is sound and complete. PInf is sound. PInf is sound and
a-complete. PInf is τ -complete if τ = (P,Q,R,m) and u→ v ⇐ c in Definition
20 is such that v is ground and contains no symbol from DR.

Proof. Let τ = (P,Q,R, f) be a CTRS problem with P = ∅. There is
no (minimal or arbitrary) (P,Q,R)-O-chain due to the emptiness of P. Thus,
soundness of PFin is obvious for all f ∈ F. Completeness is also trivial.

Soundness of PInf is obvious. Regarding completeness, if PInf (P,Q,R, f) =
no, then we can define an infinite (P,Q,R)-O-chain A as follows. The sequence
of pairs is (ui → vi ⇐ ci)i≥1, where ui → vi ⇐ ci are renamed versions of
α : u → v ⇐ c. If x ∈ Var(α), then xi is the corresponding variable of
αi : ui → vi ⇐ ci, where xi 6= yi if x, y ∈ Var(α) are different (x 6= y) and for all
i 6= j, Var(αi) ∩ Var(αj) = ∅. Let ρi : Var(αi)→ Var(α) be the corresponding
renaming of variables of αi into variables of α. For all i ≥ 1, we have ρi(ui) = u
and ρi(vi) = v. For all variables x, we let σ be given by σ(x1) = η(ρ1(x1)) = η(x)
and, for all i ≥ 1, σ(xi+1) = θ(σ(xi)). Note that, by definition of σ, for all i ≥ 1,
σ(ui+1) = θ(σ(ui)) and σ(vi+1) = θ(σ(vi)). We prove by induction that, for
all i ≥ 1, σ(vi) = σ(ρ−1

i (v)) = σ(ρ−1
i+1(u)) = σ(ui+1) and for all s → t ∈ c,

σ(ρ−1
i (s)) →∗R σ(ρ−1

i (t)). For the base case, we have σ(v1) = η(ρ1(v1)) =
η(v) = θ(η(u)) and σ(u2) = θ(σ(u1)) = θ(η(ρ1(u1))) = θ(η(u)). Therefore,
σ(v1) = σ(u2). We also have σ(ρ−1

1 (s)) = η(ρ1(ρ−1(s))) = η(s) →∗R η(t) =
σ(ρ−1

1 (t)). For the induction step, by definition σ(vi+1) = θ(σ(vi)), and by
the I.H., σ(vi) = σ(ui+1). Therefore, σ(vi+1) = θ(σ(ui+1)) = σ(ui+2). And
also, σ(ρ−1

i+1(s)) = θ(σ(ρ−1
i (s))). By the I.H., σ(ρ−1

i (s)) →∗R σ(ρ−1
i (t)). Thus,

by stability of rewriting, θ(σ(ρ−1
i (s))) →∗R θ(σ(ρ−1

i (t))), i.e., σ(ρ−1
i+1(s)) →∗R

σ(ρ−1
i+1(t)) as required. Hence, A with σ defines an infinite (P,Q,R)-O-chain.

If, additionally, v is ground and contains no symbol from DR, then it is obviously
operationally terminating with respect to R. Hence, A is minimal. 2

Proposition 25. Let P be a processor such that, for all CTRS problems
τ = (P,Q,R, f) ∈ Dom(P), P(τ) 6= no and if τ ′ = (P ′,Q′,R′, f ′) ∈ P(τ), then
P ′ ⊆ P, Q′ ⊆ Q, R′ ⊆ R and (i) f = a or (ii) f ′ = f = m and R′ = R. Then,
P is complete.

Proof. Since P ′ ⊆ P, Q′ ⊆ Q, and R′ ⊆ R, every infinite (minimal or
arbitrary) (P ′,Q′,R′)-O-chain A′ is an infinite (P,Q,R)-O-chain. If f = a
(case (i)), then τ is infinite if τ ′ is infinite. If f = f ′ = m and R′ = R
(case (ii)), then if A′ is minimal, then A′ viewed as a (P,Q,R)-O-chain is also
minimal, i.e., τ is infinite if τ ′ is infinite. Hence P is complete. 2

Theorem 43. Let τ̌I = (P,Q,R, ϕ) be an open CTRS problem and ŤI be an
open CTRSP-tree for τ̌I . Then,

1. If all leaves in ŤI are labeled with “yes” and there is a ground flag substi-
tution ς that unifies Es(ŤI) and ς(ϕ) 6= •, then ς(τ̌I) is finite.

42

2. If there is a leaf n∞ in ŤI with label “no” and there is a ground flag
substitution ς that unifies En∞c (ŤI) and ς(ϕ) 6= •, then ς(τ̌I) is infinite.

Proof. Let nI be the root node of ŤI with labels τ̌I and ψI = 〈ϕIs, ϕIc〉. There
is an open processor P such that τ̌I ∈ Dom (̌P) and P follows ψI with τ̌I .

1. We prove ς(τ̌I) finite by induction on the number N > 1 of nodes in ŤI .
(a) If N = 2, then ŤI consists of two nodes: nI and n′, which is a leaf

with label “yes”, and Es(ŤI) = {ϕ =? ϕIs}. Since ς(ϕ) = ς(ϕIs) 6= •,
we can assume ς = ςf for some f ∈ F. Since P follows ψI with τ̌I , P
is (τ̌I , f)-sound. By Definition 41, P(τ̌I) = ∅. By Definition 36, ς(τ̌I)
is finite.

(b) If N > 2, then, P(τ̌I) = {τ̌1, . . . , τ̌m} for some m > 0, so that nI has
m children n1, . . . , nm which are the roots of OCTRSP-trees Ťi for
1 ≤ i ≤ m. For each i, 1 ≤ i ≤ m, let τ̌i = (Pi,Qi,Ri, ϕi) and ψi =
〈ϕis, ϕic〉 be the open CTRS problem and plugging scheme labeling
ni. Since Es(ŤI) = {ϕ =? ϕIs} ∪

⋃m
i=1 Es(Ťi), for all i, 1 ≤ i ≤ m,

ς is a ground unifier of Es(Ťi). By Definition 35, for all 1 ≤ i ≤ m,
ϕi ∈ F ∪ {ϕ}; thus, ς(ϕi) 6= •. By the induction hypothesis, for all i,
1 ≤ i ≤ m, ς(τ̌i) is finite. Since ς is a ground unifier of Es(ŤI) and
ς(ϕ) 6= •, we have ςf (ϕ) = ςf (ϕIs) for some f ∈ F. Since P follows ψI
with τ̌I , this means that P is (τ̌I , f)-sound. Thus, ςf (τ̌I), i.e., ς(τ̌I)
is finite.

2. Let Γ be a path from nI to a node n∞ with label “no”. We prove by
induction on the number N > 1 of nodes in Γ that ς(τ̌I) is infinite.

(a) If N = 2, then nI is the predecessor of n∞ in Γ. And Ec(Ť) = {ϕ =?

ϕIic}, i.e., ςf (ϕ) = ςf (ϕIc) for some f ∈ F. Since P follows ψI with τ̌I ,
P is (τ̌I , f)-complete. Hence, since P(τ̌I) = “no”, ς(τ̌I) is infinite.

(b) If N > 2, then let n be the successor of nI in Γ, with labels τ̌ =
(P ′,Q′,R′, ϕ′) and ψ = 〈ϕs, ϕc〉. We have τ̌ ∈ P(τ̌I) and by Defi-
nition 35, ϕ′ ∈ F ∪ {ϕ}; thus, ς(ϕ′) 6= •. Since En∞c (ŤI) = {ϕI =?

ϕIc} ∪ En∞c (Ť), ς is a unifier of En∞c (Ť) and by the induction hy-
pothesis, ς(τ̌) is infinite. Since ς is a ground unifier of En∞c (ŤI) and
ς(ϕ) 6= •, we have ςf (ϕ) = ςf (ϕIs) for some f ∈ F. Since P follows ψI
with τ̌ , P is (τ̌ , f)-complete and ςf (τ̌I), and hence ς(τ̌I), is infinite.2

Theorem 45 Parb is sound and a-complete. Pmin is m-sound and complete.

Proof. As for Parb , if (P,Q,R, a) is finite, then for all f such that ςf (ϕ) = f ,
since f ≤ a, ςf (τ̌) = (P,Q,R, ςf (ϕ)) is finite, i.e., Parb is sound. The proof of
a-completeness is immediate. The proofs for Pmin are analogous. 2

Theorem 52. PSCC is sound and complete.

Proof. Completeness follows by Corollary 27. We prove soundness by con-
tradiction. If there is τ = (P,Q,R, f) = ςf (τ̌) for some f ∈ F such that, for all
τ ′ ∈ PSCC (τ̌), τ ′ = ςf (τ̌) = (P ′,Q′,R, f) is finite but τ is not finite, then there

43

is an infinite (minimal) (P,Q,R)-O-chain A. Since P contains a finite number
of pairs, there is P ′′ ⊆ P and a tail B of A, which is an infinite (minimal)
(P ′′,Q′′,R)-O-chain where all pairs in P ′′ are infinitely often used and Q′′ ⊆ Q
is the subset of pairs in Q which are used in B. According to Definitions 46
and 47, P ′′ is a cycle in AG(τ̌) included in some SCC with nodes in P ′, i.e.,
P ′′ ⊆ P ′. And according to Definition 49, Q′′ ⊆ Q′. Thus, B is an infinite
(minimal) (P ′,Q′,R)-O-chain and τ ′ is infinite; a contradiction. 2

Proposition 53. Let R be a CTRS, t, u be terms, and σ be a substitution. If
σ(t)→∗R σ(u), then tcapR(t) and u unify.

Proof. In the following, we let s = tcapR(t). By definition of tcapR, we can
assume s linear and Var(s)∩ Var(u) = ∅. Also, t = σt(s) for some substitution
σt. We proceed by induction on the length m of the sequence from σ(t) to σ(u).
If m = 0, then σ(t) = σ(σt(s)) = σ(u). Since Var(s)∩Var(u) = ∅, s and u unify.
If m > 0, then σ(t) = σ(σt(s))→ t′ →∗ σ(u). Let p ∈ Pos(σ(t)) be the position
where the rewrite step σ(t)→ t′ with rule `→ r ⇐ c is performed. By definition
of tcapR, s = s[z]q for some fresh variable z and position q such that q ≤ p.
Therefore, t′ = σ(t)[σ(r)]p = σ(σt(s))[σ(r)]p = σ(σ′t(s)) where σ′t(z) = t′|q and
σ′t(x) = σt(x) for any other variable x 6= z. Thus, σ(σt(s)) → σ(σ′t(s)) and
σ(σ′t(s)) →∗ σ(u) in m − 1 steps. By the induction hypothesis, tcapR(σ′t(s))
and u unify with mgu θ. Since σt(s) and σ′t(s) may differ below position q only,
we can assume that tcapR(σ′t(s)) = s[s′]q for some term s′ sharing no variable
with s[]q or u. Thus, tcapR(t) = s and u unify with mgu θ′ where θ′(z) = θ(s′)
and θ′(x) = θ(x) for any other variable x 6= z. 2

Theorem 65. P� is complete and (τ̌ ,m)-sound for all τ̌ = (P,Q,R, ϕ) ∈
Dom (̌P�) such that P∪Q is not collapsing and (Root(P)∪Root(Q))∩DR = ∅.

Proof. Completeness follows by Corollary 27. For soundness, we proceed
by contradiction. If there is an infinite minimal (P,Q,R)-chain A but there
is no infinite minimal (P[∅]α,Q[∅]α,R)-chain, since P and Q are finite, there
are P ′ ⊆ P and Q′ ⊆ Q such that A has a tail B that is an infinite minimal
(P ′,Q′,R)-chain where all pairs in P ′ and Q′ are infinitely often used:

σ(u1)
Λ→P′,R σ(v1)(→∗R ◦

Λ−→=
Q′,R)∗σ(u2)

Λ→P′,R · · ·

for some substitution σ. Note that, for all i ≥ 1, root(ui) ∈ Root(P). Since
root(vi) 6∈ X , we have that root(vi) ∈ Root(P). Thus, we can apply π to σ(ui)

and σ(vi) for all i ≥ 1. Since σ(vi)(→∗R ◦
Λ−→=
Q,R)∗σ(ui+1) for all i ≥ 1 and

(Root(P) ∪Root(Q)) ∩DR = ∅, we can write σ(vi)(
>Λ−→∗R ◦

Λ−→=
Q′,R)∗σ(ui+1)

because rewritings with R do not change root(vi) = root(σ(vi)) and we have
π(u′) � π(v′) for all u′ → v′ ⇐ c′ ∈ Q′. Hence, for all i ≥ 1, π(σ(vi))(→∗R ◦
�)∗π(σ(ui+1)). Finally, since π(ui) � π(vi) for all i ≥ 1, by stability of �,
we have π(σ(ui)) = σ(π(ui)) � σ(π(vi)) = π(σ(vi)) for all i ≥ 1. Note that
u → v ⇐ c /∈ P ′ ∪ Q′. Otherwise, we get a contradiction: since A is mini-
mal, we can assume that σ(v1) is operationally terminating (w.r.t. R). Since

44

π(σ(vi))(→∗R ◦�)∗π(σ(ui+1)) and π(σ(ui))�π(σ(vi)) for all i ≥ 1, the sequence
B is transformed into an infinite →R ∪�-sequence

π(σ(v1))(→∗R◦�)∗π(σ(u2))�π(σ(v2))(→∗R◦�)∗π(σ(u3))�π(σ(v2))(→∗R◦�)∗ · · ·

containing infinitely many �-steps, due to π(u) � π(v) for u → v ⇐ c which
occurs infinitely often in B. Since � is well-founded, the infinite sequence must
also contain infinitely many→R-steps. By making repeated use of the fact that
� ◦→R ⊆ →R ◦�, we obtain an infinite→R-sequence starting from π(σ(v1)).
Thus, π(σ(v1)) is not operationally terminating with respect to R, leading to
a contradiction. Since P ′ ⊆ P[∅]α and Q′ ⊆ Q[∅]α, B is an infinite minimal
(P[∅]α,Q[∅]α,R)-chain. This contradicts our initial argument. 2

Theorem 71. PRT is sound and complete.

Proof. Completeness follows by Corollary 27. Regarding soundness, we pro-
ceed by contradiction. Assume that A is an infinite (minimal) (P,Q,R)-chain,
but there is no infinite (minimal) (P[∅]α,Q[∅]α,R)-chain. By finiteness of P
and Q, there are P ′ ⊆ P and Q′ ⊆ Q such that A has a tail B

σ(u1)
Λ→P′,R σ(v1)(→∗R ◦

Λ−→=
Q′,R)∗σ(u2)

Λ→P′,R · · ·

for some substitution σ, where all pairs in P ′ and Q′ are infinitely often used.
Although Q′ could be empty (if no pair in Q′ is used to connect pairs in P ′) P ′
is not empty. By Definition 69.2, for all i ≥ 1 and ui → vi ⇐ ci ∈ P ′,

σ(ui) (& ∪ � ∪ =) σ(vi) (A.1)

Note that α /∈ P ′ ∪ Q′. Otherwise, we get a contradiction as follows. First,
note that, without loss of generality, we can assume that u1 → v1 ⇐ c1 in B
is (a renamed version of) α. Therefore, σ(u1) = σ(v1), by hypothesis. Since

σ(vi)(→∗R ◦
Λ−→=
Q′,R)∗σ(ui+1), there are pairs uki → vki ⇐

∧nik

j=1 u
k
ij → vkij ∈ Q′

for k, 1 ≤ k ≤ κi (κi = 0 indicates that no pair in Q′ is necessary to connect
σ(vi) and σ(ui+1); if Q′ = ∅, then κi = 0 for all i ≥ 0) such that σ(ukij) →∗R
σ(vkij) for all j, 1 ≤ j ≤ nik and k, 1 ≤ k ≤ κi, and

σ(vi)→∗R σ(u1
i)

Λ→Q,R σ(v1
i)→∗R · · · →∗R σ(uκi

i)
Λ→Q,R σ(vκi

i)→∗R σ(ui+1)

for i ≥ 1. By Definition 69.1, for all k, 1 ≤ k < κi we have

σ(vi) &∗ σ(u1
i) and σ(vki) &∗ σ(uk+1

i) (A.2)

and σ(vκi
i) &∗ σ(ui+1) (or σ(vi) &∗ σ(ui+1) if κi = 0). Also

σ(uki) (& ∪ � ∪ =) σ(vki) (A.3)

for all k, 1 ≤ k < κi. From (A.1) and (A.3) we conclude that σ(ui) (& ∪ � ∪ =

)+ σ(ui+1). Since α occurs infinitely often in B, there is an infinite set J ⊆ N

45

(NRf) x;∗ε x (NRl)

x =?
θ0
` [ηi−1(si) ;∗θi t

′
i t′i =?

τi
θi(ηi−1(ti)]

n
i=1

x;1
ηn r

for all `→ r ⇐ s1 → t1, . . . , sn → tn ∈ R;
x a non-variable term;

η0 = θ0, for all 1 ≤ i ≤ n, ηi = τi ◦ θi ◦ ηi−1

(NT)
x;θ y y ;∗θ′ z

x;∗θ′◦θ z (NC)

xi ;
1
θ yi

f(x1, . . . , xi, . . . , xk) ;1
θ f(x1, . . . , yi, . . . , xk)

for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(Nr)
x;1

θ y
x;θ θ(y)

Figure A.9: An inference system for conditional narrowing

such that σ(uj) = σ(uj+1) for all j ∈ J (note that 1 ∈ J). And we have
σ(ui) (& ∪ � ∪ =) σ(ui+1) for all other ui → vi ⇐ ci ∈ P ′ with i ∈ N − J .
Thus, by using the compatibility conditions of the removal triple, we obtain an
infinite decreasing =-sequence that contradicts the well-foundedness of =.

Therefore, P ′ ⊆ P[∅]α and Q′ ⊆ Q[∅]α, which means that B is an infinite
(minimal) (P[∅]α,Q[∅]α,R)-O-chain, thus leading to a contradiction. 2

Theorem 76. PIR is sound and complete.

Proof. Let τ̌ = (P,Q,RF] RI , ϕ) ∈ Dom (̌PIR), α ∈ RF be RF -infeasible,
τ̌ ′ = (P,Q,RF [∅]α] (RI ∪{α}), ϕ) be such that PIR(τ̌) = {τ̌ ′}, and f ∈ F such
that ςf (ϕ) = f . Regarding soundness, since α cannot be used for issuing any
rewriting step (with P, Q, or R), every (minimal) (P,Q,R)-O-chain with sub-
stitution σ is a (minimal) (P,Q,RF [∅]α](RI∪{α}))-O-chain with substitution
σ. Thus, PIR is sound. Completeness is similar. 2

Theorem 78. PRIR is sound and a-complete.

Proof. Let τ̌ = (P,Q,RF] RI , ϕ) ∈ Dom (̌PRIR), and τ̌ ′ = (P,Q,RF , ϕ)
be such that PRIR(τ̌) = {τ̌ ′}, and f ∈ F such that ςf (ϕ) = f . Soundness is
obvious, as every (minimal) (P,Q,R)-O-chain with substitution σ is a (minimal)
(P,Q,RF)-O-chain with substitution σ (by definition, only rules from RF are
actually used in the (P,Q,R)-O-chain, and operationally terminating terms
with respect to R are also operationally terminating with respect to RF ⊆ R).
Thus, PRIR is sound. Regarding completeness, sinceRF ⊆ R, every (P,Q,RF)-
chain is also a (P,Q,R)-chain. Thus, since ςa(ϕ) = a, infiniteness of ςa(τ̌

′)
implies that of ςa(τ̌), i.e., PRIR is a-complete. 2

It is not difficult to see that the one-step and many-steps narrowing relations
described in Definition 79 can be obtained as the ones computed by using the
inference system in Figure A.9. However, in contrast to the inference system
in Figure 1, only ‘administrative’ variables x1, . . . , xn, y1, . . . , yn, x, y, z can be
instantiated for the application of these inference rules to a goal. In particular,
no variable in the rules of the CTRS (see the inference rule (NRl)) can be
instantiated unless a substitution ηi, θi, τi is used. We have the following:

46

Proposition 94. Let R be a CTRS and s, t be terms. If s ;R,θ t, then
θ(s)→R t. If s;∗R,θ t, then θ(s)→∗R t.

Proof. For the goal s;θ t, there must be an application of (Nr); hence, there
must be a term t′ such that t = θ(t′) and there is a proof of s;1

θ t
′. We claim

that, for all terms s and t, s ;1
θ t implies θ(s) →R θ(t), which is consistent

with the use of (Nr): if s ;1
θ t
′ holds (and hence θ(s) →R θ(t) would hold),

then s ;θ θ(t
′) holds by the application of (Nr) and, since t = θ(t′), we have

θ(s)→∗R t as required.
We proceed by multiple induction on the well-formed proof trees for s;1

θ t
′

and s ;∗θ t where s is a nonvariable term and the inference system in Figure
A.9 is used. The base cases are: (i) s ;1

θ t
′ is proved by a direct application

of (NRl) with an unconditional rule ` → r. Then, θ is the mgu θ of s and `,
i.e., θ(s) = θ(`), and t′ = r. Thus, we obtain θ(s) →R θ(t′) = t by a single
application of (Repl) in Figure 1 to prove the goal θ(s)→ t with rule `→ r and
using substitution θ. (ii) s ;∗ε s which immediately implies ε(s) = s →∗ s by
using (Refl) in the Inference System in Figure 1.

For the induction case, for the goal s ;∗θ t, the only possibility is a single
application of (NT). Then, s ;θ1 t

′ for some term t′ and substitution θ1, and
t′ ;∗θ2 t for some substitution θ2 such that θ = θ2 ◦ θ1. By the induction
hypothesis, θ1(s) → t′ and θ2(t′) →∗ t. By stability of conditional rewriting
θ2(θ1(s)) → θ2(t′) and by using (Tran) in Figure 1 we obtain θ2(θ1(s)) →∗ t,
i.e., θ(s)→∗ t as required.

For the goal s;1
θ t
′, we have two cases:

1. (NC) is applied. Then s = f(s1, . . . , sk) and t′ = f(t′1, . . . , t
′
k) for some

function symbol f and there is i, 1 ≤ i ≤ ar(f) such that sj = t′j for

all 1 ≤ j ≤ k, i 6= j and there is a proof of si ;1
θ t′i. By the I.H.,

θ(si) →R θ(t′i), i.e., there is a closed proof tree for θ(si) → θ(t′i). Now,
we can use (Cong) to prove the goal θ(s)→ θ(t′), and therefore conclude
θ(s)→R θ(t′) = t as desired.

2. (NRl) is applied with a conditional rule α : `→ r ⇐ s1 → t1, . . . , sn → tn
to obtain a proof of s;1

θ t
′, where θ = ηn for ηn as in the rule. Therefore,

s and ` unify with mgu θ0, i.e., θ0(s) = θ0(`), t′ = r, and for all 1 ≤ i ≤ n
we have proofs of ηi−1(si) ;∗θi t

′
i and t′i =?

τi θi(ηi−1(ti)) (i.e., τi(t
′
i) =

τi(θi(ηi−1(ti)))). By the I.H., for all 1 ≤ i ≤ n we have θi(ηi−1(si))→∗R t′i
and by stability of rewriting, τi(θi(ηi−1(si))) →∗R τi(θi(ηi−1(ti))). By
definition of ηn which coincides with θ, θ(s) = θ(`) and for all i, 1 ≤
i ≤ n, θ(si) →∗R θ(ti). Thus, the application of (Repl) with rule α and
substitution θ leads to a proof of θ(s)→ θ(r). Since, θ(r) = θ(t′) = t, we
have θ(s)→R t as desired.

2

Theorem 88. Let τ̌ = (P,Q,R, ϕ) and α : u→ v ⇐ c ∈ P be as in Definition
85. PNR is a-complete. PNR is sound for τ̌ if (i) N = N (R, α), (ii) for all
u′ → v′ ⇐ c′ ∈ P ∪Q (with renamed variables), either v and u′ do not unify or

47

v and u′ unify with mgu θ and θ(c) is R-infeasible, and (iii) either v is ground
and R is a deterministic 3-CTRS, or NRules(R, v) is a TRS and v is linear.

Proof. In the following, we let P ′ = P[N]α for readability. With regard to
soundness, we show that any arbitrary (P,Q,R)-O-chain A where appropriately
renamed versions of α : u→ v ⇐ c are used, written

. . . , u1 → v1 ⇐ c1, u→ v ⇐ c, u2 → v2 ⇐ c2, . . . (A.4)

(where only the first occurrence of a use of α is displayed and by abuse it is
denoted here without any explicit mark concerning the renaming of α) with
substitution σ can be transformed into a (P ′,Q,R)-O-chain A′

. . . , u1 → v1 ⇐ c1, θ(u)→ w ⇐ θ(c), u2 → v2 ⇐ c2, . . . (A.5)

for some narrowing w of v, i.e., (w, θ) ∈ N1(R, v), using an unconditional rule
` → r ∈ NRules(R, v). Pairs like u → v ⇐ c and u2 → v2 ⇐ c2 are connected
in (A.4) as follows:

σ(v) = w1(→∗R ◦
Λ→Q,R) w2(→∗R ◦

Λ→Q,R) · · · (→∗R ◦
Λ→Q,R) wm →∗R σ(u2)

for some m ≥ 0 and terms w1, . . . , wm. Accordingly, we have

σ(v)→∗R σ(u′) (A.6)

for some α′ : u′ → v′ ⇐ c′ ∈ P ∪ Q: if m = 0, then α′ is u2 → v2 ⇐ c2 ∈ P; if
m > 0, then α′ ∈ Q. Furthermore, we assume σ to be such that the restriction
of σ to variables in α makes the length of sequence (A.6) minimal. Note that
the sequence (A.6) from σ(v) to σ(u′) cannot be empty. Otherwise, v and u′

unify, contradicting our initial assumptions. Thus, we can write (A.6) as:

σ(v)→∗R δ(v)
p→R δ(v[r]p)→∗R σ(u′) (A.7)

where p ∈ PosF (v) is a nonvariable position of v, δ is a substitution satisfying
that, for all x ∈ Var(v), σ(x) →∗R δ(x), and there is a rule ` → r ⇐ d ∈
NRules(R, v) and a substitution ρ such that δ(v|p) = ρ(`), δ(x) = ρ(x) for all
x ∈ Var(r); ρ(s′) →∗R ρ(t′) for all s′ → t′ ∈ d. Otherwise, by linearity of v,
we would have σ(v) →∗R σ′(v) = σ(u′) for some substitution σ′ such that for
all x ∈ Var(v), σ(x) →∗ σ′(x). This means that v and u′ unify, contradicting
again our initial assumptions. Furthermore, we must have σ(v) = δ(v), i.e., the
rewrite step at position p should be the first one. Otherwise, we could replace

σ(x) = δ(x) for x in the variables of α. Hence δ(v1) = σ(v1)(→∗R ∪
Λ→Q,R

)∗σ(u) →∗R δ(u) (by monotonicity of →∗), i.e., δ(v1)(→∗R ∪
Λ→Q,R)∗δ(u). And

δ(v) →∗R δ(u′) = σ(u′) in a shorter sequence, leading to a contradiction with
our assumption for σ. Therefore, since we can assume that variables in ` are
fresh, we can extend σ to behave like ρ on variables in `; thus, (A.7) can be
written as follows:

σ(v) = σ(v)[σ(v|p)]p = σ(v)[σ(`)]p
p→R σ(v)[σ(r)]p →∗R σ(u′) (A.8)

48

Thus, σ(`) = σ(v|p), i.e, ` and v|p unify with mgu θ and there is a substitution
γ satisfying σ(x) = γ(θ(x)) for all variables x ∈ Var(`). Furthermore, v narrows
to θ′(v)[θ′(r)]p = w with substitution θ′ which extends θ for the variables not
in `; this is a consequence of our assumptions:

1. If v is not ground, we assume `→ r ⇐ d to be an unconditional rule `→ r
because NRules(R, v) is a TRS. Hence, nothing else is necessary to justify
the narrowing step v ;θ′ θ

′(v[r]p) = θ′(v)[θ′(r)]p = w where θ′ = θ.

2. If v is ground, then σ(x) is ground for all variables x ∈ Var(`) and we
actually have σ(x) = θ(x) = θ′(x) for all such variables. By determin-
ism of the rules in R, which is a 3-CTRS, during the rewriting step in
(A.8) terms s in conditions s → t in d are instantiated to ground terms
before any evaluation with →∗R. Actually, for all such conditions we have
σ(s) →∗R σ(t) with σ(s) and σ(t) being ground terms and σ is a ground
substitution (for the non-trivial bindings). Therefore, if we let θ′ = σ, we
have θ′(s) ;∗θ′ θ

′(t) in all these cases. Hence, we also have the desired
narrowing step8 v ;θ′ v[θ′(r)]p = θ′(v)[θ′(r)]p = w.

Again, we can extend σ to behave like γ on the variables of θ′(u) and w.

Therefore, we have σ(v1)(→∗R ∪
Λ→Q,R)∗σ(u) = γ(θ′(u)) = σ(θ′(u)), and

σ(s) = γ(θ′(s))→∗ γ(θ′(t)) = σ(t) for all s→ t ∈ c, and

σ(w) = γ(w) = γ(θ′(v))[γ(θ′(r))]p
= σ(v)[σ(r)]p
= σ(v)[ρ(r)]p

(→∗R ∪
Λ→Q,R)∗ σ(u2)

Thus, A′ is a (P ′,Q,R)-chain. Now, with regard to minimality, since termina-
tion of σ(v) implies termination of q, if A is a minimal (P,Q,R)-O-chain, then
A′ is also a minimal (P ′,Q,R)-O-chain.

With regard to completeness, let A′ be an infinite (P ′,Q,R)-chain

. . . , u1 → v1 ⇐ c1, θ(u)→ w ⇐ θ(c), u2 → v2, . . .

where w is obtained from v by some narrowing step with α : ` → r ⇐ d ∈
NRules(R, v) with substitution θ (which, of course, can be different for each
renamed version of α which is used in A′). We prove that A, i.e.,

. . . , u1 → v1 ⇐ c1, u→ v ⇐ c, u2 → v2, . . .

(where the occurrences of u → v ⇐ c are appropriately renamed) is an infi-

nite (P,Q,R)-chain. There is a substitution σ such that σ(v1)(→∗R ∪
Λ→Q,R

)∗σ(θ(u)), σ(θ(s)) →∗ σ(θ(t)) for all s → t ∈ c, σ(θ(s′)) →∗ σ(θ(t′)) for all

s′ → t′ ∈ d, and σ(w)(→∗R ∪
Λ→Q,R)∗σ(u2). Since the variables in the pairs are

8The following 3-CTRS R = {b → a, a → x ⇐ x → a, x → b} shows that this does not
hold without determinism of R: we have a→ b with σ(x) = b, but a is not narrowable.

49

pairwise disjoint, we may extend σ to behave like σ(θ(x)) on x ∈ Var(u). Then

σ(u) = σ(θ(u)), σ(v1)(→∗R ∪
Λ→Q,R)∗σ(u), σ(s)→∗R σ(t) for all s→ t ∈ c, and

σ(s′) →R σ(t′) for all s′ → t′ ∈ d. By Proposition 94, we have θ(v) →R w.
This implies that σ(θ(v))→R σ(w), and since σ(v) = σ(θ(v)), we get σ(v)→R
σ(w)(→∗R ∪

Λ→Q,R)∗σ(u2). 2

Theorem 91. PNQ is a-complete. PNQ is sound if NΛ(Q, α) = NΛ(Q, α),
NRules(R, v) = ∅, for all u′ → v′ ⇐ c′ ∈ P (with renamed variables), v and u′

do not unify or v and u′ unify with mgu θ and θ(c) is R-infeasible, and either
v is ground and R is a deterministic 3-CTRS or NRulesΛ(Q, v) is a TRS and
v is linear.

Proof. Let P ′ = P[NΛ(Q, α)]α. For soundness, as in Theorem 88 we pro-
ceed by contradiction and prove that for any infinite (P,Q,R)-chain A, where
appropriately renamed versions of α : u→ v ⇐ c are used, written:

. . . , u1 → v1 ⇐ c1, u→ v ⇐ c, u2 → v2 ⇐ c2, . . . ,

there is an infinite (P ′,Q,R)-chain A′:

. . . , u1 → v1 ⇐ c1, θ(u)→ w ⇐ θ(c), u2 → v2 ⇐ c2, . . . ,

where θ(u) → w ⇐ θ(c) ∈ P ′. Since A is a (P,Q,R)-chain, there is a
substitution σ such that σ(s) →∗R σ(t) for all s → t ∈ c, and σ(v)(→∗R
◦ Λ−→=

Q)∗σ(u2). The length of the sequence σ(v)(→∗R ◦
Λ−→=
Q)∗σ(u2) is greater

than zero, because v and u2 do not unify, that is, σ(v) 6= σ(u2). Hence,

σ(v)(→R ∪
Λ−→=
Q)q(→∗R ◦

Λ−→=
Q)∗σ(u2) for some term q. Furthermore, since

NRules(R, v) = ∅, we have σ(v)
Λ→Q q(→∗R ◦

Λ−→=
Q)∗σ(u2), i.e., σ(v) = σ(u′)

for some u′ → v′ ⇐ c ∈ Q. Hence, v is a narrex of u′ → v′ ⇐ c ∈ NRulesΛ(Q, v)
and if v is not ground we can assume that such a rule is unconditional. Fur-
thermore, u′ and v unify and there is a mgu θ and a substitution γ satisfy-

ing σ(x) = γ(θ(x)) for all variables x. Therefore, σ(v1)(→∗R ◦
Λ−→=
Q)∗σ(u) =

γ(θ(u)) = σ(θ(u)), σ(s) = γ(θ(s)) →∗R γ(θ(t)) = σ(t) for all s → t ∈ c, and

w = σ(v′)(→∗R ◦
Λ−→=
Q)∗σ(u2). Hence, A′ is a (P ′,Q,R)-chain. Completeness

is similar to PNR. 2

50

