

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/142164

Montagud, M.; Boronat, F.; Cesar, P. (27/0). A customizable open-source framework for
measuring and equalizing e2e delays in shared video watching. ACM. 95-96.
https://doi.org/10.6084/m9.figshare.1032656

https://doi.org/10.6084/m9.figshare.1032656

ACM

A customizable open-source framework for measuring and
equalizing e2e delays in shared video watching

Mario Montagud, Fernando Boronat

Universitat Politècnica de Valencia (UPV)

C/ Paraninf 1, 46730, Grau de Gandia, SPAIN

{mamontor@posgrado, fboronat@dcom}.upv.es

Pablo Cesar

Centrum Wiskunde & Informatica (CWI)

Science Park 123, 1098 XG, Amsterdam

P.S.Cesar@cwi.nl

ABSTRACT

Low-latency and media sync are essential requirements to
enable interactive multi-party services, such as Social TV.
In this work, we present an open-source and customizable

framework that allows measuring end-to-end (e2e) video
delays and provides support for different types of media
sync, including Inter-Destination Media Sync (IDMS). This
framework can be used by researchers to investigate the
suitability of different techniques for optimizing the system
performance in terms of e2e delays and media sync.

Author Keywords

Delay; Media Sync; IDMS; Social TV; Clock Sync.

ACM Classification Keywords

C.2.4 [Communication Networks]: Distributed Systems

MOTIVATION

Social TV, in conjunction with other forms of shared media
experiences, are gaining momentum [1]. To accommodate
this transition towards “networked togetherness” around
media content, low-latency and synchronized services must
be provided. On one hand, end-to-end (e2e) delays and

delay variability, both within individual streams and
between different streams, can impair the interactivity with
the media content. On the other hand, e2e delay differences
between the involved users can spoil natural and coherent
interactions between them. The process of compensating
the e2e delay variability across separated devices is

typically known as Inter-Destination Media Sync (IDMS).

Previous studies have revealed that the magnitudes of e2e
delay differences in actual delivery systems ([2, 3]) are
much larger than acceptable limits in typical IDMS use
cases [1]. Accordingly, research must be targeted on
devising underlying mechanisms to seamlessly palliate both

the effects of e2e delay and delay variability. Both issues
are tightly coupled, since being able to accurately measure
and optimize e2e delays is a first step towards devising
advanced IDMS solutions to equalize them.

In this work, we present an open-source and easily
extensible framework that allows automatically measuring
capture-to-render (e2e) video delays in customizable media
delivery scenarios. Unlike other proposed solutions (e.g.,

[3-5]), our measurement system does not require any users’
involvement and it is fully integrated into the media
framework, in which a full control on all involved
components is available. Moreover, our framework
provides support for enabling the different types of media
sync (including IDMS) [6]. It can be used to help answering

the following research questions (among others):

1. How (accurately) can e2e video delays be measured?

2. What is the impact of different sources of delay in the
e2e video delivery chain? How can different components be
chosen or tuned to optimize these e2e delays?

3. How much e2e delay (differences) is (are) noticeable or
annoying in interactive (shared) video streaming scenarios?

4. How (much) can e2e delay differences be compensated?
Is it feasible to deploy IDMS solutions in real scenarios?

5. Which strategies and techniques are best suited for
improving the QoE when performing media sync (IDMS)?

PROTOTYPE

The prototype has been implemented using GStreamer. We
have checked its standard-compliant behavior by analyzing

the streams in Wireshark and by playing the media using
other frameworks, such as VLC and MPlayer. The server
and client/s architectures are shown in Figures 1 and 2.

Media Sync Support

Our prototype provides support for different types of media

sync (i.e., intra-stream, inter-stream and inter-sender sync)
by relying on the capabilities of RTP/RTCP (RFC 3550), as
described in [6], as well as on proper buffering strategies.
Most importantly, the above functionalities are extended
with the following modules to also provide support for
IDMS (see Fig. 3):

 RTSP Server (RFC 2326) with multicast support. It also

allows for “sharing” (live) media between multiple
clients, which can join the session at different instants.

 Clock Sync. It can be achieved by using 2 alternatives.
The first one is using NTP (RFC 5905). The second one
consists of using two useful GStreamer components: i)
NetTimeProvider, which exposes a “master” wall-clock

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

TVX’14, June 25 – June 27, 2014, Newcastle, UK.

Copyright 2014 ACM 978-1-XXXX-XXXX-X/XX/XX...$10.00.

on the network; ii) NetClientClock, which subscribes and
gets enslaved to that “master” wall-clock.

 SDP Module (RFC 4566). Apart from the standard SDP
capabilities, it allows providing the wall-clock settings

and the target “playout time” for the initial RTP packet
to each new client, thus enabling rapid sync.

Automatic e2e delay measurements

Our system is able to measure the capture-to-render delay

for each video frame. For that purpose, at the server side,
we use a GStreamer component, called videomark, which
allows overlaying a barcode into each video frame. This
barcode allows inserting a 64-bit integer value, which will
include a NTP-based timestamp. This component is placed
just after capturing/retrieving each frame (Fig. 1). At the

client side, we use another GStreamer component, called
videodetect, which is responsible of decoding the timestamp
inserted into the barcode. The videodetect component is
placed just before rendering each video frame (Fig. 2). This
way, by comparing the capturing and rendering NTP-based
timestamps, our prototype is able of automatically

measuring (and logging) the e2e video delays.

Visually checking the e2e delay and IDMS performance

Our prototype additionally allows for visually checking the
e2e delay and IDMS performance. This is achieved by
overlaying numeric timestamps in each captured/rendered
video frame and by launching snapshots, either in a user-

transparent way when specific internal conditions are met
or in a manual way by pressing a button (Fig. 4).

FUTURE WORK

We plan to keep improving this framework and use it in our
research on several topics, especially on assessing the

suitability of different strategies for media sync and their
implications on the QoE. A complete documentation,
examples, demo videos and the source code will be
available at: https://sites.google.com/site/mamontor/.

ACKNOWLEDGMENTS

This work has been funded, partially, by UPV under its
R&D Support Program in PAID-01-10 Project and by CWI
under EU/FP7 REVERIE Project (ICT-2011-7-287723).

MEDIA RESOURCES

APPLICATION-LAYER PIPELINE)

SOURCE VIDEOMARK ENCODER

SDP

RTP SESSION

(STATS)

WALL-CLOCK

TIME

(NetTimeProvider,

NTP, …)

MULTICAST

ADDRESS POOL

(IPs, PORTS)

PAYLOADER

RTSP MEDIA (SHARED?)

RTSP CONNECTION

TCP

RTSP STREAM

RTP

RTCP

TRANSPORT-LAYER PIPELINE

UDP

RTSP SERVER

RTSP SESSION POOL

RTSP SESSION

UDP

UDP

Figure 1. Server Architecture.

Enslave
RTP SESSION

(STATS)

RTP

RTCP

TRANSPORT-LAYER PIPELINE
WALL-CLOCK TIME

(NetClientClock, NTP, …)

JITTER BUFFER

APPLICATION-LAYER PIPELINE

SINKVIDEODETECTDECODERDEPAYLOADER

SDP

RTSP CLIENT

Figure 2. Client/s Architecture.

Figure 3. Synchronized Playback across Devices.

Snapshot

Barcode Manual

Snapshots

Delay

Measurement

Webcam Client

Figure 4. Time Stamped Barcode, Snapshots Launching

and e2e delay measurement.

REFERENCES

1. Montagud M., et al. Inter-Destination Multimedia
Synchronization; Schemes, Use Cases and
Standardization, MMSJ, 18(6), 459-482, Nov. 2012.

2. Boronat F., et al. Distributed media synchronization for
shared video watching: Issues, challenges and examples,

Social Media Retrieval, Computer Communications and
Networks (Springer), pp. 393–431, 2013.

3. Woiter K., Playout Delay of TV Broadcasting, Master
Thesis, University of Twente & TNO, 2014

4. Jansen J., et al. User-centric video delay measurements,
ACM NOSSDAV 2013, Oslo (Norway), February 2013.

5. Kryczka A., et al. AvCloak: A Tool for Black Box
Latency Measurements in Video Conferencing
Applications, IEEE ISM 2013, California, Dec. 2013.

6. Montagud M., Boronat F. RTP/RTCP and Media Sync:
A Review and Discussion of Future Work, MediaSync
Workshop 2013, Nantes (France), October 2013.

https://sites.google.com/site/mamontor/

