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Abstract

Nowadays, the majority of optimisation processes that are followed to obtain new
optimum designs involve expensive simulations that are costly and time comsuming.
Besides, designs involving aerodynamics are usually highly constrained in terms of
infeasible geometries to be avoided so that it is really important to provide the
optimisers effective datum or starting points that enable them to reach feasible
solutions.

This MSc Thesis aims to continue the development of an alternative design
methodology applied to a 2D airfoil at a cruise flight condition by combining concepts
of Dynamic Data Driven Application Systems (DDDAS) paradigm with Multiobjec-
tive Optimisation. For this purpose, a surrogate model based on experimental data
has been used to run a multiobjective optimisation and the given optimum designs
have been considered as starting points for a direct optimisation, saving number of
evaluations in the process. Throughout this work, a technique for retrieving experi-
mental airfoil lift and drag coefficients was conducted. Later, a new parametrisation
technique using Class-Shape Transformation (CST) was implemented in order to
map the considered airfoils into the design space. Then, a response surface model
considering Radial Basis Functions (RBF) and Kriging approaches was constructed
and the multiobjective optimisation to maximise lift and minimise drag was under-
taken using stochastic algorithms, MOTSII and NSGA. Alternatively, a full direct
optimisation from datum airfoil and a direct optimisation from optimum surrogate-
based optimisation designs were performed with Xfoil and the results were compared.

As an outcome, the developed design methodology based on the combination
of surrogate-based and direct optimisation was proved to be more effective than a
single full direct optimisation to make the whole process faster by saving number
of evaluations. In addition, further work guidelines are presented to show potential
directions in which to expand and improve this methodology.

Keywords

DDDAS; Airfoil optimisation; surrogate model; multiobjective optimisation; data
mapping; DDDOM; experimental data; CST parametrisation; Xfoil.
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Chapter 1

Introduction

1.1 Project Motivation

The behaviour prediction of complicated systems is difficult to analyse accurately.

Particularly, when real-time dynamic states take part in the process, even the most

elaborated models produce simulations that do not succeed in predicting the real

behaviour of the described system. If somehow the application simulations manage

to incorporate new data dynamically into the system, either coming from archival

or from on-line measurements of the real system, it would lead to a more accurate

analysis, prediction and control of the final outcome.

These features are enhanced with the Dynamic Data Driven Application Systems

(DDDAS) paradigm, which stands for a dynamic symbiosis between simulations

and experiments by means of allowing the running calculations to change upon the

incoming real data as well as the experimental measurements being steered by the

simulation models, focusing, for instance, on a given subset of the measurement

space and thus reducing costs and collection times.

In this research project, the concepts underlying the DDDAS paradigm have

1



2 CHAPTER 1. INTRODUCTION

been applied in combination with Multi-objective Design Optimisation (MDO) to

try to counterbalance the inaccuracy of the engineering models by introducing ex-

perimental data into the design process.

Typically, in designs involving fluid dynamics, well-established optimisation de-

sign processes simulate the model iteratively until a given criteria is met, resulting

in an expensive, time and resource consuming process. The work done in this thesis

stands up for a different path in the optimisation process as illustrated in Figure

1.1. Therefore, if a surrogate model is built with experimental data and the optima

solutions of the surrogate-based optimisation are set as a starting points for a direct

CFD simulation, the total time of the design process will be decreased. In addition,

the optimisation scenario will be more guided because the datum condition of the

CFD optimisation will be based on real data.

Experimental Data

Surrogate 
Model Based

OPTIMISATION

Surrogate
Model

CFD
Optimisation

CFD
Optimisation

Optimal 
Design

Starting point

PATH 1 PATH 2

Figure 1.1: Whole Process
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Here, only static experimental data has been included in a 2D airfoil design

process. However, the methodology developed will be able to help in future research

so as to extend the method to real-time acquisition of data with, for example, the use

of the emerging rapid prototyping technologies, conforming a synergistic feedback

control-loop between running simulations and wind tunnel measurements.

1.2 Project Aim and Objectives

This project, which constitutes a new iteration refinement in the work initiated by

A. Agirre-Mentxaka in his MSc Thesis, aims for the development of a methodology

to construct a surrogate model based on experimental data that represents the aero-

dynamic performance of an airfoil, so that a following surrogate-based optimisation

can be performed.

Thereby, the main objectives of the project have been to:

1. Undertake a thorough research in the State of the art regarding the DDDAS

paradigm and its exploitation in Aerospace Engineering.

2. Implement a new technique in order to map experimental data into the design

space.

3. Construct a surrogate model based on experimental data that integrates the

performance of an airfoil.

4. Define a multi-objective optimisation process standing on the surrogate model

in order to find starting point designs to launch shorter direct optimisations.

5. Carry out a traditional multi-objective optimisation utilising GNU General
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Public License Xfoil program so as to compare with the surrogate-based ap-

proach.

6. Establish work conclusions and further work guidelines for the continuous de-

velopment of this methodology.

1.3 Report Outline

Following this introductory Chapter 1, Chapter 2 reviews the DDDAS paradigm

and its latest applications to Aerospace engineering. Next, in Chapter 3, the whole

research methodology process that have been followed during this thesis is explained

in detail. Right after the originated results and their interpretation are presented

in Chapter 4. Finally, in Chapter 5 the conclusions derived of this work and future

work guidelines are given.



Chapter 2

Review of DDDAS for MDO

2.1 Introduction

This chapter mainly describes the concept of Dynamic Data Driven Applications

Systems (DDDAS). Firstly, the general concept of DDDAS is introduced and ex-

amples of its potential applications in the aerospace engineering field are presented.

Afterwards, a particular application of DDDAS, known as Data Driven Design Op-

timisation Methodology (DDDOM), is explained and also exemplified. Finally, a

general description of how these methodologies apply to a 2D airfoil optimisation

process, which is the scope of this work, is detailed.

2.2 Dynamic Data Driven Application Systems

The DDDAS concept, fistly introduced by F. Darema in the DDDAS Workshop [16],

can be described as a “symbiotic feedback control system” that is able to utilise sim-

ulations in a dynamic manner in order to control and guide experimental measures

in terms of, for example, determining where, when and how it is optimum and more

5
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efficient to collect additional data. On the other hand, based on the experimental

measurements, the applications/simulations can dynamically be steered. [29]

As [10] stated, most of the models, simulations and traditional processes used

to date are serialised, unsynchronized and uncooperative: they do not capture in-

stantaneous events and reactions of the real-world changing conditions since most of

them work with static data input from traditional experimentations. In Figure 2.1, a

diagram representing the DDDAS concept is shown, where the five main components

of this paradigm are depicted. As [29] explains, the human part interacts both with

the application models, measurement infrastructures and software support systems

through dynamic computation infrastructures. These computational infrastructures

encompass the computing machines and their interactions, such as monitors or com-

puters. The application models include the algorithms and mathematical models.

To the part of measurement infrastructures belong the laboratory equipment, in-

cluding sensors, instruments, probes, data storage, rigs, etc. Finally, the software

support is composed of the interactive visualisation and automatic steering between

simulations and experiments, having the ability to select the proper algorithm and

component in every moment.

Figure 2.1: Schematic DDDAS diagram [29]
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As described in NFS Workshop [16], DDDAS challenges to address four main

areas:

• Applications that accept data at execution time and allow this data to dy-

namically steer them. For this, the applications models are required to describe

the system at different levels of detail by dynamically selecting the models to

use depending on the input data. A good understanding in how data is passed

hierarchically is also necessary.

• Mathematical Algorithms that are stable and possess convergence robust-

ness under the introduction of dynamic data. They also need to ensure the

control of the propagation of measurement errors and uncertainty, specially

when data is taken at different discretisation schemes (temporal or spatial

scales), is incomplete or is just a small sample.

• Systems Software that are able to embody algorithms dependant on the

streamed data and resources since DDDAS would employ heterogeneous plat-

forms environments such as embedded sensor for the data acquisition and

distributed simulations or specific programs for the pre and post processing of

data.

• Measurements, in terms of developing interfaces for physical devices (i.e.

the sensors used) that take part into the computational grid.

Bearing in mind that DDDAS is quite a new concept, almost all the projects

and research are still in development. However, since it was introduced, every year

different workshops take place such as the one in the International Conference of

Computer Science (ICCS), where different case studies and research directions are

exposed. Thus, the presence of DDDAS in conferences, forums and workshops has
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increased in the past five years, being short-listed the most important ones in the

Table 2.1.

Table 2.1: List of DDDAS related workshops and conferences [12]

MoSES IV 2017 Workshop Manaus
AFOSR 2016 Workshop Hartford
NSF PI 2016 Meeting Washington
ICCS 2016 Workshop San Diego
ACM SIGSIM PADS 2016 Workshop Alberta
SIAM 2016 Minisymposium Boston
ICCS 2015 Workshop Reykjavik
DyDESS 2014 Conference MIT
NSF PI 2014 Meeting New York
ICCS 2014 Workshop Cairns
WSC 2006 Workshop Savannah
AFOSR 2013 Workshop Arlington
ICCS 2013 Workshop Barcelona
ICCS 2012 Workshop Omaha
MoSES III 2011 Workshop Petropolis
ICCS 2011 Workshop Singapore
AFOSR-NSF 2010 Workshop Arlington
ICCS 2010 Workshop Amsterdam
ICCS 2009 Workshop Baton Rouge
MoSES II 2008 Workshop Petropolis
ICCS 2008 Workshop Krakow
ICCS 2007 Workshop Beijing
MoSES I 2008 Workshop Petropolis
ICCS 2006 Workshop Reading
ICCS 2005 Workshop Atlanta
WSC 2006 Workshop Arlington
NSF 2006 Workshop Arlington
NSF 2000 Workshop Arlington

The application of DDDAS is wide. It can be applied on fields like transport,

biology, geology, social/behaviour sciences, manufacturing processes, hazard pre-

vention, business predictions, system software, atmospheric events and engineering

design optimisation among others. It is in the latter case, with particularly focus
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on aerospace applications, in which the following subsections will be centred since

the scope of this thesis is that of engineering nature. Nevertheless, extensive related

work and research in the other areas can be found in [12] for every DDDAS event

listed in the Table 2.1. Moreover, in [2], examples of the application of DDDAS

such as in wind turbine fault diagnosis, wildlife modelling or volcanic ash hazard are

described.

2.2.1 DDDAS in Collaborative UAV’s Swarms

A challenging application for the DDDAS paradigm is to UAVs (Unmaned Aerial

Vehicles) technology for all types of missions including surveillance, reconnaissance,

search-rescue missions, sensing for weather prediction or deploying of materials,

amongst others. Typically, UAVs will work in big swarms covering large area terrains

so the need of near real-time dynamic control, command, re-tasking and efficient

mission planning is highly important. Thus, for all these potential applications, the

UAV swarm main task is to uninterruptedly send sensor data to central locations,

responding to the possible detection of occurrences by means of adapting their sensor

activities. In addition, they may have to coordinate and self-organise with all other

UAVs that can be of very different sizes and capabilities in order to, for example,

collect video or data images from different angles.

An example of an ongoing DDDAS application in this field is developed by G.

Madey et al in [27],[37] and [28]. In their recent work, they present two application

designs in order to incorporate the DDDAS for swarm control. Firstly, they created

an application architecture pretending to be a real UAVs swarm that reports its

performance to a central control as a single aggregated statistic, thus enabling the

application to be optimized through simulation (Figure 2.2).
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Secondly, they presented a DDDAS swarm control framework that improves the

previous swarm application via simulations using real-time data. These simulations

can either be initialized with real-time data from the application or via swarm control

parameters coming from simulated agents. Afterwards, the results of the simulations,

in terms of a swarm performance parameter, are examined for a central controller

that determines the best way of controlling the swarm in the given conditions, as

shown in the Figure 2.3, where the continuous feedback loop is represented.

Figure 2.2: Swarm application architecture needed for swarm control [28]

Another important research path in this field is being developed at MIT sup-

ported partially by AFOSR DDDAS Program, Lincoln Laboratory, MISTI and NSF

[9]. The project, known as CAOS (Cooperative Autonomous Observing Systems),

develops DDDAS for cooperative UAVs aiming at atmospheric applications (climate,

ecology, volcanic emissions...) using small UAVs that are able to cover terrain scales

up to 100 square kilometres in few hours at a small cost.
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Figure 2.3: Feedback control loop in the DDDAS framework [27] [28]

Related to the self-aware UAVs, the work undertaken by Willcox et al reported

in [38] has to be highlighted. The main objective of the research was to construct a

Multiscale DDDAS framework that included a parametric model of an Orion UAV.

That model was composed of surrogate models used to evaluate the effect on the

structure damage propagation for real-time decisioning in UAVs, which links with

the following section in terms of applyind DDDAS for structural health monitoring.

2.2.2 DDDAS in Structural Health Monitoring

Nowadays the use of composite materials in the design of aircraft is increasing thank

to the improvements in durability and decrease in weight that they bring. Therefore,

in order to reduce maintenance and operation costs, it is advantageous to have a

DDDAS framework that can estimate the initiation and progression of structural

damage in complex aerospace composite structures under different operation condi-
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tions, depending on the application. In this DDDAS framework, embedded sensors

arrays into the structure carry out continuous measurement of data used to dynam-

ically update the computational model that describes the system, producing higher

fidelity results in variables that probably are not ready or impossible to measure

(Figure 2.4).

(a) Helicopter blade.[5] (b) Wind turbine blade.[3]

Figure 2.4: Example of DDDAS framework applied to composite structures

An example of a DDDAS framework for composite damage analysis can be found

in [5], and it encompasses four main elements:

• Structural Health Monitoring (SHM) system, composed of the real man-

ufactured blade with structural defects, ultrasonic sensor arrays and infrared

thermographic imaging to enable defect detection, hydraulic actuator to load

the blade under fatigue and strain gauges and accelerometers to determine the

response of the piece under testing. Also embedded fibre Bragg sensors and

distributed carbon nano tubes (CNT) are used [30].

• Computational Model that includes non-linear behaviour of the material
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(composite structures), aerodynamics and Fluid-Structure Interacion (FSI)

coupling. This model allows complex geometries and is time-dependent. It

uses thin-shell Isogeometric Analysis (IGA) combined with continuum dam-

age modelling (CDM) and CAD, being the fluid mechanics simulation based

on standard FEM.

• Sensitivity analysis, Optimiser and Control to ensure that the structure

is operating under safe conditions in order to minimise the growth of the

damage. For this, the Fluid-Structure Interacion (FSI) coupling is included to

achieve a succesful dynamic control.

• High Performance Computer (HPC). The DDDAS framework is com-

posed of different modules implemented in a HPC environment. However,

in order to achieve near real-time performance, multicore, GPUs and other

accelerator architectures are included. For the case of the FSI code parallel

coupling, Message Passing Interface (MPI) library is used.

The origination of the damage in composites brings the necessity of taking into

account different spatial scales, as shown in Figure 2.5. Therefore, [3] proposes to

apply DDDAS to all the scales involved in the potential damage. At microscale

level, Representative Volume Element (RVE) simulations along with X-ray digital

micro-tomography are used to obtain the material properties (Elastic module and

failure stresses). At mesoscale level, small-scale experiments along with simple ge-

ometry simulations are performed in order to construct the damage model, and this

is done by means of a Surrogate Model optimisation that minimises the misfit of

both experimental and computational results. Finally, in the macroscale, is where

the DDDAS applies all its potential. In this level, the accelerometers and strain
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gauge experimental data are used to adjust the forces and boundary conditions of

the model.

Figure 2.5: Multiple spatial scales included in the model.[3]

As [3] states, the location of the damage zones that are predicted by the compu-

tational model can be used to choose where future sensors may be placed, presenting

a closed feedback loop between the real structure and the model that represents it.

In addition, with the predicted response combined with the experimental data, con-

trol orders can be sent to the keep the aero-structure out of the damage zone, as

shown in the Figure 2.6
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Figure 2.6: Control done in Structure.[4]

Another example of work performed in structure health monitoring can be found

in [30]. They have developed a DDDAS model (depicted in 2.7) that addresses the

damage evolution in a sheet of a aerospace carbon fibre epoxy composite. The matrix

of this sheet is fed with CNT sensors that provide an electrically conducting network.

The test specimen is loaded until failure and the strain is measured using digital

image (in further studies they will include the measurement of changes in electrical

resistivity). According to the model in Figure 2.7, using statistics and Bayesian

analysis, the state of the material (material parameters and damage situation) is

inferred and used to follow a particular set of actions such as refining the model

mesh near to regions where damage is increasing, controlling the load (i.e. update the

flight manoeuvre to diminish the probability of further harm) , applying healing (by

embedding vascular networks for infiltration of healing agents [6]) or concentrating

the experimental measurement in the affected regions. It important to bear in mind
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the importance of implement statistical analysis when it comes to make decisions

because of the present uncertainties: the data has been only measured at some

points, it has noise, the model is not perfectly representing the reality, etc. For these

reasons Bayesian filtering simplified to a extended Kalman filtering is intended to

be applied in [30].

Figure 2.7: Schematic of DDDAS developed for [30].

Finally, the last reference that has been examined related to aerospace structural

health monitoring is found in [17]. As sketched in Figure 2.8, they used Full Order

Models (FOM) solvers that are able to construct Reduce Order Models (ROM) that

are faster and easily adaptable to parameter changing in on-line or off-line modes

of operations, reaching near real-time simulation conditions. In the Figure 2.8, the

path 01-02-03-04 is executed off-line in order to compute and store ROMs while the

path 05-06-07 and 09-08-04 are used for ROM based and sensor driven simulations

to stablish decision support. On the other hand, the path 09-10-05 is in charge of

modelling the effects in the sensor subsystem.
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Figure 2.8: Data flow model in [17]

2.2.3 DDDAS in Materials Modelling

Another DDDAS recent interesting application that can link with DDDAS-material

healing framework modules described above is in material modelling and manufac-

turing, with the development of porous Shape Memory Alloys (SMA) technology.

This type of alloys can change their microstructure depending on the stress and tem-

perature under they are working, which make them quite attractive for isolation and

recovery purposes. They present a big recovery in elastic strain and a good damping

of resonance frequencies by means of dissipating large amounts of energy. Thus, if

the material has been deformed in the martensitic phase, it can recover its original

shape after heating thank to the shape memory effect. Their use in aerospace is

desirable because the porosity makes them lighter and, furthermore, viscous flows

can be introduced through the pores in order to control the temperature and tune

the vibration isolation or and mechanics properties. A research project in this field

was initiated in 2012 by [14] with the objective of building a porous SMA-DDDAS

framework for real life structural analysis.



18 CHAPTER 2. REVIEW OF DDDAS FOR MDO

Figure 2.9: Virtual shaker layout and 3D multiscale porous SMA. [14]

The aim of the project is to monitor and change SMA in real time by being

able of turning on and off the sensors and heating units, controlling the stresses

on the SMA and monitoring the on-line data streams under an unmanned feedback

control loop application. They have developed a multiscale porous SMA 3-D model

based on thermodynamic potentials such as Gibbs free energy and a finite element

model that represents a virtual beam shaker. As shown in Figure 2.9, a mass, which

represents a given load, is fixed to the centre of the SMA beam. This system is

vibrating periodically over a frequency range so as to find the isolation and damping

characteristics that posteriorly are feeding the multi-scale finite element model. The

reason of developing a virtual beam instead of using a real shaker is that the project

is still in the first stages of development and the use of virtual shake device presents

some advantages in terms of flexibility in the modification of the sensors and costs.

Nevertheless, some data coming from a similar real shaker from Texas A& M Uni-

versity is being used to modify the SMA model. The future state of the particle is

predicted by the DDDAS model and the SMA model is changed subsequently. In

Figure 2.10, the complete DDDAS feedback control used in this project is depicted.
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The research is still ongoing and the later results can be found in [13], in which

further steps will be inclusion of real shaker historical data in order to calibrate the

SMA-DDDAS virtual model shaker.

Figure 2.10: DDDAS Feedback control loop used in [13]

2.3 Data Driven Design Optimisation Methodol-

ogy

Nowadays, a typically established engineering design process is composed by an ini-

tial model that is simulated under some software package (i.e. CFD, FEM, etc).

If these simulations meet the engineering requirements, a posterior experiment is

planned and undertaken, being the results compared with the ones coming from the

previous simulations. Eventually after a given number of iterations a satisfactory

design is achieved. However, following a different trend to address the design pro-
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cess, Knight et al developed another methodology known as Data Driven Design

Optimisation Methodology (DDDOM) [24], where DDDAS paradigm is applied to

engineering design by means of synergistic incorporation of remote experiments and

simulations into an automated design optimisation to achieve better solutions at a

lower cost and faster. Regarding their work, DDDOM is composed of six elements:

• Controller. The DDDOM Controller duties are to guide and control the

design optimisation process. It is written in Perl, thus enabling a robust

program control locally and remotely.

• User Interface. Operates virtually in any operating system or platform and

offers monitoring of the design optimisation process.

• Optimiser. Uses a Multi-Objective Design Optimisation (MDO) algorithm

in order to seek into the design space and get the Pareto front.

• Surrogate Model. Both experiments and simulations are employed to con-

struct the surrogate model of the objective functions. In their work, the au-

thors based their surrogates on Response Surfaces and Radial Basis Function

Artificial Neural Networks, taking into account the uncertainty of the results

given by experiments and simulations.

• Experiment. They are undertaken in real-time.

• Simulations. Executed also in real-time either in local or remote stations.

A schematic of the DDDOM is shown in Figure 2.11. The following sections

will describe some examples where this methodology has been used such as nozzle

optimisation, electronic device cooling and subsonic inlets design.
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Figure 2.11: Data Driven Design Optimisation Methodology (DDDOM) [24]

2.3.1 Conv-Div Nozzle

This illustrative example was developed by Knight et al [24] in order to introduce

the DDDOM. The aim of the optimisation was to find the stagnation pressure in

the stagnation chamber that led to the minimum exit pressure for a given ambien

pressure. (Figure 2.12 a). It was a single objective problem where the DDDOM

Controller built and refined the Surrogate Model using 1D inviscid gas dynamics

simulation and real -time experimental data. Firstly, the surrogate is initialised

with the simulation code and used by the optimiser to find the minimum back

pressure. Secondly, this latter value of pressure is chosen with a 50 % probability

amongst other random values and sent to the experiment workstation that is in a

separate building. Once the computer on the workstation changes the pressure to

the required value, it passes to the Controller the actual value of the pressures in

order to update the Surrogate Model until convergence is reached 2.12 b).
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(a) Model under study (b) Evolution of exit pressure

Figure 2.12: Conv-Div Nozzle DDDOM application used in [24]

2.3.2 Electronic device cooling

DDDOM methodology has been also used for designing cooling systems in electronic

devices [23],[39]. In this case, the scope of the optimisation was minimising the pres-

sure drop across the component and maximising the total heat flux, bearing in mind

geometrical constraints. Two design variables L1 and L2 represented the location

of the hear sources and second and third order regression models were utilised to

formulate the surrogate model base on experimental and computed data. In Figure

2.13, the circles represent the number of sampled points chosen from the computed

model and the squares represent the ones chosen for the experimental measurements,

adequately collocated in order to balance the domain of the simulation.
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(a) Flow configuration (b) Design Points

Figure 2.13: DDDOM model for electronic device cooling in [39]

2.3.3 Submerged subsonic inlet

Lastly, another application of DDDOM is for the optimisation of a fluid flow duct

that delivers air aero-engines such as turbjets and turbofans [40]. The idea was to

minimise the Distortion and Swirl coefficients at the engine inlet face in by changing

the inlet geometry and the angle of attack. The most important aspect to highlight

in this project is how experiments and simulations worked synergistically: The sim-

ulation part took the role of exploring the changes in the inlet geometry while the

experimental part did it with the angle of attack. The reason for the experiments

to accommodate the angle of attack relied on the fact that the angle change took

matter of minutes once the Rapid Prototyping of the model was built (Figure 2.14

a). On the other hand, the simulation part was in charge of varying the geometry,

thing that was easier than building a prototype in each evaluation. It can be said

that each part worked in the field where its performance was more effective.
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(a) Experimental (Rapid Prototyping specimen) (b) Simulation (CAD model)

Figure 2.14: Subsonic inlet model used in [40]

2.4 DDDOM Applied to an Airfoil

In this project, fundamentals concepts of DDDOM have been applied to a 2D air-

foil optimisation. As stated before, complex CFD simulations are usually carried

out in order to reach a specific solution while experimental testing is left for the

end of the process just for validation purposes. This is because running the exper-

iments and building the prototypes are costly steps within the design methodology

if measurements results are wanted to be reliable.

In order to avoid this complex scenario of measurements, during this project,

already available and reliable experimental data coming from NACA experiments

has been used to build a response surface model. This surrogate is built upon

the drag and lift experimental coefficients of the included airfoils for a given flight

condition. It is also conformed by the design vectors (b) coming from a Class Shape-

Transformation (CST) parametrisation of the included airfoils.

Once the surrogate is built, it is sent to an optimiser and the results are compared

with the results that a direct optimisation with Xfoil will give, as sketched in Figure

2.15.
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Figure 2.15: DDDOM applied to an airfoil in this project
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Chapter 3

Research Methodology

3.1 Introduction

This research project is a second iteration in the work initiated by A. Agirre-

Mentxaka [2] in 2015. Despite the main objective remains unchanged, the methodol-

ogy followed is different. A new research approach has been followed in order to im-

prove and complete the methodology that he started. As explained in the preceding

sections, including experimental data and DDDAS concepts into the multi-objective

design processes can make the model more efficient and reliable.

Throughout this chapter, the methodology followed to complete this thesis is

described. In a first place, the technique used for mapping the airfoils, which repre-

sents the keystone and the most important contribution for this work, is explained

thoroughly. Secondly, the different approaches considered to construct the surro-

gate model based on the experimental data and the mapped airfoils are described.

Thirdly, the undertaken optimisation process, including an explanation of the cho-

sen algorithms and tools, is presented. Finally, the procedures utilised for the post-

analysis of the results are commented, giving a general outlook to the whole model

27
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for closing the chapter.

3.2 Experimental Data

In the early 1930s, the airfoil design process was mainly guided by the experience

of the designers with known shapes. It was the National Advisory Committee for

Aeronautics (NACA) who developed a systematic manner of naming and classifying

the airfoils based on the slope of the airfoil mean camber line and the thickness

distribution in relation with this line. They carried out systematic tests of the

different families of airfoils under different numbers of angle of attack α and Reynolds

in the Langley two-dimensional low-turbulence pressure wind tunnel (TDT). Inside

the wind tunnel, that had a section of 3 feet width and 7.5 feet high, real flight

conditions by that time were closely approached by testing over a range of Reynolds

numbers from 3 to 9 million at a Mach number close to 0.17. All airfoils were tested

until stall condition was reached.

Thus, the experimental data used in this research project was obtained by NACA

in those experiments, being available in [1]. Amongst others, four main families that

were tested and have been included are:

• NACA Four-digits, characterised by good stall properties, low maximum Cl

and high Cd, i.e. NACA2415, where the maximum camber is 2% (first digit),

located at a 40% chord from the leading edge (second digit) and a maximum

thickness of 15% (third and fourth digits), being all values set in percentage

of the chord.

• NACA Five-digits, characterised by poor stall behaviour and high Cd, i.e.

NACA23012, where the design lift coefficient in tenths is 0.3 (first digit mul-
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tiplied by 3/2), the maximum camber is located at a 15% from the leading

edge (second and third digits divided by 2) and a maximum thickness of 12%

(fourth and fifth digits).

• NACA 6-series, this family of airfoils was developed using improved theo-

retical methods to specify the desired pressure distribution in order to achieve

greater laminar flow than the previous families. Characterised by high max-

imum Cl, low Cd within small range of operations and poor stall behaviour,

i.e. NACA64(1)212, a=0.6, where the first digit indicates the series family, the

second digit indicates the location of the minimum pressure, the third digit,

(1), indicates that drag is kept at a low levels at lift coefficients 0.1 above or

below the design Cl which is 0.2, given by the fourth number. The last two

digits represent again the thickness. Additionally, the part of a=0.6 indicated

the percentage of the chord in which the pressure distribution is uniform. If

this last term is not given, it is assumed to be equal to 1.

• NACA 7-series, this family was derived to maximise laminar flow regions

distinguishing between the minimum pressure locations in the upper and lower

surfaces, i.e. NACA747A315, where the first digit denotes the series, the

second and third indicate the locations of minimum pressure on the upper and

lower surfaces, respectively. The letter represents the thickness distribution

and mean line form, the fourth digit indicates the design Cll and again, the

thickness is given by the last two digits.

As can be appreciated in Figure 3.1, the accuracy in the process of reading the

data from the published data is questionable due to the quality of the old report.

Thorough research has been done in order to find a database that contained the

data available in the charts but nothing has been found in the state of the art. The
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data has had to be read directly from the charts. In a first approach and following

what was done in [2], the use of a software to extract points from digitalised charts

was considered. However, this solution was discarded for the following reasons:

• Most of the charts in [1] were not properly digitalised (they are crooked or even

contain ink stains that disallow the identification of the points to be read).

• By using this kind of software, the chart boundary axes have to be set and

properly scaled manually each time. Eventually, there is going to be an un-

avoidable error associated with the action of clicking with the mouse in the

desired points, which, in turn, incorporate uncertainty since they are repre-

sented with big geometry figures (triangles, squares, circles) that don’t show

clearly where their point centre is.

• The time needed to process the total amount of charts following this procedure

was disproportioned in relation to the improvements of accuracy that it could

generate.

For these reasons, the use of software for reading digitalised data was discarded

and a faster approach consisting of reading manually the data was used. A system-

atic procedure was followed bearing in mind that:

• The resolution of the charts to determine the lift coefficient given the angle of

attack was 0.1. Once the Cl value was read, the reading was used in the drag

coefficient charts that have a resolution of 0.001 (Figure 3.2).

• Typical values of Cl and Cd include two significant figures, which is a higher

precision than it could be achieved by reading directly the charts. Nevertheless,

for those readings that were clearly located in the half, quarter or third division
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Figure 3.1: Example of an airfoil available experimental data in [1]

of the chart scale, the approximation was done to 0.05/0.025/0.033 for the Cl

and 0.0005/0.00025/0.0033 for the Cd lecture.

Data belonging to a total of 83 airfoils belonging to four NACA families was read

for a α = 3o and a Reynolds number of 3 · 106. The lift and drag coefficients that

were read can be found in Appendix A.

The experimental data doesn’t clarify the exact Mach number in which each

measurement took place, it’s only mentioned that in all cases it was below 0.17. For

this reason, it has been considered that for posterior Xfoil simulations the Mach

number is 0.16 in order to stablish a minimum margin against the upper limit of

0.17. Nevertheless, in Xfoil, once the Reynolds number has been set, choosing a
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Figure 3.2: Example of chart reading and the available accuracy [1]

Mach number between 0.1 and 0.17 has a negligible effect in the final values of lift

and drag coefficients.

3.3 Airfoil Mapping

One important part within any optimisation process involving the design of geome-

tries is the parametrisation technique used for their construction. In the previous

work done in [2], FFD technique was used for the parametrisation of the airfoils.

This technique consists of conforming a lattice on the given geometry by setting a

number of control points which are the design variables. By controlling the position

of the control points, the lattice is deformed and the enclosed geometry, which is

linked to these points, can be varied (Figure 3.3). However, mapping the airfoils by

using this procedure ofter requires an optimisation process in order to match the

datum airfoil geometry by means of varying its control points to the target airfoil,
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minimising the difference between them.

Figure 3.3: Example of FFD Technique

Thereby, a different parametrisation technique based on Class-Shape Transfor-

mations (CST) has been used in this project. This alternative method is more

suitable for the characterisation of aerodynamic surfaces, because with a few set

of variables, all kind of aerodynamic shapes can be constructed: wings, missiles,

airfoils, nacelles, etc. (Figure 3.4). Moreover, if CST is used for mapping target

geometries, any optimisation process, unlike with FFD, is required since the process

is carried out by the solving a matricial system of equations. Thus, the mapping

of the 83 included airfoils takes matter of seconds whereas if FFD optimisation is

used, every airfoil takes an average of 30 minutes time [2]. Furthermore, this tech-

nique is more robust, numerically stable and produce smoother and more realistic

geometries. Extensive development of the method can be found in [25] and [26].
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Figure 3.4: CST: Example of Achievable Shapes [26]

3.3.1 Development of a CST model for 2D Airfoil Mapping

According to the aforementioned references, a 2D airfoil geometry can be represented

under CST parametrisation using the expression 3.1.
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Where,

• The term
(x

c

)N1
ensures a round nose of the airfoil, by substituting N1 = 0.5.

• The term
(

1− x
c

)N2
ensures a pointed end airfoil, by substituting N2 = 1.

These first two terms compose the Class function, which can define other

geometries as well, depending on the selection of N1 and N2.

• The term S
[x

c

]
is known as the shape function, which can be decomposed into



3.3. AIRFOIL MAPPING 35

different components determining the specific geometry shape of the airfoil.

Normally, Bernstein polynomials that include some coefficients multiplying

each one of the polynomials (weight factors, bi, according to [7]) are used.

These weight factors, bi, work as the design variables to achieve the required

geometry.
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• The last term,
x
c

∆z
c

allows the inclusion of a trailing edge thickness, which can

be interesting to consider if, for example, manufacturing tolerances want to be

included in the mapping.

Thus, for a single j-point of the total of points that form an airfoil:
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If this is rearranged in a matricial form, it is possible to take into account all the

points conforming the airfoil, bearing in mind that it has to be split in lower and

upper surfaces:
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And, by renaming the term in the matrix,

H ji
(
x j/c

)
=
(x j

c

)N1
(x j

c

)N2
·
[

n!
i!(n− i)!

·
(x j

c

)i
·
(

1−
x j

c

)n−i
]

(3.5)

We get to the expression 3.6:



z1/c

z2/c

.

.

.

z j/c


jx1

=



H10 (x1/c) H11 (x1/c) ... H1n (x1/c)

H20 (x2/c) H21 (x2/c) ... H2n (x1/c)

. . . .

. . . .

. . . .

H j0
(
x j/c

)
H j1
(
x j/c

)
... H jn

(
x j/c

)


jxn

·



b0

b1

.

.

.

bn


nx1

+



x1/c ·∆z/c

x2/c ·∆z/c

.

.

.

x j/c ·∆z/c


jx1

(3.6)

Where :

• j is the number of points that conform the airfoil.

• n is the order of the Bernstein binomials.
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Eventually, a final expression where matrices H and dz are known, is reached:

z = H ·b+dz (3.7)

If a representation of a given airfoil wants to be made, the design variables

that would allow doing that would be the unknown vector b. If the target airfoil

representation is given, which means that the target points z are known, it is feasible

to find b by inverting H matrix. If this matrix is not square, the calculation of its

pseudoinverse would be needed instead:

b = H + · (z-dz) (3.8)

A MATLAB function that uses as an input a target airfoil coordinates and the

order of the Bernstein Polynomials, n, has been created and is included in Ap-

pendix B. Once the design variables vector b, which will n + 1 components, has

been calculated, it is possible to build the mapped airfoil with the desired x/c points

distribution by using expression 3.7. The point distribution can be whichever, but

for a correct representation of an airfoil a cosine point distribution that includes

more points at the leading and trailing edges is used . The MATLAB function that

performs this task can be found in Appendix C.

Model Remarks

• Every set of equations is solved for the upper and lower surfaces (U and L

subscripts, respectively) , giving the flexibility of choosing different orders of

the Bernstein polynomials and therefore a different number of design variables
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b for each airfoil surface:

Upper side,

zU = HU ·bU +dzU (3.9)

bU = H +
U · (z-dzU) (3.10)

Lower side,

zL = HL ·bL +dzL (3.11)

bL = H +
L · (z-dzL) (3.12)

• According to [7], there’s no unique CST parameterisation of the airfoil. This

uniqueness is given by the spectral condition number of H matrix. This means

that very different b can lead to similar geometries and vice versa. The ill-

condition of the matrix worsens with the increase of the order of the parametri-

sation, namely, with the increase of the order of the Bernstein polynomials.

This is why a compromise solution between a minimum value Bernstein order

n to map the target airfoil with low error and a maximum value in order to

avoid an ill-condition of the matrix has to be found.

3.3.2 Effect of the order of the parametrisation

As has been explained before, the number of Bernstein polynomials that are included

in the parametrisation has an important effect in the accuracy of the mapping. As

shown in the Figure 3.5, choosing a low order of Bernstein polynomials leads to

a poor mapping (i.e 1 parameter, blue line). On the other hand, if a high order
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is chosen, H matrix gets ill-conditioned and a inaccurate behaviour in terms of

over-fitting close to the trailing edge appears (i.e. 15 parameters, brown line).

CST 1 parameters
CST 5 parameters
CST 10 parameters
CST 15 parameters

NACA747A415

Figure 3.5: Order of the CST Parametrisation

An study of the effect of the order of the CST parametrisation has been carried

out for each airfoil for the upper and lower surfaces in order to determine which

is the best compromise solution to adopt (Appendix D). The analysis consisted of

calculating the L2 norm, which is the square root of the sum of deviations between

mapped and original airfoils. As an example shown in Figure 3.6 for a set of 6-Series

airfoils, the deviation falls exponentially until a 5th order parametrisation, when it

becomes flat. This fashion is observed for all the airfoils for both surfaces. For this

reason, a 5th order CST parametrisation has been chosen for the mapping, which

means that a total of 5 + 1 design variables are used for each surface, adding up

a total of 12 design variables rearranged in the following manner for the posterior

optimisation:

b = [b1U b1L b2U b2L b3U b3L b4U b4L b5U b5L b6U b6L]T

b = [b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12]T (3.13)
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Figure 3.6: L2 norm vs Order of the CST Parametrisation

3.3.3 Source of Target Airfoils

As described in the Experimental Data section, 83 airfoils belonging to 4 different

families have been mapped. For the mapping, which traduces in calculating b vector,

the raw airfoil geometries were needed. For some families, such as NACA 4 and 5

digits, there are analytical expressions that lead to a customizable obtainment of

the point. However, for other families such as 6 and 7 series, this procedure is not

available so that airfoils coordinate points have been taken from an online database
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[32]. The problem encountered when using coordinate points from databases is

that in some cases the discretisation has been low (for example only 51 points for

a target airfoil) and also, in some cases, some points were wrong and led to dirty

geometries. An example of these problems is shown in Figure 3.7a, where it can

be appreciated how the target geometry has outlier point and how the clustering of

points near to the trailing and leading edges is poor. Despite of these problems, in

Figure 3.7b is observed how although the airfoil to map is not a perfect sample, the

CST parametrised airfoil has achieved an effective mapping with a correct clustering

of points and smooth shape.

(a) Target Airfoil

(b) CST Mapped Airfoil

Figure 3.7: Comparison of CST cleaning map of a dirty geometry

The process of the CST parametrisation is summarised in the diagram shown in

Figure 3.8.

Figure 3.8: CST Parametrisation process
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3.4 Surrogate Model Building

A surrogate model mimics the behaviour of the system that is modelling based on a

response surface model, being computationally much cheaper than a full simulation

procedure.

In this project, due to the lack of reliable experimental data in regions near to

maximum lift conditions (and also near to airfoil stall), the surrogate model has been

built for a cruise flight condition, specified in Table 3.1. Thus, the surrogate includes

a matrix called A in which each row is a vector b calculated from the mapped airfoil,

and a matrix called Costs in which each row includes the experimental Cl and Cd of

the mapped airfoils. Thereby, matrices A and Costs have as many rows as included

airfoils, bearing in mind that in Costs, every i-row has to include the experimental

data of the correspondent i-mapped airfoil represented by vector b. As shown below,

the number of columns in matrix A is equal to the design variables which, in turn,

is equal to 2(n + 1), being n the order of the CST parametrisation.

A =


b1

1U b1
1L b1

2U b1
2L b1

3U b1
3L b1

4U b1
4L b1

5U b1
5L b1

6U b1
6L

b2
1U b2

1L b2
2U b2

2L b2
3U b2

3L b2
4U b2

4L b2
5U b2

5L b2
6U b2

6L

. . . . . . . . . . . .

. . . . . . . . . . . .

bk
1U bk

1L bk
2U bk

2L bk
3U bk

3L bk
4U bk

4L bk
5U bk

5L bk
6U bk

6L

 , Costs =


C1

l C1
d

C1
l C1

d

. .

. .

Ck
l Ck

d


Where k is the number of mapped airfoils (3.14)
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Table 3.1: Conditions of the experimental data

Experimental data Cl,Cd

Reynolds number, Re 3 ·106

Mach number, M 0.16

Angle of attack, α 3o

It is worth to say that two different techniques have been used to build the

response surface model, which are Radial Basis Functions and Kriging. An ordinary

method of the latter has been implemented as proposed for further work in [2].

3.4.1 Selection of Acceptable Mapped Airfoils

Although the mapping of the 83 airfoils has been done, not all of them have been

included in the surrogate model. The selection criteria considers the CST mapped

geometries as well as the target“raw”geometries in order to decide whether an airfoil

is selected or not:

• Firstly, the target “raw” geometries coming from either databases [32] (NACA

6,7 Series) or analytical expressions (NACA 4,5 digits) were simulated in Xfoil

and the lift and drag coefficients were extracted. For these simulations, the

same conditions as in the data from experimental measurements were set,

which are α = 3o, Re = 3 ·106 and Mach = 0.16.

• In a same fashion, the CST mapped geometries were also simulated in Xfoil.

• Thereby, three different procedures were used to compare the lift and drag

coefficients: the experimental data, the target geometries and the mapped

geometries simulation.
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• The lift and drag coefficients discrepancies were examined between the CST

mapped airfoils and the target “raw” geometries, and also between the CST

mapped geometries and the experimental data. More value was given to CST

mapped airfoil coefficients since the points distribution was better than in the

target geometries in terms of better point discretisation in leading and trailing

edges.

• For an airfoil to be selected it had to meet the deviation requirements of Table

3.2:

Table 3.2: Criteria for including an airfoil in the surrogate

Dev. raw vs CST Dev. CST vs Exp.

Cl Cd Cl Cd

Accepted if <3% <7% <15% <20%

Accepted if <8% <25% <12% <10%

3.4.2 Radial Basis Functions (RBF) Surrogate

One type of surrogate used in this thesis includes Radial Basis Functions (RBF)

interpolation, a relatively easy technique based on the computed distance of two

points in a n-dimensional space. An example of application of this technique can be

found in [33].

A general expression of RBF is given below, where ϕ function can be a variety

of functions. However, in this thesis, a linear euclidean distance has been used [33].

f (x) =
N

∑
j=1

λ jϕ j(r j) (3.15)
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The following steps summarise the steps followed to estimate the Cl and Cd of a

new input design b vector using the mapped airfoils, Matrix A, and the experimental

data, Matrix Costs.

1. The data in Matrix A is standardised by columns by means of subtracting

the mean and dividing by the standard deviation. By doing this, any value

outweighs amongst the rest in Matrix A. The new design b vector is included

at the bottom of Matrix A and used in this process.

2. Single Value Decomposition (SVD) of Matrix A is performed in order to work

in Principal Component Axes (PCA) [31].

3. By working in PCA, Mahalanobis distances, which are equivalent to Euclidean

Distances but in principal axes, are calculated between the new design b vector

and the rest of the airfoil mapped b vectors.

4. The mapped airfoil b vectors are reordered in Matrix A depending on the

Mahalanobis distance to the new design so that if a cluster of N mapped airfoils

is used, only the closer mapped designs to the new design will be included in

the interpolation.

5. A linear system of equations is solved and the weights λ are used to calculate

the Cl and Cd for the new design. For example, the interpolation of the lift

coefficient for a new design vector of b coefficients taking into account a cluster

of N mapped airfoils is shown below, clarifying that in bg
a, the subscript a

represents the number of the mapped airfoil (that can go from 1 to a maximum

of 69) and the superscript g represents the component of the b design vector,

that can go from 1 to 12:
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With a slight modifications, this RBF surrogate model is programmed in a FOR-

TRAN function provided by Dr. Kipouros and which be found in Appendix F.

3.4.3 Kriging Surrogate

Apart from RBF model, an ordinary Kriging model has been implemented in MAT-

LAB for the surrogate optimisation case of study (included in Appendix G). Typi-

cally used in geostatistics, Kriging is an interpolation method where the interpolated

values are modelled by Gaussian processes, giving the best linear unbiased estima-

tion and also minimising the error variance between the interpolated and the real

value. The analysis of the characteristics of Kriging lies out of the scope of this

thesis, however, extensive information and examples of its applications can be found

in [8]. The Kriging model implemented in this research project is based on course

notes from [36] and the main steps that have been followed are summarised below:

1. Empirical Semivariograms .The empirical semivariograms γ∗ of the exper-

imental lift and drag coefficients have been calculated using expressions 3.16.

These functions describe the spatial correlation of the variables under analysis

(Figure 3.9).
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γ
∗
Cl

(h) =
1

2n(h)
∑

n(h)
j=1
[
Cl(b j)−Cl(b j + h)

]2
γ
∗
Cd

(h) =
1

2n(h)
∑

n(h)
j=1
[
Cd(b j)−Cd(b j + h)

]2
(3.16)

Where n is the number of points contained in h for each evaluation.

Since the Kriging model is going to be used for both lift and drag coeffi-

cients, it is necessary to have them working in the same semivariogram model,

which means that non-dimensional model needs to be used because of the

different order of magnitude of both data. For this purpose, both empirical

semi-variograms are divided by their maximum value, γ∗maxCL
,γ∗maxCD

, respec-

tively.

γ
∗
maxCl

= 0.0155 (3.17)

γ
∗
maxCd

= 1.2305 ·10−6 (3.18)
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(a) Empirical semi-variogram for Cl
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(b) Empirical semi-variogram for Cd

Figure 3.9: Empirical semi-variograms, γ∗
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2. Fitting of empirical semivariograms. Once the empirical semivariograms

have been estimated, they are fitted to a known semivariograms models γ .

Thus, γ∗ bears the same relationship to γ that a histogram does to a probability

distribution. When the distance h become very large, the sample values, in

this case the new design vector b, will become independent of one another and

the semivariogram value will the become more or less constant since it will

be calculating the difference between sets of independent samples [8]. In this

approach a spherical model has been chosen because is the ideal shape, being

to geostatistics as the Normal distribution is to statistics (Figure 3.10):

γ(h)

γ∗max
=

(
3h
2a
− h3

2a3

)
, h ∈ [0,a] (3.19)

γ(h)

γ∗max
= 1, h ∈ (a,∞) (3.20)

0 3 6 9 12 15
0.00

0.25

0.50

0.75

1.00

h

γ(h)

γmax

CL
CD

Spherical Model

Figure 3.10: Non-dimensional Semi-variogram model used

3. Weights calculation. The weights of the interpolation are calculated by

solving the equation system coming from the minimisation of the mean square



3.5. MULTIOBJECTIVE OPTIMISATION 49

error expression 3.21 between the interpolated and the real values. In this

expression w are the weights of the interpolation, λ is a Lagrange multiplier

due to the minimisation and γ is the semivariogram model used:

MSE = E
((

Ẑ0−Z0

)2
)

MSE = −∑
i

∑
j

wiw jγi j + 2 ·∑wiγi0 + 2λ
(
∑wi−1

)
(3.21)

3.5 Multiobjective optimisation

Once the surrogate models have been constructed, the multi-objective optimisation

process is carried out. The aim of the multiobjective optimisation has been to find

design vectors b that lead to a minimum drag and maximum lift, which translates in

minimising the Cd and maximising the Cl coefficients, for the flight conditions stated

in previous sections. Hence, these two coefficients are the two objective functions

that are evaluated in order to find set of solutions that are as close as possible to

the Pareto optimal-front. In addition, these optimal solutions are desired to be

as diverse as possible in order to achieve a good set of trade-off solutions in the

multi-objective optimisation.

3.5.1 Algorithms used

The problem under analysis is of aerodynamic nature so it is highly constrained

and has a large number of local minima. Therefore, unlike gradient based methods

that can get stuck in local optimum regions and be more time consuming, stochastic

optimisation has been used in order to find multiple optimum regions in the design
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space. For doing this, two different algorithms have been used: Tabu Search and

Genetic Algorithms.

Multi-Objective Tabu Search Algorithm (MOTSII)

This family of algorithms performs very well when they are used for aerodynamic

optimisation. The particular approach of Tabu Search algorithm used in this thesis

was developed by Jaeggi et al [22]. The process is characterised for being sequential

and iterative, integrating a systematic local search with stochastic components.

The algorithm uses four different memories that store the points (design vari-

ables) evaluated in the process (Figure 3.11):

• Short Term Memory (STM), in this memory recently visited points are

recorded, being considered as Tabu and forbidden to call them again.

• Medium Term Memory (MTM), in this memory Pareto optimal points

are saved.

• Intensification Memory, after a Hooke and Jeeves (H& J) move, Pareto

equivalent points that haven’t been selected are kept in this memory for future

intensification. More about H& J move can be found in [19].

• Long Term Memory, this memory stores information about regions that

have been sought so as to execute a search diversification.
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Figure 3.11: Tabu Search Algorithm Memories[22]

Every design variable is divided into a number of n regions and the algorithm

keeps a i local counter of iterations that can be either reset when a new point is sent

to the MTM or used to reduce the step size, intensify or diversify the search if a

maximum number of local iterations is reached.

Non-Sorting Genetic Algorithm (NSGAII)

This version of NGSA algorithm was introduced to overcome its predecessor short-

comings such as a the non-dominated sorting computational complexity, the deficit in

elitism and the necessity of the sharing parameter definition. It features a quick non-

dominated sorting reducing the computational complexity from O(MN3) to O(MN2),

being M the number of objectives and N the size of the population.The basic steps

that the algorithm follows are summarised below and sketched in Figure 3.12. How-

ever, extensive explanation can be found in [11]:

1. Initiation of main loop with a random parent population P0.

2. Offspring obtaining Q0 via binary recombination, tournament and mutation
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operations.

3. In generation t, Rt population is obtained by combination of Pt and Qt and

classified following non-domination procedures with the best non-dominated

solutions being saved in F1.

4. If size of F1 is smaller than the size of the next generation N, all its members

are included in the next generation Pt+1. Until N is reached, the following

included members will belong to next best fronts F2, F3, etc.

5. Qt+1 new population is calculated from Pt+1 applying genetic operators.

Unlike Tabu Search algorithm, genetic algorithms fix a maximum size of the

achievable Pareto front since the number of population members is predefined.

Figure 3.12: NSGAII Procedure [11]

Nimrod/O

The optimisations have been undertaken through the Pareto server at Cranfield

University using the Nimrod/O software platform. This platform can perform com-

putational jobs simultaneously via clusters and grid environments and includes the

aforementioned algorithms, MOTSII and NSGAII, amongst others. In order to
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launch an optimisation, Nimrod/O needs a schedule file with the definition of the

search space of the design parameters, the establishment of the tasks to do in order

to compute the objective functions and the specification of the optimisation method

that is going to be used [35]. An example of a Nimrod/O schedule file for the Kriging

surrogate optimisation task can be found in Appendix H.

3.5.2 Surrogate-Based Optimisation

Once the response surface models are built and the optimisation algorithms/interfaces

are introduced, the surrogate-based optimisations are launched for both Kriging and

RBF models. Having a look at Matrix A (Appendix J) which contains the mapped

airfoils b vectors, it can be inferred that the whole spectre of mapped airfoils lie

inside the values given in the Table 3.3.

Table 3.3: b vector search space

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

min.value 0.1 0.1 0.1 0.1 0 0 0 0 -0.1 -0.1 -0.1 -0.1

max.value 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

For the surrogate optimisation, MOTSII and NSGAII algorithms have been used

with their main setting parameters being exposed in Table 3.4. Both optimisations

started from a NACA 2421 datum geometry (Table 3.5) although, as it will explained

later in results section, the datum condition have minimum effect in the final Pareto

front of optimal solutions of the surrogate-based optimisation.
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Table 3.4: Surrogate Optimisation settings

MOTSII

Number of regions 4

Size of Short Term Memory 20

Intensification 15

Diversification 25

Step size reduction 50

Initial step size 0.04-0.06

Step size reduction-factor 0.5

Size of sample 6

Number of evaluations 10000

NSGAII

Seed 0.3

Population size 20

Generations number 2000

Crossover probability 0.9

Mutation probability 0.1

Crossover index 5

Mutation index 15

Table 3.5: b vector of datum airfoil

Datum b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

NACA2421 0.3484 0.2589 0.2727 0.2547 0.4046 0.1757 0.229 0.2312 0.3597 0.1604 0.308 0.1923

Once this surrogate-based optimisations are completed, a small sample of the
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optimum design points is evaluated in Xfoil and corrected C′l and C′d values are

calculated. From this new cloud of points, the Pareto optimal front is obtained.

Then, one of these re-evaluated values belonging to the new Pareto front is chosen

as a starting point for a Xfoil direct optimisation. (Example shown in Figure 3.13)

0.0040 0.0060 0.0080 0.0100 0.0120 0.0140
−1.20

−1.00

−0.80

−0.60

−0.40

−0.20

Cd

−Cl

1. MOTS2 RBF Surr.

2. Xfoil re-evaluation RBF

3. Re-evaluated Pareto (RBF)

1. MOTS2 Kriging Surr.

2. Xfoil re-evaluation Kriging

3. Re-evaluated Pareto (Kriging)

Figure 3.13: Surrogate-based optimisation

3.5.3 Xfoil Direct Optimisation

With the aim of comparing to the surrogate-based optimisations, a parallel direct

optimisation has been carried out using the flow solver program Xfoil. This software,

developed by M. Drela [15] under GNU General Public License, performs viscous

and inviscid analysis of input airfoils geometries using panels method along with

boundary layer and compressibility corrections, amongst other capabilities. In order

to launch the optimisation in Nimrod/O, an integrated Free Form Deformation +

Xfoil package provided by Dr. Kipouros was modified so as to implement the CST

parametrisation with the Xfoil code.
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Thus, the automatic software gets as an input a design vector b from the op-

timiser, builds the CST parametrised airfoil based on b, performs the viscous flow

simulation under the same conditions of the surrogate model and the experimental

data (Table 3.1) and calculates the lift and drag coefficients which are the objectives

functions that are used by Nimrod/O to start the process again by creating a new

design vector b. The CST FORTRAN function that Xfoil package uses in order to

build the airfoil geometry based on b can be found in Appendix I.

It must be said that only MOTSII algorithm has been used for the Xfoil optimi-

sation. The reason for this is that Xfoil, unlike the surrogate models which aren’t

concerned about physical feasibility and just interpolate from input data, is more re-

strictive with the input geometries. So, if for example a new design vector b leads to

a non-aerodynamically geometry, Xfoil doesn’t converge and the objective functions

can’t be evaluated or simply doesn’t make sense, particularly the drag coefficient.

Thereby, this problem is more likely to happen if a genetic algorithm is used because

of the limitation in terms of population size in each generation.

The search design space introduced in Xfoil is the same as in the surrogates

(Table 3.3) in order make the optimiser to seek for feasible designs that lie inside

the margins of the mapped airfoils b vectors. Also the settings used in MOTSII

schedule file are the same as in the surrogates (Table 3.4) and the b vector considered

as datum condition is again from the NACA2421 profile (Table 3.5).

3.6 Post-Processing

After all the mapping and optimisation process, an important part which cannot

be undervalued is the post-processing of the results. A very large amount of data

and sets of optimum solutions created during the optimisation processes need to be
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analysed in order to extract proper conclusions for the work done. Being able to

identify the relationships between the design parameters and the objective functions

is vital to make final decisions. For this purpose, Parallel Coordinates interactive

visualisation method has been used.

The method, introduced by Inselberg [20], [21] facilitates the visualisation of

multidimensional design vector and objective functions in a 2D space.

In this thesis, a Parallel coordinates web-application [18] has been used to identify

patterns and relations amongst the design parameters (b vectors) and their physical

meaning in the optimum airfoil geometries.

3.7 Outlook of the whole model

In Figure 3.14, the whole model explained in this methodology chapter has been

sketched.

1. Experimental drag and lift coefficients from airfoils at a given flight condition

have been gathered from NACA measurements.

2. Those airfoils from which the experimental data has been retrieved have been

mapped using CST parametrisation technique.

3. A surrogate model based on these experimental data and mapped parameters

has been built using two different approaches.

4. A multi-objective optimisation with the surrogate models has been done and

Pareto optimal designs has been saved.

5. When surrogate-based optimisations have been obtained, an equally distributed

sample of the optimum design points have been evaluated in Xfoil and cor-
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rected C′l and C′d values have been calculated. Then, one of these re-evaluated

values has been chosen as a starting point for a Xfoil direct optimisation in

order to accomplish the model described in Figure 1.1.

6. A parallel direct optimisation using Xfoil code has also been done and the

optimal designs have also been saved and compared to the surrogate-based

optimisation.
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Chapter 4

Results Analysis

The results obtained by following the proposed research methodology are presented

throughout this chapter. They are classified depending on the phase of the method-

ology. Firstly, the results related to the airfoil mapping are given. Then, the results

regarding the surrogate-based and a direct Xfoil optimisation are discussed. Finally,

the outcome of the proposed design methodology, with the results of the combined

Xfoil and surrogate-based optimisation are presented.

4.1 Airfoil Mapping Accuracy

The CST parametrisation of 83 airfoils belonging to four different families from which

the experimental data was available was carried out, and the mean square error

L2 between the mapped and the target geometries was calculated. This study was

performed to see that a 5th order in the CST parametrisation was a good compromise

solution. Due to the high amount of mapped airfoils, the charts showing the L2

norms vs the order of the parametrisation can be found in Appendix D. Here, general

comments based on those charts are given depending on the family mapped:

59
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• NACA 4-digits family: the L2 error decreases in a slower fashion with

the order of the parametrisation than in other families. In addition, for this

family thicker airfoils present higher error, especially in the parametrisation of

the lower surfaces.

• NACA 5-digits family: this family follows the same trend as NACA 4-

digits. Thicker airfoils such as NACA 23024 present a error almost twice as

higher as the thinnest airfoil regardless the order of the parametrisation.

• NACA 6-series family: this series converges more rapidly to stationary

values of L2 error as the order of the parametrisation increases. Even though

thicker airfoils still present more error than the thinner ones, the difference is

less remarkable than in previous families.

• NACA 7-series family: despite of only being conformed by two airfoils, it

can be appreciated that this family follows the same trend as 6-series.

In addition, due to the fact that upper and lower surfaces had to be mapped

separately, they present different trends in their L2 norms. Generally, the upper

surface L2 norm error is higher, almost twice of the value of the lower surface, for

orders of parametrisation below 3. This is mainly due to the higher curvature needed

for the generation of positive lift on the upper surface, being more difficult to map

when low order of parametrisation is set. Nevertheless, this difference disappears

when 5th order is reached.

An example of the evolution of the mapping error L2 for a sample of airfoils is

shown in Figure 4.1:
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Figure 4.1: Example of the accuracy of the mapping vs the order of the parametri-
sation for upper surfaces

4.2 Selection of Airfoils included in the Surrogate

According to the criteria explained in Subsection 3.4.1, 69 out of 83 airfoils were se-

lected for being included in the surrogate model. This number represents a 83.13%

of the total amount of airfoils that has been mapped. The name of these airfoils is

listed in Table 4.1. On the other hand, the full table containing the data required

for making the decision whether an mapped airfoil was included or not can be found

in Appendix E. Here, in Table 4.2, only the values that do not meet the criteria of

Subsection 3.4.1 are shown. Since Xfoil has been proved as an accurate simulation

code for low angles of attack and speeds, it is very likely that the experimental data

of the rejected airfoils was not accurate enough and perhaps some errors in the mea-

surement processes were introduced, resulting in a more reliable Xfoil performance
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prediction. Thereby, as the surrogate model was only based on trusty experimental

data, they were still rejected.

Table 4.1: Airfoils Included in the Surrogate

NACA 6 NACA 64210 NACA 64(2)215 NACA 65(2)415(a05)

NACA 9 NACA 65206 NACA 64(2)415 NACA 65(3)418(a05)

NACA 1410 NACA 65209 NACA 64(3)218 NACA 65(3)618(a05)

NACA 1412 NACA 65210 NACA 64(3)418 NACA 65(4)421(a05)

NACA 2412 NACA 66206 NACA 64(3)618 NACA 747A315

NACA 2415 NACA 66209 NACA 64(4)221 NACA 747A415

NACA 2418 NACA 63(1)212 NACA 64(4)421

NACA 2421 NACA 63(1)412 NACA 65(1)212

NACA 4412 NACA 63(2)015 NACA 65(1)412

NACA 4415 NACA 63(2)215 NACA 65(2)215

NACA 4418 NACA 63(2)415 NACA 65(2)415

NACA 4421 NACA 63(2)615 NACA 65(3)418

NACA 23012 NACA 63(3)218 NACA 65(3)618

NACA 23015 NACA 63(3)618 NACA 65(4)221

NACA 23018 NACA 63(4)221 NACA 65(4)421

NACA 63206 NACA 63(4)421 NACA 66(1)212

NACA 63209 NACA 64(1)012 NACA 66(2)215

NACA 63210 NACA 64(1)112 NACA 66(3)218

NACA 64110 NACA 64(1)212 NACA 66(4)221

NACA 64206 NACA 64(1)412 NACA 67(1)215

NACA 64209 NACA 64(2)015 NACA 65(1)212(a06)
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Table 4.2: Rejected Airfoils

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd Cl% Cd% Cl% Cd%

NACA 1408 0.65 0.0075 0.445 0.00536 0.446 0.00535 0.2 0.19 31.3 28.7

NACA 2424 0.45 0.0090 0.320 0.00775 0.329 0.00770 2.7 0.65 26.9 14.4

NACA 4424 0.70 0.0100 0.467 0.00868 0.476 0.00859 2.0 1.04 31.9 14.1

NACA 23021 0.45 0.0085 0.323 0.00749 0.307 0.00747 4.9 0.3 31.7 12.1

NACA 23024 0.40 0.0095 0.260 0.00834 0.241 0.00838 7.4 0.5 39.8 11.8

NACA 64108 0.35 0.0065 0.421 0.00647 0.421 0.00632 0.1 2.3 20.3 2.8

NACA 64208 0.50 0.0045 0.508 0.00672 0.507 0.00648 0.1 3.6 1.5 44.0

NACA 65410 0.60 0.0045 0.675 0.00741 0.679 0.00635 0.7 14.3 13.2 41.1

NACA 66210 0.43 0.0060 0.486 0.00720 0.495 0.00653 1.7 9.3 16.4 8.8

NACA 63(3)418 0.68 0.0068 0.714 0.00461 0.702 0.00474 1.7 2.8 4.0 29.8

NACA 65(3)218 0.45 0.0055 0.542 0.00506 0.534 0.00508 1.5 0.4 18.6 7.6

NACA 66(2)415 0.55 0.0045 0.674 0.00583 0.699 0.00473 3.8 18.9 27.2 5.1

NACA 66(3)418 0.60 0.0050 0.714 0.00461 0.702 0.00474 1.7 2.8 17.0 5.2

NACA 66(4)021 0.28 0.0053 0.364 0.00472 0.358 0.00469 1.6 0.6 30.3 10.7

Additionally, an example of the pressure distribution over target and mapped

airfoil is presented in Figure 4.2. As stated in previous sections, the CST parametri-

sation smoothers the “raw” geometry of the target airfoil leading to a smoother

pressure distribution. Then, it can be said that for cases where the target geome-

try has been poor in point distribution, the CST parametrisation has improved the

quality of the resulting mapped airfoil.
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(a) Target Airfoil (b) Mapped Airfoil

Figure 4.2: Pressure Distribution comparison after parametrisation

4.3 Surrogate Based Optimisation

The results regarding the surrogate-based optimisations are presented in this section.

However, since the optimisation processes were stochastic, it was decided to check

the effect that different starting points had in the pareto optimal front reached.

Five runs with randomly selected starting points were launched for each algorithm

(MOTSII and NSGAII) and surrogate method (RBF and Kriging) used. The results

reached showed that by using CST parametrisation, the final optimal Pareto fronts

were independent of the starting point. This is shown for the Kriging model in

Figure 4.3:
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4.3.1 Effect of running Stochastic optimisations
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Figure 4.3: Effect of Stochastic Optimisation in the Kriging Surrogate model

4.3.2 Kriging Surrogate

The results of Kriging surrogate-based optimisation for Tabu Search and Genetic

algorithm are shown in Figure 4.4. Two numbers of evaluations (1000 and 5000)

were chosen for the MOTSII optimisation, leading to a more complete and bigger

Pareto front when 5000 evaluations were considered. Since the evaluation of the

surrogate model is very cheap, switching from 1000 to 5000 evaluations only took

a matter of minutes. The Genetic Algorithm achieved slightly better improvements

in lift coefficient than MOTSII although the process took much more time. For this

case airfoil NACA2421 was selected as a datum condition.
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Figure 4.4: Kriging surrogate-based optimisation

4.3.3 RBF Surrogate

The optima Pareto fronts for the RBF surrogate-based optimisation are shown in

Figure 4.5 for the two different algorithms considered. As it happened with the

Kriging surrogate, a higher number of evaluations from the surrogate under MOTSII

algorithm leaded to a more complete and optimum Pareto front. Again, NACA2421

was selected as a datum condition.
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Figure 4.5: RBF surrogate-based optimisation

4.3.4 Comparison of the two surrogate approaches

Once the optimisations were carried out for the two considered surrogate approaches,

it was decided that only the solution derived from the MOSTII optimisation was

going to be compared. The reasons for that were:

a. Unlike the Genetic Algorithm, Tabu Search leads to a more efficient search of

feasible aerodynamic designs.

b. It is faster and the number of optimal solutions is not constrained by any

population size.

c. Posterior direct optimisations with Xfoil were only undertaken with MOT-

SII algorithm because the use of NSGAII was unstable and led to infeasible

designs.
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The results are compared in Figure 4.6, where it can be observed that the optimi-

sation undertaken with Kriging surrogate improves both lift and drag performance.

Conversely, the RBF optimisation did not improve the drag coefficient performance

as much as it did with the lift, showing a more disperse distribution. The reasons

for the RBF surrogate to behave like this mainly reside in the sophistication of the

method, being the Kriging surrogate a more sophisticated Response Surface Model.

Therefore, for next comparisons with Xfoil direct optimisation, only Kriging model

was used.
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Figure 4.6: Pareto Optimal fronts of the surrogate-based optimisations for 5000
evaluations with MOTSII Algorithm

4.4 Xfoil Direct Optimisation

A direct Xfoil optimisation was necessary in order to compare the validity of the

method proposed in the previous chapter. Since the resources needed by this software

are low, different number of runs with different number of evaluations were tested
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in order to see how the Pareto optimal front evolved. Once again, NACA2421 was

selected as a datum condition from where the optimisation was launched. As stated

above, only Tabu Search algorithm was finally chosen due to the higher stability in

providing aerodynamically feasible designs that were able to be simulated under Xfoil

without convergence problems. The results of the direct Xfoil optimisation are shown

in Figure 4.7, where the 10000-evaluation optimisation (in green) was considered as

the target optimum Pareto front wanted to be reached by the methodology proposed

in this thesis.
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Figure 4.7: Xfoil direct optimisations

4.5 Validation of the methodology proposed

As described in previous sections, the main objective of this thesis was to develop a

new design methodology of an airfoil based on experimental data which allows the

whole optimisation process to save calculation time by means of introducing some

guidance in the search of starting points for a direct optimisation. Thus, the steps
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followed in order to prove the methodology are summarised below:

Step 1. Quick Surrogate-based optimisation, 5000 evaluations of the Kriging Surro-

gate.

Step 2. Selection of a 20 equally-distributed optimal design vectors sample from the

Pareto optimal front of the Surrogate-based optimisation.

Step 3. Xfoil evaluation of the sample of 20 design vectors.

Step 4. Pareto optimal front identification of the 20 points re-evaluated sample.

For this case, steps 1-4 are represented below in Figure 4.8:
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Figure 4.8: Optimisation steps of the methodology proposed

Once the Pareto optimal front of the re-evaluated points was found, the next

step was to choose one of those points (there were five in total) and launch a direct

Xfoil optimisation from there. As observed in the Figure 4.9, the trend of the Pareto

optimal front of the re-evaluated points followed the same trend as the Xfoil direct
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optimisation. Hence, 5 candidates were available for being the starting point of

the direct Xfoil optimisation and, depending on which one was chosen, the results

obtained varied slightly.

As can be appreciated in the Figure 4.9, if a low drag-low lift starting point

was chosen (Point 1), the direct optimisation led to zones where designs with sim-

ilar characteristics in a direct 1000-evaluations optimisation were found. The same

applies if a medium drag- medium lift (Point 2) or high-drag-high lift (Point 3)

points were selected as the starting points. Thereby, interesting findings need to be

highlighted:

• Once the Pareto of the re-evaluated surrogate optimal points is found, it follows

the same trend as the Pareto front from a direct optimisation.

• By running a direct, shorter full optimisation from one of those points, the

optimal solutions reach the Pareto front of the 1000-evaluations direct opti-

misation in zones where the designs are similar to the starting point. Hence,

potential optimal designs can be searched by selecting a starting point with

the same characteristics. For example, the starting from Point 1, which is a

point with low Cd but low Cl, led to solutions that share these features within

the optimal Pareto front.

• After a direct optimisation of 500 evaluations from the Pareto optimal front of

the re-evaluated solutions, the final optimum solutions reach the results that a

1000-evaluations direct optimisation is giving, even improving the solutions for

the high-lift/high-drag designs (even if it is compared to a 10000-evaluations

direct optimisation).

• Also, a 500-evaluations direct optimisation was carried out to check what
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was the difference between this short direct optimisation from the datum

NACA2421 and the 500-evaluations direct optimisation from the Pareto of

re-evaluated points. Once again, the latter led to better results, especially in

designs of high-lift.
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Figure 4.9: Pareto fronts of the Proposed Methodology

So, as a summary, it is shown in Table 4.3 the number of evaluations required

for each method, either the direct optimisation or the optimisation based on the

methodology proposed. As it can be read, if a direct optimisation of 1000 evaluations

is done, only 500+20 evaluations plus the flexibility to find designs with a particular

trend are needed following the methodology proposed.
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Table 4.3: Benefits in the use of the method developed

Method number of evaluations

Xfoil-CST direct optimisation 1000

Total 1000

Kriging’s Optimal Pareto Re-evaluations 20

Xfoil-CST direct optimisation from optimum 500

Total 520

4.6 Optimum shapes and pressure distributions

After the optimisation of the NACA 2421, that featured a Cl = 0.45 and a Cd =

0.0080 for the considered flow conditions of α = 3o, Re = 3 · 106 and Mach = 0.16,

three optimal re-evaluated starting points (Point 1, 2 and 3 in Figure 4.9) were sim-

ulated in Xfoil and the pressure distributions are plotted in Figures 4.10a, 4.10c and

4.10e. As it can be appreciated, the optimal designs given by Kriging optimisation

are different depending on their position within the Pareto optimal front. For exam-

ple, low-drag optimal solution (Figure 4.10a from Point 1) features a lower curvature

and more symmetry than a high-drag/high-lift solution.

Since the optimisation was carried out for low angle of attack, the drag was

already very low and hence the major improvements are observed in the lift coeffi-

cient. When the 500-evaluation direct optimisations starting in those designs were

done, all the final geometries featured an increase in the airfoil curvature near to

the Leading Edge. This means that with Xfoil optimisation, the low pressure peak

is displaced to the front of the airfoils whereas with the Kriging optimisation this
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peak is kept in the half chord. The Figures 4.10b, 4.10d and 4.10f show examples

of solutions that were obtained when the 500-evaluation direct optimisations from

Point 1-3 were run.

(a) Point 1 (b) from initation 1

(c) Point 2 (d) from initiation 2

(e) Point 3 (f) from initiation 3

Figure 4.10: Xfoil optimal solutions
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4.7 Analysis of results with Parallel Coordinates

In this section, the physical meaning of some components of the design vector, b=

[b1U ,b2L,b3U ,b4L,b5U ,b6L,b7U ,b8L,b9U ,b10L,b11U ,b12L] is inferred by the analysis of

the optimum solutions in Parallel Coordinates (i.e. Kriging and Xfoil from initiation

in points 1-3). Due to the high number of variables involved (see Appendix K for

the whole plots), it has been complicated to identify these relationships, particularly

because to identify the patterns, the order of collocation of the variables (which is

unfortunately unknown) plays an important role. Nevertheless, some conclusions

are presented below:

• There is a direct relationship of b1U coefficient with the drag and lift, because

there is a relation between this coefficient and the curvature of the airfoil in

the proximity of the Leading Edge for the upper surface. This trend is not

observed for b1L, which means that it does not have such a big influence.

(Figure 4.11)

Figure 4.11: b1U effect in Parallel Coordinates
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• The component b10L, which is the ante penultimate term of the design vector

and refers to the lower surface, is proportionally related to the drag generated

by the airfoil. A lower value means a lower Cd of the airfoil but also a lower lift

generation. It has to do with the peak of the Trailing Edge: The higher this

value, the more negative curvature has this zone hence more lift is generated

but at the same time the drag increases due to the wake that is being produced.

(Figure 4.12)

Figure 4.12: b10L effect in Parallel Coordinates

• The term b9U has also a great influence in the drag (Figure 4.13). The rela-

tionship is inverse, so a higher value the lower drag. This term is associated

with the last part of the upper surface of the airfoil. If the value is high, it

means that after the maximum chamber, the transition to the Leading edge

is smooth, so there is not a big deceleration of the flow, as occurs in Figures

4.10b and 4.10d. On the other hand, if the value is small, the diffusion of the

flow after the pressure peak is high to that a separation can occur and drag is

more likely to be generated (Figure 4.10f).
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Figure 4.13: b9U effect in Parallel Coordinates
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Chapter 5

Conclusions and Further Work

Directions

5.1 Conclusions

The development of a new methodology initiated in previous work to map experi-

mental data into the design space in order to build a surrogate model representing

the aerodynamic performance of an airfoil has been continued and improved in this

research project. Hence, the response surface model of the performance of a 2D

airfoil for a specific flight condition was constructed based on reliable experimental

data available in the state of the art. In addition, a new parametrisation technique,

Class-Shape Transformations (CST), was implemented in order to map and include

in the surrogate model the airfoils from which the experimental data was collected.

Regarding the characteristics of the surrogate, two different methods were used (i.e.

Radial Basis Functions and ordinary Kriging). Once the surrogates were conformed,

a multiobjective surrogate-based optimisation was performed (i.e. minimising and

maximising the drag and lift coefficients, respectively), having as starting point a
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given datum airfoil for the flight condition considered.

In a similar fashion, a direct optimisation of the same datum airfoil was under-

taken using Xfoil in order to compare the results with the surrogate-based approach.

On the other hand, a small sample of optimum geometries was selected from the

Pareto front of the surrogate-based optimal solutions and re-evaluated with Xfoil.

After the Xfoil re-evaluation of those designs, a new smaller Pareto front of optimal

solutions was found and some of them were used as starting points for a direct Xfoil

optimisation, leading to a smaller number of evaluations needed to reach the solu-

tion provided by the full direct optimisation from the datum airfoil and validating

thus the methodology proposed.

Thus, the main conclusions of this project are listed below:

• The optimisation methodology based on surrogate model and experimental

data, alternative to a direct optimisation, proposed in this work has resulted

to be effective in saving number of evaluations to reach the same type of

solutions. The Pareto front of optimal solutions of the surrogate re-evaluated

points have shown that follows the same trend as the Pareto front given by the

direct optimisation. Furthermore, this process enables the search of potential

optimal solutions obeying to particular Cl, Cd ranges by selecting a similar

starting point from the above mentioned re-evaluated Pareto. Therefore, the

optimisation process is faster and can be guided into the desired objective

functions range values.

• The direct optimisation process have shown that achieving designs that reduce

the drag coefficient is difficult for the given flight condition of low angle of

attack and Mach number since the drag generated is already very low. Hence,

the major improvement has been in lift coefficient, thing that was more feasible
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to optimise. If the optimisations had been done for high angles of attack, there

would have been an improvement in drag performance since for these flight

conditions the drag is higher although the use of Xfoil in that case would not

have been very precise. Conversely, the surrogate-based optimisation managed

to produce improvements in the lift and drag behaviour for the flight condition

but it has to be bore in mind that the surrogate is not representing the true

physics of the problem, it just generates a response based on some other data

and gives an estimation of possible starting points so that a direct optimisation

with a more sophisticated program can be done.

• The surrogate-based optimisation have been showed to not be particularly

influenced by the starting point. This independence of the datum condition

can be harnessed in optimisation processes where the design space in which

looking for optimal solutions is unknown. Thus, a random starting point can

be chosen and the surrogate will still produce a response although the design

is infeasible, leading after a given number of evaluations to an almost unique

Pareto front of optimal solutions that would serve as a basement for later

direct optimisations. In this sense, the surrogate model optimisation based on

experimental data acts as a tool to steer the optimisation process if information

about the starting conditions is unknown.

• Regarding to the airfoil mapping process, CST parametrisation technique has

been shown to be really effective, accurate and fast. The L2 norms between

mapped and target airfoils have been very low for the order of parametrisation

considered and only thicker airfoils of some families presented a higher (but

still within acceptable levels) deviation. The NACA 6-series has been the

family that has presented less error in the parametrisation, which means that
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the CST parametrisation has been particularly effective in this kind of airfoils

which represent the 80% of total mapped airfoils.

• The method considered for including the mapped airfoils in the surrogate has

considered the deviation between the experimental and the Xfoil simulated

mapped geometries coefficients, and the deviation between the Xfoil simulated

raw and mapped geometries coefficients. This process has led to a better com-

promise solution when it came to take the decision than if only the deviation

between the experimental and the mapped-simulated comparisons had been

done because, in some cases, the experimental data seemed to be quite unreal-

istic. Moreover, although the method followed might seem a bit arbitrary, very

often in real engineering processes, the experimental data that is available at

hand does not take the form of a beautiful formatted table but it is in really old

scanned charts or some part is even missing. Therefore, the approach followed

in this thesis consisting of reading experimental data directly from charts is

not that far from real life engineering.

5.2 Further Work suggestions

Even though the proposed methodology has been proved to be effective, still too

much work is needed in order to improve the current research. Some guidelines and

recommendations about future work in this field are given below:

• It is recommended to introduce uncertainty analysis in the process of reading

the experimental data in order to have some statistical error distribution and

propagation throughout the whole process so as to lead to a more robust

surrogate model.
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• It is suggested to introduce more values of angles of attack α in the surrogate

model in order to widen and make the optimisation more robust under other

flight conditions. In this work, the surrogate has been built for an unique flight

mode, however, it should be extended to α near to stall conditions combining

the available experimental data with the Xfoil results for this region. By doing

this, a multi-fidelity surrogate can be built, being able to dynamically chose

the proper data depending on the simulated flight conditions. For instance,

under high angles of attack near to stall, the experimental data would prevail

over Xfoil data.

• It is suggested that, apart from minimising/maximising the drag/lift coeffi-

cients, (Cd, Cl respectively), it would make a more realistic approach to also

include the moment coefficient, Cm, as a constraint that has to remain as con-

stant as possible during the optimisation process.

• It is recommended to improve the CST parametrisation with the CSRT re-

finement procedures [34] that would allow to include physical constraints in

the optimisation process such as “boxes” inside the airfoil for structural or fuel

purposes, or for instance including thickness specifications in the edge to be

more realistic in terms of manufacturing tolerances.

• Although Xfoil performs very efficiently for incompressible flows and low α , is

suggested to simulate the 2D optimal set of airfoils in a more sophisticated CFD

software that includes turbulent models in order to analyse their behaviour at

a higher angles of attack and Mach numbers.

• Due to the boom of 3D printer and Rapid Prototyping technologies in the last

few years, it would be highly desirable to small-scale manufacture a selection
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of optimal airfoils geometries from the Pareto front of optimal designs and

test them in a wind tunnel in order to compare their performance with the

surrogate/CFD predicted coefficients and include the measured data into the

surrogate model.

• It is encouraged to research into other multivariable optimisation post-analysis

techniques such as the use of Self-Organising Maps (SOM).
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Appendix A

Mapped Airfoils

A.1 Available Data Airfoils

A.1.1 NACA 4-Digits

Experimental Data

Airfoil Cl Cd

NACA0006 0.30 0.0055

NACA0009 0.35 0.0060

NACA1408 0.65 0.0075

NACA1410 0.45 0.0060

NACA1412 0.45 0.0065

NACA2412 0.55 0.00650

NACA2415 0.50 0.00675
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Experimental Data

Airfoil Cl Cd

NACA2418 0.55 0.00750

NACA2421 0.45 0.0080

NACA2424 0.45 0.0090

NACA4412 0.75 0.0070

NACA4415 0.75 0.0075

NACA4418 0.70 0.0080

NACA4421 0.65 0.0090

NACA4424 0.70 0.0100
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A.1.2 NACA 5-Digits

Experimental Data

Airfoil Cl Cd

NACA23012 0.45 0.0065

NACA23015 0.45 0.0075

NACA23018 0.45 0.0075

NACA23021 0.45 0.0085

NACA23024 0.40 0.0095
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A.1.3 NACA 6-Series

Experimental Data

Airfoil Cl Cd

NACA63206 0.50 0.0065

NACA63209 0.50 0.00675

NACA63210 0.50 0.0060

NACA64108 0.35 0.0065

NACA64110 0.45 0.0070

NACA64206 0.45 0.00675

NACA64208 0.50 0.0045

NACA64209 0.50 0.00675

NACA64210 0.50 0.0070

NACA65206 0.475 0.0065

NACA65209 0.475 0.0075

NACA65210 0.50 0.0070

NACA65410 0.60 0.0045

NACA66206 0.50 0.0070

NACA66209 0.45 0.0070

NACA66210 0.425 0.0060
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Experimental Data

Airfoil Cl Cd

NACA63(1)212 0.550 0.0055

NACA63(1)412 0.675 0.0055

NACA63(2)015 0.350 0.0055

NACA63(2)215 0.500 0.0060

NACA63(2)415 0.700 0.0060

NACA63(2)615 0.800 0.00625

NACA63(3)218 0.550 0.0060

NACA63(3)418 0.675 0.00675

NACA63(3)618 0.825 0.00675

NACA63(4)221 0.525 0.00675

NACA63(4)421 0.700 0.0070

NACA64(1)012 0.350 0.0070

NACA64(1)112 0.450 0.00625

NACA64(1)212 0.475 0.00525

NACA64(1)412 0.650 0.0055
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Experimental Data

Airfoil Cl Cd

NACA64(2)015 0.350 0.0060

NACA64(2)215 0.500 0.00525

NACA64(2)415 0.700 0.00575

NACA64(3)218 0.500 0.00575

NACA64(3)418 0.700 0.0065

NACA64(3)618 0.775 0.0060

NACA64(4)221 0.525 0.0065

NACA64(4)421 0.675 0.00675

NACA65(1)212 0.475 0.0060

NACA65(1)412 0.675 0.0050

NACA65(2)215 0.500 0.0050

NACA65(2)415 0.650 0.00525

NACA65(3)218 0.450 0.0055

NACA65(3)418 0.625 0.0055

NACA65(3)618 0.850 0.00675
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Experimental Data

Airfoil Cl Cd

NACA65(4)221 0.500 0.00575

NACA65(4)421 0.700 0.0065

NACA66(1)212 0.450 0.0060

NACA66(2)215 0.470 0.0045

NACA66(2)415 0.550 0.0045

NACA66(3)218 0.500 0.00475

NACA66(3)418 0.600 0.0050

NACA66(4)021 0.275 0.00525

NACA66(4)221 0.475 0.00525

NACA67(1)215 0.450 0.0055
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Experimental Data

Airfoil Cl Cd

NACA65(1)212(a06) 0.45 0.0045

NACA65(2)415(a05) 0.60 0.0055

NACA65(3)418(a05) 0.65 0.0055

NACA65(3)618(a05) 0.75 0.0060

NACA65(4)421(a05) 0.65 0.0060
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A.1.4 NACA 7-Series

Experimental Data

Airfoil Cl Cd

NACA747A315 0.475 0.00525

NACA747A415 0.550 0.0055
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Appendix B

Vector b - Mapping CST

MATLAB function
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File: /home/pedroj/Documents/b_coefficients_calculator.m Page 1 of 2

function [ B_upper, B_lower,aa ] = cst( A , B_orders )
%cst function: input arguments
%A: airfoil data, name and points
%B_orders: Bernstein Polynomials orders (for upper and lower surface) 
%Returns B_upper and B_lower, coefficients to built the airfoil
%   Detailed explanation goes here

%vectors where profile data is going to be stored, for upper and lower
%surfaces
target_upper = [];
target_lower = [];

    flag = 0; %to switch to lower surface points

    temporal = 0;
    aa = 0;
for i=1:length(A.data)
    if flag == 1
        target_lower = [target_lower; A.data(i,:)];
    else
        target_upper = [target_upper; A.data(i,:)];
        if A.data(i,1) < 0 && A.data(i,1)<temporal
            aa = A.data(i,1);
        end
    end
    if A.data(i,1)==0 && A.data(i,2)==0 
        flag = 1;
        target_lower = [target_lower; A.data(i,:)];
    end
        
end

%plot(target_lower(:,1),target_lower(:,2),'k',target_upper(:,1),target_upper(:,2),'k')
%xlabel('z/c');
%ylabel('x/c');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L2_norms_upper = [];
L2_norms_lower = [];
condition_numbers_upper = [];
condition_numbers_lower = [];

orders  = [];
%for ii=10:10
n_upper   = B_orders(1); %ORDER OF BENSTEIN POLYNOMIALS (upper surface)
n_lower   = B_orders(2); %ORDER OF BENSTEIN POLYNOMIALS (lower surface)

%PARAMETERS OF DESIGN
B_upper = ones(1,n_upper+1); %PARAMETERS OF DESIGN upper surface
B_lower = ones(1,n_lower+1); %PARAMETERS OF DESIGN lower surface

%Class function (0.5 and 1 for 2D airfoils)% --> NACA type round nose and pointed aft end 
N1 = 0.5;
N2 =   1;

datum_lower = [ ];
datum_upper = [ ];
%TE thickness (dz/c)
dzc_lower = 0;
dzc_upper = 0;

 M_upper = [ ]; 
 M_lower = [ ];

%%% UPPER SURFACE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%loop for each x/c point 
for i = 1: length(target_upper)    
   %     % x/c
     datum_upper(i,1) = target_upper(i,1);     



File: /home/pedroj/Documents/b_coefficients_calculator.m Page 2 of 2

    %loop for the sum of all Bernstein Polynomials evaluated at the point
    %of study
    for r=0:n_upper
        M_upper(i,r+1) = real(datum_upper(i,1)^N1*(1-datum_upper(i,1))^N2) *...
            nchoosek(n_upper,r)*(1-target_upper(i,1))^(n_upper-r)*target_upper(i,1)^r;
    end
end

%  % x/c*dzc_upper

 datum_upper(:,2) =  M_upper*B_upper' + datum_upper(:,1)*dzc_upper;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% LOWER SURFACE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%loop for each x/c point 
for i = 1: length(target_lower)   
    %     % x/c
     datum_lower(i,1) = target_lower(i,1);     
    %loop for the sum of all Bernstein Polynomials evaluated at the point
    %of study
    for r=0:n_lower
        M_lower(i,r+1) = -real(datum_lower(i,1)^N1 *(1-datum_lower(i,1))^N2)...
            * nchoosek(n_lower,r)*(1-target_lower(i,1))^(n_lower-r)*target_lower(i,1)^r;
    end   
end
%  % x/c*dzc_upper

 datum_lower(:,2) =  M_lower*B_lower' + datum_lower(:,1)*dzc_lower;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%hold on;
%plot(datum_lower(:,1),datum_lower(:,2),datum_upper(:,1),datum_upper(:,2))

%%%%%%%%%%%%%%% RESULTS %%%%%%%%%%%%%%%%%%%%%%%%%%%55
B_upper = M_upper\(target_upper(:,2)-datum_upper(:,1)*dzc_upper);
B_lower = M_lower\(target_lower(:,2)-datum_lower(:,1)*dzc_lower);
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Appendix C

CST Point writer MATLAB

function
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File: /home/pedroj/Documents/cst_point_writer.m Page 1 of 1

function [ output_args ] = cst_point_writer(B,N1, N2, dzc_upper, dzc_lower, B_orders,num) 
%this function writes the data geometry of the airfoil from the new_b.txt
%that contains the coefficients B computes the airfoil geometry
%coefficients input
%example cst_point_writer( 'new_b.txt',  0.5,1,0,0,[5,5]) 

%%LOOP FOR DIVIDING THE INPUT B INTO B_UPPER AND B_LOWER
upper = 1;
cont_up = 0;
cont_low = 0;
for i=1:length(B)
    if upper ==1
        cont_up = cont_up+1;
        B_upper(cont_up) = B(i);
        upper =0;
    else
        cont_low = cont_low+1;
        B_lower(cont_low) = B(i);
        upper = 1;
    end
    
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
          n_lower = B_orders(2);
          n_upper = B_orders(1);
x
                        xc_up = [cosspace(0,0.05,15), cosspace(0.05,0.95,45), cosspace(0.95,1,15)]'; %
generates cosinus distribution, more points at LE and TE
                        xc_lo = [cosspace(0 ,0.05,15), cosspace(0.05,0.95,45), cosspace(0.95,1,15) ]';
                        
                            save('xc_up.txt','xc_up','-ascii');
                            save('xc_lo.txt','xc_lo','-ascii');             
                         for i = 1: length(xc_lo)   
                           
                             %%% LOWER SURFACE %%%
                           for r=0:n_lower
                           M_lower(i,r+1) = -real(xc_lo(i,1)^N1 *(1-xc_lo(i,1))^N2)...
                                * nchoosek(n_lower,r)*(1-xc_lo(i,1))^(n_lower-r)*xc_lo(i,1)^r;
                           end   
                          
                         end
                        
                          for i = 1: length(xc_up)   

                   
                             %%% UPPER SURFACE %%%
                           for r=0:n_upper
                           M_upper(i,r+1) = real(xc_up(i,1)^N1 *(1-xc_up(i,1))^N2)...
                                * nchoosek(n_upper,r)*(1-xc_up(i,1))^(n_upper-r)*xc_up(i,1)^r;
                           end   
                        end

 zc_lower(:,1) =  M_lower*B_lower' + xc_lo*dzc_lower;
 zc_upper(:,1) =  M_upper*B_upper' + xc_up*dzc_upper;

%XFOIL REQUIREMENTS, start from TE to LE by upper surface and returning to
%TE by lower surface
%The points must be in (x,y) pairs, starting at the trailing edge (TE), going to the leading edge 

(LE), and back to the TE. The points may go over the upper surface and back along the lower surface, 
or vice versa (the code can figure that out).
 data = [flipud(xc_up      ) , flipud(zc_upper      );
                xc_lo(2:end) ,        zc_lower(2:end)]; %flipud is for plotting purposes (avoiding 
midline), first point removed to avoid repetitions at 0 0
     plot(data(:,1),data(:,2),'-'); hold on
     %plot(A.data(:,1),A.data(:,2),'r') %for comparison with real NACA coordinate data
     axis([0 1 -0.5 0.5])
    % filepath2 = 'profile';

    name=['airfoil_',num2str(num),'.dat'];
              save(name,'data','-ascii');
end
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Appendix D

L2 norms of Mapped Airfoils
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D.2 Lower Surfaces
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Appendix E

Data of Airfoils for Surrogate

decision

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 0006 0.30 0.0055 0.332 0.00570 0.332 0.00564 0.1 1.05 10.6 2.5

NACA 0009 0.35 0.0060 0.307 0.00534 0.307 0.00533 0.1 0.19 12.3 11.2

NACA 1408 0.65 0.0075 0.445 0.00536 0.446 0.00535 0.2 0.19 31.3 28.7

NACA 1410 0.45 0.0060 0.423 0.00510 0.422 0.00512 0.1 0.39 6.1 14.7

NACA 1412 0.45 0.0065 0.423 0.00534 0.422 0.00536 0.2 0.37 6.2 17.5

NACA 2412 0.55 0.0065 0.537 0.00509 0.536 0.00514 0.2 0.98 2.5 20.9

NACA 2415 0.50 0.0068 0.526 0.00573 0.524 0.00572 0.4 0.17 4.9 15.3

NACA 2418 0.55 0.0075 0.473 0.00620 0.473 0.00616 0.1 0.65 14.1 17.9

NACA 2421 0.45 0.0080 0.396 0.00689 0.398 0.00688 0.6 0.15 11.5 14.0

NACA 2424 0.45 0.0090 0.320 0.00775 0.329 0.00770 2.7 0.65 26.9 14.4

NACA 4412 0.75 0.0070 0.807 0.00519 0.809 0.00522 0.2 0.58 7.8 25.4

NACA 4415 0.75 0.0075 0.727 0.00587 0.723 0.00582 0.6 0.85 3.7 22.4

NACA 4418 0.70 0.0080 0.648 0.00668 0.648 0.00666 0.1 0.30 7.5 16.8

NACA 4421 0.65 0.0090 0.557 0.00765 0.561 0.00762 0.7 0.39 13.8 15.3

NACA 4424 0.70 0.0100 0.467 0.00868 0.476 0.00859 2.0 1.04 31.9 14.1
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Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 23012 0.45 0.0065 0.426 0.00571 0.429 0.00557 0.8 2.5 4.6 14.3

NACA 23015 0.45 0.0075 0.414 0.00631 0.414 0.00620 0.0 1.7 8.0 17.3

NACA 23018 0.45 0.0075 0.389 0.00690 0.383 0.00688 1.5 0.3 14.8 8.3

NACA 23021 0.45 0.0085 0.323 0.00749 0.307 0.00747 4.9 0.3 31.7 12.1

NACA 23024 0.40 0.0095 0.260 0.00834 0.241 0.00838 7.4 0.5 39.8 11.8



126 APPENDIX E. DATA OF AIRFOILS FOR SURROGATE DECISION

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 63206 0.50 0.0065 0.502 0.00660 0.502 0.00634 0.0 3.9 0.4 2.5

NACA 63209 0.50 0.0068 0.513 0.00673 0.514 0.00627 0.2 6.8 2.8 7.1

NACA 63210 0.50 0.0060 0.516 0.00770 0.523 0.00608 1.3 21.0 4.6 1.3

NACA 64108 0.35 0.0065 0.421 0.00647 0.421 0.00632 0.1 2.3 20.3 2.8

NACA 64110 0.45 0.0070 0.424 0.00673 0.425 0.00637 0.2 5.3 5.5 9.0

NACA 64206 0.45 0.0068 0.500 0.00659 0.500 0.00633 0.1 3.9 11.2 6.2

NACA 64208 0.50 0.0045 0.508 0.00672 0.507 0.00648 0.1 3.6 1.5 44.0

NACA 64209 0.50 0.0068 0.511 0.00692 0.510 0.00650 0.1 6.1 2.1 3.7

NACA 64210 0.50 0.0070 0.512 0.00678 0.512 0.00640 0.1 5.6 2.5 8.6

NACA 65206 0.48 0.0065 0.497 0.00677 0.497 0.00648 0.0 4.3 4.5 0.3

NACA 65209 0.48 0.0075 0.503 0.00695 0.502 0.00658 0.1 5.3 5.7 12.3

NACA 65210 0.50 0.0070 0.503 0.00709 0.504 0.00649 0.2 8.5 0.8 7.3

NACA 65410 0.60 0.0045 0.675 0.00741 0.679 0.00635 0.7 14.3 13.2 41.1

NACA 66206 0.50 0.0070 0.493 0.00650 0.493 0.00668 0.1 2.8 1.4 4.6

NACA 66209 0.45 0.0070 0.490 0.00700 0.494 0.00664 1.0 5.1 9.9 5.1

NACA 66210 0.43 0.0060 0.486 0.00720 0.495 0.00653 1.7 9.3 16.4 8.8



127

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 63(1)212 0.55 0.0055 0.530 0.00540 0.528 0.00539 0.4 0.2 4.1 2.0

NACA 63(1)412 0.68 0.0055 0.699 0.00539 0.700 0.00541 0.2 0.4 3.7 1.6

NACA 63(2)015 0.35 0.0055 0.347 0.00524 0.331 0.00529 4.6 1.0 5.5 3.8

NACA 63(2)215 0.50 0.0060 0.540 0.00532 0.536 0.00532 0.6 0.0 7.2 11.3

NACA 63(2)415 0.70 0.0060 0.719 0.00545 0.712 0.00551 1.0 1.1 1.8 8.2

NACA 63(2)615 0.80 0.0063 0.896 0.00565 0.886 0.00574 1.1 1.6 10.8 8.2

NACA 63(3)218 0.55 0.0060 0.523 0.00779 0.541 0.00557 3.4 28.5 1.6 7.2

NACA 63(3)418 0.68 0.0068 0.714 0.00461 0.702 0.00474 1.7 2.8 4.0 29.8

NACA 63(3)618 0.83 0.0068 0.903 0.00600 0.891 0.00598 1.2 0.3 8.0 11.4

NACA 63(4)221 0.53 0.0068 0.552 0.00590 0.547 0.00580 0.9 1.7 4.1 14.1

NACA 63(4)421 0.70 0.0070 0.730 0.00612 0.722 0.00600 1.2 2.0 3.1 14.3

NACA 64(1)012 0.35 0.0070 0.343 0.00628 0.343 0.00608 0.2 3.2 1.9 13.1

NACA 64(1)112 0.45 0.0063 0.432 0.00620 0.432 0.00591 0.0 4.7 4.0 5.4

NACA 64(1)212 0.48 0.0053 0.521 0.00612 0.522 0.00565 0.2 7.7 9.9 7.6

NACA 64(1)412 0.65 0.0055 0.699 0.00539 0.700 0.00541 0.2 0.4 7.7 1.6

NACA 64(2)015 0.35 0.0060 0.357 0.00516 0.356 0.00521 0.4 1.0 1.7 13.2

NACA 64(2)215 0.50 0.0053 0.537 0.00524 0.533 0.00526 0.8 0.4 6.6 0.2

NACA 64(2)415 0.70 0.0058 0.717 0.00538 0.709 0.00539 1.0 0.2 1.3 6.3

NACA 64(3)218 0.50 0.0058 0.544 0.00548 0.539 0.00542 0.9 1.1 7.9 5.7



128 APPENDIX E. DATA OF AIRFOILS FOR SURROGATE DECISION

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 64(3)418 0.70 0.0065 0.722 0.00566 0.714 0.00562 1.0 0.7 2.1 13.5

NACA 64(3)618 0.78 0.0060 0.896 0.00596 0.885 0.00593 1.3 0.5 14.1 1.2

NACA 64(4)221 0.53 0.0065 0.548 0.00589 0.543 0.00574 0.9 2.5 3.4 11.7

NACA 64(4)421 0.68 0.0068 0.724 0.00610 0.715 0.00596 1.3 2.3 5.9 11.7

NACA 65(1)212 0.48 0.0060 0.508 0.00679 0.513 0.00582 1.0 14.3 7.9 3.0

NACA 65(1)412 0.68 0.0050 0.686 0.00660 0.694 0.00535 1.2 18.9 2.8 7.0

NACA 65(2)215 0.50 0.0050 0.532 0.00509 0.528 0.00501 0.9 1.6 5.5 0.2

NACA 65(2)415 0.65 0.0053 0.713 0.00503 0.704 0.00509 1.3 1.2 8.2 3.0

NACA 65(3)218 0.45 0.0055 0.542 0.00506 0.534 0.00508 1.5 0.4 18.6 7.6

NACA 65(3)418 0.63 0.0055 0.718 0.00525 0.707 0.00524 1.5 0.2 13.2 4.7

NACA 65(3)618 0.85 0.0068 0.892 0.00543 0.874 0.00554 2.0 2.0 2.9 17.9

NACA 65(4)221 0.50 0.0058 0.544 0.00538 0.534 0.00536 1.8 0.4 6.8 6.8

NACA 65(4)421 0.70 0.0065 0.719 0.00553 0.702 0.00559 2.4 1.1 0.3 14.0

NACA 66(1)212 0.45 0.0060 0.477 0.00749 0.498 0.00611 4.4 18.4 10.7 1.8

NACA 66(2)215 0.47 0.0045 0.488 0.00636 0.520 0.00482 6.6 24.2 10.7 7.1

NACA 66(2)415 0.55 0.0045 0.674 0.00583 0.699 0.00473 3.8 18.9 27.2 5.1

NACA 66(3)218 0.50 0.0048 0.538 0.00448 0.530 0.00461 1.5 2.9 5.9 2.9

NACA 66(3)418 0.60 0.0050 0.714 0.00461 0.702 0.00474 1.7 2.8 17.0 5.2

NACA 66(4)021 0.28 0.0053 0.364 0.00472 0.358 0.00469 1.6 0.6 30.3 10.7

NACA 66(4)221 0.48 0.0053 0.539 0.00484 0.529 0.00479 1.9 1.0 11.3 8.8

NACA 67(1)215 0.45 0.0055 0.394 0.00577 0.412 0.00555 4.7 3.8 8.5 0.9
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Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 65(1)212(a06) 0.45 0.0045 0.486 0.00587 0.494 0.00476 1.6 18.9 9.8 5.8

NACA 65(2)415(a05) 0.60 0.0055 0.669 0.00456 0.666 0.00467 0.5 2.4 11.0 15.1

NACA 65(3)418(a05) 0.65 0.0055 0.681 0.00506 0.674 0.00511 1.0 1.0 3.7 7.1

NACA 65(3)618(a05) 0.75 0.0060 0.837 0.00520 0.829 0.00533 1.0 2.5 10.5 11.2

NACA 65(4)421(a05) 0.65 0.0060 0.690 0.00549 0.677 0.00556 1.9 1.3 4.2 7.3

Experimental Raw Xfoil CST Xfoil Dev.Raw-CST Dev.Exp-CST

Airfoil Cl Cd Cl Cd Cl Cd % % % %

NACA 747A315 0.48 0.0053 0.499 0.00478 0.508 0.00474 1.8 0.8 7.0 9.7

NACA 747A415 0.55 0.0055 0.590 0.00492 0.598 0.00488 1.4 0.8 8.7 11.3
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Appendix F

RBF Surrogate Fortran Code
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r
,
n
e
a
r
e
s
t
_
p
o
i
n
t
s
,
t
a
g
,
C
F
D

 c
 
 
 
 
 
 
c
o
m
m
o
n
 
/
r
b
f
_
c
o
m
m
o
n
/
 
A
(
7
0
0
0
0
,
3
0
)
,
 
c
o
s
t
s
(
7
0
0
0
0
,
2
)
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)

 c
 
 
 
 
 
 
d
o
 
i
=
1
,
m
+
1

c
 
 
 
 
 
 
 
 
 
d
o
 
j
=
1
,
n

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
A
(
'
,
i
,
'
)
(
'
,
j
,
'
)
 
=
 
'
,
A
(
i
,
j
)

c
 
 
 
 
 
 
 
 
 
e
n
d
 
d
o

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
c
o
s
t
s
(
'
,
i
,
'
)
(
1
)
 
=
 
'
,
 
c
o
s
t
s
(
i
,
1
)

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
c
o
s
t
s
(
'
,
i
,
'
)
(
2
)
 
=
 
'
,
 
c
o
s
t
s
(
i
,
2
)

c
 
 
 
 
 
 
e
n
d
 
d
o

 C
 
 
 
 
 
B
u
i
l
d
 
t
h
e
 
a
u
g
m
e
n
t
e
d
 
m
a
t
r
i
x
 
A
[
M
+
1
,
2
6
]
,
 
a
d
d
i
n
g
 
n
e
w
_
b
l
a
d
e
 
i
n
 
t
h
e
 
l
a
s
t
 
r
o
w
:

c
 
 
 
 
 
 
p
r
i
n
t
*
,
'
B
u
i
l
d
 
m
a
t
r
i
x
 
A
 
i
n
 
R
B
F
.
.
.
'

d
o
 
1
0
 
j
=
1
,
n

 
 
 
 
 
 
 
 
 
A
(
m
+
1
,
j
)
 
=
 
n
e
w
_
b
(
j
)

 
1
0

c
o
n
t
i
n
u
e

c
 
 
 
 
 
 
p
r
i
n
t
*
,
'
m
a
t
r
i
x
 
A
 
b
u
i
l
t
.
.
.
'

 c
 
 
 
 
 
 
d
o
 
i
=
1
,
m
+
1

c
 
 
 
 
 
 
 
 
 
d
o
 
j
=
1
,
n

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
A
(
'
,
i
,
'
)
(
'
,
j
,
'
)
 
=
 
'
,
A
(
i
,
j
)

c
 
 
 
 
 
 
 
 
 
e
n
d
 
d
o

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
c
o
s
t
s
(
'
,
i
,
'
)
(
1
)
 
=
 
'
,
 
c
o
s
t
s
(
i
,
1
)

c
 
 
 
 
 
 
 
 
 
p
r
i
n
t
*
,
'
c
o
s
t
s
(
'
,
i
,
'
)
(
2
)
 
=
 
'
,
 
c
o
s
t
s
(
i
,
2
)

c
 
 
 
 
 
 
e
n
d
 
d
o

   
 
 
 
 
 
u
n
f
e
a
s
1
=
2

 
 
 
 
 
 
u
n
f
e
a
s
2
=
2

d
o
 
1
2
 
i
=
1
,
m

i
f
 
(
(
c
o
s
t
s
(
i
,
1
)
.
G
T
.
u
n
f
e
a
s
1
)
 
.
O
R
.
 
(
c
o
s
t
s
(
i
,
2
)
.
G
T
.
u
n
f
e
a
s
2
)
)
 
t
h
e
n

 
 
 
 
 
 
 
 
 
 
 
 
c
o
s
t
s
(
i
,
1
)
=
u
n
f
e
a
s
1

 
 
 
 
 
 
 
 
 
 
 
 
c
o
s
t
s
(
i
,
2
)
=
u
n
f
e
a
s
2

e
n
d
i
f

 
1
2

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
S
t
a
n
d
a
r
d
i
z
e
 
d
a
t
a
 
m
a
t
r
i
x
 
A
:

c
 
 
 
 
 
 
d
o
 
1
4
 
j
j
=
1
,
n

c
 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
=
0

c
 
 
 
 
 
 
 
 
 
d
o
 
1
5
 
i
i
=
1
,
m
+
1

c
 
 
 
 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
 
=
 
m
e
a
n
_
A
(
j
j
)
+
A
(
i
i
,
j
j
)

c
 
1
5
 
 
 
 
 
 
c
o
n
t
i
n
u
e

c
 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
 
=
 
m
e
a
n
_
A
(
j
j
)
/
(
m
+
1
)

c
 
1
4
 
 
 
c
o
n
t
i
n
u
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 o
f 

1
1

d
o
 
j
j
=
1
,
n

 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
=
0

d
o
 
i
i
=
1
,
m
+
1

 
 
 
 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
 
=
 
m
e
a
n
_
A
(
j
j
)
+
A
(
i
i
,
j
j
)

e
n
d
 
d
o

 
 
 
 
 
 
 
 
 
m
e
a
n
_
A
(
j
j
)
 
=
 
m
e
a
n
_
A
(
j
j
)
/
(
m
+
1
)

e
n
d
 
d
o

  
d
o
 
1
6
 
j
=
1
,
n

 
 
 
 
 
 
 
 
 
v
a
r
_
A
(
j
)
=
0

d
o
 
1
7
 
i
=
1
,
m
+
1

 
 
 
 
 
 
 
 
 
 
 
 
v
a
r
_
A
(
j
)
 
=
 
v
a
r
_
A
(
j
)
 
+
 
(
A
(
i
,
j
)
-
m
e
a
n
_
A
(
j
)
)
*
*
2

 
1
7

c
o
n
t
i
n
u
e

 
 
 
 
 
 
 
 
 
v
a
r
_
A
(
j
)
 
=
 
v
a
r
_
A
(
j
)
/
m

C
 
 
 
 
 
 
 
 
n
o
t
e
 
t
h
a
t
 
y
o
u
 
m
u
s
t
 
d
i
v
i
d
e
 
b
y
 
(
m
+
1
)
-
1
 
=
 
m

 
1
6

c
o
n
t
i
n
u
e

d
o
 
1
8
 
j
=
1
,
n

d
o
 
1
9
 
i
=
1
,
m
+
1

 
 
 
 
 
 
 
 
 
 
 
 
A
(
i
,
j
)
 
=
 
(
A
(
i
,
j
)
-
m
e
a
n
_
A
(
j
)
)
/
s
q
r
t
(
v
a
r
_
A
(
j
)
)

 
1
9

c
o
n
t
i
n
u
e

 
1
8

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
P
r
o
j
e
c
t
 
A
 
i
n
t
o
 
c
o
m
p
o
n
e
n
t
 
s
p
a
c
e
:

C
 
 
 
 
 
D
e
c
o
m
p
o
s
e
 
A
 
w
i
t
h
 
S
V
D
 
-
-
>
 
A
[
m
+
1
,
n
]
=
U
[
m
+
1
,
n
]
·
W
[
n
,
n
]
·
V
t
r
a
s
[
n
,
n
]
:

d
o
 
2
0
 
i
 
=
1
,
m
+
1

!
A
T
T
E
N
T
O
!
!
 
L
A
 
M
A
T
R
I
C
E
 
H
A
 
M
+
1
 
R
I
G
H
E
!
!

d
o
 
2
1
 
j
 
=
 
1
,
n

 
 
 
 
 
 
 
 
 
 
 
 
u
(
i
,
j
)
=
A
(
i
,
j
)
 
!
t
h
i
s
 
i
s
 
n
o
t
 
t
o
 
l
o
s
e
 
A

 
2
1

c
o
n
t
i
n
u
e

 
2
0

c
o
n
t
i
n
u
e

c
a
l
l
 
s
v
d
c
m
p
(
u
,
m
+
1
,
n
,
m
p
,
n
p
,
w
,
v
)
 
!
A
T
T
E
N
T
O
!
!
 
L
A
 
M
A
T
R
I
C
E
 
H
A
 
M
+
1
 
R
I
G
H
E
!
!

c
a
l
l
 
p
r
o
d
u
c
t
m
a
t
r
i
x
(
A
,
v
,
A
p
r
o
j
,
m
+
1
,
n
,
n
,
m
p
,
n
p
,
n
p
)

 
 
 
 
 
 
n
e
w
_
N
=
1
2
 
!
f
o
r
 
n
o
w
 
w
e
 
k
e
e
p
 
1
2
 
P
C
s
.

 C
 
 
 
 
 
R
i
n
o
r
m
a
l
i
s
e
 
t
h
e
 
P
C
s
.
 
E
u
c
l
i
d
e
a
n
 
d
i
s
t
a
n
c
e
s
 
i
n
 
t
h
e
 
n
o
r
m
a
l
i
s
e
d
 
c
o
m
p
o
n
e
n
t
s

C
 
 
 
 
 
w
i
l
l
 
t
h
e
n
 
c
o
r
r
e
s
p
o
n
d
 
t
o
 
t
h
e
 
M
a
h
a
l
a
n
o
b
i
s
 
d
i
s
t
a
n
c
e
s
:

d
o
 
2
5
 
j
=
1
,
n
e
w
_
N

 
 
 
 
 
 
 
 
 
v
a
r
_
A
p
r
o
j
(
j
)
=
0

d
o
 
2
6
 
i
=
1
,
m
+
1

 
 
 
 
 
 
 
 
 
 
 
 
v
a
r
_
A
p
r
o
j
(
j
)
 
=
 
v
a
r
_
A
p
r
o
j
(
j
)
 
+
 
(
A
p
r
o
j
(
i
,
j
)
)
*
*
2

!
t
h
e
 
m
e
a
n
 
a
r
e
 
z
e
r
o
;

 
2
6

c
o
n
t
i
n
u
e

 
 
 
 
 
 
 
 
 
v
a
r
_
A
p
r
o
j
(
j
)
 
=
 
v
a
r
_
A
p
r
o
j
(
j
)
/
m

 
2
5

c
o
n
t
i
n
u
e

d
o
 
2
7
 
j
=
1
,
n
e
w
_
N

d
o
 
2
8
 
i
=
1
,
m
+
1

 
 
 
 
 
 
 
 
 
 
 
 
A
p
r
o
j
(
i
,
j
)
 
=
 
A
p
r
o
j
(
i
,
j
)
/
s
q
r
t
(
v
a
r
_
A
p
r
o
j
(
j
)
)

 
2
8

c
o
n
t
i
n
u
e

 
2
7

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
e
u
c
l
i
d
e
a
n
 
d
i
s
t
a
n
c
e
s
 
(
w
h
i
c
h
 
a
r
e
 
a
c
t
u
a
l
l
y
 
M
a
h
a
l
a
n
o
b
i
e
s

C
 
 
 
 
 
d
i
s
t
a
n
c
i
e
s
,
 
s
i
n
c
e
 
w
e
 
a
r
e
 
i
n
 
t
h
e
 
c
o
m
p
o
n
e
n
t
 
s
p
a
c
e
)
 
o
f
 
t
h
e
 
l
a
s
t
 
p
o
i
n
t

C
 
 
 
 
 
(
i
.
e
.
 
n
e
w
_
b
l
a
d
e
)
 
f
r
o
m
 
a
l
l
 
t
h
e
 
o
t
h
e
r
s
.
 
F
i
r
s
t
 
i
n
i
t
i
a
l
i
s
e
:

d
o
 
3
0
 
i
=
1
,
m

 
 
 
 
 
 
 
 
 
d
i
s
t
(
i
)
 
=
 
0
.
0

 
3
0

c
o
n
t
i
n
u
e

d
o
 
3
3
 
i
=
1
,
m

d
o
 
3
4
 
k
=
1
,
n
e
w
_
N
 
 
 
!
s
u
m
 
o
v
e
r
 
t
h
e
 
n
e
w
_
N
 
P
C
s
;

 
 
 
 
 
 
 
 
 
 
 
 
d
i
s
t
(
i
)
 
=
 
d
i
s
t
(
i
)
 
+
 
(
A
p
r
o
j
(
m
+
1
,
k
)
-
A
p
r
o
j
(
i
,
k
)
)
*
*
2

 
3
4

c
o
n
t
i
n
u
e

 
 
 
 
 
 
 
 
 
d
i
s
t
(
i
)
 
=
 
s
q
r
t
(
d
i
s
t
(
i
)
)

 
3
3

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
C
r
e
a
t
e
 
t
h
e
 
i
n
d
e
x
 
v
e
c
t
o
r
 
a
n
d
 
t
h
e
n
 
s
o
r
t
 
i
t
 
b
y
 
d
i
s
t

C
 
 
 
 
 
(
N
O
T
E
:
 
'
d
i
s
t
'
 
h
a
s
 
m
 
e
n
t
r
i
e
s
,
 
N
O
T
 
m
+
1
)
:

d
o
 
3
5
 
i
=
1
,
m

i
n
d
e
x
(
i
)
=
i

 
3
5

c
o
n
t
i
n
u
e

d
o
 
3
6
 
i
=
1
,
m
-
1

m
i
n
=
d
i
s
t
(
i
)

d
o
 
3
7
 
j
=
i
+
1
,
m

i
f
 
(
d
i
s
t
(
j
)
.
L
T
.
m
i
n
)
 
t
h
e
n

m
i
n
=
d
i
s
t
(
j
)
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 o
f 

1
1

p
o
s
i
t
i
o
n
=
j

e
n
d
i
f

 
3
7

c
o
n
t
i
n
u
e

 
 
 
 
 
 
 
 
 
t
e
m
p
=
d
i
s
t
(
i
)

 
 
 
 
 
 
 
 
 
d
i
s
t
(
i
)
=
d
i
s
t
(
p
o
s
i
t
i
o
n
)

 
 
 
 
 
 
 
 
 
d
i
s
t
(
p
o
s
i
t
i
o
n
)
=
t
e
m
p

 
 
 
 
 
 
 
 
 
t
e
m
p
=
i
n
d
e
x
(
i
)

i
n
d
e
x
(
i
)
=
i
n
d
e
x
(
p
o
s
i
t
i
o
n
)

i
n
d
e
x
(
p
o
s
i
t
i
o
n
)
=
t
e
m
p

 
3
6

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
T
h
e
 
f
i
r
s
t
 
(
e
.
g
.
,
 
8
0
)
 
r
o
w
s
 
o
f
 
t
h
e
 
v
e
c
t
o
r
 
"
d
i
s
t
"
 
w
i
l
l
 
n
o
w
 
c
o
n
t
a
i
n
 
t
h
e

C
 
 
 
 
 
d
i
s
t
a
n
c
e
s
 
o
f
 
t
h
e
 
f
i
r
s
t
 
8
0
 
c
l
o
s
e
s
t
 
c
o
n
f
i
g
u
r
a
t
i
o
n
s
 
t
o
 
n
e
w
_
b
l
a
d
e
.

C
 
 
 
 
 
V
e
c
t
o
r
 
"
i
n
d
e
x
"
 
w
i
l
l
 
c
o
n
t
a
i
n
 
t
h
e
 
c
o
n
f
i
g
.
 
#
 
r
e
l
a
t
i
v
e
 
t
o
 
t
h
e
 
d
i
s
t
a
n
c
e

C
 
 
 
 
 
o
f
 
t
h
e
 
c
o
r
r
e
s
p
o
n
d
i
n
g
 
r
o
w
.

C
 
 
 
 
 
I
N
S
O
M
M
A
:
 
"
d
i
s
t
"
 
c
o
n
t
i
e
n
e
 
l
e
 
d
i
s
t
a
n
z
e
 
d
i
 
t
u
t
t
e
 
l
e
 
1
3
2
3
 
c
o
n
f
i
g
u
r
a
z
i
o
n
i

C
 
 
 
 
 
d
a
l
l
a
 
c
o
n
f
.
 
1
3
2
4
 
(
n
e
w
_
b
l
a
d
e
)
,
 
o
r
d
i
n
a
t
e
 
p
e
r
 
d
i
s
t
a
n
z
a
.
 
A
d
 
e
s
,
 
d
i
s
t
(
8
0
0
)

C
 
 
 
 
 
c
o
n
t
i
e
n
e
 
N
O
N
 
l
a
 
d
i
s
t
a
n
z
a
 
d
e
l
l
a
 
c
o
n
f
.
8
0
0
 
d
a
 
n
e
w
_
b
l
a
d
e
,
 
m
a
 
l
a
 
d
i
s
t
a
n
z
a

C
 
 
 
 
 
d
e
l
l
'
8
0
0
-
e
s
i
m
a
 
c
o
n
f
i
g
u
r
a
z
i
o
n
e
 
p
i
u
'
 
v
i
c
i
n
a
 
a
l
l
a
 
n
e
w
_
b
l
a
d
e
 
d
a
 
n
e
w
_
b
l
a
d
e
.

C
 
 
 
 
 
P
e
r
 
s
a
p
e
r
e
 
Q
U
A
L
E
 
e
'
 
q
u
e
s
t
a
 
c
o
n
f
i
g
u
r
a
z
i
o
n
e
,
 
d
e
v
o
 
c
o
n
t
r
o
l
l
a
r
e
 
l
a
 
m
a
t
r
i
c
e

C
 
 
 
 
 
i
n
d
e
x
:
 
i
n
d
e
x
(
8
0
0
)
 
m
i
 
d
i
c
e
 
i
n
f
a
t
t
i
 
l
a
 
t
a
g
 
n
u
m
b
e
r
 
d
e
l
l
a
 
c
o
n
f
i
g
u
r
a
z
i
o
n
e

C
 
 
 
 
 
l
a
 
c
u
i
 
d
i
s
t
a
n
z
a
 
d
a
 
n
e
w
_
b
l
a
d
e
 
e
'
 
d
i
s
t
(
8
0
0
)
.

 C
 
 
 
 
 
P
r
e
d
i
c
t
 
t
h
e
 
c
o
s
t
s
 
o
f
 
n
e
w
_
b
l
a
d
e
 
u
s
i
n
g
 
t
h
e
 
c
l
u
s
t
e
r
 
o
f
 
(
e
.
g
.
,
 
8
0
)
 
c
l
o
s
e
s
t

C
 
 
 
 
 
p
o
i
n
t
s
.
 
B
u
i
l
d
 
'
n
e
a
r
'
,
 
t
h
e
 
m
a
t
r
i
x
 
c
o
n
t
a
i
n
i
n
g
 
t
h
e
 
c
l
o
s
e
s
t
 
p
o
i
n
t
s
 
t
o
 
n
e
w
_
b
:

 
 
 
 
 
 
c
l
u
s
t
e
r
=
5
0

c
 
 
 
 
 
 
c
l
u
s
t
e
r
=
3
0
0

d
o
 
4
0
 
i
=
1
,
c
l
u
s
t
e
r

d
o
 
4
1
 
j
=
1
,
n
e
w
_
N

 
 
 
 
 
 
 
 
 
 
 
 
n
e
a
r
(
i
,
j
)
 
=
 
A
p
r
o
j
(
i
n
d
e
x
(
i
)
,
j
)

 
4
1

c
o
n
t
i
n
u
e

 
4
0

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
d
i
s
t
a
n
c
e
s
 
o
f
 
e
a
c
h
 
p
o
i
n
t
 
f
r
o
m
 
a
l
l
 
t
h
e
 
o
t
h
e
r
s
.
 
N
o
t
e
 
t
h
a
t
 
t
h
e

C
 
 
 
 
 
m
a
t
r
i
x
 
i
s
 
s
i
m
m
e
t
r
i
c
 
w
i
t
h
 
z
e
r
o
 
d
i
a
g
o
n
a
l
 
e
l
e
m
e
n
t
s
,
 
h
e
n
c
e
 
w
e
 
w
i
l
l
 
o
n
l
y

C
 
 
 
 
 
c
a
l
c
u
l
a
t
e
 
t
h
e
 
u
p
p
e
r
 
t
r
i
a
n
g
l
e
s
.
 
I
n
i
t
i
a
l
i
s
e
 
d
i
s
t
a
n
c
e
 
m
a
t
r
i
x
,
 
i
.
e
.
 
m
a
t
r
i
x
 
F
I
:

d
o
 
4
4
 
i
=
1
,
c
l
u
s
t
e
r

d
o
 
4
5
 
j
=
1
,
c
l
u
s
t
e
r

 
 
 
 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
=
0
.
0

 
4
5

c
o
n
t
i
n
u
e

 
4
4

c
o
n
t
i
n
u
e

d
o
 
4
6
 
i
=
1
,
c
l
u
s
t
e
r
-
1

!
t
a
k
e
 
t
h
e
 
i
'
t
h
 
p
o
i
n
t
;

C
 
 
 
 
 
 
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
d
i
s
t
a
n
c
e
 
o
f
 
t
h
e
 
i
'
t
h
 
f
r
o
m
 
t
h
e
 
j
'
t
h
 
p
o
i
n
t
:

d
o
 
4
7
 
j
=
i
+
1
,
c
l
u
s
t
e
r

d
o
 
4
8
 
k
=
1
,
n
e
w
_
N
 
 
 
 
 
 
 
!
s
u
m
 
o
v
e
r
 
t
h
e
 
n
e
w
_
N
 
P
C
s
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
 
=
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
+
(
n
e
a
r
(
i
,
k
)
-
n
e
a
r
(
j
,
k
)
)
*
*
2

 
4
8

c
o
n
t
i
n
u
e

 
 
 
 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
 
=
 
s
q
r
t
(
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
)

 
 
 
 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
 
=
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
 
 
 
!
l
i
n
e
a
r
 
m
o
d
e
l

 
4
7

c
o
n
t
i
n
u
e

 
4
6

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
T
o
 
c
r
e
a
t
e
 
t
h
e
 
e
n
t
i
r
e
 
l
o
c
a
l
 
d
i
s
t
a
n
c
e
 
m
a
t
r
i
x
,
 
s
i
m
p
l
y
 
c
o
p
y
 
t
h
e
 
u
p
p
e
r
 
t
r
i
a
n
g
l
e

C
 
 
 
 
 
i
n
t
o
 
t
h
e
 
l
o
w
e
r
 
t
r
i
a
n
g
l
e
:

d
o
 
5
0
 
i
=
2
,
c
l
u
s
t
e
r

d
o
 
5
1
 
j
=
1
,
i
-
1

 
 
 
 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
d
i
s
t
(
i
,
j
)
 
=
 
l
o
c
a
l
_
d
i
s
t
(
j
,
i
)

 
5
1

c
o
n
t
i
n
u
e

 
5
0

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
B
u
i
l
d
 
t
h
e
 
m
a
t
r
i
c
e
s
 
f
o
r
 
p
r
e
d
i
c
t
i
o
n
 
o
f
 
c
o
s
t
1
 
a
n
d
 
c
o
s
t
2
:

c
a
l
l
 
p
i
n
v
(
l
o
c
a
l
_
d
i
s
t
,
p
i
n
v
_
l
o
c
a
l
_
d
i
s
t
,
c
l
u
s
t
e
r
,
c
l
u
s
t
e
r
,
c
p
,
c
p
)

d
o
 
5
4
 
i
=
1
,
c
l
u
s
t
e
r

 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
c
o
s
t
1
(
i
)
 
=
 
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
1
)

 
 
 
 
 
 
 
 
 
l
o
c
a
l
_
c
o
s
t
2
(
i
)
 
=
 
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
2
)

 
5
4

c
o
n
t
i
n
u
e

c
a
l
l
 
p
r
o
d
u
c
t
m
a
t
r
i
x
(
p
i
n
v
_
l
o
c
a
l
_
d
i
s
t
,
l
o
c
a
l
_
c
o
s
t
1
,
o
m
e
g
a
1
,

 
 
 
 
 
&
 
 
 
 
 
c
l
u
s
t
e
r
,
c
l
u
s
t
e
r
,
1
,
c
p
,
c
p
,
1
)

c
a
l
l
 
p
r
o
d
u
c
t
m
a
t
r
i
x
(
p
i
n
v
_
l
o
c
a
l
_
d
i
s
t
,
l
o
c
a
l
_
c
o
s
t
2
,
o
m
e
g
a
2
,

 
 
 
 
 
&
 
 
 
 
 
c
l
u
s
t
e
r
,
c
l
u
s
t
e
r
,
1
,
c
p
,
c
p
,
1
)

 C
 
 
 
 
 
T
h
e
 
d
i
s
t
a
n
c
e
s
 
o
f
 
n
e
w
_
b
l
a
d
e
 
f
r
o
m
 
i
t
s
 
c
l
o
s
e
s
t
 
p
o
i
n
t
s
 
a
r
e
 
o
b
v
i
o
u
s
l
y
 
t
h
e
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 o
f 

1
1

C
 
 
 
 
 
f
i
r
s
t
 
"
c
l
u
s
t
e
r
"
 
(
e
.
g
.
,
 
8
0
)
 
v
a
l
u
e
s
 
o
f
 
v
e
c
t
o
r
 
"
d
i
s
t
"
.
 
U
s
i
n
g
 
t
h
e
s
e
 
v
a
l
u
e
s
,

C
 
 
 
 
 
c
a
l
c
u
l
a
t
e
 
t
h
e
 
d
i
s
t
a
n
c
i
e
s
 
(
w
h
i
c
h
 
I
 
c
a
l
l
 
d
i
s
t
_
R
B
F
)
:

d
o
 
6
0
 
i
=
1
,
c
l
u
s
t
e
r

 
 
 
 
 
 
 
 
 
d
i
s
t
_
R
B
F
(
i
)
 
=
 
d
i
s
t
(
i
)
 
 
!
 
l
i
n
e
a
r
 
m
o
d
e
l

 
6
0

c
o
n
t
i
n
u
e

 C
 
 
 
 
 
F
i
n
a
l
l
y
 
p
r
e
d
i
c
t
 
t
h
e
 
c
o
s
t
s
 
o
f
 
n
e
w
_
b
l
a
d
e
:

 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
1
)
=
0

 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
2
)
=
0

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
1
)
 
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
1
)

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
1
)
 
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)

 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

d
o
 
6
2
 
i
=
1
,
c
l
u
s
t
e
r

 
 
 
 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
c
o
s
t
s
_
p
r
e
d
(
1
)
+
o
m
e
g
a
1
(
i
)
*
d
i
s
t
_
R
B
F
(
i
)

 
 
 
 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
c
o
s
t
s
_
p
r
e
d
(
2
)
+
o
m
e
g
a
2
(
i
)
*
d
i
s
t
_
R
B
F
(
i
)

 
6
2

c
o
n
t
i
n
u
e

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
2
)
 
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
1
)

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
2
)
 
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

i
f
 
(
(
c
o
s
t
s
_
p
r
e
d
(
1
)
.
G
T
.
u
n
f
e
a
s
1
)
.
O
R
.
(
c
o
s
t
s
_
p
r
e
d
(
1
)
.
L
T
.
0
)
.
O
R
.

 
 
 
 
 
&
 
 
 
 
 
(
c
o
s
t
s
_
p
r
e
d
(
2
)
.
G
T
.
u
n
f
e
a
s
2
)
.
O
R
.
(
c
o
s
t
s
_
p
r
e
d
(
2
)
.
L
T
.
0
)
)
 
t
h
e
n

 
 
 
 
 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
1
)
=
u
n
f
e
a
s
1

 
 
 
 
 
 
 
 
 
 
c
o
s
t
s
_
p
r
e
d
(
2
)
=
u
n
f
e
a
s
2

e
n
d
i
f

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
3
)
 
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
1
)

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
3
)
 
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

 C
 
 
 
 
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
 
 
 
 
 
T
e
s
t
 
f
o
r
 
r
e
l
i
a
b
i
l
i
t
y
 
o
f
 
t
h
e
 
p
r
e
d
i
c
t
i
o
n
.
 
I
f
 
t
h
e
 
f
i
r
s
t
 
3
 
c
o
n
f
i
g
.
 
a
r
e
 
t
o
o

C
 
 
 
 
 
d
i
f
f
e
r
e
n
t
,
 
e
.
g
.
 
i
f
 
o
n
e
 
i
s
 
f
e
a
s
i
b
l
e
 
a
n
d
 
t
h
e
 
o
t
h
e
r
s
 
a
r
e
 
n
o
t
,
t
h
e
n
 
t
h
e
 
m
o
d
e
l

C
 
 
 
 
 
c
a
n
n
o
t
 
p
r
e
d
i
c
t
 
w
h
e
t
h
e
r
 
n
e
w
_
b
l
a
d
e
 
w
i
l
l
 
b
e
 
f
e
a
s
i
b
l
e
 
o
r
 
n
o
t
.
 
T
h
i
s
 
m
a
y
 
b
e

C
 
 
 
 
 
b
e
c
a
u
s
e
 
t
h
e
 
p
r
e
d
i
c
t
i
o
n
 
i
s
 
v
e
r
y
 
s
e
n
s
i
t
i
v
e
 
t
o
 
t
h
e
 
c
o
s
t
s
 
o
f
 
t
h
e
 
c
l
o
s
e
s
t

C
 
 
 
 
 
p
o
i
n
t
s
,
 
a
l
t
h
o
u
g
h
 
w
e
 
t
h
e
n
 
u
s
e
 
8
0
 
t
o
 
m
a
k
e
 
t
h
e
 
a
c
t
u
a
l
 
p
r
e
d
i
c
t
i
o
n
.
 
I
 
a
l
s
o

C
 
 
 
 
 
a
d
d
 
t
h
e
 
t
e
s
t
 
s
u
g
g
e
s
t
e
d
 
b
y
 
T
i
m
o
s
:
 
i
f
 
t
h
e
 
p
r
e
d
i
c
t
e
d
 
c
o
s
t
 
i
s
 
v
e
r
y
 
<
>
 
f
r
o
m

C
 
 
 
 
 
t
h
o
s
e
 
o
f
 
t
h
e
 
3
 
c
l
o
s
e
s
t
 
p
o
i
n
t
s
,
 
t
h
e
n
 
t
h
e
 
p
r
e
d
i
c
t
i
o
n
 
i
s
 
n
o
t
 
c
o
n
s
i
d
e
r
e
d

C
 
 
 
 
 
r
e
l
i
a
b
l
e
 
a
n
d
 
I
 
u
s
e
 
C
F
D
.
 
T
h
e
 
t
e
s
t
 
h
a
s
 
t
o
 
b
e
 
d
o
n
e
 
f
o
r
 
e
a
c
h
 
o
f
 
t
h
e
 
2

C
 
 
 
 
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
s
 
t
h
e
 
p
r
e
d
i
c
t
i
o
n
 
w
i
l
l
 
b
e
 
c
o
n
s
i
d
e
r
e
d
 
u
n
r
e
l
i
a
b
l
e
 
e
v
e
n
 
i
f

C
 
 
 
 
 
t
h
e
 
t
e
s
t
 
f
a
i
l
s
 
f
o
r
 
o
n
l
y
 
o
n
e
 
o
f
 
t
h
e
 
2
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
s
.
 
H
e
n
c
e
 
w
e
 
b
u
i
l
d

C
 
 
 
 
 
a
 
v
e
c
t
o
r
 
'
t
e
s
t
'
 
w
h
i
c
h
 
w
i
l
l
 
c
o
n
t
a
i
n
 
t
h
e
 
r
e
s
u
l
t
s
 
o
f
 
t
h
e
 
t
e
s
t
 
f
o
r
 
b
o
t
h

C
 
 
 
 
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
s
.

c
c
 
 
 
 
 
 
n
e
a
r
e
s
t
_
p
o
i
n
t
s
=
3
 
 
 
!
t
r
y
 
o
t
h
e
r
 
v
a
l
u
e
s
 
(
s
u
g
g
e
s
t
i
o
n
:
 
b
e
t
w
e
e
n
 
2
 
a
n
d
 
8
)
.

c
c
 
 
 
 
 
 
d
o
 
6
5
 
t
a
g
=
1
,
2
 
 
 
 
 
 
!
t
a
g
=
1
:
 
e
n
t
r
o
p
y
 
g
e
n
e
r
a
t
i
o
n
 
 
t
a
g
=
2
:
 
b
l
o
c
k
a
g
e
.

c
c
 
 
 
 
 
 
 
 
 
m
i
n
=
c
o
s
t
s
(
i
n
d
e
x
(
1
)
,
t
a
g
)

c
c
 
 
 
 
 
 
 
 
 
m
a
x
=
c
o
s
t
s
(
i
n
d
e
x
(
1
)
,
t
a
g
)

c
c
 
 
 
 
 
 
 
 
 
d
o
 
6
6
 
i
=
2
,
n
e
a
r
e
s
t
_
p
o
i
n
t
s

c
c
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
(
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
t
a
g
)
.
L
T
.
m
i
n
)
 
m
i
n
=
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
t
a
g
)

c
c
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
(
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
t
a
g
)
.
G
T
.
m
a
x
)
 
m
a
x
=
c
o
s
t
s
(
i
n
d
e
x
(
i
)
,
t
a
g
)

c
c
 
6
6
 
 
 
 
 
 
c
o
n
t
i
n
u
e

c
c
 
 
 
 
 
 
 
 
 
i
f
 
(
c
o
s
t
s
_
p
r
e
d
(
t
a
g
)
.
L
T
.
m
i
n
)
 
m
i
n
=
c
o
s
t
s
_
p
r
e
d
(
t
a
g
)

c
c
 
 
 
 
 
 
 
 
 
i
f
 
(
c
o
s
t
s
_
p
r
e
d
(
t
a
g
)
.
G
T
.
m
a
x
)
 
m
a
x
=
c
o
s
t
s
_
p
r
e
d
(
t
a
g
)

c
c
 
 
 
 
 
 
 
 
 
t
e
s
t
(
t
a
g
)
 
=
 
m
a
x
-
m
i
n

c
c
 
6
5
 
 
 
c
o
n
t
i
n
u
e

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
4
)
 
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
1
)

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
4
)
 
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

C
 
 
 
 
 
D
e
f
i
n
e
 
t
h
e
 
t
h
r
e
s
h
o
l
d
 
b
e
y
o
n
d
 
w
h
i
c
h
 
t
h
e
 
p
r
e
d
i
c
t
i
o
n
 
i
s
 
c
o
n
s
i
d
e
r
e
d
 
u
n
r
e
l
i
a
b
l
e
.

C
 
 
 
 
 
T
h
e
 
t
h
r
e
s
h
o
l
d
 
d
e
p
e
n
d
s
 
o
n
 
t
h
e
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
.
 
W
e
 
w
i
l
l
 
c
h
o
o
s
e
:

C
 
 
 
 
 
e
n
t
r
o
p
y
 
g
e
n
e
r
a
t
i
o
n
:
 
0
.
1
;
 
 
 
 
b
l
o
c
k
a
g
e
:
 
0
.
1
:

c
c
 
 
 
 
 
 
C
F
D
=
0

c
c
 
 
 
 
 
 
i
f
 
(
(
t
e
s
t
(
1
)
.
G
T
.
0
.
1
5
)
.
O
R
.
(
t
e
s
t
(
2
)
.
G
T
.
0
.
1
5
)
)
 
t
h
e
n

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
t
e
s
t
(
1
)
 
=
 
'
,
 
t
e
s
t
(
1
)
,
 
'
t
e
s
t
(
2
)
 
=
 
'
,
 
t
e
s
t
(
2
)

c
c
 
 
 
 
 
 
 
 
 
C
F
D
=
1
 
 
 
!
i
.
e
.
,
 
u
s
e
 
C
F
D
 
i
n
s
t
e
a
d
 
o
f
 
t
h
e
 
R
B
F
 
m
o
d
e
l

c
c
 
 
 
 
 
 
e
n
d
i
f

 c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
c
o
s
t
s
_
p
r
e
d
(
1
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
1
)

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
c
o
s
t
s
_
p
r
e
d
(
2
)
 
=
 
'
,
 
c
o
s
t
s
_
p
r
e
d
(
2
)
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 o
f 

1
1

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
r
b
f
 
a
r
g
u
m
e
n
t
s
 
=
 
'
,
 
m
,
 
'
 
'
,
 
n
,
 
'
 
'
,
 
m
p
,
 
'
 
'
,
 
n
p

c
c
 
 
 
 
 
 
d
o
 
i
=
1
,
n

c
 
 
 
 
 
 
p
r
i
n
t
*
,
 
'
n
e
w
_
b
(
'
,
i
,
'
)
 
=
 
'
,
 
n
e
w
_
b
(
i
)

c
c
 
 
 
 
 
 
e
n
d
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File: sftp://pareto.soe.cranfield.a…obis/MTOSII/sim_1_69/kriging.m Page 1 of 2

A = importdata('costs.txt');
B = importdata('A.txt');
aux = 0;

cl = A(:,1);
cd = A(:,2);

dim = size(B);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 h = linspace(0,15,100);
 gamma=0;
 cont = 0;

  % 1)%%%%%%%%%% Empirical Semivariogram %%%%%%%%%%%%%%%%
Bproj = B;

gamma_max_cd =    1.2305e-06;
gamma_max_cl =        0.0155;

  % 2)%%%%%%%%%% Model of Semivariogram calculation %%%%%%%%%%%%%%%%
%%%% SEMI-VARIOGRAM MODEL
%SPHERICAL

a  = 10; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  % 3) %%%%%%%%%% Matrix of Cov calculation %%%%%%%%%%%%%%%%
for i=1:dim(1)
    for j=1:dim(1)
        for k=1:dim(2)
        aux = aux + (Bproj(i,k)- Bproj(j,k))^2;
            
        end
        C(i,j) = sqrt(aux);
        aux = 0;
    end
end

for i=1:dim(1)
    for j=1:dim(1)
     if C(i,j) <= a
        C(i,j) = (3*C(i,j)/(2*a)-C(i,j)^3/(2*a^3)); %spherical

    else
        C(i,j) = 1;

    end

    end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% PART OF MY POINT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
new_b = importdata('new_b.txt')';
K = zeros(dim(1),1);
   for i=1:dim(1)
        for k=1:dim(2)
        aux = aux + ((new_b(k))- Bproj(i,k))^2;
            
        end
        K(i) = sqrt(aux);
        aux = 0;
   end
   
   for j=1:dim(1)
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                 if K(j) <= a
        K(j) = (3*K(j)/(2*a)-K(j)^3/(2*a^3)); %spherical

    else
        K(j) = 1;
    end
    end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   % ORDINARY KRIGING (w2)
   lambda_cl = (ones(1,dim(1))*pinv(gamma_max_cl*C)*gamma_max_cl*K-1)/(ones(1,dim(1))*pinv
(gamma_max_cl*C)*ones(dim(1),1));
   w2_cl = pinv(gamma_max_cl*C)*(gamma_max_cl*K-lambda_cl*ones(dim(1),1));
    lambda_cd = (ones(1,dim(1))*pinv(gamma_max_cd*C)*gamma_max_cd*K-1)/(ones(1,dim(1))*pinv
(gamma_max_cd*C)*ones(dim(1),1));
   w2_cd = pinv(gamma_max_cd*C)*(gamma_max_cd*K-lambda_cd*ones(dim(1),1));
   
   CL = 0;
   CD = 0;
   % SIMPLE KRIGING (w1)
   %w1 = pinv(C)*K;
   
   for i=1:dim(1)
       CL = CL + w2_cl(i)*cl(i);
       CD = CD + w2_cd(i)*cd(i);
   end
   

  
data = [-CL CD];
  
              save('CL_CD','data','-ascii');
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File: sftp://pareto.soe.cranfield.a…obis/MTOSII/sim_1_69/mots2.shd Page 1 of 1

%%%%%% PARAMETER SEARCH SPACE DEFINITION %%%%%%%%%%%%%%%%
parameter x1 float range from 0 to 0.5
parameter x2 float range from 0 to 0.5
parameter x3 float range from 0 to 0.5
parameter x4 float range from 0 to 0.5
parameter x5 float range from 0 to 0.5
parameter x6 float range from 0 to 0.5
parameter x7 float range from 0 to 0.5
parameter x8 float range from 0 to 0.5
parameter x9 float range from -0.1 to 0.5
parameter x10 float range from -0.1 to 0.5
parameter x11 float range from -0.1 to 0.5
parameter x12 float range from -0.1 to 0.5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% MULTIOPTIMISATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
results 2

%%%%%%%% TASKS TO EVALUATE THE OBJECTIVE FUNCTIONS %%%%%%
%%%%%%%% kriging.m function used, that needs matrices A and costs
%%%%%%%% new_b is the new design variable that Nimrod/O produces
%%%%%%%% matlab has to be loaded

task main
   copy  kriging.m node:kriging.m
   copy  A.txt node:A.txt
   copy  costs.txt node:costs.txt
   copy  new_b.txt node:new_b.txt
   node:execute echo "$x1,$x2,$x3,$x4,$x5,$x6,$x7,$x8,$x9,$x10,$x11,$x12" > new_b.txt
   node:execute  matlab -nojvm < kriging.m > CL_CD
   copy  node:CL_CD output.$jobname
endtask

%%%%%%%%%% OPTIMISATION METHOD %%%%%%%%%%%%%%%%%%%%%%%%%%
method mots_ii
  starts 1
    resume optimisation 0
    number of regions 4
    size of Short Term Memory 20
    intensification 15
    diversification 25
    stepsize reduction 50
    initial step size 0.04
    stepsize reduction-factor 0.5
    size of sample 6
    number of evaluations 10000
    starting method 0
    pattern move mode 0
    tolerance 0.000
    on error ignore
  endstarts
endmethod
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File: sftp://pareto.soe.cranfield.a…_1/sources/cst-tool/cst-main.f Page 1 of 4

C      function cst_point_writer(B,N1, N2, dzc_upper, dzc_lower, B_orders) 
      function CST(B,NCP,NEWDPX,NEWDPY,np,flag)
c      PROGRAM CST 
      INTEGER NCP(2), flag
c      real newdp(100,2)
      double precision newdp(500,2)
c      double precision newdp(100,2)
      double precision newdpx(500), newdpy(500)
      integer upper_flag, cont_up, cont_low, B_orders(2)
      integer num, n_points, double_n_points, aux
      integer i, j , r , cont, np
      double precision  B(12), Ba_upper(6),B_upper(6,1), B_lower(6,1)
      double precision  Ba_lower(6), xc_lo(76), xc_up(88)
      double precision  M_lower(76,6), M_upper(88,6), points(165,2)
      double precision  zc_lower(76,1), zc_upper(88,1)
      real dzc_upper, dzc_lower, N1, N2

C    Geometry class
      N1 = 0.5
      N2 = 1
      B_orders(1) = 5
      B_orders(2) = 5
c    Auxiliar variables such as counters
      cont = 0
      

C A)
CCCCCCCCCC Reads the new_b.txt desgin vector from a file CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
       OPEN(UNIT=10,FILE='new_b.txt')

      READ(10,*) Ba_upper(1),Ba_lower(1),Ba_upper(2),Ba_lower(2),
     &           Ba_upper(3),Ba_lower(3),Ba_upper(4),Ba_lower(4),
     &           Ba_upper(5),Ba_lower(5),Ba_upper(6),Ba_lower(6)
5121 CLOSE(10)

        do i=1,6
         B_upper(i,1) = Ba_upper(i)
         B_lower(i,1) = Ba_lower(i)
         end do

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C B)
CCCCCCCCC Reads the new_b vector from input argument, B CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C       B_upper(1,1) = B(1);
C       B_upper(2,1) = B(3);
C       B_upper(3,1) = B(5);
C       B_upper(4,1) = B(7);
C       B_upper(5,1) = B(9);
C       B_upper(6,1) = B(11);
C       B_lower(1,1) = B(2);
C       B_lower(2,1) = B(4);
C       B_lower(3,1) = B(6);
C       B_lower(4,1) = B(8);
C       B_lower(5,1) = B(10);
C       B_lower(6,1) = B(12);
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC Point distribution desired CCCCCCCCCCCCCC

      n_points = 75

      OPEN(UNIT=11,FILE='xc_up.txt')

      DO i=1,88  
        READ(11,*,END=2121) xc_up(i)
      ENDDO

2121 CLOSE(11)

      OPEN(UNIT=12,FILE='xc_lo.txt')
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      DO i=1,76
        READ(12,*,END=7121) xc_lo(i)
      ENDDO

7121 CLOSE(12)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
         do i=1,88
          do j=1,6
c         M_lower(i,j) = 0
         M_upper(i,j) = 0
          end do
         end do

         do i=1,88
          do j=1,1
C         zc_lower(i,j) = 0
         zc_upper(i,j) = 0
          end do
         end do
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
         do i=1,76
          do j=1,6
         M_lower(i,j) = 0
C         M_upper(i,j) = 0
          end do
         end do

         do i=1,76
          do j=1,1
         zc_lower(i,j) = 0
C         zc_upper(i,j) = 0
          end do
         end do

CCCCCCC Lower surface point calculation CCCCCCCCCC
      do i=1,76

do r=0,B_orders(2)
            M_lower(i,r+1) = -(xc_lo(i)**(N1))*((1-xc_lo(i))**(N2))
     &*bin(B_orders(2),r)*((1-xc_lo(i))**(B_orders(2)-r))*xc_lo(i)**r
         end do
      end do
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCC Upper surface point calculation CCCCCCCCCC
      do i=1,88
         do r=0,B_orders(1)
            M_upper(i,r+1) =  (xc_up(i)**(N1))*((1-xc_up(i))**(N2))
     &*bin(B_orders(1),r)*((1-xc_up(i))**(B_orders(1)-r))*xc_up(i)**r
         end do
      end do
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

      call productmat(M_lower,B_lower,zc_lower,76,6,1)
      call productmat(M_upper,B_upper,zc_upper,88,6,1)

         do i=1,165
         points(i,1) = 0
         points(i,2) = 0
         end do

         aux = n_points
        cont = 0

      do i=1,88
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          cont = cont + 1
          points(i,1) = xc_up(i)
          points(i,2) = zc_upper(i,1)
          aux = aux - 1
      end do

      do i=1,76
          cont = cont + 1
          points(cont,1) = xc_lo(i)
          points(cont,2) = zc_lower(i,1)
      end do

      DO n=1,164
         newdpx(n) = points(n,1)
c write(*,*) 'newdpx = ', newdpx(n)
         newdpy(n) = points(n,2)
c write(*,*) 'newdpy = ', newdpy(n)
c         WRITE(23,402) newdpx(n),newdpy(n)
      ENDDO
c      REWIND(22)
c     CLOSE(22)
      

      flag = 1

      ffd = flag

      OPEN(UNIT=15,FILE='airfoil.dat')
      DO i=1,164
      WRITE(15,"(2F12.7)") points(i,1),     points(i,2)
      ENDDO
C 15   FORMAT(F5.5)
           
      CLOSE(15)

      RETURN
      END

      SUBROUTINE productmat(A,B,C,dim1,dim2,dim3)
C     Calculates A[dim1xdim2] · B[dim2xdim3] = C[dim1xdim3]
      INTEGER dim1,dim2,dim3
      double precision A(dim1,dim2),B(dim2,dim3),C(dim1,dim3)
      INTEGER i,j,k
      do 31 i=1,dim1
        do 20 j=1,dim3
           C(i,j)=0.d0
           do 10 k=1,dim2
            C(i,j) = C(i,j) + A(i,k)*B(k,j)
10        continue
20     continue
31   continue

      END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

      FUNCTION BIN(m1,m2)

      BIN=1.
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      DO i=1,m1
         BIN=BIN*i
      ENDDO
      DO i=1,m2
         BIN=BIN/i
      ENDDO
      DO i=1,(m1-m2)
         BIN=BIN/i
      ENDDO

      RETURN 
      END
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File: sftp://pareto.soe.cranfield.a…/RBF/NSGAII/sim_1_69_dat/A.txt Page 1 of 1

0.0858 0.0858 0.0768 0.0768 0.0809 0.0809 0.0677 0.0677 0.073 0.073 0.0717 0.0717
0.1287 0.1287 0.1152 0.1152 0.1213 0.1213 0.1016 0.1016 0.1096 0.1096 0.1076 0.1076
0.1521 0.1345 0.1534 0.1022 0.1661 0.1038 0.1355 0.0899 0.1569 0.0869 0.1521 0.0871
0.1825 0.1614 0.1761 0.1305 0.1968 0.1274 0.1547 0.1154 0.1833 0.1093 0.1755 0.1115
0.1941 0.1518 0.198 0.1068 0.2325 0.0939 0.1733 0.0947 0.221 0.0731 0.2075 0.0795
0.2441 0.1887 0.225 0.1544 0.2872 0.1231 0.1942 0.1385 0.2658 0.1033 0.2413 0.1169
0.2957 0.2244 0.2496 0.2037 0.3451 0.1503 0.2123 0.1841 0.3123 0.1323 0.2747 0.1545
0.3484 0.2589 0.2727 0.2547 0.4046 0.1757 0.229 0.2312 0.3597 0.1604 0.308 0.1923
0.2179 0.1344 0.2426 0.0579 0.3019 0.0284 0.2126 0.0515 0.2953 0.0019 0.2725 0.0155
0.2757 0.1665 0.2574 0.1126 0.3721 0.0493 0.2194 0.1025 0.3489 0.0275 0.3043 0.054
0.3369 0.1965 0.2664 0.1699 0.4501 0.0677 0.2189 0.1556 0.4072 0.0517 0.3347 0.0926
0.4006 0.2245 0.2714 0.2294 0.5327 0.0839 0.2147 0.2103 0.4677 0.0748 0.3648 0.1312
0.2444 0.1128 0.2041 0.0732 0.1753 0.1899 0.177 0.0544 0.1625 0.1534 0.1673 0.1105
0.3035 0.142 0.2102 0.1383 0.26 0.1938 0.1697 0.1219 0.2235 0.1699 0.1938 0.1541
0.3682 0.1683 0.2037 0.2087 0.3632 0.1909 0.1445 0.1956 0.2956 0.183 0.2159 0.1989
0.0798 0.0595 0.0994 0.0324 0.1128 0.0872 0.1165 0.0132 0.1009 0.0597 0.0896 -0.0611
0.116 0.0919 0.131 0.0706 0.1668 0.1319 0.1432 0.0494 0.1412 0.0933 0.0929 -0.0551
0.1286 0.1037 0.1409 0.0789 0.1838 0.1577 0.1575 0.0465 0.1436 0.114 0.1054 -0.058
0.1195 0.107 0.112 0.0829 0.1894 0.17 0.1272 0.0822 0.1478 0.1223 0.0657 -0.0076
0.0783 0.0583 0.0915 0.024 0.1191 0.0941 0.1165 0.0126 0.1047 0.064 0.0945 -0.0563
0.1141 0.0924 0.1175 0.0519 0.179 0.1518 0.1416 0.0401 0.1468 0.104 0.1008 -0.0495
0.1261 0.101 0.1261 0.0678 0.1995 0.1614 0.1491 0.0588 0.1608 0.1103 0.1025 -0.0445
0.0736 0.0539 0.0908 0.0227 0.1105 0.0863 0.1307 0.0261 0.1141 0.074 0.1026 -0.0486
0.1057 0.083 0.1194 0.0567 0.1599 0.1278 0.171 0.0747 0.1561 0.1098 0.1143 -0.0347
0.1163 0.0923 0.1294 0.0688 0.1759 0.1406 0.185 0.092 0.1691 0.1203 0.1179 -0.0302
0.0702 0.0507 0.0925 0.0241 0.1012 0.0773 0.1247 0.0199 0.1639 0.1239 0.1023 -0.0493
0.1011 0.0788 0.1212 0.0578 0.1449 0.1136 0.1652 0.0681 0.2296 0.184 0.1122 -0.0377
0.152 0.1235 0.1633 0.11 0.2202 0.1762 0.171 0.0859 0.1765 0.1224 0.0968 -0.0487
0.1681 0.1093 0.1862 0.0863 0.2485 0.1457 0.2064 0.057 0.2087 0.082 0.1675 -0.112
0.1666 0.1666 0.1807 0.1807 0.2198 0.2198 0.2041 0.2041 0.1489 0.1489 0.1589 0.1589
0.1874 0.1518 0.1973 0.157 0.2726 0.2096 0.1988 0.1337 0.2091 0.1406 0.1003 -0.0394
0.2074 0.1361 0.2131 0.1327 0.3107 0.1846 0.2246 0.094 0.2479 0.1115 0.1685 -0.1109
0.2289 0.1217 0.2258 0.1066 0.3537 0.1617 0.2454 0.0532 0.2901 0.0825 0.2354 -0.1828
0.2199 0.1786 0.2374 0.2062 0.3385 0.2415 0.1981 0.1824 0.2628 0.1542 0.0917 -0.0294
0.2733 0.143 0.2437 0.1635 0.4298 0.1836 0.249 0.1119 0.3356 0.0884 0.2325 -0.1696
0.2543 0.2026 0.2752 0.2612 0.3652 0.2663 0.266 0.2372 0.2565 0.1618 0.1111 -0.018
0.2844 0.1807 0.2729 0.2458 0.4288 0.2299 0.2654 0.2095 0.3143 0.1234 0.1714 -0.086
0.1351 0.1351 0.1192 0.1192 0.2139 0.2139 0.1269 0.1269 0.1571 0.1571 0.034 0.034
0.1423 0.128 0.1321 0.106 0.226 0.2024 0.1468 0.1063 0.1717 0.1431 0.0699 -0.0021
0.1497 0.1213 0.1447 0.0922 0.2384 0.1918 0.1665 0.085 0.1863 0.1295 0.106 -0.0385
0.1681 0.1093 0.1862 0.0863 0.2485 0.1457 0.2064 0.057 0.2087 0.082 0.1675 -0.112
0.1672 0.1672 0.1522 0.1522 0.2665 0.2665 0.1587 0.1587 0.1887 0.1887 0.041 0.041
0.1852 0.1507 0.1716 0.1299 0.2996 0.2375 0.1893 0.1239 0.2244 0.156 0.1105 -0.0295
0.2045 0.1354 0.1884 0.1054 0.3367 0.2121 0.2159 0.0853 0.2627 0.1257 0.179 -0.1008
0.2198 0.1782 0.1993 0.1698 0.3608 0.2813 0.2109 0.1634 0.2599 0.1786 0.1143 -0.0205
0.2437 0.1602 0.2077 0.1494 0.4103 0.2504 0.2246 0.1302 0.3074 0.1448 0.1791 -0.0911
0.2692 0.1437 0.2125 0.1263 0.4653 0.2231 0.2328 0.0943 0.3585 0.1115 0.2427 -0.1605
0.2554 0.2053 0.2256 0.2108 0.4257 0.3256 0.2279 0.2017 0.2967 0.1999 0.1165 -0.0121
0.2846 0.184 0.2239 0.1951 0.49 0.2881 0.2264 0.1757 0.355 0.1601 0.177 -0.0797
0.1376 0.1108 0.1483 0.0926 0.2099 0.1675 0.2108 0.1254 0.1955 0.1412 0.1242 -0.0219
0.1523 0.0986 0.1739 0.0628 0.2341 0.1492 0.2507 0.0797 0.2244 0.116 0.1969 -0.0954
0.1688 0.1369 0.1787 0.1317 0.2578 0.203 0.2543 0.1819 0.2285 0.1645 0.1353 -0.0072
0.1866 0.1226 0.1987 0.1051 0.2909 0.18 0.2842 0.1412 0.2646 0.1355 0.2052 -0.0794
0.2207 0.1453 0.2259 0.1479 0.3451 0.2127 0.3204 0.2005 0.3006 0.1537 0.2119 -0.0662
0.2444 0.1302 0.2314 0.1222 0.4004 0.1887 0.328 0.1612 0.3522 0.1232 0.2758 -0.1377
0.2295 0.1847 0.2393 0.2133 0.36 0.2745 0.3334 0.2935 0.2919 0.2037 0.1504 0.0169
0.2551 0.1655 0.2453 0.194 0.4133 0.2414 0.3425 0.2638 0.3432 0.1661 0.2145 -0.052
0.1314 0.1053 0.1512 0.0947 0.1858 0.1439 0.211 0.1256 0.2898 0.2355 0.1203 -0.0269
0.1612 0.1304 0.1821 0.1338 0.2244 0.17 0.2605 0.1886 0.3454 0.2811 0.1275 -0.0165
0.1889 0.1526 0.2178 0.1788 0.2537 0.1853 0.3241 0.2676 0.3879 0.3119 0.1353 -0.0049
0.2169 0.1743 0.2517 0.2231 0.2856 0.2017 0.3859 0.3466 0.4321 0.3428 0.1395 0.0037
0.1764 0.1437 0.1466 0.1035 0.2984 0.2358 0.1104 0.0463 0.5293 0.4618 0.1425 -0.0033
0.1417 0.1075 0.1587 0.0805 0.2151 0.1643 0.2295 0.1092 0.213 0.1108 0.0813 0.0447
0.2017 0.1119 0.2121 0.0842 0.324 0.1581 0.3088 0.1041 0.2822 0.1294 0.1152 0.0051
0.2396 0.1331 0.2294 0.1284 0.3931 0.1896 0.3297 0.1644 0.3306 0.1452 0.1161 0.0196
0.2725 0.1136 0.2432 0.0902 0.4613 0.158 0.3524 0.1025 0.3915 0.1149 0.1345 -0.011
0.2766 0.1516 0.2483 0.1758 0.4603 0.2179 0.3525 0.2279 0.3753 0.1555 0.1175 0.0353
0.2178 0.1188 0.182 0.096 0.4043 0.1648 0.156 0.0752 0.2771 0.3085 0.052 0.0116
0.2281 0.1121 0.1889 0.0822 0.4252 0.154 0.1667 0.054 0.2983 0.295 0.0854 -0.0251
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